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Abstract

Motivation: The control of Boolean networks has traditionally focussed on strategies where the
perturbations are applied to the nodes of the network for an extended period of time. In this work, we
study if and how a Boolean network can be controlled by perturbing a minimal set of nodes for a single-
step and letting the system evolve afterwards according to its original dynamics. More precisely, given a
Boolean network BN, we compute a minimal subset Cmin of the nodes such that BN can be driven from any
initial state in an attractor to another ‘desired’ attractor by perturbing some or all of the nodes of Cmin for a
single-step. Such kind of control is attractive for biological systems because they are less time consuming
than the traditional strategies for control while also being financially more viable. However, due to the
phenomenon of state-space explosion, computing such a minimal subset is computationally inefficient
and an approach that deals with the entire network in one go, does not scale well for large networks.
Results: We develop a ‘divide-and-conquer’ approach by decomposing the network into smaller partitions,
computing the minimal control on the projection of the attractors to these partitions and then composing
the results to obtain Cmin for the whole network. We implement our method and test it on various real-life
biological networks to demonstrate its applicability and efficiency.
Contact: jun.pang@uni.lu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
In control theory, a dynamical system is controllable if, through
an appropriate manipulation of a few parameters, it can be driven
from any initial state to any desired final state within finite time.
Although control theory is a mathematically highly developed branch of
engineering with applications to electric circuits, manufacturing processes,
communication systems, robots etc., fundamental questions pertaining
to the controllability of complex biological networks have resisted rapid
advances. The reasons for this are threefold. First, biological networks
tend to be large with an exponential increase in combinatorial complexity
with the addition of every parameter or interaction which in turn effects
their controllability. This is often referred to as the ‘dimensionality
problem’ (Hecker et al., 2009). Secondly, such networks are highly non-
linear with switch-like interactions between the components. It is unclear
how the linear functions usually studied in traditional control theory could

capture such dynamics (Zañudo and Albert, 2015; Tyson et al., 2001,
2003). And finally, the notion of controllability in biological systems is
different from the classical definition of linear controllability. In such
systems, rather than controlling single states, the control of collective
dynamic behaviour may be more feasible (Wang et al., 2016).

The recent discoveries in cell reprogramming have rekindled the
interest in the control of cellular behaviour and biological systems in
general. Cell reprogramming is a way to change one cell phenotype to
another, allowing tissue or neuron regeneration techniques. Current studies
have shown that differentiated adult cells can be reprogrammed to an
embryonic-like pluripotent state or directly to other types of adult cells
without the need of intermediate reversion to a pluripotent state (Graf
and Enver, 2009; Sol and Buckley, 2014). This has led to a surge in
regenerative medicine and there is a growing need for the discovery of
new and efficient methods for the control of cellular behaviour. Such
medicines target specific proteins within the cellular systems aiming to
drive it from any state to a desired phenotype. This motivates the question
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of identifying multiple drug targets using which the network can be
‘controlled’, i.e. driven from any state to any desired target. Furthermore,
for the feasibility of the synthesis of such drugs, the number of such targets
should be minimised. However, as already mentioned, biological networks
are intrinsically large (number of components, parameters, interactions,
etc.) which results in an exponentially increasing number of potential
drug target combination making a purely experimental approach quickly
infeasible. This reinforces the need for mathematical modelling and
efficient computational techniques.

Boolean networks (BNs), first introduced by Kauffman (Kauffman,
1969), are a popular and well-established framework for modelling gene
regulatory networks (GRNs) and their associated signalling pathways.
Its main advantage is that it is simple and is yet able to capture the
important dynamical properties of the system under study (D’haeseleer
et al., 2000), thus facilitating the modelling of large biological systems
as a whole. The BN is assumed to evolve dynamically by moving from
one state to the next governed by a Boolean function for each of its
components. The steady state behaviour of a BN is given by its subset
of states called attractors to one of which the dynamics eventually settles
down. In biological context, attractors are hypothesised to characterise
cellular phenotypes (Kauffman, 1969) and also correspond to functional
cellular states such as proliferation, apoptosis, differentiation, etc. (Huang,
2001). The control of a BN therefore refers to the reprogramming/changing
of the parameters of the BN (functions, values of variables, etc.) so that
its dynamics eventually reaches a desired attractor or steady state.

The control of linear networks is a well-studied problem (Kalman,
1963) and such control strategies have been proposed over the years.
Recent work on network controllability has shown that the control and
reprogramming of intercellular networks can be achieved by a small
number of control targets (Kim et al., 2013). The control of such networks
can have two objectives: to drive the dynamics to (i) a single desired target
attractor of the network irrespective of the current state. We shall call such
a control target control or TC, (ii) any attractor of the network irrespective
of the current state. We shall call this type of control full control or FC.

Now, biological networks (both intracellular and intercellular) are
intrinsically non-linear and the strategies developed for the control of linear
networks do not directly apply to these networks. Moreover, networks with
non-linear dynamics are arguably more complex with many feed-forward
and feedback loops for both activation and inhibition. This might explain
why there has not been a lot of work on the control problem for non-linear
networks. For the target control problem, Kim et al. (Kim et al., 2013)
developed a method to identify the so-called ‘control kernel’, which is a
minimal set of nodes for driving a synchronous BN into a desired attractor.
Their method is based on the construction of the full state transition graph
of the network and as such does not scale well for large networks. Zhao et
al. (Zhao et al., 2016) developed a network graph aggregation approach to
control synchronous BNs. These two methods, however, are not applicable
for asynchronous BNs. For the control of asynchronous BNs, Zañudo
et al. (Zañudo and Albert, 2015) developed an extended-period control
method to identify a set of nodes based on the ‘stable motifs’ (SM) of the
network to drive the network towards a desired target attractor. For the
problem of full control, Fiedler et al. (Mochizuki et al., 2013; Fiedler
et al., 2013; Zañudo et al., 2017) developed a method for controlling
networks, whose dynamics are governed by ordinary differential equations
(ODEs) by computing the feedback vertex set (FVS) of the corresponding
dependency graph. It is however unclear how their method can be lifted to
the discrete switch-like dynamics of BNs.

