
Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Fault tolerance for a data flow model
Improve classical fault tolerance protocols using the

application knowledge given by its data flow representation

Xavier Besseron
xavier.besseron@imag.fr

PhD supervisor: Thierry Gautier

Laboratory of Informatics of Grenoble (LIG) – INRIA
MOAIS Project

March 2010

March 2010 Xavier Besseron Fault tolerance for a data flow model 1/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 2/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 3/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Grid computing

What are grids?

Clusters are computers connected by a LAN
Grids are clusters connected by a WAN
Heterogeneous (processors, networks, ...)
Dynamic (failures, reservations, ...)

Aladdin – Grid’5000

French experimental grid platform
More than 4800 cores
9 sites in France
1 site in Brazil
1 site in Luxembourg

March 2010 Xavier Besseron Fault tolerance for a data flow model 4/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Fault tolerance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

F
au

lt
pr

ob
ab

ili
ty

Processor number

1−day execution time
5−days execution time
10−days execution time

Why fault tolerance?

Fault probability is high on a grid
Split a large computation in shorter separated computations
Capture application state and reconfigure it dynamically

March 2010 Xavier Besseron Fault tolerance for a data flow model 5/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 6/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Kaapi’s data flow model

Data flow model
Shared Data = object in a global memory
Task = function call, accessing shared data
Access mode = constraint on shared data access (read, write, ...)

Shared<Matrix> A;
Shared<double> B;
Fork<Task>() (A,B);

Application example: Jacobi3D

Solve a Poisson problem
Domain decomposition parallelization
Jacobi iterative method

March 2010 Xavier Besseron Fault tolerance for a data flow model 7/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Domain decomposition

Example with a 2D domain

Domain element

Computation domain

Neighbor subdomains

Subdomain

Subdomain←→ Shared data in the data flow graph

March 2010 Xavier Besseron Fault tolerance for a data flow model 8/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Domain decomposition & iterations

Update Update Update Update Update Update

Update Update Update Update Update Update

Iteration 1

Iteration 2

dom[1].0 dom[2].0 dom[3].0dom[0].0 dom[4].0 dom[5].0

dom[1].1 dom[2].1 dom[3].1dom[0].1 dom[4].1 dom[5].1

dom[1].2 dom[2].2 dom[3].2dom[0].2 dom[4].2 dom[5].2

Data version 0

Data version 1

Data version 2

dom[0] dom[1] dom[2] dom[3] dom[4] dom[5]

Domain

Tasks are deterministic, ie same input⇒ same output
Execution order respects the data flow constraints

March 2010 Xavier Besseron Fault tolerance for a data flow model 9/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Real data flow graph
Data flow graph generated by Kaapi for processor N

User tasks

March 2010 Xavier Besseron Fault tolerance for a data flow model 10/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Real data flow graph
Data flow graph generated by Kaapi for processor N

User data

SubDomain1

SubDomain2

March 2010 Xavier Besseron Fault tolerance for a data flow model 10/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Real data flow graph
Data flow graph generated by Kaapi for processor N

User data

Borders between
SudDomain1 and SubDomain2

Borders
with ProcN−1

Borders
with ProcN+1

March 2010 Xavier Besseron Fault tolerance for a data flow model 10/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Real data flow graph
Data flow graph generated by Kaapi for processor N

User data

Errors

March 2010 Xavier Besseron Fault tolerance for a data flow model 10/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Jacobi3D: Real data flow graph
Data flow graph generated by Kaapi for processor N

Broadcast tasks

Receive tasks

Communication tasks
generated by Kaapi

March 2010 Xavier Besseron Fault tolerance for a data flow model 10/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 11/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Coordinated checkpoint

Principle

Take a consistent snapshot of an application:
Coordinate all the processes to ensure a consistent global state
Save the processes snapshots on a stable memory

Issues
Coordination cost at large scale
Data transfert time for large application state

References
Coordinated checkpoint/rollback protocol: blocking[Tamir84],
non-bloblocking[Chandy85]
Implementations: CoCheck [Stellner96], MPICH-V [Coti06],
Charm++ [Zheng04], OpenMPI [Hursey07], ...

March 2010 Xavier Besseron Fault tolerance for a data flow model 12/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Improving coordination step

Classical coordination step

Save a consistent global snapshot:
requires to send a message on all communication channels

Without knowledge of communication pattern, this coordination may require
message exchange from all processes to all processes.
⇒ Number of exchanged messages is O(N2) (N = process number).

