
PhD-FSTC-2019-49

The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 01/07/2019 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Médéric HURIER
Born on the 25th of November 1988 in Reims (France)

CREATING BETTER GROUND TRUTH TO
FURTHER UNDERSTAND ANDROID MALWARE:

A LARGE SCALE MINING APPROACH BASED
ON ANTIVIRUS LABELS AND MALICIOUS ARTIFACTS

Dissertation defense committee

Dr. Yves le TRAON, dissertation supervisor
Professor, University of Luxembourg

Dr. Damien OCTEAU
Doctor, Google Inc.

Dr. Jacques KLEIN, Chairman
Senior Research Scientist, University of Luxembourg

Dr. Tegawende François BISSYANDE
Research Scientist, University of Luxembourg

Dr. Jean-François LALANDE, Vice Chairman
Assistant Professor, Centrale Supélec

Abstract

Mobile applications are essential for interacting with technology and other people. With more
than 2 billion devices deployed all over the world, Android offers a thriving ecosystem by
making accessible the work of thousands of developers on digital marketplaces such as Google
Play. Nevertheless, the success of Android also exposes millions of users to malware authors
who seek to siphon private information and hijack mobile devices for their benefits.

To fight against the proliferation of Android malware, the security community embraced ma-
chine learning, a branch of artificial intelligence that powers a new generation of detection
systems. Machine learning algorithms, however, require a substantial number of qualified
samples to learn the classification rules enforced by security experts. Unfortunately, malware
ground truths are notoriously hard to construct due to the inherent complexity of Android ap-
plications and the global lack of public information about malware. In a context where both
information and human resources are limited, the security community is in demand for new
approaches to aid practitioners to accurately define Android malware, automate classification
decisions, and improve the comprehension of Android malware.

This dissertation proposes three solutions to assist with the creation of malware ground truths.

The first contribution is STASE, an analytical framework that qualifies the composition of mal-
ware ground truths. STASE reviews the information shared by antivirus products with nine
metrics in order to support the reproducibility of research experiments and detect potential bi-
ases. This dissertation reports the results of STASE against three typical settings and suggests
additional recommendations for designing experiments based on Android malware.

The second contribution is EUPHONY, a heuristic system built to unify family clusters be-
longing to malware ground truths. EUPHONY exploits the co-occurrence of malware labels
obtained from antivirus reports to study the relationship between Android applications and
proposes a single family name per sample for the sake of facilitating malware experiments.
This dissertation evaluates EUPHONY on well-known malware ground truths to assess the
precision of our approach and produce a large dataset of malware tags for the research com-
munity.

The third contribution is AP-GRAPH, a knowledge database for dissecting the characteristics
of malware ground truths. AP-GRAPH leverages the results of EUPHONY and static anal-
ysis to index artifacts that are highly correlated with malware activities and recommend the
inspection of the most suspicious components. This dissertation explores the set of artifacts
retrieved by AP-GRAPH from popular malware families to track down their correlation and
their evolution compared to other malware populations.

i

Acknowledgments

The pursuit of knowledge is a noble aspiration that led humanity through its most epic quests.

First and foremost, I want to express my gratitude to Pr. Yves Le Traon for allowing me to do
my Ph.D. studies at the University of Luxembourg and to help him teach the Big Data course
during four semesters. Yves was a supportive mentor and a wise counselor, even during the
most challenging time of my studies.

I also want to say my sincere thanks to Dr. Jacques Klein and Dr. Tegawende Bissyande for
their excellent advice and their collaboration on the field of Android security. I have learned a
lot thanks to their experience and their insights on the world of academia.

My research experiments on Android malware would not have been possible without the work
accomplished by the SerVal group on the Androzoo project. Thank you to SerVal, especially
Dr. Kevin Allix, for maintaining this malware dataset, releasing it to the research community,
and for our collaboration on extending the platform.

Besides, I thank the administrative team of the University of Luxembourg, and Solène Vincens
in particular, for the organization of my thesis defense and their assistance during my Ph.D.
studies. Thanks also to the team at the University of Luxembourg responsible for the High-
Performance Computing (HPC) platform for letting me run my batch processing scripts.

On the 21st of March 2018, I had the opportunity to present my work to the team at Google
responsible for the security of the Android platform. I am grateful to Pr. Yves Le Traon and
Dr. Damien Octeau for giving me the chance of visiting Google headquarters in the beautiful
city of San Francisco.

My Ph.D. studies were also a moment to meet and discuss with passionate colleagues and
friends. Thank you to Dr. Matthieu Jimenez, Antonin Carette, Sankalp Ghatpande, Dr. Kevin
Allix, Dr. Alexandre Bartel, Dr. Nicolas Sannier, Dr. François Fouquet, Dr. Assaad Moawad,
Dr. Thomas Hartmann and Dr. Grégory Nain for the numerous discussions on the ultimate
question of life, the universe, and the best programming language.

Furthermore, I want to thank the creators and contributors of the open source software that I
used during my Ph.D. studies: Linux, Ubuntu, GNOME, Vim, Python, Clojure, Datomic, Elas-
ticSearch, PostgreSQL, CouchDB, Jupyter, Celery, LATEX, and all NumFOCUS projects.

Finally, I want to dedicate this dissertation to the loves of my life, my dear wife Alexandra
Jacob, and our two daughters, Eglantine and Augustine Hurier Jacob. I also thank my sister,
my parents, my great parents, and my parents in law for their interest in my research.

iii

Table of Contents

I. Introduction, background, and state of the art 1

1. Introduction 3
1.1. Mobile security in the real world . 4

1.1.1. Mobile security and innovation . 4
1.1.2. Mobile security as an arms race . 5
1.1.3. Mobile security for Android applications 7

1.2. Android security challenges . 11
1.2.1. Definition of Android malware . 11
1.2.2. Automation of security decisions . 13
1.2.3. Progression of human comprehension 16

1.3. Contributions to the realm of Android security 19
1.3.1. Qualification of malware datasets 19
1.3.2. Unification of malware information 21
1.3.3. Dissection of malicious components 24

2. Technical Background 27
2.1. Android ecosystem . 28

2.1.1. Overview . 28
2.1.2. Applications . 29
2.1.3. Security model . 30

2.2. Malware ground truth . 32
2.2.1. Files . 32
2.2.2. Metadata . 33
2.2.3. Classification . 34

2.3. Machine learning systems . 36
2.3.1. Feature engineering . 36
2.3.2. Model training . 37
2.3.3. Evaluation . 38

3. State of the art 41
3.1. Detection of Android malware . 42

3.1.1. Malware analysis . 42
3.1.2. Malware classification . 43

3.2. Creation of malware ground truth . 45
3.2.1. Study of antivirus results . 45
3.2.2. Datasets of Android malware . 47

3.3. Explanation of black box systems . 48
3.3.1. Machine learning models . 48
3.3.2. Malicious Android applications . 49

iv

II. The creation of better malware ground truth 53

4. STASE: statistics for malware datasets 55
4.1. Studying the impact of malware datasets . 57

4.1.1. Dataset of Android applications and antivirus 57
4.1.2. Variations in experimental settings 58
4.1.3. Notations and definitions . 60

4.2. Analysis of antivirus detection . 61
4.2.1. Equiponderance . 61
4.2.2. Exclusivity . 63
4.2.3. Recognition . 64
4.2.4. Synchronicity . 66

4.3. Analysis of antivirus labeling . 68
4.3.1. Uniformity . 68
4.3.2. Genericity . 70
4.3.3. Divergence . 71
4.3.4. Consensuality . 73
4.3.5. Resemblance . 75

4.4. Observations on malware datasets . 76
4.5. Recommendations for experiments . 77

5. EUPHONY: uni�cation of malware labels 79
5.1. Definition of labeling process . 83

5.1.1. Antivirus labels . 83
5.1.2. Sample sets . 84
5.1.3. Metrics . 85

5.2. Extraction of label information . 86
5.2.1. Parsing algorithm . 87
5.2.2. Heuristics rules . 89
5.2.3. Initial lexicon . 90

5.3. Clustering of malware families . 91
5.3.1. Associating family names . 91
5.3.2. Clustering family names . 91
5.3.3. Inferring family names . 93

5.4. Analysis of EUPHONY results . 93
5.4.1. Datasets and metrics . 93
5.4.2. Performance evaluation . 95
5.4.3. Evaluation of samples in the wild 97

5.5. Support of threat intelligence services . 98

6. AP-GRAPH: dissection of malware artifacts 101
6.1. Specification of malware artifacts . 103

6.1.1. Information retrieval . 104
6.1.2. Information indexing . 105

v

6.1.3. Information analysis . 107
6.2. Creation of malware knowledge base . 108

6.2.1. Architecture A: Datomic . 108
6.2.2. Architecture B: Flat file . 109
6.2.3. Architecture C: Elastic . 110

6.3. Characterization of malware families . 111
6.3.1. Dataset . 111
6.3.2. Performances . 115
6.3.3. Case studies . 117

6.4. Evolution of malware families over time . 121
6.4.1. ESET NOD32 - Igexin . 121
6.4.2. EUPHONY - AppsGeyser . 122
6.4.3. G DATA - SMSpay . 123

6.5. Challenges of malware classification . 123
6.5.1. Obfuscation and variations . 123
6.5.2. Noisy antivirus classifications . 124
6.5.3. Going from correlation to causation 125

III. Summary and future research directions 127

7. Conclusion 129
7.1. Summary . 130

7.1.1. Definition of Android malware . 130
7.1.2. Automation of security decisions . 131
7.1.3. Progression of human comprehension 131

7.2. Future research directions . 132
7.2.1. Malware forecast . 132
7.2.2. Apprenticeship learning . 133
7.2.3. Learning from machine learning . 134

vi

List of Figures

1.1. Market shares of mobile operating systems 4
1.2. Number of applications available on Google Play 5
1.3. The 21 scariest data breaches of 2018 . 6
1.4. Profile of security attackers by origin and motive 6
1.5. Permission dialog to let an application access user contacts 8
1.6. Android applications of ’mie-alcatel.support’ on Google Play 9
1.7. The definition of malware at the intersection of 3 other notions 12
1.8. Initial analysis and vetting process of Android applications 12
1.9. Information about ’Android.Kuguo’ from Symantec website 13
1.10. Cybersecurity skills shortage around the globe 14
1.11. Registration of new Android malware over the years 15
1.12. Supervised learning is the process of learning from annotated examples . . . 16
1.13. Complexity metrics of Android applications found on Androzoo 17
1.14. Artifacts that can be extracted from an Android application 18
1.15. Example of an antivirus label reported by VirusTotal 22

2.1. Elements of the Android framework . 28
2.2. Components related to Android security . 31
2.3. Android relies on permission checks to protect private data 31
2.4. VirusTotal report generated after the submission of an Android malware . . . 35
2.5. Results of machine learning algorithms applied on a XOR pattern 38
2.6. Precision-Recall curve obtained from a classification problem 39
2.7. Difference between under-fitting and over-fitting 40

4.1. Positive detections by antivirus . 61
4.2. Relation between positive and exclusive detections 63
4.3. Distribution of applications flagged by antivirus 65
4.4. Overlap between pairs of antivirus . 67
4.5. Distribution of malware labels . 69
4.6. Relation between distinct labels and positive detections per antivirus 70
4.7. Relation between distinct labels and positive detections per application 72
4.8. Relation between the most frequent label and positive detections per application 74
4.9. String similarity between antivirus labels per application 75

5.1. Overview of EUPHONY architecture . 82
5.2. Examples of application sample sets . 85

vii

List of Figures

5.3. First stage - extraction of label fields from malware reports 88
5.4. Second stage - clustering & Third stage - inference of family name 92
5.5. Parameter selection of the threshold value 95

6.1. Architecture of AP-GRAPH . 103
6.2. Indexing graph produced by AP-GRAPH 105
6.3. Number of distinct artifacts related to scoring value thresholds 107
6.4. Structure of a knowledge base powered by Datomic 109
6.5. Structure of a knowledge base powered by flat files 109
6.6. Structure of a knowledge base powered by ElasticSearch 110
6.7. Distribution of malware families with at least 100 samples 112
6.8. Distribution of artifact identifiers by category 114
6.9. Maximum proportion of malware identified by AP-GRAPH 115
6.10. Number of characteristic artifacts discovered by AP-GRAPH 116
6.11. Proportion of artifacts dropped by AP-GRAPH 117
6.12. The application contacts the primary server to download the ads 119
6.13. The application setups the event listener to trigger the ads 120
6.14. The application constructs the ads from an array of bytes 120
6.15. Evolution of artifacts identified by AP-GRAPH for ESET NOD32 - Igexin . . 121
6.16. Evolution of artifacts identified by AP-GRAPH for EUPHONY - AppsGeyser 122
6.17. Evolution of artifacts identified by AP-GRAPH for G Data - SMSpay 123

viii

List of Tables

1.1. Permissions requested by the application ’com.tct.weather’ 10

2.1. History of Android versions . 30
2.2. Distribution of Android applications by markets on Androzoo 33
2.3. Example of a developer certificate found in an Android application 34

4.1. Distribution of applications by markets in our study 58
4.2. Experimental ground-truth settings studied with STASE 59
4.3. Summary of STASE Metrics for three common ground-truth settings 76

5.1. Lexing rules of EUPHONY . 83
5.2. Parsing rules of EUPHONY . 84
5.3. Examples of antivirus labeling patterns . 84
5.4. Heuristics for mapping label words to fields 90
5.5. Initial database entries of EUPHONY . 90
5.6. Datasets used in EUPHONY evaluation . 94
5.7. Performance of EUPHONY against state-of-the-art 95
5.8. Results of EUPHONY for Androzoo . 97
5.9. Top 10 clusters of EUPHONY and AVClass 98
5.10. Top 10 clusters of EUPHONY compared to AVClass 99

6.1. Distribution of applications and malware per market 111
6.2. Most specific artifacts identified by AP-GRAPH 118

ix

Part I.

Introduction, background, and state

of the art

1

Chapter 1.

Introduction

This chapter motivates the need of creating better malware ground truth.

The first section analyzes the state of mobile security for Android application.

The second section discusses challenges for the Android security community.

The third section summarizes the research contributions of this dissertation.

Table of Contents

1.1. Mobile security in the real world . 4
1.1.1. Mobile security and innovation . 4
1.1.2. Mobile security as an arms race . 5
1.1.3. Mobile security for Android applications 7

1.2. Android security challenges . 11
1.2.1. Definition of Android malware . 11
1.2.2. Automation of security decisions . 13
1.2.3. Progression of human comprehension 16

1.3. Contributions to the realm of Android security 19
1.3.1. Qualification of malware datasets 19
1.3.2. Unification of malware information 21
1.3.3. Dissection of malicious components 24

3

CHAPTER 1. INTRODUCTION

1.1. Mobile security in the real world

1.1.1. Mobile security and innovation

1.1.1.1. Growths of mobile ecosystems

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Date (start of the year)

0

10

20

30

40

50

60

70

80

M
ar

ke
t S

ha
re

 (i
n

%
)

system
Android
BlackBerry OS
Series 40
SymbianOS
Unknown
iOS

Figure 1.1.: Market shares of mobile operating systems, StatCounter [sta19a]

The mobile industry is a sector in constant evolution, thanks to the adoption of innovative
technologies such as Android. In 2018, Google LLC identified at least 2 billion active devices
powered by a version of Android [Goo18]. Moreover, Figure 1.1 shows that Android became
the leading mobile operating system in 2012, with a global market share superior to 70% in
2019.

The success of Android can be explained by the development of the supply and demand for
mobile services. On the one hand, mobile users adopt Android solutions for managing ev-
erything that relates to their personal and professional life, ranging from social networking
to financial investments. On the other hand, Android developers meet the demand of mo-
bile users with a growing catalog of applications distributed on digital marketplaces such as
Google Play [Goo19a]. Figure 1.2 illustrates the growing number of applications released on
Google Play from 2009 to 2018. We can observe that 3.5 million applications were available
on the platform in 2018 [Sta19b]. In this context of social and economic growth, the task of
protecting mobile devices has become more important than ever to support the expansion of
mobile ecosystems.

4

1.1. MOBILE SECURITY IN THE REAL WORLD

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Date (start of the year)

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M
Nu

m
be

r o
f a

pp
lic

at
io

ns

Figure 1.2.: Number of applications available on Google Play, Statista [Sta19b]

1.1.1.2. Implications for mobile security

We can define mobile security as the perception that nothing wrong can happen to mobile
users, mobile hardware, or the information stored on mobile devices. It is a fundamental
right that every mobile user should be entitled to, even for immaterial assets such as personal
information.

However, not a single month goes by without a global security breach or a privacy issue that
impacts thousands of users [Les18]. Figure 1.3 shows that the top 21 data breaches of 2018
impacted between 200,000 and 1 billion users each. We can conclude from these observations
that the global lack of security continues to have real consequences on people life, which may
deter mobile users from trusting digital marketplaces.

1.1.2. Mobile security as an arms race

1.1.2.1. Pro�les of security attackers

Mobile security involves two main actors: an attacker whose goal is to harm the security of
mobile users, and a defender that must guarantee an acceptable level of security in the presence
of attackers. Attackers can be criminals, activists, state-affiliated employees, or other types of
associations. Figure 1.4 shows the distribution of attackers’ origin and motive identified in

5

CHAPTER 1. INTRODUCTION

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Months of 2018

1M

10M

100M

1,000M

Us
er

s i
m

pa
ct

ed
 (l

og
ar

ith
m

ic
sc

al
e)

Aadhar

Marriott Starwood hotels
Exactis

MyFitnessPal
QuoraMyHeritage Cambridge Analytica

Google+
Chegg
FacebookTicketfly

Timehop
Careem

Cathay Pacific Airways
SheIn.com

Saks and Lord & TaylormyPersonality

T-Mobile
SingHealth

Orbitz

British Airways

Figure 1.3.: The 21 scariest data breaches of 2018, Business Insider [Les18]

Verizon data break report [Ver19]. We can observe that while the origin of 63% attacker is
unknown, their actions are motivated 43% of the time by financial gains.

Activist
11%

Former employee

1%

Organized crime

8%

State-affiliated

5%

Unaffiliated

10%

Unknown

63%

Espionage
6%

Financial

43%

Fun
5%

Grudge

2%

Ideology

9%

Unknown

32%

Figure 1.4.: Profile of security attackers by origin (left) and motive (right), Verizon
VCDB [Ver19]

Furthermore, we can note that attackers tend to target infrastructures with the weakest security
measures in place [Ver19]. This model is similar to a military arms race, where every techno-

6

1.1. MOBILE SECURITY IN THE REAL WORLD

logical edge can shift the balance of power between belligerents. Compared to other sectors,
it is crucial to highlight that mobile security requires constant technological improvements to
address the ever-changing risks associated with this landscape.

1.1.2.2. E�orts of the security community

To undertake the threats posed by attackers, the security community engaged tremendous ef-
fort in the development of better threat mitigation techniques. In 2018, Google announced that
the annual probability for a user to download malware from Google Play was 0.02%, which is
according to the report ‘less likely than the odds of an asteroid hitting the earth‘ [Goo18].

To contrast this figure, the Sophos threat report of 2019 mentions that the release of mal-
ware targeting mobile and IoT devices is not slowing down [Sop19]. The report points out
unusual malicious campaigns, including crypto-miner code in games, advertising click fraud,
and supply chain compromise that bypassed the security of Google Play. Since no trusted
third party can firmly confirm or infirm the current state of mobile security, we must consider
a conservative scenario where the mobile industry continues to face security challenges.

1.1.3. Mobile security for Android applications

1.1.3.1. The principle of least privilege

The security model of Android applications rests upon the well-known principle of least priv-
ilege [Goo19c]. This principle states that an application should always operate with the least
amount of privilege to perform its task. For instance, a banking application might request
Internet access to manage online accounts, but requesting access to contact information would
be suspicious behavior for this category of application.

The decision to allow or deny a permission to an application currently relies on mobile users.
This principle is then enforced by the Android operating system, which acts as a gatekeeper
to access the personal information of mobile users. For instance, Figure 1.5 shows a permis-
sion dialog that requests access to contact information. If the user grants the permission, the
application can keep access to contact information as long as the permission is not revoked.
Otherwise, the application will keep asking for the same permission to enable one of its fea-
tures. At any point during the authorization process, an Android user can block the application
from asking the same request over and over again.

In theory, the security model of Android applications is supposed to provide much more secu-
rity and flexibility than for regular desktop applications [Goo19c]. On the one hand, end users
are always in control of the operations that an application can perform on their device. On the
other hand, the operating system can take into account user inputs to better decide on how to
handle application permissions.

7

CHAPTER 1. INTRODUCTION

Figure 1.5.: Permission dialog to let an application access user contacts

However, this model is not sufficient to deny the exploitation of user information in prac-
tice [Goo18]. First, the implementation of the principle of least privilege is not granular
enough to protect against a specific type of misuse or scam (e.g., which information are sent
over the Internet). Second, end users might not have enough information to make an informed
decision about the level of permission to grant to an application. Finally, end users do not have
the knowledge nor the expertise to understand the implication of their choices fully.

For these reasons, the security of Android systems cannot depend solely on the implemen-
tation of the principle of least privilege. Both human and system experts must evaluate the
characteristics of Android applications to guide end users and remove lurking threats from
Android marketplaces.

1.1.3.2. Example of an Android malware

To illustrate the threats that target the Android ecosystem, let us consider a malware analyzed
by Upstream Systems in January 2019 [Sys19]. The company identified a weather forecast
application developed by a Chinese company. At the time of the investigation, the application
was pre-installed on Alcatel Android smartphones, such as the Pixi 4 and A3 Max models.

Upstream Systems identified that the weather application leaks user information such as the
geographic locations, email addresses, smartphone identifiers (IMEIs), and send them back
to a server in China [Sys19]. Moreover, the application uses a background task to subscribe
users to unwanted paid services for an estimated earning of $ 1.5 million. The application was

8

1.1. MOBILE SECURITY IN THE REAL WORLD

available on Google Play during the investigation by Upstream Systems, with more than 10
million installs and a user rating of 4.4 out of 5 when they disclosed their analysis. Figure 1.6
displays a screenshot of the application as it could be found on Google Play, under the name
TCL Weather.

Figure 1.6.: Android applications of ’mie-alcatel.support’ on Google Play

The investigation of Upstream Systems unveiled that the application was requesting invasive
permissions. Table 1.1.3.2 enumerates the permissions and the personal information requested
by the application. With these accesses, the application could click on ads banner without
the consent of the device owner. Upstream Systems also found that the application could
issue more than 250 transaction requests per month, leading to unwanted charges, additional
network consumption, and device overheating.

Following the publication of Upstream Services findings, the application was removed from
Google Play on the 5th of January 2019 [Sys19]. Nevertheless, the reaction of Google Play
came too late, as more than 10 million users already installed the application on their device.
This story illustrates that the lack of security on mobile devices is real and can impact a large
population of users across the world.

9

CHAPTER 1. INTRODUCTION

Table 1.1.: Permissions requested by the application ’com.tct.weather’
Permission What it allows

CHANGE_WIFI_STATE Allows the application to change the
state of the wi-fi network.

MOUNT_UNMOUNT_FILESYSTEMS Allows mounting and unmounting of file
systems (i.e., external SD cards). An-
droid documentation says the permis-
sion is NOT intended for third-party ap-
plications

READ_PHONE_STATE Allows read-only access to phone state,
including the phone number of the de-
vice, current cellular network informa-
tion, the status of any ongoing calls, and
a list of any PhoneAccounts registered
on the device. Documentation says that
this permission is DANGEROUS

WRITE_EXTERNAL_STORAGE Allows reading and writing of the ex-
ternal storage. This is dangerous (as
the application can have access to other
user files and third-party logs, system
logs). This means that the application
can read/write everything it wants and
the read data might be sent to the server.

ACCESS_KEYGUARD_SECURE_STORAGE This permission was removed in the OS
since 4.4 (KitKat). However, for devices
that are below that version, this permis-
sion can control a flaw in the OS to lock
and unlock the device at any time (like
pressing the power button and unlocking
the phone)

READ_LOGS Allows an application to read the low-
level system log files. Not for use
by third-party applications, because Log
entries can contain the user’s private in-
formation.

SET_DEBUG_APP Configure an application for debugging.
Not for use by third-party applications.

10

1.2. ANDROID SECURITY CHALLENGES

1.2. Android security challenges

1.2.1. De�nition of Android malware

1.2.1.1. Importance of malware de�nition

While we could state that a malware is a piece of software that causes harm to end users [Dic19],
this definition on its own is not sufficient at a technical level to detect malicious applications.

On the one hand, maliciousness is a notion more relative than absolute. For instance, let us
consider two Android applications that upload documents on a remote server. Depending on
the appreciation of each user, one application could be considered malicious while the other
would not. As Figure 1.7 illustrates, the decision to classify an application as malicious relies
on an implicit contract between end users, developers, and digital marketplaces. If an end
user is not informed about the intents of the developer, or if the platform imposes restrictions
that are not met, then the contract is breached, and the application should be considered as
potentially malicious by at least one of the parties involved. The goal of security experts in this
context is to report which application components are unwanted to prevent their installation
on mobile devices [Goo18].

On the other hand, the detection of malicious applications can be automated by a computer
system if and only if the specification for this task is explicit and unambiguous. Since com-
puters are not aware of the concept of harm and maliciousness, computer systems require a
formal definition to return the security status of an application. In a landscape where Android
malware is on the rise, the power of computer systems has to be leveraged to automate the
analysis of Android applications and detect potential malware.

Hence, our ability to prevent the propagation of malware depends heavily on our capacity to
characterize Android applications. Without a proper characterization, security experts lack the
requirements to properly define malicious behaviors and automate their detection by computer
systems in the large. In this regard, one of the key challenges for the security community is to
provide a thorough and accurate report on the components contained in Android applications
and explain how these components are associated with malicious behaviors.

1.2.1.2. Solving the lack of malware de�nition

In the absence of a formal definition, digital marketplaces must rely on human inputs to as-
sess the dangerousness of Android applications. To illustrate this process, Figure 1.8 shows
the analysis of Android applications from the viewpoint of a security organization. At the
beginning of the process, samples are collected directly from the Internet or from online user
submissions. Security experts can then analyze the application components and isolates which
one are involved in the expression of malicious behaviors. The expert can later label the ap-
plications as either benign or malicious, and provide some generic rules to classify similar
applications with the same tag. In this process, we notice that human expertise is essential to

11

CHAPTER 1. INTRODUCTION

User
Consents

Developer
Intents

Platform
Restrictions

Figure 1.7.: The definition of malware at the intersection of 3 other notions

detect Android malware, as experts provide valuable results and knowledge that can be reused
by computer systems and other analysts.

Collect Triage Record

Security
Expert

Labels

Rules

goodx

y bad

Submission

Decision
bad

Figure 1.8.: Initial analysis and vetting process of Android applications

While most security organizations have structured themselves around this process, no single
organization can cover the current demand for malware analysis on its own. Besides, few se-

12

1.2. ANDROID SECURITY CHALLENGES

curity organizations share the knowledge they gathered about malware publicly or with other
organizations, as this knowledge gives them an edge over their competitors. Due to this lack
of communication, the security community can only access small tokens of information from
security organizations. This information is often sparse, unstructured, and lacks the level
of details required to understand the relationship between application components and mali-
cious behaviors. On Figure 1.9, we display a screenshot containing the information shared by
Symantec about the malware family Android.Kuguo. While the article describes the malicious
behaviors and the risks associated with this malware family, the company fails to mention both
the malicious components involved and the steps to reproduce the analysis.

Figure 1.9.: Information about ’Android.Kuguo’ from Symantec website [Sym19]

To provide a definitive answer to the lack of malware definition, the security community must
not only report the effects caused by malicious applications, but also the causes and the el-
ements related to these effects. It is only at this condition that the security community can
create a reliable infrastructure that supports the growth of the Android ecosystem.

1.2.2. Automation of security decisions

1.2.2.1. Shortage of security experts

Over the years, the security of information systems evolved to become an essential facet of
our society. As more and more people and infrastructure are connected, the risks of secu-
rity attacks and data leakages are now more important than ever [Les18]. Governments have
strengthened their regulations to enforce a better level of security, while end users are in-
creasingly sensitive to threats posed by unsecured systems. Unfortunately, the number of
individuals capable of handling security events is lagging, leaving many demands for security
experts unanswered.

13

CHAPTER 1. INTRODUCTION

In October 2018, (ICS)2 estimated the future lack of security experts around the globe at
nearly 3 million people [ICS18]. As we can see on Figure 1.10, the most impacted area will
be Asia/Pacific with 2.14 million people, North American with nearly 500,000 people and
Europe/Middle East/Africa with 142,000 people. (ICS)2 also noted that 63% of participat-
ing organizations are suffering a shortage of security experts right now and that 60% of the
respondent are at moderate or extreme risk of security attacks as a result of this shortage.

Figure 1.10.: Cybersecurity skills shortage around the globe, (ISC)2 Cybersecurity Workforce
Study [ICS18]

The use of automation techniques by security attackers also worsens the situation. Every day,
AV-Test registers over 350,000 new malicious programs and potentially unwanted applica-
tions across all computer platforms [AT19]. On Figure 1.11, we track the development of new
Android malware over the years. While only a few samples were registered in 2012, the num-
ber of malware accelerated and peaked in 2016 and 2017 with more than 4 million malware
every year. In 2018, six new Android malware were created every minute. We can conclude
from these figures that the sheer amount of malware created in the world must be generated
automatically by computer systems.

To answer both the lack of security experts and the velocity of malware proliferation, or-
ganizations are actively seeking alternative solutions. In 2018, Forbes mentioned that new
technology such as big data, artificial intelligence, and machine learning have the potential
to address the lack of human resources [For18]. Furthermore, security solutions could also
improve the security of our infrastructures, as computers are capable of handling billions of
security events per hour while humans can only process a limited amount of events and during
a short period. For these reasons, the creation of human-aided assistants is an crucial objective
for the field of Android security and the security of information systems in general.

14

1.2. ANDROID SECURITY CHALLENGES

Figure 1.11.: Registration of new Android malware over the years, AV-Test [AT19]

1.2.2.2. Machine learning to the rescue

As a substitute for human resources, the security community has turned its attention to a
branch of artificial intelligence called machine learning. In essence, machine learning is the
application of algorithms and statistics to train computer systems in performing a specific task.
For instance, machine learning is commonly used on Android devices to translate speech to
text, recognize digital prints, or adjust energy consumption based on user preferences. Ma-
chine learning algorithms excel in situations where data is abundant and well-annotated. In
this case, experts can rely on supervised learning, a subset of machine learning focused on
training computer systems based on real-world examples.

Figure 1.12 illustrates the components involved during the training of supervised learning sys-
tems. From raw input data, the algorithm progressively tunes a statistical model based on a
training set and an output selected by a human supervisor. For instance, if the task of the
algorithm is to predict a type of fruit, then the model can rely on previous examples to make
prediction for unknown cases. The learning process of the algorithm is similar to the sequence
of steps followed by a human student. In both cases, the student and the algorithm take into
account feedbacks that encourages them to change their decision when they make a mistake.
On the contrary, the right decision will strengthen the current model and improve their confi-
dence. To verify that the training is complete, model predictions are then compared against a

15

CHAPTER 1. INTRODUCTION

testing set that was left out from the initial dataset. The training and testing sets constitute the
ground truth and are used by machine learning practitioners during their experiments. It is im-
portant to note that human supervision remains crucial to train supervised learning algorithms,
as the choice of inputs and outputs originates from a human operator.

Figure 1.12.: Supervised learning is the process of learning from annotated examples [Vas18]

While machine learning algorithms have greatly improved our capacity to automate security
decisions, their performance depends heavily on the quality of the ground truth chosen dur-
ing the training and verification of statistical models. The problem of ground truth quality
is recurrent, and often referred in computer science by the term ‘Garbage in, garbage out’,
which implies that flawed input data produces flawed output data. In the absence of qualified
ground truth datasets, machine learning techniques cannot be trusted to analyze Android mal-
ware in production, as their predictions might introduce both false positive and false negative
detections.

1.2.3. Progression of human comprehension

1.2.3.1. The curse of dimensionality

Despite the recent use of machine learning, digital marketplaces are not in a position to fully
automate the detection of Android malware. As we reviewed in the last section, machine
learning algorithms require a large set of well-annotated malware samples that only human
experts can provide. While unsupervised learning techniques can be applied to collect more
annotation, the analysis of a single malware is a time-consuming task that incurs a bottleneck
in the annotation process.

16

1.2. ANDROID SECURITY CHALLENGES

The situation faced by security experts is similar to a phenomenon observed in computer
science called the curse of dimensionality [Bel13]. As the number of items to look at (a.k.a,
dimensions) increases, the sparsity and the complexity of data inflates to a point where both
the analysis and the prediction become much less efficient. Android applications are complex
pieces of software that share the same property. Figure 1.13 shows the distribution of Android
applications size collected by the Androzoo project [ABKT16], as a proxy measure to analyze
their complexity. We notice that both plots follow a power law distribution, with an average
source code size of 3.5 MB and an average application size of 10.4 MB. Csikszentmihalyi et
al. [CL14] found that a human can only process 15 bytes per second. Thus, we can compute
that it would take about 68 hours to process the information contained in the source code alone
and 202 hours to look at the whole Android application.

0 20 40 60
Size of source code in megabyte (MB)

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

Nu
m

be
r o

f a
pp

lic
at

io
ns

0 20 40 60
Size of application file in megabyte (MB)

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

Figure 1.13.: Complexity metrics of Android applications found on Androzoo

As our protection solutions continue to mature, the security community must propose new
ways to improve the processing capacity of human analysts. Since we can not increase the
bandwidth of the human brain, our technology must compensate for our lack of analysis power
by providing a smarter output and by focusing our attention on the details that matter. This
condition is critical both to augment our protection mechanisms against malware and to be-
come more efficient at detecting new malware threats.

1.2.3.2. Dissection of Android malware

To understand the behaviors of Android malware, security analysts have no choice but to
inspect the components of Android applications one after the other. This operation, called
reverse engineering, is similar for all intents and purposes to the dissection of a living organ-
ism. The goal of a reverse engineer is to start with a final product, and then retrieve the source
code of the application. At the end of the analysis, human experts try to answer a few basic
questions about the malware:

• What does the application do?

17

CHAPTER 1. INTRODUCTION

• Who is the author of the application?

• Which of its components are malicious?