The control strategies in the above and most of the methods studied
in the literature have one thing in common - the perturbation is applied
continuously for an extended period of time. However, there are and can
be obvious drawbacks to such a strategy. For example, the concentration
of the complexes (drugs, viruses etc.) applied for the perturbations might

fall below the requisite threshold over time in which case it needs to be
administered again and again to maintain appropriate levels. For example,
half-life or decay rates exist for almost any substance that is ever added
to cells - whether it is a drug or a nutrient or a virus - and there will be
degradation due to temperature, evaporation, depletion by the cells etc.
This is discussed, for example in (Michels and Frei, 2013) where they
mention the decay of ascorbate in cell culture medium. For the case of
adding virus to cells, the depletion of active virus in the cell culture dish
happens relatively fast and can therefore be a limiting factor for inserting
a potential gene (say) into the target cells via the virus. This typical issue
of low transduction efficiency is often counteracted by adding the virus
to the cell repeatedly, for example, see (Zhu et al., 2015). Such repeated
administration of the virus is also called for when the experimenter wants
to target multiple cells instead of just one (Charrier et al., 2011; Hofherr
et al., 2017). The phenomenon also occurs when inserting smaller copies
of gene into the cell without integrating it into the genome, which does
not require the help of a virus. Even in such cases, the experimenter has
to try to add the gene-copies repeatedly since the genes are not attached
to the cell’s genome (Cervera et al., 2014). The repeated addition of the
complexes to the cell thus requires constant monitoring of the system over
an extended period of time. Furthermore, the complexes themselves are
difficult and expensive to acquire prohibiting their extensive use.

Thus a more short-term control strategy might be well suited for
biological networks (Cornelius et al., 2013). In this work we explore such
a control strategy where the perturbation is applied for a single time-step
(read instantaneously) and the system is left to evolve on its own, according
to its original dynamics. For both versions of the control problem, TC
and FC, we develop a method to identify an exact minimal set Cmin of
nodes of a given Boolean network BN, such that the above controls can
be achieved by perturbing some of the nodes in Cmin. Such short-term
control strategies have been studied in the literature (Cornelius et al., 2013),
where a control method based on simulations for large networks has been
proposed. Although the ideas presented in (Cornelius et al., 2013) are quite
relevant to those we use here, their methods do not directly compare to
the ones that we develop in this work. Indeed, since first, they deal with
ODE networks, and not Boolean networks. And secondly, since there does
not yet exist ways to compute the basins of attractions of ODE networks,
their method is based on simulations where the search is automatically
terminated if the system is not controlled within a sufficiently large number
of iterations. On the other hand, we can indeed compute efficiently the
attractors and basins of BNs using methods developed in-house, and hence
can compute the ‘exact’ minimal control for a given BN.

It is well-known that the precise identification of control parameters
and control strategies of non-linear networks must exploit both their
structural and dynamic properties (Gates and Rocha, 2016).1 The dynamics
of a Boolean network BN is given in terms of its transition system, which
as we already observed is exponential in the size of BN itself. Any non-
simulation based algorithm that purely exploits this dynamics by working
on entire BN in one-go has to, in principle, work with the full transition
system, and thus has limited scalability. As the BN grows in size, the
number of possible behaviours (traces) grows exponentially with it (state-
space explosion). This means that even any simulation-based algorithm
has to deal with a very large number of traces to preserve their guaranteed
accuracy. This, in turn, limits their efficiency as well.

Our algorithm takes the approach of ‘divide-and-conquer’ whereby it
decomposes the network into smaller partitions, computes the minimal set
of control nodes in each of these partitions and then composes the results to

1 This rules out purely structure-based methods for identifying the exact
control subset, like that of (Liu et al., 2011), which has been shown to either
overshoot or undershoot the control subset for different networks (Gates
and Rocha, 2016).
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obtain the set Cmin for the whole network. While doing the composition,
the algorithm crucially needs to check whether there exist subsets of Cmin

that can be perturbed in the starting state that results in a state that belongs
to the ‘basin of attraction’ of the target attractor(s), from which there only
exist paths towards the target attractor and there is no path leading to any
other attractor of the network. We therefore assume that the algorithm
is able to call the efficient procedure developed in (Paul et al., 2018) to
compute the basin of attraction of an attractor of BN. It is worth noting
that our algorithm always computes an exact minimal set of control nodes.

We have implemented our algorithm and tested it on a variety of real-
life biological networks modelled as BNs. We also compared our results
with the existing approaches for the control of non-linear networks. For
TC, we compared our method with the stable-motifs based control (SM)
of (Zañudo and Albert, 2015) and for FC, we evaluate its performance
without any comparison as, to the best of our knowledge, no method for the
full control of asynchronous BNs exists in the literature. Our findings can
be summarised as follows: For TC, our method outperforms the SM based
method in terms of efficiency (for almost all the networks). For FC, our
method can compute the minimal full control set efficiently. The advantage
of our method is that we give the exact strategy to be applied for the control
given any source state and any target attractor. We particularly note that,
even for very large networks, the subset of control nodes identified for both
control strategies forms a relatively small set which is a desirable property
for the control of such networks.

2 Background and Notations
Let N = {1, 2, . . . , n} where n ≥ 1. A Boolean network is a tuple
BN = (x, f) where x = (x1, x2, . . . , xn) such that each xi is a Boolean
variable and f = (f1, f2, . . . , fn) is a tuple of Boolean functions over x.
In what follows, i will always range over N , unless stated otherwise. A
Boolean network BN = (x, f) may be viewed as a directed graph GBN =

(V,E), called the dependency graph ofBN, whereV = {v1, v2 . . . , vn}
is the set of vertices or nodes (intuitively, vi corresponds to the variable
xi for all i) and for every i, j ∈ N , there is a directed edge from vj to
vi, often denoted as vj → vi, if and only if fi depends on xj . Thus
V is ordered according to the ordering of x. The structure of BN refers
to the structure of its dependency graph. For any vertex vi ∈ V , we let
ind(vi) = i be the index of vi in this ordering. For any subset W of
V , ind(W ) = {ind(v)| v ∈ W}. For the rest of the exposition, we
assume an arbitrary but fixed network BN of n variables is given to us and
GBN = (V,E) is its associated dependency graph.

A state s of BN is an element in {0, 1}n. Let S be the set of
states of BN. For any state s = (s1, s2, . . . , sn), and for every
i, the value of si, often denoted as s[i], represents the value that
the variable xi takes when the BN ‘is in state s’. For some i,
suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will denote
the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the
Hamming distance between s and s′ will be denoted as hd(s, s′) and
arg(hd(s, s′)) ⊆ N will denote the set of indices in which s and s′ differ.
For a state s and a subset S′ ⊆ S, the Hamming distance between s and
S′ is defined as hd(s,S′) = mins′∈S′ hd(s, s′). We let arg(hd(s,S′))
denote the set of subsets ofN such that I ∈ arg(hd(s,S′)) if and only if
I is a set of indices of the variables that realise hd(s,S′).

The behaviour of BN is captured by its evolution dynamics which is
defined as follows. Initially,BN is in a state s0 and its state changes in every
discrete time-step according to the update functions f . In this work, we
shall be exclusively concerned with the asynchronous updating scheme
but all our results transfer to the synchronous updating scheme as well.
Suppose s0 ∈ S is an initial state of BN. The asynchronous evolution of
BN is a function ξ : N→ ℘(S) such that ξ(0) = s0 and for every j ≥ 0,

if s ∈ ξ(j) then s′ ∈ ξ(j + 1), is a possible next state of s, if and only
if either hd(s, s′) = 1 and s′[i] = fi(s) where i = arg(hd(s, s′)) or
hd(s, s′) = 0 and there exists i such that s′[i] = fi(s). Note that the
asynchronous dynamics is non-deterministic.

