
Context Fault-tolerance DFG CCK Simulations Perspectives

Optimized Coordinated Checkpoint/Rollback
Protocol using a Dataflow Graph Model

Xavier Besseron and Thierry Gautier
{xavier.besseron | thierry.gautier}@imag.fr

Laboratoire d’Informatique de Grenoble

MOAIS Project

APRETAF Workshop, January 2009

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 1/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 2/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 3/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Grid computing

What are grids?

Clusters are computers connected by a LAN
Grids are clusters connected by a WAN
Heterogeneous (processors, networks, ...)
Dynamic (failures, reservations, ...)

Aladdin – Grid’5000

French experimental grid platform
More than 4800 cores
9 sites in France
1 site in Brazil
1 site in Luxembourg

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 4/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Fault-tolerance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

F
ai

lu
re

 p
ro

ba
bi

lit
y

Number of processors

1−day execution time
5−days execution time
10−days execution time

Why fault-tolerance?

Fault probability is high on a grid
Split a large computation in shorter separated computations
Dynamic reconfiguration

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 5/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 6/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Fault-tolerance survey [Elnozahy02]

Duplication-based protocols [Avizienis76][Wiesmann99]

Application execution is duplicated, spatially or temporally.

Log-based protocols [Alvisi98]

Assume that the state of the system evolves according to
non-deterministic events
Non-deterministic events are logged in order to rollback from a
previous saved checkpoint

Checkpoint/rollback protocols

Periodically save the local process state of the applications.

Uncoordinated checkpointing [Randell75]
Coordinated checkpointing [Chandy85]
Communication-induced checkpointing [Baldoni97]

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 7/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Checkpoint/rollback protocols

Why checkpoint/rollback protocol?

Duplication protocols require too much resources [Wiesmann99]
and a computation interruption can be tolerated
Logging protocols require too much resources (memory and
bandwidth) with large communication applications [Elnozahy04]

Why coordinated checkpointing?

Coordinated checkpointing advantages:
No domino effect [Elnozahy02]
Low overhead towards application
communications [Bouteiller03][Zheng04]
Coordination overhead can be amortized using a suitable
checkpoint period [Elnozahy04]

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 8/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Application state

Global state
The global state of an application is composed of:

the local state of all its processes;
the state of all its communication channels.

Coherent global state

A coherent global state is a state than can happen during a correct
execution of the application.

m0

m1

P1

P2

P0

m2

m1

m2

P1

P2

P0

m0

Coherent global state Incoherent global state

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 9/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Classical coordinated checkpoint/rollback protocol

Two steps:

Checkpoint step, during failure-free execution

Coordinate all processes to checkpoint a coherent global state:
Coordinate all the processes
Flush communication channels between all processes
Save the processes state

Rollback step, to recover after a failure

Global restart:
Replace failed processes by new ones
All processes restart from their last checkpoint
Restart time is, in worst case, the checkpoint period

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 10/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Challenging problems

How to improve performances of coordinated checkpoint/protocols?

Reduce the synchronization cost [Koo87]
Speed-up restart [Bouteiller03][Zheng04]
Reduce lost computation time in case of fault

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 11/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 12/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Applications: simulation of physical phenomena

Characteristics
Iterative decomposition domain applications
Large amount of data

Parallelization: static-scheduling

Iterative applications⇒ only schedule the loop “kernel”
Large data⇒ preserve locality

P0

P7P6P5

P2

P4

P3P1

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 13/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Applications: simulation of physical phenomena

Characteristics
Iterative decomposition domain applications
Large amount of data

Parallelization: static-scheduling

Iterative applications⇒ only schedule the loop “kernel”
Large data⇒ preserve locality

I te ra t ions

Domain

P0 P1 P2 P3 P4

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 13/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Data Flow Graph

How it works?
Partition the
one-iteration graph
Generate
communication tasks
Distribute each
sub-graph on all the
processes
Repeat the sub-graphs
to iterate

Computat ion task

Data

Dependency

P0 P1 P2

Send task

Receive task

Communicat ion

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 14/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Keypoint: abstract representation

The Data Flow Graph

Properties

A task is the computational unit
A process is composed of a (dynamic) sequence of tasks
At any time, Kaapi allows to discover not yet executed tasks and
their dependencies
This abstract representation shows the future of the execution

The data flow graph representation is causally connected to the
application execution.

Usage: analyze and transform the application state and behavior

Schedule tasks (at any time)
Checkpoint application state

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 15/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 16/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Checkpoint step

Classical protocol checkpoint

Coordinate all processes to checkpoint a coherent global state:
Coordinate all the processes
Flush communication channels between all processes
Save the processes state

CCK: differences with the classical protocol

Optimize the checkpoint step using the abstract representation of the
execution (data flow graph):

Partial flush: only between processes which communicates
Increment checkpoint: save only modified data

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 17/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Recovery: classical protocol vs CCK

Classical protocol restart

Global restart:
Replace failed processes by new ones
All processes restart from their last checkpoint
Restart time is, in worst case, the checkpoint period

CCK protocol restart

Partial restart:
Detect lost communications for the failed processes
Find the strictly required computation set to make the global
state coherent
Schedule statically this task set

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 18/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