• Where are malicious components located?

• Which other applications include its components?

The data required to answer these questions can take hours, and even days to gather, even
for a small application. For instance, Figure 1.14 shows the elements scrutinized by security
analysts to understand the behavior of Android applications. In addition to the application
source code, security analysts must look at the files, assets, services, and messages contained
in the application. Moreover, malware authors attempt to hide the true nature of their appli-
cation by using obfuscation techniques. This scheme prevents security analysts from reading
the resources directly, which slows down the analysis even more.

Files Services

Messages

Source code
Assets

Figure 1.14.: Artifacts that can be extracted from an Android application

A computer system capable of answering these questions would be a valuable asset for a
security analyst. Not only could the system speed up the analysis process, but it could also
establish the foundation for a knowledge base about Android malware and serve the whole
security community. The main challenge imposed on the dissection of Android malware is to
provide an approach capable of handling a vast amount of data at scale.

18

1.3. CONTRIBUTIONS TO THE REALM OF ANDROID SECURITY

1.3. Contributions to the realm of Android security

1.3.1. Quali�cation of malware datasets

1.3.1.1. Metrics to understand malware datasets

As we have seen in the previous section, the performance of machine learning based systems
depends heavily on the quality of the samples chosen to support the learning process. This
requirement means that the security community must have access to large sets of qualified
Android applications to detect and classify various kinds of malware. However, the analysis
of Android malware remains tedious and time consuming for security experts.

Different approaches have been proposed to create malware datasets based on samples found
in the wild, each with their advantages, drawbacks, and biases. A standard method for ma-
chine learning practitioners is to rely on external labeling services such as VirusTotal [noa]
to alleviate the need for analyzing Android application manually [ASH+14]. Alternatively,
other research groups worked with established malware datasets [ZJ12], as these sets are both
well-studied and readily available to the community. In either case, the research community
must consider the impact that these choices have on their datasets.

Questions:

1. What are the impacts of malware ground truth used in research experiments?

2. How do malware datasets compare with each other, and what are their desirable
properties?

3. Do malware datasets incorporate biases due to their creation method or to their
origin?

To answer these questions, Chapter 4 introduces STASE, a framework created to measure the
characteristics of malware datasets. Based on a set of 9 metrics, STASE highlights the key
properties of malware ground truth employed either to detect malware or classify applications
in different threat groups. For instance, STASE can measure the degree of consensus across
antivirus products or inform about the degree of confidence that a particular application is
indeed malicious. The practical goal of STASE is to provide an overview of the features
entrenched in malware ground truth before their use in research experiments. STASE metrics
can also report information a posteriori to scrutinize biases in malware datasets and assess that
the properties of ground truth are comparable to previous studies.

19

CHAPTER 1. INTRODUCTION

Contributions:

1. We define a set of nine metrics that quantifies the main characteristics of malware
datasets created from the aggregation of antivirus results.

2. We provide a framework to encourage the development of heuristics that increases
the confidence in malware dataset by removing potential biases.

3. We propose a method to compare malware datasets against each other and ensure
that the properties of malware ground truth remain faithful over time.

1.3.1.2. Evaluation of common malware datasets

Over the past few years, the research community around Android security has adopted two
popular malware datasets for their experiments. The first dataset was assembled under the
umbrella of the Android Malware Genome Project by the North Carolina State University
between 2010 and 2011 [ZJ12]. MalGenome includes 1,200 malicious applications and covers
popular Android malware families found at the time of the study. The specificity of this dataset
is that most samples were analyzed manually by a team of students. Thus, many aspects of the
applications, including the installation method, the activation mechanisms, and the nature of
the malware payload, have been inspected and studied by the Android community. The other
popular malware dataset was created by the Technische Universität Braunschweig between
2010 and 2012 under the name Drebin. Compared to MalGenome, this dataset was analyzed
with a mix of both manual and automated techniques. The authors of Drebin mention that their
dataset contains 5,560 applications divided into 179 malware families. With various datasets at
their disposal, the security community has to design experiments with the most representative
samples that represent the whole population of Android malware.

Questions:

1. How are the properties of common malware datasets influenced by the methodology
used to construct these sets?

2. Do the degree of confidence and the degree of consensus in the dataset vary accord-
ing to the choice of malware construction techniques?

3. What are the distinctions between well-known malware datasets and recent malware
samples collected directly from the Internet?

With the help of STASE, Chapter 4 presents an empirical study on the most common tech-
niques used to build ground truths of Android malware. In the first part, our study reviews the
capacity of antivirus systems to decide if an Android application is malicious or not. In the
second part, our study analyzes the quality of the information mentioned in the label returned
by antivirus systems. Our evaluation reveals that the degree of consensus between antivirus
is often low and that some antiviruses provide fairly generic labels. Moreover, the selection

20

1.3. CONTRIBUTIONS TO THE REALM OF ANDROID SECURITY

of antivirus systems has a significant influence on the characteristics of the dataset, such as
the ability to divide malware into unambiguous threat groups. Thus, machine learning practi-
tioners are encouraged to pick the subset of antivirus systems that provides either the highest
degree of confidence or the largest amount of information depending on their use cases.

Contributions:

1. We review the difference between popular malware datasets according to STASE in
order to quantify the disparity between common dataset construction techniques.

2. We provide insights on the practice of building ground truth datasets based on Virus-
Total labeling service and a large dataset of thousands of Android applications.

3. We extensively overview the lack of consensus between both antivirus decisions and
antivirus labels to call for new approaches in building authoritative malware ground
truth.

1.3.2. Uni�cation of malware information

1.3.2.1. Extraction from malware labels

To conduct experiments on Android malware, we mentioned that the security community de-
pends either on well-studied malware sets or Android applications amassed directly from the
Internet. While the former method has the benefit of leveraging knowledge from previous
works, the latter method provides larger datasets and a more up to date view of the cur-
rent malware landscape. To illustrate this difference, let us consider the AndroZoo project,
which provides Android applications downloaded from official and third-party markets to the
research community [ABKT16]. As of January 2019, the project references more than 8 mil-
lion applications compiled from 2008 to 2019. Compared to well-studied datasets such as
Drebin [ASH+14] or MalGenome [ZJ12], Androzoo contains 1,500 times more samples and
over a period of time nine years larger. However, the idea of using samples collected in the
wild has a major setback. Without proper information about the true nature of applications
gathered with this method, experimenters are not in possession of a ground truth that enables
them to decide which applications should be considered malicious.

To address the lack of information about Android malware, the security community must rely
on external sources of information to review the content of Android applications. The solution
currently favored by the security community is VirusTotal [noa], an online service that acts as
a proxy to antivirus solutions available to the security industry. Once an Android application
is submitted to VirusTotal, a set of antivirus analyzes the application and returns their decision
in the form of a malware label (i.e., a string of characters that embedded several information
about the applications). For example, Figure 1.15 shows a single malware label that contains
four parts: the threat type (monitoring tool), the platform (Android), family name (AccuTrack)
and the variant (Beta). However, while labels information is intelligible to human experts, their
interpretation by computer systems is a challenging task. On the one hand, the syntax of labels

21

CHAPTER 1. INTRODUCTION

(i.e., the position and separation of information tokens) varies across antivirus solutions and
sometimes even inside a single antivirus product. On the other hand, the semantic (i.e., the
vocabulary and lexicon) is not stable as different labels can be assigned to the same underlying
threat.

Monitoring-Tool:Android/AccuTrack.Beta
VariantFamily namePlatform Type of threat

Figure 1.15.: Example of an antivirus label reported by VirusTotal (with information anno-
tated)

Questions:

1. How to accurately extract the information contained in antivirus labels?

2. Can the process of extracting information from antivirus label be automated?

3. What is the minimum amount of knowledge required to extract label information?

To address these challenges, we introduce EUPHONY in Chapter 5. EUPHONY is a heuris-
tics and statistics based system that extracts information from malware labels. Compared to
previous solutions, the distinctive feature of EUPHONY is its ability to improve its extraction
performance over time, starting from a minimal vocabulary up to much larger lexicons. This
feature is critical for the discovery of new threats, as more and more types of malicious tech-
niques are uncovered and identified over time. In practice, we expect EUPHONY to be used
both by industrial and academic actors willing to automate the recovery of information from
malware labels. Finally, the performance of EUPHONY has been successfully tested both on
well-known malware datasets and on the Androzoo project to propose a larger ground truth of
Android applications.

Contributions:

1. We present the design and implementation of EUPHONY, an approach designed to
mine the information contained in antivirus labels gathered from malware samples
found in the wild.

2. We report the evaluation of EUPHONY on MalGenome [ZJ12] and Drebin [ASH+14]
datasets, where EUPHONY achieves relatively high performance of 92.7% and
95.5% F-measure respectively.

3. We examine the distinctive features of EUPHONY in contrast with previous work,
such as the ability to automatically learn the structure and lexicon of antivirus labels
and to iteratively improve the inference performance over time.

22

1.3. CONTRIBUTIONS TO THE REALM OF ANDROID SECURITY

1.3.2.2. Aggregation of malware families

Out of the different label parts, the most valuable element is the family name associated with
the malware, as this name identifies a particular type of threat that shares common attributes
with other members of its family. For instance, the AccuTrack family is known to turn Android
smartphones into GPS trackers and display unwanted ads to the device owner [Sol]. This
knowledge could be leveraged to focus the attention of security experts on the application
components responsible for user geolocation.

However, the extraction process of EUPHONY only addresses the surface of the problem,
which is to remove the elements of syntax specific to each antivirus system. The lack of nam-
ing convention potentially implies that antivirus systems do not share the same semantic, and
that different family names could reference the same applications. In this situation, security
experts could not distinguish between a problem of consensus between antivirus systems and
a case where two family names are aliases of each other. To prevent this issue, the security
community must have a solution that proposes a single malware name for each sample present
in a set of applications, even if they are classified by multiple antivirus systems that follow
different conventions.

Questions:

1. How can we evaluate the similarity between antivirus labels?

2. At which conditions can malware names be unified into a single name?

3. How can we apply a unification scheme to malicious applications found in the wild?

To address these issues, EUPHONY provides a module that clusters family names into cohe-
sive groups. The primary purpose of the clustering module is to aggregate malware families
when their names appear jointly on the same set of applications. Based on these observations,
EUPHONY can model the association between family names in the form of a weighted graph
and find substructures that maximize the strength of their relationship. On the contrary, rela-
tionships between family names that are too weak are removed to create new family names.
The clustering module allows malware practitioners to obtain a single family name per ap-
plication, even if they rely on multiple antiviruses to improve their confidence in antivirus
decisions. With this technique, EUPHONY can create malware ground truths that combine
samples collected in the wild and antivirus reports gathered with VirusTotal.

23

CHAPTER 1. INTRODUCTION

Contributions:

1. We propose a clustering scheme as part of EUPHONY that infers the family names
of malicious applications based on their co-occurrence in malware datasets.

2. We provide the security community with a new and larger dataset of Android mal-
ware constructed from the annotation inferred by EUPHONY for the Androzoo
project [ABKT16].

3. We release EUPHONY as an open source application to support the creation of
better malware ground truth based on antivirus reports gathered from VirusTotal.

1.3.3. Dissection of malicious components

1.3.3.1. Gathering knowledge on malware

We observed in the previous section that the protection mechanisms of our infrastructure are
centered around two activities: the deployment of detection systems in production and the
collection of knowledge to improve the performance of these systems. The compilation of
knowledge is a fundamental aspect to the security community, as the pertinence of statistical
models fades as soon as malware authors turn their attention to new pervasion techniques.
Thus, the constant pace of modification required to update systems in production depends
on our capacity to mine Android malware as fast as malicious applications are released to
the world. However, the dissection of malicious applications is not in a satisfying state of
automation. Firstly, malware dissection is performed by human experts and requires hours
and sometimes days to reverse even a single malicious application. Secondly, navigating the
vast amount of components found in Android applications is a slow process, as humans are
not accustomed to work at this level of complexity.

To improve the dissection of Android applications, security experts must have access to a
database dedicated to the collection of knowledge about malware. This knowledge base would
be a valuable asset, as it could be queried to reveal the relationship between Android appli-
cations and the internal components linked to the expression of malicious behaviors. The
database could also work as a hub that stores various kind of metadata gathered from Android
malware analysis. With this system in place, practitioners could work at a higher level of
understanding and craft new features with a more comprehensive process. However, as the
number of components found in Android applications is likely huge, the security community
must deal with several challenges.

24

1.3. CONTRIBUTIONS TO THE REALM OF ANDROID SECURITY

Questions:

1. How to represent the association between Android applications and malicious arti-
facts?

2. What kind of information is essential to analyze the behavior of Android applica-
tions?

3. Which techniques can be applied to limit the lack of scalability of knowledge in-
dexing?

In Chapter 6, we introduce AP-GRAPH as a knowledge base designed to store and extract
information from large sets of Android applications. The model of AP-GRAPH is focused
on exploring the relationship between applications and their internal components, also called
artifacts. Both applications and artifacts are represented as nodes in a graph, linked together by
edges to express the relationship between them. The main benefit of AP-GRAPH is to provide
a database that supports a wide range of query, opening to a new way of looking at Android
applications. AP-GRAPH can be used by security experts to find applications impacted by
particular malicious artifacts or to uncovered potentially harmful artifacts based on analytic
queries.

Contributions:

1. We propose a representation model for exploring the relationship between Android
applications and artifacts that are potentially harmful.

2. We postulate that the knowledge provided by AP-GRAPH can improve our under-
standing of malicious applications by providing a graph structure focused on the
relationship between applications and artifacts.

3. We publish an online service named APKSEARCH to let other researchers query
the associations uncovered by AP-GRAPH and let them create more relevant train-
ing sets for their experiments.

1.3.3.2. Locating potentially malicious artifacts

To automate the dissection of Android malware, we postulate that malicious behaviors as-
sociated with malware are linked to at least one internal component of the application. For
instance, a fake banking application that steals personal information cloud include a service
that collects data in the background or an activity that gives the impression that the application
is benign. Even if malicious components could be first downloaded from the Internet, there
must be a part of the application responsible for downloading and executing the remote code.
Hence, the presence of artifacts within Android applications could be exploited by computer
systems to draw associations between malware files and malicious behaviors.

25

CHAPTER 1. INTRODUCTION

With the information produced by both EUPHONY and AP-GRAPH, we have access respec-
tively to information about malicious behaviors linked to family names and artifacts related
to Android applications. Thus, large sets of Android malware gathered by the security com-
munity could be mined to locate suspicious elements in place of security experts. The gain
for the security community would be enormous, as security experts allocate a considerable
amount of time on the location of relevant pieces of information within Android applications.
The feasibility of this approach would depend on several criteria:

Questions:

1. How can we determine that an artifact is related to the malicious behavior of an
application?

2. At which point can we consider that a malicious artifact is tied precisely to a mal-
ware family?

3. Which method can be used to find the location a malicious artifact once revealed by
an automated approach?

Chapter 6 presents how AP-GRAPH database can be applied to locate potentially malicious
artifacts. Using the occurrence of artifacts within malware families, AP-GRAPH can filter the
most relevant artifacts and report components specific to a malware family. Moreover, AP-
GRAPH could be used to maintain both a white list of artifacts found in benign applications
and a black list of artifacts that should trigger a security alarm. Thus, the approach we propose
could assist security experts in finding both known and unknown malicious artifacts. Applied
to a large set of malware such as Androzoo [ABKT16], AP-GRAPH could support the cre-
ation of a malware a ground truth composed of artifacts strongly correlated with malicious
behaviors.

Contributions:

1. We propose a scheme to automatically locate potentially malicious artifacts that are
associated with malware families extracted from antivirus solutions.

2. We perform a systematic study on the most important Android malware families
collected by the research community. In particular, we explain that thousands of
malware artifacts are directly linked to specific malware families.

3. We release a public dataset of malware descriptions mined by AP-GRAPH to sup-
port the continuous effort of the research community in preventing the propagation
of malicious applications.

26

Chapter 2.

Technical Background

This chapter presents the concepts related to the creation of malware ground truth.

This first section introduces the development process of Android applications and
the techniques used to guarantee the security and the privacy of Android users.

The second section explains the components of malware ground truth and the
information gathered by the security community to support their creation.

The third section gives an overview of the construction of machine learning sys-
tems built to detect malicious applications from malware ground truth.

Table of Contents

2.1. Android ecosystem . 28
2.1.1. Overview . 28
2.1.2. Applications . 29
2.1.3. Security model . 30

2.2. Malware ground truth . 32
2.2.1. Files . 32
2.2.2. Metadata . 33
2.2.3. Classification . 34

2.3. Machine learning systems . 36
2.3.1. Feature engineering . 36
2.3.2. Model training . 37
2.3.3. Evaluation . 38

27

CHAPTER 2. TECHNICAL BACKGROUND

2.1. Android ecosystem

2.1.1. Overview

The first stable version of Android was released on the 23rd of September 2008 by Google
LLC and members of the Open Handset Alliance [Dev08]. The core technologies of the
system are written mainly in C and C++ while the graphical interface and the software de-
velopment kit are developed with Java [Hub19]. Android is based on a modified version of
the Linux kernel and licensed under the Apache License 2.0 [And19a]. As a consequence,
components of the Android project are accessible under a permissive open source license that
allows researchers and other experts to analyze the source code and understand the internal
structure of the project.

Figure 2.1.: Components of the Android framework, Android Source [Sou]

The software development kit of Android provides several services to mobile developers.
Figure 2.1 enumerates the components that are part of the Android framework proposed by
Google LLC. At the bottom of the diagram, we find the Linux Kernel and the HAL services
that implement the interface between the hardware and the software stack. The middle part of
the diagram lists the native libraries, the runtime and the components of the framework that
are installed to support the creation of Android applications. Finally, the top of the diagram

28

2.1. ANDROID ECOSYSTEM

gives some examples of applications that are pre-installed on Android devices, such as Internet
browsers, media players and calculators.

Official and third-party application stores support the distribution of Android applications.
Google Play (previously known as Android Market) is the official application store created by
Google LLC on the 22nd of October 2008 to download Android applications and other digital
media such as music, books, and movies [Goo19a]. On the one hand, mobile developers can
publish their applications on Google store and add promotional contents like videos, graphics
or descriptions. On the other and, Android users can use Google Play to find more applica-
tions, install them on their devices and comment or rate the applications in order to share their
experience with other users. Google Play also features a developer policy center [And19c] and
application security systems [Goo19b] to guarantee the security and the privacy of Android
users.

2.1.2. Applications

An Android application is a file that can be installed on Android devices to propose new ser-
vices. For instance, Android users can install applications from Google Play [Goo19a] to read
books, monitor their glucose levels or send short messages to their friends. While Android ap-
plications are isolated from each other thanks to the Android sandbox system [Dev19a], devel-
opers can leverage the inter-process communication mechanisms provided by intents [Dev19c]
to communicate messages across applications installed on the same device. Thus, software
components such as activities that display maps or sends rich content can be reused to im-
prove the experience of Android users.

From a technical point of view, an Android application is a zip archive whose file name ends
with the extension ’.apk’. Similar to zip archives, the content of Android applications can be
extracted with standard tools to retrieve their content without information loss. The following
list shows the structure of most Android applications.

• classes.dex: A packaged and compiled version of the application source code.

• resources.arsc: A file that indexes simple values like string translation or layout con-
figurations.

• META-INF/: A folder used to certify the origin of the application and the integrity of
files in the archive.

• lib/: A folder that provides native libraries to access the physical components of the
device directly from the application.

• res/: A folder that contains additional files to support the application, such as images or
audio files.

• assets/: An alternative folder to provide additional files where resource identifiers are
not linked at compile time.

29

CHAPTER 2. TECHNICAL BACKGROUND

• AndroidManifest.xml: A file that enumerates essential information about the appli-
cation, such as the package name, the version number or the software and hardware
features that the application requires.

Table 2.1.: History of Android versions [And19b]
Name Version Release API

(no codename) 1.0 September 23, 2008 1
Petit Four 1.1 February 9, 2009 2
Cupcake 1.5 April 27, 2009 3
Donut 1.6 September 15, 2009 4
Eclair 2.0 - 2.1 October 26, 2009 5 - 7
Froyo 2.2 - 2.2.3 May 20, 2010 8

Gingerbread 2.3 - 2.3.7 December 6, 2010 9 - 10
Honeycomb 3.0 - 3.2.6 February 22, 2011 11 - 13

Ice Cream Sandwich 4.0 - 4.0.4 October 18, 2011 14 - 15
Jelly Bean 4.1 - 4.3.1 July 9, 2012 16 - 18

KitKat 4.4 - 4.4.4 October 31, 2013 19 - 20
Lollipop 5.0 - 5.1.1 November 12, 2014 21 - 22

Marshmallow 6.0 - 6.0.1 October 5, 2015 23
Nougat 7.0 - 7.1.2 August 22, 2016 24 - 25
Oreo 8.0 - 8.1 August 21, 2017 26 - 27
Pie 9.0 August 6, 2018 28

Android Q 10.0 29

As new versions of the Android project are released over time, external applications must
maintain a level of backward compatibility to support the execution environments deployed
on user devices. Table 2.1.2 details the versions of Android published by Google LLC start-
ing from version 1.0. Each release is associated with a code name, a version number and
an API level targeted by application developers to indicate the degree of compatibility that
the application ensures. For instance, an application with a minimum API level of 23 will
be compatible with Android devices that feature an API level greater or equals to 23. This
information can be found in the ’AndroidManifest.xml’ file of the application.

2.1.3. Security model

First and foremost, the security of Android applications depends on the integrity of the layers
that support their execution. Figure 2.2 shows the parts of the Android framework that are
responsible for the security of Android applications as described on the Android developers’
website [Web19]. Similar to Figure 2.1, the hardware and the operating system layers pow-
ered by the Linux kernel are run in a trusted execution environment to ensure the security of
the underlying system. Then, the Android framework implements several trusted services in

30

2.1. ANDROID ECOSYSTEM

Figure 2.2.: Components of Android security, Android Website [Web19]

user space such as keystore and DRM to enable the creation of secure applications. Finally,
applications are executed in a sandbox system that isolates their runtime context from the rest
of the system, including access from other applications.

Figure 2.3.: Android relies on permission checks to protect private data, Android Web-
site [Dev19b]

Several features are also implemented to secure Android at the application level [Dev19b]. By
default, Android applications can not access the most critical system resources such as camera
functions, network connections, and location data as a result of the application sandbox. Fig-
ure 2.3 illustrates that the Android permission model ensures that applications can access per-
sonal information or device metadata only with the consent of the device owner. This verifica-

31

CHAPTER 2. TECHNICAL BACKGROUND

tion process extends to cost-sensitive resources such as billing services or SIM card accesses.
Android applications must also be signed before their distribution on application stores to
identify application authors and make them accountable for the potential misbehavior of their
application. In addition to technical implementations, the Android developers’ website pro-
poses several education resources to encourage the best development practices [Dev19d].

In 2017, Google LLC announced the released of Google Play Protect [Tet18], a machine
learning based system that detects malicious applications on user devices. Google Play Protect
continuously scans applications to find harmful behaviors and submit them to security experts
for an extensive review. Malicious applications are then grouped into families to uncover
similar applications that are not yet recognized by the security system. The same year, the
Google security team announced that their machine learning based system detected 60.3% of
malware identified by Google Play Protect to further secure Android devices [Tet18].

2.2. Malware ground truth

2.2.1. Files

A ground truth of Android malware is a collection of Android applications that are recognized
as either malicious or harmful for a security expert. The main goal of malware ground truths
is to provide reference datasets that researchers and other security experts can use in their
experiments to design better security solutions. These datasets are important for the scien-
tific community, as they allow research groups to engage in reproducible experiments which
guarantees the quality of their research output. Moreover, malware ground truths are crucial
to the performance of machine learning algorithms, as the training and the results of these
algorithms depends on the quality of the samples used as examples [RDG+12, SP10].

To illustrate the definition of malware ground truths, we will consider the case of the Andro-
zoo project created by the University of Luxembourg. Androzoo is a collection of Android
applications gathered from a broad set of application stores. Table 2.2.1 shows the distribution
of applications by Android markets. We observe that the official Android market is the main
source of Android applications for the repository. Androzoo also includes Chinese applica-
tion markets such as anzhi or appchina in addition to open source applications found on the
F-Droid repository. In total, Androzoo contains more than 8 million applications as of January
2019.

One critical aspect of malware ground truths is to maintain an index that associates a unique
identifier to each application in the collection. This index is useful for security experts to ag-
gregate multiple sources of applications or check the presence of a single application within
the set. To implement the name index, security experts rely on cryptographic hash functions
that compute a fixed size string from an arbitrary size bit string, like the content of Android
applications. For instance, The SHA-256 algorithm associates a 32 bit signature to a file that
can not be easily forged or inverted by an attacker. Thus, the only feasible method to retrieve

32

2.2. MALWARE GROUND TRUTH

Table 2.2.: Distribution of Android applications by markets on Androzoo [ABKT16]
Market Count
play.google.com 7,048,293
anzhi 832,997
appchina 771,970
mi.com 113,583
1mobile 57,530
angeeks 55,818
slideme 52,467
fdroid 18,304
praguard 10,186
torrents 5,294
freewarelovers 4,145
proandroid 3,683
hiapk 2,512
genome 1,247
apk_bang 363
unknown 138

the file signature is to apply the same algorithm on the same file. The following value is an ex-
ample of SHA-256 signature formatted as an hexadecimal string and present in the Androzoo
repository: ’00001f58c32e40376f64cc88b70f8fad2fda054e0863abd5e41f4c6f18a65da2’.

2.2.2. Metadata

To complement the information contained in Android applications, security actors provide
additional metadata to enrich the content of malware ground truth. For instance, the Andro-
zoo project [ABKT16] proposes a metadata file that details several characteristics of Android
applications:

• SHA256, SHA1, MD5: file signatures to identify the application

• APK and DEX size: size of the source code and the application

• DEX date: compilation date of the packaged source code

• Market names: markets where the application was found

• Package name: package name from the Android manifest

• Version code: version code from the Android manifest

• VirusTotal detections: number of positive detections

• VirusTotal scan date: date of the antivirus scan

33

CHAPTER 2. TECHNICAL BACKGROUND

This information is useful for security practitioners to search applications tailored toward a
specific use case or to compute statistics about the files listed in malware ground truths.

Table 2.3.: Example of a developer certificate found in an Android application
Key Value
Owner CN=Eyvind Almqvist, OU=Mobile Visuals, O=Javsym,

L=Kista, ST=Kista, C=SE
Issuer CN=Eyvind Almqvist, OU=Mobile Visuals, O=Javsym, L=Kista,

ST=Kista, C=SE
Serial number 4d53c582
Valid from Thu Feb 10 06:01:22 EST 2011 until: Fri Jan 28 06:01:22 EST 2061
MD5 58:94:63:63:C1:ED:4C:02:CE:90:CE:64:DA:D7:4A:E4
SHA1 17:5C:44:E3:A6:1A:F2:4F:A5:78:6E:C7:F0:42:4C:AD:E6:F5:CA:DF
Algorithm name SHA1withRSA Version: 3

As we mentioned in the previous section, Android applications downloaded from the official
market must include a developer certificate that identifies the application authors to hold them
accountable for potential misbehaviors. The developer certificate is a public key embedded in
the ’CERT.RSA’ file, located in the ’META-INF’ folder of the application package. Standard
cryptographic software can be used to extract this information as a human-readable text. For
instance, Table 2.2.2 shows an example of a developer certificate found in an Android applica-
tion. The certificate contains the owner and issuer, in addition to a serial number, an MD5, and
SHA1 signature to guarantee the integrity of the certificate. This information is essential to
trace the origin of Android applications and find software packages from the same authors.

Malware ground truth can also inform about the package name and the version code of An-
droid applications. As multiple versions of the same application can be published, these two
pieces of information help practitioners to track the lineage of Android packages over time.
On the one hand, the package name remains the same for every version of the same application
and serves as a common identifier between them. On the other hand, the version code must
be different for every new version of the application to mark the evolution of the package.
Both the package name and the version code can be found in the Android manifest file. As
an example, the ’ul.edu.routes’ package name can be associated both to a version ’1’ and a
version ’2’ of the same application.

2.2.3. Classi�cation

We saw that malware files and their metadata supply useful information about the content
of Android applications, yet they do not inform security practitioners about the danger of
malware samples. Compared to other classification problems, Android applications require
more time and expertise from specialists to decide if an application should be considered
malicious or not [ICS18]. This limitation affects the ability of the security community to

34

2.2. MALWARE GROUND TRUTH

leverage malware datasets, as security experts need access to qualified classification results
before they can train and evaluate new solutions.

To address this problem, the research community relies on external source information to
classify Android applications at a large scale. At least three types of techniques are available
to isolate malware from the rest of Android applications:

• Internal classification: applications are analyzed manually by a security expert to ex-
tract suspicious artifacts and establish the ground truth. This technique was applied to
build the Genome dataset [ZJ12].

• Relative classification: applications with similar properties are grouped into clusters
where the notion of proximity depends on the definition given by the ground truth au-
thors. This technique was used to create the Android Malware dataset [WLR+17].

• External classification: applications are analyzed by a trusted third party actor to gather
classification results. This technique was involved in the creation of the Androzoo
dataset [ABKT16] and the Drebin dataset [ASH+14].

Each classification method has its benefits and its drawbacks. An internal classification scheme
provides an unambiguous analysis of malware samples but at the highest cost in terms of hu-
man resources. A relative classification scheme applies to large malware datasets, but the
results of clustering algorithms are not thoroughly verified to ensure that applications are gen-
uinely malicious. An external classification technique is possible at a large scale and yields
accurate results as long as the expertise and the availability of the third party source can be
trusted.

Figure 2.4.: VirusTotal report generated after the submission of an Android malware

In this dissertation, we focused our work on an external classification solution built upon
VirusTotal to leverage the efforts of security actors in performing malware analysis. VirusTo-
tal [noa] is an online service that aggregates the output of commercial antivirus products to let

35

CHAPTER 2. TECHNICAL BACKGROUND

users decide if an application should be considered malicious. Figure 2.4 displays the result
of a VirusTotal scan performed on an Android application. First, a ratio of detection indicates
that 41 antivirus products out of 59 consider the file as malicious. Moreover, each antivirus
that returned a positive detection supplies a label that contains several pieces of information
about the malware, such as the platform, the type of threat, the name of the malware family
and its variant. While antivirus labels cannot be used as if due to their syntactic and semantic
discrepancies, the information they contain can support the creation of better malware ground
truth.

2.3. Machine learning systems

2.3.1. Feature engineering

The first step toward the creation of machine learning based solutions is to gather information
about the task that must be learned by the algorithm and performed by the system. For that
purpose, security practitioners take advantage of existing malware ground truths as a source of
examples to train and evaluate statistical models. As information about Android applications
cannot be inferred directly by algorithms, experts must engineer machine learning features
that describe the task at a higher level of abstraction. For the detection of Android malware,
this step consists of analyzing Android applications to find characteristics that might support
the decision of the model.

At least two types of analysis are available to mine knowledge from Android malware. On the
one hand, experts can perform static analysis to extract information about the structure of An-
droid applications. For instance, static analysis tools can look at the application source code,
retrieve information about the resources included in the package and describe the file included
in the archive. While static analysis covers most of the information present in the application,
this technique does not inform the expert about the behavior of the application at runtime. To
gather information from the execution of Android applications, practitioners turn to dynamic
analysis tools for observing the actions of the application in a confined environment. This
type of analysis can find which websites the application tries to contact, which data are read or
written on the device and if the application triggers on specific events (e.g., the phone rebooted
or connected to the Internet). Together, static and dynamic analysis provide the raw material
for the creation of machine learning features and complement each other to cover the facets of
the application.

Machine learning practitioners can then engineer three types of features depending on the
level of abstraction they target. The first type is binary features that are the direct translation
of the analysis results. If an analysis reported that the application uses a particular string or
a file, then this information can be converted to a simple ’yes’ or ’no’ structure and inform
the algorithm about the presence or the absence of a particular item. The second type is
derived features that further abstract the results of the analysis. For instance, strings found in
Android applications can be scrutinized to find URL scheme or file system paths and declare

36

2.3. MACHINE LEARNING SYSTEMS

that the applications might perform some file or network operations. Finally, the third type is
statistical features which are the results of a computation performed on raw data. Statistical
features provide an overview of the application characteristics, such as the number of classes
it contains or the number of permissions required per line of code. To illustrate each category,
the following list provides some examples of popular machine learning features applied to the
detection of Android malware:

• Binary features: requires access to the Internet, requires a maximum API level of 19,
is in debug mode, informs about the owner of the developer certificate, is vulnerable to
a known CVE.

• Derived features: contains obfuscated names, performs cryptographic operations, at-
tempts to contact a botnet URL, loads additional code at runtime, communicates with
native libraries.

• Statistical features: size of the application, number of classes, number of dangerous
permissions per line of code, average instructions per method, entropy of the developer
certificate.

2.3.2. Model training

With features engineered from ground truth datasets, machine learning algorithms can train
detection models under the supervision of a security expert. The goal of this step is to draw
a decision boundary between possible outcomes, such as the possibility that an application
is benign or malicious. For instance, Figure 2.5 presents the result of four different machine
algorithms in classifying a simple XOR pattern. The decision boundary created by machine
learning algorithms takes the form of a purple curve that splits the dots by colors. During
model training, the purple curves are adjusted by the algorithm to fit the data and avoid clas-
sification errors. We can observe that different machine learning algorithms generate decision
boundaries of various shapes, as the mathematical foundations of these algorithms differ.

The training process of machine learning algorithms can be explained and formalized if we
consider a simple case like linear regression. A linear regression algorithm finds a linear rela-
tionship between dependent variables and the target class. The regression can be formulated
as follow:

yi = β01+β1xi1 + · · ·+βpxip + εi = xTi β + εi, i = 1, . . . ,n,

where {yi, xi1, . . . ,xip}n
i=1 represents an input dataset and β the coefficients of the linear rela-

tionship. Finding the coefficients that best fit the data can be transformed into a minimization
problem where the algorithm attempts to minimize the sum of squared residuals (i.e., the total
difference between the actual and the predicted values):

Find min
β

Q(β), for Q(β) =
n

∑
i=1

ε̂
2
i =

n

∑
i=1

(yi−βxi)
2

37

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.5.: Example of machine learning algorithms applied on a XOR pattern [OZA15]

Machine learning algorithms propose some hyper-parameters that can be tuned to limit the
complexity of statistical models or prevent extreme coefficients that cause too much variance.
For instance, a linear regression algorithm can include a regularization parameter λ that penal-
izes either the number of non zero coefficients (L1 norm, LASSO) or the imbalance between
coefficient values (L2 norm, RIDGE). The two approaches can also be combined to optimize
both cases with a technique called Elastic Net [ZH05].

