
A Machine Learning-Based Approach for
Demarcating Requirements in Textual Specifications

Sallam Abualhaija∗, Chetan Arora∗, Mehrdad Sabetzadeh∗, Lionel C. Briand∗†, Eduardo Vaz‡
∗SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

†School of Engineering and Computer Science, University of Ottawa, Canada
‡QRA Corp, Halifax, Canada

Email: {abualhaija, arora, sabetzadeh, briand}@svv.lu, eduardo@qracorp.com

Abstract—A simple but important task during the analysis of
a textual requirements specification is to determine which state-
ments in the specification represent requirements. In principle,
by following suitable writing and markup conventions, one can
provide an immediate and unequivocal demarcation of require-
ments at the time a specification is being developed. However,
neither the presence nor a fully accurate enforcement of such
conventions is guaranteed. The result is that, in many practical
situations, analysts end up resorting to after-the-fact reviews
for sifting requirements from other material in a requirements
specification. This is both tedious and time-consuming.

We propose an automated approach for demarcating require-
ments in free-form requirements specifications. The approach,
which is based on machine learning, can be applied to a wide
variety of specifications in different domains and with different
writing styles. We train and evaluate our approach over an
independently labeled dataset comprised of 30 industrial require-
ments specifications. Over this dataset, our approach yields an
average precision of 81.2% and an average recall of 95.7%. Com-
pared to simple baselines that demarcate requirements based on
the presence of modal verbs and identifiers, our approach leads
to an average gain of 16.4% in precision and 25.5% in recall.

Index Terms—Textual Requirements, Requirements Identifi-
cation and Classification, Machine Learning, Natural Language
Processing.

I. INTRODUCTION

Requirements specifications (RS) are arguably the most
central artifacts to the requirements engineering process. An
RS lays out the necessary characteristics, capabilities, and
qualities of a system-to-be [1]. RS are typically intended for
a diverse audience, e.g., users, analysts and developers. To
facilitate comprehension and communication between stake-
holders who have different backgrounds and expertise, RS are
predominantly written in natural language [2], [3], [4].

The structure and content of a (textual) RS vary, depending
on the requirements elaboration and documentation methods
used. In general, an RS is expected to provide, in addition
to the requirements, a variety of other information such as
the system scope and environment, domain properties, con-
cept definitions, rationale information, comments, and exam-
ples [1], [4]. A common problem during the analysis of an RS
is telling apart the requirements from the other information.

Being able to distinguish requirements from the rest of an
RS – that is, from non-requirements [5] – is important for
multiple reasons: First, requirements are typically the basis
for development contracts [6]. Making the requirements ex-
plicit helps avoid later disputes about contractual obligations.
Second and from a quality standpoint, it is common to hold

requirements to higher standards than non-requirements, con-
sidering the potentially serious implications of vagueness and
ambiguity in the requirements [2], [7]. Naturally, to be able
to give extra scrutiny to the requirements, the analysts need
to know where the requirements are located within a given
RS. Finally, having the requirements explicated is essential
for better supporting requirements verification and validation
tasks, e.g., the specification of acceptance criteria and test
cases, which are directly linked to the requirements [4].

The most immediate solution that comes to mind for dis-
tinguishing requirements from non-requirements in an RS is
through leveraging the writing and markup conventions that
may have been applied while writing the RS. Examples of
these conventions include using modal verbs (e.g., “shall” and
“will”) in requirements sentences and prefixing requirements
with identifiers. Despite being simple and common in practice,
such conventions do not lead to a reliable solution for recog-
nizing between requirements and non-requirements. This is
because, for an arbitrary given RS, one may neither know
which conventions, if any, have been applied, nor be able
to conclusively ascertain whether the conventions of choice
have been applied consistently and unambiguously. Further,
conventions per se do not protect against some important
errors that may occur during requirements writing, e.g., the
inadvertent introduction of new requirements while providing
clarification or justification for other requirements.

To illustrate, consider the example in Fig. 1. This example
shows a small excerpt of a customer RS concerned with a
space rover navigation system. To facilitate illustration, we
have slightly altered the excerpt from its original form. The
requirements in this excerpt, as identified by a domain expert,
are the segments marked R1–R7 and shaded green. The non-
requirements are marked N1–N5. As we argue next, one
cannot accurately recognize the requirements in this excerpt
through applying simple heuristics.

The intuition of selecting as requirements only sentences
with modal verbs is not good enough, because some re-
quirements, e.g., R4, R6 and R7, have none. Further, non-
requirements too may contain modal verbs, e.g., “will” in
N5. Similarly, selecting as requirements only sentences pre-
fixed with alphanumeric patterns can be inaccurate, since
these patterns may not have been used consistently or may
be overlapping with other structural elements, e.g., section
headings. In our example, R1, R4, R6 and R7 have unique

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/225543361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3.1.1 Controller Requirements
3.1.1.1 The rover navigation controller shall provide interfaces for on-
board control, and remote control by the operations team.
Ease of use and control for all functions.
1. When in remotely controlled mode, the speed must be limited by
the rover navigation controller to 3 km/h with a target speed of 5 km/h.
This is because in the remote controlled mode, there is a likely delay
≧ 20ms in information transfer from the controller to the operations
centre.
2. For the on-board control, the rover navigation controller should
limit the speed to 5 km/h with a target speed of 10 km/h.
Observe that the speed is higher in on-board control as the navigation
is based on real front views, side-camera views, and the sensory
information.
3.1.1.2 When receiving commands from multiple sources, the rover
navigation controller prioritizes and arbitrates the commands received
from all sources to ensure that the most appropriate source is used.
Note: This is intended to avoid situations where rover controller will
receive contradictory commands from multiple sources. The
navigation controller shall maintain a copy on-board of all the priority
constraints of all sources.
3.1.1.3 A safe mode switch is available to turn the remote control off
when the latency or jitter is too high.
3.1.1.4 An emergency stop switch is provided on-board to interrupt all
functions and movements immediately, even if the rover is in the
remotely controlled mode.

R1

N2

R2

N3

R3

R4

R5

R7

N4

N5

N Non-requirement R Requirement

N1

R6

Fig. 1: Excerpt from a Textual Requirements Specification.

alphanumeric identifiers, but the numbering scheme is the
same as that used for sectioning the text. At the same time,
R2 and R3 are items in a simple enumerated list; and, R5 has
no numbering at all. Another simple heuristic, namely filtering
out segments marked as supplementary material via such cue
phrases as “Note:”, can lead to both missed requirements – in
our example, R5 – as well as numerous false positives – in
our example, N1–N4.

As the example of Fig. 1 highlights, the seemingly simple
task of separating requirements from non-requirements in an
RS cannot be addressed accurately through easy-to-automate
heuristics. Doing the task entirely manually is not an attractive
alternative due to being very tedious and time-consuming.

In this paper, we develop a practical, accurate and fully
automated approach for requirements demarcation in textual
RS. By requirements demarcation, we mean recognizing and
precisely delimiting the text segments that represent require-
ments and non-requirements. Our approach is in direct re-
sponse to an industrial need presented to us by a leading
requirements tool vendor and our collaborating partner, QRA
Corp (https://qracorp.com). An internal market study by QRA
suggests that practitioners frequently have to review large
RS, particularly customer-provided ones, in search of require-
ments. As such, they have shown interest in a tool feature that
would help them identify the requirements more efficiently.

Much work has been done in the RE community on au-
tomating the identification and classification of requirements-
related information in textual documents [5], [8]. However, and
as we argue more precisely in Section V, none of the existing
strands of work lead to a general-purpose requirements de-
marcation solution. The novelty of our approach is in simul-
taneously (1) being domain- and terminology-independent, (2)
requiring no user input about the structure or content of the
RS needing to be processed, and (3) placing no restrictions
on the types of requirements that can be identified. Achieving

these characteristics is paramount in our context, noting that
the ultimate goal of our partner is to offer a push-button
requirements demarcation technology that can be used by a
diverse set of clients and over RS written in a variety of styles.
Contributions. We employ machine learning (ML) to devise
an automated approach for requirement demarcation. Our ML
classification model is based on generic features that can be
applied to a wide range of RS irrespective of the specific tem-
plate, terminology and style used. Our ML features take into
consideration some common conventions that may have been
applied during RS writing (illustrated in Fig. 1). However, the
features do not take the presence or consistent application of
these conventions for granted. Instead, the features introduce
several more advanced criteria based on the syntactic and
semantic properties of textual statements. These additional
criteria lead to a more accurate classification of requirements
and non-requirements than when conventions are considered
alone. To account for these criteria, our approach relies on
information extraction via natural language processing (NLP).

Our approach focuses exclusively on free-form (unre-
stricted) RS; we do not address structured RS types such
as use-case descriptions and user stories. This decision was
motivated by the prevalence of free-form RS in practice [3].
While our approach is not limited to free-form RS, it is not
necessarily optimized for structured RS, since it does not
envisage ML features for picking up on any specific structural
restrictions. This said, we believe requirements demarcation
is less likely to need an ML-based solution when RS are
sufficiently structured; for such RS, the structure in itself is
often sufficient for a rule-based identification of requirements
and non-requirements.

