
CRFS: A Lightweight User-Level Filesystem
for Generic Checkpoint/Restart
Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron,

Hao Wang, Jian Huang, Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
{ouyangx, rajachan, besseron, wangh, huangjia, panda}@cse.ohio-state.edu

Abstract—Checkpoint/Restart (C/R) mechanisms have
been widely adopted by many MPI libraries [1–3] to
achieve fault-tolerance. However, a major limitation of
such mechanisms is the intensive IO bottleneck caused
by the need to dump the snapshots of all processes into
persistent storage. Several studies have been conducted to
minimize this overhead [4, 5], but most of these proposed
optimizations are performed inside specific MPI stack or
checkpointing library or applications, hence they are not
portable enough to be applied to other MPI stacks and
applications.

In this paper, we propose a filesystem based approach to
alleviate this checkpoint IO bottleneck. We propose a new
filesystem, named Checkpoint-Restart Filesystem (CRFS),
which is a lightweight user-level filesystem based on
FUSE (Filesystem in Userspace). CRFS is designed with
Checkpoint/Restart I/O traffic in mind to efficiently handle
the concurrent write requests. Any software component us-
ing standard filesystem interfaces can transparently benefit
from CRFS’s capabilities. CRFS intercepts the checkpoint
file write system calls and aggregates them into fewer
bigger chunks which are asynchronously written to the
underlying filesystem for more efficient IO. CRFS manages
a flexible internal IO thread pool to throttle concurrent IO
to alleviate IO contention for better IO performance. CRFS
can be mounted over any standard filesystem like ext3, NFS
and Lustre. We have implemented CRFS and evaluated its
performance using three popular C/R capable MPI stacks:
MVAPICH2, MPICH2 and OpenMPI. Experimental results
show significant performance gains for all three MPI
stacks. CRFS achieves up to 5.5X speedup in checkpoint
writing performance to Lustre filesystem. Similar level
of improvements are also obtained with ext3 and NFS
filesystems. To the best of our knowledge, this is the
first such portable and light-weight filesystem designed for
generic Checkpoint/Restart data.

Keywords-checkpoint-restart; userspace filesystem; write
aggregation;

I. INTRODUCTION

High performance computing clusters keep growing
in terms of scale and complexity, which inevitably leads
to more frequent failures of individual components. As
a consequence, fault-tolerance has become a necessity.

Checkpoint-Restart (C/R) is the most widely deployed
fault-tolerance mechanism. Hence it’s highly desirable
that MPI, the de facto standard for parallel programming,
has built-in support for C/R. Many MPI implemen-
tations [1–3] provide blocking Checkpoint/Restart [6]
support via a checkpoint library such as BLCR [7]. A
typical checkpoint cycle consists of three phases. Phase
1: Build a consistent global state of the application.
This is usually done by suspending the communica-
tion between all processes [8], or by identifying the
in-transit messages using markers [9]. Phase 2: Use
the checkpoint library to dump the memory snapshot
of individual processes to a separate checkpoint file.
Phase 3: Resume communications between processes
and continue execution.

BLCR library performs a system-level checkpoint to
save the entire context of each MPI process to a separate
file. These checkpoint image files are later used to
recover the application from a failure and restore its
processes to a previous consistent state. Although effec-
tive to achieve fault-tolerance, Checkpoint/Restart mech-
anisms have gained notoriety for their bulky persistent
storage space demands, intense I/O operations and heavy
overheads they impose on application performance [10,
11].

We have carried out detailed profiling to gain insights
into the IO overhead during checkpoint IO. We reveal
that the high overhead can be ascribed to multiple
reasons: (1) The sheer amount of data to be saved to
stable storage; (2) For MPI stacks that rely on BLCR
library to do checkpoint, BLCR performs large number
of inefficient and relatively small writes to save their
snapshots, which is especially unfavorable for the un-
derlying filesystem to deliver good performance. These
simultaneous write accesses cause severe IO contentions
not only at inter-node level among processes from
different compute nodes, but also at intra-node level
as multi-core architecture is able to host more and
more concurrent processes in a node. (3) In addition to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/225543419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Checkpoint/Restart Optimizations at Different Levels. Optimizations are Performed in Highlighted Components. Optimizations in MPI
stack can only benefit certain MPI implementation. Optimizations in checkpoint library and Kernel module are not portable. Optimizations in
a generic user-level filesystem is portable and can transparently benefit a wide range of MPI stacks and applications.

degraded IO throughput, the IO contention also leads
to a large variation for individual process to complete
checkpoint writing. Even if some processes finish their
checkpoint writing quicker than others, they are forced
to coordinate with the slower counterparts before they
can resume execution.

A lot of efforts have been conducted to tackle the
IO bottleneck incurred by C/R. The studies in [4, 12]
modified the MPI implementation and BLCR library to
alleviate the IO contention. Although effective, this ap-
proach only works for a specific MPI stack and requires
patching BLCR kernel module, which isn’t portable to
be applied to generic environments. The authors of [11]
proposed a parallel log-structured filesystem (PLFS) to
improve the writing throughput. However this solution
only deals with N-1 scenario where multiple processes
write to the same shared file, hence it cannot handle
MPI system-level checkpoint where each process is
checkpointed to a separate image file.