2.3.3. Evaluation

As multiple choices of algorithms, coefficients, and hyper-parameters are available to train ma-
chine learning based systems, security experts must evaluate the performance of their models
to explore the solutions at their disposal. A convenient solution for practitioners is to evaluate
statistical models with a set of metrics that summarizes the performances of the model on a
reference dataset. For detecting malicious Android applications, precision and recall are often
used to measure the number of correct answers, depending on the type of errors. On the one
hand, the precision measures the number of correct positive results divided by the total number

38

2.3. MACHINE LEARNING SYSTEMS

Figure 2.6.: Precision-Recall curve obtained from a classification problem

of positive results predicted by the algorithm:

precision =
true positives

true positives+ f alse positives

On the other hand, the recall measures the number of correct positive results divided by the
total number of true results in the dataset:

recall =
true positives

true positives+ f alse negatives

The two metrics can be combined into an F1-score, which is the harmonic mean of the preci-
sion and recall that averages their values:

F1 = 2× precision× recall
precision+ recall

In a real-world scenario, practitioners may also explore the trade-off of different models or
parameters with a precision-recall curve such as Figure 2.6 to find a more suitable solution.

Another fundamental trade-off explored by machine learning practitioners is the ability of
statistical models to store example details versus the ability to generalize on new examples.
Figure 2.7 illustrates the problem with three curves that represent the decision boundary of
statistical models. The model on the left is considered too simple (or under-fitted), as the shape
of the decision boundary is linear while the data distribution is polynomial. The model on the
right is too complex (or over-fitted), since the decision boundary is too specific regarding

39

CHAPTER 2. TECHNICAL BACKGROUND

Figure 2.7.: Difference between under-fitting and over-fitting [Bha18]

the data provided to the algorithm. The model in the middle offers the right balance, as the
general shape of the model corresponds to the process that might generate the data points. Best
practices such as the use of cross-validation techniques and the inclusion of testing datasets
can improve the robustness of machine learning experiments in practice.

In this section, we explored the use of machine learning to extract statistical patterns from a
large corpus of data. However, the task conveyed to statistical models can only be learned
with a great reference ground truth that supports the training and the evaluation of machine
learning algorithms. In the absence of qualified ground truth, machine learning algorithms
are at risk of proposing a model with suitable performance in the lab, but with unacceptable
performance in real-world scenarios. Thus, our comprehension of malware ground truth is
crucial to the development and the adoption of machine learning based systems. Under these
circumstances, the main risk for the security community is to focus its attention only on quan-
titative assessments while the description of Android malware remains a vital requirement to
justify the decision of automated systems.

40

Chapter 3.

State of the art

This chapter highlights the literature about the creation of malware ground truth.

The first section reviews the approaches developed to detect Android malware
from the use of ground truth datasets and machine learning algorithms.

The second section enumerates the datasets currently used by the Android security
community and the techniques applied to assist their construction.

The third section references the techniques developed to better understand An-
droid malware with reverse engineering and data mining analysis.

Table of Contents

3.1. Detection of Android malware . 42
3.1.1. Malware analysis . 42
3.1.2. Malware classification . 43

3.2. Creation of malware ground truth . 45
3.2.1. Study of antivirus results . 45
3.2.2. Datasets of Android malware . 47

3.3. Explanation of black box systems . 48
3.3.1. Machine learning models . 48
3.3.2. Malicious Android applications . 49

41

CHAPTER 3. STATE OF THE ART

3.1. Detection of Android malware

The value of the Android ecosystem depends on the quality of the applications proposed to its
users. As developers are pushing new applications every day, the task of detecting fraudulent
applications continues to be an essential requirement that guarantees the security of application
marketplaces.

The research community addressed these concerns by proposing specific approaches to vet
the behaviors of Android applications. On the one hand, researchers created and adapted dis-
section techniques to extract valuable information from malware with either static or dynamic
analysis. On the other hand, the research community developed detection programs to find
malicious applications with the help of machine learning algorithms.

The first part of this section reviews the techniques currently used to analyze Android appli-
cations.

The second part of this section discusses the statistical models built to detect Android mal-
ware.

3.1.1. Malware analysis

3.1.1.1. Static analysis

As the privacy model of Android revolves around user consent, various research groups have
studied the use and abuse of system permissions to leak data from Android applications. Felt
et al. [FCH+11] analyzed the API calls of Android applications to determine if Android devel-
opers implement the principle of least privilege. Wang et al. [WJ12] developed DroidRanger
to create a behavioral footprint of Android malware families based on their permissions. Bar-
rera et al. [BKvOS10] presented a methodology to analyze permission-based models such as
Android to suggest security improvements.

Other authors analyzed the byte code of Android applications to create more abstract features.
Enck et al. [EOMC11] introduced the decompiler ded to reverse the bytecode of Android
applications and study the use of Android APIs. Bartel et al. [BKLTM12] created Dexpler
that converts Android bytecode into an uncomplicated representation that is more accessible to
security analysts. Suarez-Tangil et al. [STTPLB14] studied the used of text mining techniques
adapted from vector space modelization to cluster applications based on their similarity.

Another specificity of Android systems is the reliance on inter-program communication to
create services reusable from other applications. Octeau et al. [OMJ+13] proposed Epicc as
a sound static analysis technique able to improve the discovery of inter-component commu-
nication and detect their exploitation. Feng et al. [FADA14] developed Apposcopy to sug-
gest a semantic signature from taint analysis and inter-component call graphs. Federrath
et al. [LBB+15] presented a tool called ApkCombiner to reduce the problem of communi-
cation between multiple applications as if there were a single application. Kutylowski et

42

3.1. DETECTION OF ANDROID MALWARE

al. [YXG+14] developed DroidMiner to mine logic conditions from Android applications and
detect potential malware. Barrera et al. [FBR+16] designed a system called TriggerScope that
detects logic bombs that trigger malicious behaviors hidden inside Android applications.

Furthermore, Li et al. [LBP+17] performed a systematic literature review on 124 research
papers related to the application of static analysis on Android applications.

3.1.1.2. Dynamic analysis

To complement information obtained from static analysis, research groups developed dynamic
analysis techniques to gather runtime information from the controlled execution of Android
applications. Rastogi et al. [RCE13] created a framework called AppsPlayground to per-
form various dynamic analysis such as taint tracing, APIS and kernel level monitoring on
Android applications. Yan et al. [YY12] proposed DroidScope to reconstruct the semantic of
Android applications based on the trace left on the hardware, the operating system, and the
Android virtual machine. Tam et al. [TKFC15] presented CopperDroid, a tool that performs
dynamic behavior analysis from system calls created by the execution of Android applications.
Jang et al. [JYM+16] introduced Andro-profiler to mine the information contained in system
logs and generate human-readable behavior profiles. Spreitzer et al. [SKGM18] developed
ProcHarvester to mine the information contained in Linux procfs systems and detect informa-
tion leaks. Rasthofer et al. [RAMB16] released Harvester, an approach that extracts runtime
values from highly obfuscated Android applications and covers reflection and dynamic code
loading mechanisms.

Static analysis and dynamic analysis have also been applied simultaneously to build on the
strengths of both approaches Spreitzenbarth et al. [SFE+13] created Mobile-Sandbox, a frame-
work that relies on static analysis to the execution of dynamic analysis and find native codes in
Android applications. Lindorfer et al. [LNW+14] released Andrubis as a public online service
that combines static and dynamic analysis to gather information from a dataset of 1,000,000
Android applications.

Moreover, Tam et al. [TFA+17] performed a systematic literature review on the evolution of
Android analysis techniques to discuss future research directions on this topic.

3.1.2. Malware classi�cation

3.1.2.1. Malware families

The evolution of unsupervised machine learning algorithms led to the development of new
analysis techniques that can group similar malware samples into malware families. Bayer
et al. [BCH+09] proposed an automated clustering technique that finds malware families at
scale, as their approach was able to process 75,000 samples in less than three hours. Ye et

43

CHAPTER 3. STATE OF THE ART

al. [YLCJ10] developed a malware categorization system that combines hierarchical cluster-
ing and k-medoids algorithms to create malware family signatures. Wang et al. [WLC15]
performed a state of the art classification of malware running on the Microsoft operating sys-
tem with intensive feature engineering and gradient tree boosting (XGboost).

Other authors refined machine learning based approaches to improve the performance of clus-
tering algorithms. Jang et al. [JBV11] created BitShed to boost the performance of malware
clustering algorithms by hashing feature with a distributed execution framework. Hutchison
et al. [YBK13] explored a discriminatory feature approach to find the subset of features that
best support a classification decision.

3.1.2.2. Malware classi�ers

Over the years, the security community has built upon existing classification techniques and
adapted their approach to the Android ecosystem. Zia et al. [ADY13] created DroidAPIMiner
to mine API level features and detect Android malware with a k-NN classifier. Dash et
al. [DSTK+16] released DroidScribe, a system that inspects the state of a virtual machine
running Android application and reconstructs inter-process communication to predict a mal-
ware family with support vector machine algorithms. Yuan et al. [YLX16] combined features
from static analysis and dynamic analysis with deep learning to build DroidDetector and clas-
sify Android applications with high accuracy. Mariconti et al. [MOA+17] made MaMaDroid,
a tool that incorporates application behaviors from a sequence of abstracted API calls into a
Markov chain to detect Android malware.

The continuous growth of malicious Android applications also contributed to the creation of
ranking systems able to prioritize the classification and the analysis of malware. Chakradeo et
al. [CRTE13] proposed MAST to triage Android applications before their inspection by secu-
rity analysts and other resource intensive analysis systems. Lindofer et al. [LNP15] designed a
system called MARVIN that combines static and dynamic analysis to compute a malice score
that indicates the risk associated with an Android application.

In response to the use of obfuscation techniques by malware authors, research groups con-
tinued to develop more robust and accurate classifiers to prevent the propagation of mal-
ware. Gascon et al. [GYAR13] explored the recent use of machine learning classification
to detect Android malware based on an efficient embedding of function call graphs. Kuty-
lowsi et al. [YXG+14] released DroidMiner to abstract program logic in threat modalities
and suggest malicious behavioral patterns associated with malware families. Suarez-Tangil
et al. [STDA+17] worked on the problem of obfuscated Android malware and created Droid-
Sieve, a system that can detect malicious applications and classify them into malware families
with obfuscation invariant features. Nix et al. [NZ17] investigated the performance of recur-
rent neural network and system call sequences to classify Android applications into malware
families. Garcia et al. [GHM18] built RevealDroid to classify Android malware based on their
API usage and from the features found in native binaries inside Android applications.

44

3.2. CREATION OF MALWARE GROUND TRUTH

As an alternative to market-based solutions, other authors proposed to execute detection sys-
tems directly on user devices. Arp et al. [ASH+14] released DREBIN, a state of the art detec-
tion and classification approach that combines a lightweight method for detecting malicious
applications directly on the user smartphone and an interpretation of the decision suggested
by the classifier. Saracino et al. [SSDM16] created MADAM, a host-based malware detec-
tion system that compiles information about kernels, applications, users and packages on the
device to detect malicious applications.

3.2. Creation of malware ground truth

Ground truth datasets are essential to detect malicious patterns and analyze malware sam-
ples. However, despite their importance, few malware sets are thoroughly qualified by the
research community as research groups do not have access to a public source of information
to understand the classification of Android malware. Moreover, the research community also
suffers from the lack of human resources as research groups can not investigate malicious
behaviors from scratch either on large sets of applications and over a long period. In this con-
text, antivirus products appear to be the only source of truth that can be leveraged to perform
experiments on Android malware.

In the first part of this section, we review studies of antivirus decisions and the implication of
using these antivirus systems in research experiments.

In the second part of this section, we list malware datasets currently used by the research
community to design experiments based on Android applications.

3.2.1. Study of antivirus results

3.2.1.1. Antivirus decisions

A handful of research authors studied the challenge of integrating antivirus results in research
experiments. Bureau et al. [BH08] discussed that the exponential growth of malware samples
impairs both our ability to cross-reference malicious behaviors and to design tailored solu-
tions. Kelchner et al. [Kel10] reviewed the problem of consistent naming in antivirus engines
and suggested that generic detection based on malware behavior will become the norm in the
future. Gashi et al. [GSM+13] studied the relationship between antivirus regressions and label
changes to highlight the difference between antivirus systems. Kantchelian et al. [KTA+15]
also explained that the rapid development of malware variants forces the community to col-
lect malware samples through generic techniques that do not thoroughly validate malicious
behaviors they exposed.

Other studies empathized the need to design better research experiments based on antivirus
results. Li et al. [LLGR10] argued that ground truth datasets obtained from a single antivirus

45

CHAPTER 3. STATE OF THE ART

could implicitly remove the most difficult cases for malware classifiers. Perdisci et al. [PU12]
created VAMO as both an alternative to majority-based voting and as a way for malware
analysts to measure the quality of malware clustering results. Mohaisen & Alrawi [MA14]
proposed four metrics to assess the performance of antivirus scanners. The authors also rec-
ommended combining multiple antivirus engines to obtain detections of malicious applica-
tions that are both complete and correct. Allix et al. [AK14] studied the importance of time in
the construction of malware datasets to avoid data leakage in research experiments and better
recognize malware lineages.

With STASE, we proposed a complementary solution to build better malware ground truth.
STASE metrics quantify essentials properties of malware sets and are independent of the num-
ber of samples included in malware datasets. Thus, STASE can be used to compare ground
truth datasets at a coarse grain level and spot potential biases introduced by label inconsisten-
cies or generic decisions in antivirus results.

3.2.1.2. Antivirus labels

Research groups have discussed the importance of creating a standard malware labeling scheme
to consolidate the output of antivirus systems. Bontchev et al. [Bon05] engaged in the main-
tenance of CARO [SSB], a malware naming scheme developed in 1990 to report the result
of antivirus products. Harley et al. [Har09] spoke about the limits of malware naming as the
complexity of malicious applications makes precise identification a challenge for the antivirus
industry. Maggi et al. [MBSZ11] developed a graph-based approach to quantify the degree
of inconsistency between antivirus vendors and reported that current naming models are both
syntactically and semantically incoherent. Gregio et al. [GAF+15] surveyed existing malware
naming schemes and introduced a new convention to provide supplementary information to
complement existing approaches.

Other research groups addressed the problem of label inconsistencies with external solutions.
Wang et al. [WMGH14] created Latin, a first attempt to reconcile both syntactic and semantic
naming discrepancies at a large scale based on malware encyclopedia and antivirus reports.
Sebastián et al. [SRKC16] proposed AVCLASS as an improvement over Latin to cluster
malware labels based on existing malware ground truth such as malware family names and
vendor-specific rules.

Similar to Latin and AVCLASS, the goal of our approach with EUPHONY is to assist prac-
titioners in the creation of reference datasets from antivirus results. However, EUPHONY
does not require a ground truth list of malware families to distinguish between family names
from generic tokens. Moreover, EUPHONY does not contain vendor-specific rules similar to
AVCLASS that remove label suffixes. As the accuracy of AVCLASS and EUPHONY are on
the same order of magnitude, we think that the learning mechanisms of EUPHONY are more
sustainable in practice to both bootstrap and generalize the unification of malware labels over
a broad set of unknown samples.

46

3.2. CREATION OF MALWARE GROUND TRUTH

3.2.2. Datasets of Android malware

Ground truth datasets are essential for developing new approaches against Android malware.
On the one hand, malware datasets provide a source of samples to support the creation of
detection patterns. On the other hand, a malware ground truth is mandatory to validate the
methodology proposed by other researchers. Moreover, ground truth datasets are one of the
first resources that security practitioners must acquire to run experiments on Android mal-
ware.

This section enumerates ground truth datasets used in the research literature.

The first part of this section reports the datasets created by academic actors.

The second part of this section presents solutions proposed by industrial actors.

3.2.2.1. Research projects

The two most cited work on Android malware relates to the creation of malware datasets.
Zhou et al. [ZJ12] created the Genome dataset with malware samples gathered from August
2010 to October 2011. The Genome project contains 1,260 malware samples divided into
49 families that were analyzed manually by the authors. The paper reports the installation
method, the activation mechanism in addition to the actions that the malware performs and
the permissions that the application requires. Arp et al. [ASH+14] extended the Genome
project to create Drebin, a detection system created from a dataset of 5,560 malware samples.
Compared to Genome, malware families were inferred with machine learning algorithms and
divided into 178 malware families.

As Genome and Drebin projects became more and more obsolete over the years [WLR+17],
other research groups proposed new datasets with up to date samples and additional features.
Allix et al. [ABKT16] developed Androzoo, a collection of 8 million Android applications col-
lected from Google Play and alternative markets to engage the research community in repro-
ducible experiments. Kiss et al. [KLLVTT16] started the Kharon dataset to further document
Android malware with manual execution traces about files, processes, and network sockets.
Wei et al. [WLR+17] released the Android Malware Dataset (AMD) from samples gathered
between 2010 and 2016. AMD contains 24,650 samples divided into 71 families that were
analyzed manually at a small scale. The authors of AMD then used the knowledge gathered
from manual inspection to find similar samples in their set thanks to clustering algorithms.

3.2.2.2. Industry projects

Industrial actors started their initiative to share information about malware threats that target
the Android ecosystem. Contagio [Par] is a public dataset of Android malware created in 2011
that allows its contributors to download and upload suspicious samples with a simple service.

47

CHAPTER 3. STATE OF THE ART

Koodous [RLVS] is a collaborative effort to vet Android malware at scale based on a rich
threat exchange platform created by a handful of engineers.

Other industrial actors contributed to the development of malware databases outside the An-
droid community. Malpedia [Plo] is an online service that provides a fast and transparent
solution to comment on malware families. MISP [CIR] is an open source threat intelligence
sharing platform that provides indicators of compromises in a structured and automated man-
ner.

3.3. Explanation of black box systems

The use of machine learning algorithms for automating the classification of malicious applica-
tions helped the security community in its arms race against Android malware. However, the
predictions returned by complex statistical models cannot be explained to human operators, as
these models do not provide a high-level representation of their decision boundary. Therefore,
machine learning models cannot be leveraged in their current state to explain the ground truth
behavior of Android malware. To appreciate the impact that machine learning algorithms have
on Android security, we must review the approaches developed by the artificial intelligence
community to bridge the gap between model accuracy and model interpretability.

Similarly, Android applications can also be considered as black box systems by security ana-
lysts when operators do not have access to the source code. Obfuscation techniques deployed
by malware authors can also limit our ability to inspect software artifacts with static and dy-
namic analysis techniques altogether. As the comprehension of malicious code is critical to
understand what a malicious application can do, we must review the motivation and the tech-
niques for describing Android families based on large sets of malware.

In the first part of this section, we present the problem of interpreting statistical models and
the solutions developed to explain the output of machine learning algorithms.

In the second part of this section, we focus our attention on explaining the behavior of An-
droid malware and on the approaches proposed by the research community to dissect malware
families.

3.3.1. Machine learning models

3.3.1.1. Model interpretation

The first step towards model interpretation was to explain the tension that happens between
model accuracy and model interpretability. Lipton et al. [Lip18] discussed the desirability and
the feasibility of model interpretation regarding existing machine learning algorithms. Doshi-
Velez et al. [DVK17] worked to rigorously define the notion of model interpretability and
describe in which circumstances this property is desirable. Murdoch et al. [MSK+19] created

48

3.3. EXPLANATION OF BLACK BOX SYSTEMS

a framework called Predictive, Descriptive, Relevant (PDR) to evaluate and understand model
interpretation proposed by other authors.

As the demand for better model explainability strives, other research groups worked on a
new topic called Explainable Artificial Intelligence (XAI). Gunning et al. [Gun17] introduced
an explainable artificial intelligence program at DARPA to produce more transparent models
and enable human experts to understand their output. Adadi et al. [AB18] and Dosilovic et
al. [DBH18] both presented a survey of the field of explainable artificial intelligence to review
existing approaches and discuss future research directions.

3.3.1.2. Model exploitation

Conscious of the danger posed by black box statistical models, authors attempted to exploit
the weaknesses of machine learning algorithms and yield incorrect predictions. Papernot et
al. [PMG+16] created a practical demonstration where the authors took control of a remotely
hosted neural network by implementing a local model that substitutes the output classes of the
target network. Tramer et al. [TKP+17] crafted perturbations with fast single step methods to
both validate their influence on black box exploits and craft models that more robust to this
kind of attack.

To improve the trust in machine learning algorithms, researchers proposed to explain the out-
put of complex statistical models with approximation techniques. Ribeiro et al. [RSG16]
released LIME, a tool that creates a local approximation around a given prediction for any
machine learning model. Lundberg et al. [LL17] proposed SHAP, a framework that interprets
statistical models by assigning an importance value to the features involved in a particular
prediction. Shrikumar et al. [SGK17] presented DeepLIFT, a method for decomposing the
prediction of neural networks by back propagating the importance of each neuron to the input
layer.

3.3.2. Malicious Android applications

3.3.2.1. Malware comprehension

Some research groups pointed out that the comprehension of malware is crucial to the adop-
tion of automated approaches out of the lab. Sommer & Paxson [SP10] observed that machine
learning algorithms are rarely used in a real-world scenario, as the task of finding security
attacks is fundamentally different from other application domains. Rossow et al. [RDG+12]
analyzed the methodology of 36 research papers related to malware research and identified
several shortcomings in malware description and experimental settings. Allix et al. [ABJ+16]
considered the results of machine learning classifiers applied in the lab against the perfor-
mance of the same classifiers in the wild and observed a significant drop of F-measures in the

49

CHAPTER 3. STATE OF THE ART

latter setting. Canto et al. [CSD+17] mentioned that access to an unbiased and representa-
tive source of malicious samples is crucial to ensure the accuracy and the realism of security
protections.

Other authors aimed at monitoring the evolution of malware artifacts over time to observe
trends in malware developments and tailor their protection systems. Lindorfer et al.[LDFM+12]
created BEAGLE, a tool that associates and tracks dynamic behaviors from malicious codes
over time to monitor the evolution of 16 malware families. Suarez-Tangil et al. [STS18] stud-
ied the evolution of 1.2 million Android malware over eight years to study the behavior of
repackaged applications.

3.3.2.2. Malware dissection

Recent advancements in machine learning based approaches enabled the research community
to create meaningful descriptions that support the predictions of their statistical models. Arp et
al. [ASH+14] pioneered this approach on the Android ecosystem with Drebin, which proposed
to weight the features that contribute the most to the prediction of a linear SVM model. Jang
et al. [JYM+16] introduced a different approach with Andro-profile, a hybrid profiling engine
that extracts system logs information and generates human-readable descriptions.

The work on benign applications repackaged with malicious components (i.e., piggybacked
malware) revealed that the construction of malware could be exploited to reverse their creation
process. Zhou et al. [ZZG+13] developed a fingerprinting technique from semantic features to
reveal piggybacked applications found on application markets in linearithmic time complex-
ity. Allix et al. [AJB+14] observed noteworthy patterns in the criminal industry that lead to
artifact leakages thanks to a weak comprehension of Android security measures by malware
authors. Li et al. [LLB+17] investigated the use of Android packaging models by malware
writers to mass produce Android malware with simple automated techniques that rely on code
library. Fan et al. [FLW+17] created DAPASA, an approach that detects piggybacked malware
with sensitive sub-graph analysis to profile the most suspicious components of an application.
Wermke et al. [WHA+18] investigated the use of obfuscation and found that only 25% appli-
cations out of 1.7 million applications were obfuscated, preventing the protection of Android
applications against piggybacking.

With AP-GRAPH, we propose to complement machine learning based approaches by intro-
ducing a data mining method that identifies the most specific artifacts of malware families.
Contrary to statistical models, AP-GRAPH focuses on the most discriminative artifacts to en-
sure that one and only one artifact informs about a malware family during the ranking process.
The main benefit that AP-GRAPH provides to the security community is to propose a list of
critical features that can be tracked over time or be used as entry points to bootstrap a security
analysis. Moreover, our approach supports the creation of descriptive malware ground truth
from large sample sets, as AP-GRAPH can select artifacts highly correlated with the presence

50

3.3. EXPLANATION OF BLACK BOX SYSTEMS

of malware families. We think that this work is the first step towards a clear and unambigu-
ous answer to what are malicious applications and which artifacts are the root cause of their
malicious behaviors.

51

Part II.

The creation of better malware

ground truth

53

Chapter 4.

STASE: statistics for malware

datasets

There is generally a lack of consensus in antivirus engines’ decisions on a given
malware sample. This problem challenges the building of authoritative ground-
truth datasets. Instead, researchers and practitioners may rely on unvalidated ap-
proaches to build their ground truth, e.g., by considering decisions from a selected
set of antivirus vendors or by setting up a threshold number of positive detections
before classifying a sample. Both approaches are biased, as they implicitly decide
either on ranking antivirus products or on considering that all antivirus decisions
have equal weights.

In this chapter, we extensively investigate the lack of agreement among antivirus
engines. To that end, we propose a set of metrics that quantitatively describe the
different dimensions of this lack of consensus. We show how our metrics can bring
important insights by using the detection results of 66 AV products on 2 million
Android apps as a case study. Our analysis focuses not only on antivirus binary
decision but also on the notoriously hard problem of labels that antivirus asso-
ciate with suspicious files, and allows to highlight biases hidden in the collection
of a malware ground truth, a foundation stone of any machine learning-based
malware detection approach.

On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights
on Building Ground Truths of Android Malware with VirusTotal

Médéric Hurier, Kevin Allix,
Tegawendé F. Bissyandé, Jacques Klein, Yves le Traon

13th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA)

July 6-8, 2016. San Sebastián, Spain

Source code: https://github.com/ fmind/stase

55

https://github.com/fmind/stase

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

Table of Contents

4.1. Studying the impact of malware datasets . 57
4.1.1. Dataset of Android applications and antivirus 57
4.1.2. Variations in experimental settings 58
4.1.3. Notations and definitions . 60

4.2. Analysis of antivirus detection . 61
4.2.1. Equiponderance . 61
4.2.2. Exclusivity . 63
4.2.3. Recognition . 64
4.2.4. Synchronicity . 66

4.3. Analysis of antivirus labeling . 68
4.3.1. Uniformity . 68
4.3.2. Genericity . 70
4.3.3. Divergence . 71
4.3.4. Consensuality . 73
4.3.5. Resemblance . 75

4.4. Observations on malware datasets . 76
4.5. Recommendations for experiments . 77

56

4.1. STUDYING THE IMPACT OF MALWARE DATASETS

To build ground truth datasets, antivirus engines appear to be the most affordable means today.
In particular, their application in research studies became more accessible thanks to online
free services such as VirusTotal [noa] that accepts the submission of any file for which it
reports back the antivirus decisions from several vendors. Unfortunately, antivirus engines
disagree regularly on vetting malicious samples. Their lack of consensus is observed in two
dimensions: their binary decisions on the maliciousness of a sample are often conflicting
and their labels are challenging to compare because of the lack of a standard for naming
malware.

To consolidate datasets as ground truth based on antivirus decisions, researchers often opt to
use heuristics that they claim to be reasonable. For example, in the assessment of a state of
the art machine learning based malware detection for Android [ASH+14], the authors have
considered the reports from only ten antivirus engines, selected based on their popularity,
dismissing all other reports. They further consider a sample to be malicious once two antivirus
engines agree to say so. They claim that:

This procedure ensures that [their] data is (almost) correctly split into benign and
malicious samples—even if one of the ten scanners falsely labels a benign appli-
cation as malicious [ASH+14, p.7]

To gain some insights on the impact of such heuristics, we have built a dataset following these
heuristics and another dataset following another typical process in the literature [YXG+14],
which considers all antivirus reports from VirusTotal and accepts a sample as malicious as long
as any of the antivirus flags it as such. Furthermore, we propose a set of metrics for quantifying
various dimensions of comparison for antivirus decisions and labels. These metrics typically
investigate to what extent the decisions of a given antivirus are exclusive with respect to other
antivirus, or the degree of genericity at which antivirus vendors assign malware labels.

Our in-depth study of different heuristics parameters reveals discrepancies in the construction
of ground truth datasets, and thus further question any comparison of detectors performance.
Similarly, the lack of consensus we observed in label naming prevents a proper assessment of
the performance of detectors across malware families.

4.1. Studying the impact of malware datasets

4.1.1. Dataset of Android applications and antivirus

Our study leverages a large dataset of 2 117 825 Android applications and their analysis reports
by 66 antivirus engines hosted by VirusTotal [noa].

57

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

Application dataset: We obtained our application samples by crawling popular applica-
tion stores, including Google Play (70.33% of the dataset), Anzhi (17.35%) and AppChina
(8.44%), as well as via direct downloads (e.g., Genome - 0.06%) [ABKT16]. Table 4.1 shows
the distribution of Android applications across marketplaces.

Table 4.1.: Distribution of applications by markets in our study
Marketplace # of Android applications Percentage
Google Play 1 489 572 70.33%

Anzhi 367 534 17.35%
AppChina 178 648 8.44%
1mobile 57 506 2.72%
AnGeeks 55 481 2.62%
Slideme 31 681 1.50%
torrents 5 294 0.25%

freewarelovers 4 145 0.20%
proandroid 3 683 0.17%

HiApk 2 453 0.12%
fdroid 2 023 0.10%
genome 1 247 0.06%

apk_bang 363 0.02%
Total 2 117 825

Antivirus reports: We collected antivirus reports associated with our malware sets from
VirusTotal [noa], an online platform that can test files against commercial antivirus engines.
For each application package file (APK) sent to VirusTotal, the platform returns, among other
information, two pieces of information for each antivirus:

• A binary flag (True = positive detection, False = negative detection)

• A string label to identify the threat (e.g., Trojan:AndroidOS/GingerMaster.A)

Overall, we managed to obtain antivirus reports for 2 063 674 Android applications1. In this
study, we explore those reports and define metrics to quantify the characteristics of several
tentative ground truths.

4.1.2. Variations in experimental settings

When experimenting with machine learning based malware detector, as it is nowadays com-
mon among security researchers, one of the very first steps is to build a ground truth, for
training and also assessing the detector. The question is then how to derive a ground truth

1we could not obtain the results for 54 151 (2.56%) applications because of a file size limit by VirusTotal

58

4.1. STUDYING THE IMPACT OF MALWARE DATASETS

based on antivirus reports of the millions of applications in existence. In particular, we focus
on which samples are considered as malicious and included in the malware set of the ground
truth. Based on methods seen in the literature, we consider the following three settings for
building a ground truth:

• Baseline settings: In these settings, we consider a straightforward process often used [ABJ+16,
YXG+14] where a sample is malicious as long as any antivirus reports it with a positive
detection. Thus, our ground truth with the Baseline settings and based on our 2 million
applications, contains 689 209 malware applications. These samples are reported by
antivirus with 119 156 distinct labels.

• Genome settings: In a few papers of the literature, researchers use for ground truth
smaller datasets constituted of manually compiled and verified malicious samples. We
consider such a case and propose such settings where the malware set of the ground
truth is the Genome [ZJ12] dataset containing 1 248 applications. Antivirus reports on
these applications have yielded 7 101 distinct labels.

• Filtered settings: Finally we consider a refined process in the literature where authors
attempt to produce a clean ground truth dataset using heuristics. We follow the process
used in a recent state-of-the-art work [ASH+14]:

1. Use a set of popular antivirus scanners2.

2. Select applications detected by at least two antiviruses in this set.

3. Remove applications whose label from any antivirus includes the keyword adware.

With these settings, the malware set of the ground truth includes 44 615 applications
associated with 20 308 distinct labels.

In the remainder of this chapter, we use Dgenome, Dbase, and D f iltered to refer to the three
ground truth datasets. The property of each dataset are summarized in Table 4.1.2, which
includes the selection criteria and the final number of applications for each set. We did not
performed supplementary preprocessing besides the heuristics we mentioned in the previous
paragraph to avoid potential biases in our study.

Table 4.2.: Experimental ground-truth settings studied with STASE
Initial Dataset Genome dataset Baseline dataset Filtered dataset

Notation D I DG DB DD

Antivirus 66 66 66 10
Applications 2 117 825 1 248 689 209 44 615

Distinct labels 119 156 7 101 119 156 20 308
Discard adware No No No Yes
Threshold (τ) ≥ 0 ≥ 0 ≥ 1 ≥ 2

2antivirus considered in [ASH+14]: AntiVir, AVG, Bit-Defender, ClamAV, ESET, F-Secure, Kaspersky,
McAfee, Panda, Sophos

59

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

4.1.3. Notations and de�nitions

Given a set of n antivirus engines A = {a1,a2, · · · ,an} and a set of m applications P =
{p1, p2, · · · , pm}, we collect the binary decisions and string labels in two n×m matrices de-
noted B and L respectively:

B =

a1 a2 . . . an

p1 b1,1 b1,2 . . . b1,n
p2 b2,1 b2,2 . . . b2,n
...

...
...

pm bm,1 bm,2 . . . bm,n

L =

a1 a2 . . . an

p1 l1,1 l1,2 . . . l1,n
p2 l2,1 l2,2 . . . l2,n
...

...
...

pm lm,1 lm,2 . . . lm,n

Where entry bi, j corresponds to the binary flag assigned by antivirus a j to application pi and
entry li, j corresponds to the string label assigned by antivirus a j to application pi. String label
li, j is /0 (null or empty string) if the application pi is not flagged by antivirus a j. For any
settings under study, a ground truth D will be characterized by both B and L .

Let note Ri = {mi,1,mi,2, · · · ,mi,n} the ith row vector of a matrix M, and C j = {m1, j,m2, j, · · · ,mm, j}
the jth column. The label matrix L can also be vectorized as a column vector L ′=(l1, l2, · · · , lk)
which includes all distinct labels from matrix L , excluding null values (/0).

We also define six specific functions that are part of the formula defined in this chapter:

• Let positives be the function that returns the number of positive detections from matrix
B, or the number of not null labels from matrix L .

• Let exclusives be the function that returns the number of samples detected by only one
antivirus in matrix B.

• Let distincts be the function that returns the number of distinct labels (excluding /0) in
matrix L .