We empirically evaluate our approach using a dataset of
30 industrial RS from 12 different application domains and
originating from 18 different organizations. These RS, which
were labeled either directly by our industry partner or by
an independent, trained annotator (non-author), collectively
contain 7351 requirements and 10955 non-requirements. We
exploit this dataset in an empirically sound manner for ML
algorithm selection and tuning, training, and testing. When
applied to an RS no portion of which has been exposed
during training, our approach yields an average precision
of 81.2% and average recall of 95.7%. In comparison, our
approach leads to an average improvement of 16.4% in
precision and 25.5% in recall vis-à-vis simple baselines that
recognize requirements based on the presence of modal verbs
and requirements identifiers. Our evaluation further examines
the execution time of our approach, showing that the approach
is practical for both batch analysis and interactive demarcation.
Structure. Section II provides background. Section III presents
our approach. Section IV describes our empirical evaluation.
Section V compares with related work. Section VI discusses
threats to validity. Section VII concludes the paper.

II. BACKGROUND

In this section, we review the machine learning and natural
language processing background for our approach.

https://qracorp.com

A. Machine Learning
Our approach is based on supervised ML, meaning that it

requires labeled data for training. Our labeled data is made
up of RS whose different segments have been marked by
human experts as being requirements or non-requirements.
Supervised techniques are categorized into classification and
regression [9]; the former is aimed at predicting categorical
outputs, and the latter – at predicting real-valued outputs.
What we are concerned with, namely distinguishing between
requirements and non-requirements, is a binary classification
problem. In our evaluation (Section IV), we empirically ex-
amine several alternative ML classification algorithms in order
to determine which one is the most accurate for our purpose.

ML classification algorithms typically attempt to minimize
misclassification, giving equal treatment to different types of
misclassification. However, in many situations, like ours, the
costs associated with different misclassification types are not
symmetric. In particular, the cost of misclassifying a non-
requirement as a requirement (false positive) is considerably
less than that of misclassifying a requirement as a non-
requirement (false negative). The rationale here is that, as long
as false positives are not too many, the effort of manually dis-
carding them is a compelling trade-off for better completeness,
i.e., the ability to identify all the requirements.

ML can be tuned to take account of misclassification costs
either (1) during training or (2) after training. The former
strategy is known as cost-sensitive learning and the latter – as
cost-sensitive classification [9]. In our approach, we employ
cost-sensitive learning, which is generally considered to be
the more effective of the two [10]. We note that cost-sensitive
learning may also be used for addressing class imbalance: the
situation where data instances for certain classes are much
more prevalent than for others. Neither of our classes –
requirement and non-requirement – are underrepresented in
our dataset (see Section IV). We use cost-sensitive learning
exclusively for mitigating, as much as possible, false negatives.

B. Natural Language Processing
Natural language processing (NLP) is concerned with

the computerized understanding, analysis, and production of
human-language content [11], [12]. In this paper, we employ
three main NLP technologies: (1) constituency parsing for
delineating the structural units of sentences, notably Noun
Phrases (NPs) and Verb Phrases (VPs), (2) dependency parsing
for inferring grammatical dependencies between the words
in sentences, e.g., subject-object relations, and (3) semantic
parsing for building a representation of the meaning of a
sentence based on the meaning of the sentence’s constituents.

Semantic parsing relies on lexical resources such as Word-
Net [13] for information about words’ senses (meanings)
and the relations between these senses. In this paper, our
use of semantic parsing is limited to distinguishing different
sentences based on the semantic category of their verbs. For
this purpose, we use WordNet’s categorization of verbs [14].
We are specifically interested in the following verb classes:
(1) cognition, referring to verbs that describe reasoning or

RS

Constituency Parser

Semantic Parser

Dependency Parser

Pa
rs

in
g

Tokenizer

POS Tagger

Sentence Splitter

Pr
ep

ro
ce

ss
in

g

RS with
Annotations

Fig. 2: Our NLP Pipeline.

intention, e.g., “think”, “ana-
lyze” and “believe”; (2) action,
referring to verbs that describe a
motion or change, e.g., “go” and
“fall”, and (3) stative, referring
to verbs that describe the state
of being, e.g., “is” and “has”.
Including cognition verbs is mo-
tivated by recent work on ar-
gumentation mining from prod-
ucts and software reviews [15],
[16]; including action and stative
verbs is motivated by Fillmore’s basic English verb types [17].

NLP-based analysis is typically performed using a pipeline
of NLP modules. Fig. 2 shows the pipeline we use in our work.
The first module in the preprocessing group of modules is the
Tokenizer, which breaks the input text – in our case, an RS –
into tokens. The tokens may be words, numbers, punctuation
marks, or symbols. The second preprocessing module, the
Sentence Splitter, splits the text into sentences based on
conventional delimiters, e.g., period. The third preprocessing
module, the POS Tagger, assigns part-of-speech (POS) tags,
e.g., noun, verb and adjective, to each token. The results from
the preprocessing steps constitute the input to the three parsing
techniques, outlined earlier. The output of the NLP pipeline is
a set of annotations (metadata) attached to the elements within
the input RS. These annotations are exploited by our approach
as we explain next.

III. APPROACH

Fig. 3 presents an overview of our approach. The input to
the approach is a textual RS. We treat each RS as a collection
of sentences. By sentence, we do not necessarily mean a
grammatical sentence, but rather a text segment that has been
marked as a “sentence” by the Sentence Splitter module of
the NLP pipeline in Fig. 2. According to this definition, the
excerpt of Fig. 1 has 12 sentences: N1–N5 and R1–R7. Our
unit of classification is a sentence as per the above definition.

As mentioned earlier, the classification is binary with the
two classes being requirement and non-requirement. In the re-
mainder of the paper, given the binary nature of classification,
we refer to each sentence as a requirement candidate, or cand
for short. The output of the approach is a demarcated RS; this
is the input RS where each cand has been marked as either a
requirement or a non-requirement.

The approach works in three phases, labeled 1–3 in Fig. 3.
In the first phase, we run the NLP pipeline of Fig. 2 on the

Frequency
Metadata

RS with
(NLP-generated)