In this paper we propose a scalable and portable so-
lution which can significantly help a wide range of MPI
stacks to reduce the IO bottleneck in Checkpoint/Restart.
We want to address several questions:

• What are the primary factors to which the C/R
overheads can be attributed?

• Can optimizations be performed in a user-level
filesystem to improve C/R performance?

• Can such a user-level solution transparently benefit
a wide range of MPI implementations, while tak-
ing advantage of various filesystems such as ext3,
Lustre [13] or NFS?

We have implemented CRFS, a filesystem aimed for
improving Checkpoint/Restart performance for a wide
range of MPI stacks in a portable and transparent
manner. In contrast to other alternative optimizations
implemented in MPI libraries or in checkpoint libraries
(as illustrated in left and middle part of Figure 1),
CRFS is implemented as a user-level filesystem based
on FUSE [14] which is readily available in most of the
clusters. A wide spectrum of upper layer components,

including any MPI implementation and other generic
I/O applications, can transparently benefit from CRFS’s
capabilities. CRFS internally aggregates write streams
from multiple processes into fewer bigger chunks, which
are asynchronously written to back-end filesystem for
more efficient IO. CRFS manages a flexible IO thread
pool to throttle concurrent writing to alleviate the stress
on back-end filesystems. CRFS can be mounted on top
of any existing filesystem, such as ext3, PVFS2, NFS,
and Lustre to leverage their capacity.

We have evaluated CRFS’s performance in reducing
checkpoint writing overhead with three popular C/R
capable MPI stacks: MVAPICH2 [1], MPICH2 [3] and
OpenMPI [2]. CRFS achieves significant improvement
in all three MPI stacks to reduce checkpoint writing
overhead. For application LU class C, CRFS is 5.5X
faster than native Lustre filesystem in checkpoint writing.
Checkpoint time with Lustre is reduced by 29% for LU
class D. Up to 8X speedup is obtained if CRFS is used
with ext3.

In summary, our contribution in this paper is as
follows:

• Through detailed profiling, we have identified
the dominant factors that determine the cost of
Checkpoint-Restart.

• We have designed and implemented CRFS, a
user-space filesystem, which optimizes concurrent
checkpoint writing with the principle of write-
aggregation. A wide range of upper layer com-
ponents including any MPI stack and general IO
applications can transparently benefit from CRFS’s
optimizations.

• We have conducted a comprehensive evaluation of
the proposed design, and demonstrated a significant
improvement in checkpoint writing performance
with three popular MPI stacks.

• We have conducted intensive profiling to reveal the
source of improvement achieved by CRFS.

The paper is organized as follows. In section II we
give a background about the key components involved

2

in our design. In section III we conduct profiling to
reveal the causes of low IO efficiency in checkpoint
writing. In Section IV we propose Checkpoint/Restart
Filesystem (CRFS) that can enhance checkpoint IO per-
formance for a wide range of applications. In section
V, we present our experiments and evaluation. Related
work is discussed in Section VI, and in section VII we
present the conclusion and future work.

II. BACKGROUND

A. Filesystem in Userspace FUSE)

ext3/4

Applications

FUSE

User Space

Kernel Space

NFS

...

VFS

glibc glibc

User-Level Filesystem

libfuse

Fig. 2. FUSE Architecture (Courtesy of [15])

Filesystem in Userspace (FUSE) [14, 15] is a software
that allows to create a virtual filesystem in the user level.
As illustrated in Fig. 2, it relies on a kernel module
to perform privileged operations at the kernel level and
provides a userspace library that eases communication
with this kernel module.

FUSE is widely used to create filesystems that do not
really store the data itself but relies on other resources
to effectively store the data. Thus, a FUSE-based virtual
filesystem organizes data and presents it to the users
through a classic filesystem interface.

B. Berkeley Lab Checkpoint/Restart (BLCR)

Berkeley Lab Checkpoint/Restart (BLCR) [7] allows
programs running on Linux systems to be checkpointed
by writing the process image to a file and then later
be restarted from the saved process image file. BLCR
by itself can only checkpoint/restart processes on a
single node. But it provides callbacks to be extended
by applications, so that a parallel application can also
be checkpointed.

C. Checkpointing Mechanisms in MPI

In this paper, we have used three popular MPI libraries
to evaluate the performance of CRFS - MVAPICH2,

MPICH2 and OpenMPI. All three libraries have similar
Checkpoint-Restart mechanisms, based on the BLCR
checkpointing library. As a first step, when a Checkpoint
request is made or when an automatic Checkpoint is
scheduled, the MPI library flushes out the communica-
tion channel to build a consistent global state. Once the
communication has been suspended, the BLCR library
is used to dump a snapshot of the memory contents
of all the MPI processes in the current job to stable
storage. Once all the process states have been recorded,
the communication channel is reactivated again for the
job to resume execution. In the event of a failure,
the BLCR library is used to restart the job from the
process snapshots that were saved in the previous step.
This simple three-step checkpoint-restart mechanism is
uniform across the three MPI libraries.