• Let freqmax be the function that returns the number of occurrences of the most frequent
label (excluding /0) from matrix L .

• Let clusters be the function that returns the number of applications that received a given
label lo with lo ∈ L′.

• Let Ouroboros be the function that returns the minimum proportion of groups including
50% elements of the dataset, normalized between 0 and 1 [Hur]. This function is used
to quantify the uniformity of a list of frequencies, independently of the size of the list.

60

4.2. ANALYSIS OF ANTIVIRUS DETECTION

4.2. Analysis of antivirus detection

The primary role of an antivirus engine is to decide whether a given sample is malicious [BH08].
These decisions have significant consequences in production environments since a positive de-
tection will probably trigger an alert and an investigation to mitigate a potential threat. False
positives would thus lead to a waste of resources, while False negatives can have dire conse-
quences such as substantial losses. Antivirus engines must then select an adequate trade-off
between a deterring high number of false positives and a damagingly high number of false
negatives.

In this section, we analyze the characteristics of antivirus decisions and their discrepancies
between each other.

4.2.1. Equiponderance

The first concern in using a set of antivirus engines is to quantify their detection accuracies.
If there are extreme differences, the collected ground truth may contain decisions from a few
engines. In the absence of a significant golden set to compute accuracies, one can estimate, to
some extent, the differences among antivirus by quantifying their detection rates (i.e., number
of positive decisions).

Antivirus
0

50k

100k

150k

200k

250k

300k

350k

400k

N
um

be
r o

f p
os

iti
ve

 d
et

ec
tio

ns

Figure 4.1.: Positive detections by antivirus in Dbase

61

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

Figure 4.1 highlights the uneven distribution of positive detections per antivirus in the Dbase
baseline ground truth. The number of detected applications indeed ranges from 0 to 367 435.
This problem raises the question of the confidence in a ground truth when only antiviruses
from the head and tail of the distribution contribute to the decision process. Indeed, although
we cannot assume that antivirus engines with high (or low) detection rates have better perfor-
mances, because of their potential false positives (or false negatives), it is essential to consider
the detection rates of antivirus for a given dataset to allow comparisons on common ground. A
corollary concern is then to characterize the ground truth to allow comparisons. To generalize
and quantify this characteristic of ground truth datasets, we consider the following research
question:

Research question 1: Given a set of antivirus and the ground truth that they produce
together, Is the resulting ground truth dominated by only a few antiviruses, or do all
antivirus contribute the same amount of information?

We answer this research question with a single metric, Equiponderance, which measures how
balanced or how imbalanced are the contributions of each antivirus. Considering our baseline
settings with all antivirus engines, we infer that 9, i.e., 13.5%, antivirus provided as many
positive detections as all the other antivirus combined. The Equiponderance aims to capture
this percentage in its output. Because the maximum value for this percentage is 50%3, we
weigh this percentage, by multiplying it by 2, to yield a metric between 0 and 1. We define
the function Ouroboros [Hur] which computes this value and also returns the corresponding
number of antiviruses, which we refer to as the Index of the Equiponderance.

Equiponderance(B) = Ouroboros(X) with X = {positives(C j) : C j ∈B,1≤ j ≤ n}

• Interpretation – the minimal proportion of antivirus that detected at least 50%
applications in the dataset. The metric value is weighted.

• Minimum: 0 – when a single antivirus made all the positive detections

• Maximum: 1 – when the distribution of detection rates is perfectly even

When the Equiponderance is close to zero, the ground truth analyzed is dominated by extreme
cases: a large number of antivirus engines provide only a few positive detections, while only a
few antivirus engines provide most positive detections. In comparison with Dbase’s Equipon-
derance value of 0.27, Dgenome and D f iltered present Equiponderance values of 0.48 and 0.59
respectively.

3If one set of antivirus leads to a percentage x over 50%, then the other set relevant value is 100-x% < 50%.

62

4.2. ANALYSIS OF ANTIVIRUS DETECTION

4.2.2. Exclusivity

Even in the case where several antiviruses would have the same number of detections, it does
not imply any agreement of antivirus. It is thus crucial to also quantify to what extent each
antivirus tends to detect samples that no other antivirus detects.

0 50k 100k 150k 200k 250k 300k 350k 400k
Number of positive detections

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f e
xc

lu
si

ve
 d

et
ec

tio
ns

antivirus

Figure 4.2.: Relation between positive and exclusive detections in Dbase

Figure 4.2 plots, for every antivirus product, the proportion of exclusive detections (i.e., sam-
ples no other antivirus detects) over the total number of positive detection of this antivirus.
Five antiviruses provide a majority of exclusive detections while a large part of other antivirus
(45) provides less than 10% such detections. For the 21 antiviruses that made the most posi-
tive detections, the proportion of exclusive detections remains below 16%, while the highest
ratios of exclusive detections are associated with an antivirus that made a (relatively) small
number of positive detections. Figure 4.2 provides a important insight into Android malware
detection by antivirus: A very high absolute number of detections comes from adding more
non-exclusive detections, not from detecting applications no other antivirus detects as could
have been intuitively expected. The following research question aims at formally characteriz-
ing this bias in datasets:

63

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

Research question 2: Given a set of antivirus and the ground truth that they produce
together, what is the proportion of samples that were included only due to one antivirus
engine?

To answer this research question, we propose the Exclusivity metric, which measures the pro-
portion of a tentative ground truth that is specific to a single detector.

Exclusivity(B) =
exclusives(B)

m

• Interpretation – the proportion of applications detected by only one antivirus

• Minimum: 0 – when every sample has been detected by more than one antivirus

• Maximum: 1 – when every sample has been detected by only one antivirus

In Dbase, 31% of applications were detected exclusively by only one antivirus, leading to an
Exclusivity value of 0.31. On the contrary, both Dgenome and D f iltered do not include applica-
tions detected by only one antivirus and have an Exclusivity of 0.

4.2.3. Recognition

Because Equiponderance and Exclusivity alone are not sufficient to describe how experimen-
tal ground truth datasets are built, we investigate the impact of the threshold parameter of-
ten used in the literature about malware detection to consolidate the value of positive detec-
tions [ASH+14]. A threshold τ indicates that a sample is considered as malware in the ground
truth if and only if at least τ antivirus engines have reported positive detections on it. Unfor-
tunately, to the best of our knowledge, there is no theory or golden rule behind the selection
of τ . On the one hand, it should be noted that samples rejected because of a threshold require-
ment may be either (a) new malware samples not yet recognized by all industry players, or (b)
difficult cases of malware whose patterns are not easily spotted [KTA+15]. On the other hand,
when a sample detected by λ or γ antivirus (where λ is close to τ and γ is much bigger than
τ), the confidence of including the application in the malware set is not equivalent for both
cases.

Figure 4.3 explores the variations in the numbers of applications included in the ground truth
dataset Dbase as malware when the threshold value for detection rates (i.e., threshold number
τ of antivirus assigning a positive detection a sample) changes. We also provide the number
of applications detected by more than τ antivirus for the different values of τ .

Both bar plots appear to be right skewed, with far more samples detected by a small number
of antiviruses than by the majority of them. Thus, any threshold value applied to this dataset

64

4.2. ANALYSIS OF ANTIVIRUS DETECTION

1 5 10 15 20 25 30 35 40 45 50
Detection threshold ()

0

100k

200k

300k

400k

500k

600k

700k

N
um

be
r

of
 p

os
iti

ve
 d

et
ec

tio
ns

Equal to threshold value
Strictly superior to threshold value

Figure 4.3.: Distribution of applications flagged by τ antivirus in Dbase

would remove a large portion of the potential malware set (and, in some settings, shift them
into the benign set). To quantify this property of ground truth datasets, we investigate the
following research question:

Research question 3: Given the result of antivirus scans on the ground truth dataset, have
applications been marginally or widely recognized to be malicious?

We answer this Research question with a single metric, Recognition, which computes the
average number of positive detections assigned to a sample. In other words, it estimates the
number of antiviruses agreeing on a given app.

Recognition(B) =
∑

m
i=1 Xi

n×m
with X = {positives(Ri) : Ri ∈B,1≤ i≤ m}

• Interpretation – the proportion of antivirus which provided a positive detection to
an application, averaging on the entire dataset

• Minimum: 0 – when no detections were provided at all

• Maximum: 1 – when each antivirus have agreed to flag all applications

65

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

When a threshold is applied to an experimental dataset, the desired objective is often to in-
crease the confidence by ensuring that malware samples are widely recognized to be malicious
by existing antivirus engines. Although researchers often report the effect on the dataset size,
they do not measure the level of confidence that was reached. As an example, the Recogni-
tion of Dbase is 0.09: on average, 6 (9%) antivirus engines provided positive detections per
sample, suggesting a marginal recognition by antivirus. The Recognition values for D f iltered
and Dgenome amounts to 0.36 and 0.48 respectively. These values characterize the datasets
by estimating the extent to which antivirus agree more to recognize samples from D f iltered as
positive detections more widely than in Dbase. Antivirus recognize samples from Dgenome even
more widely.

4.2.4. Synchronicity

In complement to Recognition and Exclusivity, we investigate the scenarios where pairs of
antivirus engines conflict in their detection decisions. Let us consider two antivirus engines
U and V and the result of their detections on a fixed set of samples. For each sample, we can
expect 4 cases:

Detected by U Not detected by U
Detected By V (True, True) (True, False)
Not detected by V (False, True) (False, False)

Even if the Equiponderance value of the dataset produced by antivirus U and V amounts to 1,
one cannot conclude on the distribution of those cases. The most extreme scenarios could be
50% (True, True) and 50% (False, False) or 50% (True, False) and 50% (False, True). For the
first one, both antiviruses are in perfect synchrony while they are in perfect asynchrony in the
second one.

Figure 4.4 is a heat map representation of the pairwise agreement among the 66 antivirus
engines on our dataset. For simplicity, we have ordered the antivirus engines by their number
of positive detections (the top row left to right and the left column top to bottom correspond to
the same antivirus). For each of the

(66
2

)
entries, we compute the overlap function [PLP09]:

overlap(X ,Y) = |X ∩Y |/min(|X |, |Y |). This function normalizes the pairwise comparison
with the case of the antivirus presenting the smallest number of positive detections. From
the heat map, we can observe two patterns: (a) The number of cells where a full similarity
is achieved is relatively small with respect to the number of entries. Only 12% of pairs of
antivirus achieved a pairwise similarity superior to 0.8, and only 1% of pairs presented a
perfect similarity. (b) There is no continuity from right to left (nor from top to bottom) of the
map. These observations indicate that antiviruses with an equal number of positive detections
do not necessarily detect the same samples. We aim to quantify this level of agreement through
the following research question:

66

4.2. ANALYSIS OF ANTIVIRUS DETECTION

Antivirus

A
nt

iv
iru

s

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4.: Overlap between pairs of antivirus in Dbase

Research question 4: Given a dataset of samples and a set of antivirus, what is the likeli-
hood for any pair of distinct antivirus engines to agree on a given sample?

We answer this research question with the Synchronicity metric which measures the tendency
of a set of antivirus to provide positive detections at the same time as other antivirus in the
set:

67

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

Synchronicity(B) =
∑

n
j=1 ∑

n
j′=1 PairwiseSimilarity(C j,C j′)

n(n−1)
with j 6= j′,C j ∈B,C j′ ∈B

• Interpretation – average pairwise similarity between pairs of antivirus

• Minimum: 0 – when no sample is detected at the same time by more than one an-
tivirus

• Maximum: 1 – when each sample is detected by every antivirus

• Parameters

– PairwiseSimilarity: a binary distance function [PLP09]

∗ Overlap: based on positive detections and normalized (default)

∗ Jaccard: based on positive detections, but not normalized

∗ Rand: based on positive and negative detections

High values of Synchronicity should be expected for datasets where no uncertainty remains
to recognize applications as either malicious or not malicious. Dbase presents a Synchronicity
of 0.32, which is lower than values for Dgenome (0.41), and D f iltered (0.75). The gap between
values for Dgenome and D f iltered suggests the impact that a selection of Antivirus can have on
artificially increasing the Synchronicity of the dataset.

4.3. Analysis of antivirus labeling

Besides binary decisions on detection of maliciousness in a sample, antivirus engines also
provide, in case of a positive detection, a string label that indicates the type/family/behavior
of the malware and identifies the malicious traits. These labels are thus expected to specify
the threat appropriately and in a meaningful and consistent way. Nevertheless, previous works
have found that the disagreement of many antiviruses on labeling a sample malware challenges
their practical use [BOA+07, CSD+17, MBSZ11, MA14].

In this section, we further investigate the inconsistencies of malware labels and quantify dif-
ferent dimensions of disagreements in ground truth settings.

4.3.1. Uniformity

Figure 4.5 represents the distribution of the most frequently used labels on our Dbase dataset.
In total, the 689 209 samples detected by at least one antivirus were labeled with 119 156
distinct labels.

68

4.3. ANALYSIS OF ANTIVIRUS LABELING

0 10 20 30 40 50 60 70
Percentage of positive detections

20+
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

R
an

k
of

 m
os

t f
re

qu
en

t l
ab

el
s

Figure 4.5.: Distribution of malware labels in Dbase

68% of positive detections were associated with the most infrequent labels, i.e., outside the
top 20 labels (grouped under the OTHERS label). The most frequent label,
Android.Adware.Dowgin.I, is associated with 9% of the positive detections. In a ground
truth dataset, it is essential to estimate the balance between different malicious traits, to ensure
that the reported performance of an automated detector can generalize. We assess this property
of ground truth by answering the following research question:

Research question 5: Given a ground truth derived by leveraging a set of antivirus, are
the labels associated with samples evenly distributed?

We answer this research question with a single metric, Uniformity, which measures how bal-
anced or how imbalanced are the clusters of samples associated with the different labels.

Uni f ormity(L ′) = Ouroboros(X) with X = {clusters(lk) : lk ∈L ′,1≤ k ≤ o}

• Interpretation – minimal proportion of labels assigned to at least 50% of the total
number of detected samples. The metric value is weighted

• Minimum: 0 – when each sample is assigned a unique label by each antivirus

• Maximum: 1 – when the same label is assigned to every sample by all antivirus

69

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

The Uniformity metric is important as it may hint on whether some malware families are
undersampled with respect to others in the ground truth. In can thus help, to some extent, to
quantify potential biases due to malware family imbalance. Dbase exhibits a Uniformity value
close to 0 (12×10−4) with an index of 75: 75 labels occur as often in the distribution than the
rest of labels (119 081), leading to uneven distribution. We also found extreme values for both
Filtered and Genome settings with Uniformity of 0.01 and 0.04 respectively. These values
raise the question of malware families imbalance in most ground truth datasets. However, it is
possible that some labels, although distinct, because of the lack of naming standard, actually
represent the same malware type. We thus propose to examine labels on other dimensions
further.

4.3.2. Genericity

0 50k 100k 150k 200k 250k 300k 350k 400k
Number of positive detections

0

10k

20k

30k

40k

50k

N
um

be
r o

f d
is

tin
ct

 la
be

ls

y = x
antivirus

Figure 4.6.: Relation between distinct labels and positive detections per antivirus in Dbase

Once the distribution of labels has been extracted from the dataset, we can also measure how
often labels are reused by antivirus. This property is an unusual behavior that Bureau & Harley
highlighted [BH08]. If we consider the two extreme cases, an antivirus could either assign a
different label to every sample (e.g., hash value), or a unique label to all samples. In both
scenarios, labels would be of no value to group malware together [BOA+07].

In Figure 4.6, we plot the number of detections against the number of distinct labels for each
antivirus. While two antiviruses assign almost a different label for each detected sample

70

4.3. ANALYSIS OF ANTIVIRUS LABELING

(points close to the y = x line), the majority of antivirus have much fewer distinct labels
than detected samples: they reuse labels amongst several samples. Different levels of labels
genericity might explain these two different behaviors For example, using exact labels would
make the sharing of labels among samples harder than in the case of generic labels that could
each be shared by several samples.

To quantify this characteristic of labels produced by a set of antivirus contributing to define a
ground truth, we raise the following research question:

Research question 6: Given a ground truth derived by leveraging a set of antivirus, what
is, on average for an antivirus, the degree of reuse of a label to characterize several
samples?

We propose the genericity metric to quantify this information:

Genericity(L) = 1− o−1
positives(L)−1

with o← number of distinct labels

• Interpretation – the ratio between the number of distinct labels and the number of
positive detections

• Minimum: 0 – when every assigned label is unique

• Maximum: 1 – when all labels are identical

Genericity assesses whether an antivirus assigns precise labels or generic ones to samples. Al-
though detectors with low Genericity would appear to be more precise in their naming, Bureau
& Harley [BH08] support that such engines may not be the most appropriate concerning the
exponential growth of malware variants.

The Genericity Dbase is 0.97, in line with our visual observation that there are far less distinct
labels than positive detections. The Genericity values of Dgenome and D f iltered are equal to
0.82 and 0.87 respectively.

4.3.3. Divergence

While Uniformity and Genericity can evaluate the overall distribution of labels that were as-
signed by antivirus, they do not consider the question of agreement of antivirus on each sam-
ple. Ideally, antiviruses should be consistent and provide labels similar to that of their peers.
Even if this ideal case cannot be achieved, the number of distinct labels per application should
remain limited to the number of antiviruses agreeing to detect it.

For Dbase, Figure 4.7 plots the relationship between the number of positive detections of a
sample and the average number of distinct labels associated with it. As a confidence margin,

71

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Number of positive detections

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

N
um

be
r o

f d
is

tin
ct

 la
be

ls

Mean
± 2 std
y = x

Figure 4.7.: Relation between distinct labels and positive detections per application in Dbase

we also draw an area of two standard deviations centered on the mean. We note that the
mean value for the number of labels grows steadily with the number of detection, close to the
maximum possible values represented by the dotted line. The Pearson correlation coefficient ρ

between these variables evaluates to 0.98, indicating a strong correlation. Overall, the results
suggest not only that there is a high number of different labels per application on our dataset,
but also that this behavior is real for both small and high values of positive detections. The
following research question investigates this characteristic of ground truth datasets:

Research question 7: Given a set of antivirus and the ground truth that they produce, to
what extent do antivirus provide for each sample a label that is inconsistent regarding
other antivirus labels

We can quantify this factor with the following metric that measures the capacity of a set of
antivirus to assign a high number of different labels per application.

72

4.3. ANALYSIS OF ANTIVIRUS LABELING

Divergence(L) =
(∑m

i=1 Xi)−n
positives(L)−n

with X = {distincts(Ri) : Ri ∈L ,1≤ i≤ m}

• Interpretation: – the average proportion of distinct labels per application with re-
spect to the number of antiviruses providing positive detection flags

• Minimum: 0 – when antivirus assign a single label to each application

• Maximum: 1 – when each antivirus assigns its label to each application

Two conditions must be met in a ground truth dataset to reach a low Divergence: antivirus must
apply the same syntax consistently for each label, and they should refer to a common semantics
when mapping labels with malicious behaviors/types. If label syntax is not consistent within
the dataset, then the semantics cannot be assessed via the Divergence metric.

The Divergence values of Dbase, D f iltered and Dgenome are 0.77, 0.87 and 0.95 respectively.
These results are counter-intuitive since they suggest that more constrained settings create
more disagreement among antivirus in terms of labeling.

4.3.4. Consensuality

To complement the property highlighted by Divergence, we can look at the most frequent label
assigned per application. Indeed, while the previous metric describes the number of distinct
labels assigned per application, it does not measure the weight of each label, notably that of
the most used label. To some extent, this label could be used to infer the family and the version
of the malware, e.g., if it used by a significant portion of antivirus to characterize a sample.

To visualize this information, still for Dbase, we create in Figure 4.8 a plot similar to that of
Figure 4.7, looking now at the average number of occurrence of the most frequent label against
the number of positive detections per application.

The correlation coefficient ρ between the two variables is 0.76, indicative of a correlation.
Nevertheless, the relation is close to the potential minimum (x-axis). This result is in line
with our previous observations on Dbase that the number of distinct labels per application was
high. The plot further highlights that the most frequent label for an application is assigned
simultaneously by one to six antivirus (out of 66) on average. This finding suggests that, at
least in Dbase, using the most frequent label to characterize the malicious sample is not a sound
approximation. The following research question generalizes the dimension of disagreement
that we investigate:

Research question 8: Given a set antivirus and the ground truth that they produce, to what
extent can we rely on the most frequently assigned label for each detected sample as an
authoritative label?

We answer this research question with the Consensuality metric:

73

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Number of positive detections

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

O
cc

ur
en

ce
s

of
 th

e
m

os
t f

re
qu

en
t l

ab
el

Mean
± 2 std
y = x

Figure 4.8.: Relation between the most frequent label/τ and positive detections per application
in Dbase

Consensuality(L) =
(∑m

i=1 Xi)−n
positives(L)−n

with X = { f reqmax(Ri) : Ri ∈L ,1≤ i≤ m}

• Interpretation – the average proportion of antivirus that agrees to assign the most
frequent label. The frequency is computed per sample.

• Minimum: 0 – when each antivirus assigns to each detected sample its own label
(i.e., unused by others on this sample)

• Maximum: 1 - when all antivirus assign the same label to each sample. Different
samples can have different labels however

A high Consensuality value highlights that the antiviruses agree on most applications to assign
a most frequent label. This metric is essential for validating, to some extent, the opportunity
to summarize multiple labels into a single one. In the Dbase set, 79% detection reports by
antivirus do not come with a label that, for each sample, corresponds to the most frequent
label on the sample.

74

4.3. ANALYSIS OF ANTIVIRUS LABELING

The Consensuality value of the set evaluates to 0.21. In comparison, the Consensuality values
for D f iltered and Dgenome are 0.05 and 0.06 respectively.

4.3.5. Resemblance

Divergence and Consensuality values on Dbase suggest that labels assigned to samples cannot
be used directly to represent malware families. Indeed, the number of distinct labels per
application is high (high Divergence), and the most frequent label per application does not
often occur (low Consensuality).

We further investigate these disagreements in labels to verify whether the differences between
label strings are small or large across antivirus. Indeed, in the previous comparison, given the
lack of standard naming, we have chosen to compute exact matching. Thus, minor variations
in label strings may have widely influenced our metric values. We thus compute the similarity
between label strings for each application and present the summary in Figure 4.9.

Min. Ressemblance Avg. Ressemblance Max. Ressemblance
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.9.: String similarity between labels per application in Dbase

For each detected sample, we computed the Jaro-Winkler [CRF03] similarity between pair-
wise combinations of labels provided by antivirus. This distance metric builds on the same
intuition as the edit distance (i.e., Levenshtein distance), but is directly normalized between 0
and 1. A similarity value of 1 implies the identically of strings while a value of 0 is indicative

75

CHAPTER 4. STASE: STATISTICS FOR MALWARE DATASETS

of high difference. We consider the minimum, mean and maximum of these similarity values
and represent their distributions across all applications. The median of mean similarity values
is around 0.6: on average labels only slightly resemble each other. The following research
question highlights the consensus that we attempt to measure:

Research question 9: Given a set antivirus and the ground truth that they produce, how
resembling are the labels assigned by antivirus for each detected sample?

We answer this metric with the Resemblance metric which measures the average similarity
between labels assigned by a set of antivirus to a given detected sample.

Ressemblance(L) =
1
m

m

∑
i=1

∑
n′i
j=1 ∑

n′i
j′=1 Jaro−Winkler(li, j, li, j′)

n′i(n
′
i−1)

with j 6= j′, li, j 6= /0, li, j′ 6= /0, li, j ∈B, li, j′ ∈B and n′i = positives(Ri),2≤ n′i ≤ n

• Interpretation estimation of the global resemblance between labels for each app

• Minimum 0 when there is no similitude between labels of an application

• Maximum 1 when labels are identical per application

Resemblance assesses how labels assigned to a given application would be similar across the
considered antivirus. This metric, which is necessary when Divergence is high and Consen-
suality is low, can evaluate if the differences between label strings per application are small or
large. Dbase, D f iltered and Dgenome present Resemblance values of 0.63, 0.57 and 0.60 respec-
tively. Combined with the Divergence metric values, we note that reducing the set of antivirus
has not yielded datasets where antivirus agree more on the labels.

4.4. Observations on malware datasets

Table 4.3 summarizes the metric values for the three settings described that researchers might
use to build ground truth datasets.

Table 4.3.: Summary of STASE Metrics for three common ground-truth settings
Equiponderance Exclusivity Recognition Synchronicity Uniformity Genericity Divergence Consensuality Resemblance

Dbase 0.27 0.31 0.09 0.32 0.001 0.97 0.77 0.21 0.63
D f iltered 0.59 0 0.36 0.75 0.01 0.87 0.95 0.05 0.57
Dgenome 0.48 0 0.48 0.41 0.04 0.82 0.87 0.06 0.60

The higher values of Recognition and Synchronicity for Dgenome and D f iltered in comparison
with Dbase suggest that these datasets were built with samples that are well known to be mali-
cious in the industry. If we consider that higher Recognition and Synchronicity values provide

76

4.5. RECOMMENDATIONS FOR EXPERIMENTS

guarantees for more reliable ground truth, then Dgenome and D f iltered are better ground truth
candidates than Dbase. Their lower value of Genericity also suggests that antivirus labels
provided are more precise than those in Dbase. At the same time, higher values of Equiponder-
ance and Uniformity imply that both antivirus detections and labels are more balanced across
antivirus.

Divergence and Consensuality values, however, suggest that the general agreement on an-
tivirus labels has diminished in Dgenome and D f iltered in comparison with Dbase. The Exclusiv-
ity value of 0 for Dgenome and D f iltered further highlights that the constraints put on building
those datasets may have eliminated corner cases of malware that only a few, if not 1, antivirus
could have been able to spot.

We also note that D f iltered has a higher Synchronicity value than Dgenome, indicating that its
settings lead to a selection of antivirus which was more in agreement on their decision. In
contrast, the Divergence values indicate that the proportion of distinct labels for each sample
was higher in D f iltered than in Dgenome, suggesting that decisions in Dgenome are more com-
fortable to interpret for each sample. Nevertheless, the classification of samples in malware
families would be more difficult because of the higher proportion of distinct labels to take into
consideration.

4.5. Recommendations for experiments

In this work, we have investigated the output of antivirus systems for Android applications.
Based on different metrics, we assessed the discrepancies between three ground truth datasets,
independently of their size, and question their reliability for evaluating the performance of
malware experiments. The main objective of our work is to provide means for researchers to
qualify their ground truth datasets, with respect to antivirus and their heuristics, to increase
confidence in research assessments. We also believe that our work can improve the repro-
ducibility of experimental settings, given the limited sharing of security data such as malware
samples.

Besides, our analysis of antivirus reports has exposed a global lack of consensus previously
highlighted by other authors on other computing platforms [BOA+07, BH08, Har09, MBSZ11].
Although our work cannot solve the challenge of naming inconsistencies directly, the metrics
we propose can evaluate ground truth datasets prior and posterior to their transformation by
other techniques [PU12, WMGH14, KTA+15]. To uncover the information contained in an-
tivirus reports, we propose that new approaches should be developed to understand the struc-
ture of malware labels and unify their output into a standard naming scheme.

77

Chapter 5.

EUPHONY: uni�cation of malware

labels

Android malware is now pervasive and evolving rapidly. Thousands of malware
samples are discovered every day with new models of attacks. The growth of these
threats has come hand in hand with the proliferation of collective repositories
sharing the latest specimens. Having access to a large number of samples opens
new research directions aiming at efficiently vetting apps. However, automatically
inferring a reference dataset from those repositories is not straightforward and
can inadvertently lead to unforeseen misconceptions. On the one hand, samples
are often mislabeled as different parties use distinct naming schemes for the same
sample. On the other hand, samples are frequently misclassified due to conceptual
errors made during labeling processes.

In this chapter, we mine antivirus labels and analyze the associations between
all labels given by different vendors to systematically unify common samples into
family groups. The key novelty of our approach, named EUPHONY, is that no
apriori knowledge on malware families is needed. We evaluate EUPHONY us-
ing reference datasets and more than 400 thousand additional samples outside of
these datasets. Results show that EUPHONY can accurately label malware with
a fine-grained clustering of families while providing competitive performance
against the state-of-the-art.

Euphony: Harmonious Unification of Cacophonous
Anti-Virus Vendor Labels for Android Malware

Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash,
Tegawendé F. Bissyande, Yves le Traon, Jacques Klein, Lorenzo Cavallaro

The 14th International Conference on Mining Software Repositories (MSR)
May 20-21, 2017. Buenos Aires, Argentina

Source code: https://github.com/ fmind/euphony

Dataset: https://androzoo.uni.lu/ labels

79

https://github.com/fmind/euphony
https://androzoo.uni.lu/labels

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

Table of Contents

5.1. Definition of labeling process . 83
5.1.1. Antivirus labels . 83
5.1.2. Sample sets . 84
5.1.3. Metrics . 85

5.2. Extraction of label information . 86
5.2.1. Parsing algorithm . 87
5.2.2. Heuristics rules . 89
5.2.3. Initial lexicon . 90

5.3. Clustering of malware families . 91
5.3.1. Associating family names . 91
5.3.2. Clustering family names . 91
5.3.3. Inferring family names . 93

5.4. Analysis of EUPHONY results . 93
5.4.1. Datasets and metrics . 93
5.4.2. Performance evaluation . 95
5.4.3. Evaluation of samples in the wild 97

5.5. Support of threat intelligence services . 98

80

Machine learning based approaches rely on ground truth datasets to training and evaluate
statistical models. Unfortunately, as Rossow et al. [RDG+12] pointed out, the literature ex-
hibits several shortcomings, including a lack of correctness, transparency, and realism in the
handling of malware datasets. In particular, reliable malware labels are a necessary input to
guarantee the quality of both malware detection and classification models.

Malware labeling, however, is not a trivial task. Manual labeling, where a human analyst in-
spects the actions of the malware in a bid to classify them, is prohibitively expensive, given
the number of malware samples discovered every day. In such a setting, it is reasonable to rely
on the collective judgment of antivirus vendors who specialize in malware labeling. However,
deriving a unified label from labels attached to samples by antivirus vendors is difficult. Incon-
sistencies in antivirus labels are indeed typical. As we reviewed in the previous chapter, several
inconsistencies were found in malware labels such as a global lack of consensus and a high
degree of divergence. These inconsistencies are due to both naming disagreements [KTA+15]
across vendors, and also a lack of adopted standards1 for naming malware.

Previous works have relied on simple heuristics to come up with unified labels based on as-
sessment reports of antivirus vendors. For the case of labeling malware as benign or malicious,
techniques have labeled a sample as malicious if at least one antivirus vendor flags it as ma-
licious or at least the majority of antivirus vendors have flagged it as malicious [ASH+14,
LNP15].

While such heuristics work for flagging samples as malicious or benign, labeling samples with
the specific class they belong to is fraught with difficulties. Antivirus vendors can choose dif-
ferent norms to name classes, prefixing qualifying attributes such as attack type (e.g., Trojan)
or platform (e.g., Android) to the label. What further complicates things is that it is not un-
common for typographic and orthographic inconsistencies to creep into the labeling process
not just across vendors but sometimes even for the same vendor. Consequently, a sample’s full
antivirus label is a poor indicator of its generic family name. For example, the family name
Adrd is “lost” in the full antivirus label Android.Trojan.Adrd.A (B).

In this work, we present EUPHONY, a tunable antivirus labeling system that can systemati-
cally extract information from antivirus labels and learns their patterns and vocabulary over
time. EUPHONY is an inference based system, which allows for end to end automation, re-
lieving practitioners from the need to collect, aggregate and verify malware families manually.
EUPHONY label unification scheme is also vendor agnostic. No specific rules about antivirus
engines (e.g., which label parts are suffixes to be removed) are encoded in the process as these
rules are inferred from the available antivirus labels data.

Figure 5.1 illustrates the high-level overview of the architecture of EUPHONY. As input, the
tool takes a collection of antivirus scanning reports. Such reports can be readily obtained
from online services such as VirusTotal [noa], which gathers shared intelligence from several
antivirus engines. Then for each sample, EUPHONY performs the following tasks:

1CARO and CME conventions are not widely used by antivirus vendors.

81

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

AV Scan Reports

Clustering of pair (AV, Family Names)

Multiple family
names per samples

high	level AV1 AV2 AV3
app1 android.adrd.a Trojan:/pjapps.1 pjapps.a	[trj]
app2 android.adrd.a Trojan:/adrd.1 adrd.a	[trj]
app3 android.ginger.a Adware:/gbreak.1 ginger.a	[ads]
app4 android.anserver.a Adware:/gbreak.1 anserver.a	[ads]
app5 android.adrd.a Trojan:/adrd.4 ginger.b	[trj]

AV1 AV2 AV3
app1 adrd pjapps pjapps
app2 adrd adrd adrd
app3 ginger gbreak ginger
app4 anserver gbreak anserver
app5 adrd adrd ginger

Single family
name per sample

Family
Name
Selection

Extraction
of

Label
Fields

First Stage

Second Stage

Third Stage

AV2,pjapps
1

AV3,pjapps
1

0.0 AV1,adrd
3

AV3,adrd
1

AV2,adrd
2

0.03
0.05

AV3,ginger
2 AV1,anserver

1

AV3,anserver
1

AV2,gbreak
2

AV1,ginger
1

0.00

0.05
0.06

0.06

cluster 1
cluster2

0.07

Inferred	Name
app1 adrd
app2 adrd
app3 ginger
app4 ginger
app5 adrd

Figure 5.1.: Overview of EUPHONY architecture

• First stage: antivirus labels are pre-processed to derive the family name assigned by
each vendor to a given sample. This task allows EUPHONY to deal with different
unstructured naming patterns used by the antivirus and the lack of convention motivates
it.

• Second stage: This task aims at structuring the relationship between different family
names and provides the most appropriate associations between them. EUPHONY anal-
yses both the correlation and the overlap between all family names to understand (i)
mislabeled and (ii) misclassified samples. While mislabeling a sample generally hap-
pens when many antiviruses use a different naming scheme for the same family (e.g.:
DroidKungFu vs. DrdKngFu), misclassifying a sample is usually associated with a
conceptual error made by an antivirus—with respect to the others (e.g., a vendor labels
a sample as GingerMaster while the others decide that belongs to DroidKungFu).

82

5.1. DEFINITION OF LABELING PROCESS

• Third stage: This task aims at bringing consensus between the different vendors and
outputs the most appropriate family name for a given sample. Although our framework
can also output a set of family names for a sample (i.e., synonyms), for the sake of
simplicity, we only report the most prevalent one.