Coordinated Checkpointing in Kaapi

Equivalent to a blocking coordinated checkpoint, but
Checkpointing a process = Saving the data flow graph and its input data
Based on the reconfiguration mechanism of Kaapi (see next slide)
Reduce the number of exchanged messages during coordination

⇒ Number of exchanged messages is O(kN) (with k � N).

March 2010 Xavier Besseron Fault tolerance for a data flow model 13/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Dynamic reconfiguration mechanism in Kaapi

Allows to safely reconfigure a distributed set of objects by ensuring a mutually
consistent view of the objects

Find the neighbor processes

Data flow graph allows to know the future communications
Neighbors processes are processes that can emit message to the
considered process
Identify tasks that generate communications
Only flush channels with the neighbor processes

Properties

Ensure consistency and accessibility of the application
k is the average number of neighbors processes

application and scheduling dependent
for N-Queens application with work-stealing scheduling: k < 2
for Jacobi3D application with graph partitioning: k ≈ 7

March 2010 Xavier Besseron Fault tolerance for a data flow model 14/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Mutual consistency protocol in Kaapi

����

��
��
��
��

����������������������������������

������������
������������
������������
������������

����������
����������
����������
����������

����������������
����������������
����������������
����������������

�����
�����
�����
�����

��������������������������������

Master
process

Local reconfiguration point

Execution
Global reconfiguration point

release_mutual_consistency()

acquire_mutual_consistency()

Process 1

Process 2

Process 3

Measured coordination time (see next slide)

Reconfiguration
request

Reconfiguration
results

E = {2}

E = {1, 3}

E = {2}

CONTPING
PONG

CONTPING PONG

PONG
CONTPING

March 2010 Xavier Besseron Fault tolerance for a data flow model 15/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Experimental results: Coordination time
N-Queens application using work-stealing scheduler
No checkpoint, only coordination

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of nodes

C
oo

rd
in

at
io

n
tim

e
(s

ec
on

ds
)

Optimized coordination
Full coordination

Orsay Toulouse Lille Bordeaux Nancy Lyon Sophia Rennes

But for large application state, coordination time is small compared to data transfert.
March 2010 Xavier Besseron Fault tolerance for a data flow model 16/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback PerspectivesOptimized coordination

Experimental results: Coordination time
N-Queens application using work-stealing scheduler
No checkpoint, only coordination

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of nodes

C
oo

rd
in

at
io

n
tim

e
(s

ec
on

ds
)

Optimized coordination
Full coordination

Orsay Toulouse Lille Bordeaux Nancy Lyon Sophia Rennes

But for large application state, coordination time is small compared to data transfert.
March 2010 Xavier Besseron Fault tolerance for a data flow model 16/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 17/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Global rollback

Principle

Checkpointed states are consistent global states
All processes rollback to the last checkpointed state

Good performances after global rollback require either

Spare nodes to replace the failed ones
reserve spare nodes that could be used for another computation
wait for others nodes to be available or for failed nodes to be fixed

or Load balancing algorithms
using over-decomposition, ie placing many subdomains per processor

Question: What is the influence of over-decomposition on the execution time?
after failure of f nodes
without spare nodes

March 2010 Xavier Besseron Fault tolerance for a data flow model 18/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

XPs: over-decomposition influence

Experience 1: influence on the execution time

Execution time in function of the decomposition d , ie the number of
subdomains
3D domain, constant size per node: 107 double-type reals

On 1 node: 107 reals, ie ≈ 76 MB
On 100 nodes: 100× 107 reals, ie ≈ 7.6 GB

Nancy cluster of Grid’5000

Experience 2 : influence on the execution time after global recovery

Execution time in function of the decomposition d and of the number of
failed nodes f
3D domain: 100× 107 reals with type double (≈ 7.6 GB)
Using 100 nodes of the Nancy cluster of Grid’5000
Execution on 100− f nodes

March 2010 Xavier Besseron Fault tolerance for a data flow model 19/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

XPs: over-decomposition influence
Experience 1: Execution time

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of subdomains per node

O
ne

−
ite

ra
tio

n
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

1 node
100 nodes

March 2010 Xavier Besseron Fault tolerance for a data flow model 20/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

XPs: over-decomposition influence
Experience 2: Execution time after global recovery

Before failure After 1 failure After 10 failures After 20 failures After 50 failures

0.
0

0.
2

0.
4

0.
6

0.
8

Number of failed nodes (f)

O
ne

−
ite

ra
tio

n
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Decomposition (d)

100 subdomains
200 subdomains
500 subdomains

1000 subdomains
2000 subdomains
5000 subdomains

10000 subdomains

March 2010 Xavier Besseron Fault tolerance for a data flow model 21/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 22/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback

Principle

Restart failed processes from last checkpoint
Replay communications to the restarted processes

no message logging
re-execute tasks that produced the communications

Two aspects

Find the set of tasks required for restarting
this represents the lost work

Schedule the lost work
in order to reduce the overhead induced by the failure

March 2010 Xavier Besseron Fault tolerance for a data flow model 23/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback principle: Execution

Non-failed process Non-failed process

Non-executed task

Data version

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Non-failed process

Executed task

March 2010 Xavier Besseron Fault tolerance for a data flow model 24/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback principle: Failure

Non-failed process Non-failed process

Non-executed task

Data version

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

March 2010 Xavier Besseron Fault tolerance for a data flow model 24/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback principle: Lost communications

Non-failed process Non-failed process

Non-executed task

Data version

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

C lost

March 2010 Xavier Besseron Fault tolerance for a data flow model 24/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback principle: Communications to replay

Non-failed process Non-failed process

Non-executed task

Data version

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

C all

C all

March 2010 Xavier Besseron Fault tolerance for a data flow model 24/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback principle: Tasks to re-execute

Non-failed process Non-failed process

Non-executed task

Data version

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

G fai led G to re-execute

March 2010 Xavier Besseron Fault tolerance for a data flow model 24/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback principle: In-memory data

Non-failed process Non-failed process

Non-executed task

Data version

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

In-memory
data version

G fai led G to re-execute (optimized)

March 2010 Xavier Besseron Fault tolerance for a data flow model 24/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Global vs partial rollback: Reexecution of the lost work

Global rollback

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

T global
re−execution

W global
lost

Re-execution
of the lost work

Domain

Tlost

Checkpoint Failure

P0

P1

P2

P3

P4

Time

Partial rollback

�
�
�
�

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

W partial
lost

T partial
re−execution

Re-execution
of the lost work

Domain

Tlost

Checkpoint Failure

P0

P1

P2

P3

P4

Time

Thanks to over-decomposition,
the lost work can be parallelized !

March 2010 Xavier Besseron Fault tolerance for a data flow model 25/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback: Proportion of tasks to re-execute

Jacobi3D executed on 100 nodes
40 × 40 × 1 subdomains, ie 16 subdomains per node
Failure of 1 fixed node

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Time between last checkpoint and failure (number of iterations)

P
ro

po
rt

io
n

of
 ta

sk
s

to
 r

e−
ex

ec
ut

e
(%

)

Experimental measures
Simulation results

March 2010 Xavier Besseron Fault tolerance for a data flow model 26/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback: Time to re-execute the lost work

Experimental conditions

100 computation nodes, 10 checkpoint servers (Bordeaux cluster)
Domain size = 76 MB, splitted in 1000 subdomains
Failure of 1 fixed node
Considering 2 grains:

2 ms for a subdomain update
50 ms for a subdomain update

Measured value
Time to re-execute the lost work:

Data redistribution + Computation

March 2010 Xavier Besseron Fault tolerance for a data flow model 27/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback: Time to re-execute the lost work

Time of a subdomain update ≈ 2 ms

10 iterations 100 iterations 200 iterations

0
10

20
30

40
50

60
70

 3.9 5.1 5.7

29.6

 7.1

75.1

100 % 100 % 100 %6 % 51 % 75%

Time between last checkpoint and failure (number of iterations)

T
im

e
to

 r
e−

ex
ec

ut
e

th
e

lo
st

 w
or

k
(s

ec
on

ds
)

Global rollback
Partial rollback

⇒ Scheduling should take in consideration the previous data placement

March 2010 Xavier Besseron Fault tolerance for a data flow model 28/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback: Time to re-execute the lost work

Time of a subdomain update ≈ 50 ms

10 iterations 100 iterations 200 iterations

0
20

40
60

80
10

0

 9.7
 4.6

 59.9

 32.2

116.5

 88.8

100 % 100 % 100 %6 % 51 % 75%

Time between last checkpoint and failure (number of iterations)

T
im

e
to

 r
e−

ex
ec

ut
e

th
e

lo
st

 w
or

k
(s

ec
on

ds
)

Global rollback
Partial rollback

⇒ Scheduling should take in consideration the previous data placement

March 2010 Xavier Besseron Fault tolerance for a data flow model 28/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Partial rollback: Time to re-execute the lost work

Time of a subdomain update ≈ 50 ms

10 iterations 100 iterations 200 iterations

0
20

40
60

80
10

0

 9.7
 4.6

 59.9

 32.2

116.5

 88.8

100 % 100 % 100 %6 % 51 % 75%

Time between last checkpoint and failure (number of iterations)