III. CHECKPOINT WRITING PROFILING

In order to gain insights into the checkpoint writ-
ing characteristics, we executed NAS parallel bench-
mark [16] with MVAPICH2 [1], and took a checkpoint
to node-local ext3 filesystem. We extended the BLCR
library to record the information for all write operations,
including number of writes, size of a write and time cost
for each write.

TABLE I
CHECKPOINT WRITING PROFILE (LU.C.64, WRITE TO EXT3,

COURTESY OF [4])

Write Size % of Writes % of Data % of Time
0-64 50.86 0.04 0.17
64-256 0.61 0.00 0.00
256-1K 0.25 0.01 0.00
1K-4K 9.46 1.53 0.01
4K-16K 36.49 11.36 44.66
16K-64K 0.74 0.77 6.55
64K-256K 0.49 3.79 11.80
256K-512K 0.25 3.58 1.75
512K-1M 0.61 17.72 14.72
> 1M 0.25 61.21 20.35

Table I represents the checkpoint profiling for appli-
cation LU.C.64 running on 8 compute nodes with 8
processes per node. Around 8 seconds are taken for
a checkpoint to complete. During a checkpoint, each
process generates a 23 MB snapshot to be saved, and
a total of 7800 write() system calls are performed by
all the 8 processes on a same node. We observed that a
large number of small writes (64 bytes to 1 KB) cost a
tiny fraction of time because they are quickly absorbed
by the VFS page cache. On the other hand, 37% of
write accesses are in the medium range (4 K to 64 K)
and are responsible for 50% of all checkpoint time, even
though they only deliver 13% of the total data. During
checkpoint writing, multiple processes simultaneously
issue their write requests and each medium request

3

needs new pages to be allocated in page cache. These
concurrent write streams cause severe contentions in the
VFS layer, leading to degraded performance. There are
a few (less than 1%) very large writes (≥256 KB) that
contribute the majority of the data (80%). However large
sequential writes are relatively efficient and they only
cost 35% of checkpoint time. This observation implies
that optimizations are needed to reduce medium write
requests. In Section IV we will propose a filesystem-
based design to coalesce medium writes into fewer more
efficient larger write accesses.

1e+00 1e+02 1e+04 1e+06

0
2

4
6

8

Write size (bytes)

C
u

m
u

la
ti
v
e

 W
ri
te

 T
im

e

p
e

r
p

ro
c
e

s
s
 (

s
e

c
o

n
d

s
)

Fig. 3. Cumulative Write Time for Each Process (LU.C.64, ext3)

The contentions induced by the concurrent write re-
quests not only degrade write throughput, but also create
a large variation for individual processes to complete
their writing. This is shown in Figure 3. Each line
represents the time spent by a process to perform write
operations, shown in a cumulative manner with respect
to the write size. We observe a large variation in the
process’s completion time, ranging from 4 seconds to 8
seconds. Some processes are able to finish their writing
very quick, however they have to coordinate with slower
counterparts to re-establish communication channels be-
fore resuming execution (as is discussed in Section I).
Consequently all processes are delayed by the progress
of the slowest processes, resulting in a longer checkpoint
time overhead.

IV. CRFS DESIGN AND IMPLEMENTATION

In this section we propose our approach to tackle
the challenge of checkpoint IO. Unlike previous work
that performs optimization inside certain checkpoint li-
brary [4] or within a specific MPI [5], which restricts its
usability due to limited portability, we propose a gen-
eral purpose user level filesystem, called CRFS, which
can greatly enhance checkpoint writing performance
for a wide range of applications including any MPI
stacks. CRFS internally aggregates write requests from
multiple processes into bigger-sized chunks and writes

these chunks asynchronously to back-end filesystems.
It maintains an IO thread pool with dedicated threads
responsible for actual file writing. By configuring these
IO threads, it’s able to throttle concurrent write requests
for better IO performance.

As depicted in Figure 4, CRFS is built on top of
FUSE [14] and runs in user space as a stackable filesys-
tem. CRFS relies on other filesystems to store the real
file data, such as ext3/4, NFS, and Lustre [13]. Users
can perform any POSIX filesystem operations in CRFS
as in any other regular filesystems. These system calls
are intercepted by FUSE kernel module and then routed
to CRFS, where proper actions are taken by calling
corresponding functions from the underlying filesystem
and returning the results. We will describe in detail how
CRFS handles various filesystem calls in the following
sections.

A. File Open

At the beginning of a checkpoint, each application
process calls open() to create a new checkpoint file.
This system call is caught by FUSE kernel module and
redirected to CRFS. CRFS maintains a hash table to
keep track of opened files. Each opened file is associated
with an entry that contains metadata to be used in later
I/O operations. A new entry is inserted into the table
for a newly opened file. If the file is already opened,
the reference counter in its table entry is incremented
by one. After inserting the entry CRFS invokes the
corresponding functions from the underlying filesystem
to open/create the required file.

B. File Write

Concurrent file writing is a major performance bot-
tleneck usually seen when checkpointing parallel ap-
plications [10, 11]. CRFS performs write aggregation
to coalesce concurrent writes from parallel application
processes into fewer larger chunks, and asynchronously
write these bigger chunks to back-end storage system.
With this, CRFS is able to improve file writing efficiency
and reduce concurrent write contentions.