We next describe the details of each of the components in EUPHONY as well as the choices
made during their design and implementation.

5.1. De�nition of labeling process

5.1.1. Antivirus labels

Definition 1 (Antivirus label). An antivirus label l is a sequence of words (i.e., alphanu-
merical tokens) wi divided by separators (i.e., blanks and punctuation signs) u j. Formally,
l = (w1,u1, . . . ,un,wn+1).

Android.Trojan.Adrd.A (B) is a concrete example of such a label, where ‘.’ (dot), ‘(’, ‘)’
(parentheses), and ‘ ’ (space) are the separators and Android, Tro jan, Adrd, A, and B are the
words.

Definition 2 (Antivirus label field). A label field f represents the category of a given word wi.

The word Android in Android.Trojan.Adrd.A (B) indicates the target platform of the mal-
ware, while Tro jan and Adrd indicate its type and family respectively. Overall, we define 4
fields that match details required in the CARO naming convention [SSB]: type (the kind of
threat, i.e., trojan, worm, etc.), platform (the OS that the threat is designed to work on, i.e.,
Windows, Android, etc.), family (the group of threats it is associated with in terms of behav-
ior), information (extra description of this threat, including its variant).

Grammars described in Table 5.1 and Table 5.2 below provide the lexing rules used by EU-
PHONY to tokenize antivirus labels.

Table 5.1.: Lexing rules of EUPHONY
<family> ::= [:alpha:]{3,}
<type> ::= [:alpha:]{2,}
<info> ::= [:alnum:]+
<plat> ::= [:alnum:]{2,}
<sep> ::= ([:punct:] | [:blank:])+

Definition 3 (Antivirus labeling pattern). Given an antivirus av, its corresponding antivirus
labeling Pattern, noted pav represents the syntax of its labels, i.e., how the different fields are
combined to form its labels.

83

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

Table 5.2.: Parsing rules of EUPHONY
<word> ::= <family> | <type> | <plat> | <info>
<label> ::= <word> | <sep> | <label>

We provide in Table 5.3 some illustrative examples of antivirus labels, their fields, and their
associated labeling patterns.

Table 5.3.: Examples of antivirus labeling patterns
Label AV Pattern Family Type Plat. Info

Android.Trojan.Adrd <plat>.<type>.<name> adrd trojan android –
Trojan:/Adrd.b <type>:/<name>.<info> adrd trojan – b

Android:PjApps [Trj] <plat>:<name> [<type>] pjapps trj android –
Troj.PjApps (kcloud) <type>.<name> (<info>) pjapps troj – kcloud
Android/Adrd.5e2f <plat>/<name>.<info> adrd – android 5e2f

5.1.2. Sample sets

We define a labeling function label_o f which associates a label to a pair (av,app) of antivirus
and application from a dataset:

Definition 4 (Labeling function). Let APP be a set of applications, antivirus a set of antivirus,
and L the set of associated labels.

The function label_o f : AV ×APP→L maps a pair of antivirus and application to a label.

From a given label, we further define a family function f amily_o f which extracts the family
field value.

Definition 5 (Family function). Let AV be a set of antivirus, APP a set of applications. Let be
L the set of labels such as L = label_o f (AV,APP), and F a set of associated family names.

The function f amily_o f : AV ×L →F maps a pair of antivirus and label to a family name.

For a given AV , we put together apps with the same family name in a set that we call Sample
Set. More formally:

Definition 6 (Sample set). Let APP = (app1,app2, ...,appn) be a set of app samples, and
F = (f1, f2, ..., fk) a set of associated families. For a given antivirus av, the sample set Sav, f j

defines the set of apps with the same family name f j. More formally,

∀ j ∈ (1, ...,k),Sav, f j = {appx ∈ APP| f amily_o f (av,appx) = f j}

84

5.1. DEFINITION OF LABELING PROCESS

5.1.3. Metrics

Sample sets can be disjoint or overlapping, and may be imbalanced. For instance, the sample
sets represented in the left of Figure 5.2 are imbalanced as the number of samples associated
with the family name fi by ava is much smaller than the number of samples associated with
family name f j by avb. Understanding when a sample set is imbalanced is important when
weighting the relevance of a label over another in a dataset.

x
x

Sav ,la i

x x

x
x

x

Sav ,lb j

1) Imbalanced Sample Sets

x x

x
x

x

Sav ,la i

x

Sav ,lb j

2) Overlapping Sample Sets

x
each x
represents
a different
appx

x
x
x
x

x
x

Sav ,fa i
x x

x
x

xSav ,fb j

1) Imbalanced Sample Sets

x x

x
x

x

Sav ,fa i

x

Sav ,fb j
2) Overlapping Sample Sets

x
each x
represents
a different
app

x

x
x
x
x

xx

Figure 5.2.: Examples of application sample sets

Definition 7 (Imbalance metric). Given two sample sets Sava, fi and Savb, f j , we define the Im-
balance metric as the complement between the minimum and maximum cardinality of the two
sample sets, formalized in Equation 5.1.

Im(Sava, fi,Savb, f j) = 1−
min(|Sava, fi|, |Savb, f j |)
max(|Sava, fi|, |Savb, f j |)

(5.1)

When both sets Sava, fi and Savb, f j have the same cardinality, there is no imbalance, and Im is
equal to 0. In contrast, imbalance Im gets close to 1 as Sava, fi contains fewer apps and Savb, f j

contains a lot more.

The right part of Figure 5.2 depicts overlapping sample sets, i.e., a scenario where several apps
have been associated at the same time with fi and f j by ava and avb respectively. This setting
suggests that, despite syntactic differences between both family names fi and f j, the family
names may characterize the same information (e.g., they point to the same malware). The
notion of overlapping is essential to assess whether family names should be merged. Thus, we
define the exclusion metric which quantifies the degree of overlapping, or lack thereof.

Definition 8 (Exclusion metric). Given two sample sets Sava, fi and Savb, f j , we define the Exclu-
sion Metric as the complement of the ratio between the intersection cardinality of two sample
sets Sava, fi and Savb, f j the cardinality of the smallest sample set. This metric is formalized by
Equation 5.2.

Ex(Sava, fi,Savb, f j) = 1−
|(Sava, fi ∩Savb, f j)|

min(|Sava, fi|, |Savb, f j |)
(5.2)

85

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

When the sets Sava, fi and Savb, f j share no app, there is no overlapping as their intersection is
empty, and Ex is at its maximum at 1. In contrast, as the overlapping gets higher, Ex gets close
to 0.

Given that family names may contain small syntactic differences, we consider a distance func-
tion to relax the equality constraint on strings. To that end, we define our String distance based
on the Sørensen–Dice index [Dic45].

Definition 9 (Distance metric of family names). The distance metric of family names is com-
puted as the string distance between two family names fi and f j:

D(fi, f j) = 1−dice(fi, f j) (5.3)

Finally, we measure how two family names fi and f j, given by the antivirus ava and avb
respectively, are far to designate the same malware family. More specifically, we compute the
distance between two samples sets Sava, fi and Savb, f j by combining the imbalance, exclusion
as well as the string distance metrics that we introduced. The following equation provides the
formula that we use:

Definition 10 (Sample set distance metric). Given two sample sets Sava, fi and Savb, f j , we define
the Sample Set Distance Metric as follows:

W (Sava, fi,Savb, f j) = α × Ex(Sava, fi,Savb, f j) + β × Im(Sava, fi,Savb, f j) + γ ×D(fi, f j) (5.4)

Where α , β and γ are weight coefficients for adjusting the importance of the different metrics
leveraged to compute the sample set distance. First and foremost, we consider that two family
names are close to each other only if there is a strong overlap (i.e., low exclusion) between
their associated sample sets. Thus, for example, it is not opportune to consider two family
names as similar if they do not occur concurrently for the same samples. Consequently, the
value of α will reflect the importance of the Ex metric. Second, the imbalance of sample sets is
considered to account for the degree of granularity within malware families. For example, an
antivirus might assign two family names to a sample set (e.g., ADRD, P japps) while another
antivirus might use only one (e.g., P japps) family name for all samples in the set. Finally,
the impact of typos, which may increase distances between sample sets, requires the string
distance to be the least weighted. We have empirically found that a difference of an order of
magnitude captures the best relative importance among the coefficients. Thus, in EUPHONY,
we set α , β and γ to 1, 1

10 and 1
100 respectively.

5.2. Extraction of label information

An antivirus label is an informally structured string concatenating various pieces of infor-
mation for describing the malware. In the previous section, we have identified four recurrent

86

5.2. EXTRACTION OF LABEL INFORMATION

fields in antivirus labels which are identifiable in labels: family, type, platform, and extra infor-
mation. Each vendor generally adopts a specific naming convention to represent and combine
these fields in a string. For example, while some vendors start with the platform first, followed
by the type and the name; other vendors opt to put the type first or enclose it between square
brackets at the end of the string. We further note that antiviruses change their convention over
time, varying field ordering and the punctuation signs that separate fields. In this context, the
normalization of their syntax cannot be achieved consistently via fixed rules such as regular
expressions.

Another crucial constraint in parsing antivirus labels is the lack of a complete, universal and
up-to-date lexicon. Indeed, new types, platforms, and family names are continuously added
by antivirus vendors to describe emergent threats, and refine the description of old threats.
Malware family names, in particular, are highly dynamic as new malicious behaviors appear
regularly.

With these limitations in mind, we propose several heuristics for mapping antivirus label to-
kens to a lexical field. The overall family name extraction process is described in Figure 5.3.
Given a collection of antivirus labels, the system can infer the most apparent fields and then
iteratively move to the most challenging cases as its knowledge grows. To bootstrap the pro-
cess, EUPHONY builds on heuristics based rules, as well as a bare amount of vocabulary
on some platform names (e.g., Android) and types (e.g., trojan). The final output which is
the family names given by each antivirus to the samples is obtained by inferring it from the
sample’s label for each vendor.

5.2.1. Parsing algorithm

The parsing algorithm is at the core of the labeling process and its steps are described in
Algorithm 1. The process takes as input a set of labels, some defined heuristics and an initial
knowledge database on malware lexicon. First, the algorithm tokenizes each antivirus label
and initializes the mappings between the tokens and the different label fields. At this stage,
a given token can be associated with all fields (name, type, platform or information). To
decide the unique field to which it should be assigned, the algorithm proceeds by iteratively
eliminating improper assignment, starting with the easiest cases: the order of processing is
conveyed by a priority queue (line 4), where mappings with the least amount of unknown fields
are pushed at the head of the queue, while mappings with the most amount of unknown fields
are pushed back at the end of the queue. At each step, the algorithm takes the first mapping
of the queue (line 6) and applies the heuristics based rules to collect more information about
the mapping (line 8). Then, it merges this information to create a new mapping. In case of
conflicts, the merge operation will always keep the oldest knowledge at its disposal.

If the mapping is complete at the end of this operation (line 11), i.e., if each token is associated
with a single field, this mapping is removed from the queue and its information pieces are
extracted to enrich the knowledge database (line 12). Otherwise, the mapping is pushed back
in the queue to be processed at a later iteration (line 14). Once the queue is empty, the mapping

87

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

AV Scan Reports

Parse labels
&

Extract family names

Multiple family
names per samples

high	level AV1 AV2 AV3
app1 android.adrd.a Trojan:/pjapps.1 pjapps.a	[trj]
app2 android.adrd.a Trojan:/adrd.1 adrd.a	[trj]
app3 android.ginger.a Adware:/gbreak.1 ginger.a	[ads]
app4 android.anserver.a Adware:/gbreak.1 anserver.a	[ads]
app5 android.adrd.a Trojan:/adrd.4 ginger.b	[trj]

AV1 AV2 AV3
app1 adrd pjapps pjapps
app2 adrd adrd adrd
app3 ginger gbreak ginger
app4 anserver gbreak anserver
app5 adrd adrd ginger

Transform
to a flat

sequence

Extraction of Label Fields

app1 -> (AV1,android.adrd.a),(AV2,Trojan:/pjapps.1),(AV3,pjapps.a	[trj])
app2 -> (AV1,android.adrd.a),(AV2,Trojan:/adrd.1),(AV3,adrd.a	[trj])
app3 -> (AV1,android.ginger.a),(AV2,Adware:/gbreak.1),(AV3,ginger.a	[ads])
app4 -> (AV1,android.anserver.a),(AV2,Adware:/gbreak.1),(AV3,anserver.a	[ads])
app5 -> (AV1,android.adrd.a),(AV2,Trojan:/adrd.4),(AV3,ginger.b	[trj])

Initial Knowledgeheuristics rules

Figure 5.3.: First stage - extraction of label fields from malware reports

88

5.2. EXTRACTION OF LABEL INFORMATION

Algorithm 1 Incremental Parsing by EUPHONY
1: Mapping← [name, type, plat f orm, in f ormation]
2: function PARSE(knowledgedb, heuristics, labels)
3: mappings← MAP(Mapping, labels)
4: pqueue← PRIO-QUEUE(mappings)
5: while NOT-EMPTY?(pqueue) do
6: m← PEEK(pqueue)
7: for H in heuristics do
8: f indings← H(knowledgedb,m)
9: MERGE(m, f indings)

10: end for
11: if COMPLETE?(m) then
12: ENRICH(knowledgedb,m)
13: else
14: PUSH(pqueue,m)
15: end if
16: end while
17: return mappings
18: end function

list is returned with the complete list of associations (line 17). To force early termination,
EUPHONY provides a parameter for setting a maximum number of iterations performed by
the algorithm.

5.2.2. Heuristics rules

We now provide details on the parameters of the algorithm. In our current implementation, we
rely on ten heuristic rules to find associations between words and fields. These rules are listed
in Table 5.4.

Let us consider two of the rules to illustrate the associated action. Rule 1 is the most straight-
forward heuristic. During its execution, EUPHONY accesses the database to check if the
word is already associated with a particular field. In particular, the word Android is commonly
known to match with the field platform. Thus, Rule 1 can leverage existing knowledge
to identify obvious fields. Rule 9, on the other hand, is tuned to create more knowledge
by inferring the field of an unknown token. For example, given the antivirus label ‘ran-
som.android.pjapps’ and its incomplete mapping [ransom: ?, android: platform, pjapps:
family], the algorithm can know at this stage that ransom is likely a type, and yield the
following antivirus labeling pattern: ‘<type>.<platform>.<name>’. This inference is vali-
dated by correlating with mappings for all samples of the same antivirus. Once the mapping is
complete, the inferred information will be added to the database and support the identification
of more tokens.

89

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

Property Action
1 Word is associated to a known field

in the database
associate the same
field

2 Word is suffixed by -ware word is a type
3 Word is between parenthesis word is an info
4 Word is between square brackets word is a type or info
5 Only one family, type and platform

per label
enforce when field is
found

6 Word is a synonym of a type or plat-
form in the database (e.g. troj, tro-
jan)

associate the same
field

7 Word is the last token not associated
to a field

word is a family

8 Words are part of common word
sentence

words are info

9 Label is compatible with a pattern
of the same AV

associate fields based
on pattern

10 Given two remaining tokens, one is
a common word and the other is not

common word: infor-
mation, other word:
family

Table 5.4.: Heuristics for mapping label words to fields

5.2.3. Initial lexicon

To bootstrap the inference process, our algorithm requires an initial lexicon about malware
labels. Generally, a small but widely accepted lexicon can be found online in specialized
knowledge bases. We stress that, in EUPHONY, such a lexicon does not have to be exhaus-
tive for our algorithm to work correctly. For example, in our experimental setting, we have
leveraged a limited lexicon including only most well know types, platforms, and information
enumerated by the Microsoft Malware Protection Center2. Table 5.5 provides statistics and ex-
amples of tokens contained in this list. In particular, we observed that important words such as
“Android”, “Malware” or family names are not present. We demonstrate the automated nature
of the inference system by relying only on this available lexicon without any modifications of
its entries.

Field # of Entries Example
TYPE 34 adware, backdoor, spyware, trojan, worm
PLATFORM 74 linux, androidos, iphoneos, java, win32
INFORMATION 18 dll, rootkit, plugin, pak, gen

Table 5.5.: Initial database entries of EUPHONY

2Malware Naming Conventions: http://bit.ly/2f3vKlu

90

http://bit.ly/2f3vKlu

5.3. CLUSTERING OF MALWARE FAMILIES

5.3. Clustering of malware families

After parsing malware labels to identify family names given by different antivirus to each sam-
ple, EUPHONY builds a graph representing the association links between family names based
on their assignment on some samples. Then, based on a threshold parameter that determines
the granularity of grouping, clusters of family names are separated. Figure 5.4 provides an
overview of the process. In the rest of the chapter, we will often use the terms “name” instead
of the full expression “family name”.

5.3.1. Associating family names

At the end of the previous stage, EUPHONY has a new dataset where each sample is associ-
ated with multiple malware family names reported by antivirus. These potentially syntactically
different names may include mislabeling noises and misclassification errors, which make the
process of selecting unique names more difficult.

We study the associations between antivirus family names to group together commonly related
names. We found that the most natural method to analyze potential associations was to con-
struct a weighted graph G = (N,E), where a node n ∈ N represents a name that an antivirus
assigned: n = (ava,name), and an edge e = [(ava,namex),(avb,namey)] ∈ E indicates that
both antivirus ava and avb have labeled the same sample with namex and namey respectively.
From the information attached to a node, EUPHONY can identify the corresponding Sample
Set Sava,name and computes, for each node, the size of its sample set (i.e., the number of times
the family name is given by that antivirus in the dataset). It also computes, for each edge, the
overlapping between the related sample sets (i.e., the number of times antivirus agree on the
name given at that node). Both pieces of information are then used to compute the Imbalance
and Exclusion metric, and eventually the Sample Set Distance metric, also taking into account
the string distance between family names. Imbalance and Exclusion metric values are used
as edge attributes in the graph, while the Sample Set Distance metric value is used as the
edge weight (in Figure 5.4 only the edge weight is represented). Note that the weight of an
edge represents the degree to which the sample sets associated with the connected nodes are
dissimilar: the lower the weight, the more likely both sample sets belong to the same cluster.

5.3.2. Clustering family names

Given the large number of associations that we have observed among family names in our
datasets, we expect the weighted graph to be highly connected and thus include very few iden-
tifiable subgraphs. For instance, a generic name can create additional edges with more specific
names and thus tie together components that were otherwise weakly related. Processing mis-
takes during label fields extraction can also introduce fake associations among family names.
It is therefore essential to remove such undesired associations from the graph and only keep

91

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

Multiple family
names per samples

AV1 AV2 AV3
app1 adrd pjapps pjapps
app2 adrd adrd adrd
app3 ginger gbreak ginger
app4 anserver gbreak anserver
app5 adrd adrd ginger

app1
cluster1

(AV1,adrd)
(AV2,pjapps)
(AV3,pjapps)

app2

cluster2

(AV1,adrd)
(AV2,adrd)
(AV3,adrd)

app5
(AV1,adrd)
(AV2,adrd)
(AV3,ginger)

app3 cluster3

(AV1,ginger)
(AV2,gbreak)
(AV3,ginger)

app4

cluster4

(AV1,ansever)
(AV2,gbreak)
(AV3,ansever)

Clustering of pair (AV, Name)

Majority Voting

Transform
to

Weighted
Graph

Graph Structure
(associations)

Sample Set
Similarity Metric

Transform to Tree

AV1,adrd
3

AV2,pjapps
1

AV3,pjapps
1

AV3,adrd
1

AV2,adrd
2

AV3,ginger
2

AV1,anserver
1

AV3,anserver
1

AV2,gbreak
2

AV1,ginger
1

0.0

0.00

0.030.0660.07

0.54

0.07

0.05

0.51

0.51
0.05

0.06 0.06

0.06

Tree Structure

AV1,adrd
3

AV2,pjapps
1

AV3,pjapps
1

AV3,adrd
1

AV2,adrd
2

AV3,ginger
2

AV1,anserver
1

AV3,anserver
1

AV2,gbreak
2

AV1,ginger
1

0.0

0.000.03

0.07

0.05

0.51 0.05
0.06

0.06

TRIM Step

CutThreshold CUT Step

Single family
name per sample

AV2,pjapps
1

AV3,pjapps
1

0.0 AV1,adrd
3

AV3,adrd
1

AV2,adrd
2

0.03
0.05

AV3,ginger
2 AV1,anserver

1

AV3,anserver
1

AV2,gbreak
2

AV1,ginger
1

0.00

0.05
0.06

0.06

cluster 1
cluster2

Cluster Naming: majority voting (based on node attributes)

family name
Replacement

Family Name Selection

0.07

Cluster 1 <- adrd
Cluster 2 <- ginger

AV1 AV2 AV3
pjapps pjapps
adrd adrd

app2 adrd adrd adrd
gbreak
ginger

anserver gbreak anserver
ginger ginger ginger

app5 adrd adrd ginger

app3

app4

ginger ginger

app1 adrd Inferred	Name
app1 adrd
app2 adrd
app3 ginger
app4 ginger
app5 adrd

Figure 5.4.: Second stage - clustering & Third stage - inference of family name

92

5.4. ANALYSIS OF EUPHONY RESULTS

subgraphs with strongly related nodes. To that end, we build a technique that comprises two
successive steps, referred to as TRIM and CUT:

• In the TRIM step, we use Prim’s algorithm [Pri57] to transform the graph into a Min-
imum Spanning Tree (i.e., the sum of its edge weights is minimum). The goal of this
operation is to reduce the complexity of the original structure and keep the most simi-
lar edges as long as they do not introduce cycles in the graph. The complexity of this
algorithm is O(|E| log |N|) in our current implementation.

• The CUT step takes the tree structure and applies a filter function to remove edges
whose weights exceed a given threshold value. As a result, the input tree is divided
into connected components that can be interpreted as clusters of strongly related family
names. The complexity of this algorithm is O(|E|) in our implementation.

5.3.3. Inferring family names

In the last stage, we study the relation between the different family names to assess the preva-
lence of predominant naming schemes used by the different antivirus. In particular, we cre-
ated a list of associations that put in relation all family names within the cluster where they
are grouped. More specifically, we first associate a single name to each cluster. This name is
inferred as the most frequent name present in the cluster by taking into account the attribute
of each node. In the step illustrated at the bottom of Figure 5.4, cluster 1 is associated with
adrd and cluster 2 to ginger. Then, each family name present in a cluster is replaced by the
cluster name. For instance, in Figure 5.4, p japps given by AV 2 is replaced by adrd. More
generally, in this example, all occurrences of p japps are replaced by adrd and all occurrences
of anserver or gbreak by ginger.

Once the replacements are done, to infer a single family name per sample, we implement a
majority voting where we compute the frequency of each family name and select the most
frequent one per sample. In the case of a tie, we use the highest frequency of the names within
the dataset to choose between the candidates and break the conflict.

5.4. Analysis of EUPHONY results

5.4.1. Datasets and metrics

The evaluation of EUPHONY is based on two different sets of samples: (i) reference datasets,
and (ii) an in the wild dataset. We next describe the source of each of the datasets used (see
Table 5.6 for a summary) and the metrics used to evaluate our approach.

Reference datasets: These datasets have been distributed by the research community together
with a reference ground truth of malware families, and have been widely used in the literature

93

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

recently [ASH+14, DSTK+16, LNP15]. For our study, we consider MalGenome [ZJ12], a
dataset manually vetted and collected between 2008 and 2010, and which includes 1 262 sam-
ples regrouped into 44 families. Similarly to previous works [SRKC16], we update this dataset
by grouping into a single family all variants of DroidKungFu (DroidKungFu1, DroidKungFu2,
DroidKungFusApp, etc.). Additionally, we also consider Drebin [ASH+14], a dataset col-
lected between 2010 and 2012, and which includes all samples from MalGenome as well as
an additional set of 3 998 more samples. Drebin includes 178 families.

In the wild dataset: We collected recent samples from Androzoo [ABKT16], a repository that
shares samples from a variety of sources as well as their antivirus labels provided by Virus-
Total. For our study, we leveraged the public download API and retrieved 402 600 samples
created between January 2015 and August 20163. We ensured that all samples were classified
as malware by at least one antivirus4.

Table 5.6.: Datasets used in EUPHONY evaluation
Reference Wild Samples Families Anti-Virus Collection Period

MalGenome [ZJ12] 7 1 262 44 58 08/2008 - 10-2010
Drebin [ASH+14] 7 5 260 178 57 08/2010 - 10/2012

Androzoo [ABKT16] 3 402 600 unknown 63 01/2015 - 08/2016

Evaluation metrics: Let S be a sample dataset, G = {G1, . . . ,Gs} be the set of s “ground
truth” clusters from S, and C = {C1, . . . ,Cn} be the set of n clusters output by a given tool over
S. Similarly to previous works [SRKC16], we define the following metrics:

• Precision: Prec = 1
n ×∑

n
j=1 maxk=1,...,s(|C j∩Gk|)

• Recall: Rec = 1
s ·∑

s
k=1 max j=1,...,n(|C j∩Gk|)

• F1 score: F1 = 2× Prec×Rec
Prec+Rec

While precision measures the effectiveness of a tool to map outputted clusters into ground
truth clusters, recall quantifies the effectiveness of the tool to map ground truth clusters into
outputted clusters. Finally, the F Measure represents the harmonic mean between precision
and recall.

In this chapter, we first investigate the precision and recall reported when clustering malware
samples in the reference datasets. These metrics allow us to compare our approach with previ-
ous works quantitatively [SRKC16]. We then use the samples collected in the wild to evaluate
several statistical metrics such as the number of families, the number of singletons and the
most relevant labels.

94

5.4. ANALYSIS OF EUPHONY RESULTS

0.00 0.02 0.04 0.06 0.08 0.10
Threshold value

70
75
80
85
90
95

100
F

1
sc

or
e

dataset

drebin
genome

Figure 5.5.: Parameter selection of the threshold value

Table 5.7.: Performance of EUPHONY against state-of-the-art (in %)
EUPHONY AVClass

- AVClass Config 1 AVClass Config 2 AVClass Config 3 AVClass Config 4
- as reported in [SRKC16] with default files in Git new aliases only new generics & aliases

Dataset Prec Rec F1 # Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
MalGen. 86.7 99.7 92.7 33 87.2 98.8 92.6 86.5 98.0 91.9 86.2 99.0 92.1 53.9 65.2 59.0
Drebin 95.0 96.1 95.5 142 95.2 92.5 93.9 95.4 93.0 94.2 95.6 90.6 93.0 29.6 69.8 41.6

5.4.2. Performance evaluation

EUPHONY uses a threshold to control the clustering sensitivity by breaking edges whose
weight exceeds the given value. On Figure 5.5, we observed that a threshold of 0.07 repre-
sented an excellent trade-off between noise reduction and accuracy.

We now evaluate the performance reported over the reference datasets. The leftmost part
of Table 5.7 shows the precision, recall and F1 measure for EUPHONY. Results show that
clustering MalGenome is, overall, more challenging than clustering Drebin, with a F1 measure
of 92.7% and 95.5% respectively.

These results can be explained by looking at the precision, which shows that not all predicted
clusters can be mapped to their respective reference clusters. Interestingly, the score obtained
for the recall indicates that almost all referenced clusters (i.e., 99.7% of the malware families)
in MalGenome have been correctly predicted. Instead, only 96.1% of the referenced clusters
in Drebin have been correctly predicted.

When analyzing MalGenome results, we observe that some antivirus prefer to combine some
reference clusters to form one single super family. For instance, families ADRD (22 sam-
ples) and P japps (58 samples), are perceived as one large family called P japps∗ (with 80
samples). Similarly, BaseBridge (122 samples) and AnserverBot (187 samples) are perceived
as Basebridge∗ (with 309 samples). This is understandable as authors in [ZJ12] believe that
AnserverBot evolved from BaseBridge, inheriting common features. Other recent works have
also confirmed this and pointed out that some other families are also strongly related to each
other [STTPLB14]. Based on this, one can conclude that the perception of the antivirus is,

3Androzoo bases its timeline on the DEX compilation date.
4Overall, the samples were labeled by 63 antivirus

95

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

in some general cases, more coarse-grained. Thus, they can treat two similar clusters as one
single family.

As for the results obtained with Drebin, we found some cases where the antivirus agree on us-
ing a more fine-grained definition of some families than the one given in the reference ground
truth. For example, most of the samples from the reference family Op f ake (952 samples)
are subdivided into two sub families, i.e., Op f ake (546 samples) and SMSSend (25 samples).
Similarly, most of the samples in ExploitLinuxLotoor (70 samples) are subdivided into three
subfamilies: Lotoor∗ (58 samples), GingerBreak (9 samples) and AsRoot (8 samples).

Comparison against the state-of-the-art

To provide further insights on the performance achieved by EUPHONY, we compare our re-
sults with AVClass [SRKC16]. Since the authors have analyzed their approach on MalGenome
and Drebin datasets, we use the results in their paper as our evaluation baseline (Table 5.7, AV-
Class Config 1). We also replicate their experiments by taking into account the difference
between the inputs requirements of both tools. On the one hand, EUPHONY uses a small list
of some well-known words (not including family names) about malware labels. On the other
hand, AVClass requires a list of malware families to construct a set of generics tokens and
aliases. These sets are built in a two-step process. First, AVClass uses the list of malware
families to distinguish these family tokens from other so-called generics tokens (e.g., types,
platforms, information). Second, AVClass strips generics tokens from malware labels to dis-
cover aliases among malware family names. Finally, the sets of generics tokens and aliases
are leveraged to produce the final output of the tool: a single family name per malware sam-
ple using a plurality voting. Several factors may thus impact the performance of AVClass,
including the exhaustiveness of the inputted list of malware families, and the error rate in
the generation of the sets of generics and aliases. Consequently, we consider three different
scenarios for our evaluation:

• An updated version of AVClass—we use the last version of the tool released on GitHub,
taking into account recent code fixes, as well as updates to complete the list of generic
terms and aliases5. The results are reported in Table 5.7, AVClass Config 2.

• Automatic inference of aliases only—we use the authors’ script with the default settings
to generate a list of aliases based on our two reference datasets (Table 5.7 Config 3).

• Automatic inference of both generics and aliases—we use the authors’ scripts with
the default settings on the union of our two reference datasets to build the knowledge
necessary to AVClass’s functioning (Table 5.7 Config 4).

All results are reported in Table 5.7. For all four configurations, EUPHONY performs better
than AVClass in terms of F1 score (harmonic mean between precision and recall). Nonethe-
less, we observed that their precision is comparable to ours in those configurations where prior

5AVClass repository cloned on Oct 24, 2016. Commit head: 80c14adcc29978ab813b41c73dd485072e576140

96

5.4. ANALYSIS OF EUPHONY RESULTS

knowledge (aliases and generic terms) is provided. When we inferred both (i) aliases, and (ii)
aliases and generic terms using the samples given in the reference datasets (i.e.,: MalGenome
and Drebin)6, we observed that the performance drops drastically. Typical families included
in Config. 4 are: android (537 samples), trojan (377 samples) and basebridge (68 samples).
These observations show that the performance of AVClass is driven by the input of an initial
knowledge—which should be collected by the final user. In contrast, EUPHONY does not
require any guiding process or pre-defined knowledge of the families. The only prior knowl-
edge required by our framework is a basic understanding of some common types of malware
(i.e., trojan, virus, etc.), execution platforms (i.e., android, linux, Win32, etc.) and information
(e.g., dll, pak, gen).

5.4.3. Evaluation of samples in the wild

This section reports our experiments in the wild. We analyze the number of samples that
EUPHONY can group with respect to AVClass. Note that in this section we report results
using the same experimental setting used above. As for AVClass, we choose the most favorable
configuration7. Table 5.8 summarizes the results obtained on the Androzoo dataset.

Table 5.8.: Results of EUPHONY for Androzoo (402 600 samples)
Labeled Clusters Singletons Runtime

EUPHONY 319 100 735 165 216s
AVClass 178 471 453 135 114s

Results show that EUPHONY managed to cluster 79% of the samples (319 100 out of 402 600).
In contrast, AVClass clustered 44% (178 471 out of 402 600). These results mean that a prac-
titioner using AVClass would not obtain labels for more than half of the recent dataset. This
can be partly explained by the strategy used by AVClass to handle generic terms in labels, as
well as aliases in family names.

On the contrary, our approach does not present distinctions between generic and specific mal-
ware families, and may thus find more associations. This can further provide a better under-
standing of the appropriate set of samples in every cluster. In this regard, EUPHONY has
split the dataset into 735 clusters and produces 165 clusters with one single sample (namely,
singletons). Instead, AVClass proposed 453 clusters and 135 singletons. Note that the runtime
overhead of EUPHONY is negligible compared to AVClass, even in this setting where the
creation of generics tokens and aliases for AVClass was skipped.

Table 5.9 shows the Top 10 clusters (in terms of size) for both EUPHONY and AVClass. Both
approaches report clusters of the same order of magnitude and with similar family names.

6Note that AVClass published results [SRKC16] were obtained using the knowledge on aliases and generics
that was built from larger datasets

7This is, using the default lists of aliases and generics collected by the authors. These lists may have been
manually improved to guarantee the labeling system out of the lab

97

CHAPTER 5. EUPHONY: UNIFICATION OF MALWARE LABELS

Table 5.9.: Top 10 clusters of EUPHONY and AVClass
EUPHONY AVClass

Family Samples Family Samples
dowgin 37 739 kuguo 38 532
kuguo 25 005 dowgin 22 643

addisplay 20 862 secapk 20 492
jiagu 20 705 airpush 13 209

anydown 19 621 jiagu 8 987
secapk 18 224 smsreg 8 427
generic 17 836 feiwo 7 399
agent 17 596 revmob 6 376

inmobi 16 203 leadbolt 5 348
airpush 13 267 anydown 5 147

This table indicates that EUPHONY reaches similar conclusions than AVClass for the most
popular families, but without prior knowledge of generic families.