Annotations

Demarcated
RS

Parse
Document

1
Build ML
Feature
Matrix

2
Classify

Requirement
Candidates

3

RS

Semantic
Features

Token-
based

Features

Syntactic
Features

Requirement
Candidates

Frequency-
based

Features

· · ·<latexit sha1_base64="m94MPbhQ0jNffvSn8H3/t4KQWm4=">AAACYXicZZDNSgMxFIVvx//xr+rSTbEbcVFmBHElFqWgOwVbhaZIJnOnRmeSIUn9CwM+glt9IZ/BtS9iphVh9GxyObnn43CjPOXaBMFnzZuanpmdm1/wF5eWV1bra+s9LUeKYZfJVKqriGpMucCu4SbFq1whzaIUL6O74/L/8h6V5lJcmKccBxkdCp5wRo2zeoTF0ujrejNoBWM1/g/hz9A8/PAPXgDg7Hqt1iGxZKMMhWEp1brPpEhQoWA4sKedTscoKgqfjDTmlN3RIdpx14rVz+PE4OPADhXNbzh7rAZGKq0aVCn6VPg+EfjAZJZREVuCKZYtin44sJYkUhohDWr+jMSxjU5sMyyKohrKuOBl8DclTJmwe4UNCr/RIO6gyEzpVylVjHY7MudsjCH32hXFHdvadWCSU0WE5CJ25ewYwt0bJRoVR92Y4Nzhw79n/j/0dlth0ArPw2b7CCaah03Ygm0IYR/acAJn0AUGt/AKb/Be+/IWvLq3Pln1aj+ZDajI2/wGA1K96Q==</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="FPXtabmdPbeQhp/pU1fr5K0aIz8=">AAACYXicZZHNSsNAFIWn8a+Nf21duilmIy5KIojbohR0V8FWoRNkMrmpo8lMmJlqdcg7uNU3c+2LOGmLEHs3czlzz8fh3ihPmdK+/11z1tY3NrfqDXd7Z3dvv9lqj5SYSgpDKlIh7yOiIGUchprpFO5zCSSLUriLni/L/7sXkIoJfqvfcggzMuEsYZRoK40wjYVWD03P7/rz6qw2wbLx0LIGD61aH8eCTjPgmqZEqTEVPAEJnEJorvv9vpaEFy6eKsgJfSYTMPOsFWmcx4mGWWgmkuSPjM6qhqlMqwKRkrwVros5vFKRZYTHBkMKZYpiHITG4EQIzYUGxd4BW7ZWifGCoiiqpoxxVhr/XFyXDnNWGL9wOx1sFwpUl3qVUsUoOyNyRucY/KJsUDgx3VMLxjmRmAvGYxvOzCHMvlGiQDJQnQXOLj74v+bVZnTaDfxucBN4vYvlCeroEB2hYxSgc9RDV2iAhoiiJ/SBPtFX7cdpOE2nvRh1akvPAaqUc/gLwxi8HA==</latexit>· · ·<latexit sha1_base64="m94MPbhQ0jNffvSn8H3/t4KQWm4=">AAACYXicZZDNSgMxFIVvx//xr+rSTbEbcVFmBHElFqWgOwVbhaZIJnOnRmeSIUn9CwM+glt9IZ/BtS9iphVh9GxyObnn43CjPOXaBMFnzZuanpmdm1/wF5eWV1bra+s9LUeKYZfJVKqriGpMucCu4SbFq1whzaIUL6O74/L/8h6V5lJcmKccBxkdCp5wRo2zeoTF0ujrejNoBWM1/g/hz9A8/PAPXgDg7Hqt1iGxZKMMhWEp1brPpEhQoWA4sKedTscoKgqfjDTmlN3RIdpx14rVz+PE4OPADhXNbzh7rAZGKq0aVCn6VPg+EfjAZJZREVuCKZYtin44sJYkUhohDWr+jMSxjU5sMyyKohrKuOBl8DclTJmwe4UNCr/RIO6gyEzpVylVjHY7MudsjCH32hXFHdvadWCSU0WE5CJ25ewYwt0bJRoVR92Y4Nzhw79n/j/0dlth0ArPw2b7CCaah03Ygm0IYR/acAJn0AUGt/AKb/Be+/IWvLq3Pln1aj+ZDajI2/wGA1K96Q==</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="FPXtabmdPbeQhp/pU1fr5K0aIz8=">AAACYXicZZHNSsNAFIWn8a+Nf21duilmIy5KIojbohR0V8FWoRNkMrmpo8lMmJlqdcg7uNU3c+2LOGmLEHs3czlzz8fh3ihPmdK+/11z1tY3NrfqDXd7Z3dvv9lqj5SYSgpDKlIh7yOiIGUchprpFO5zCSSLUriLni/L/7sXkIoJfqvfcggzMuEsYZRoK40wjYVWD03P7/rz6qw2wbLx0LIGD61aH8eCTjPgmqZEqTEVPAEJnEJorvv9vpaEFy6eKsgJfSYTMPOsFWmcx4mGWWgmkuSPjM6qhqlMqwKRkrwVros5vFKRZYTHBkMKZYpiHITG4EQIzYUGxd4BW7ZWifGCoiiqpoxxVhr/XFyXDnNWGL9wOx1sFwpUl3qVUsUoOyNyRucY/KJsUDgx3VMLxjmRmAvGYxvOzCHMvlGiQDJQnQXOLj74v+bVZnTaDfxucBN4vYvlCeroEB2hYxSgc9RDV2iAhoiiJ/SBPtFX7cdpOE2nvRh1akvPAaqUc/gLwxi8HA==</latexit> · · ·<latexit sha1_base64="m94MPbhQ0jNffvSn8H3/t4KQWm4=">AAACYXicZZDNSgMxFIVvx//xr+rSTbEbcVFmBHElFqWgOwVbhaZIJnOnRmeSIUn9CwM+glt9IZ/BtS9iphVh9GxyObnn43CjPOXaBMFnzZuanpmdm1/wF5eWV1bra+s9LUeKYZfJVKqriGpMucCu4SbFq1whzaIUL6O74/L/8h6V5lJcmKccBxkdCp5wRo2zeoTF0ujrejNoBWM1/g/hz9A8/PAPXgDg7Hqt1iGxZKMMhWEp1brPpEhQoWA4sKedTscoKgqfjDTmlN3RIdpx14rVz+PE4OPADhXNbzh7rAZGKq0aVCn6VPg+EfjAZJZREVuCKZYtin44sJYkUhohDWr+jMSxjU5sMyyKohrKuOBl8DclTJmwe4UNCr/RIO6gyEzpVylVjHY7MudsjCH32hXFHdvadWCSU0WE5CJ25ewYwt0bJRoVR92Y4Nzhw79n/j/0dlth0ArPw2b7CCaah03Ygm0IYR/acAJn0AUGt/AKb/Be+/IWvLq3Pln1aj+ZDajI2/wGA1K96Q==</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="FPXtabmdPbeQhp/pU1fr5K0aIz8=">AAACYXicZZHNSsNAFIWn8a+Nf21duilmIy5KIojbohR0V8FWoRNkMrmpo8lMmJlqdcg7uNU3c+2LOGmLEHs3czlzz8fh3ihPmdK+/11z1tY3NrfqDXd7Z3dvv9lqj5SYSgpDKlIh7yOiIGUchprpFO5zCSSLUriLni/L/7sXkIoJfqvfcggzMuEsYZRoK40wjYVWD03P7/rz6qw2wbLx0LIGD61aH8eCTjPgmqZEqTEVPAEJnEJorvv9vpaEFy6eKsgJfSYTMPOsFWmcx4mGWWgmkuSPjM6qhqlMqwKRkrwVros5vFKRZYTHBkMKZYpiHITG4EQIzYUGxd4BW7ZWifGCoiiqpoxxVhr/XFyXDnNWGL9wOx1sFwpUl3qVUsUoOyNyRucY/KJsUDgx3VMLxjmRmAvGYxvOzCHMvlGiQDJQnQXOLj74v+bVZnTaDfxucBN4vYvlCeroEB2hYxSgc9RDV2iAhoiiJ/SBPtFX7cdpOE2nvRh1akvPAaqUc/gLwxi8HA==</latexit> · · ·<latexit sha1_base64="m94MPbhQ0jNffvSn8H3/t4KQWm4=">AAACYXicZZDNSgMxFIVvx//xr+rSTbEbcVFmBHElFqWgOwVbhaZIJnOnRmeSIUn9CwM+glt9IZ/BtS9iphVh9GxyObnn43CjPOXaBMFnzZuanpmdm1/wF5eWV1bra+s9LUeKYZfJVKqriGpMucCu4SbFq1whzaIUL6O74/L/8h6V5lJcmKccBxkdCp5wRo2zeoTF0ujrejNoBWM1/g/hz9A8/PAPXgDg7Hqt1iGxZKMMhWEp1brPpEhQoWA4sKedTscoKgqfjDTmlN3RIdpx14rVz+PE4OPADhXNbzh7rAZGKq0aVCn6VPg+EfjAZJZREVuCKZYtin44sJYkUhohDWr+jMSxjU5sMyyKohrKuOBl8DclTJmwe4UNCr/RIO6gyEzpVylVjHY7MudsjCH32hXFHdvadWCSU0WE5CJ25ewYwt0bJRoVR92Y4Nzhw79n/j/0dlth0ArPw2b7CCaah03Ygm0IYR/acAJn0AUGt/AKb/Be+/IWvLq3Pln1aj+ZDajI2/wGA1K96Q==</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="FPXtabmdPbeQhp/pU1fr5K0aIz8=">AAACYXicZZHNSsNAFIWn8a+Nf21duilmIy5KIojbohR0V8FWoRNkMrmpo8lMmJlqdcg7uNU3c+2LOGmLEHs3czlzz8fh3ihPmdK+/11z1tY3NrfqDXd7Z3dvv9lqj5SYSgpDKlIh7yOiIGUchprpFO5zCSSLUriLni/L/7sXkIoJfqvfcggzMuEsYZRoK40wjYVWD03P7/rz6qw2wbLx0LIGD61aH8eCTjPgmqZEqTEVPAEJnEJorvv9vpaEFy6eKsgJfSYTMPOsFWmcx4mGWWgmkuSPjM6qhqlMqwKRkrwVros5vFKRZYTHBkMKZYpiHITG4EQIzYUGxd4BW7ZWifGCoiiqpoxxVhr/XFyXDnNWGL9wOx1sFwpUl3qVUsUoOyNyRucY/KJsUDgx3VMLxjmRmAvGYxvOzCHMvlGiQDJQnQXOLj74v+bVZnTaDfxucBN4vYvlCeroEB2hYxSgc9RDV2iAhoiiJ/SBPtFX7cdpOE2nvRh1akvPAaqUc/gLwxi8HA==</latexit> · · ·<latexit sha1_base64="m94MPbhQ0jNffvSn8H3/t4KQWm4=">AAACYXicZZDNSgMxFIVvx//xr+rSTbEbcVFmBHElFqWgOwVbhaZIJnOnRmeSIUn9CwM+glt9IZ/BtS9iphVh9GxyObnn43CjPOXaBMFnzZuanpmdm1/wF5eWV1bra+s9LUeKYZfJVKqriGpMucCu4SbFq1whzaIUL6O74/L/8h6V5lJcmKccBxkdCp5wRo2zeoTF0ujrejNoBWM1/g/hz9A8/PAPXgDg7Hqt1iGxZKMMhWEp1brPpEhQoWA4sKedTscoKgqfjDTmlN3RIdpx14rVz+PE4OPADhXNbzh7rAZGKq0aVCn6VPg+EfjAZJZREVuCKZYtin44sJYkUhohDWr+jMSxjU5sMyyKohrKuOBl8DclTJmwe4UNCr/RIO6gyEzpVylVjHY7MudsjCH32hXFHdvadWCSU0WE5CJ25ewYwt0bJRoVR92Y4Nzhw79n/j/0dlth0ArPw2b7CCaah03Ygm0IYR/acAJn0AUGt/AKb/Be+/IWvLq3Pln1aj+ZDajI2/wGA1K96Q==</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="sROku4tHxBM7SCz7EWzFzPdrdr8=">AAACYXicZZDNSgMxFIXT8X/8q7rsptiNuCgzgrgSRSnoTsG2QlNKJnOnRmeSkKT+hXkHt7r1YXwEce2LmGlFGHs2uZzc83G4kUyZNkHwVfFmZufmFxaX/OWV1bX16sZmR4uRotCmIhXqOiIaUsahbZhJ4VoqIFmUQje6Oy3+u/egNBP8yjxJ6GdkyFnCKDHO6mAaC6MH1UbQDMaqTw/h79A4+vAP5funfzHYqLRwLOgoA25oSrTuUcETUMAp9O15q9UyivDcxyMNktA7MgQ77lqyejJODDz27VARecPoYzkwUmnZIEqRp9z3MYcHKrKM8NhiSKFokffCvrU4EcJwYUCzZ8CObXRiG2Ge5+VQxjgrgn8pboqE3c9tkPv1OnYHBWoKv0wpY7TbEZLRMQbfa1cUdm1zz4GxJApzwXjsytkxhLk3SjQoBro+wbnDh//PPD109pph0Awvw8bxCZpoEdXQNtpBITpAx+gMXaA2ougWvaBX9Fb59pa8qrc5WfUqv5ktVJJX+wGdcb9d</latexit><latexit sha1_base64="FPXtabmdPbeQhp/pU1fr5K0aIz8=">AAACYXicZZHNSsNAFIWn8a+Nf21duilmIy5KIojbohR0V8FWoRNkMrmpo8lMmJlqdcg7uNU3c+2LOGmLEHs3czlzz8fh3ihPmdK+/11z1tY3NrfqDXd7Z3dvv9lqj5SYSgpDKlIh7yOiIGUchprpFO5zCSSLUriLni/L/7sXkIoJfqvfcggzMuEsYZRoK40wjYVWD03P7/rz6qw2wbLx0LIGD61aH8eCTjPgmqZEqTEVPAEJnEJorvv9vpaEFy6eKsgJfSYTMPOsFWmcx4mGWWgmkuSPjM6qhqlMqwKRkrwVros5vFKRZYTHBkMKZYpiHITG4EQIzYUGxd4BW7ZWifGCoiiqpoxxVhr/XFyXDnNWGL9wOx1sFwpUl3qVUsUoOyNyRucY/KJsUDgx3VMLxjmRmAvGYxvOzCHMvlGiQDJQnQXOLj74v+bVZnTaDfxucBN4vYvlCeroEB2hYxSgc9RDV2iAhoiiJ/SBPtFX7cdpOE2nvRh1akvPAaqUc/gLwxi8HA==</latexit>