CRFS manages a buffer pool initialized at mount time.
The buffer pool is divided into fixed-sized chunks. When
an application writes data to CRFS, the write() system
call is captured by FUSE and the control is handed to
CRFS. CRFS goes to the buffer pool to grab a free
buffer chunk, and associates this chunk to the file. The
data to be written is copied into this chunk, the file’s
metadata entry is updated and the write() returns. The
metadata entry includes information such as: size of valid
data in the chunk, size of the chunk, append point in
this chunk, offset of this chunk in the original file, and
ownership identities. All subsequent writes to the target

4

Fig. 4. CRFS Design Diagram

file will be coalesced into this chunk until the chunk
becomes full. This is possible because checkpoint data
is written sequentially during a checkpoint. After the
chunk becomes full, it is en-queued into the Work Queue.
At this point we increment the “write chunk count” by
one in the metadata entry to mark the outstanding full
chunk writes for this file. After that, the next free chunk
is allocated to this file to accommodate the following
writes.

Work Queue and IO Throttling: Data chunks
are eventually handed over to the Work Queue for
actual writing. CRFS manipulates a pool of worker IO
threads waiting on the work queue. Whenever a chunk
is enqueued, an IO thread wakes up and fetches the
chunk off the queue. Each chunk is tagged with metadata
information including target file handler, offset into the
file, valid data size in the chunk, etc.. The IO thread
then calls a write() with the underlying filesystem to
write the data to its actual file. Once completed, the
“complete chunk count” in the file’s metadata entry is
incremented. Then the chunk is returned to the buffer
pool to be reused, and the IO thread goes back to the
work queue for the next chunk.

CRFS can configure the IO thread number to throttle
the outstanding buffer chunk write requests. With that,
we can mitigate the IO contentions at back-end filesys-
tems to attain a better performance. In Section V-B we
carry out experiments to find a proper IO thread level.

C. File Close

When a process has finished checkpointing, a close()
is called on its checkpoint file and is eventually routed
to CRFS. If there is any remaining data in the buffer
chunk associated with this file it’s enqueued into the
Work Queue. Then the calling thread is blocked until the
“complete chunk count” becomes equivalent to “write
chunk count”, which means all outstanding buffer chunk
writes have been finished. After that the call returns.

D. Other Filesystem Operations

1) File Read: File reading is required when a process
is to be restarted from a checkpoint file. For read() we
directly pass it to the underlying filesystem without any
additional operation.

2) File Sync: The fsync() system call flushes a file’s
modified in-core data to the storage device where the
file resides, which includes data coalesced in a file’s
buffer chunk, and data in page cache for the underlying
filesystems. Upon a fsync(), we first enqueue the current
buffer chunk associated with the file, then wait for all
outstanding chunk writes to complete. After that a fsync()
is called on the underlying filesystem to flush all dirty
data in page cache to stable storage.

3) Other File Operations: For a user-level filesys-
tem to be usable, many other filesystem operations
are required to be supported, such as mkdir, rmdir,
link, truncate, chmod, utime, and so on. CRFS directly
passes these calls to the underlying filesystem without
additional processing.

V. PERFORMANCE EVALUATION

We have implemented CRFS as a filesystem with
special optimizations for generic checkpointing that can
be used by a wide range of MPI stacks. In this sec-
tion we conduct extensive experiments to evaluate its
performance from various perspectives including: (a)
Raw performance of CRFS to aggregate concurrent write
streams; (b) Checkpoint writing performance of CRFS
with different MPI stacks (MVAPICH2 [1], MPICH2 [3],
OpenMPI [2]) using different back-end filesystems (ext3,
Lustre [13], NFS). We will also show some detailed
profiling to reveal the reasons why CRFS leads to
benefits.

A. Experimental Setup

In the evaluation, a 64-node InfiniBand Linux cluster
was used. Each node has eight processor cores on two

5

Intel Xeon 2.33 GHz Quad-core CPUs. Each node has
6 GB main memory and a 250GB ST3250620NS disk
drive. The nodes are connected with Mellanox MT25208
DDR InfiniBand HCAs for high performance MPI com-
munication. The nodes are also connected with a 1 GigE
network for interactive logging and maintenance pur-
poses. Each node runs Linux 2.6.30 with FUSE library
2.8.1. We enable the “big writes” option for FUSE to
perform large writes to deliver full performance. CRFS
is mounted upon different filesystems: ext3, Lustre 1.8.3,
and NFS at different runs. Lustre 1.8.3 is configured
using 1 Metadata server and 3 Object Storage Servers
with InfiniBand transport. For the case with NFS, the
single NFS server exposes its disk via NFSv3 protocol
using IPoIB transport.