The dynamics of a Boolean network can be represented as a state
transition graph or a transition system (TS). The transition system of BN,
denoted by the generic notation TS is a tuple (S,→) where the vertices
are the set of states S and for any two states s and s′ there is a directed
edge from s to s′, denoted s→ s′, if and only if s′ is a possible next state
of s. A path from a state s to a state s′ is a (possibly empty) sequence of
transitions from s to s′ in TS. A path from a state s to a subset S′ of S is
a path from s to any state s′ ∈ S′. For a state s ∈ S, reachTS(s) denotes
the set of states s′ such that there is a path from s to s′ in TS. An attractor
A of TS (or of BN) is a minimal subset of states of S such that for every
s ∈ A, reachTS(s) = A. A state which is not part of an attractor is a
transient state. An attractor A of TS is said to be reachable from a state
s if reachTS(s) ∩ A 6= ∅. Attractors represent the stable behaviour of
the BN according to the dynamics. For an attractor A of TS, the basin
of attraction of A, denoted basTS(A), is a subset of states of S such that
s ∈ basTS(A) if reachTS(s) ∩ A 6= ∅ and reachTS(s) ∩ A′ = ∅ for
any attractor A′ 6= A of BN. A control C is a (possibly empty) subset of
N . For a state s ∈ S, the application of C to s, denoted C(s), is defined
as the state s′ ∈ S such that s′[i] = (1 − s[i]) if i ∈ C and s′[i] = s[i]

otherwise. Henceforth, we shall drop the subscriptsTSwhen no ambiguity
arises.

Control problems. Let BN be a given Boolean network, S be the set of
states of BN andA be the set of all its attractors. We are interested in the
following kinds of control on BN. Note that for us, the control is applied
in a single time step (hence simultaneously) to the current state s under
consideration and the system is let to evolve as per its original dynamics
afterwards.

1. Source-Target Control (STC): Let s ∈ S and let At ∈ A be a
target attractor, A control Cs→At is an STC for s andAt if, after the
application of Cs→At to s, BN eventually reaches At.

2. Target Control (TC): Let At ∈ A be a target attractor. A control
C→At is a TC for At if for any attractor As ∈ A, As 6= At, and
for any state s ∈ As, there exists a subset Cs of C→At such that Cs

is an STC of s for At.
3. Full Control (FC): A control C is an FC for BN if for any pair of

attractors As, At ∈ A, As 6= At, and for any state s ∈ As, there
exists a subset Cs→At of C such that Cs→At is an STC of s forAt.

Given the above kinds of control, we are interested in the following
control problems on a non-linear, asynchronous BN:

1. min-STC problem: Given BN, a source state s and a target attractor
At ∈ A, find a minimalSTC. Such anSTCwill be called amin-STC
and denoted as Cs→At

min .
2. min-TC problem: Given BN, and a target attractor At ∈ A, find a

minimal TC. Such a TC will be called called a min-TC and denoted
as C→At

min .
3. min-TC problem: Given BN and the set of attractors A, find a

minimal FC for BN. Such a control will be called a min-FC and
denoted as Cmin.

In (Paul et al., 2018), we developed a decomposition-based approach
for the efficient solution to the min-STC problem [item (1) above] for
large BNs exploiting both their structure and dynamics. We showed that
the efficient computation of the minimal control given a target attractor
At boils down to the efficient computation of the basin, bas(At) of At.
We therefore developed an algorithm for the computation of bas(At) by
decomposing theBN into connected components called blocks, computing
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the local basins of the projections of At to each of these blocks and then
eventually merging these local basins to obtain bas(At). We demonstrated
both efficiency and effectiveness of our approach on different real-life
biological networks. In this work we shall target the control problems (2)
and (3) listed above. Note that for control problem (3), we assume that
the set of attractors A of BN is already given to us. If however, A is not
known, we first need to compute A from BN for which we have already
developed and implemented efficient procedures (see for eg. (Mizera et al.,
2017; Yuan et al., 2016; Mizera et al., 2018)). In the algorithms that we
develop here, we shall use the procedure to compute the basin of a given
attractor A of a given Boolean network developed in (Paul et al., 2018)
and shall refer to it as Compute_Basin(A).

3 Results
Towards the solution of control problems 2 and 3 above, we first define a
generic control problem which we call the Minimal All-Pairs Control.

• Minimal All-Pairs Control (min-APC): Let A be the set of all
attractors of BN and let As,At ⊆ A be subsets of attractors, called
source and target attractors respectively. A control CAs→At is an
APC for As and At if for any pair of attractors As ∈ As, At ∈
At, As 6= At and any states ∈ As, there existsCs→At ⊆ CAs→At

such that Cs→At is an STC of s for At. An APC which is minimal
is called a min-APC and is denoted as CAs→At

min . The min-APC
problem is then: given BN,As andAt, find a min-APC.

The control problems min-TC and min-FC are special cases of the
min-APC problem when At is a singleton and when As = At = A,
respectively.

We first observe that themin-APC problem is computationally at least
as hard as the min-STC problem. Indeed, since the min-STC problem
for a source state s and a target attractorAt, where s is a fixpoint attractor,
is a special case of the min-APC problem whereAs = {{s}} andAt =

{At}. Since min-STC is already hard for PSPACE (Mandon et al., 2016;
Paul et al., 2018), efficient solutions for min-APC are highly unlikely.

To gain an intuition into the problem, suppose all the attractors inAs

are singleton states (fixed points). Suppose, As = {s} ∈ As is a source
attractor and At ∈ At is a target attractor. It can be easily observed that
the BN eventually and surely reaches At following the update dynamics,
after a control C is applied to s, if and only if C(s) ∈ bas(At) (Paul et al.,
2018). Also, for any state t ∈ bas(At), the number of nodes to perturb to
move from s to t is hd(s, t) and these nodes are given as arg(hd(s, t)).
So, let M be a |As| × |At| matrix such that for every pair of attractors
As ∈ As and At ∈ At, the (As, At)th entry of M, M[As, At] is a set
of subsets of N such that for any subset Z ⊆ N , Z ∈ M[As, At] if and
only if there exists t ∈ bas(At) such that Z = arg(hd(s, t)). CAs→At

min

is then a minimal subset of N such that there exists a subset of CAs→At
min

in M[As, At] for every pair of attractors As ∈ As and At ∈ At.