cand1
<latexit sha1_base64="vdVL+t1rA3jOBWduVds0zWFnHxU=">AAACbHicZVBdSxtBFL1ZbWu3Hya29EWE0EApfQg7QvE1KIH6ptCokAnp7ORuOrg7s8zManSYX+Jr+6N88Sf4GzqbWGH1vszhzD2Hc09a5sLYJLltRWvrL16+2ngdv3n77v1mu7N1YlSlOY64ypU+S5nBXEgcWWFzPCs1siLN8TQ9P6j/Ty9QG6HkT3tV4qRgcykywZkN1LS9SS0urMkcZ3Lmp2Ta7iX9ZDnd54A8gN7g0/HdLwA4mnZaQzpTvCpQWp4zY8ZcyQw1So4TdzgcDq1m0se0Mlgyfs7m6JaxG9S4nGUhyMTNNSt/C75oCiqdNwmmNbvycUwlXnJVFCG8o5hjncKPycQ5millpbJoxDX+P7JHvPdNUSGkqIWPKmlrhfvuXeLjbpeGbpHbmm+6NG1M2FGl4EsbemFCUPzm+rvBmJZMU6mEnIVwbmkiwptmBrVA013ZheLJ05qfg5PdPkn65Jj0Bvuwmg3Yhs/wFQjswQB+wBGMgEMFN/AH/rbuo4/RdrSzWo1aD5oP0Jjoyz9MKsIr</latexit><latexit sha1_base64="DUXu223g8BmE2+8xz7GsBmqt+90=">AAACbHicZVDBThsxFPQu0IYtLQlFvaBKKyKhqodojVT1GoEitbcgNYAUR5HXeZta7Nor20sDlr+k13LkL/oTvfQT+Aa8CSAtvItH4zejeZOWOdcmSf4F4dr6xqvXrc3ozdbbd9vtzs6plpViMGIyl+o8pRpyLmBkuMnhvFRAizSHs/TiuP4/uwSluRQ/zFUJk4LOBc84o8ZT0/Y2MbAwOrOMipmb4mm7m/SS5cQvAX4A3f6Hk//89ujvcNoJBmQmWVWAMCynWo+ZFBkoEAwm9vtgMDCKCheRSkNJ2QWdg13GblDjcpb5IBM7V7T8ydmiKahU3iSoUvTKRRER8IvJovDhLYEc6hRujCfWkkxKI6QBza/h8cguds41RQUXvBY+qYSpFfaLs4mL4pj4boGZmm+6NG2035ElZ0sbcql9UPhse4femJRUESG5mPlwdmnC/ZtmGhQHHa/sfPH4ec0vwelhDyc9fIK7/SO0mhbaQ/voE8LoK+qjb2iIRoihCv1Gf9BNcBfuhnvhx9VqGDxo3qPGhAf3ZqrD5w==</latexit><latexit sha1_base64="DUXu223g8BmE2+8xz7GsBmqt+90=">AAACbHicZVDBThsxFPQu0IYtLQlFvaBKKyKhqodojVT1GoEitbcgNYAUR5HXeZta7Nor20sDlr+k13LkL/oTvfQT+Aa8CSAtvItH4zejeZOWOdcmSf4F4dr6xqvXrc3ozdbbd9vtzs6plpViMGIyl+o8pRpyLmBkuMnhvFRAizSHs/TiuP4/uwSluRQ/zFUJk4LOBc84o8ZT0/Y2MbAwOrOMipmb4mm7m/SS5cQvAX4A3f6Hk//89ujvcNoJBmQmWVWAMCynWo+ZFBkoEAwm9vtgMDCKCheRSkNJ2QWdg13GblDjcpb5IBM7V7T8ydmiKahU3iSoUvTKRRER8IvJovDhLYEc6hRujCfWkkxKI6QBza/h8cguds41RQUXvBY+qYSpFfaLs4mL4pj4boGZmm+6NG2035ElZ0sbcql9UPhse4femJRUESG5mPlwdmnC/ZtmGhQHHa/sfPH4ec0vwelhDyc9fIK7/SO0mhbaQ/voE8LoK+qjb2iIRoihCv1Gf9BNcBfuhnvhx9VqGDxo3qPGhAf3ZqrD5w==</latexit><latexit sha1_base64="mwyGVp4WI1/sB/1rXgz/+RWCf2I=">AAACbHicZVHNSgMxGEzX//WvVW8iFAsiHspGEK+iFPSmYFVoSsmm39bgbrIkWbWGPIlXfShfwmcwW6uwOpd8TL4ZJpM4T7k2UfRRC2Zm5+YXFpfC5ZXVtfV6Y+NGy0Ix6DKZSnUXUw0pF9A13KRwlyugWZzCbfxwVt7fPoLSXIprM86hn9GR4Aln1HhqUF8nBp6NTiyjYugGeFBvRe1ogub/AU+HFprictCodchQsiIDYVhKte4xKRJQIBj07UWn0zGKCheSQkNO2QMdgZ3ErlC9fJj4IH07UjS/5+y5KihUWiWoUnTswpAIeGIyy3x4SyCFMoXr4b61JJHSCGlA8xf4eWQLO+eqoowLXgp/VcKUCnvkbOTCZpP4boGZkq+6VG2035E5ZxMb8qh9UDiw7UNvTHKqiJBcDH04OzHh/owTDYqDbn7b+eLx35r/DzeHbRy18RVunZxOv2ARbaNdtI8wOkYn6Bxdoi5iqECv6A291z6DrWA72PleDWpTzSaqINj7AuGwwEY=</latexit>

