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Grid computing

What are grids?

Clusters are computers connected by a LAN
Grids are clusters connected by a WAN
Heterogeneous (processors, networks, ...)
Dynamic (failures, reservations, ...)

Aladdin – Grid’5000

French experimental grid platform
More than 4800 cores
9 sites in France
1 site in Brazil
1 site in Luxembourg
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Fault-tolerance
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Why fault-tolerance?

Fault probability is high on a grid
Split a large computation in shorter separated computations
Dynamic reconfiguration
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Fault-tolerance survey [Elnozahy02]

Duplication-based protocols [Avizienis76][Wiesmann99]

Application execution is duplicated, spatially or temporally.

Log-based protocols [Alvisi98]

Assume that the state of the system evolves according to
non-deterministic events
Non-deterministic events are logged in order to rollback from a
previous saved checkpoint

Checkpoint/rollback protocols

Periodically save the local process state of the applications.

Uncoordinated checkpointing [Randell75]
Coordinated checkpointing [Chandy85]
Communication-induced checkpointing [Baldoni97]
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Checkpoint/rollback protocols

Why checkpoint/rollback protocol?

Duplication protocols require too much resources [Wiesmann99]
and a computation interruption can be tolerated
Logging protocols require too much resources (memory and
bandwidth) with large communication applications [Elnozahy04]

Why coordinated checkpointing?

Coordinated checkpointing advantages:
No domino effect [Elnozahy02]
Low overhead towards application
communications [Bouteiller03][Zheng04]
Coordination overhead can be amortized using a suitable
checkpoint period [Elnozahy04]
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Application state

Global state
The global state of an application is composed of:

the local state of all its processes;
the state of all its communication channels.

Coherent global state

A coherent global state is a state than can happen during a correct
execution of the application.
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Classical coordinated checkpoint/rollback protocol

Two steps:

Checkpoint step, during failure-free execution

Coordinate all processes to checkpoint a coherent global state:
Coordinate all the processes
Flush communication channels between all processes
Save the processes state

Rollback step, to recover after a failure

Global restart:
Replace failed processes by new ones
All processes restart from their last checkpoint
Restart time is, in worst case, the checkpoint period
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Challenging problems

How to improve performances of coordinated checkpoint/protocols?

Reduce the synchronization cost [Koo87]
Speed-up restart [Bouteiller03][Zheng04]
Reduce lost computation time in case of fault
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Applications: simulation of physical phenomena

Characteristics
Iterative decomposition domain applications
Large amount of data

Parallelization: static-scheduling

Iterative applications⇒ only schedule the loop “kernel”
Large data⇒ preserve locality
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Data Flow Graph

How it works?
Partition the
one-iteration graph
Generate
communication tasks
Distribute each
sub-graph on all the
processes
Repeat the sub-graphs
to iterate

Computat ion task

Data

Dependency

P0 P1 P2

Send task

Receive task

Communicat ion
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Keypoint: abstract representation

The Data Flow Graph

Properties

A task is the computational unit
A process is composed of a (dynamic) sequence of tasks
At any time, Kaapi allows to discover not yet executed tasks and
their dependencies
This abstract representation shows the future of the execution

The data flow graph representation is causally connected to the
application execution.

Usage: analyze and transform the application state and behavior

Schedule tasks (at any time)
Checkpoint application state
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Checkpoint step

Classical protocol checkpoint

Coordinate all processes to checkpoint a coherent global state:
Coordinate all the processes
Flush communication channels between all processes
Save the processes state

CCK: differences with the classical protocol

Optimize the checkpoint step using the abstract representation of the
execution (data flow graph):

Partial flush: only between processes which communicates
Increment checkpoint: save only modified data
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Recovery: classical protocol vs CCK

Classical protocol restart

Global restart:
Replace failed processes by new ones
All processes restart from their last checkpoint
Restart time is, in worst case, the checkpoint period

CCK protocol restart

Partial restart:
Detect lost communications for the failed processes
Find the strictly required computation set to make the global
state coherent
Schedule statically this task set
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After a checkpoint
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A process failed
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Incoherent application state
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Lost communications
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Communications to replay
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Tasks to re-execute
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Recovery: classical protocol vs CCK
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Recovery: Cost analysis

Classical protocol restart

Required work to recover: W std
recovery = O(N · τ)

Restart time on N processes: T std
restart = O(τ)

CCK protocol restart

Required work to recover: W cck
recovery = O(Nfailed · τ + εapplication,τ )

Restart time on N processes: T cck
restart = O(

Nfailed · τ + εapplication,τ

N
)

We have to add the CCK-recovery overhead:

O(N · K ) messages + O(|G|) in time + data distribution cost

K is an application dependent constant that represent the neighbor number

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 21/ 33



Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Outline

1 Context

2 Fault-tolerance

3 Data Flow Graph model in Kaapi

4 Coordinated Checkpointing in Kaapi

5 Simulations

6 Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 22/ 33



Context Fault-tolerance DFG CCK Simulations Perspectives Checkpoint period Process number Local re-ordering

Simulations: case study

Application

Jacobi method on a 3D-domain
2,0483 domain (64 GB)
Split in 643 subdomains (32 KB each)
Subdomain update computed in 10 ms

Scenario
One process failed
Simulation of the restart in worst case
⇒ % of tasks to re-execute (W cck

recovery/W std
recovery )

⇒ Involved processes
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CCK restart: checkpoint period influence

1,024 processors, ie 256 subdomains (64 MB) per process
one iteration last about 2.5 seconds
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For a 60-seconds period, the estimated restart time is:
60 seconds with the classical protocol
3.6 seconds with CCK (if totally parallelized)
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CCK restart: process number influence
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Local re-ordering

Default execution order
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CCK restart: local re-ordering influence
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Perspectives

Performance guarantees for failure-free executions

The goal is to optimize the protocol parameters :
Interval delay between checkpoint events
Checkpoint server number and mapping

Dynamic reconfiguration

Adding or removing nodes requires to re-schedule statically
Checkpoint to get a coherent global state
Schedule statically for the new node number
Resume the execution
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Thanks for your attention

Questions?
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Kaapi parallel programming model

The application is described as a data flow graph.

API
Global address space
Independent of the number of processors
Data (Shared<...>): declares an object in the global memory
Tasks (Fork<...>): creates a new task that may be executed in
concurrence with other tasks
Access mode: given by the task: Read, Write, Exclusive,
Concurrent write

Shared<Matrix> A;
Shared<double> B;
Fork<Task>() (A,B);
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Optimized CCK restart

Non-failed process Non-failed process

Non-executed task

Data

2

3

4

5

6

Communicat ion

Dependency

1

Send task

Receive task

Failed process

Executed task

Task to re-execute

Data in memory

T to_re-execute (optimised)

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 32/ 33



First experiments: 3D-domain decomposition
Preliminary results, Kaapi vs MPICH:
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