 0

 200

 400

 600

 800

 1,000

 1,200

4MB 8MB 16MB 32MB 64MB

A
g
g
re

g
a
te

d
 B

a
n
d
w

id
th

 (
M

B
/s

)

Buffer Pool Size

Chunk Size=128K
Chunk Size=256K
Chunk Size=512K
Chunk Size=1M
Chunk Size=2M
Chunk Size=4M

Fig. 5. CRFS Raw Write Bandwidth (8 processes on a single node)

B. CRFS: Raw Performance

CRFS relies on FUSE to intercept filesystem oper-
ations. The write requests are coalesced into CRFS’s
buffer pool, then the filled data chunks are handed
to the work queue and processed by the IO threads
asynchronously. Multiple factors can affect the overall
performance of this pipeline, including FUSE internal
overhead, buffer pool size, chunk size and IO thread
numbers. In this test we ran 8 parallel processes in a node
each writing 1 GB data into CRFS. Once a filled chunk
is picked up by an IO thread it is discarded without
being written to a back-end filesystem. With this we
can measure the raw performance of CRFS to aggregate
write streams, precluding the impacts of different back-
end filesystems. In real checkpoint writing we observe
that too many IO threads tend to generate high level
of contentions when they concurrently write chunks to
backend filesystems, leading to degraded performance,
while too few IO threads cannot unleash the full po-
tentials of the filesystem. After extensive experimental
runs we find that 4 IO threads generally yield the best

Benchmark MPI Library
Total

Checkpoint
Size (MB)

Process
Image Size

(MB)

LU.B.128
MVAPICH2-IB 903.2 7.1

OpenMPI-IB 909.1 7.1
MPICH2-TCP 497.8 3.9

LU.C.128

MVAPICH2-IB 1,928.7 15.1
OpenMPI-IB 1,751.7 13.7

MPICH2-TCP 1,359.6 10.7

LU.D.128

MVAPICH2-IB 13,653.9 106.7
OpenMPI-IB 13,864.9 108.3

MPICH2-TCP 13,261.2 103.6

TABLE II
CHECKPOINT SIZES OF DIFFERENT APPLICATIONS WITH VARIED

MPI STACKS. MVAPICH2 AND OPENMPI USE INFINIBAND
TRANSPORT. MPICH2 USES TCP TRANSPORT.

throughput for most of the situations. Due to space
constraints we haven’t included the detailed studies in
the paper. We stick to 4 IO threads to throttle a high
degree of concurrent IO in all experiments hereafter.

Figure 5 shows the measured write throughput at
different buffer pool sizes with varied chunk sizes. Given
a 16 MB buffer pool, CRFS can always achieve more
than 700 MB/s aggregation throughput on a single node
for chunk sizes larger than 128 KB. This is sufficient
to saturate most available parallel filesystems if multiple
nodes concurrently write their checkpoints. Larger chunk
size is generally more favorable for the underlying
filesystems to exhibit full potentials, therefore we would
fix chunk size to be 4 MB in all experiments hereafter.

For a given chunk size=4 MB, it can be observed that
write throughput rises as buffer pool becomes bigger
and starts to flatten when buffer pool is greater than
32 MB. CRFS shouldn’t occupy too much memory since
a real parallel application can use a large portion of the
available memory. Hence we fix the buffer pool to be
16 MB in all experiments hereafter.

C. CRFS: Checkpointing Performance

In this section, we evaluate the performance of CRFS
to checkpoint real applications. We ran NAS parallel
benchmark LU of class B, C and D with 128 processes
on 16 compute nodes. We chose ext3, NFS and Lustre-
1.8.3 as the three underlying filesystems. The checkpoint
was either directly written to native filesystems, or
processed by CRFS before writing. In order to demon-
strate the portability of CRFS that can benefit a wide
range of applications, the experiments were repeated
using three popular MPI implementations that support
Checkpoint/Restart: MVAPICH2 1.6rc3, OpenMPI 1.5.1
and MPICH2 1.3.2p1.

Table II shows the checkpoint sizes at varied appli-
cation scales. The three MPI stacks are tagged with
“IB” (InfiniBand) or “TCP” to indicate the transport

6

ext3 lustre nfs

0
5

1
0

2
0

3
0

 1.9 s
 0.5 s

 4.0 s

 0.5 s

35.5 s

10.4 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(a) LU.B.128

ext3 lustre nfs

0
1
0

2
0

3
0

4
0

 2.9 s
 0.9 s

 6.0 s

 1.1 s

45.3 s

21.3 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(b) LU.C.128

ext3 lustre nfs

0
5
0

1
0
0

1
5
0

 19.0 s 17.2 s

 29.3 s
 20.7 s

159.4 s163.4 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(c) LU.D.128

Fig. 6. Checkpoint Writing Time with MVAPICH2 (Lower is Better)

ext3 lustre nfs

0
2

4
6

8

0.8 s

0.1 s

1.2 s

0.1 s

9.3 s

1.1 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(a) LU.B.128

ext3 lustre nfs

0
5

1
0

1
5

 1.8 s

 0.2 s

 2.8 s

 0.3 s

18.5 s

 7.7 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(b) LU.C.128

ext3 lustre nfs

0
5
0

1
0
0

1
5
0

 17.6 s

 2.2 s

 25.8 s
 19.7 s

117.3 s

157.3 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(c) LU.D.128

Fig. 7. Checkpoint Writing Time with MPICH2 (Lower is Better)

ext3 lustre nfs

0
5

1
0

1
5

 1.3 s
 0.2 s

 2.5 s

 0.2 s

17.7 s

 8.2 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(a) LU.B.128

ext3 lustre nfs

0
5

1
0

1
5

2
0

2
5

 2.5 s

 0.4 s 0.7 s

27.3 s

16.0 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(b) LU.C.128

ext3 lustre nfs

0
5
0

1
0
0

1
5
0

 17.7 s

 6.8 s

 27.8 s
 20.5 s

133.1 s

163.3 s

A
v
e
ra

g
e
 l
o
c
a
l
c
h
e
c
k
p
o
in

t
ti
m

e
 (

s
e
c
o
n
d
s
)