cand2
<latexit sha1_base64="nnOJ6LbjwaaJnBc1UprVTrjKRIg=">AAACbHicZVBdSxtBFL1ZW6ur1WjFFykEA6X4EHYDxdegBOqbglEhE+Ls5G4c3J1ZZmb9GuaX+Nr+KF/8Cf4GZxMtbL0vczhzz+HckxQZ1yaKnhrBwqfPi1+WlsOV1a9r682NzTMtS8VwwGQm1UVCNWZc4MBwk+FFoZDmSYbnyfVh9X9+g0pzKU7NfYGjnE4FTzmjxlPj5joxeGd0ahkVEzfujpvtqBPNpvURxG+g3ds+eb4EgOPxRqNPJpKVOQrDMqr1kEmRokLBcGSP+v2+UVS4kJQaC8qu6RTtLHaNGhaT1AcZ2amixRVnd3VBqbI6QZWi9y4MicBbJvPch7cEM6xSuGE8spakUhohDWr+gO9HtmPnXF2Uc8Er4T+VMJXC/nI2cmGrRXy3yEzF113qNtrvyIKzmQ250T4o7tlO1xuTgioiJBcTH87OTLh/k1Sj4qhbcztffPx/zR/BWbcTR534JG73DmA+S7ADu/ATYtiHHvyGYxgAgxIe4Q/8bbwEW8FO8H2+GjTeNN+gNsGPV04iwiw=</latexit><latexit sha1_base64="TmV1aUG2URW8ONGbHJFGTzfHO2U=">AAACbHicZVDLSgMxFE3H9/iqD9yIUCyIuCgzBXFblILuFKwKTSmZ9E4NziRDkvEV8iVudelf+BNu/AS/wUyrwujd5HByz+HcE2UJUzoI3ivexOTU9MzsnD+/sLi0XF1ZvVAilxQ6VCRCXkVEQcI4dDTTCVxlEkgaJXAZ3RwV/5e3IBUT/Fw/ZNBLyZCzmFGiHdWvLmMN91rFhhI+sP1mv1oPGsFoav9B+A3qrY2zD/Z6+HbaX6m08UDQPAWuaUKU6lLBY5DAKfTMSbvd1pJw6+NcQUboDRmCGcUuUd1sELsgPTOUJLtm9L4syGVSJoiU5MH6PuZwR0WauvAGQwJFCtsNe8bgWAjNhQbFHuHnyHporS2LUsZZIfxVcV0ozL41gfVrNey6BaoLvuxStlFuR2SMjmzwrXJBYc80ms4YZ0RiLhgfuHBmZMLcG8UKJANVG9u54sO/Nf8HF81GGDTCs7DeOkTjmUWbaBvtohAdoBY6RqeogyjK0RN6Ri+VT2/d2/S2xqte5Vuzhkrj7XwBaKLD6A==</latexit><latexit sha1_base64="TmV1aUG2URW8ONGbHJFGTzfHO2U=">AAACbHicZVDLSgMxFE3H9/iqD9yIUCyIuCgzBXFblILuFKwKTSmZ9E4NziRDkvEV8iVudelf+BNu/AS/wUyrwujd5HByz+HcE2UJUzoI3ivexOTU9MzsnD+/sLi0XF1ZvVAilxQ6VCRCXkVEQcI4dDTTCVxlEkgaJXAZ3RwV/5e3IBUT/Fw/ZNBLyZCzmFGiHdWvLmMN91rFhhI+sP1mv1oPGsFoav9B+A3qrY2zD/Z6+HbaX6m08UDQPAWuaUKU6lLBY5DAKfTMSbvd1pJw6+NcQUboDRmCGcUuUd1sELsgPTOUJLtm9L4syGVSJoiU5MH6PuZwR0WauvAGQwJFCtsNe8bgWAjNhQbFHuHnyHporS2LUsZZIfxVcV0ozL41gfVrNey6BaoLvuxStlFuR2SMjmzwrXJBYc80ms4YZ0RiLhgfuHBmZMLcG8UKJANVG9u54sO/Nf8HF81GGDTCs7DeOkTjmUWbaBvtohAdoBY6RqeogyjK0RN6Ri+VT2/d2/S2xqte5Vuzhkrj7XwBaKLD6A==</latexit><latexit sha1_base64="gOE5Tsr0XG9wfp6PJaYZIvat/u0=">AAACbHicZVHLSgMxFE3H9/hofexEKBZEXJSZgrgVpaA7BfuAppRMeqcGZ5IhyfgK+RK3+lH+hN9gplZh7NnkcnLP4eQkyhKmdBB8VryFxaXlldU1f31jc6ta297pKpFLCh0qEiH7EVGQMA4dzXQC/UwCSaMEetHDZXHfewSpmOB3+iWDYUomnMWMEu2oUa2KNTxrFRtK+NiOWqNaI2gGU9Tnh3A2NNAMN6PtShuPBc1T4JomRKkBFTwGCZzC0Fy3220tCbc+zhVkhD6QCZhp7BI1yMaxCzI0E0mye0afy4JcJmWCSElerO9jDk9UpKkLbzAkUKSwg3BoDI6F0FxoUOwVfh/ZCK21ZVHKOCuEfyquC4U5tSawfr2OXbdAdcGXXco2yu2IjNGpDX5ULiicmGbLGeOMSMwF42MXzkxNmDujWIFkoOo/dq748H/N80O31QyDZngbNs4vZl+wivbRITpGITpD5+gK3aAOoihHb+gdfVS+vD1v3zv4WfUqM80uKsE7+gbjqMBH</latexit>

candn
<latexit sha1_base64="1fNP/MX+F29viko764w5DE/BU+M=">AAACbHicZVBdSxtBFL3Z+tVt/YgVX6QQGhDxIewK0tegBNo3hUaFTEhnJ3fjkN2ZZWbWRof5JX3VH+WLP6G/wdlEha33ZQ5n7jmce5Ii49pE0WMj+LC0vLK69jH89Hl9Y3OruX2hZakY9pnMpLpKqMaMC+wbbjK8KhTSPMnwMpmeVv+XN6g0l+KXuS1wmNOJ4Cln1HhqtLVJDM6MTi2jYuxGnmlHnWg+rfcgfgHt7u75028AOBs1Gz0ylqzMURiWUa0HTIoUFQqGQ/uz1+sZRYULSamxoGxKJ2jnsWvUoBinPsjQThQtrjmb1QWlyuoEVYreujAkAv8wmec+vCWYYZXCDeKhtSSV0ghpUPM7fD2yHTvn6qKcC14J31TCVAp77GzkwlaL+G6RmYqvu9RttN+RBWdzG3KjfVA8tJ0jb0wKqoiQXIx9ODs34f5NUo2Ko24t7Hzx8f81vwcXR5046sTncbt7AotZgz34BgcQw3fowg84gz4wKOEv3MND41+wE+wFXxerQeNF8wVqE+w/A8RCwmg=</latexit><latexit sha1_base64="ncjRRTHvNSb0Cn5suQWb5+WFdF8=">AAACbHicZVDLSgMxFE3H9/isihsRigURF2VGELdFKehOwarQlJJJ79TgTDIkGa2GfIlbXfoX/oQbP8FvMNOqMHo3OZzcczj3RFnClA6C94o3MTk1PTM7588vLC4tr1RXL5XIJYU2FYmQ1xFRkDAObc10AteZBJJGCVxFt8fF/9UdSMUEv9APGXRTMuAsZpRoR/VWlrGGoVaxoYT3bc8x9aARjKb2H4TfoN7cOP9gr0dvZ71qpYX7guYpcE0TolSHCh6DBE6ha05brZaWhFsf5woyQm/JAMwodonqZP3YBemagSTZDaPDsiCXSZkgUpIH6/uYwz0VaerCGwwJFClsJ+wag2MhNBcaFHuEnyProbW2LEoZZ4XwV8V1oTAH1gTWr9Ww6xaoLviyS9lGuR2RMTqywXfKBYU909h3xjgjEnPBeN+FMyMT5t4oViAZqNrYzhUf/q35P7jcb4RBIzwP680jNJ5ZtIm20S4K0SFqohN0htqIohw9oWf0Uvn01r1Nb2u86lW+NWuoNN7OF97CxCQ=</latexit><latexit sha1_base64="ncjRRTHvNSb0Cn5suQWb5+WFdF8=">AAACbHicZVDLSgMxFE3H9/isihsRigURF2VGELdFKehOwarQlJJJ79TgTDIkGa2GfIlbXfoX/oQbP8FvMNOqMHo3OZzcczj3RFnClA6C94o3MTk1PTM7588vLC4tr1RXL5XIJYU2FYmQ1xFRkDAObc10AteZBJJGCVxFt8fF/9UdSMUEv9APGXRTMuAsZpRoR/VWlrGGoVaxoYT3bc8x9aARjKb2H4TfoN7cOP9gr0dvZ71qpYX7guYpcE0TolSHCh6DBE6ha05brZaWhFsf5woyQm/JAMwodonqZP3YBemagSTZDaPDsiCXSZkgUpIH6/uYwz0VaerCGwwJFClsJ+wag2MhNBcaFHuEnyProbW2LEoZZ4XwV8V1oTAH1gTWr9Ww6xaoLviyS9lGuR2RMTqywXfKBYU909h3xjgjEnPBeN+FMyMT5t4oViAZqNrYzhUf/q35P7jcb4RBIzwP680jNJ5ZtIm20S4K0SFqohN0htqIohw9oWf0Uvn01r1Nb2u86lW+NWuoNN7OF97CxCQ=</latexit><latexit sha1_base64="2hnVasoxEhPkAPOHTjTasjrspsg=">AAACbHicZVHNSgMxGEzXv7r+tFVvIhQLIh7KbkG8ilLQWwWrQlNKNv22BneTJcmqNeRJvOpD+RI+g9lahdW55GPyzTCZRFnClA6Cj4q3sLi0vFJd9dfWNzZr9cbWjRK5pNCnIhHyLiIKEsahr5lO4C6TQNIogdvo4by4v30EqZjg13qawTAlE85iRol21KhewxqetYoNJXxsR45pBe1ghub/IZwPLTRHb9SodPFY0DwFrmlClBpQwWOQwCkMzWW329WScOvjXEFG6AOZgJnFLlGDbBy7IEMzkSS7Z/S5LMhlUiaIlGRqfR9zeKIiTV14gyGBIoUdhENjcCyE5kKDYi/w88hWaK0ti1LGWSH8VXFdKMyxNYH1m03sugWqC77sUrZRbkdkjM5s8KNyQeHItDvOGGdEYi4YH7twZmbC3BnFCiQD1fy2c8WHf2v+P9x02mHQDq/C1unZ/AuqaBfto0MUohN0ii5QD/URRTl6RW/ovfLp7Xi73t73qleZa7ZRCd7BF1nXwIM=</latexit>

Fig. 3: Approach Overview.

input RS and further derive certain document-level metadata
related to frequencies, e.g., the distribution of different modal
verbs in the RS. In the second phase, we construct a feature
matrix for classification, using the NLP results and the fre-
quency information obtained from the first phase. In the third
and final phase, we perform the classification using ML. The
rest of this section elaborates the three phases of our approach.
A. Parsing the Requirements Specification

The first phase of our approach is to execute the NLP
pipeline of Fig. 2. The Sentence Splitter module of the pipeline
yields the cands, with the other modules in the pipeline pro-
viding part-of-speech, syntactic and semantic annotations for
the cands. Upon the completion of the execution of the NLP
pipeline, we compute the following frequency-related metadata
using the NLP-generated annotations: (1) the most frequent
modal verb in the RS, (2) the top 1% most frequent noun
phrases, and (3) frequency levels for the different identifier
patterns used within the RS.