A1 A2 A3

A1

{{3}, {2,3}, {{1}, {1,2}, {1,3}, {1,4},
∅ {3,4}, {2,3,4}} {1,2,3}, {1,2,4},

{1,3,4}, {1,2,3,4}}

A2

{{3}, {3,4}, {{1}, {1,2}, {1,3}, {1,4},
{2,3,4}} ∅ {1,2,3}, {1,2,4},

{1,3,4}, {1,2,3,4}}

A3
{{1,2,3}, {1,3,4}, {{1}, {1,2},

∅
{1,2,3,4}} {1,4}, {1,2,4}}

Table 1. The matrix showing the indices to be controlled for pairs of attractors.

f1 = x1
f2 = x1
f3 = x1 ∨ (x2 ∧ x4) ∨ x3
f4 = x1 ∨ (x2 ∧ x4) ∨ x3

(a)

V
1

2
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3
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4
V
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Fig. 1. (a) Boolean functions, (b) Dependency graph and (c) TS for Example 1. The basins
of attractions of the respective attractors are shown as shaded grey regions.

The following example illustrates the problem in details.

Example 1. Consider a Boolean network BN = (x, f) where x =

(x1, x2, x3, x4) and f = (f1, f2, f3, f4) where f1 = f2 = x1 and
f3 = f4 = x1∨(x2∧x4)∨x3. The dependency graph ofBN and its TS is
shown in Figure 1. We suppress the self loops present in each of the states of
the TS to avoid clutter. It has 3 single-state attractorsA = {A1, A2, A3}
shown as dark grey nodes, where A1 = {0000}, A2 = {0011}, A3 =

{1111}. The basins of attractions of the respective attractors are shown
as shaded grey regions.

Table 1 shows the matrix M that notes the indices of the variables that
need to be changed to move from an attractor As in A to the basin of
another attractorAt inA. From M we see that both the sets {1, 2, 3} and
{1, 3, 4} are min-FCs. However, {2, 3, 4}, for example, is not a min-FC
since it is not possible to move to the basin of A1 from A3 by perturbing
only v2, v3 and v4.

We propose an algorithm based on the approach of ‘divide-and-
conquer’ wherein we decompose the network into smaller partitions and
solve the min-APC problem on these partitions. We then combine the
results to obtain the control set for the entire network. We show that using
such an approach, we can solve the problem on large Boolean networks
arising from real-life biological systems much more efficiently compared
with a global approach that works on the entire network in a single go.
Towards that, we first need the notion of projection of a state to a subset
of nodes of BN.

Let V ′ = {vi1 , vi2 , . . . , vik} be a subset of V , the projection of
s to V ′, denoted s|V ′ is an element of {0, 1}k defined as s|V ′ =

(s[i1], s[i2], . . . , s[ik]). The projection operation is lifted to a subset S′

of S as S′|V ′ = {s|V ′ | s ∈ S′}. A decomposition of BN is defined as
a partitioning V1, V2, . . . Vk of V . Each Vj , 1 ≤ j ≤ k will be called a
partition of BN. For any attractor A ∈ A and for any partition Vj , A|Vj

and bas(A)|Vj
are well-defined. Given sets of source and target attractors

As andAt resp. and a partition Vj , Cj ⊆ ind(Vj) is an APC on Vj if it
satisfies the all-pairs control properties on BN projected to Vj . That is, for
allAs ∈ As andAt ∈ At,As 6= At implies for all s ∈ As, there exists
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Algorithm 1 All-Pairs Control
1: procedure All_Pairs_Control(BN = (x, f),As,At,m)
2: i := 0,APC := {}, k := dn/me, partitions := {V1, V2, . . . , Vk}
3: for j in [1,k] do // initialise CMINj

0 for all j
4: CMINj

0 := Min_Control(BN,As,At, Vj) // min full control for Vj
5: size_min(j) := |Cj | where Cj ∈ CMINj

0 // minimum size of the control set on Vj
6: end for
7: while APC = {} do
8: for a1, . . . , ak ≥ 0 such that a1 + · · ·+ ak = i do
9: possAPC := {C1 ∪ · · · ∪ Ck|Ci ∈ CMIN

(i)
ai
, i ∈ {1, . . . , k}} // for all possible controls of combined size i

10: for C ∈ possAPC do
11: if Is_Control(C,BN,As,At) then APC := APC∪{C} // check if it is a valid APC for BN
12: end if
13: end for
14: end for
15: if APC = {} then // if a valid APC for BN has not yet been found
16: i← i+ 1; // increase the size of the potential APC by 1
17: for j = 1 to k do
18: CMINj

i := Fixed_Control(BN,As,At, Vj , size_min(j) + i) // look for an APC of the new size
19: end for
20: end if
21: end while
22: return APC
23: end procedure

C ⊆ Cj such that C(s|Vj
) ∈ bas(At)|Vj

. The idea of the algorithm is
based on the following proposition.

Proposition 1. Let As and At be sets of source and targets attractors
of BN and let V1, V2, . . . , Vk be a decomposition of V . If CAs→At

min is a
min-APC of BN then (CAs→At

min ∩ ind(Vj)) is a min-APC on partition
Vj for all 1 ≤ j ≤ k. Furthermore, CAs→At

min =
⋃

1≤j≤k(C
As→At
min ∩

ind(Vj)).

Proof. Suppose that CAs→At
min is an APC of BN. Then by definition,

for every pair of attractors As ∈ As and At ∈ At, and for all s ∈ As,
there exists Cs ⊆ CAs→At

min such that Cs(s) ∈ bas(At). This implies,
for every partition Vj , (Cs ∩ ind(Vj))(s|Vj

) ∈ bas(At)|Vj
. Now, it

must hold that (CAs→At
min ∩ ind(Vj)) =

⋃
As∈As,At∈At

⋃
s∈As

(Cs∩
ind(Vj)). Thus, by definition, (CAs→At

min ∩ ind(Vj)) is an APC on Vj .
Moreover, since the partitions are mutually disjoint, we have CAs→At

min =⋃
1≤j≤k(C

As→At
min ∩ ind(Vj)).

Next, suppose CAs→At
min is also a minimal APC of BN but there exists

some V` such that (CAs→At
min ∩ ind(V`)) is not a minimal APC on V`.

Let C` be a minimal APC on V` such that |C`| < |CAs→At
min ∩ ind(V`)|.

Then, from above, we have that there is another control ĈAs→At
min =

(
⋃

1≤j≤k,j 6=`(C
As→At
min ∩ ind(Vj)) ∪ C`) which is a minimal APC

of BN and |ĈAs→At
min | < |CAs→At

min |, since the partitions are mutually
disjoint. But this contradicts the minimality of CAs→At

min .

Main algorithm.
We now describe our algorithm, Algorithm 1, to solve the min-APC

problem. The algorithm takes as input the functions of a Boolean network
BN, sets of source and target attractors As and At and the size m of
partitions that BN will be decomposed into and works as follows. It first
computes and stores the basins of attractors of the attractors inAt using the
procedure Compute_Basin developed in (Paul et al., 2018). It randomly
decomposes BN into k = d|V |/me partitions V1, V2, . . . Vk each of size
at most m (line 2 of Algorithm 1). For each partition Vj it computes the
set of min-APCs, CMINj

0, on Vj using the helper function Min_Control
(line 4). Let r =

∑k
j=1 |Cj | where Cj ∈ CMINj

0. By Proposition 1,

we know that the size of a min-APC, CAs→At
min for BN is at least r.

The algorithm chooses one min-APC from each partition and checks if
their union is a valid APC on the entire network BN by using the helper
function Is_Control which queries the basins of attractions of the target
attractors already computed. This is done in lines 8-14. If it cannot find an
APC of size r, it increases the value of r by 1 and repeats the process: for
each partition Vj it computes the set of APCs of the next larger size on
Vj using the helper function Fixed_Control (line 18). It checks if there is
a union of APC from each of the partitions the sizes of which sum to the
new value of r and such that it forms a valid APC on BN. It repeats this
process each time increasing the value of r by 1 till it finds a min-APC for
BN, CAs→At

min (lines 15-20). The correctness of the algorithm is therefore
trivially guaranteed.

We next describe the procedures Min_Control, Is_Control and
Fixed_Control (Algorithm 2) used in Algorithm 1. We assume that
the basins for all the attractors in At has been computed using the
procedure Compute_Basin developed in (Paul et al., 2018) and stored
in an appropriate global data structure and can be accessed by all these
procedures. For At ∈ At, bas(At) will denote the basin of At as
computed using Compute_Basin.

Min_Control takes as input the description of the Boolean network,
the sets of the source and the target attractors and a partition Vj and it
returns the min-APCs on partition Vj . To do that it first computes the
projection to Vj of every state s ∈ As for every As ∈ As and of every
At ∈ At. Then for i from 0 to |Vj |, it checks if any subset C of ind(Vj)
of size i satisfies the APC properties on Vj . That is, if for all As ∈ As

andAt ∈ At,As 6= At implies for all s ∈ As, C(s|Vj
) ∈ bas(At)|Vj

.
It returns all such subsets of size i (for the lowest value of i) and exits.

The procedure Fixed_Control is similar to Min_Control except that it
returns an APC on Vj of size size_min(j) + i if it exists. Otherwise, it
returns the empty set.

Is_Control checks if the given subset C is indeed an APC forAs and
At. It does so by verifying if for all As ∈ As and all s ∈ As and
for all At ∈ At, As 6= At, there exists a subset Cs of C such that
Cs(s) ∈ bas(At).
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Algorithm 2 Helper functions
1: procedure Min_Control(BN,As,At, Vj )
2: CMINj := {},max = |Vj |, success := TRUE

3: for i = 0 to max do
4: for C ⊆ ind(Vj), |C| = i do // for all subsets C of size at most max of the indices in Vi
5: for As ∈ As, At ∈ At, As 6= At do
6: for s ∈ As do
7: if ¬(∃C′ ⊆ C,C′(s|Vj

) ∈ bas(At)|Vj
) then success:= FALSE // check if there exists a subset of C such that applying it to

8: end if // the projection of s to Vj results in a state in the projection
9: end for // of bas(At) to Vj
10: end for
11: if success = TRUE then
12: CMINj := CMINj ∪ {C}, max := |C| // if a control has been found, max is set to its size
13: end if
14: end for
15: end for
16: return CMINj

17: end procedure

18: procedure Fixed_Control(BN,As,At, Vj ,m)
19: CMINj := {}, success := TRUE

20: for C ⊆ ind(Vj), |C| = m do // the potential control is of a fixed size m
21: for As ∈ As, At ∈ At, As 6= At do
22: for s ∈ As do
23: if ¬(∃C′ ⊆ C,C′(s|Vj

) ∈ bas(At)|Vj
) then success := FALSE

24: end if
25: end for
26: end for
27: if success = TRUE then CMINj := CMINj ∪ {C} // a valid control on Vj has been found
28: end if
29: end for
30: return CMINj

31: end procedure

32: procedure Is_Control(C,BN, As, At)
33: success := TRUE

34: for As ∈ As, At ∈ At, As 6= At do
35: for s ∈ As do
36: if ¬(∃C′ ⊆ C,C′(s) ∈ bas(At)) then success := FALSE // check if there is a subset of C which is a valid APC on BN

37: end if
38: end for
39: end for
40: return success

41: end procedure

As explained in Section 3, TC and FC are special cases of the APC

problem. Thus, we compute C→At
min and Cmin with Algorithm 1 by setting

At = At andAs = At = A, respectively.
We explain the working of Algorithm 1 here with a representative

example.

Example 2. Continuing with the Boolean network of Example 1, suppose
now that we divide the verticesV ofBN into two partitions,V1 = {v1, v2}
and V2 = {v3, v4}. The projections to these partitions of the attractors
inA and their respective basins are given in Table 2.

The algorithm works as follows. In Step 1, it computes the min-APC
sets for the projections to the partitions V1 and V2 as C1

1 = {{1}} and
C1
2 = {{3}}, respectively. Combining C1

1 and C1
2 we get {1, 3} but the

check Is_Control returns that {1, 3} is not a valid full control for the whole
network. So the algorithm moves to Step 2, where it looks for controls of
size 3. For that it needs to find APCs of size 2 in the projections to each
of the partitions V1 and V2 and check the combinations of these and the

V1 = {v1, v2} V2 = {v3, v4}
Attractor Basin Attractor Basin

00 00, 01 00 00, 01

00 00, 01 11 11, 10

11 11, 10 11 11, 10, 01, 00

Table 2. The projections of the attractors and basins to V1 and V2.

controls C1
1 and C1

2 computed in Step 1, to find a control for the whole
network. The APCs of size 2 that it finds for the two partitions in Step 2
are C2

1 = {{1, 2}} and C2
2 = {{3, 4}}. Combining C1

1 and C2
2 we get

{1, 3, 4} and combining C1
2 and C2

1 we get {1, 2, 3} both of which are
valid APCs for BN which are also FCs in this eg. Hence, the size of a
minimum FC is 3.



“pang.16” — 2019/5/2 — page 7 — #7

Controlling Large Boolean Networks 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
maximum size of a bloc 

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

no
rm

al
is
ed

 ti
m
e 
co

st

myeloid
tumour
PC12
bladder
MAPK
HGF
Th-diff
T-cell
apoptosis
CD4+

Fig. 2. Influence of the block size on the efficiency of FC.