Native Using CRFS

(c) LU.D.128

Fig. 8. Checkpoint Writing Time with OpenMPI (Lower is Better). We could not get the result of native Lustre for LU.C.128, despite many
attempts.

they use. Generally MVAPICH2 and OpenMPI produce
checkpoint images slightly bigger than MPICH2. This
is because they use InfiniBand transport which requires
more memory to maintain the communication channels.
MPICH2, on the other hand, uses TCP transport and has
a lower memory footprint.

The measured checkpoint time includes the time for
BLCR to write the checkpointed data and the time to
close the file (so there is no pending data in CRFS) for
all the processes. The values plotted in the following
figures are the average checkpoint time among all the

processes for one given checkpoint, and the average for
at least 5 checkpoints in the same conditions.

Figure 6 gives the checkpoint writing time for MVA-
PICH2. It clearly indicates that CRFS is able to diminish
checkpoint writing overhead for different underlying
filesystems at a wide range of application memory
footprint. For example, for application class C, CRFS
with Lustre reduces the writing time from 6.0 seconds
to 1.1 seconds, which stands for a 5.5X speedup. With
ext3 and NFS filesystems the improvements are 3.2X and
2.1X, respectively. For bigger problem size of class D

7

the improvement is less dramatic because the majority of
overhead is dominated by the absolute amount of data
to dump. Even in this case CRFS is 30% faster than
native Lustre and drives down the writing time from
29.3 seconds to 20.7 seconds. We observe that NFS
becomes an outlier at this problem size. NFS isn’t a
good candidate to store checkpoint since its single server
design doesn’t match the intensive concurrent IO re-
quirements. The node-level optimizations carried out by
CRFS cannot benefit NFS server to handle the high level
of concurrent IO tension, and the additional overhead
within CRFS (such as multiple buffer copies) starts to
manifest. Therefore CRFS+NFS performs slightly worse
than the native NFS.

Figure 7 and Figure 8 exhibit the performance benefits
gained by CRFS when running with MPICH2 and Open-
MPI, respectively. A similar level of improvement is
obtained here. In the case of MPICH2, for example, with
application class C and Lustre filesystem, CRFS achieves
a 9.3X speedup to complete checkpoint writing. The
speedup is 2.4X with NFS for the same problem size. We
see the same abnormality with NFS when problem size
becomes larger at class D. At this problem size, CRFS
optimizations cannot make a positive impact, instead its
overhead appears more prominent for NFS.

In Figure 8(b), the bar for LU.C.128 with OpenMPI
using native Lustre is missing. Despite several tries,
the checkpoint in OpenMPI always failed for these
conditions.

D. CRFS: Multiplexing Scalability

16 x 1 16 x 2 16 x 4 16 x 8

0
5

1
0

1
5

2
0

2
5

14.5 s
13.4 s

20.5 s

14.7 s

22.8 s

16.2 s

29.3 s

20.7 s

 −7.6 % −28.0 % −28.7 % −29.6 %

Number of nodes x Number of processes per node

A
v
e

ra
g

e
 l
o

c
a

l
c
h

e
c
k
p

o
in

t
ti
m

e

(s
e

c
o

n
d

s
)

Native Lustre CRFS over Lustre

Fig. 9. CRFS Scalability at Different Level of Process Multiplexing
(LU.D, Lustre)

As revealed in previous sections, IO contentions be-
tween concurrent processes are the major cause of the
pathologically poor performance of checkpoint writing.
In this section we vary the number of processes on each
compute node for the same problem size, and evaluate
CRFS’s scalability in terms of process multiplexing to
handle checkpoint IO. We run the same application LU.D
on 16 compute nodes with 16, 32, 64, and 128 processes,

leaving 1, 2, 4 and 8 processes per node, respectively. We
measure the checkpoint writing time to Lustre filesystem,
either natively or with CRFS optimizations. Figure 9
depicts the results run with MVAPICH2. Similar results
are obtained with OpenMPI and MPICH2. The numbers
atop each bar is the checkpoint writing time, and the
numbers below the bar groups are percentage reduction
in writing time when CRFS is applied. With 16 applica-
tion processes (1 process per node), CRFS doesn’t give
significant benefit since there is little IO concurrency per
node. As process multiplexing rises, CRFS starts to show
its advantages. When 32 processes are used (2 processes
per node), CRFS reduces the checkpoint writing time by
28%. For 64 and 128 processes (4,8 processes per node),
the overhead reduction is 28.7% and 29.7%, respectively.
This result indicates that CRFS can effectively reduce
the node-level IO multiplexing contention and diminish
checkpoint writing overhead.

E. CRFS: Reasons of Improvements

The aforementioned experiments have demonstrated
CRFS’s capability to improve checkpoint writing effi-
ciency. We have also further explored the reasons why
CRFS can bring about such benefits. We used “blk-
trace” to collect the block IO layer access traces during
checkpoint writing to local ext3. We ran application
LU.C.64 with 64 processes on 8 compute nodes using
MVAPICH2. The results collected from one node are
illustrated in Figure 10. The top part of Figure 10(a)
shows the disk IO pattern of checkpoint writing. We see a
high degree of randomness caused by concurrent writing
from 8 processes on the same node. This enforces a lot
of disk head seeks (the middle part of Figure 10(a)),
and results in a lower effective write throughput. In
contrast, CRFS is able to coalesce the concurrent write
requests and perform relatively sequential writes, as can
be seen in top part of Figure 10(b). Consequently it can
avoid a lot of disk head seeks and deliver a better write
throughput.

By merging concurrent write requests and reducing
the level of IO contention, CRFS brings about another
benefit to diminish the uncertainty of checkpoint writing
completion time. Figure 11 compares the cumulative
checkpoint write time for all the processes. We see a
wide variation in the completion time if writing directly
to ext3. In this mode, the slow writing processes hinder
the overall progress of all processes in the application,
resulting in a prolonged checkpoint completion time. On
the contrary, CRFS effectively drives down the write
contentions at back-end filesystem so as to significantly
minimize this variation. As a consequence, all processes
converge and finish their writing at about the same
time, as shown in Figure 11. This helps achieve a

8

(a) Write to ext3 (b) Write to ext3+CRFS

Fig. 10. Block IO Layer Trace on One Node. Checkpoint Writing of LU.C.64 on 8 Nodes, ext3

1e+00 1e+02 1e+04 1e+06

0
2

4
6

8

Write size (bytes)

C
u

m
u

la
ti
v
e

 W
ri
te

 T
im

e

p
e

r
p

ro
c
e

s
s
 (

s
e

c
o

n
d

s
)

Native ext3

CRFS over ext3

Fig. 11. Cumulative Write Time for Each Process (LU.C.64, ext3 vs.
ext3+CRFS)

quicker resumption of the application execution after a
checkpoint is carried out.

F. Restart

During restart, BLCR library reads from checkpoint
files and restores the in-memory context for every pro-
cess. CRFS forwards every read request to the back-end
filesystem, and does not impose any additional overhead
on file reads. What’s more, CRFS doesn’t change any
file layout during checkpoint write phase. Consequently
an application can be restarted directly from the back-
end filesystem, without the need to mount CRFS. In
our experiments, we did not observe any noticeable
improvement in the application restart time when CRFS
is mounted atop an underlying filesystem. Given that,
and the lack of space, we did not include any numbers
characterizing the restart performance.

VI. RELATED WORK

In the field of High Performance Computing systems,
many efforts have been carried out to provide fault toler-

ance to MPI applications. Generally, the application state
is periodically saved and used to restart the application
when a failure occurs and the checkpoint is coordinated
among the processors [9]. CoCheck [17], Starfish [18],
LAM/MPI [19], among others, implement this class of
checkpointing. These coordinated checkpoint approaches
share a downside in that all processes must save their
process images in a coordinated manner, which imposes
a heavy burden on the IO subsystem.

The overhead of Checkpoint/Restart on file IO has
been extensively studied by many researchers [10, 20].
A lot of efforts have been conducted to tackle the IO
bottleneck incurred by C/R. The work in [4, 12] modified
the MPI implementation and BLCR library to alleviate
the IO contention. Although effective, this approach only
works for a specific MPI stack and requires patching
BLCR kernel module, which isn’t portable to be applied
to generic environments. The authors of [11] proposed
a parallel log-structured filesystem (PLFS) to improve
the writing throughput. However, this solution only deals
with N-1 scenario where multiple processes write to the
same shared file, hence it cannot handle MPI system-
level checkpoint where each process is checkpointed
to a separate image file. The authors in [21] modified
the PVFS [22] filesystem to serialize all file writing
requests for checkpointing. This approach isn’t portable
because it requires changing the filesystem, and impedes
data reading throughput because additional remapping is
needed for every read request to find its data. Stdchk [23]
tries to scavenge spare storage resources from all par-
ticipating nodes to form a dedicated storage space for
checkpoint data. Our work differs in that we implement
a user-level filesystem that can coalesce concurrent write
accesses for better IO performance. The study in [24]
proposes a CLL algorithm to reduce checkpoint over-

9

head. It’s a user-level optimization, and its buffer man-
agement incurs significant overhead to synchronize the
copier thread and application thread on every common
page access. On the contrary, our work doesn’t involve
such overhead due to the filesystem based approach.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have conducted extensive profiling to
identify the dominant factors that determine the cost of
Checkpoint-Restart. Based on the findings, we have de-
signed and implemented CRFS, a user-space filesystem,
which optimizes concurrent checkpoint writing with the
principle of write aggregation. The generic filesystem-
based architecture enables a wide range of software
components, including any MPI stack and general IO
application, to transparently benefit from CRFS’s op-
timizations. We have conducted comprehensive evalu-
ations of the proposed design and demonstrated a sig-
nificant improvement in checkpoint writing performance
with three popular MPI stacks: MVAPICH2, MPICH2
and OpenMPI. Significant improvements are achieved
in all the three MPI stacks to reduce checkpoint writing
overhead. Experimental results show that the checkpoint
time with Lustre is reduced by 29% for LU class D. Up
to 8X speedup is obtained if CRFS is used with ext3.