We can also observe that our approach can deal with generic antivirus labels. For instance, a
common field used by antivirus is “trojan.androidos.generic.a”, with 94 255 occurrences (4%).
We can further observe 576 261 occurrences (23%) of the string “gen” in the list of labels. This
result contrast with the most occurring family, Dowgin, with 311 593 times (14%). Moreover,
it explains the lack of coverage reported by AVClass. We position here that being aware of
these types of clusters are important to filter out samples that might interfere with the proper
classification of other clusters. In practice, adware and other type of grayware [STTPLR14]
could be identified. Nevertheless, to account for corner cases where a generic term is selected
as a family name, practitioners can inject into EUPHONY their knowledge on how a specific
token must be associated with a label field. Since a significant portion of samples remained
unlabeled by AVClass and EUPHONY, we only consider the subset of samples that are la-
beled by both tools to investigate the similarities and differences among reported clusters. We
provide in Table 5.10 the statistics on the new Top 10 clusters (dropping samples that are un-
labeled by either tool) and information on the extent to which they overlap. Most top families
strongly overlap. For example, Dogwin, the most prevalent family in EUPHONY, overlaps
with the also labeled Dogwin family in AVClass with a ratio of 95%. For 7 of the top 10
clusters given by EUPHONY, we find that the corresponding cluster by AVClass overlaps at
over 85%. If we take the particular case of samples labeled as Kuguo by AVClass, EUPHONY
splits them into mainly three families (kuguo, addisplay, hiddeninstall) with an overlap of
99%, 54%, and 93% respectively.

5.5. Support of threat intelligence services

As the lack of human experts disrupts our ability to analyze malware in the large [ICS18],
threat intelligence services will become essential to enable the detection and the classification

98

5.5. SUPPORT OF THREAT INTELLIGENCE SERVICES

Table 5.10.: Top 10 clusters of EUPHONY compared to AVClass
EUPHONY AVClass Intersection

Family samples Family samples samples overlap (in %)
dowgin 33 297 dowgin 22 617 21 035 93.0
kuguo 24 273 kuguo 38 532 24 072 99.2
secapk 17 889 secapk 20 492 17 825 99.6

addisplay 11 203 kuguo 38 532 6 055 54.0
airpush 10 055 airpush 13 202 10 017 99.6
jiagu 7 215 jiagu 8 987 7 211 99.9

smsreg 6 294 smsreg 8 427 5 819 92.5
agent 6 088 feiwo 7 399 1 014 16.7

revmob 6 061 revmob 6 376 6 058 99.9
generic 5 663 anydown 5 147 1 890 36.7

of Android malware further. Online services such as VirusTotal already contribute to this
effort by providing diversified antivirus labels for malware samples. However, the results of
VirusTotal cannot be leveraged as-if to support the creation of ground truth datasets due to
the lack of naming convention between antivirus engines. With EUPHONY, we developed
a state-of-the-art approach that unifies the output of antivirus systems and assigns valuable
information from the knowledge embedded in antivirus labels.

EUPHONY improves over AVClass by overcoming its main limitations of requiring a sub-
stantial amount of initial knowledge on malware families and antivirus vendors to bootstrap
the labeling process. Moreover, reference datasets need to be regularly updated without prior
knowledge on generic terms that antivirus vendors use to label samples as new malware fam-
ilies appear. From a small and relatively stable list of common tokens, EUPHONY can (1)
infer missing information on tokens in antivirus label strings using heuristics, and (2) group
similar families together according to a comprehensive distance metric that takes into account
typos in naming, imbalance in label assignment among antivirus sample sets, and overlapping
of sets. While EUPHONY can be used off-the-shelf, without any requirement of expertise
on malware labels, advanced users may also build on top of our framework and specify their
heuristics, metrics or knowledge of malware labels to build their unification process.

Since the creation of better ground truth datasets is an important objective toward the devel-
opment and the adoption of machine learning based systems, the security community must
continue to provide a better interpretation on the relation between malware families and their
structural features. Recent approaches [STDA+17] have been efficient at identifying syntac-
tic and resource-centric features that characterize Android malware. We position that adding
these features to our algorithm could contribute to alleviate disagreements among antivirus
vendors and support the extraction of malicious artifacts associated with specific malware
families.

99

Chapter 6.

AP-GRAPH: dissection of malware

artifacts

Android markets such as Google Play must continuously protect their users against
exposure to malicious applications. In this arms race, up-to-date information is
crucial to adapt security solutions to the current malware landscape. However,
despite the most recent efforts of the research community, this knowledge is still
severely lacking. On the one hand, our understanding of malicious applications
comes from private companies who are not willing to share their information. On
the other hand, recent techniques developed to characterize malicious applica-
tions are generating too much data for manual reviews.

In this chapter, we propose AP-GRAPH as a solution to address these two chal-
lenges. AP-GRAPH can analyze large sets of malicious applications at scale and
find their most discriminative artifacts based on the partial knowledge provided
by antivirus solutions. We evaluated our approach on 1 million Android malware
and observed that AP-GRAPH identified the specific characteristics of a dozen of
malware families. Moreover, AP-GRAPH is capable of reducing the number of
artifacts generated by other characterization approaches to limit the noise gen-
erated by such techniques. This information can help the research community in
locating the malicious parts hidden inside malware applications and recommend
the inspection of suspicious artifacts to security experts.

This chapter is based on yet unpublished material.

Database: https://androzoo.uni.lu/apksearch

Analysis: https://androzoo.uni.lu/apklyze/

101

https://androzoo.uni.lu/apksearch
https://androzoo.uni.lu/apklyze/

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

Table of Contents

6.1. Specification of malware artifacts . 103
6.1.1. Information retrieval . 104
6.1.2. Information indexing . 105
6.1.3. Information analysis . 107

6.2. Creation of malware knowledge base . 108
6.2.1. Architecture A: Datomic . 108
6.2.2. Architecture B: Flat file . 109
6.2.3. Architecture C: Elastic . 110

6.3. Characterization of malware families . 111
6.3.1. Dataset . 111
6.3.2. Performances . 115
6.3.3. Case studies . 117

6.4. Evolution of malware families over time . 121
6.4.1. ESET NOD32 - Igexin . 121
6.4.2. EUPHONY - AppsGeyser . 122
6.4.3. G DATA - SMSpay . 123

6.5. Challenges of malware classification . 123
6.5.1. Obfuscation and variations . 123
6.5.2. Noisy antivirus classifications . 124
6.5.3. Going from correlation to causation 125

102

6.1. SPECIFICATION OF MALWARE ARTIFACTS

To improve the security of Android markets, research groups around the world have devel-
oped machine learning based systems that detect malicious applications before they impact
mobile users [BZNT11, WJ12, WMW+12, GYAR13, ADY13, CGC13, ASH+14, CWL+15,
AQR+16, MOA+17]. Even though these systems have been effective in the lab, their adop-
tions have been comparatively stalled in real-world use cases [ABJ+16, SP10, CSD+17,
RDG+12]. One reason to explain this lack of success is that the proposed systems must rely
on an extensive set of qualified samples to learn the boundary between benign and malicious
applications properly. Unfortunately, the constant evolution of malicious applications makes
the validation of malware samples a bottleneck, as human resources are not sufficient to vet
ground truth datasets at such scale [ICS18].

As an alternative, the security community relies on antivirus engines to classify malware sam-
ples before their use in machine learning experiments. However, this approach is not without
flaws. Industrial actors do not share the details of their analysis to the public as it would
threaten their business model. At best, antivirus reports provide a condensed label that men-
tions the type and the name of a malware. Without a transparent database of knowledge,
supervised learning systems cannot be trained for explaining and locating malicious behaviors
concealed inside malicious applications. Moreover, this limitation prevents our community
from working with more precise malware definitions and limits our ability to fine-tune our
detection systems to the most advanced threats.

In this work, we propose a data mining solution named AP-GRAPH to uncover artifacts as-
sociated with malicious behaviors of Android malware families. With only the information
provided by antivirus engines, AP-GRAPH can isolate the specific components of a malware
family, categorize their nature and locate their presence inside applications. The information
we collect can then be used for two primary purposes. On the one hand, security analysts
can adopt AP-GRAPH as a triage system to evaluate which artifacts are good candidates and
find malicious behaviors in unknown malware samples. On the other hand, the output of AP-
GRAPH can characterize the distinctive aspects of a malware family to complement the use
of machine learning based systems and vet large malware ground truth datasets at scale.

6.1. Speci�cation of malware artifacts

Threat # 2

- artifacts

- description

Threat # 1

- artifacts

- description

 Malicious
Applications Artifact

Extraction

Threat
Extraction Artifact

Selection

Artifact
Scoring

Indexing

w

y
x

z

A C

B

D

Analysis Retrieval

Antivirus
Scan Reports

Figure 6.1.: Architecture of AP-GRAPH divided into 3 stages

103

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

The goal of our approach is to find the internal components that are specific to malware family
by using the information publicly available to the security community: a broad set of malicious
applications and antivirus scan reports.

The overall approach of AP-GRAPH can be summarized in Figure 6.1.

In this section, we will detail the process used to retrieve, index and analyze this informa-
tion.

6.1.1. Information retrieval

6.1.1.1. Family extraction

A family t is a name given to a group of malware t = {p1,p2, ...,pn} that shares the same ar-
tifacts {a1,a2, ...,am}. Given a Classifier C , we define the Scanning Function S (p,C) = t
that associates a family t to an application p. In this context, an antivirus product can be
reduced to a Scanning Function S that returns a label. An antivirus label contains various in-
formation about the malware, such as its type, name and execution platform. In our approach,
the family is only associated with the name included in the antivirus label.

Unfortunately, extracting information from antivirus labels is not a trivial process, as other
researchers found that the naming convention followed by antivirus products is not standard
across industrial vendors [Bon05, Har09]. Moreover, the ability of antivirus to correctly clas-
sify malware varies greatly across products as we demonstrated in Chapter 4. In order to
collect this information, we rely on EUPHONY Chapter 5 to achieve state-of-the-art results in
unifying the labels of multiple antivirus vendors.

We further note that the selection of families {t1, t2, ..., tn} and classifiers {C1,C2, ...,Cn} is
independent of the approach presented in this chapter. Any clustering of malicious applica-
tions can be used as source material in attempting to identify the artifacts specific to a given
malware family. In particular, we note that multiple taxonomies can be tested in parallel, as
the extraction of artifacts is independent of the extraction of families during the later stage of
the analysis. The only requirement is that the families provided to AP-GRAPH are associated
with more than one malicious applications.

6.1.1.2. Artifact extraction

We define the artifact a of an application p as internal components such that a⊂ p. Artifacts
are collected through an Extraction function E (p)→ {a1,a2, ...,an} associated with either
a static or dynamic analysis. The Verification Function V (a,p,E)→ {True,False} can
validate that an artifact a either exists or does not exist inside an application p, given an
Extraction Function E as a parameter.

The output of the Verification Function V is represented by a boolean value such that

104

6.1. SPECIFICATION OF MALWARE ARTIFACTS

• V (a,p,E) = True when a ⊂ p: the artifact a exists inside the application p given the
Extraction Function E .

• V (a,p,E) = False when a ⊂ p: the artifact a does not exist inside the application p
given the Extraction Function E .

Every artifact a must be encoded by an Indexing Function I (a)→ i to guarantee that each
a is associated with a unique identifier i and each a can be located unambiguously inside
an application p. Thus, the Indexing Function I is a bijection from the set of artifacts
{a1,a2, ...,an} to the set of identifiers {i1, i2, ..., in}. The Locating Function L (i)→ a is
the inverse of the Indexing Function, such that L (I (a)) = a.

The nature of an artifact a depends on the Extraction Function E that was chosen for the
analysis. For instance, static analysis retrieves a list of symbols and constants from the source
code of an application. On the other hand, dynamic analysis executes the application to gather
system calls and memory footprints. These elements can constitute a set of artifacts as long as
we can define an Indexing Function and a Locating Function for them.

6.1.2. Information indexing

6.1.2.1. Data models

App #1
DOWGIN

App #3
DOWGIN

App #2
KUGUO

perm:INTERNET method:loadJava

file:root.exe

class:Kuguo

cert:#F6D8

string:Ransom

Figure 6.2.: Indexing graph produced by AP-GRAPH: applications are represented as ellipses
nodes and artifacts are represented as rectangle nodes.

The Indexing Graph g is a data structure that stores the relations between a set of applica-
tions {p1,p2, ...,pm} and a set of artifacts {a1,a2, ...,an}. These elements are represented as
nodes in the indexing graph and can contain additional attributes such as the family associated
with a malicious application. More formally, the set of nodes of the Indexing Graph can be
defined as N = {p1,p2, ...,pm}∪{a1,a2, ...,an}. The edges of the graph are retrieved by the
Verification Function V and represent the inclusion of an artifact a in an application p when

105

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

V (a,p) = True. More formally, the set of edges of the Indexing Graph can be defined as
N = {(pi,a j)|V (aj,pi) = True}.

Figure 6.2 shows an example of an Indexing Graph for a small set of applications and artifacts.
Nodes that are applications are represented with elliptical forms and nodes that are artifacts
are represented with rectangular forms. We can see that applications #1 and #3 are associ-
ated with the dowgin family, while application #2 is associated with the kuguo family. The
relation between the applications and the artifacts are represented with arrows in our graph.
Thus, application #1 is associated with 3 artifacts in this case: perm:internet, cert:#f6d8 and
file:root.exe. It is also possible that generic artifacts are included by different families, like the
artifact method:loadJava which is included by application #1 (dowgin) and #2 (kuguo).

6.1.2.2. Data queries

The main benefit of the Indexing Graph compared to other data structures is that it offers the
ability to navigate efficiently between artifacts and applications. Given an application p, we
can easily retrieve all the artifacts {a1,a2, ...,an} that are associated with p. Similarly, we can
also retrieve all the applications {p1,p2, ...,pn} that are associated with artifact a.

More formally, let us note g an Indexing Graph, pi an application, and a j an artifact, we define
the following queries that are supported by AP-GRAPH. For each query, we also provide an
example based on the graph from Figure 6.2:

1. Q1(g,p) = {a1,a2, ...,an} ∈ p: retrieve the set of artifacts {a1,a2, ...,an} that are in-
cluded in application p

• Q1(g,App#2) = {class : Kuguo,method : loadJava}

2. Q2(g,a)= {p1,p2, ...,pn}3 a: retrieve the set of applications {p1,p2, ...,pn} that include
artifact a

• Q2(g,method : loadJava) = {App#2,App#3}

3. Q3(g,a) = {t : a∈ p∧ t 3 p}: retrieve the set of families {t1, t2, ..., tn} that are associated
through the set of applications {p1,p2, ...,pn} that includes artifact a

• Q3(g,method : loadJava) = {dowgin,kuguo}

4. Q4(g,a) = | Q2(g,a) |: compute the total number of applications that include artifact a

• Q4(g,string : Ransom) = 1

5. Q5(g, t,a) = | {p : p 3 a∧p ∈ t} |: compute the number of applications associated with
family t that include artifact a

• Q5(g,DOWGIN, f ile : root.exe) = 2

106

6.1. SPECIFICATION OF MALWARE ARTIFACTS

6.1.3. Information analysis

6.1.3.1. Artifact scoring

To isolate the artifacts which are specific to families, AP-GRAPH relies on a single metric
M (g,a) ∈ [0,1] computed from the queries introduced in the previous section. This metric
quantifies the importance that a single family has compared to the other families. Thus, if
an artifact is present uniformly in multiple families, its M value will be close to 0. On the
contrary, if the artifact is present mostly in a single family, its M value will be close to 1.

More formally, we define the metric M as follow:

M (g,a) = max({Q5(g, t,a) : t ∈ Q3(g,a)})/Q4(g,a)

Let us consider a concrete example, where an artifact a appears in 4 families: {t1, t2, t3, t4}.
The distribution of artifact a across these families is: Q5(g, t1,a) = 100, Q5(g, t2,a) = 200,
Q5(g, t3,a) = 200, Q5(g, t4,a) = 1000 with Q4(g,a) = 1500. The value of the metric, in this
case, is M (g,a) = max(100,200,200,1000)/1500 = 2/3. This value is associated with the
specificity that the artifact a has on the family t4.

6.1.3.2. Artifact selection

5060708090100
score value (in percent)

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

nu
m

be
r o

f d
ist

in
ct

 a
rti

fa
ct

s

Figure 6.3.: Number of distinct artifacts related to scoring value thresholds (M)

107

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

AP-GRAPH use the scoring value M as a high-pass filter1 to discriminate the artifacts spe-
cific to a single family. As we described in the previous section, the value of M will be close
to 1 when an artifact appears mostly in a single family. In particular, the value of M will be
precisely 1 when the artifact is associated with a single family. While a perfect scoring value
would be an excellent theoretical target, antivirus products are known to produce noisy predic-
tions and misclassification as we observed in Chapter 4. To take into account this problem, we
set a threshold value τ to reduce our sensitivity to misclassification by antivirus products.

In the absence of ground truth, the threshold value for our analysis is selected based on the
information at our disposal. On Figure 6.3, we plot the total number of distinct artifacts
retrieved by AP-GRAPH for different values of τ . We can see that the association between
these two variables is linear. Thus, a smaller value of τ will uncover more specific artifacts
than a higher value. On the other hand, a smaller value will also include more errors due to
antivirus misclassification.

In our analysis, we selected a conservative threshold value of 0.95 to take into account a
small amount of noise introduced by antivirus misclassification. Therefore, the most important
family for a given artifact must account for at least 95% of the total of times an artifact is
encountered in malware samples or M (g,a)> 0.95. For instance, if an artifact appears 1000
times in total, this artifact is considered specific to a family by AP-GRAPH if an only if it is
present at least 950 times in this single family.

6.2. Creation of malware knowledge base

In this section, we discuss three architectures designed to support the indexing of malware
artifact at scale.

Each part of this section will discuss the trade-off associated with the proposed architectures
and their benefits on computing statistics from malware datasets.

6.2.1. Architecture A: Datomic

Datomic [Cog] is a commercial database released in 2012 by Cognitech. The data model of
Datomic is inspired by the Resource Description Framework (RDF), as documents are seri-
alized in a 5-tuples containing the entity, attribute, value, transaction, and operation status.
Figure 6.4 shows an example of tuples associated with three Android malware. In this exam-
ple, malware entities are described based on information gathered from static analysis, such as
the list of file names and signatures embedded in the application or the list of methods that will
be called during its execution. Datomic features a flexible querying system as records can be
saved in four different indexes to support row-oriented (EAVT), column-oriented (AEVT and
AVET) and graph-oriented (VAET) access. Compared to relational database systems, Datomic

1a filter that passes values higher than a threshold value

108

6.2. CREATION OF MALWARE KNOWLEDGE BASE

Entity, Attribute, Value, Transaction, Operation

APK1, file-name, vap.exe, T1, TRUE
APK1, file-signature, 36FAC, T1, TRUE
APK1, meta-family, dowgin, T1, TRUE
APK2, file-name, vim.exe, T1, TRUE

APK2, file-signature, 36FAC, T1, TRUE
APK2, meta-family, dowgin, T1, TRUE

APK3, method-call, loadClass, T2, TRUE
APK3, meta-family, kuguo, T1, TRUE

...

EAVT AEVT

VAETAVET

Data Model / Records Indexes

Figure 6.4.: Structure of a knowledge base powered by Datomic

information are never updated nor deleted and can only be accumulated over time. Thus, an
operator can query the state of the knowledge base at a particular point in time and find the
delta that was added before or after a point in time.

Datomic fits the requirements of AP-GRAPH for several reasons. On the one hand, Datomic
supports a wide variety of indexing patterns to optimize the performance of read queries. The
EAVT index can be leveraged to request information about a particular Android application
while the AEVT and AVET indexes can be used to compute statistics on the distribution of
malware artifacts. On the other hand, the data schema can be extended with new records, as
the Datomic model can be adapted to represent information without impacting the existing
structure of the database.

However, Datomic is not suited for use cases that require intensive write operations. Indeed,
Datomic supports ACID properties by limiting the writing process to a single transactor (i.e.,
a single machine core across the cluster). Thus, and despite great read performance, Datomic
cannot power the indexing of malware ground truth as large as Androzoo [ABKT16].

6.2.2. Architecture B: Flat �le

Application, Artifact

APK1, file-name::vap.exe
APK1, file-signature::36FAC

APK2, file-name::vim.exe
APK2, file-signature::36FAC

APK3, method-call::loadClass
...

Application, Family, Date

APK1, dowgin, 2014-10-20
APK2, dowgin, 2015-04-02
APK3, kuguo, 2016-08-12

...

Artifact file Meta file

Figure 6.5.: Structure of a knowledge base powered by flat files

109

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

Flat files provide a simple format and rely on the operating system to perform read and write
operations. Information can be organized into a delimited file where each line corresponds
to a new record. Figure 6.5 represents two flat files that describes the relationship between
applications, artifacts, family and time. On the one hand, the artifact file, once sorted, can
be used to retrieve information by application or by artifact to support the query required by
AP-GRAPH. On the other hand, the meta file can be joined to the artifact file to add additional
information that allows the analysis of malware families over time.

However, the simplicity of flat files is both their greatest strength and their greatest weakness.
Flat files do not support indexing or query capabilities found in other database systems beside
sequential read and write operations. Moreover, indexing the artifact file either by application
or by artifact requires twice the amount of disk space both for sorting and storing the result
file. In the end, a flat file architecture is a fast prototype solution that works as long as a single
machine has enough disk capacity during the sorting process.

6.2.3. Architecture C: Elastic

Data Model Indexes

Field, Type, Index?

meta.sha256, STRING, FALSE
meta.date, DATE, TRUE

meta.family, STRING, TRUE
file.name, STRING, TRUE

file.signature, STRING, TRUE
method.call, STRING, TRUE

...

file
name

file
signature

meta
date

method
call

Records
{"meta.sha256": ["APK1"], "meta.date": ["2014-
10-20"], "meta.family": ["dowgin"], "file.name":

["vap.exe"], "file.signature": ["36FAC"]}

{"meta.sha256": ["APK2"], "meta.date": ["2015-
04-02"], "meta.family": ["dowgin"], "file.name":

["vap.exe"], "file.signature": ["36FAC"[}

{"meta.sha256": ["APK3"], "meta.date": ["2016-
06-12"], "meta.family": ["dowgin"],

"method.call": ["loadClass"]}

Figure 6.6.: Structure of a knowledge base powered by ElasticSearch

Elastic [Ela] is an open source database built to retrieve information from structured docu-
ments such as JSON files. The database has been used by many professional actors to search
a large corpus of text, as the indexing capabilities of Elastic are tailored toward this use case.
Moreover, an Elastic cluster can be deployed across multiple computers to aggregate the pro-
cessing and storing capacity from more than one machine.

Figure 6.6 presents a structure for an Elastic knowledge base. Artifacts are listed in a schema
file that contains the name, the type and the operation index for the fields. In Elastic, fields
are automatically indexed to enumerate documents that contain them efficiently. For instance,
the file signature ’36FAC’ is found both in ’APK1’ and ’APK2’, which means that these two
documents will be returned when a user issues a query.

The main benefit of an Elastic based architecture is to power the queries of AP-GRAPH at
scale. The system can retrieve information about a single application, a single artifact or com-
plex analytic queries. Since data are distributed across multiple machines, computer resources
can be shared to speed up the analysis or support more massive ground truth datasets.

110

6.3. CHARACTERIZATION OF MALWARE FAMILIES

Table 6.1.: Distribution of applications and malware per market (note: an application can be
distributed on multiple markets)

Markets Malware Total %
play.google.com 579,840 4,315,707 13

anzhi 501,748 742,788 67
appchina 334,544 593,110 56
mi.com 71,584 113,583 63
1mobile 15,922 57,530 27
angeeks 17,528 55,794 31
slideme 8,645 52,467 16
praguard 0 10,186 0
torrents 126 5,294 2

freewarelovers 169 4,145 4
proandroid 346 3,683 9

hiapk 1,153 2,512 45
fdroid 40 2,023 1

genome 1,247 1,247 100
apk_bang 121 363 33
unknown 0 57 0

However, the solution is the most complex of the three as computer clusters are harder to
maintain than a system deployed on a single computer. Furthermore, while existing documents
can be updated to add more fields, this task is a costly operation as it requires to reindex the
whole database file. Hence, this architecture solution should be reserved for complex use cases
or when information cannot be stored on a single computer.

6.3. Characterization of malware families

In this section, we report the results of AP-GRAPH in characterizing malware families.

In the first part, we describe the datasets, artifacts, and families comprised in our analysis.
Then, we evaluate the performance of AP-GRAPH in collecting specific artifacts while si-
multaneously dropping the ones which are not relevant in discriminating malware families.
Finally, we perform a case study analysis to assess the quality of the information retrieved by
AP-GRAPH.

6.3.1. Dataset

The evaluation of AP-GRAPH is based on a large set of Android malware collected by the
Androzoo project [ABKT16]. This project aims to provide a representative sample of Android

111

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

applications that other researchers can use in their experiments. Androzoo contains more
than 6 million Android applications gathered from various Android markets. The dataset also
includes nearly 1 million apps considered malicious by at least one antivirus referenced on
VirusTotal [noa]. The distribution of applications and malware per market can be found in
Table 6.1. In the Android ecosystem, play.google.com is recognized as the official market,
while other market places are alternative sources of applications. From this table, we can
observe that alternative markets have a higher proportion of malicious applications than the
official market.

6.3.1.1. Families

The families of our evaluation are assembled from Androzoo++ [LGH+17], a collection of
metadata related to the Androzoo dataset. In particular, this project includes the label of
every antivirus referenced on VirusTotal [noa]. As we noted in Chapter 4, antivirus labels
can provide noisy output and contain various information which are not directly related to the
family name. To handle this lack of consistency, we use EUPHONY to extract the name from
antivirus labels and to unify them across multiple antivirus products.

0 50000 100000 150000 200000 250000 300000 350000
number of malware applications

OTHERS
igexin
utchi

umeng
appsgeyser

inmobi
domob

anydown
waps

admogo
wapsx

deng
startapp

jiagu
genpua
leadbolt

youmi
adwo

airpush
kuguo

dowgin

m
al

wa
re

 fa
m

ilie
s

Figure 6.7.: Distribution of malware families with at least 100 samples according to Euphony

Figure 6.7 shows the distribution of malware families for the labels unified by Euphony. We
can see that the distribution has a long tail of small families, as dowgin dominates the ranking
while smaller families are grouped into the OTHERS bin. In total, Euphony proposes 3600

112

6.3. CHARACTERIZATION OF MALWARE FAMILIES

different malware families for the Androzoo dataset. Our study focused on the larger 20
families proposed by the following antivirus: ESET-Nod32, Sophos, GData, F-Secure (in
addition to Euphony unified names). Antiviruses are selected in order to maximize the number
of positive detections based on Androzoo++ data.

6.3.1.2. Artifacts

The artifacts included in our analysis are extracted with Androguard [DG], an open source tool
that decompiles Android applications to retrieve their resources and bytecodes. This tool is
classified as a static analysis system, as it does not execute the application on a virtual machine
to collect runtime information. Instead, one of the main benefits of this approach is the global
coverage that the solution provides. Every static component in the application (e.g., strings,
methods, files) can be indexed as an artifact identifier by AP-GRAPH. In total, our evaluation
includes 732 million distinct artifacts collected from 1 million malicious applications. This
type of static analysis is also fast and scalable, as it requires only 8 seconds on average for a
single machine core to decompile the applications and collect its artifacts.

The artifacts considered in our analysis are grouped into 46 categories, and displayed in Fig-
ure 6.8. Each category is associated with a specific artifact type. For instance, the strings
present in dex files (a packaged version of the application source code) are identified by the
entry dex::string. As another example, the source code of methods is hashed and identified by
the entry dex::code. The listing below provides an overview of the artifact categories covered
in our evaluation:

DEX information (starting with dex) : hash value computed from source codes (code),
string values (string), method invocations (invoke), field names (field), method names (method),
class names (class), package names (package), superclass names (super), dex magic number
(magic), dex format (format).

File information (starting with �le) : hash value computed from file content (signature),
file names (name).

Manifest information (starting with manifest) : activity names (activity), service
names (service), provider names (provider), receiver names (receiver), process names (pro-
cess), intent names (intent), data keys (data), metadata keys (meta), application package (pack-
age), application version (version), application features (app), application libraries and per-
missions (uses), custom permissions (perm), user identifier (sharedUserId), protection levels
(protection), instrumentation classes (instru).

Resources information (starting with resource) : string values for both keys and
entries (string).

113

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

100 101 102 103 104 105 106 107 108

number of artifact identifiers (logarithmic scale)

dex::code
dex::invoke
dex::string

file::signature
dex::field

file::name
resource::string

dex::class
dex::method

dex::package
dex::super

manifest::activity
manifest::package

manifest::meta
manifest::intent
certificate::md5
certificate::sha1

certificate::sha256
certificate::valid_from

certificate::serial
certificate::owner
certificate::issuer

manifest::uses
manifest::perm

manifest::app
manifest::data

manifest::service
manifest::receiver
manifest::version
manifest::process

manifest::provider
manifest::sharedUserId

manifest::instru
manifest::protection

certificate::error
dex::magic

certificate::version
certificate::algorithm

dex::format

Figure 6.8.: Distribution of artifact identifiers by category

Certi�cate information (starting with certi�cate) : SHA1, MD5 and SHA256 signa-
tures (sha1, md5, sha256 respectively), beginning of validity period (valid_from), serial num-
ber (serial), version number (version), certificate owner (owner), certificate issuer (issuer),
signature algorithm name (signature_algorithm_name), certificate errors (keytool_error).

114

6.3. CHARACTERIZATION OF MALWARE FAMILIES

6.3.2. Performances

6.3.2.1. Characterization

To evaluate the capacity of AP-GRAPH in characterizing Android malware, we consider each
antivirus and family introduced in the previous section. For each pair of antivirus and fam-
ily, we report the artifact which is the most specific of this pair. For instance, if 5 artifacts
a1,a2,a3,a4,a5 are discriminative of the family t with an occurrence of 100, 200, 300, 400,
500 respectively, a5 is the most specific artifact as it appears in more applications for this
family (500 times) than the other artifacts. We then normalize the number of occurrences by
dividing this value with the total number of applications associated with the pair of antivirus
and family.

eset-nod32 euphony f-secure gdata sophos

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0.18 0.35 0.53 0.59 0.069
0.12 0.044 0.31 0.99 0.075
0.19 0.3 0.04 0.12 0.27

0.097 0.23 0.036 0.074 0.26
0.15 0.021 0.035 0.034 0.1
0.99 0.17 1 1 0.052

1 0.49 0.091 0.18 0
0.11 0.017 0.19 0.32 0.065
0.58 0.017 0.016 1 0.14
0.31 0.018 0 0.15 0

0.055 0.031 0 0.19 0.39
0.35 0.7 0.048 0 0

0.038 0.1 0.1 0 0.47
1 0.39 0.046 0 0.36
1 0.063 0.085 0 1

0.24 0.67 0.031 0 1
0 0.016 0.11 0 0.28

0.93 0.99 0 0 0.44
0.083 0.12 0.12 0 0
0.19 0.032 0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.9.: Maximum proportion of malware identified by AP-GRAPH per antivirus
(columns) and families (rows)

We can see the results of our characterization analysis in Figure 6.9. The values range from
0 (no artifacts were found for the antivirus and family) to 1 (one artifact is present in all
samples for this antivirus and family). For each antivirus (columns), the families (rows) are
ordered from the larger (top) to the smaller family (bottom). As this order is different for each
antivirus, we replaced the family names by an ordinal value from 1 to 20.

We observe that AP-GRAPH was able to find some key artifacts that are discriminative of
whole families. This is the case for t6, t7, t14, t15, t18 of eset-nod32, t18 of euphony, t6 of f-
secure,t2, t6, t9 of gdata, t15, t16, t20 of sophos. These results show that AP-GRAPH can find

115

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

eset-nod32 euphony f-secure gdata sophos

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

 74,606 255,993 380,666 270,030 65,951
 86,443 26,274 110,999 91,819 44,192
 126,012 263,052 11,551 16,262 56,903
 38,985 63,368 4,226 22,728 89,841
 21,903 13,511 1,747 10,851 43,514
 4,731 57,526 996 1,047 24,993

 104,813 488 3,263 73,481 0
 6,243 759 39,976 8,376 168
 12,317 490 796 34,121 4,666
 21,108 9,423 0 92 0
 40,365 3,062 0 17 4,875
 196,090 4,335 1,172 0 0
 16,407 9,995 3,108 0 2,083
 2,365 9,308 138 0 285
 539 17,723 3,550 0 2,299

 16,461 314 2 0 9,677
 0 723 10 0 49

 86,658 998 0 0 1
 2 31,712 12 0 0

 9,041 16,838 0 0 229
0

80000

160000

240000

320000

Figure 6.10.: Number of characteristic artifacts discovered by AP-GRAPH per antivirus
(columns) and families (rows)

at least an artifact present in and only in every malicious application of these combinations
of antivirus and family. To complement this analysis, we also display on Figure 6.10 the
total number of characteristic artifacts identified by AP-GRAPH. This figure shows that out
of 100 antivirus and family combinations, 74 combinations have more than 100 characteristic
artifacts, 61 combinations have more than 1,000 characteristic artifacts and 39 have more than
10,000 characteristic artifacts.

We also observed from Figure 6.9 and Figure 6.10 that some antivirus and families are not
fully characterized by the artifacts uncovered by AP-GRAPH. Multiple reasons could explain
this result. First, antivirus labels may be associated with some hidden artifacts that are not
included in this study (e.g., runtime values). Second, the antivirus labels could contain too
much noise or provide information that are not granular enough to find common denominators
between them. Finally, some malware families could be very generic and include a broad
set of artifacts present in multiple families. We discuss the opportunity of improving our
characterization scheme in the Discussion section.

6.3.2.2. Feature processing

Selecting relevant features is one of the most challenging aspects of building detection systems
based on machine learning. In this regard, AP-GRAPH can assist practitioners by eliminating
artifacts that do not relate to the malware families that these systems must classify. To evaluate

116

6.3. CHARACTERIZATION OF MALWARE FAMILIES

eset-nod32 euphony f-secure gdata sophos

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0.98 0.97 0.86 0.91 0.98
0.96 0.99 0.85 0.87 0.98
0.98 0.96 0.99 0.98 0.93
0.98 0.94 1 0.98 0.98
0.99 1 1 0.99 0.97
0.95 0.99 0.92 0.92 0.99
0.93 0.99 0.99 0.95 1
0.98 1 0.96 0.98 1
0.86 1 1 0.9 0.98
0.99 1 1 1 1
0.99 1 1 1 0.97
0.97 0.92 1 1 1
0.99 0.99 0.99 1 0.96
0.98 0.97 1 1 1
0.94 0.98 0.99 1 0.7
0.96 1 1 1 0.89

1 1 1 1 1
0.93 0.94 1 1 1

1 1 1 1 1
0.97 1 1 1 0.99

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.11.: Proportion of artifacts dropped by AP-GRAPH for each antivirus (columns) and
families (rows)

the capacity of AP-GRAPH in filtering these features, we compute for each antivirus and
malware families the proportion of artifacts that were dropped by our system as they were
found not to be discriminative of any malware family.