To infer the identifier patterns (id patterns, for short), we
first extract all the alphanumerics in the RS. We then replace
in each alphanumeric any sequence of digits with d, any lower-
case character with c, and any upper case character with C.
The id patterns are the distinct shapes obtained from this
replacement. For instance, in our example of Fig. 1, we infer
three id patterns: “d.d.d” from N1, “d.d.d.d” from R1, R4, R6
and R7 and “d.” from R2 and R3. We count the occurrences
of each pattern within the entire RS. We then ascribe to each
pattern one of the following frequency levels: high, medium,
low. A pattern has high frequency if its number of occurrences
divided by the total number of occurrences of all the patterns
falls within [23 , 1]. A pattern has medium frequency if the
above ratio is within [13 ,

2
3), and low frequency if the ratio is

within (0, 13). We note that the exact shapes of the id patterns
are of no interest to us, considering that these shapes invariably
differ across different RS. We are interested in the id patterns
and their frequencies due to the following general intuition:
A cand containing an occurrence of a frequent id pattern is
more likely to be a requirement than a non-requirement. A
precise realization is presented later (see Frq1 in Table I).

The output of the parsing phase is as follows: (1) the cands
representing the units to classify, (2) NLP annotations for
the elements of individual cands, and (3) certain RS-wide
frequency metadata as discussed above. This output is used
for building a feature matrix (Phase 2 of Fig. 3).

B. Building an ML Feature Matrix
Our feature design has been driven by the need to keep

the features generic; this means that the features should not
rely on the domain, terminology, content, or formatting of any
particular RS. To meet this criterion, we orient our features
around structural and semantic properties that are meaningful
irrespectively of the exact characteristics of individual RS.
Table I lists our features. These features are computed for
every cand. For each feature, the table provides an id, short
name, type, description, intuition, and one or more examples.
We organize the features into four categories:

• The token-based features (Tok1–Tok6) are based on the
token-level information in a cand.

• The syntactic features (Syn1–Syn8) are derived from the
syntax-related information in a cand, e.g., POS tags, phrasal
structure, and grammatical dependency relations.

• The semantic features (Sem1–Sem3) are derived from the
semantic categories of the verbs in a cand. These categories
were defined in Section II-B.

• The frequency-based features (Frq1–Frq3) are derived for
each cand based on the document-wide frequency metadata
discussed in Section III-A as well as the syntax-related
information within that particular cand.
The output of this phase is a feature matrix where the

rows represent the cands within the input RS and where the
columns represent the 20 features listed in Table I.

C. Classifying Requirements and Non-requirements

Classification is done by applying a pre-trained classifica-
tion model to the feature matrix from the second phase of our
approach. The output of classification is a demarcation of the
requirements and non-requirements in the input RS.

For training, we use a collection of industrial RS (see
Section IV). The training set was created by (1) individually
subjecting each RS in the collection to the first and second
phases of our approach, (2) having independent experts man-
ually label the cands in each RS, and (3) merging the (labeled)
data from the individual RS into a single (training) set.

Selecting the most effective ML classification algorithm and
tuning it are addressed by the first research question (RQ1) in
our evaluation, presented next.

IV. EVALUATION
In this section, we empirically evaluate our requirements

demarcation approach.

A. Research Questions (RQs)

Our evaluation aims to answer the following RQs:
RQ1. Which ML classification algorithm yields the most
accurate results? Our requirements demarcation approach can
be implemented using several alternative ML classification
algorithms. RQ1 identifies the most accurate alternative.
RQ2. What are the most influential ML features for require-
ments demarcation? Table I listed our features for learning.
RQ2 examines and provides insights about which of these
features are the most important for requirements demarcation.
RQ3. How useful is our approach in practice? Building on
the result of RQ1, RQ3 assesses the accuracy of our approach
over previously unseen RS.
RQ4. What is the execution time of our approach? To be
applicable, our approach should run within practical time. RQ4
investigates whether this is the case.
RQ5. Is there any good tradeoff for reducing execution time
without a major negative impact on demarcation quality? In
an interactive mode where analysts submit new RS or change
them and want immediate feedback, response time is a key
consideration. In RQ5, we look into the tradeoff between the
cost of computing different features and the benefits gained

TABLE I: Features for Learning.

(N) idPatternFrequency (T) Enumeration (D) Maximum frequency level (high, medium, low) associated with the identifier pattern with
which a given cand starts. If a cand does not start with an alphanumeric pattern, the returned value is NA (not applicable). (I) A
frequent id pattern in a cand is likely to signify a requirement. This is because alphanumerics are prevalently used for marking
requirements. (E) For the excerpt of Fig. 1: Frq1(R1) = medium, Frq1(R2) = low, Frq1(N1) = low, and Frq1(R5) = NA.

Sem3

Short Name (N), Type (T), Description (D), Intuition (I) and Example (E)

Tok3

Frq3

(N) hasNPModalVP (T) Boolean (D) TRUE if a cand contains a sequence composed of a Noun Phrase (NP) followed by a Verb Phrase
(VP) that includes a modal verb, otherwise FALSE. (I) The intuition is the same as that for Syn2. Syn3 goes beyond Syn2 by capturing
the presence of the NP preceeding a modal VP. This NP typically acts as a subject for the VP. (E) The NP-followed-by-Modal-VP
pattern has a match in R3: “The rover navigation controller should limit […]”. Thus, Syn3(R3) = TRUE.

(N) hasPassiveVoice (T) Boolean (D) TRUE if a cand has passive voice through some dependency relation, otherwise FALSE.
(I) Requirements not containing modal verbs may be specified in passive voice. (E) Syn6(R7) = TRUE.

Frq2

ID

Tok2

(N) hasHFNP (T) Boolean (D) TRUE if a cand contains some highly frequent (top 1%) NP in the RS, otherwise FALSE. (I) Highly
frequent NPs (after stopword removal) often signify core concepts, e.g., the system and its main components. These concepts are
more likely to appear in requirements. (E) The most frequent NP in Fig. 1 is “rover navigation controller”. Thus, Frq3(R1) = TRUE.

(N) hasMFModalVerb (T) Boolean (D) TRUE if a cand contains the most frequent modal verb of the RS, otherwise FALSE. (I) While a
consistent application of modal verbs cannot be guaranteed, the most frequent modal verb is a strong indicator for requirements.
(E) “Shall” is the most frequent modal verb in the excerpt of Fig. 1. Thus, Frq2(R1) = TRUE and Frq2(R2) = FALSE.

Syn2

Tok5

(N) hasVBToBeAdj (T) Boolean (D) TRUE if, in cand, there is some form of the verb “to be” appearing as root verb followed by an
adjective, otherwise FALSE. (I) The pattern described is more likely to appear in requirements. (E) Syn7(R6) = TRUE because it
includes “is available”.

(N) hasStativeVerb (T) Boolean (D) TRUE if a cand has some stative verb, otherwise FALSE. (I) Stative verbs are common in
requirements for describing system properties. (E) Sem3(R5) = TRUE because of the verb “maintain”.

Syn5

Sem2

(N) startsWithTriggerWord (T) Boolean (D) TRUE if a cand begins with a trigger word (“Note”, “Rationale”, “Comment”), otherwise
FALSE. (I) A trigger word at the beginning of a cand is a strong indicator for a non-requirement. (E) N5 begins with “Note”, thus
Tok5(N5) = TRUE.

(N) hasActionVerb (T) Boolean (D) TRUE if a cand has some verb conveying motion or change of status, otherwise FALSE. (I) Action
verbs are common in requirements for describing behaviors and state changes. (E) Sem2(R3) = TRUE because of the verb “limit”.

(N) hasCognitionVerb (T) Boolean (D) TRUE if a cand has some verb conveying reasoning or intention, otherwise FALSE. (I)
Reasoning and intention are a common characteristic of non-requirements. (E) Sem1(N5) = TRUE because of the verb “intended”.

Syn1

(N) numTokens (T) Numeric (D) Number of tokens in a cand*. (I) A cand that is too long or too short could indicate a non-requirement.
(E) The tokenizer returns 7 tokens for N1 in Fig. 1: {“3”, “.”, “1”, “.”, “1”, “Controller”, “Requirements”}. Therefore, Tok1(N1) = 7.

(N) startsWithDetVerb (T) Boolean (D) TRUE if a cand, excluding head alphanumeric patterns / triggers words, begins with a pronoun
or determiner followed by a verb, otherwise FALSE. (I) This is a common natural-language construct for justification and explanation,
and thus could indicate a non-requirement. (E) Syn4(N3) = TRUE. Also, Syn4(N5) = TRUE because, when “Note:” is excluded from the
head of N5, the remainder begins with a determiner followed by a verb.

(N) hasVerb (T) Boolean (D) TRUE if a cand has a verb as per the POS tags, otherwise FALSE. (I) A cand without a verb is unlikely to
be a requirement. (E) Syn1(N1) = FALSE, whereas Syn1(R1) = TRUE.

Syn7

(N) startsWithId (T) Boolean (D) TRUE if a cand starts with an alphanumeric segment containing special characters such as periods
and hyphens, otherwise FALSE. (I) Alphanumeric segments with special characters could indicate identifiers for requirements.
(E) Tok4(R1) = TRUE.

Syn8

(N) numOneCharTokens (T) Numeric (D) Number of one-character tokens in a cand. (I) Too many one-character tokens in a cand
could indicate a non-requirement, e.g., section headings. (E) Tok3(N1) = 5.