As part of our future work, we plan to explore how
CRFS can optimize inter-node concurrent IO writing to
further reduce the IO contentions. We will also investi-
gate other general IO applications that will transparently
benefit from CRFS.

VIII. FUNDING ACKNOWLEDGE

This research is supported in part by U.S. Depart-
ment of Energy grants #DE-FC02-06ER25749 and #DE-
FC02-06ER25755; National Science Foundation grants
#CCF-0621484, #CCF-0833169, #CCF-0916302, #OCI-
0926691 and #CCF-0937842; grant from Wright Center
for Innovation #WCI04-010-OSU-0; grants from In-
tel, Mellanox, Cisco, QLogic, and Sun Microsystems;
Equipment donations from Intel, Mellanox, AMD, Ad-
vanced Clustering, Appro, QLogic, and Sun Microsys-
tems.

IX. SOFTWARE DISTRIBUTION

The proposed design will be available as a standalone
filesystem that will be distributed with an upcoming
MVAPICH2 release.

REFERENCES

[1] “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE,”
http://mvapich.cse.ohio-state.edu/.

[2] “Open MPI: Open Source High Performance Computing,”
http://mvapich.cse.ohio-state.edu/.

[3] “MPICH2: High-Performance and Widely Portable MPI,”
http://www.mcs.anl.gov/research/projects/mpich2/.

[4] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, “Accelerating
Checkpoint Operation by Node-Level Write Aggregation on
Multicore Systems,” ICPP 2009, September 2009.

[5] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The design
and implementation of checkpoint/restart process fault tolerance
for open mpi,” in 12th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, March 2007.

[6] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing
systems,” ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[7] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters,” in SciDAC, 6 2006.

[8] Q. Gao, W. Yu, W. Huang and D. K. Panda, “Application-
Transparent Checkpoint/Restart for MPI Programs over In-
finiBand,” in International Conference on Parallel Processing
(ICPP), August 2006.

[9] K. M. Chandy and L. Lamport, “Distributed snapshots: determin-
ing global states of distributed systems,” ACM Transactions on
Computer Systems, vol. 3, no. 1, pp. 63–75, 1985.

[10] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory
exclusion: Optimizing the performance of checkpointing sys-
tems,” in Software: Practice and Experience, 1999.

[11] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: a checkpoint
filesystem for parallel applications,” in Proc. of SC ’09, 2009.

[12] X. Ouyang, K. Gopalakrishnan, T. Gangadharappa, and D. K.
Panda, “Fast Checkpointing by Write Aggregation with Dynamic
Buffer and Interleaving on Multicore Architecture,” HiPC 2009,
December 2009.

[13] “Lustre Parallel Filesystem,” http://wiki.lustre.org/.
[14] “Filesystem in Userspace,” http://fuse.sourceforge.net/.
[15] “A flow-chart diagram which shows how FUSE works,” http:

//en.wikipedia.org/wiki/Filesystem in Userspace.
[16] F. C. Wong and R. P. M. etc., “Architectural requirements

and scalability of the NAS parallel benchmarks,” in Proc. of
Supercomputing ’99, 1999, p. 41.

[17] G. Stellner, “CoCheck: Checkpointing and Process Migration
for MPI,” in Proc. of the 10th International Parallel Processing
Symposium (IPPS ’96), 1996.

[18] A. Agbaria and R. Friedman, “Starfish: Fault-Tolerant Dynamic
MPI Programs on Clusters of Workstations,” High-Performance
Distributed Computing, International Symposium on, vol. 0,
p. 31, 1999.

[19] S. Sankaran and J. M. Squyres and B. Barrett etc, “The
LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing,” LACSI, Oct. 2003.

[20] I.R. Philp, “Software failures and the road to a petaflop machine,”
in First Workshop on High Performance Computing Reliability
Issues (HPCRI), February 2005.

[21] Milo Polte and Jiri Simsa etc. , “Fast log-based concurrent writing
of checkpoints ,” in PDSI 2008 workshop in conjunction with
SC08 , Nov. 2008.

[22] “PVFS2,” http://www.pvfs.org/.
[23] S. Al-Kiswany, M. Ripeanu, S. Vazhkudai, and A. Gharaibeh,

“stdchk: A Checkpoint Storage System for Desktop Grid Com-
puting,” in ICDCS 2008., June 2008.

[24] K. Li, J. F. Naughton, and J. S. Plank, “Low-latency, concur-
rent checkpointing for parallel programs,” IEEE Trans. Parallel
Distrib. Syst., 1994.

10