We can see in Figure 6.11 the result of our feature processing. For each cell, a value close
to 1.0 means that the number of dropped artifacts is closer to the total number of artifacts
associated with the antivirus and family combinations. We notice that the minimum value
on this figure is 0.7 for the 15th most important family of the Sophos antivirus. Thus, AP-
GRAPH can remove a vast majority of artifacts that are not specific to a particular family. This
ability further complements the capacity of AP-GRAPH in characterizing malware families by
revealing the artifacts which are NOT associated with a particular behavior.

6.3.3. Case studies

In this section, we consider the particular case of the family adwo and the antivirus gdata.
This family contains 44,828 applications and corresponds to the result of the second row and
fourth column in Figure 6.9. The next parts will present the artifacts selected by AP-GRAPH
for this family and the reverse analysis of a single application taken at random from Androzoo
dataset.

117

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

Table 6.2.: Most specific artifacts identified by AP-GRAPH for the family adwo of antivirus
gdata

Location Type Name found
manifest activity adwoadbrowseractivity 44,162

dex invoke com/adwo/adsdk/i-><init> 33,889
dex invoke com/adwo/adsdk/h-><init> 33,078
dex class FSAd 32,551
dex invoke com/adwo/adsdk/AdwoSplashAdActivity->requestWindowFeature 32,541
dex invoke com/adwo/adsdk/AdwoSplashAdActivity->getWindow 32,541
dex string lcom/adwo/adsdk/fsad; 32,536
dex code #583b5 32,536
dex invoke com/adwo/adsdk/FSAd-><init> 32,536
dex string http://r2.adwo.com/adfs 32,518
dex string vlijlzzz 32,505
dex code #1b25f 32,485
dex invoke com/adwo/adsdk/V-><init> 32,268
dex code #de7d0 32,103
dex code #baf7b 32,103
dex string malformed click url.will try to follow anyway. 32,093
dex invoke com/adwo/adsdk/AdwoAdBrowserActivity->a 32,090
dex string fsad.htmlcontent 32,090
dex code #e5b18 32,088
dex invoke com/adwo/adsdk/AdwoSplashAdActivity->a 32,023

6.3.3.1. Distinctive artifacts

The artifacts identified by AP-GRAPH are listed on Table 6.2. Each row contains the location,
type, name, and the number of times this artifact was found in the family. As an example,
the first row shows that the activity AdwoAdBrowserActivity located in the Manifest file was
found in 44,162 applications out of the 44,828 applications of the family (98%). The fourth
row corresponds to the class FSAd present in the DEX file and included in 32,551 applications
of the family (72%).

We see from this table that most entries are related to the family, as the artifacts contain its
name. This is the case for the invoke calls that start with com/adwo and the activity Ad-
woAdBrowser. We can also notice a URL encoded as a string that contains the domain name
r2.adwo.com. These artifacts are good indicators that AP-GRAPH can retrieve components
which are related to the family under investigation. However, while some artifacts can be ex-
plained from their identifiers, others are more obscure and require some manual analysis. We
explore these elements uncovered by AP-GRAPH in the next part of this section.

118

6.3. CHARACTERIZATION OF MALWARE FAMILIES

6.3.3.2. Reverse engineering

To demonstrate the assistance that AP-GRAPH provides in reversing malicious applications,
we selected a single application at random from our set and analyzed the content of its artifacts.
As a starting point, we considered every application associated with the list of artifacts showed
in Table 6.2, which corresponds to the antivirus gdata and the family adwo. The SHA256
signature of the application is 000A0B1022EC485473DFAACA433F9548911BC7089B6A3
C7B47F9EC5541005CA1.

Figure 6.12.: The application contacts the primary server to download the ads

In Figure 6.12, we analyzed the content of the onCreate method of the AdwoAdBrowserAc-
tivity, as is it the first artifact reported by AP-GRAPH. We notice that this method constructs
an object of class n and contacts the adware server at the URL: http://www.adwo.com.

The method that triggers the ads on the screen can be found in class AdwoSplashAdActivity,
another artifact identified by AP-GRAPH in Table 6.2. We show the content of this method
in Figure 6.13. It corresponds to the onKeyDown method that was identified by AP-GRAPH
under the code identifier BAF7BE622BB53166EDACE516FFA985ED2E687BC6AB295368
69D1EB709573C9A6 (or #baf7b in Table 6.2). We do not know what the variable c controls
in this context, but its value is responsible for triggering the advertisement associated with this
activity.

We also analyzed the class FSAd, as it is the fourth artifacts identified by AP-GRAPH in
Table 6.2. The content on its constructor, displayed in Figure 6.14. It shows the construction of
the advertisement from an array of bytes (we deduce this behavior from the log entry created

119

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

Figure 6.13.: The application setups the event listener to trigger the ads

Figure 6.14.: The application constructs the ads from an array of bytes

inside the constructor). This method could be monitored to retrieve the content of the ads
display to the user.

From our analysis of the application, we see that AP-GRAPH was able to characterize:

• the class responsible for contacting the adware server (AdwoAdBrowserActivity)

• the method responsible for triggering the ads (onKeyDown)

• the class responsible for handling the content of the add (FSAd)

Given these information, an analyst can quickly prioritize the artifacts that are specific to a
group of applications and explore their content at a faster pace.

120

6.4. EVOLUTION OF MALWARE FAMILIES OVER TIME

6.4. Evolution of malware families over time

As a first attempt to monitor the deployment of artifacts by malware authors over time, this
section presents a short analysis of the evolution of three pairs of antivirus and malware fam-
ily. The goal of this section is to illustrate how artifacts proposed by AP-GRAPH can be
used to spot anomalies in the development of popular malware families and lead to further
investigations.

Each figure contains information about 60 prominent artifacts identified by AP-GRAPH within
a given malware family. We compare their distribution with the total number of Android ap-
plications classified for the same malware family in our dataset.

6.4.1. ESET NOD32 - Igexin

2010 2011 2012 2013 2014 2015 2016 2017

0k

1k

2k

3k

4k

5k Count of
malware files
malware artifacts

Figure 6.15.: Evolution of 60 artifacts identified by AP-GRAPH compared to the total number
of malware files associated with the family ESET NOD32 - Igexin

Figure 6.15 represents an evolution of malware artifacts that coincides with the release of new
malware samples associated with the family. We can see from 2010 to 2014 that the number
of artifacts follows the number of malware files, even when the number of files increases
considerably in 2013. However, a gap starts to appear after 2014 as the number of malware
files continues to grow while the number of artifacts associated with the family stagnates.

121

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

Malicious applications found in this gap are interesting for a human analyst, as their presence
is not tracked by the indicators currently revealed by AP-GRAPH. This difference could ex-
plain a drop of performance in machine learning algorithms or the presence of a new variant
derived from the previous version of Igexin. We can further note that the number of artifacts
starts to catch up by the end of 2017 for an unknown reason.

6.4.2. EUPHONY - AppsGeyser

2010 2011 2012 2013 2014 2015 2016 2017

0k

2k

4k

6k

8k

10k Count of
malware files
malware artifacts

Figure 6.16.: Evolution of 60 artifacts identified by AP-GRAPH compared to the total number
of malware files associated with the family EUPHONY - AppsGeyser

Figure 6.15 displays a more difficult use cases of malware evolution. On the one hand, we
observe that malware artifacts associated with this family are scattered around the y-axis,
indicating a difference in the composition of the malware in this set. On the other hand, we
notice that artifact lines start to become flat in 2014 while the number of malware samples
associated with the malware family increases.

This figure reveals either that the malware family used a completely different set of artifacts
after 2014 or that artifacts were obfuscated to circumvent defense mechanisms. Such a sce-
nario could force the investigation of new artifacts to track the malware family during its
transformation period.

122

6.5. CHALLENGES OF MALWARE CLASSIFICATION

6.4.3. G DATA - SMSpay

2010 2011 2012 2013 2014 2015 2016 2017

0k

2k

4k

6k

8k

10k

Count of
malware files
malware artifacts

Figure 6.17.: Evolution of 60 artifacts identified by AP-GRAPH compared to the total number
of malware files associated with the family G DATA - SMSpay

Figure 6.17 shows a different use case as the artifacts identified by AP-GRAPH were found
after 2016, long before the rise of the malware family. Thus, we observe a period of 3 years
during which no specific artifacts could be found to track the evolution of the family accu-
rately.

The most plausible explanation is that AP-GRAPH was able to catch a new variant after 2016,
but not beforehand. Otherwise, it could indicate that malware of this family were more generic
before 2016, and that a recent change introduced specific artifacts that could be tracked with
AP-GRAPH.

6.5. Challenges of malware classi�cation

6.5.1. Obfuscation and variations

We noted in our study that a high proportion of malware is obfuscated by a simple scheme,
including class or method renaming. Similar to other static analysis approaches, tracking the
link between the original and the obfuscated content remains a challenging task. On the one

123

CHAPTER 6. AP-GRAPH: DISSECTION OF MALWARE ARTIFACTS

hand, obfuscation techniques can make the indexing of artifacts more complicated. On the
other hand, these techniques can lead to an explosion of features and introduce a wide variety
of unrelated artifacts. To avoid these constraints in the short term, our study includes a diverse
set of artifacts related to the same objects. For instance, a method is referenced both by its
name and the hashing of its code instruction. Similarly, external files are indexed by their
name and also by a sha256 signature based on their content.

Still, the mitigation techniques we adopted in our analysis cannot wholly prevent the impact
of obfuscation. To handle this problem in the long term, new approaches must be designed to
find artifacts whose original structure are related. One of the main benefits of AP-GRAPH in
this context is its independence to a predefined type of analysis. Dynamic or other analysis
can be used as an input to AP-GRAPH, as long as these techniques produce identifiers that can
be indexed in our database. Thus, we think AP-GRAPH can be a viable technique to verify
that newer analysis techniques can break the obfuscation scheme of malware.

6.5.2. Noisy antivirus classi�cations

In the evaluation section, we observed that AP-GRAPH could extract discriminative artifacts
for some families, while other families do not yield artifacts specific to their whole population.
Multiple reasons could explain these results:

1. the artifacts adopted by antivirus vendors are different from the one we used in our
evaluation

2. obfuscation schemes are deployed at large scale by malware authors to bypass the type
of analysis we applied in our evaluation

3. the malware families proposed by antivirus vendors do not reflect the malicious artifacts
included in Android malware

For the first and second scenario, finding the right combination of artifacts would be sufficient
to solve the detection issue. Indeed, if antivirus vendors rely mostly on dynamic analysis
to detect Android malware, AP-GRAPH could consume these artifacts and verify that they
correspond to a known malware family. The best approach, in this case, would be to test
AP-GRAPH with other features and classifiers until a good match is found between the two
sets.

The same cannot be said however for the third scenario. As there is no reference information to
assess the results of our evaluation, we cannot guarantee that there is a link to be found between
artifacts and the malware families reported by antivirus vendors. This lack of transparency
has an impact on our research community, as we cannot verify that the input we feed to our
algorithm is grounded in something concrete. If this is the case, our community must continue
its work on creating better and more transparent malware ground truth.

124

6.5. CHALLENGES OF MALWARE CLASSIFICATION

6.5.3. Going from correlation to causation

Establishing the correlation between malware applications and their artifacts grants us the
opportunity to explore what is the cause of their malicious behaviors. Future works could
investigate the artifacts we uncovered to find if they are the root cause or at least trigger some
malicious activity. Our approach also enables the exploration of malware over time to visualize
the correlation between malicious applications and their artifacts. Searching for trends could
provide a better picture of the current malware landscape and guide the deployment cycle of
more accurate detection models.

125

Part III.

Summary and future research

directions

127

Chapter 7.

Conclusion

This chapter proposes a conclusion on the creation of malware ground truth.

The first section outlines our contributions to create better malware ground truth.

The second section suggests research directions to further improve malware datasets.

Table of Contents

7.1. Summary . 130
7.1.1. Definition of Android malware . 130
7.1.2. Automation of security decisions . 131
7.1.3. Progression of human comprehension 131

7.2. Future research directions . 132
7.2.1. Malware forecast . 132
7.2.2. Apprenticeship learning . 133
7.2.3. Learning from machine learning . 134

129

CHAPTER 7. CONCLUSION

7.1. Summary

7.1.1. De�nition of Android malware

As explained in Chapter 1, security practitioners must have a clear and unambiguous definition
of Android malware to detect malicious applications before they impact Android users [SP10,
RDG+12]. While previous research groups worked with a partial [ASH+14] or obsolete [ZJ12]
definition of malware to support their approach, the current state of the Android security
ecosystem[Goo18] imposes more transparency on the representativeness of malware sam-
ples [CSD+17] and the results of machine learning experiments [ABJ+16].

In Chapter 4, we proposed to evaluate the property of popular malware sets to observe their
structure from a high-level perspective with STASE. Moreover, we formulated some recom-
mendations about the desirable properties of malware ground truth to avoid the introduction
of biases in experimental settings. As malware datasets are the primary source of what defines
Android malware, our framework provides the railroads to prevent drifts in malware defini-
tions across machine learning experiments.

In Chapter 5, we built a solution named EUPHONY to retrieve valuable tokens from antivirus
reports and better qualify Android malware datasets in the large. Since the security industry is
one of the only actors with enough human resources to systematically analyze new malware
breeds, the extraction and the unification of antivirus results is an essential step towards the
exploration similarities between malicious samples. EUPHONY can help practitioners in this
regard by parsing the results of antivirus reports to eliminate naming confusion and propose a
single definition through a majority voting scheme.

In Chapter 6, we investigated the relation between malicious artifacts and malware families
with AP-GRAPH to uncover suspicious elements contained in Android applications. We based
our approach on previous studies that showed [AJB+14, LLB+17] that the expression of ma-
licious behaviors is supported by the presence of artifacts controlled by malware authors.
AP-GRAPH can assist the description of malware families and Android malware in general
by retrieving a list of artifacts related directly or indirectly to malicious behaviors found in
Android applications.

Despite the solutions we proposed, our contributions do not provide a definitive definition for
Android malware. On the one hand, malware families suggested by EUPHONY depend on the
quality of antivirus results. Thus, the quality of the proposed names has an upper limit based
on a black box labeling system. On the other hand, the artifacts retrieved by AP-GRAPH are
analyzed from the output of antivirus systems and share the same limitation than EUPHONY.
While our work attempted to address short term needs of the security community, we think that
the quest for better malware definitions remains. This challenge might be addressed with the
creation of white box systems to provide alternative results based on transparent approaches.

130

7.1. SUMMARY

7.1.2. Automation of security decisions

In Chapter 1, we pointed out that both the lack of security experts [ICS18] and the use of au-
tomation techniques by malware authors [AT19] threaten the current balance between security
defenders and attackers. To address these shortcomings, the security community must rely
more and more on automated solutions on its own to keep pace with the proliferation of mal-
ware. With recent advancements in machine learning based systems, our community might
improve our ability to prevent the surge of malicious applications that target Android markets.
To support these algorithms, we reviewed several research contributions in this dissertation.

With STASE in Chapter 4, we proposed a set of metrics that can be integrated into machine
learning pipelines to vet the properties of large malware datasets automatically. For instance,
we saw in this chapter that different experimental settings could influence the distribution of
output classes adopted to train statistical models. In place of careful manual reviews performed
by security practitioners, STASE metrics can be used to track down biases and improve the
confidence in machine learning based approaches.

With EUPHONY in Chapter 5, we created a fully automated solution to parse antivirus labels
and suggest meaningful clusters of names based on the co-occurrence of names in malware
reports. Thanks to the knowledge database integrated into our solution, EUPHONY can re-
member past associations and improve its suggestion over time as the research community
discovers new malware names. Compared to existing solutions [SRKC16], EUPHONY can
bootstrap its learning process without an extensive list of generic tokens or malware family
names.

With AP-GRAPH in Chapter 6, we implemented a large scale data mining solution to analyze
artifacts associated with popular malware families automatically. Our experiments showed
that AP-GRAPH was able to retrieve a broad set of artifacts related to malicious behaviors
found in Android malware. Moreover, the indexing and querying scheme of AP-GRAPH can
be applied to provide a higher level analysis framework over common malware datasets to
further automate security decisions.

While parts of our protection against Android malware can be automated, our contributions
merely focused on the creation of better malware ground truth. Indeed, automated decision
algorithms are always at risk at proposing an output that does not reflect the reality in the field
if they are not adequately vetted or if their input is not representative of the population [SP10,
RDG+12, ABJ+16]. We expect that quality metrics such as STASE and automatic tagging
systems like EUPHONY and AP-GRAPH can assist practitioners in the construction of more
sophisticated security solutions.

7.1.3. Progression of human comprehension

We recognized in Chapter 1 that Android malware fall under the curse of dimensionality [Bel13]
as the sheer size of information contained in a standard application is too difficult to appre-
hend for human experts. Even if automated solutions can handle security decisions at large

131

CHAPTER 7. CONCLUSION

scale, we postulate that human analysts must comprehend malware more easily to craft more
creative approaches against Android malware. The techniques we proposed take this point
into consideration to assist the tasks of security analysts.

The metrics proposed by STASE in Chapter 4 were designed to be comprehensible by hu-
man operators and provide an overview of malware ground truths. STASE metrics proposed a
human-readable interpretation of malware datasets, as the results we report are size indepen-
dent and with a clear explanation for the extreme and intermediate values. Thus, the solution
we propose can be embedded in a dashboard system or a monitoring solution to help experts
navigate the complexity of their malware landscape.

The output produced by EUPHONY in Chapter 5 can be leveraged by a security analyst to
comprehend the structure of malware labels and explore the relationship between security
decisions. Since EUPHONY relies on classical search algorithms and graph data structures,
the analysis steps can be decomposed to track down the advancement progress and report
intermediate results. Moreover, the knowledge base instantiated by EUPHONY can be audited
by external experts to ensure that the decisions we suggest are in line with the expectations of
the analysts.

The artifacts proposed by AP-GRAPH in Chapter 6 can served security experts on two fronts.
On the one hand, AP-GRAPH artifacts describe key features associated with malware families
to get an initial idea of the behavior of a malware group. On the other hand, AP-GRAPH
enumerates potential entry points for reverse engineers to start their analysis process based on
malware components that were not seen in other malware families.

However, Android malware are probably one of the most complex pieces of software handled
by humans analysts. Several limitations, such as our reliance on noisy labeling systems and
the use of obfuscation by malware authors might impact the performance of the approaches
we proposed. To overcome these shortcomings in the short term, we designed our solutions to
be transparent for human operators starting from the processing of raw data to the delivery of
the final results.

7.2. Future research directions

7.2.1. Malware forecast

In Chapter 6, we explored the relationship between Android artifacts and malware families
with AP-GRAPH to extract the characteristics of popular malware variants. However, as mal-
ware authors continue to develop new features and introduce new malware breeds, it is crucial
for our community to keep track of these changes and react efficiently according to the cur-
rent malware landscape. On the one hand, a tracking solution would allow security analysts
to adapt our security infrastructure based on the most recent trends in malware development.

132

7.2. FUTURE RESEARCH DIRECTIONS

On the other hand, the monitoring of artifacts would allow a proportionate response to mal-
ware threats, allowing the allocation of more resources when the complexity or the number of
variants arise.

Our time analysis of malware artifacts is a small step toward a global indicator that could
serve as a malware forecast system. Instead of focusing on the top malware variants, the
artifacts uncovered by AP-GRAPH could be applied to the creation of new metrics that track
changes in the composition of Android malware. For instance, the absence of a known artifact
inside a malware family could indicate that the artifacts were updated or replaced by a new
one. A surge of some malicious artifacts commonly associated with a malware family could
also indicate either the resurgence of a known malware family or deployment of a brand new
variant. In both cases, adding the dimension of time into the distribution of malicious artifacts
would be a valuable asset to support better and more efficient security responses.

7.2.2. Apprenticeship learning

Through this dissertation, we took the postulate that antivirus labels are a trustworthy source of
information that can be mined and analyzed to leverage the efforts of industrial security actors.
However, our analysis and experience revealed that antivirus reports could return noisy results
that do not fully support the confidence we expect in state of the art security solutions. While
the information we gathered with EUPHONY and AP-GRAPH can be viewed as a partial
reference of the decision rules built in antivirus products, our approaches do not provide a
complete alternative to black box classifiers yet.

In the long term, the security community might benefit from building its own decision rules
and share them publicly to create even better malware ground truths. As manual inspections
require too much effort for a small community, a new type of artificial intelligence techniques
must be explored to augment the performance of human analysts [VAK+16]. A possible so-
lution might be the use of apprenticeship learning [AN04], a kind of inverse reinforcement
learning algorithms that derives a reward function from the decision of human experts. For in-
stance, a security analyst could create a script that extracts suspicious artifacts within Android
applications and concludes about the nature of an application based on a weighted formula.
Similarly, the analyst actions could be learned and applied by an algorithm that reproduces
the expert steps while a machine learning model could emulate the expert formula. Moreover,
reinforcement learning algorithms would provide an efficient framework of analysis to avoid
the systematic inspection of the numerous parts that composed an Android application. The
main benefit of an apprenticeship learning based approach in this context would be to support
the creative work of security analysts while automating their most tedious tasks as we face a
shortage of security experts [ICS18].

133

CHAPTER 7. CONCLUSION

7.2.3. Learning from machine learning

We envision that the field of artificial intelligence will remain more art than science as long
as experts in the domain are not able to theorize the performance of machine learning algo-
rithms [TKP+17, Lip18]. This problem will also impact the detection of Android malware,
as our community operates in an adversarial setting where a single model can be potentially
exploited as a single point of failure [SP10, RDG+12, PMG+16]. To improve the robustness
of our solutions, the security community must engage in the reproduction and the comparison
of machine learning based models to understand their weaknesses but also to compensate for
their inherent limitations.

A possible solution might be the creation of meta machine learning systems, able to recom-
mend the best set of models for a given operational setting. For example, malware created
more than one year ago could be better handled by an older model while new variants would
require more advanced models instead. Similarly, some malware families may be better de-
tected with statistical models created from dynamic features while other families would be
handled more efficiently by a simpler model. Learning from the output of existing machine
learning algorithms could improve the diffusion of research approaches outside of the lab and
support the development of a new generation of hierarchical machine learning pipelines.

134

Bibliography

[AB18] A. Adadi and M. Berrada. Peeking Inside the Black-Box: A Survey on Ex-
plainable Artificial Intelligence (XAI). IEEE Access, 6:52138–52160, 2018.
doi:10.1109/ACCESS.2018.2870052.

[ABJ+16] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu
State, and Yves Le Traon. Empirical assessment of machine learning-based
malware detectors for Android: Measuring the gap between in-the-lab and in-
the-wild validation scenarios. Empirical Software Engineering, 21(1):183–211,
February 2016. URL: http://link.springer.com/10.1007/s10664-014-9352-6,
doi:10.1007/s10664-014-9352-6.

[ABKT16] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon. AndroZoo: Collecting
Millions of Android Apps for the Research Community. In 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR), pages 468–
471, May 2016. doi:10.1109/MSR.2016.056.

[ADY13] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-
Level Features for Robust Malware Detection in Android. In Tanveer Zia,
Albert Zomaya, Vijay Varadharajan, and Morley Mao, editors, Security and
Privacy in Communication Networks, volume 127, pages 86–103. Springer In-
ternational Publishing, Cham, 2013. URL: http://link.springer.com/10.1007/
978-3-319-04283-1_6, doi:10.1007/978-3-319-04283-1_6.

[AJB+14] Kevin Allix, Quentin Jerome, Tegawende F. Bissyande, Jacques Klein, Radu
State, and Yves Le Traon. A Forensic Analysis of Android Malware –
How is Malware Written and How it Could Be Detected? pages 384–
393. IEEE, July 2014. URL: http://ieeexplore.ieee.org/document/6899240/,
doi:10.1109/COMPSAC.2014.61.

[AK14] Kevin Allix and Jacques Klein. Machine Learning-Based Malware Detection
for Android Applications: History Matters! page 17, May 2014.

[AN04] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse rein-
forcement learning. page 1. ACM Press, 2004. URL: http://portal.acm.org/
citation.cfm?doid=1015330.1015430, doi:10.1145/1015330.1015430.

[And19a] Android. Android Content License, January 2019. URL: https://
source.android.com/setup/start/licenses.

135

http://dx.doi.org/10.1109/ACCESS.2018.2870052
http://link.springer.com/10.1007/s10664-014-9352-6
http://dx.doi.org/10.1007/s10664-014-9352-6
http://dx.doi.org/10.1109/MSR.2016.056
http://link.springer.com/10.1007/978-3-319-04283-1_6
http://link.springer.com/10.1007/978-3-319-04283-1_6
http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://ieeexplore.ieee.org/document/6899240/
http://dx.doi.org/10.1109/COMPSAC.2014.61
http://portal.acm.org/citation.cfm?doid=1015330.1015430
http://portal.acm.org/citation.cfm?doid=1015330.1015430
http://dx.doi.org/10.1145/1015330.1015430
https://source.android.com/setup/start/licenses
https://source.android.com/setup/start/licenses

Bibliography

[And19b] Android. Android History, January 2019. URL: https://www.android.com/
history/.

[And19c] Android. Developer Policy Center, January 2019. URL: https://
play.google.com/about/developer-content-policy/.

[AQR+16] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi.
DroidNative: Semantic-Based Detection of Android Native Code Malware.
page 18, February 2016.

[ASH+14] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gas-
con, and Konrad Rieck. Drebin: Effective and Explainable Detec-
tion of Android Malware in Your Pocket. Internet Society, 2014.
URL: https://www.ndss-symposium.org/ndss2014/programme/drebin-
effective-and-explainable-detection-android-malware-your-pocket/,
doi:10.14722/ndss.2014.23247.

[AT19] AV-TEST. Malware Statistics, 2019. URL: https://www.av-test.org/en/
statistics/malware/.

[BCH+09] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. Scalable, Behavior-Based Malware Clustering.
page 18, 2009.

[Bel13] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

[BH08] Pierre-Marc Bureau and David Harley. A dose by any other name. Virus Bul-
letin Conference, 8:224–231, 2008.

[Bha18] Anup Bhande. What is underfitting and overfitting in machine learning and
how to deal with it., May 2018. URL: https://medium.com/greyatom/what-
is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-
6803a989c76.

[BKLTM12] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus.
Dexpler: converting Android Dalvik bytecode to Jimple for static analy-
sis with Soot. pages 27–38. ACM Press, 2012. URL: http://dl.acm.org/
citation.cfm?doid=2259051.2259056, doi:10.1145/2259051.2259056.

[BKvOS10] David Barrera, H. G üne ş Kayacik, Paul C. van Oorschot, and Anil So-
mayaji. A methodology for empirical analysis of permission-based se-
curity models and its application to android. page 73. ACM Press,
2010. URL: http://portal.acm.org/citation.cfm?doid=1866307.1866317, doi:
10.1145/1866307.1866317.

[BOA+07] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Ja-
hanian, and Jose Nazario. Automated Classification and Analysis of In-
ternet Malware. In Christopher Kruegel, Richard Lippmann, and Andrew
Clark, editors, Recent Advances in Intrusion Detection, volume 4637, pages

136

https://www.android.com/history/
https://www.android.com/history/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://www.ndss-symposium.org/ndss2014/programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
https://www.ndss-symposium.org/ndss2014/programme/drebin-effective-and-explainable-detection-android-malware-your-pocket/
http://dx.doi.org/10.14722/ndss.2014.23247
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
http://dl.acm.org/citation.cfm?doid=2259051.2259056
http://dl.acm.org/citation.cfm?doid=2259051.2259056
http://dx.doi.org/10.1145/2259051.2259056
http://portal.acm.org/citation.cfm?doid=1866307.1866317
http://dx.doi.org/10.1145/1866307.1866317
http://dx.doi.org/10.1145/1866307.1866317

Bibliography

178–197. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. URL:
http://link.springer.com/10.1007/978-3-540-74320-0_10, doi:10.1007/978-
3-540-74320-0_10.

[Bon05] Dr Vesselin Bontchev. Current Status of the CARO Malware Naming Scheme.
page 29, October 2005.

[BZNT11] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:
behavior-based malware detection system for Android. page 15. ACM
Press, 2011. URL: http://dl.acm.org/citation.cfm?doid=2046614.2046619,
doi:10.1145/2046614.2046619.

[CGC13] Jonathan Crussell, Clint Gibler, and Hao Chen. AnDarwin: Scalable De-
tection of Semantically Similar Android Applications. In David Hutchison,
Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,
Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, Com-
puter Security – ESORICS 2013, volume 8134, pages 182–199. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013. URL: http://link.springer.com/10.1007/
978-3-642-40203-6_11, doi:10.1007/978-3-642-40203-6_11.

[CIR] CIRCL. MISP - Open Source Threat Intelligence Platform & Open Standards
For Threat Information Sharing. URL: https://www.misp-project.org/.

[CL14] Mihaly Csikszentmihalyi and R Larson. Flow and the foundations of positive
psychology. Springer, 2014.

[Cog] Cognitech. Datomic Website. URL: https://www.datomic.com/.

[CRF03] William W Cohen, Pradeep Ravikumar, and Stephen E Fienberg. A Compari-
son of String Metrics for Matching Names and Records. page 6, 2003.

[CRTE13] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck.
MAST: triage for market-scale mobile malware analysis. page 13. ACM
Press, 2013. URL: http://dl.acm.org/citation.cfm?doid=2462096.2462100,
doi:10.1145/2462096.2462100.

[CSD+17] Julio Canto, Hispasec Sistemas, Marc Dacier, Sophia Antipolis, Engin Kirda,
and Corrado Leita. Large scale malware collection: lessons learned. page 6,
December 2017.

[CWL+15] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. Finding Unknown Malice in 10 Seconds:
Mass Vetting for New Threats at the Google-Play Scale. page 16, 2015.

137

http://link.springer.com/10.1007/978-3-540-74320-0_10
http://dx.doi.org/10.1007/978-3-540-74320-0_10
http://dx.doi.org/10.1007/978-3-540-74320-0_10
http://dl.acm.org/citation.cfm?doid=2046614.2046619
http://dx.doi.org/10.1145/2046614.2046619
http://link.springer.com/10.1007/978-3-642-40203-6_11
http://link.springer.com/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-40203-6_11
https://www.misp-project.org/
https://www.datomic.com/
http://dl.acm.org/citation.cfm?doid=2462096.2462100
http://dx.doi.org/10.1145/2462096.2462100

Bibliography

[DBH18] F. K. Došilović, M. Brčić, and N. Hlupić. Explainable artificial intelligence:
A survey. In 2018 41st International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO), pages 0210–
0215, May 2018. doi:10.23919/MIPRO.2018.8400040.

[Dev08] Android Developers. Announcing the Android 1.0 SDK, release 1, September
2008. URL: https://android-developers.googleblog.com/2008/09/announcing-
android-10-sdk-release-1.html.

[Dev19a] Android Developers. Application Sandbox, January 2019. URL: https:
//source.android.com/security/app-sandbox.

[Dev19b] Android Developers. Application Security, January 2019. URL: https://
source.android.com/security/overview/app-security.

[Dev19c] Android Developers. Intents and Intent Filters, January 2019. URL: https:
//developer.android.com/guide/components/intents-filters.

[Dev19d] Android Developers. Security Essential Checklist, January 2019. URL: https:
//developer.android.com/topic/security.

[DG] Anthony Desnos and Geoffroy Gueguen. Androguard.
https://github.com/androguard/androguard. URL: https://github.com/
androguard/androguard.

[Dic45] Lee R. Dice. Measures of the Amount of Ecologic Association Between
Species. Ecology, 26(3):297–302, July 1945. URL: http://doi.wiley.com/
10.2307/1932409, doi:10.2307/1932409.

[Dic19] Oxford Dictionnary. Malware, 2019. URL: https://en.oxforddictionaries.com/
definition/malware.

[DSTK+16] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly
Tam, Mansour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro. DroidScribe:
Classifying Android Malware Based on Runtime Behavior. pages 252–261.
IEEE, May 2016. URL: http://ieeexplore.ieee.org/document/7527777/, doi:
10.1109/SPW.2016.25.

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[Ela] Elastic. Elastic Website. URL: https://www.elastic.co.

[EOMC11] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A
Study of Android Application Security. page 38, 2011.

[FADA14] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
semantics-based detection of Android malware through static analysis. pages
576–587. ACM Press, 2014. URL: http://dl.acm.org/citation.cfm?doid=
2635868.2635869, doi:10.1145/2635868.2635869.

138

http://dx.doi.org/10.23919/MIPRO.2018.8400040
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://source.android.com/security/overview/app-security
https://source.android.com/security/overview/app-security
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/topic/security
https://developer.android.com/topic/security
https://github.com/androguard/androguard
https://github.com/androguard/androguard
http://doi.wiley.com/10.2307/1932409
http://doi.wiley.com/10.2307/1932409
http://dx.doi.org/10.2307/1932409
https://en.oxforddictionaries.com/definition/malware
https://en.oxforddictionaries.com/definition/malware
http://ieeexplore.ieee.org/document/7527777/
http://dx.doi.org/10.1109/SPW.2016.25
http://dx.doi.org/10.1109/SPW.2016.25
https://www.elastic.co
http://dl.acm.org/citation.cfm?doid=2635868.2635869
http://dl.acm.org/citation.cfm?doid=2635868.2635869
http://dx.doi.org/10.1145/2635868.2635869

Bibliography

[FBR+16] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. TriggerScope: Towards Detect-
ing Logic Bombs in Android Applications. pages 377–396. IEEE, May
2016. URL: http://ieeexplore.ieee.org/document/7546513/, doi:10.1109/
SP.2016.30.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. page 627. ACM Press, 2011.
URL: http://dl.acm.org/citation.cfm?doid=2046707.2046779, doi:10.1145/
2046707.2046779.

[FLW+17] Ming Fan, Jun Liu, Wei Wang, Haifei Li, Zhenzhou Tian, and Ting Liu.
DAPASA: Detecting Android Piggybacked Apps Through Sensitive Sub-
graph Analysis. IEEE Transactions on Information Forensics and Security,
12(8):1772–1785, August 2017. URL: http://ieeexplore.ieee.org/document/
7887707/, doi:10.1109/TIFS.2017.2687880.

