
Standardising smart contracts:
Automatically inferring ERC standards

Robert Norvill
SEDAN group, SnT

University of Luxembourg
29 Avenue John F. Kennedy

L-1855 Luxembourg
robert.norvill@uni.lu

Beltran Fiz
SEDAN group, SnT

University of Luxembourg
29 Avenue John F. Kennedy

L-1855 Luxembourg
beltran.fiz@uni.lu

Radu State
SEDAN group, SnT

University of Luxembourg
29 Avenue John F. Kennedy

L-1855 Luxembourg
radu.state@uni.lu

Andrea Cullen
EECS

The University of Bradford
Richmond Road Bradford

BD7 1DP, UK
a.j.cullen@bradford.ac.uk

Abstract—Ethereum smart contracts have become common
enough to warrant the need for standards to ensure ease of use.
The most well known standard was created for the emerging
token ecosystem and the exchanges serving it: the ERC20
standard.

In this work we use the function selectors present in Ethereum
smart contract bytecode to define contract purpose. Contracts are
clustered according to the selectors they have. A Reverse look-up
from selectors to function names is used to label clusters. We use
the function names in clusters to suggest candidates for ERC
standardisation.

I. INTRODUCTION

Ethereum is the world’s most popular blockchain for smart
contract utilisation. It can be thought of as a blockchain based,
decentralised computer, with smart contracts as the programs
it is capable of executing. Ethereum smart contracts are widely
used and can hold a high value in tokens or ether. The results
of smart contract execution are agreed upon by consensus.

Ethereum bytecode consists of opcodes and static values.
The Ethereum Virtual Machine (EVM) reads and operates on
these opcodes and values.

The availability of smart contract source code is entirely
at the discretion of the developer. The bytecode is always
publicly visible, so that nodes can execute it. However, the
source code is unavailable in the majority of cases. At the time
of writing [1] has verified source code for 49570/46338837
contracts on the public blockchain.

Ethereum has a growing number of Ethereum Improvement
Proposals (EIP’s). Ethereum Request for Comments (ERC’s)
are a subset of EIP’s, most of which define templates for
contracts, for a given purpose. The most popular is currently
ERC20 [2]. It provides a standardised set of functions that
must be implemented for tokens in Ethereum. ERC’s only de-
tail the functions that must be implemented, not the semantics
of implementation. In keeping with this approach, we consider
function names, and not function content.

In this paper we aim to provide insight into the purpose of
contracts for which the source code is unavailable. Standard-
isation can be a lengthily process, and is often a reaction to

an existing need. We aim to provide a method to speed up
the process, by early identification of potential candidates for
new ERC’s. Our approach can be used to identify where the
community could focus its efforts.

In Ethereum smart contracts, function selectors are 4 byte
identifiers created from the keccak256 hash of the function
name and parameter types. They are stored in a contract’s
bytecode as static values and used to identify which function
is being called. We utilise selectors by treating those derived
from functions in ERC’s and those present in contracts, as sets
which define contracts. The sets of selectors are used to cluster
similar contracts. A reverse look-up is used to label clusters.
Selectors are guaranteed to be unique within a contract and are
universally uniform. A contract implementing an ERC must
have the selectors of that ERC.

II. RELATED WORK

Ethereum’s yellow paper is frequently updated. It clearly
defines the opcodes and their behaviour [3]. Such information
is necessary when working with bytecode.

Etherscan is a web-based blockchain explorer for
Ethereum [1]. It verifies contracts by compiling the source
code provided by developers and checking that the bytecode
matches that which is stored on the blockchain. Etherscan
can label smart contracts as ERC20 tokens without the source
code. We speculate that they may identify these contracts using
features common to all ERC20 contracts, such as the function
selectors.

Various projects and papers have focused on Ethereum
bytecode. They fall into two main categories, those dealing
with the monetary cost of executing smart contracts, and
those dealing with contract security. Those dealing with cost
include: [4], [5], [6], [7], [8]. The security focused projects
include: [9], [10], [11].

In this work we make use of the function selectors found in
complied smart contracts. The website found at [12] provides
access to a database of function selectors. It is populated with
user provided functions which match a given selector. The
entire database is available at [13]. We use this database to
perform the reverse look-up from selectors to function names.
We use the acquired function names to define cluster purpose.978-1-7281-1328-9/19/$31.00 ©2019 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/225543743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lastly, in our previous work we used clustering to identify
contract purpose [14]. The whole bytecode of each contract
was used. We employed identification methods used in mal-
ware detection and used Etherscan’s verified contracts to label
clusters. In this work we improve our accuracy by focusing
on the selectors.

III. DATASET

The raw data consists of the 1499926 contracts from
Ethereum’s public chain, between blocks 46402 and 5609706.
We extract the function selectors from each contract and treat
them as elements of a set which represents the contract. Dupli-
cates and contracts without selectors are removed. Duplicates
are defined as contracts sharing the exact same set of selectors.
If A and C are sets of selectors defining contracts then C is
a duplicate if A = C

Timestamps in the raw data range from Aug-07-2015
04:42:15 AM +UTC to May-14-2018 01:52:40 AM +UTC.
The raw data contains 125611 contracts which implement
ERC’s. There are 68 ERC’s listed at [15], of which our dataset
contains 3. In order of prevalence they are: ERC20, ERC173,
ERC721. ERC’s 20 and 721 have both required and optional
functions in their definitions. We represent this as two sets.
One, a required set of selectors, that a contract must have
in order to implement the ERC. The other, a set of optional
selectors, that a contract may contain zero or more of. ERC20
and ERC721 are finalised, while ERC173 is still a draft.

With duplicates removed we have a total of 22800 unique
contracts, which we use for clustering. The number of dupli-
cates each contract has is recorded and used as weight when
clustering.

IV. METHODOLOGY

In this section we discuss the steps taken to build our
dataset, and the clustering methods employed.

In Ethereum, function selectors are used to identify
which function is being called. They are generated from
the canonical form of the function, which is the function
name followed by the type of each parameter, separated by
commas, with no white space. For example, for ERC20:
function transfer(address _to, uint256 _value)

public returns (bool success)

has the canonical form: transfer(address,unit)
The canonical form must be hashed using the keccak256
function (SHA3). The selector is taken to be the first 4 bytes
of the hash, encoded as a hexadecimal number. We generate
the functions selectors for ERC’s to check for their presence
in our dataset. Selectors are stored in contract bytecode to
allow the given function to be selected when calling the
contract.

The input for the hash includes the data types of parameters,
allowing for overloading. This ensures that functions with the
same name and different parameters will have unique selectors.
As the process produces uniform output, selectors will be the
same for functions with the same name and parameters across
contracts. This makes selectors a natural fit for representation

as elements of sets. Set elements must be unique, a property
each contract already has. As such, each ERC and contract
can be represented by a set of its selectors. We are able to
validate our clustering through the use of set operations. Any
contract implementing an ERC must contain the selectors of
that ERC. In set theory terms a contract selector set A must
be a superset, of an ERC selector set C. If A implements C
then: A ⊇ C

Our dataset consists of a set of selectors per unique contract
in the raw data. Selectors are extracted from the bytecode using
pattern matching.
PUSH4 0xdd62ed3e EQ PUSH2 0x0116 JUMPI DUP1

We identify the selectors using regular expressions to match
the bytecode around each selector. An example with the
selector of the first ERC20 function can be seen above, the
selector is highlighted in bold. The extracted selectors are
stored as one set per contract.

The K-means clustering algorithm is used to cluster con-
tracts based on the selectors present in their bytecode. The
contracts are weighted according to the number of duplicates
they have.

We run K-means with different values of k: 2, 5 and 9.
ERC20 is used to validate our results. The ERC20 contracts
should be clustered together. We record the percentage of
each cluster which is made up of ERC20 contracts. For each
cluster the top 10 most commonly occurring selectors are
extracted, and a reverse look-up from selectors to functions
names is carried out using the database available from the
4byte website [13]. The top selectors are used to provide
suggestions for new ERC’s.

We use Single Value Decompression (SVD), as imple-
mented in the Python’s sklearn library [16], to visualise the
result of the clustering process.

V. EXPERIMENTAL RESULTS

In this section we discuss the results of the clustering, and
label clusters according to their member’s purpose. Purpose is
derived from the function names in each cluster. We detail
the results for k=2 and show how we are able to make
further recommendations by increasing the value of k. When
discussing the contracts in a cluster we refer to the unique
contracts that make up our dataset, unless stated otherwise.

A. k=2

For k=2, c0 represents non-ERC20 contracts and c1 contains
the ERC20 contracts. c0 contains 16471 contacts and c1
contains 5817. The percentage of ERC20 contracts in each
cluster is 1.3 and 93.3, respectively. With k=2 we can identify
ERC20 contracts with a high level of accuracy.

B. k=5

By increasing the value of k to 5 we begin to identify
candidates for new ERC’s. Fig. 2 shows the new clusters.
Notably, the cluster on the left hand side has split in two. c4
contains the ERC20 contracts. It is larger than its equivalent
for k=2, containing 7490 unique contracts, 75.4% of which are

Fig. 1: Visualisation for clustering for k=2

full ERC20 implementations. It contains a number of partial
ERC20 implementations, with 7399 contracts containing the
required ERC20 function balanceOf() and 6174 containing
the required function allowance(address,address) (1225
less). The optional ERC20 function symbol() appears 7209
times, 1035 times more than the required allowance function.
This suggests a large number of different ERC20 hybrids have
been implemented.

Fig. 2: Visualisation of clustering for k=5

Cluster c0 contains contracts which have functionality re-
lated to ownership: 5831/6330 contain owner() and 3444/6330
contain transferOwnership(address). These two functions
comprise the required functions defined in ERC173, sug-
gesting that we can identify the the usage of this ERC.
It appears that a great many contracts implement half of
ERC173, by defining only the owner function. In c4; after the
ERC20 functions, the most prevalent selectors are owner()

and transferOwnership(address) which occur in 58.3% and
42.3% of the contracts respectively.

c1 contains one unique contract with a weight of
363285. This makes it a very commonly occurring con-
tract. It contains all the ERC20 required and optional
selectors. A number of its functions are not found in
the 4bytes database. Removing all ERC20 and unknown
selectors, we find grant(address,uint256), owner() and
transferOwnership(address). The presence of ERC173 in
such a heavily weighted cluster shows it is in frequent use.
The presence of grant(address,uint256) shows a very com-
monly occurring function not present in any ERC. ERC1207,
has a grant function, however it takes an extra string as a
parameter.

c2 provides our first candidate for an ERC. It contains 16
unique contracts, and represents 56 contracts in the raw data.
All the contracts contain:
token(), bought_tokens(), sale(), set_token_address()
All but one contain:
set_sale_address(address), change_min_amount(uint256),
set_percent_reduction(uint256),
change_max_amount(uint256), change_owner(address).
ERC900 has token() as one of its required functions, but
none of its other functions are present. This cluster is a
candidate for a new ERC. The function names suggest
contracts used for crowd sales. As they do not contain any
of the ERC20 selectors it is likely there is unstandardised,
but desired, functionality. We suggest a crowd sale ERC with
required functions defined as those listed above.

c3 contains 8451 unique contracts. The most commonly
occurring function is kill(), which occurs in only 1191 of
the contracts. This cluster seems to catch contracts that do not
display a strong similarity any others.

C. k=9

lastly, we look at the results for k=9, the clusters for which
can be seen in fig 3. At a glance, boundaries between the
major clusters have not vastly changed. However, a detailed
look at the contents of the clusters allows us to draw out more
interesting information.

Fig. 3: Visualisation of clustering for k=9

As before, c4 identifies the ERC20 contracts; 92.5% of the
cluster is made up of contracts implementing all the required
ERC20 functions. The hybrid implementations of ERC20 have
been separated out into c1, with full ERC implementations
making up only 5.3% of the cluster. This shows that we
are able to distinguish between full ERC20 implementations
and partial ones. In c1 optional functions have a greater
presence than some of the required functions, with symbol()
appearing more frequently than some required functions. This
shows the same trend for hybrid ERC20 implementations.

c6 identifies the same heavily weighted, unique ERC20
contract as c1 for k=5. The c7 cluster is extremely similar
to c3 for k=5. The number of contracts is almost identical and
they display the same level of heterogeneity. As such, this
cluster is still catching contracts which do not fit elsewhere.

c2, like c0 for k=5, identifies contracts whose shared
attributes are the functions defined in ERC173, with 95.9%
containing the owner function. The trend for partial im-
plementations of ERC173 is also visible here with only
55% of the contracts having implemented the required
transferOwnership(address) function.

c0 contains 7 unique contracts, with a combined weight
of 140. All the contracts contain: signers, (uint256),

activateSafeMode(), (isSigner(address), (safeMode()

All but one contain:
createForwarder(), getNextSequenceId(),

sendMultiSig(address,uint256,

bytes,uint256,uint256,bytes) None of these functions
appear in any of the current ERCs. The names suggest
an agreement schema. We put forward our second ERC
recommendation based on the above functions.

c3 has the following functions in more than 70% of
its contracts: amountRaised(), 0x6e66f6e9, beneficiary(),
balanceOf(address). With the exception of the selector for
which no name is available, these functions suggest contracts
for fund raising. Given the number of functions pertaining to
funding, we posit that a candidate for an ERC is a template
for the kind of fund raising suggested by the functions in this
cluster. An extension of ERC20 could include these functions
to allow users to check how much has been raised and to
whom ether or tokens are being given.

c5 consists of 45 unique contracts with a combined weight
of 124360. All the contracts have:
isOwner(address), revoke(bytes32),

hasConfirmed(bytes32,address)

All but one have:
addOwner(address), m_numOwners(),

changeOwner(address,address),

changeRequirement(uint256), removeOwner(address),

m_required() These functions very strongly suggest smart
contracts used to record and update ownership. Given the
homogeneity and weight of this cluster, we suggest an ERC
to provide a generic way to record ownership for tokens,
tangible and intangible assets, or other contracts. Optional
functions could be defined for different types of asset.

Lastly, c8 contains 2 unique contracts with a combined

weight of 5. Although few in number, it is interesting that
these contracts were given their own cluster. On inspection,
the functions describe a game.

VI. CONCLUSION

In this paper we detail the results of clustering Ethereum
smart contracts when each contract is treated as the set of the
function selectors found in its bytecode. Clusters are labelled
according to the results of a reverse look-up, from function
selectors to function names. We cluster using K-means with
different values of k. From k=2 onwards the major clusters
begin to emerge. We maintain accuracy for increased values of
k: k=5 and k=9. New clusters which emerge when increasing
the value of k allow us to highlight contract purposes for which
no ERC currently exists, and make ERC recommendations. We
validate our method by showing that ERC20 contracts can be
accurately clustered.

Future work includes taking contract transaction volume
into account and investigating the effectiveness of using a
custom distance metric for clustering.

REFERENCES

[1] Ethereum, “Ethereum (ETH) Blockchain Explorer,” https://etherscan.io/,
2018, [Accessed 8th November 2018].

[2] F. Vogelsteller and V. Buterin, “ERC-20 Token Standard,”
https://eips.ethereum.org/EIPS/eip-20, 2015, [Accessed 8th November
2018].

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[4] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on. IEEE, 2017,
pp. 442–446.

[5] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang,
“Towards saving money in using smart contracts,” in Proceedings of
the 40th International Conference on Software Engineering: New Ideas
and Emerging Results. ACM, 2018, pp. 81–84.

[6] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, p. 116, 2018.

[7] M. Marescotti, M. Blicha, A. E. Hyvärinen, S. Asadi, and N. Sharygina,
“Computing exact worst-case gas consumption for smart contracts,”
in International Symposium on Leveraging Applications of Formal
Methods. Springer, 2018, pp. 450–465.

[8] melonproject, “Oyente,” 2018, [Accessed 8th November 2018].
[9] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,

“Securify: Practical security analysis of smart contracts,” arXiv preprint
arXiv:1806.01143, 2018.

[10] ConsenSys, “Mithril Classic,” https://github.com/ConsenSys/mythril-
classic, 2018, [Accessed 8th November 2018].

[11] usyd blockchain, “Vandal,” https://github.com/usyd-blockchain/vandal,
2018, [Accessed 8th November 2018].

[12] 4byte, “4byte Directory,” https://www.4byte.directory, 2018, [Accessed
11th December 2018].

[13] ethereum lists, “List of 4byte identifiers to common smart contract func-
tions,” https://github.com/ethereum-lists/4bytes, 2018, [Accessed 13th
December 2018].

[14] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. J. Cullen,
“Automated labeling of unknown contracts in ethereum,” pp. 1–6, 2017.

[15] etherum, “ERC — Ethereum Improvement Proposals,”
https://eips.ethereum.org/erc, 2018, [Accessed 14th November 2018].

[16] scikit-learn developers, “sklearn.cluster.kmeans,” https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html, 2018,
[Accessed 16th December 2018].