(N) hasConditionals (T) Boolean (D) TRUE if a cand has a conditional clause, otherwise FALSE. (I) Conditional clauses are more likely
to appear in requirements than non-requirements. (E) R4 has a conditional clause: “When receiving commands from multiple
sources”. Thus, Syn5(R4) =TRUE.

Syn6

(N) numAlphabetics (T) Numeric (D) Number of alphabetic words in a cand. (I) Few alphabetic words in a cand could indicate a non-
requirement. (E) Tok2(N1) = 2 because there are only two alphabetic tokens in N1, namely “Controller” and “Requirements”.

Sem1

Tok4

Tok6

(N) hasModalVerb (T) Boolean (D) TRUE if a cand has a modal verb, otherwise FALSE. (I) The presence of a modal verb is a good
indicator for a cand being a requirement. (E) Syn2(R2) = TRUE because of the modal verb “must”.

Syn3

(N) isPresentTense (T) Boolean (D) TRUE if a cand has some root verb which is in present tense, otherwise FALSE. (I) Sometimes,
requirements are written in present tense rather than with modal verbs. (E) Syn8(R4) = TRUE; the root verb is “prioritizes”.

Tok1

(N) hasUnits (T) Boolean (D) TRUE if a cand contains some measurement unit, otherwise FALSE. (I) According to several domain
experts consulted throughout our work, the presence of measurement units increases the likelihood of a cand being a requirement.
(E) Tok6(R2) = TRUE because of the km/h unit appearing in R2.

Syn4

Frq1

S
em

an
ti
c

* The term “cand” is an abbreviation for “requirement candidate”.

S
yn
ta
ct
ic

To
ke
n-
ba
se
d

Fr
eq
ue
nc
y-
ba
se
d

in return. This enables us to determine whether we can leave
out some expensive-to-compute features without significantly
degrading the quality of demarcation.

B. Implementation
We have implemented our demarcation approach in Java.

The implementation is ≈7500 lines of code, excluding com-
ments and third-party libraries. We use Aspose [18] for ex-
tracting the textual content of RS (provided as MS Word doc-
uments) and DKPro [19] for operationalizing the NLP pipeline

(Fig. 2). Our operationalization of the pipeline employs Berke-
ley [20] for constituency parsing, Malt [21] for dependency
parsing, and JWNL (the Java WordNet Library) [22] for
semantic parsing. ML classification is done using Weka [10].

C. Data Collection and Preparation

Our data collection focused on procuring a representative set
of free-form RS and manually demarcating these RS. We gath-
ered 30 industrial RS from 12 application domains, including,
among others, information systems, automotive, healthcare,

aviation, aerospace, telecommunications, and networks. These
RS originate from a total of 18 different organizations.

Among the 30 RS, 12 had their requirements already marked
by our industry partner in collaboration with the respective
system clients. The requirements in the remaining 18 RS were
marked by a paid, professional annotator (non-author). The
annotator’s background is in linguistics with a specialization
in English writing and literature. Before starting her work
on these 18 RS, the annotator received two half-day courses
on requirements specification by one of the researchers (an
author). Anticipating that some statements in the RS would
not be conclusively classifiable as a requirement or non-
requirement, the researchers explicitly instructed the annotator
to favor the requirement class whenever she was in doubt as
to whether a statement was a requirement or non-requirement.
This decision was motivated by the need to minimize missed
requirements (false negatives) in our automated solution. In
addition to training, the annotator spent ≈40 hours reading
the IEEE 29148 standard [23] and the relevant chapters of
two requirements engineering textbooks [1], [4].

In the next step and using the NLP Sentence Splitter module
discussed in Section II, we transformed each RS into a set
of sentences. We recall from Section III that these sentences,
referred to as requirement candidates (cands, for short), are
the units for classification. Applying sentence splitting to the
30 RS resulted in a total of 18306 cands. We mapped these
cands onto the manually identified requirement regions as per
the annotations provided by our industry partner and third-
party annotator. Specifically, any cand whose span intersected
with a (manually specified) requirement region was deemed
as a requirement. All other cands were deemed as non-
requirements. This process led to 7351 cands marked as
requirements and 10955 cands marked as non-requirements.

As a quality measure and since our third-party annotator
was not a software specialist, two researchers (authors) inde-
pendently verified her work. In particular, the two researchers
examined a random subset of the content pages of the 18 RS
processed by the annotator and marked the requirements in
these pages. This subset, which was divided almost equally
between the two researchers, accounted for ≈20% of the
content of the underlying RS and contained ≈2200 cands.
The interrater agreement between the annotator and the two
researchers was computed using Cohen’s Kappa (κ) [24]. A
cand counted as an agreement if it received the same classifi-
cation by the annotator and a researcher, and as a disagreement
otherwise. The obtained κ scores were, respectively for the two
researchers: 0.87 (“strong agreement”) and 0.91 (“almost per-
fect agreement”) [25]. The disagreements were almost exclu-
sively over cands that, due to the annotator’s lack of domain
expertise, could not be classified with adequate confidence.
Since no notable anomalies were detected during verification,
the annotator’s results were accepted without modification.

We partition the cands into a training set, T , and a
validation set, E. We use T for training a classification model
and E for evaluating the trained model. Following standard
best practices, we set the split ratio between T and E to 9:1,

TABLE II: The RS in our Validation Set (E).

375Requirements for a space
exploration vehicle (rover) 239RS4

112

RS2

RS3 173 509

of Cands Marked as
Non-Requirement

of Cands Marked as
Requirement

Requirements for an astronomical
observatory

Description of the RS

RS1
Requirements for standardizing
the structure of defense contracts 348139

250Requirements for a sensor-based
industrial control system

Id

subject to the condition that no RS should contribute cands
to both T and E. This condition is essential for ensuring the
realism of our validation: in practice, our approach will be
applied to RS no parts of which have been exposed to the
approach during training. Due to the above condition, a sharp
9:1 split could not be achieved; our goal was thus getting the
number of cands in E to be as close as possible to 10% of
the total number of cands. To further increase the validity
and generalizability of our results, we enforced the following
additional criteria: (1) The RS in E must all have distinct
origins (sources) and distinct application domains, (2) The
RS in E must have different origins than those in T . Our
split strategy resulted in an E with four RS, RS1 to RS4,
as described in Table II. We refer back to these RS when
answering RQ3. The four RS contain 2145 cands, of which
663 are requirements and 1482 are non-requirements. These
RS constitute 11.7% of the cands in our dataset (9% of all
requirements and 13.5% of all non-requirements).

D. Metrics for the Evaluation of ML Classification Models

We use standard metrics, Accuracy (A), Precision (P) and
Recall (R) [10], for evaluating ML classification models. Accu-
racy is computed as the ratio of cands correctly demarcated
as requirement and non-requirement to the total number of
cands. Precision is the ratio of cands correctly classified as
requirement to all cands classified as requirement. Recall is
the fraction of all requirements correctly demarcated. In our
context, we seek very high recall to minimize the risk of
missed requirements and acceptable precision to ensure that
analysts would not be overwhelmed with false positives [26].

E. Evaluation Procedures
The procedures used for answering the RQs are as follows:

Algorithm Selection. ML classification algorithms can be
broadly categorized into mathematical, hierarchical and lay-
ered algorithms [27]. In our evaluation, we considered, from
each of these three categories, widely used and recommended
algorithms [28]. Specifically, we consider and compare five
ML algorithms: Logistic Regression and Support Vector Ma-
chine (mathematical category), Decision Tree and Random
Forest (hierarchical category), and Feedforward Neural Net-
work (layered category). All algorithms are tuned with optimal
hyperparameters that maximize classification accuracy over T .
For tuning, we apply multisearch hyperparameter optimization
using random search [29], [30]. The basis for tuning and
comparing the algorithms is ten-fold cross validation on T . In
ten-fold cross validation, a given dataset is randomly split into
ten equal subsets. Nine subsets are used for training and the
last subset for evaluation. The procedure is repeated ten times

TABLE III: ML Algorithm Selection Results (RQ1).

R (%)P (%)A(%)R(%)P(%) R (%)A(%) P (%) P(%)A (%) A (%)R (%) R (%)P (%)A (%)

92.491.495.486.985.6 87.592.1 93.7CSL 92.5 96.988.987.376.5 94.3 95.7

¬CSL 91.090.192.191.994.394.490.492.192.891.791.192.990.084.388.9

Logistic
Regression

Decision
 Tree

Random
Forest

Feedforward
Neural Network

Support Vector
Machine

A(%) = Accuracy (in percentage) | P(%) = Precision (in percentage) | R(%) = Recall (in percentage)

for predicting on all subsets. The ML algorithm that yields the
best average accuracy across the ten folds is selected.