T
im

e
to

 r
e−

ex
ec

ut
e

th
e

lo
st

 w
or

k
(s

ec
on

ds
)

Global rollback
Partial rollback

⇒ Scheduling should take in consideration the previous data placement

March 2010 Xavier Besseron Fault tolerance for a data flow model 28/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Outline

1 Context

2 Kaapi’s data flow model

3 Coordinated Checkpoint

4 Global rollback

5 Partial rollback

6 Perspectives

March 2010 Xavier Besseron Fault tolerance for a data flow model 29/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Perspectives

Scheduling algorithms for partial recovery

Need to take in consideration the data placement and communication cost
minimize makespan with communication⇒ NP-hard
find and try some heuristics

RDMA support in Kaapi

Currently communications in Kaapi are based on active messages
⇒ Data copy on reception

Optimization: Use RDMA (Remote Direct Memory Access) for data transfert

Reducing the data transfert cost during checkpoint and recovery step

Incremental checkpoint for Kaapi (based on DFG)
Placing checkpoint servers near the computation nodes

require to take in consideration the network topology

March 2010 Xavier Besseron Fault tolerance for a data flow model 30/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Other contributions

Dynamic reconfiguration

Allows dynamic change on the application while ensuring:
Concurrency management

Concurrent & cooperative execution⇒ X-Kaapi

Mutual consistency
Consistent view of a distributed set of objects

Software development (mostly Kaapi)

Kaapi (≈ 100 000 lines of code)
Authors: T. Gautier, V. Danjean, S. Jafar [TIC], D. Traoré [KaSTL],
L. Pigeon, X. Besseron

My developments & contributions:
Graph partitioning scheduling (≈ 10 000 lines of code)
Fault tolerance support (≈ 10 000 lines of code)
Large scale deployments & multi-grids computations (using TakTuk)

March 2010 Xavier Besseron Fault tolerance for a data flow model 31/ 32

Context DFG Coordinated Checkpoint Global rollback Partial rollback Perspectives

Thanks for your attention

Questions?

March 2010 Xavier Besseron Fault tolerance for a data flow model 32/ 32

Coordination time Placement of checkpoint servers Over-decomposition

Outline

7 Coordination time

8 Placement of checkpoint servers

9 Over-decomposition

March 2010 Xavier Besseron Fault tolerance for a data flow model 1/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Experimental results: Coordination time

N-Queens application using work-stealing scheduler
No checkpoint, only coordination

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of nodes

C
oo

rd
in

at
io

n
tim

e
(s

ec
on

ds
)

Optimized coordination
Full coordination

Orsay Toulouse Lille Sophia Lyon Rennes Bordeaux

March 2010 Xavier Besseron Fault tolerance for a data flow model 2/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Experimental results: Coordination time

N-Queens application using work-stealing scheduler
No checkpoint, only coordination

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of nodes

C
oo

rd
in

at
io

n
tim

e
(s

ec
on

ds
)

Optimized coordination
Full coordination

Nancy Sophia Lille Bordeaux Rennes Toulouse Lyon

March 2010 Xavier Besseron Fault tolerance for a data flow model 2/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Outline

7 Coordination time

8 Placement of checkpoint servers

9 Over-decomposition

March 2010 Xavier Besseron Fault tolerance for a data flow model 3/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Placement of checkpoint servers

Idea
Reduce the checkpointing time by placing the checkpoint servers near the
computation processes

Practically, checkpoint servers can be:
a dedicated node of the cluster
another computation process (buddy-processor of Charm++)

Experimental study

180 nodes of the Orsay cluster from Grid’5000
120 nodes for computation
12, 24 or 60 nodes for checkpoint servers

Application state ≈ 20 GB, ie 169 MB per node
Testing 3 placement methods: ordered, by-switch and random

March 2010 Xavier Besseron Fault tolerance for a data flow model 4/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Network topology of the Orsay cluster

3 Gb/s
Ethernet links

1 Gb/s
Ethernet links

switch 0

switch 12

switch 2

switch 1

node 2
node 1

node 15

node 17
node 16

node 30

node 167
node 166

node 180

180 nodesFirst switch levelSecond switch level

March 2010 Xavier Besseron Fault tolerance for a data flow model 5/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Network topology of the Orsay cluster

3 Gb/s
Ethernet links

1 Gb/s
Ethernet links

switch 0

switch 12

switch 2

switch 1

node 2
node 1

node 15

node 17
node 16

node 30

node 167
node 166

node 180

180 nodesFirst switch levelSecond switch level

Checkpoint servers can be
placed by following the

node order

March 2010 Xavier Besseron Fault tolerance for a data flow model 5/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Network topology of the Orsay cluster