Remark. We make a quick remark on the computational complexity of
our algorithm. Note that the algorithm can, in the worst case, take time
exponential in the size of its input, which is the BN, the source and target
attractors and the partition size. One way in which this can happen is, for
example, when Is_Control in line 11 of Algorithm 1 returns FALSE for
exponentially many potential controls before finding a valid APC. This, in
turn, occurs when although each of the local controls C1,C2, . . . ,Ck are
validAPCs on the partitionsV1, V2, . . . , Vk but their unionC is not a valid
APC for the entire BN (the resulting state does not belong to the strong
basin of some target attractor inAt). However, as we see in the evaluation
section, Section 4, such a case is extremely rare for BNs constructed for
real-life biological networks. For such networks, Is_Control succeeds to
find a valid APC within 2-3 iterations. This makes our procedure quite
efficient on such networks.

4 Evaluation
As discussed in Section 1, the control method based on the computation
of stable motifs (SM) (Zañudo and Albert, 2015) is a method of control
applied for an extended period for the target control of asynchronous BNs.
In this section, we compare our single-step control method for the min-
TC problem (which we simply call TC) with SM even though the control
computed by our method is applied only for a single time-step. Regarding
the full control of asynchronous BNs, as we are not aware of any previous
work in the literature that deals with the exactly same problem, we simply
evaluate the performance of our method to compute the min-FC of a BN

(which we simply call FC henceforth) to demonstrate its potential.
We apply these methods to 10 biological networks (Kim et al., 2013;

Cohen et al., 2015; Offermann et al., 2016; Remy et al., 2015; Grieco
et al., 2013; Singh et al., 2012; Naldi et al., 2010; Saez-Rodriguez et al.,
2007; Schlatter et al., 2009; Conroy et al., 2014). Our methods for the
computation of min-TC and min-FC are implemented as part of the
software tool ASSA-PBN (Mizera et al., 2018). All the experiments are
performed on a computer with a CPU of Intel Core i7 @3.1 GHz and 8

GB of DDR3 RAM.

Description of the networks. We first describe the networks under study.

• The myeloid differentiation network is designed to model myeloid
differentiation from common myeloid progenitors to megakaryocytes,
erythrocytes, granulocytes and monocytes (Krumsiek et al., 2011).
This network has 11 nodes and 6 attractors, 4 of which agrees with
microarray expression profiles of two different studies.

• The tumour network is built to study the role of individual mutations
or their combinations in the metastatic process (Cohen et al., 2015).
This network contains 32 nodes and 9 attractors, which are consistent
with (Cohen et al., 2015).

PU.1

GATA-2 GATA-1

FOG-1

Fli-1

SCL

EKLF

C/EBP  

Gfi-1EgrNab

cJun

SM+TC SM TC

α

Fig. 3. The results of TC and SM on the myeloid differentiation network.

network nodes edges attractors CTC
min CSM ∩ CFC

min

myeloid 11 30 6 3 3 2 8

tumour 32 158 9 2 ∗ ∗ 14

PC12 33 62 7 1 1 1 15

bladder 35 116 4 1 1 1 16

MAPK 53 105 20 4 4 4 20

HGF 66 103 18 4 ∗ ∗ 34

Th-diff 68 175 12 3 2 2 17

T-Cell 95 159 16 4 4 4 4

apoptosis 97 192 32 5 5 5 5

CD4+ 188 380 12 4 3 3 5
Table 3. An overview of the networks and a comparison of the three methods
on the control sets. ∩ represents the overlaps between CTC

min and CSM.

• The PC12 cell network models the temporal sequence of protein
signalling, transcriptional response and subsequent autocrine
feedback (Offermann et al., 2016). It has 33 nodes and 7 attractors.

• The bladder cancer network allows one to identify the deregulated
pathways and their influence on bladder tumourigenesis (Wang et al.,
2012). It has 35 nodes. When the input nodes EGFR_stimulus and
Growth_inhibitors are set to ON and DNA_damage is set to OFF, the
network has four attractors: three correspond to growth arrest and one
corresponds to cell proliferation.

• The MAPK network is constructed to study the MAPK responses to
different stimuli and their contributions to cell fates (Grieco et al.,
2013). In this paper, we use the MPAK mutant r3, which has 53 nodes
and 20 attractors.

• The model for HGF-induced keratinocyte migration captures the onset
and maintenance of hepatocyte growth factor-induced migration of
primary human keratinocytes (Singh et al., 2012). It has 66 nodes and
18 attractors.

• The Th-cell differentiation network models the regulatory network
and the signalling pathways controlling Th-cell differentiation (Naldi
et al., 2010). It consists of 68 nodes and 16 attractors with the same
initial condition as mentioned in (Naldi et al., 2010).

• The model of T-cell receptor signalling describes the complex
signalling network governing the activation of T-cells via several
receptors, including the T-cell receptor, the CD4/CD8 co-receptor,
and the accessory signalling receptor CD28 (Saez-Rodriguez et al.,
2007). It has 95 nodes and 16 attractors are detected under certain
conditions.

• The apoptosis network captures the central intrinsic and extrinsic
apoptosis pathways and the pathways connected with them (Schlatter
et al., 2009). It has 97 nodes and 32 attractors when the nodes FASL_2,
IL_1, TNF, UV, UV_2, FASL are fixed to OFF.
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network
TC and FC SM

Tatt Tbas TCTC
min

TCFC
min

Tatt TCSM

myeloid 0.002 0.004 0.004 0.001 6.989 7.846

tumour 0.622 1.009 0.177 0.028 ∗ ∗
PC12 0.019 0.146 0.017 0.009 97.211 263.249

bladder 0.881 0.318 0.813 0.745 26.955 32.587

MAPK 2.175 9.409 0.404 0.270 53.354 436.898

HGF 2.552 23.571 860.776 1.164 104.447 ∗
Th-diff 3.664 17.347 0.824 0.282 121.821 400.043

T-Cell 2.170 14.762 0.565 0.335 58.418 9.967

apoptosis 11.285 1230.200 1.778 1.045 222.241 55.578

CD4+ 182.185 948.667 1.850 1.613 60.525 30.894

Table 4. The time costs of the three control methods (TC, FC and SM). Units of time are in seconds.

• The CD4+ T-cell network allows us to study the downstream effects
of CAV1+/+, CAV1+/− and CAV1−/− on cell signalling and
intracellular networks (Conroy et al., 2014). This network is comprised
of 188 nodes and 12 attractors under certain initial conditions.

An overview of the networks is given in Table 3. 2

Selection of the partition size. We perform experiments on the biological
networks described above to find out the best size of partitions for TC and
FC. Since TC is a special case of FC, we only perform experiments for
FC by setting the maximum size of a partition from 1 to 20 and comparing
the time costs.

Figure 2 shows the normalised time costs with different sizes of
partitions for the ten networks. When the size equals 3, FC has the
best efficiency for most of the networks. Hence, we set the partition size
m = 3 except for the TC of HGF-induced keratinocyte migration, which
is explained later.

Effectiveness. As illustrated in Proposition 1, our computation methods
TC and FC identify the minimal control sets for single-step control. SM
is an extended period control and it does not guarantee the minimality of
the control sets as mentioned in (Zañudo and Albert, 2015).

Table 3 gives the sizes of the control sets computed by the three
methods.3 It is worth noting that SM may capture unnecessary nodes.
Taking the myeloid differentiation network as an example, Figure 3 gives
the control nodes required by TC and SM to drive the network towards
one of the attractors. The grey rectangular node - required by SM solely -
has the same value in all the attractors, thus there is no need to control it.

Columns CTC
min and CSM are the number of driver nodes for one of the

attractors computed by TC and SM. We can see that the results computed
by the two methods are very close (see column ∩ in Table 3). Compared
with SM, TC may lead to slightly larger control sets, like in the results of
the Th-cell differentiation network and the CD4+ T-cell network, due to
the application of different control strategies – SM focuses on extended
period control while we use single-step control. Despite that, the number
of control nodes for single-step control are still small relative to the sizes
of the networks.

The column CFC
min describes the number of driver nodes required for

the full control of the networks. For most of the networks, CFC
min is much

larger than CTC
min. Three large networks (the Th-cell network, the apoptosis

network and the CD4+ T-cell network) have small control sets because
the attractors are caused by few nodes. For instance, the 32 attractors of
the apoptosis network result from all combinations of values of five input

2 We refer the sizes of the basins of attractors to the supplementary data.
3 The symbol ‘∗’ means the method fails to compute the results within 12
hour.

nodes, i.e. 25. Even though it has97 nodes and32 attractors, by controlling
the five input nodes, we can gain full control of the network.

Efficiency. Table 4 gives the execution time of the three methods. Note that
the partition sizem only has influence on TCTC

min
and TCFC

min
. The attractors

and their basins are computed with methods in (Mizera et al., 2019; Paul
et al., 2018) and their computation time may increase as the sizes of the
networks increase.

TCTC
min

andTCSM
are the total time costs for computing the target control

sets for all attractors of the networks. In general, our computation method
TC outperforms SM in terms of efficiency for most of the networks. For the
CD4+ T-cell network, SM is faster than our method on attractor detection,
mainly due to the fact that this network is sparse and has a simple structure.
But this is rare for biological networks, as they are necessarily dense to
performs remarkably robust regulatory tasks (Adai et al., 2004; Blanchini
and Franco, 2011).

The TCTC
min

of HGF-induced keratinocyte migration shows that the
iteration of Algorithm 1 (lines 7-21) can be very time consuming. Taking
one of the attractors as an example, the initial r =

∑k
j=1 |Cj | is 13 and

CTC
min is of size 19. This implies that we need to traverse all solutions of

size 13-19 to find CTC
min and there may exist a considerable number of such

solutions. According to extensive experiments, a largerm leads to a larger
initial C, which reduces the number of iterations. However, a larger m
also increases the time for the computation of CMIN0. Som is the critical
parameter in our control algorithms and has to be properly chosen. For this
network, TC has the best efficiency when m = 10.

Finally, the numbers for TCFC
min

in Table 4 also show that our method
is very efficient and scales well even for large-scale networks.

5 Conclusion
In this work, we have described a method to identify a minimal set of
nodes Cmin, by perturbing which, for a single time-step, the network can
be driven from any initial state in a source attractor to any target attractor.
This method is adapted to solve the target control and full control of large-
scale BNs. Compared with the traditional methods of control where the
perturbation is applied for an extended period, such a control strategy is
also realistic and easier to carry out in biological lab experiments. We
showed that our method is efficient and the nodes required to control the
network form a small subset of the set of all nodes in the network.

In the future, as a continuation of the current work, we would like to
apply our control algorithm to larger real-life biological networks and study
its performance and applicability. As mentioned in Section 4, we found
that the size of the partitions,m, has a big influence on the efficiency of our
method. We would like to explore whether this is caused by a structural, or
dynamic property of the network or a combination of the two. We would
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also like to extend our work to the setting of probabilistic Boolean networks
(PBNs) and explore if and how to adapt the single-step control strategy to
such networks and design efficient algorithms for their implementation.

Acknowledgements
Alexis Baudin contributed to this work while doing an internship at the
Computer Science and Communications Research Unit, University of
Luxembourg.

Funding
This work was partially supported by the project SEC-PBN funded
by University of Luxembourg and the ANR-FNR project AlgoReCell
(INTER/ANR/15/11191283).

References
Adai, A. T., Date, S. V., Wieland, S., and Marcotte, E. M. (2004). LGL: creating

a map of protein function with an algorithm for visualizing very large biological
networks. Journal of Molecular Biology, 340(1), 179–190.

Blanchini, F. and Franco, E. (2011). Structurally robust biological networks. BMC
Systems Biology, 5, 74.

Cervera, L., Gutiérez-Granados, S., Barrow, N. S., Segura, M. M., and Godia, F.
(2014). Extended gene expression by medium exchange and repeated transient
transfection for recombinant protein production enhancement. Biotechnology and
Bioengineering, 112, 934–946.

Charrier, S., Ferrand, M., Zerbato, M., Précigout, G., Viornery, A., Bucher-
Laurent, S., Benkhelifa-Ziyyat, S., Merten, O. W., Perea, J., and Galy, A. (2011).
Quantification of lentiviral vector copy numbers in individual hematopoietic
colony-forming cells shows vector dose-dependent effects on the frequency and
level of transduction. Gene Therapy, 18, 479–487.

Cohen, D. P. A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., and Calzone,
L. (2015). Mathematical modelling of molecular pathways enabling tumour cell
invasion and migration. PLOS Computational Biology, 11(11), e1004571.

Conroy, B. D., Herek, T. A., Shew, T. D., Latner, M., Larson, J. J., Allen, L.,
Davis, P. H., Helikar, T., and Cutucache, C. E. (2014). Design, assessment, and in
vivo evaluation of a computational model illustrating the role of CAV1 in CD4+
T-lymphocytes. Frontiers in Immunology, 5, 599.

Cornelius, S. P., Kath, W. L., and Motter, A. E. (2013). Realistic control of network
dynamics. Nature Communications, 4(1942).

D’haeseleer, P., Liang, S., and Somogyi, R. (2000). Genetic network inference: from
co-expression clustering to reverse engineering. Bioinformatics, 16(8), 707–726.

Fiedler, B., Mochizuki, A., Kurosawa, G., and Saito, D. (2013). Dynamics and
control at feedback vertex sets. I: Informative and determining nodes in regulatory
networks. Journal of Dynamics and Differential Equations, 25(3), 563–604.

Gates, A. J. and Rocha, L. M. (2016). Control of complex networks requires both
structure and dynamics. Scientific Reports, 6(24456).

Graf, T. and Enver, T. (2009). Forcing cells to change lineages. Nature, 462(7273),
587–594.

Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., and
Thieffry, D. (2013). Integrative modelling of the influence of MAPK network on
cancer cell fate decision. PLOS Computational Biology, 9(10), e1003286.

Hecker, M., Lambeck, S., Toepfer, S., vanSomersen, E., and Guthke, R. (2009).
Gene regulatory network inference: data integration in dynamic models - a review.
BioSystems, 96, 86–103.

Hofherr, A., Busch, T., Huber, N., Nold, A., Bohn, A., Viau, A., Bienaimé, F.,
Kuehn, E. W., Arnold, S. J., and Köttgen, M. (2017). Efficient genome editing of
differentiated renal epithelial cells. Pflugers Archiv, 469(2), 303–311.

Huang, S. (2001). Genomics, complexity and drug discovery: insights from Boolean
network models of cellular regulation. Pharmacogenomics, 2(3), 203–222.

Kalman, R. E. (1963). Mathematical description of linear dynamical systems. Journal
of the Society for Industrial and Applied Mathematics, 1(2), 152–192.

Kauffman, S. (1969). Homeostasis and differentiation in random genetic control
networks. Nature, 224, 177–178.

Kim, J., Park, S.-M., and Cho, K.-H. (2013). Discovery of a kernel for controlling
biomolecular regulatory networks. Scientific Reports, 3(2223).

Krumsiek, J., Marr, C., Schroeder, T., and Theis, F. J. (2011). Hierarchical
differentiation of myeloid progenitors is encoded in the transcription factor
network. PLoS One, 6(8), e22649.

Liu, Y.-Y., Slotine, J.-J., and Barabási, A.-L. (2011). Controllability of complex
networks. Nature, 473, 167–173.

Mandon, H., Haar, S., and Paulevé, L. (2016). Relationship between the
reprogramming determinants of boolean networks and their interaction graph. In
Proc. 5th International Workshop on Hybrid Systems Biology, volume 9957 of
LNCS, pages 113–127. Springer.

Michels, A. J. and Frei, B. (2013). Myths, artifacts, and fatal flaws: Identifying
limitations and opportunities in vitamin c research. Nutrients, 5(12), 5161–5192.

Mizera, A., Pang, J., Qu, H., and Yuan, Q. (2017). A new decomposition method
for attractor detection in large synchronous Boolean networks. In Proc. 3rd
International Symposium on Dependable Software Engineering: Theories, Tools,
and Applications, volume 10606 of LNCS, pages 232–249. Springer.

Mizera, A., Pang, J., Su, C., and Yuan, Q. (2018). ASSA-PBN: A toolbox
for probabilistic boolean networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 15(4), 1203–1216.

Mizera, A., Pang, J., Qu, H., and Yuan, Q. (2019). Taming asynchrony for attractor
detection in large Boolean networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16(1), 31–42.

Mochizuki, A., Fiedler, B., Kurosawa, G., and Saito, D. (2013). Dynamics and
control at feedback vertex sets. II: A faithful monitor to determine the diversity of
molecular activities in regulatory networks. Journal of Theoretical Biology, 335,
130–146.

Naldi, A., Carneiro, J., Chaouiya, C., and Thieffry, D. (2010). Diversity and plasticity
of th cell types predicted from regulatory network modelling. PLOS Computational
Biology, 6(9), e1000912.

Offermann, B., Knauer, S., Singh, A., Fernández-Cachón, M. L., Klose, M., Kowar,
S., Busch, H., and Boerries, M. (2016). Boolean modeling reveals the necessity of
transcriptional regulation for bistability in PC12 cell differentiation. Frontiers in
Genetics, 7.

Paul, S., Su, C., Pang, J., and Mizera, A. (2018). A decomposition-based approach
towards the control of Boolean networks. In Proc. 9th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, pages 11–20.
ACM Press.

Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., and Calzone,
L. (2015). A modeling approach to explain mutually exclusive and co-occurring
genetic alterations in bladder tumorigenesis. Cancer Research, 75(19), 4042–4052.

Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bommhardt, U.,
Arndt, B., Haus, U., Weismantel, R., Gilles, E. D., Klamt, S., and Schraven, B.
(2007). A logical model provides insights into t cell receptor signaling. PLOS
Computational Biology, 3(8), e163.

Schlatter, R., Schmich, K., Vizcarra, I. A., Scheurich, P., Sauter, T., Borner, C.,
Ederer, M., Merfort, I., and Sawodny, O. (2009). ON/OFF and beyond - a boolean
model of apoptosis. PLOS Computational Biology, 5(12), e1000595.

Singh, A., Nascimento, J. M., Kowar, S., Busch, H., and Boerries, M. (2012).
Boolean approach to signalling pathway modelling in HGF-induced keratinocyte
migration. Bioinformatics, 28(18), 495–501.

Sol, A. d. and Buckley, N. (2014). Concise review: A population shift view of cellular
reprogramming. Stem Cells, 32(6), 1367–1372.

Tyson, J. J., Chen, K. C., and Novak, B. (2001). Network dynamics and cell
physiology. Nature Reviews: Molecural Cell Biology, 2(12), 908–916.

Tyson, J. J., Chen, K. C., and Novak, B. (2003). Sniffers, buzzers, toggles and
blinkers: dynamics of regulatory and signaling pathways in the cell. Current
Opinion in Cell Biology, 15, 221–231.

Wang, L.-Z., Su, R.-Q., Huang, Z.-G., Wang, X., Wang, W.-X., Grebogi, C., and Lai,
Y.-C. (2016). A geometrical approach to control and controllability of nonlinear
dynamical networks. Nature Communications, 7.

Wang, R.-S., Saadatpour, A., and Albert, R. (2012). Boolean modeling in systems
biology: an overview of methodology and applications. Physical Biology, 9(5),
055001.

Yuan, Q., Qu, H., , Pang, J., and Mizera, A. (2016). Improving BDD-based attractor
detection for synchronous Boolean networks. Science China Information Sciences,
59(8), 080101.

Zañudo, J. G. and Albert, R. (2015). Cell fate reprogramming by control of
intracellular network dynamics. PLOS Computational Biology, 11(4), e1004193.

Zañudo, J. G. T., Yang, G., and Albert, R. (2017). Structure-based control of
complex networks with nonlinear dynamics. Proceedings of the National Academy
of Sciences, 114(28), 7234–7239.

Zhao, Y., Ghosh, B. K., and Cheng, D. (2016). Control of large-scale Boolean
networks via network aggregation. IEEE Transactions on Neural Networks and
Learning Systems, 27(7), 1527–1536.

Zhu, Y., Yang, R., McLenithan, J., Yu, D., Wang, H., Wang, Y., D., S., Olson,
J., Sztalryd, C., ZHu, D., and Gong, D. (2015). Direct conversion of human
myoblasts into brown-like adipocytes by engineered superactive pparγ. Obesity
(Silver Spring), 23(5), 1014–1021.