[For18] Forbes. The Cybersecurity Talent Gap Is An Industry Crisis, September
2018. URL: https://www.forbes.com/sites/forbestechcouncil/2018/08/09/the-
cybersecurity-talent-gap-is-an-industry-crisis/#9c53e10a6b36.

[GAF+15] André Ricardo Abed Grégio, Vitor Monte Afonso, Dario Simões Fernan-
des Filho, Paulo Lício de Geus, and Mario Jino. Toward a Taxonomy
of Malware Behaviors. The Computer Journal, 58(10):2758–2777, Octo-
ber 2015. URL: https://academic.oup.com/comjnl/article-lookup/doi/10.1093/
comjnl/bxv047, doi:10.1093/comjnl/bxv047.

[GHM18] Joshua Garcia, Mahmoud Hammad, and Sam Malek. Lightweight,
Obfuscation-Resilient Detection and Family Identification of Android Mal-
ware. ACM Transactions on Software Engineering and Methodology,
26(3):1–29, January 2018. URL: http://dl.acm.org/citation.cfm?doid=
3177743.3162625, doi:10.1145/3162625.

[Goo18] Google. Android Security 2017 Year In Review, 2018. URL:
https://source.android.com/security/reports/Google_Android_Security_
2017_Report_Final.pdf.

[Goo19a] Google. Google Play, January 2019. URL: https://play.google.com/store.

[Goo19b] Google. Google Play Protect, January 2019. URL: https://www.android.com/
play-protect/.

[Goo19c] Google. Permissions overview, 2019. URL: https://developer.android.com/
guide/topics/permissions/overview.

[GSM+13] Ilir Gashi, Bertrand Sobesto, Stephen Mason, Vladimir Stankovic, and
Michel Cukier. A study of the relationship between antivirus regressions
and label changes. pages 441–450. IEEE, November 2013. URL: http://
ieeexplore.ieee.org/document/6698897/, doi:10.1109/ISSRE.2013.6698897.

139

http://ieeexplore.ieee.org/document/7546513/
http://dx.doi.org/10.1109/SP.2016.30
http://dx.doi.org/10.1109/SP.2016.30
http://dl.acm.org/citation.cfm?doid=2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779
http://ieeexplore.ieee.org/document/7887707/
http://ieeexplore.ieee.org/document/7887707/
http://dx.doi.org/10.1109/TIFS.2017.2687880
https://www.forbes.com/sites/forbestechcouncil/2018/08/09/the-cybersecurity-talent-gap-is-an-industry-crisis/#9c53e10a6b36
https://www.forbes.com/sites/forbestechcouncil/2018/08/09/the-cybersecurity-talent-gap-is-an-industry-crisis/#9c53e10a6b36
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxv047
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxv047
http://dx.doi.org/10.1093/comjnl/bxv047
http://dl.acm.org/citation.cfm?doid=3177743.3162625
http://dl.acm.org/citation.cfm?doid=3177743.3162625
http://dx.doi.org/10.1145/3162625
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://play.google.com/store
https://www.android.com/play-protect/
https://www.android.com/play-protect/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
http://ieeexplore.ieee.org/document/6698897/
http://ieeexplore.ieee.org/document/6698897/
http://dx.doi.org/10.1109/ISSRE.2013.6698897

Bibliography

[Gun17] David Gunning. Explainable artificial intelligence (xai). Defense Advanced
Research Projects Agency (DARPA), nd Web, 2017.

[GYAR13] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural
detection of android malware using embedded call graphs. pages 45–54. ACM
Press, 2013. URL: http://dl.acm.org/citation.cfm?doid=2517312.2517315,
doi:10.1145/2517312.2517315.

[Har09] David Harley. The Game of the Name Malware Naming, Shape Shifters and
Sympathetic Magic. In CEET 3rd Intl. Conf. on Cybercrime Forensics Educa-
tion & Training, San Diego, CA, 2009.

[Hub19] Open Hub. Android Language Breakdown, January 2019. URL: https:
//www.openhub.net/p/android/analyses/latest/languages_summary.

[Hur] Médéric Hurier. Definition of Ouroboros.

[ICS18] ICS2. Cybersecurity skills shortage soars, nearning 3 million, Octo-
ber 2018. URL: https://blog.isc2.org/isc2_blog/2018/10/cybersecurity-skills-
shortage-soars-nearing-3-million.html.

[JBV11] Jiyong Jang, David Brumley, and Shobha Venkataraman. BitShred: feature
hashing malware for scalable triage and semantic analysis. page 309. ACM
Press, 2011. URL: http://dl.acm.org/citation.cfm?doid=2046707.2046742,
doi:10.1145/2046707.2046742.

[JYM+16] Jae-wook Jang, Jaesung Yun, Aziz Mohaisen, Jiyoung Woo, and Huy Kang
Kim. Detecting and classifying method based on similarity matching of An-
droid malware behavior with profile. SpringerPlus, 5(1), December 2016.
URL: http://www.springerplus.com/content/5/1/273, doi:10.1186/s40064-
016-1861-x.

[Kel10] Tom Kelchner. The (in)consistent naming of malcode. Computer Fraud &
Security, 2010(2):5–7, February 2010. URL: http://linkinghub.elsevier.com/
retrieve/pii/S1361372310700075, doi:10.1016/S1361-3723(10)70007-5.

[KLLVTT16] Nicolas Kiss, Jean-François Lalande, Mourad Leslous, and Valérie Viet
Triem Tong. Kharon dataset: Android malware under a microscope. In Learn-
ing from Authoritative Security Experiment Results, San Jose, United States,
May 2016. The USENIX Association. URL: https://hal-univ-orleans.archives-
ouvertes.fr/hal-01300752.

[KTA+15] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal
Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. Better Mal-
ware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels.
pages 45–56. ACM Press, 2015. URL: http://dl.acm.org/citation.cfm?doid=
2808769.2808780, doi:10.1145/2808769.2808780.

140

http://dl.acm.org/citation.cfm?doid=2517312.2517315
http://dx.doi.org/10.1145/2517312.2517315
https://www.openhub.net/p/android/analyses/latest/languages_summary
https://www.openhub.net/p/android/analyses/latest/languages_summary
https://blog.isc2.org/isc2_blog/2018/10/cybersecurity-skills-shortage-soars-nearing-3-million.html
https://blog.isc2.org/isc2_blog/2018/10/cybersecurity-skills-shortage-soars-nearing-3-million.html
http://dl.acm.org/citation.cfm?doid=2046707.2046742
http://dx.doi.org/10.1145/2046707.2046742
http://www.springerplus.com/content/5/1/273
http://dx.doi.org/10.1186/s40064-016-1861-x
http://dx.doi.org/10.1186/s40064-016-1861-x
http://linkinghub.elsevier.com/retrieve/pii/S1361372310700075
http://linkinghub.elsevier.com/retrieve/pii/S1361372310700075
http://dx.doi.org/10.1016/S1361-3723(10)70007-5
https://hal-univ-orleans.archives-ouvertes.fr/hal-01300752
https://hal-univ-orleans.archives-ouvertes.fr/hal-01300752
http://dl.acm.org/citation.cfm?doid=2808769.2808780
http://dl.acm.org/citation.cfm?doid=2808769.2808780
http://dx.doi.org/10.1145/2808769.2808780

Bibliography

[LBB+15] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. ApkCombiner: Combining Multiple Android Apps to Support Inter-
App Analysis. In Hannes Federrath and Dieter Gollmann, editors, ICT Systems
Security and Privacy Protection, volume 455, pages 513–527. Springer Inter-
national Publishing, Cham, 2015. URL: http://link.springer.com/10.1007/978-
3-319-18467-8_34, doi:10.1007/978-3-319-18467-8_34.

[LBP+17] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexan-
dre Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static analysis of
android apps: A systematic literature review. Information and Software Tech-
nology, 88:67–95, 2017.

[LDFM+12] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Milani
Comparetti, and Stefano Zanero. Lines of malicious code: insights into the ma-
licious software industry. page 349. ACM Press, 2012. URL: http://dl.acm.org/
citation.cfm?doid=2420950.2421001, doi:10.1145/2420950.2421001.

[Les18] Paige Leskin. The 21 scariest data breaches of 2018, Decem-
ber 2018. https://www.businessinsider.fr/us/data-hacks-breaches-biggest-of-
2018-2018-12. URL: https://www.businessinsider.fr/us/data-hacks-breaches-
biggest-of-2018-2018-12.

[LGH+17] Li Li, Jun Gao, Mederic Hurier, Pingfan Kong, Tegawende F Bissyande,
Alexandre Bartel, Jacques Klein, and Yves Le Traon. AndroZoo++: Collecting
Millions of Android Apps and Their Metadata for the Research Community.
page 21, September 2017.

[Lip18] Zachary Chase Lipton. The Mythos of Model Interpretability. ACM Queue,
16:30, 2018.

[LL17] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting
Model Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 4765–4774. Curran Asso-
ciates, Inc., 2017. URL: http://papers.nips.cc/paper/7062-a-unified-approach-
to-interpreting-model-predictions.pdf.

[LLB+17] Li Li, Daoyuan Li, Tegawende F. Bissyande, Jacques Klein, Yves Le Traon,
David Lo, and Lorenzo Cavallaro. Understanding Android App Piggyback-
ing: A Systematic Study of Malicious Code Grafting. IEEE Transactions on
Information Forensics and Security, 12(6):1269–1284, June 2017. URL: http:
//ieeexplore.ieee.org/document/7828100/, doi:10.1109/TIFS.2017.2656460.

[LLGR10] Peng Li, Limin Liu, Debin Gao, and Michael K Reiter. On Challenges in
Evaluating Malware Clustering. page 18, 2010.

141

http://link.springer.com/10.1007/978-3-319-18467-8_34
http://link.springer.com/10.1007/978-3-319-18467-8_34
http://dx.doi.org/10.1007/978-3-319-18467-8_34
http://dl.acm.org/citation.cfm?doid=2420950.2421001
http://dl.acm.org/citation.cfm?doid=2420950.2421001
http://dx.doi.org/10.1145/2420950.2421001
https://www.businessinsider.fr/us/data-hacks-breaches-biggest-of-2018-2018-12
https://www.businessinsider.fr/us/data-hacks-breaches-biggest-of-2018-2018-12
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://ieeexplore.ieee.org/document/7828100/
http://ieeexplore.ieee.org/document/7828100/
http://dx.doi.org/10.1109/TIFS.2017.2656460

Bibliography

[LNP15] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MAR-
VIN: Efficient and Comprehensive Mobile App Classification through Static
and Dynamic Analysis. pages 422–433. IEEE, July 2015. URL: http:
//ieeexplore.ieee.org/document/7273650/, doi:10.1109/COMPSAC.2015.103.

[LNW+14] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yan-
ick Fratantonio, Victor van der Veen, and Christian Platzer. ANDRUBIS –
1,000,000 Apps Later: A View on Current Android Malware Behaviors. pages
3–17. IEEE, September 2014. URL: http://ieeexplore.ieee.org/document/
7446031/, doi:10.1109/BADGERS.2014.7.

[MA14] Aziz Mohaisen and Omar Alrawi. AV-Meter: An Evaluation of Antivirus Scans
and Labels. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Klein-
berg, Alfred Kobsa, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Demetri Terzopoulos, Doug
Tygar, Gerhard Weikum, and Sven Dietrich, editors, Detection of Intrusions
and Malware, and Vulnerability Assessment, volume 8550, pages 112–131.
Springer International Publishing, Cham, 2014. URL: http://link.springer.com/
10.1007/978-3-319-08509-8_7, doi:10.1007/978-3-319-08509-8_7.

[MBSZ11] Federico Maggi, Andrea Bellini, Guido Salvaneschi, and Stefano Zanero.
Finding Non-trivial Malware Naming Inconsistencies. In Sushil Jajodia and
Chandan Mazumdar, editors, Information Systems Security, volume 7093,
pages 144–159. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL:
http://link.springer.com/10.1007/978-3-642-25560-1_10, doi:10.1007/978-
3-642-25560-1_10.

[MOA+17] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano
De Cristofaro, Gordon Ross, and Gianluca Stringhini. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. Internet
Society, 2017. URL: https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/mamadroid-detecting-android-malware-building-markov-chains-
behavioral-models/, doi:10.14722/ndss.2017.23353.

[MSK+19] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin
Yu. Interpretable machine learning: definitions, methods, and applications.
arXiv preprint arXiv:1901.04592, 2019.

[noa] VirusTotal. https://www.virustotal.com/about/. URL: https:
//www.virustotal.com/about/.

[NZ17] Robin Nix and Jian Zhang. Classification of Android apps and malware us-
ing deep neural networks. pages 1871–1878. IEEE, May 2017. URL: http://
ieeexplore.ieee.org/document/7966078/, doi:10.1109/IJCNN.2017.7966078.

[OMJ+13] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, and Eric
Bodden. Effective Inter-Component Communication Mapping in Android with

142

http://ieeexplore.ieee.org/document/7273650/
http://ieeexplore.ieee.org/document/7273650/
http://dx.doi.org/10.1109/COMPSAC.2015.103
http://ieeexplore.ieee.org/document/7446031/
http://ieeexplore.ieee.org/document/7446031/
http://dx.doi.org/10.1109/BADGERS.2014.7
http://link.springer.com/10.1007/978-3-319-08509-8_7
http://link.springer.com/10.1007/978-3-319-08509-8_7
http://dx.doi.org/10.1007/978-3-319-08509-8_7
http://link.springer.com/10.1007/978-3-642-25560-1_10
http://dx.doi.org/10.1007/978-3-642-25560-1_10
http://dx.doi.org/10.1007/978-3-642-25560-1_10
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/mamadroid-detecting-android-malware-building-markov-chains-behavioral-models/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/mamadroid-detecting-android-malware-building-markov-chains-behavioral-models/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/mamadroid-detecting-android-malware-building-markov-chains-behavioral-models/
http://dx.doi.org/10.14722/ndss.2017.23353
https://www.virustotal.com/about/
https://www.virustotal.com/about/
http://ieeexplore.ieee.org/document/7966078/
http://ieeexplore.ieee.org/document/7966078/
http://dx.doi.org/10.1109/IJCNN.2017.7966078

Bibliography

Epicc: An Essential Step Towards Holistic Security Analysis. page 16, August
2013.

[OZA15] Takashi OZAKI. Decision Boundaries for Deep Learning and other Machine
Learning classifiers, June 2015. URL: https://www.kdnuggets.com/2015/06/
decision-boundaries-deep-learning-machine-learning-classifiers.html.

[Par] Mila Parkour. Contagio MiniDump. https://contagiominidump.blogspot.lu/.
URL: https://contagiominidump.blogspot.lu/.

[Plo] Daniel Plohmann. Malpedia. https://malpedia.caad.fkie.fraunhofer.de/. URL:
https://malpedia.caad.fkie.fraunhofer.de/.

[PLP09] Darius Pfitzner, Richard Leibbrandt, and David Powers. Characterization and
evaluation of similarity measures for pairs of clusterings. Knowledge and Infor-
mation Systems, 19(3):361–394, 2009. doi:10.1007/s10115-008-0150-6.

[PMG+16] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical Black-Box Attacks against
Deep Learning Systems using Adversarial Examples. CoRR, abs/1602.02697,
2016. URL: http://arxiv.org/abs/1602.02697.

[Pri57] R. C. Prim. Shortest Connection Networks And Some Generaliza-
tions. Bell System Technical Journal, 36(6):1389–1401, November
1957. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6773228, doi:10.1002/j.1538-7305.1957.tb01515.x.

[PU12] Roberto Perdisci and ManChon U. VAMO: towards a fully automated
malware clustering validity analysis. page 329. ACM Press, 2012.
URL: http://dl.acm.org/citation.cfm?doid=2420950.2420999, doi:10.1145/
2420950.2420999.

[RAMB16] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bod-
den. Harvesting Runtime Values in Android Applications That Fea-
ture Anti-Analysis Techniques. Internet Society, 2016. URL: https:
//www.ndss-symposium.org/wp-content/uploads/sites/25/2017/09/harvesting-
runtime-values-android-applications-feature-anti-analysis-techniques.pdf,
doi:10.14722/ndss.2016.23066.

[RCE13] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: automatic
security analysis of smartphone applications. page 209. ACM Press, 2013.
URL: http://dl.acm.org/citation.cfm?doid=2435349.2435379, doi:10.1145/
2435349.2435379.

[RDG+12] Christian Rossow, Christian J. Dietrich, Chris Grier, Christian Kreibich, Vern
Paxson, Norbert Pohlmann, Herbert Bos, and Maarten van Steen. Prudent Prac-
tices for Designing Malware Experiments: Status Quo and Outlook. pages
65–79. IEEE, May 2012. URL: http://ieeexplore.ieee.org/document/6234405/,
doi:10.1109/SP.2012.14.

143

https://www.kdnuggets.com/2015/06/decision-boundaries-deep-learning-machine-learning-classifiers.html
https://www.kdnuggets.com/2015/06/decision-boundaries-deep-learning-machine-learning-classifiers.html
https://contagiominidump.blogspot.lu/
https://malpedia.caad.fkie.fraunhofer.de/
http://dx.doi.org/10.1007/s10115-008-0150-6
http://arxiv.org/abs/1602.02697
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773228
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773228
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dl.acm.org/citation.cfm?doid=2420950.2420999
http://dx.doi.org/10.1145/2420950.2420999
http://dx.doi.org/10.1145/2420950.2420999
https://www.ndss-symposium.org/wp-content/uploads/sites/25/2017/09/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
https://www.ndss-symposium.org/wp-content/uploads/sites/25/2017/09/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
https://www.ndss-symposium.org/wp-content/uploads/sites/25/2017/09/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
http://dx.doi.org/10.14722/ndss.2016.23066
http://dl.acm.org/citation.cfm?doid=2435349.2435379
http://dx.doi.org/10.1145/2435349.2435379
http://dx.doi.org/10.1145/2435349.2435379
http://ieeexplore.ieee.org/document/6234405/
http://dx.doi.org/10.1109/SP.2012.14

Bibliography

[RLVS] Fernando Ramírez, Francisco López, Daniel Vaca, and Antonio Sánchez.
Koodous. https://koodous.com/about. URL: https://koodous.com/about.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust
You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144,
2016.

[SFE+13] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck,
and Johannes Hoffmann. Mobile-sandbox: having a deeper look into an-
droid applications. page 1808. ACM Press, 2013. URL: http://dl.acm.org/
citation.cfm?doid=2480362.2480701, doi:10.1145/2480362.2480701.

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important
Features Through Propagating Activation Differences. CoRR, abs/1704.02685,
2017. URL: http://arxiv.org/abs/1704.02685.

[SKGM18] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan Mangard.
Procharvester: Fully automated analysis of procfs side-channel leaks on an-
droid. In Proceedings of the 2018 on Asia Conference on Computer and Com-
munications Security, pages 749–763. ACM, 2018.

[Sol] Solvusoft. How to Remove Android:AccuTrack-A. URL: https:
//www.solvusoft.com/en/malware/potentially-unwanted-application/android-
accutrack-a/.

[Sop19] Sophos. SophosLabs 2019 - Threat Report, 2019. URL: https:
//www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-
2019-threat-report.pdf.

[Sou] Android Source. Android Framework. URL: https://source.android.com/
security/.

[SP10] Robin Sommer and Vern Paxson. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. pages 305–316. IEEE,
2010. URL: http://ieeexplore.ieee.org/document/5504793/, doi:10.1109/
SP.2010.25.

[SRKC16] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. AV-
class: A Tool for Massive Malware Labeling. In Fabian Monrose, Marc Dacier,
Gregory Blanc, and Joaquin Garcia-Alfaro, editors, Research in Attacks, In-
trusions, and Defenses, volume 9854, pages 230–253. Springer International
Publishing, Cham, 2016. URL: http://link.springer.com/10.1007/978-3-319-
45719-2_11, doi:10.1007/978-3-319-45719-2_11.

[SSB] Fridrik Skulason, Alan Solomon, and Vesselin Bontchev. CARO.
http://www.caro.org/articles/naming.html. URL: http://www.caro.org/articles/
naming.html.

144

https://koodous.com/about
http://dl.acm.org/citation.cfm?doid=2480362.2480701
http://dl.acm.org/citation.cfm?doid=2480362.2480701
http://dx.doi.org/10.1145/2480362.2480701
http://arxiv.org/abs/1704.02685
https://www.solvusoft.com/en/malware/potentially-unwanted-application/android-accutrack-a/
https://www.solvusoft.com/en/malware/potentially-unwanted-application/android-accutrack-a/
https://www.solvusoft.com/en/malware/potentially-unwanted-application/android-accutrack-a/
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf
https://source.android.com/security/
https://source.android.com/security/
http://ieeexplore.ieee.org/document/5504793/
http://dx.doi.org/10.1109/SP.2010.25
http://dx.doi.org/10.1109/SP.2010.25
http://link.springer.com/10.1007/978-3-319-45719-2_11
http://link.springer.com/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://www.caro.org/articles/naming.html
http://www.caro.org/articles/naming.html

Bibliography

[SSDM16] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli.
MADAM: Effective and Efficient Behavior-based Android Malware Detection
and Prevention. page 14, 2016.

[sta19a] statcounter. Mobile Operating System Market Share Worldwide, 2019.
http://gs.statcounter.com/os-market-share/mobile/worldwide/. URL: http://
gs.statcounter.com/os-market-share/mobile/worldwide/.

[Sta19b] Statista. Number of available applications in the Google
Play Store from December 2009 to December 2018, 2019.
https://www.statista.com/statistics/266210/number-of-available-applications-
in-the-google-play-store/. URL: https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[STDA+17] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes
Kinder, Giorgio Giacinto, and Lorenzo Cavallaro. DroidSieve: Fast and Ac-
curate Classification of Obfuscated Android Malware. pages 309–320. ACM
Press, 2017. URL: http://dl.acm.org/citation.cfm?doid=3029806.3029825,
doi:10.1145/3029806.3029825.

[STS18] Guillermo Suarez-Tangil and Gianluca Stringhini. Eight Years of Rider Mea-
surement in the Android Malware Ecosystem: Evolution and Lessons Learned.
page 18, January 2018.

[STTPLB14] Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez, and Jorge
Blasco. Dendroid: A text mining approach to analyzing and classifying code
structures in Android malware families. Expert Systems with Applications,
41(4):1104–1117, March 2014. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0957417413006088, doi:10.1016/j.eswa.2013.07.106.

[STTPLR14] Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez, and Ar-
turo Ribagorda. Evolution, Detection and Analysis of Malware for Smart
Devices. IEEE Communications Surveys & Tutorials, 16(2):961–987,
2014. URL: http://ieeexplore.ieee.org/document/6657497/, doi:10.1109/
SURV.2013.101613.00077.

[Sym19] Symantec. Android.Kuguo, 2019. URL: https://www.symantec.com/security-
center/writeup/2014-040315-5215-99.

[Sys19] Upstream Systems. Secure-D uncovers pre-installed malware com.tct.weather
on Alcatel Android smartphones manufactured by TCL, January 2019. URL:
https://www.upstreamsystems.com/secure-d-uncovers-pre-installed-malware-
alcatel-android-smartphones-manufactured-tcl/.

[Tet18] Sai Tetali. Keeping 2 billion Android devices safe with machine learning,
May 2018. URL: https://security.googleblog.com/2018/05/keeping-2-billion-
android-devices-safe.html.

145

http://gs.statcounter.com/os-market-share/mobile/worldwide/
http://gs.statcounter.com/os-market-share/mobile/worldwide/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://dl.acm.org/citation.cfm?doid=3029806.3029825
http://dx.doi.org/10.1145/3029806.3029825
http://linkinghub.elsevier.com/retrieve/pii/S0957417413006088
http://linkinghub.elsevier.com/retrieve/pii/S0957417413006088
http://dx.doi.org/10.1016/j.eswa.2013.07.106
http://ieeexplore.ieee.org/document/6657497/
http://dx.doi.org/10.1109/SURV.2013.101613.00077
http://dx.doi.org/10.1109/SURV.2013.101613.00077
https://www.symantec.com/security-center/writeup/2014-040315-5215-99
https://www.symantec.com/security-center/writeup/2014-040315-5215-99
https://www.upstreamsystems.com/secure-d-uncovers-pre-installed-malware-alcatel-android-smartphones-manufactured-tcl/
https://www.upstreamsystems.com/secure-d-uncovers-pre-installed-malware-alcatel-android-smartphones-manufactured-tcl/
https://security.googleblog.com/2018/05/keeping-2-billion-android-devices-safe.html
https://security.googleblog.com/2018/05/keeping-2-billion-android-devices-safe.html

Bibliography

[TFA+17] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo
Cavallaro. The Evolution of Android Malware and Android Analysis Tech-
niques. ACM Computing Surveys, 49(4):1–41, January 2017. URL: http:
//dl.acm.org/citation.cfm?doid=3022634.3017427, doi:10.1145/3017427.

[TKFC15] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro.
CopperDroid: Automatic Reconstruction of Android Malware Behaviors. In-
ternet Society, 2015. URL: https://www.ndss-symposium.org/ndss2015/ndss-
2015-programme/copperdroid-automatic-reconstruction-android-malware-
behaviors/, doi:10.14722/ndss.2015.23145.

[TKP+17] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and
defenses. arXiv preprint arXiv:1705.07204, 2017.

[VAK+16] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos
Bassias, and Ke Li. AI2: Training a Big Data Machine to Defend. pages
49–54. IEEE, April 2016. URL: http://ieeexplore.ieee.org/document/7502263/,
doi:10.1109/BigDataSecurity-HPSC-IDS.2016.79.

[Vas18] Gowthamy Vaseekaran. Machine Learning: Supervised Learning vs
Unsupervised Learning, September 2018. URL: https://medium.com/
@gowthamy/machine-learning-supervised-learning-vs-unsupervised-
learning-f1658e12a780.

[Ver19] Verizon. 2018 Data Breach Investigations Report, 2019.
https://enterprise.verizon.com/resources/reports/dbir/. URL: https:
//enterprise.verizon.com/resources/reports/dbir/.

[Web19] Android Website. Android Security, January 2019. URL: https://
www.android.com/enterprise/security/.

[WHA+18] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Brad Reaves, Patrick
Traynor, and Sascha Fahl. A Large Scale Investigation of Obfuscation Use
in Google Play. page 14, January 2018.

[WJ12] Yajin Zhou Zhi Wang and Wu Zhou Xuxian Jiang. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android Mar-
kets. page 13, 2012.

[WLC15] Xiaozhou Wang, Jiwei Liu, and Xueer Chen. Microsoft Malware Classification
Challenge (BIG 2015): First Place Team: Say No to Overfitting. page 7, May
2015.

[WLR+17] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep
Ground Truth Analysis of Current Android Malware. page 20, January 2017.

146

http://dl.acm.org/citation.cfm?doid=3022634.3017427
http://dl.acm.org/citation.cfm?doid=3022634.3017427
http://dx.doi.org/10.1145/3017427
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/copperdroid-automatic-reconstruction-android-malware-behaviors/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/copperdroid-automatic-reconstruction-android-malware-behaviors/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/copperdroid-automatic-reconstruction-android-malware-behaviors/
http://dx.doi.org/10.14722/ndss.2015.23145
http://ieeexplore.ieee.org/document/7502263/
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79
https://medium.com/@gowthamy/machine-learning-supervised-learning-vs-unsupervised-learning-f1658e12a780
https://medium.com/@gowthamy/machine-learning-supervised-learning-vs-unsupervised-learning-f1658e12a780
https://medium.com/@gowthamy/machine-learning-supervised-learning-vs-unsupervised-learning-f1658e12a780
https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
https://www.android.com/enterprise/security/
https://www.android.com/enterprise/security/

Bibliography

[WMGH14] Ting Wang, Shicong Meng, Wei Gao, and Xin Hu. Rebuilding the Tower
of Babel: Towards Cross-System Malware Information Sharing. pages
1239–1248. ACM Press, 2014. URL: http://dl.acm.org/citation.cfm?doid=
2661829.2662086, doi:10.1145/2661829.2662086.

[WMW+12] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping
Wu. DroidMat: Android Malware Detection through Manifest and API Calls
Tracing. pages 62–69. IEEE, August 2012. URL: http://ieeexplore.ieee.org/
document/6298136/, doi:10.1109/AsiaJCIS.2012.18.

[YBK13] Guanhua Yan, Nathan Brown, and Deguang Kong. Exploring Discrimina-
tory Features for Automated Malware Classification. In David Hutchison,
Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Stef-
fen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Ger-
hard Weikum, Konrad Rieck, Patrick Stewin, and Jean-Pierre Seifert, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment, volume
7967, pages 41–61. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
URL: http://link.springer.com/10.1007/978-3-642-39235-1_3, doi:10.1007/
978-3-642-39235-1_3.

[YLCJ10] Yanfang Ye, Tao Li, Yong Chen, and Qingshan Jiang. Automatic mal-
ware categorization using cluster ensemble. page 95. ACM Press, 2010.
URL: http://dl.acm.org/citation.cfm?doid=1835804.1835820, doi:10.1145/
1835804.1835820.

[YLX16] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. DroidDetector: android mal-
ware characterization and detection using deep learning. Tsinghua Science and
Technology, 21(1):114–123, February 2016. URL: http://ieeexplore.ieee.org/
document/7399288/, doi:10.1109/TST.2016.7399288.

[YXG+14] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Por-
ras. DroidMiner: Automated Mining and Characterization of Fine-grained
Malicious Behaviors in Android Applications. In Mirosław Kutyłowski
and Jaideep Vaidya, editors, Computer Security - ESORICS 2014, volume
8712, pages 163–182. Springer International Publishing, Cham, 2014. URL:
http://link.springer.com/10.1007/978-3-319-11203-9_10, doi:10.1007/978-
3-319-11203-9_10.

[YY12] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis.
page 16, 2012.

[ZH05] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the royal statistical society: series B (statistical methodology),
67(2):301–320, 2005.

147

http://dl.acm.org/citation.cfm?doid=2661829.2662086
http://dl.acm.org/citation.cfm?doid=2661829.2662086
http://dx.doi.org/10.1145/2661829.2662086
http://ieeexplore.ieee.org/document/6298136/
http://ieeexplore.ieee.org/document/6298136/
http://dx.doi.org/10.1109/AsiaJCIS.2012.18
http://link.springer.com/10.1007/978-3-642-39235-1_3
http://dx.doi.org/10.1007/978-3-642-39235-1_3
http://dx.doi.org/10.1007/978-3-642-39235-1_3
http://dl.acm.org/citation.cfm?doid=1835804.1835820
http://dx.doi.org/10.1145/1835804.1835820
http://dx.doi.org/10.1145/1835804.1835820
http://ieeexplore.ieee.org/document/7399288/
http://ieeexplore.ieee.org/document/7399288/
http://dx.doi.org/10.1109/TST.2016.7399288
http://link.springer.com/10.1007/978-3-319-11203-9_10
http://dx.doi.org/10.1007/978-3-319-11203-9_10
http://dx.doi.org/10.1007/978-3-319-11203-9_10

Bibliography

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Character-
ization and Evolution. pages 95–109. IEEE, May 2012. URL: http://
ieeexplore.ieee.org/document/6234407/, doi:10.1109/SP.2012.16.

[ZZG+13] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast,
scalable detection of "Piggybacked" mobile applications. page 185. ACM
Press, 2013. URL: http://dl.acm.org/citation.cfm?doid=2435349.2435377,
doi:10.1145/2435349.2435377.

148

http://ieeexplore.ieee.org/document/6234407/
http://ieeexplore.ieee.org/document/6234407/
http://dx.doi.org/10.1109/SP.2012.16
http://dl.acm.org/citation.cfm?doid=2435349.2435377
http://dx.doi.org/10.1145/2435349.2435377

	Introduction, background, and state of the art
	Introduction
	Mobile security in the real world
	Mobile security and innovation
	Mobile security as an arms race
	Mobile security for Android applications

	Android security challenges
	Definition of Android malware
	Automation of security decisions
	Progression of human comprehension

	Contributions to the realm of Android security
	Qualification of malware datasets
	Unification of malware information
	Dissection of malicious components

	Technical Background
	Android ecosystem
	Overview
	Applications
	Security model

	Malware ground truth
	Files
	Metadata
	Classification

	Machine learning systems
	Feature engineering
	Model training
	Evaluation

	State of the art
	Detection of Android malware
	Malware analysis
	Malware classification

	Creation of malware ground truth
	Study of antivirus results
	Datasets of Android malware

	Explanation of black box systems
	Machine learning models
	Malicious Android applications

	The creation of better malware ground truth
	STASE: statistics for malware datasets
	Studying the impact of malware datasets
	Dataset of Android applications and antivirus
	Variations in experimental settings
	Notations and definitions

	Analysis of antivirus detection
	Equiponderance
	Exclusivity
	Recognition
	Synchronicity

	Analysis of antivirus labeling
	Uniformity
	Genericity
	Divergence
	Consensuality
	Resemblance

	Observations on malware datasets
	Recommendations for experiments

	EUPHONY: unification of malware labels
	Definition of labeling process
	Antivirus labels
	Sample sets
	Metrics

	Extraction of label information
	Parsing algorithm
	Heuristics rules
	Initial lexicon

	Clustering of malware families
	Associating family names
	Clustering family names
	Inferring family names

	Analysis of EUPHONY results
	Datasets and metrics
	Performance evaluation
	Evaluation of samples in the wild

	Support of threat intelligence services

	AP-GRAPH: dissection of malware artifacts
	Specification of malware artifacts
	Information retrieval
	Information indexing
	Information analysis

	Creation of malware knowledge base
	Architecture A: Datomic
	Architecture B: Flat file
	Architecture C: Elastic

	Characterization of malware families
	Dataset
	Performances
	Case studies

	Evolution of malware families over time
	ESET NOD32 - Igexin
	EUPHONY - AppsGeyser
	G DATA - SMSpay

	Challenges of malware classification
	Obfuscation and variations
	Noisy antivirus classifications
	Going from correlation to causation

	Summary and future research directions
	Conclusion
	Summary
	Definition of Android malware
	Automation of security decisions
	Progression of human comprehension

	Future research directions
	Malware forecast
	Apprenticeship learning
	Learning from machine learning