3 Gb/s
Ethernet links

1 Gb/s
Ethernet links

switch 0

switch 12

switch 2

switch 1

node 2
node 1

node 15

node 17
node 16

node 30

node 167
node 166

node 180

180 nodesFirst switch levelSecond switch level

Checkpoint servers can be
placed by switch

March 2010 Xavier Besseron Fault tolerance for a data flow model 5/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Network topology of the Orsay cluster

3 Gb/s
Ethernet links

1 Gb/s
Ethernet links

switch 0

switch 12

switch 2

switch 1

node 2
node 1

node 15

node 17
node 16

node 30

node 167
node 166

node 180

180 nodesFirst switch levelSecond switch level

Checkpoint servers can be
placed randomly

March 2010 Xavier Besseron Fault tolerance for a data flow model 5/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Placement of checkpoint servers in the Orsay cluster

120 computation nodes
Application state ≈ 20 GB, ie 169 MB per node

12 24 60

0
20

40
60

80

83.07

19.71
15.56

41.50

16.30
 7.70

22.23
15.05

 3.10

Number of checkpoint servers

C
he

ck
po

iti
ng

 ti
m

e
(s

ec
on

ds
)

Placement

Ordered
Random
By switch

⇒ Need to take in consideration the network topology
Could be done automatically (using Network Weather Service for example)

March 2010 Xavier Besseron Fault tolerance for a data flow model 6/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Placement of checkpoint servers in the Orsay cluster

120 computation nodes
Application state ≈ 20 GB, ie 169 MB per node

12 24 60

0
20

40
60

80

83.07

19.71
15.56

41.50

16.30
 7.70

22.23
15.05

 3.10

Number of checkpoint servers

C
he

ck
po

iti
ng

 ti
m

e
(s

ec
on

ds
)

Placement

Ordered
Random
By switch

⇒ Need to take in consideration the network topology
Could be done automatically (using Network Weather Service for example)

March 2010 Xavier Besseron Fault tolerance for a data flow model 6/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Outline

7 Coordination time

8 Placement of checkpoint servers

9 Over-decomposition

March 2010 Xavier Besseron Fault tolerance for a data flow model 7/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Over-decomposition on Jacobi3D

Number of nodes: n, number of subdomains: d
Classical decomposition (MPI): n = d
Over-decomposition: d � n

⇒ Over-decomposition allows to be independent of the processor number

Example: "Over"-decomposition in 6 subdomains

Distribution on 2 processors

Update Update Update

dom[0].0 dom[1].0 dom[2].0

dom[0].1 dom[1].1 dom[2].1

dom[3].0 dom[4].0 dom[5].0

Update Update Update

dom[3].1 dom[4].1 dom[5].1

Processor 1 Processor 2

Distribution on 3 processors

Update Update

dom[0].0 dom[1].0

dom[0].1 dom[1].1

dom[4].0 dom[5].0

Update Update

dom[4].1 dom[5].1

dom[2].0 dom[3].0

Update Update

dom[2].1 dom[3].1

Processor 1 Processor 2 Processor 3

March 2010 Xavier Besseron Fault tolerance for a data flow model 8/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Over-decomposition influence: Modelization
Let T d

n be the execution time of one iteration for
a d-subdomains decomposition
using n processors

Execution time T d
n =

⌈ d
n

⌉
× T 1

1
d

Optimal time T n
n is for d = n

Over-decomposition overhead is

T d
n /T n

n =

⌈
d
n

⌉
× n

d
≤ 1 +

n
d

After the global recovery and load balancing

f is the number of failed nodes
After failures, over-decomposition overhead is

T d
n−f /T n−f

n−f =

⌈
d

n − f

⌉
× n − f

d
≤ 1 +

n
d

March 2010 Xavier Besseron Fault tolerance for a data flow model 9/ 10

Coordination time Placement of checkpoint servers Over-decomposition

Over-decomposition influence: Modelization

Simulating execution on 1000− f processors

Before failure 1 failure 10 failures 100 failures 500 failures

0.
0

0.
5

1.
0

1.
5

2.
0

Number of failures (f)

E
xe

cu
tio

n
tim

e
(o

ve
r

th
e

op
tim

al
)

Decomposition (d)

1000 subdomains
10000 subdomains
1e+05 subdomains
1e+06 subdomains

March 2010 Xavier Besseron Fault tolerance for a data flow model 10/ 10

	Context
	Kaapi's data flow model
	Coordinated Checkpoint
	Optimized coordination

	Global rollback
	Partial rollback
	Perspectives
	Appendix
	Coordination time
	Placement of checkpoint servers
	Over-decomposition