After a checkpoint

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Non-failed process

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 19/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

A process failed

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 19/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Incoherent application state

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 19/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Lost communications

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

Clost

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 19/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Communications to replay

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

Call

Call

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 19/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Tasks to re-execute

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

T to_re-execute

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 19/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Recovery: classical protocol vs CCK

Classical protocol restart

Failure

Next
checkpoint

Past of the
execution

Execution

Last
checkpoint

Processes

CCK protocol restart

Failure

Next
checkpoint

Past of the
execution

Execution

Last
checkpoint

Processes

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Recovery: classical protocol vs CCK

Classical protocol restart

W recovery
std

Failure

Next
checkpoint

Past of the
execution

Execution

Last
checkpoint

Processes

CCK protocol restart

W recovery
cck

Failure

Next
checkpoint

Past of the
execution

Execution

Last
checkpoint

Processes

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Recovery: classical protocol vs CCK

Classical protocol restart

End of
recovery

W recovery
std

Past of the
execution

Execution

Last
checkpoint

Processes

CCK protocol restart

End of
recovery

W recovery
cck

Past of the
execution

Execution

Last
checkpoint

Processes

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Recovery: classical protocol vs CCK

Classical protocol restart

End of
recovery

W recovery
std

Past of the
execution

Execution

Last
checkpoint

Processes

CCK protocol restart

End of
recovery

W recovery
cck

Past of the
execution

Execution

Last
checkpoint

Processes

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Recovery: Cost analysis

Classical protocol restart

Required work to recover: W std
recovery = O(N · τ)

Restart time on N processes: T std
restart = O(τ)

CCK protocol restart

Required work to recover: W cck
recovery = O(Nfailed · τ + εapplication,τ)

Restart time on N processes: T cck
restart = O(

Nfailed · τ + εapplication,τ

N
)

We have to add the CCK-recovery overhead:

O(N · K) messages + O(|G|) in time + data distribution cost

K is an application dependent constant that represent the neighbor number

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 21/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 22/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Simulations: case study

Application

Jacobi method on a 3D-domain
2,0483 domain (64 GB)
Split in 643 subdomains (32 KB each)
Subdomain update computed in 10 ms

Scenario
One process failed
Simulation of the restart in worst case
⇒ % of tasks to re-execute (W cck

recovery/W std
recovery)

⇒ Involved processes

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 23/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

CCK restart: checkpoint period influence

1,024 processors, ie 256 subdomains (64 MB) per process
one iteration last about 2.5 seconds

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600%
 w

ith
 r

es
pe

ct
 to

 th
e

cl
as

si
ca

l p
ro

to
co

l

Checkpoint period (in s)

tasks to re−execute
involved processes

For a 60-seconds period, the estimated restart time is:
60 seconds with the classical protocol
3.6 seconds with CCK (if totally parallelized)

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 24/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

CCK restart: process number influence

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 in

vo
lv

ed
 p

ro
ce

ss
es

Process number

period = 5 s
period = 10 s
period = 25 s
period = 50 s
period = 100 s
classical protocol

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

%
 w

ith
 r

es
pe

ct
 to

 th
e

cl
as

si
ca

l p
ro

to
co

l

Process number

period = 5 s
period = 10 s
period = 25 s
period = 50 s
period = 100 s
classical protocol

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 25/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

Default execution order

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

Default execution order

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

Default execution order

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

Default execution order

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

CCK restart: local re-ordering influence

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

N
um

be
r

of
 ta

sk
s

to
 r

e−
ex

ec
ut

e

Fault date (in seconds)

checkpoint checkpoint checkpoint checkpoint checkpoint

CCK without local re−ordering
CCK with local re−ordering

classical protocol

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 27/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 28/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Perspectives

Performance guarantees for failure-free executions

The goal is to optimize the protocol parameters :
Interval delay between checkpoint events
Checkpoint server number and mapping

Dynamic reconfiguration

Adding or removing nodes requires to re-schedule statically
Checkpoint to get a coherent global state
Schedule statically for the new node number
Resume the execution

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 29/ 33

Context Fault-tolerance DFG CCK Simulations Perspectives

Thanks for your attention

Questions?

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 30/ 33

Kaapi parallel programming model

The application is described as a data flow graph.

API
Global address space
Independent of the number of processors
Data (Shared<...>): declares an object in the global memory
Tasks (Fork<...>): creates a new task that may be executed in
concurrence with other tasks
Access mode: given by the task: Read, Write, Exclusive,
Concurrent write

Shared<Matrix> A;
Shared<double> B;
Fork<Task>() (A,B);

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 31/ 33

Optimized CCK restart

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

Data in memory

T to_re-execute (optimised)

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 32/ 33

First experiments: 3D-domain decomposition
Preliminary results, Kaapi vs MPICH:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

16 32 64 64+32 64+64

M
ea

n
tim

e
fo

r
an

 it
er

at
io

n
(s

)

Number of nodes

1 cluster 2 clusters

Kaapi
MPICH

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 33/ 33

	Context
	Fault-tolerance
	Data Flow Graph model in Kaapi
	Coordinated Checkpointing in Kaapi
	Simulations
	Checkpoint period
	Process number
	Local re-ordering

	Perspectives
	Appendix