We further examine the usefulness of cost-sensitive learning,
discussed in Section II-A. To do so, we run the ten-fold
cross validation procedure above both with and without cost-
sensitive learning. For cost-sensitive learning, we assign false
negatives double the cost (penalty) of false positives. The
algorithm selection procedure is used for answering RQ1.
Feature Importance Analysis. We assess the importance of
the features of Table I using information gain (IG) [10]
computed on T . Intuitively, IG measures, in our case, how
efficient a given feature is in discriminating requirements
from non-requirements. A higher IG value signifies a higher
discriminative power. IG is used for answering RQ2.
Model Validation. We evaluate the best-performing ML al-
gorithm by training it on the RS in T and applying the
resulting classification model for demarcating the RS in E.
This procedure is used for answering RQ3.
Comparison with Baselines. Our approach is useful only if
it outperforms simple automated solutions that are based on
writing and markup conventions. To this end, we compare
against five baseline solutions. These are: (B1) marking as
requirement any cand containing a modal verb; (B2) marking
as requirement any cand containing the most frequent modal
verb of the underlying RS; (B3) marking as requirement any
cand beginning with an alphanumeric pattern; (B4) taking the
union of the results from B1 and B3; and (B5) taking the union
of the results from B2 and B3. Our comparison with these
baselines is performed over E and discussed as part of RQ3.
Tradeoff Analysis. As stated in Section IV-A (RQ5), we are
interested in assessing the benefits of our features against the
execution time incurred by them. Noting that NLP dominates
the execution time of our approach, we examine alternative
ways of simplifying our NLP pipeline. Naturally, the exclusion
of any NLP module comes at the expense of some features no
longer being computable. The question is whether the quality
degradation that results from not using certain features is
acceptable. Since the alternatives to consider are few, we inves-
tigate the tradeoffs through exhaustive analysis. Specifically,
we group our features based on their prerequisite NLP modules
and compute the classification evaluation metrics for different
combinations of feature groups. We then determine whether
any of the combinations leads to tangible reductions in exe-
cution time without compromising classification quality. This
tradeoff analysis, which is meant at answering RQ5, is done
via ten-fold cross validation over our entire dataset (T ∪ E).

F. Discussion

Below, we answer the RQs posed in Section IV-A.

RQ1. Table III shows the accuracy, precision and recall results
for the five ML classification algorithms considered. These
results were computed on the training set (T) through ten-fold
cross validation, both with and without cost-sensitive learning,
denoted CSL and ¬CSL, respectively. All algorithms had
tuned hyperparameters. To improve readability, in this and all
the subsequent tables that report on classification quality, we
highlight in bold the best accuracy, precision and recall results.
From Table III, we conclude that Random Forest presents a
slight or moderate advantage over the alternatives across
all three metrics. We answer the remaining RQs using Random
Forest as our classification algorithm.

RQ2. Fig. 4 lists the features of Table I in descending order of
information gain (IG). Based on the results in this figure, the
most influential features are Frq2, Syn2, Syn3, Syn1, Tok2,
and Tok1. The top-three features – Frq2, Syn2 and Syn3 – all
have to do with modal verbs. The high IG scores of these three
features is a clear indication that taking note of the presence
or absence of modal verbs is essential for telling requirements
apart from non-requirements. The next group of important
features – Syn1, Tok2 and Tok1 – are targeted at excluding
non-requirements. With the exception of Tok4 and Syn4, all
the remaining features turn out to be useful, albeit to a lesser
extent than the most important features discussed above.
Nevertheless, when considered collectively, these less import-
ant features still have considerable influence on classification.

The IG score of zero obtained for Tok4 indicates
that the mere presence of (alphanumeric) identifiers is
not a useful factor for classifying requirements and non-
requirements. This observation can be explained by the
fact that many non-requirements, e.g., section headers, may
be numbered too. While identifiers per se are not use-
ful for requirements demarcation, the aggregation of iden-
tifier information with frequencies turns out to be im-
portant, as indicated by the IG score of Frq1. The

0.1 0.2 0.3 0.4

Frq2

0.5 0.6

Syn2

Syn1
Syn3

Tok2
Tok1

Sem3
Frq1
Frq3
Tok3
Syn6

Syn5
Sem1

Tok5

Syn4

Syn8
Tok6

Sem2
Syn7

Tok4
Information Gain (IG)

0.0
Fig. 4: Feature Importance (RQ2).

second and last feature
with an IG score of
zero is Syn4, indicating
that the linguistic
pattern represented
by this feature
does not contribute
to distinguishing
requirements from
non-requirements. In
summary, the results of
Fig. 4 provide evidence
that all but two of our
features (Tok4 and Syn4)
indeed play a role in
requirements demarcation, thus confirming the majority of
the intuitions presented in Table I.

RQ3. Table IV shows the accuracy, precision and recall results
obtained by training Random Forest (RF) – the best classifica-
tion algorithm from RQ1 – over the training set (T), and then

TABLE IV: Model Validation Results (RQ3).

P(%) R(%)R(%)P(%) P(%)A(%) A(%)R(%) A(%) A(%)R(%)P(%)
85.7 85.4 92.192.4 84.687.388.5 87.5RF (¬CSL) 82.8100 82.595.6

89.6 80.6100 99.1 94.288.1 97.871.2 91.688.399.7RF (CSL) 72.8

RS4RS2 RS3RS1

81.1

62.3
91.3

85.8

41.7

87.142.9

41.8
B5

70.6

B4

46.8 54.397.0

83.9 82.0

B3
61.6

97.8
57.3

82.0

B1

45.3

65.3

72.961.0

62.1

65.5

65.0

84.3

83.0
56.5

76.6
64.7

66.9
52.9

81.3

52.8
82.4

79.8

92.3

58.6
81.8

85.583.0
88.486.6

29.0
86.3

84.4
72.8

67.3

84.1
71.8

56.0
62.5

79.2

80.9

63.8

74.8

44.0

40.2 63.5

81.2B2

applying the learned classification model to the validation set
(E), i.e., RS1–RS4 in Table II. Like in RQ1, we trained the
model both with and without cost-sensitive learning (CSL and
¬CSL). To enable comparison, the table further shows the
results from applying to RS1–RS4 the five baseline solutions
discussed in Section IV-E (Comparison with Baselines).

We observe from Table IV that our classification model (1)
outperforms all the baselines in terms of accuracy, irrespective
of whether cost-sensitive learning is used or not, (2) out-
performs all the baselines in terms of recall, when trained
with cost-sensitive learning. As for precision, B2 performs
better than our classification model on three of the RS (RS2,
RS3 and RS4). However, B2 has a considerably lower recall:
on average, compared to the classification model with cost-
sensitive learning, B2 has 13.4% better precision but 45.7%
worse recall; and compared to the model without cost-sensitive
learning, B2 is better by 6.5% in terms of precision but worse
by 36.1% in terms of recall. Similarly, B1 has better precision
on one of the RS (RS2) than our classification model with cost-
sensitive learning (difference of 10.1%); nevertheless, B1’s
recall is much lower (difference of 32.3%).

In light of the above and given that, in our context, recall
takes precedence over precision as argued before, we can
conclude the following: None of the baseline solutions pro-
vide a compelling alternative to our ML-based approach.
At the same time, we note that our better results are by
no means a refutation of the common-sense intuition behind
the baselines. Indeed, our approach incorporates the baselines
through closely related features. In particular, Syn2 and Syn3
relate to B1, Frq2 to B2, and Tok4 and Frq1 to B3. As we
discussed in RQ2, all our features except Tok4 and Syn4 are
relevant. The main observation from our analysis is therefore
that no individual baseline or combination of baselines is
adequate without considering in tandem the more nuanced
characteristics of the content in RS.

As noted in Section IV-E, we use cost-sensitive learning for
giving more weight to recall than precision. Our approach
without cost-sensitive learning has an average precision
of 88.1% and average recall of 86.1% over RS1–RS4.
Cost-sensitive learning increases recall to 95.7% (gain of
9.6%) while decreasing precision to 81.2% (loss of 6.9%).
In absolute terms, this amounts to trading 59 fewer missed
requirements (false negatives) for 80 non-requirements mis-
classified as requirements (false positives). While the impact of
cost-sensitive learning on manual effort is difficult to quantify
without a user study and is not addressed in this paper, the
engineers at our industry partner favored using cost-

TABLE V: Root Causes for False Negatives.

6

Explanation and Example

3

NLP techniques are not fully accurate and make mistakes. This
is particularly true when these techniques are confronted with
statements that significantly differ from normal text, e.g.,
statements with numerous abbreviations or statements
beginning with complex labels. NLP errors may lead to incorrect
feature extraction and thus classification errors.
Example: We miss the following requirement because our NLP
pipeline does not process it correctly.
“3.2.2.4.1 Default Ramp Angle - The default ramp angle (REF27
in SD119) for the controller should, upon ACK, be set to 34°.”

NLP Errors

20Loss of
Context

As noted in Section IV-C, our third-party annotator was
instructed to favor the requirement class when in doubt. In our
error analysis, we observed borderline situations where the
automated classification could well be correct, but did not
match the deliberately conservative ground truth.
Example: The following is a requirement in our ground truth but
is classified as a non-requirement by our approach.
“The decision to retain any single-point failures of any severity
level in the design is subject to formal approvals on a case-by-
case basis, with a detailed analysis for each failure.”

Cause
The units of analysis in our approach are sentences. A
requirement that is specified over multiple sentences, including
enumerated-list items, would thus constitute multiple
classification units. Sometimes, the context is lost after the first
unit within such requirements, resulting in the misclassification
of the remaining units.
Example: In the list below, we have three sentences (cands).
The control interface shall be tolerant and function:
1) if the round-trip latency < 250ms;
2) if the jitter < 20% of the average latency.
We correctly demarcate cand1 as a requirement, but miss cand2
and cand3 (two false negatives)

1

82

cand1

cand2

cand3

Conservative
Ground Truth

Count

sensitive learning: they perceived the effort of filtering the
additional false positives to be a reasonable price to pay for the
requirements not missed. In comparison to the five baseline
solutions, our approach with cost-sensitive learning has, on
average, 16.4% better precision and 25.5% better recall.

When employed with cost-sensitive learning, our approach
misclassifies as non-requirement a total of 34 requirements
across RS1–RS4. We analyzed all the misclassifications in
order to determine the root causes. We identified three root
causes, as shown in Table V. