View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Open Repository and Bibliography - Luxembourg

ROS-Defender: SDN-based Security Policy
Enforcement for Robotic Applications

Sean Rivera, Sofiane Lagraa, Radu State
SnT, University of Luxembourg, Luxembourg
firstname.lastname @uni.lu

Abstract—In this paper we propose ROS-Defender, a holistic
approach to secure robotics systems, which integrates a Security
Event Management System (SIEM), an intrusion prevention sys-
tem (IPS) and a firewall for a robotic system. ROS-Defender com-
bines anomaly detection systems at application (ROS) level and
network level, with dynamic policy enforcement points using
software defined networking (SDN) to provide protection against
a large class of attacks. Although SIEMs, IPS, and firewall
have been previously used to secure computer networks, ROS-
Defender is applying them for the specific use case of robotic
systems, where security is in many cases an afterthought.

Keywords—Robotics, ROS, Security, SDN, OpenVswitch

I. INTRODUCTION

The Robotic Operating System (ROS) is a framework
for robotic system development which is popular in both
academic and industrial contexts. ROS is used in a multitude
of real world settings, including industrial [23], consumer and
commercial [17], self-driving cars [21], and military [13].

The design paradigm behind ROS is that of a Publish-
Subscribe model, where a master keeps track of the state of the
system while applications called nodes directly interact with
each other through topics, relying ultimately on an unsecure
network. Unfortunately, ROS does not provide any security
features [22], [19], [24]. Recent work highlighted a number
of security threats against ROS. One attack showed how an
attacker was able to move a robot to another location [22]
through an unauthorized publish where the attacker forged
false localization messages and injected them in the network.
Another attack showed how an attacker could immobilize a
robot [22] by stopping the component and sensor that controls
the robot movement. Finally, it was shown how an attacker
could compromise privacy by exploiting faulty APIs to obtain
access to camera and microphones [17].

Recent efforts have been made in order to add security
features to ROS such as TLS and DTLS [12] for secure
communication between nodes, web tokens for achieving se-
cure authentication for remote access [26], and cryptographic
methods that ensure data confidentiality and integrity [14]. The
ROS group has also begun work on SROS [28], a security
suite for ROS systems, still highly experimental and not fully
implemented into the core ROS framework. Current solutions
for security of ROS do not provide protection against com-
promised nodes or denial of service, do not support reactive
policies that are updated dynamically at runtime, and cannot
enforce low-level granularity network policies.

Software Defined Networking (SDN) creates new oppor-
tunities to secure ROS at the network level by providing a

Cristina Nita-Rotaru,
Northeastern University
c.nitarotaru @northeastern.edu

Sheila Becker
Defence Directorate, Luxembourg
sheila.becker @mae.etat.lu

framework to define, enact, and enforce per-flow policies,
in a dynamic manner. However, users of ROS would prefer
to enable policies that follow application-semantic, i.e. have
policies per fopic. Thus, is it desirable to accommodate not
only network-level but also topic-level policies and to be able
to dynamically enforce such policies.

In this paper, we focus on securing ROS by leveraging SDN
to control per-flow policies, and we augment per-flow control,
with a per-topic control, to accommodate ROS semantics. We
create two security applications on top of this SDN framework:
a firewall and a monitoring-watch. Both applications commu-
nicate with the SDN network to react to observed traffic and
detect either violations of existing policies, or new attacks and
adjust the policies. Finally, we define ROS-Policy-Language,
a policy language for ROS applications, that allows a user to
express access control rules within the ROS semantics and
vocabulary, which are then mapped to network-level rules that
can be enforced by the SDN-based framework. The application
we demonstrate enable an intrusion-prevention approach and
are also able to detect and react to compromised applications.

II. SECURITY OF ROS

In this section, we provide an overview of ROS and discuss
current security services offered and their limitations.

A. ROS Overview

ROS Application

Application :
Laver > Topic|—>
Node: Master Publish— Subscribe
|
/\ Client Library |
Server
Layer

Middleware
CPROS/UDPROS] [Nodelet API]

(o) ‘

Layer Linux ‘

Fig. 1: ROS architecture

ROS [3] is a meta-operating system framework for devel-
oping robotic systems (see Figure 1). It provides a framework
to applications consisting of independent computing processes
called nodes, with the help of a master node acting as a
global namespace, a parameter server acting as a repository
of globally shared data, and a middleware layer providing
a consistent set of interfaces for software development and
hardware. They facilitate the communication between nodes

https://core.ac.uk/display/225543733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

based on two abstractions: topics and services. All processes
run on top of a UNIX operating system.

ROS master and parameter server. The master node
is the main communication hub that tracks all the offered
topics and services and maintains a dictionary mapping of the
location of all nodes, which nodes are providing which top-
ics/services, and what ports those topics and nodes are located
on. The parameter server is a shared repository between nodes.
Both the master and the parameter server are implemented
using XMLRPC, a stateless HTTP-based protocol.

ROS nodes. Each node is designed to be a self-contained
process to control part of the robot’s operation and must
implement several shared components in order to integrate with
the rest of the system. These components include the ROS
slave API and the internal ROS protocol and ROS command
line interface. The ROS slave API handles all interactions with
the ROS master as well as with other ROS nodes.

Topics. Each topic is defined as a uni-directional, many-
to-many publish-subscribe model. Topics act as a named bus
that any node can join as either a publisher or a subscriber,
and they define the shared communication path with the ROS
message interface. In order to create a topic, a node informs
the ROS master by providing the name of the topic and what
data type the topic will use. At that point, the master informs
the node about all of the other publishers and subscribers to
the node. The ROS master maintains an internal list of topics,
and which nodes are currently publishing and subscribing to
them. When a ROS node becomes a publisher on a topic, it
opens a port for subscribers to connect to that specific topic.
When multiple nodes are publishers on a topic the subscriber
must communicate with all of the publishers. There is no
access control for topics beyond the data type MDS5 hash. An
example is shown in Figure 2, where the "Camera” node sends
messages to the “Images” topic. The messages in the topic are
received by the ”Storage” node and the ’Processing” node. The
”Storage” node depends on the underlying Linux file system
to provide access to the storage location.

Services. Services handle bidirectional node communica-
tion through the use of XMLRPC function calls. Once a node
decides to provide a service as part of its interface, it opens
a unique port for that service to which any other node may
communicate with and inform the master of the service’s
location. As with topics, services are located on ephemeral
ports by default but can be located at a specific port if desired.

Middleware layer. ROS also includes a communication
system, TCPROS/UDPROS, that requires a master process and
presents extensions of the TCP and UDP protocols respec-
tively. TCPROS is preferred, as UDPROS is still in devel-
opment. As an alternative to TCPROS and UDPROS, ROS
supports nodelets, which realize non-serialized data transport
between nodes in the same process by passing a pointer.
The communication between nodes, topics, and services is
represented by a dynamic graph called ROS graph.

B. Security of ROS

Recent security efforts: SROS. A recent effort into ad-
dressing security concerns for ROS is SROS, an experimental
security suite designed to harden ROS systems against several

Node

Publish

Topic ‘% [Images |

Subscribe Subscribe
vode C £3) hoae

Storage Processing

Fig. 2: Example of ROS

common classes of attacks [6]. It is structured around three lev-
els on security concepts; Transport Security, Access Control,
and Process Profiles [28]. Transport Security replaces ROS
communications with TLS using X.509 certificates, which
provides confidentiality for communication between nodes and
protection from man-in-the-middle attacks. Access Control
ensures that ROS nodes are unable to make unauthorized
changes to the function of the ROS graph. At the moment,
however, the Access Control level does not have a concrete
implementation. There are two competing standards for this
level: extending the X.509 certificates with PKI metadata or
using an online arbiter[6]. Process Profiles hardens the ROS
nodes themselves, through the use of process isolation and
sandboxing. It does so by providing an AppArmor profile fit
for ROS nodes. [1] AppArmor is a Mandatory Access Control
(MAC) implementation for Linux. Its goal is to define process
access control for Linux systems. AppArmor functions by
defining which paths a process is allowed to access as well
as what actions the process is allowed to preform. AppArmor
confinement is provided via profiles loaded into the kernel,
typically on boot.

Limitations of SROS. While SROS addressed some of the
security concerns with ROS, it still has several limitations. Use
of TLS is as effective as the public key certificates management
and protection; it also does not protect against compromised
nodes. The policy definition component of SROS has still not
been implemented and depends on either defining a set of
static rules or leaving the system on at all times. This means
that a system cannot react to compromised nodes and that
at any level of system complexity, it is impossible for the
developer to reliably maintain the static rules. If an insider
threat were to sign a malicious node with an invalid certificate,
they would be able to completely negate the policy protections
from the X.509 certificate. Additionally, the SROS system
would not be able to adequately react to the malicious node,
potentially opening up the system to the same devastating
attacks that would affect a normal ROS system. Finally, the
use of AppArmor confines the type of networking policy that
can be enforced. Specifically, the networking control provided
is too coarse-grained. For example, one can not restrict binding
on specific ports, or integrate with a firewall.

III. ADVERSARIAL MODEL

In this section we describe adversarial models we consider
when designing defense mechanisms for ROS. First, we de-
scribe system assumptions that apply when ROS or SROS are

deployed. Then, we describe two adversarial models that match
the ROS and SROS deployment, respectively.

Independent Assumptions We assume that the master
node acts like a certificate authority (CA) or a domain
controller and is the root of trust for the system. We also
assume that the master node is not compromised before
the system is started. We assume that the parameter server
has protection mechanisms from malicious alteration for the
parameters stored on the parameter server. A compromised
node can change only parameters it normally has access to. We
assume that the ROS middleware is secure from exploits. We
understand this might not the case, and consider this grounds
for future work. We assume that the underlying Linux system
is secure and that best practices are taken in the design of the
system such that a compromised ROS node cannot compromise
the Linux system.

Attacker Model for ROS Deployment There are three
types of communication: node-to-node, node-master, or node-
parameter server communication. Remember that in ROS
all communication is unprotected, allowing an attacker to
observe, inject, intercept, or modify communication between
ROS nodes, between ROS nodes and the master server, or
ROS nodes and parameter server. We assume that the attacker
shares a network, and thus that they can conduct any of
the attacks described above. Specifically, an attacker can: (1)
break confidentiality, as no communication is encrypted and (2)
impersonate any participant, node, master, parameter server, as
there is no authentication for the network message. An attacker
can show up with any IP address, spoof connections to ports,
send messages, and impersonate any node.

Attacker Model for SROS Deployment We assume that
an attacker cannot break TLS and cannot easily gain access
to the signing CA to fabricate additional certificates. Thus,
a compromised node will have at most one compromised
certificate. Each node is sandboxed with an AppArmor profile,
meaning that AppArmor protects each non-compromised node.
A node’s AppArmor profile comes from the same source as
a node and is therefore assumed to be as untrusted as the
node. Thus, a compromised node cannot be trusted to be
encapsulated by AppArmor but every non-compromised node
should be. We assume that the process protection takes the
form of the X.509 extensions and that the ROS system de-
veloper only implements the minimum protections. The access
control implementation requires exhaustive rules for each node
to be deployed. Additionally, the whole system has to be
redeployed when a rule is updated. As such, we assume that
most developers will only implement access control around
critical nodes, for ease of use.

IV. ROS-DEFENDER DESIGN

In this section, we describe ROS-Defender. Our system
consists of three components: (1) ROSWatch, an anomaly
detection system, (2) ROSDN, a prevention system, and (3)
ROS-Policy-Language, a policy language. We first describe
our design goals and give an overview of ROS-Defender, then
describe in detail the main components.

A. Design Goals and Overview

The decoupled architecture of ROS where the master
maintains the logical view of the ROS graph and nodes

| Node 1 || Node n | Q
| Logs and Network
|| Anomaly Detection New
g ; i Rules Firewall
Log 1 Logn | > ey
! ROSWatch v App
ROS Master | y ROS
i Security
Policy
ROS/Network ROS/Network
Monitor Policy Engine
v
< :I Controller
Network
ROSDN

ROS System ROS-Defender

Fig. 3: ROS-Defender Design

communicate directly via a the peer-to-peer overlay defined
by this logical view provides benefits such as scalability,
modularity, and flexibility. Unfortunately, it introduces funda-
mental security vulnerabilities as the entire system is abstracted
onto a completely unprotected network. Protecting the network
communication through the use of TLS prevents unauthorized
nodes from becoming part of the network, while the use of
access control and application profiling — techniques proposed
by SROS - prevents unauthorized parties from maliciously
manipulating the ROS graph. However, these techniques do
not provide mechanisms to verify at runtime that the system
is compliant with a ROS graph policy and that the network
level policy is consistent with the high-level topics and services
policy. In addition, current solutions for security of ROS do
not provide protection against compromised nodes or denial
of service, do not support reactive policies that are updated
dynamically at runtime, and can not enforce low granularity
network policies.

Our solution is built with several design goals in mind.

e Provide network level granularity protection. We target
the network communication as the granularity of policies
we would like to enforce and being able to enforce
policies on a per port basis.

e Allow for instant updates to the policy rules and creation
of dynamic rules. We would like to be able to support
policy changes without system reboot; also be able to
dynamically learn new rules that can prevent future at-
tacks.

e Detect a large class of attacks such as compromised nodes
and denial of service.

e Accommodate policies that do not require a ROS user to
understand network level rules, but only ROS level rules.
i.e. topics, services based.

e Support both ROS and SROS. We would like a solution
that does not require API changes and provides protec-
tion for both ROS, and ROS running with the security
extensions provided by SROS.

One way to detect network level inconsistencies is by mon-
itoring the communication between nodes. Enforcing dynamic
reaction to network policies can be done by leveraging the re-
cent paradigm of SDN which provides a means to dynamically

control network flows at Layer 2, in a network. However, as the
policies that we want to enforce are application-layer policies,
a mapping between these and the corresponding network layer
graph will be needed.

Our approach. Figure 3 shows the design of our system,
ROS-Defender. We take an intrusion prevention approach
where (1) a user-defined policy is enforced at network level
with the help of ROSDN, which replaces the normal ROS
network communication with a SDN approach to filter which
nodes can communicate with other nodes as well as external
connections, and (2) attacks are detected by ROSWatch, a log
and network-based anomaly detection which not only detects
attacks but also learns rules that can use used to automatically
update the policy and prevent future attacks. A policy engine
ensures that policies expressed in ROS-level abstractions by
a user familiar with ROS, are translated into network-level
policies. The approach does not require any API changes
or software alterations on the part of the developer and it
provides security benefits to both ROS and SROS. Note that
both ROSDN and ROSWatch can be used independently, but
together they provide a much stronger security suite with
defense, monitoring, detection and dynamic reaction.

Examples in which ROS-Defender can improve security
for both ROS and SROS include allowing for instant updates
to the policy rules, creation of dynamic rules, being able
to track if a malicious node does make connections behind
master’s *back*, filter malicious nodes, and for unencrypted
communication, detect abnormal behavior from given topics.

In Figure 3, we show a firewall application that can be
run on our system. The user defines a set of firewall rules
using familiar ROS terminology. The ROSDN controller is
able to understand this terminology through the use of our
proposed domain specific language. ROSDN treats the firewall
as a constantly updating policy, through the use of a predefined
interface. When ROSWatch detects an anomaly, it would be
able to update the firewall rules to correct the anomaly, such
as blocking the packets from a compromised node. Below we
describe the main components of ROS-Defender.

B. ROSDN

One component of our approach is to replace the network
switch with our SDN version in order to access all com-
munication. The ROS middleware is centered around using
existing IP communications, as such adding security though
the use of SDN is a natural fit. By using SDN we can have
a fine-grained control over the network communications that
function as the backbone for ROS. We refer to the SDN
component as ROSDN, as it has more functionality than
an off-the-shelf SDN controller. Specifically, it includes two
components a ROS/Network monitor that provides a ROS
abstraction functionality for applications that want to operate
on ROS abstractions (i.e. topics and services) and a policy
engine that implements our ROS-Policy-Language (see Fig-
ure 3). The ROS/Network Monitor maintains an internal state
representation of the ROS system, tracking which open ports
belong to which nodes, as well as which open ports belong to
which topics and services. The ROS Policy Engine translates
our domain specific rules language into SDN understandable
context, referred to as network-level policies. It leverages textX

in order to define the language and the watchdog library in
order to check the file for changes.

ROSDN has two main functionalities: first extract the
current state of ROS and then apply filtering policies according
to the network-level policies that reflect the higher-level, user-
specified, ROS policies. The state of the current system is
extracted by locating and communicating with the ROS master.
To ensure the accuracy of the ROS master, ROSDN also
passively scans the open ports. Once ROSDN has extracted
the information from the ROS master, it begins to correctly
filter new connections. After these connections are filtered, all
ROS communication will be correctly imported into a flow
table. This blocks nodes from improper behavior and keeps
track of the packet information in the system.

C. ROSWatch

The second component of ROS-Defender is ROSWatch,
a monitoring tool for detecting anomalies in network traffic
between ROS nodes. ROSWatch takes as input network traffic
and logs describing the state of the ROS system and it identifies
suspicious behavior and possible threats, attacks and technical
problems with minimal impact on users.

ROSWatch employs a pattern matching model for detect-
ing network attack flows and logs using identifiers such as
nodes and topics. ROSWatch’s rules are classified into priority
classes, based on a global notion of the potential impact
of alerts that match each rule. Our flow-level rules were
constructed from the following features of flow records: aver-
age traffic volume, average publishing rate, average dropping
rate, average/stddev/max age of messages, average/stddev/max
duration of periods. These features provide the contextual
modeling of the ROS data profiler used by ROSwatch. We
construct rules in the following ways:

e For numerical features such as the average traffic volume,
we want to be able to finely threshold them, so that
a rule specifying an exact number of flows, can be
properly captured. Our rule takes the form ” feature >
threshold = alert”.

e For categorical features like the node’s and topic name.
Our rule takes the form "if node; ¢ NODE = alert”
where NODE contains a set of nodes.

In addition to the flow-level rules, the log-level rules were
constructed from the logs generated in each nodes describing
its behavior. Our rule takes the form ifshutdown(node;) =
alert. It means if the attacker shutdown a node during the
processing then ROSwatch launches an alert.

D. ROS-Policy-Language

In order to grant ROS developers easy access to the
underlying components of the SDN system, we have devised a
policy language which functions both at the application layer
and at the transport layer. This policy language allows users to
define rules that are source destination based. A user is able
to specify bandwidth requirements which leverage open-flow
meter tables, check for encryption through the use of entropy
estimation, and subsequently define the action taken when the
rule is met. By default, we have implemented: allow, drop,
log, and copy. Source and destination use a custom defined

port object which can either be a transport layer port or a ROS
node or topic name. These names will be translated invisibly
behind the scenes. The bandwidth limitations create metered
tables in OpenFlow and they allow for priority fall-down so
that the user can define several rules for bandwidth usage, (i.e.
allow the first 100mb/s of bandwidth unimpeded and then drop
everything above it). We have implemented a highly efficient
version of the Entropy Estimation algorithm used by Dorfinger
et al [15] Actions can take parameters, such as a destination
port for copy and log.

E. Implementation

We used the OpenFlow v1.3 [25] implementation of
Ryu [4] using the Zodiac WX [10] hardware. Building on top
of the OverFlow protocol, we used Ryu for our development.
Our domain language parser is implemented in textX as it
allows for easy implementation of new policy languages. We
have also implemented the ability for users to define their own
custom action and write their own python function for it.

V. EXPERIMENTAL RESULTS

In this section we experimentally evaluate ROS-Defender.
We first describe the experimental setup,

A. Experimental Setup

Turtlebot3 robot: This system consists of a Turtlebot3
robot, a Northbound Zodiac Wx switch, and a laptop which is
acting as both the SDN controller and ROS master/decision
maker. The data used was a SLAM path traversal of an
already mapped area. We also mapped the same area in Gazebo
and performed the same path traversal. This allows for easy
comparison between the virtual and physical robotic systems.
The PC acts as both ROS master and SDN controller, with both
being sandboxed from each other through the use of cgroups.

Virtual robot: This system is a purely virtual version of
our Turtlebot3 system. It leverages the Gazebo package (a
well-known robotics simulator) to emulate the sensor input
for a variety of different of robotic systems, and uses Mininet
for the networking component. This experiment was selected
to compare the performance of the virtual system with that of
the real world system and to provide a broad base of robots for
comparison. We use the SLAM algorithms for all of the robot
types except the industrial robot which was instead given a
simple pick and place task. The PC is emulating the robot, as
a third cgroup sandbox. We analyze different emulated robots
of various complexities in order to demonstrate the viability
of ROS-Defender across several robot types:

e Turtlebot - Standard simulated robot for ROS platform[7]

e Husky - An outdoor rugged ground vehicle [2]

e AR Drone - Simulated Autopilot for the AR Drone
platform [16]

e ABB industrial robot - Simulated pick and place industrial
robot with ROS and Robot Studio [8]

e Udacity - Simulator for a self driving car [9]

B. ROSDN Evaluation

Performance evaluation. ROSDN used .9% of the pro-
cessor capacity and 50 MB of memory. For the robot system,
the ROS/Networking monitoring thread takes 33 seconds to
perform the first scan of the system, 1.28 seconds to check
after a port is used that is not in the model, and an additional
15.2 seconds after it has returned the approval to fully update
to the new model. If there is no need to update the model, it
takes .005 seconds, on average, to add a new flow. On average,
there are two flows added per topic connection (between the
publisher and the subscriber), as well as one flow added per
node (between the node and master). It used a maximum
bandwidth of 2.18 MB/s during the first scan and an average
bandwidth of 57 kB/s for updating nodes. The design of
the robot system placed the OpenFlow controller connection
on a separate connection from the data, which means that
the OpenFlow overhead is not directly affecting the ROS
messages.

Experiment Description Avg. Latency | Max BW used Time
RTurtlebot, No SROS or ROSDN .0164s 190kB/s 46.7s
RTurtlebot, ROSDN .024s 190kB/s 49.5s
RTurtlebot, SROS NA 220kB/s 55.108s
RTurtlebot, SROS and ROSDN NA 220kB/s 68.712s
VTurtlebot, No SROS or ROSDN | 0.00426s 230 kB/s 47.1s
VTurtlebot, ROSDN 0.00568s 230 kB/s 57.429s
VTurtlebot, SROS NA 290 kB/s 61.2s
VTurtlebot, SROS and ROSDN NA 290 kB/s 75.432

TABLE I: ROS Turtlebot experimental results, measuring the
overhead of ROSDN and SROS and comparing the virtual
system with the real. Note: SROS does not provide any way
to measure the message latency so those values were omitted.
RTurtlebot: Real Turtlebot. VTurtlebot: Virtual Turtlebot.

ROSDN overhead. We ran our test systems in four sep-
arate states, without SROS or ROSDN, with SROS and no
ROSDN, with ROSDN and no SROS, and with both ROSDN
and SROS. For each run, we examined the average latency
for each sensor (i.e. the time from which something happened
in the real world to when the robot was made aware of it),
the maximum size that a topic reached, and the time between
system start and the completion of the simulation. All of our
results are summarized in Table 1.

ROSDN adds an overhead of 46% to the latency of sensor
data for the physical experiment and 33% for the virtual
experiment. We were unable to measure the additional latency
imposed from SROS, as the tools used to measure it were
not supported by SROS. The higher latency on the physical
experiment is expected as the data is actually being sent
over a wireless network, instead of through a simulator. The
higher overhead reflects this as well. The message overhead
was 15.74% from the use of SROS on the physical system
and 26.08% on the virtual. If developers include a bandwidth
overhead of 30% for the rules limits of ROSDN it will function
equally well on both a ROS and SROS system.

ROSDN adds a startup overhead of 5.87% to the physical
system and 23.93% to the virtual system, while SROS adds an
overhead of 18% for physical and 29.94% for virtual. When
both SROS and ROSDN were enabled, a final overhead of
47.13% (physical system) and 60.15% (virtual system) were
added to the run-time. The higher overhead of the virtual

system for ROSDN is due to the loss of a dedicated SDN
system (the Zodiac WX) meaning that the flow processing had
to be done on the laptop.

For the second set of purely virtual experiments we choose
to analyze an already initialized robot to measure the additional
overhead of ROSDN during normal operation. These results
can be found in Table II. We found that the overall overhead on
the system for completing basic tasks was much smaller then
the previously measured message overhead would suggest. As
demonstrated in Table II, the overhead of the time it took
to complete a task was much smaller once ROSDN reached
a stead state. We believe that this is due to the robot’s run
time being constrained more by motor speed then network
processing speed. We find these results to be comparable to
those of other security research for ROS[22].

Experiment Description Time Overhead
Simulated Turtlebot, No ROSDN 42.101 0.0%
Simulated Turtlebot, ROSDN 46.5 10.45%
Simulated Husky, No ROSDN 33.59 0.0%
Simulated Husky, ROSDN 34.6025 | 3.014%
Simulated AR Drone, No ROSDN 23.68 0.0%
Simulated AR Drone, ROSDN 25.5 7.69%
Simulated ABB industrial robot, No ROSDN 17.62 0.0%
Simulated ABB industrial robot, ROSDN 19.14 8.62%
Simulated Udacity self driving car, No ROSDN | 170.5 0.0%
Simulated Udacity self driving car, ROSDN 173.25 1.61%

TABLE II: ROS Virtual Result comparisons

VI. RELATED WORK

We overviewed work to secure ROS in Section II. We now
describe efforts to using SDN for security and securing SDN.
SDN has been proposed to provide a policy-based security
architecture for securing the communication in multiple AS
domains [27] or mobile apps and devices [18]. In terms
of securing SDN, the authors of [11], define a new set of
standards for secure SDN systems, while the authors of [20],
proposed a secure and dependable SDN control platform in
order to address the various threats, including replication,
diversity and secure components. Secure ROS (not to be
confused with SROS) is a novel project the adds IPSEC to
ROS without requiring any alterations to the core API [5].

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed ROS-Defender a, comprehensive
security architecture for ROS based robotic systems. ROS-
Defender does not require changes to the existing ROS code
since it’s using available ROS application programming in-
terfaces and SDN level mechanisms to monitor and execute
access control actions.

REFERENCES

[1] Apparmor. https://wiki.ubuntu.com/AppArmor. Accessed: 2018-03-27.

[2] Husky unmanned ground vehicle. https://www.clearpathrobotics.com/
husky-unmanned- ground- vehicle-robot/. Accessed: 2018-09-27.

[31 Ros technical overview.
Accessed: 2018-03-27.

[4] “ryu software-defined networking framework.”. https://osrg.github.io/
ryu/. Accessed: 2018-06-02.

[51 Secure ros. http://secure-ros.csl.sri.com/. Accessed: 2019-03-01.

http://wiki.ros.org/ROS/TechnicalOverview.

(6]

(8]
(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Sros. http://wiki.ros.org/SROS. Accessed: 2018-03-27.

Turtlebot3 waffle. https://www.generationrobots.com/fr/
402716-turtlebot-3-waffle.html. Accessed: 2018-08-02.

Using simulated robot in robot studio. http://wiki.ros.org/abb/Tutorials/
RobotStudio. Accessed: 2018-09-27.

Were building an open source self-driving car.
udacity/self-driving-car. Accessed: 2018-09-27.
”zodiac wx”. https://northboundnetworks.com/products/zodiac-wx. Ac-
cessed: 2018-06-02.

A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and
S. Guizani. Securing software defined networks: taxonomy, require-
ments, and open issues. [EEE Communications Magazine, 53(4):36-44,
April 2015.

B. Breiling, B. Dieber, and P. Schartner. Secure communication for the
robot operating system. pages 1-6, April 2017.

https://github.com/

J. Chu. Army robotics in the military. https://insights.sei.cmu.edu/sei_
blog/2017/06/army-robotics-in-the-military.html. Accessed: August 02,
2018.

B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schartner.
Security for the robot operating system. Robot. Auton. Syst., 98:192—
203, Dec. 2017.

P. Dorfinger, G. Panholzer, and W. John. Entropy estimation for real-
time encrypted traffic identification (short paper). In J. Domingo-
Pascual, Y. Shavitt, and S. Uhlig, editors, Traffic Monitoring and
Analysis, pages 164-171, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. Robot Operating
System (ROS): The Complete Reference (Volume 1), chapter RotorS—A
Modular Gazebo MAV Simulator Framework, pages 595-625. Springer
International Publishing, Cham, 2016.

A. Giaretta, M. D. Donno, and N. Dragoni. Adding salt to pepper:
A structured security assessment over a humanoid robot. CoRR,
abs/1805.04101, 2018.

S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu. Towards sdn-
defined programmable BYOD (bring your own device) security. 2016.

S.-Y. Jeong, L.-J. Choi, Y.-J. Kim, Y.-M. Shin, J.-H. Han, G.-H. Jung,
and K.-G. Kim. A study on ros vulnerabilities and countermeasure.
In Proceedings of the Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, HRI *17, pages 147-148, New
York, NY, USA, 2017. ACM.

D. Kreutz, F. M. Ramos, and P. Verissimo. Towards secure and depend-
able software-defined networks. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
HotSDN 13, pages 55-60, New York, NY, USA, 2013. ACM.

S. Lagraa, M. Cailac, S. Rivera, F. Beck, and R. State. Real-time attack
detection on robot cameras: A self-driving car application. In IEEE
International Conference on Robotic Computing (IRC), 2019.

F. Martn, E. Soriano, and J. M. Caas. Quantitative analysis of security
in distributed robotic frameworks. Robotics and Autonomous Systems,
100:95 - 107, 2018.

R. Rahimi, C. Shao, M. Veeraraghavan, A. Fumagalli, J. Nicho,
J. Meyer, S. Edwards, C. Flannigan, and P. Evans. An industrial robotics
application with cloud computing and high-speed networking. In IEEE
International Conference on Robotic Computing (IRC), pages 44-51,
2017.

S. Rivera, S. Lagraa, and R. State. Rosploit: Cybersecurity tool for ros.
In IEEE International Conference on Robotic Computing (IRC), 2019.

The Open Networking Foundation.
Jun. 2012.

R. Toris, C. Shue, and S. Chernova. Message authentication codes for
secure remote non-native client connections to ros enabled robots. pages
1-6, April 2014.

V. Varadharajan, K. K. Karmakar, and U. Tupakula. Securing commu-
nication in multiple autonomous system domains with software defined
networking. In 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pages 195-203, 2017.

R. White, H. I. Christensen, and M. Quigley. SROS: securing ROS over
the wire, in the graph, and through the kernel. CoRR, abs/1611.07060,
2016.

OpenFlow Switch Specification,

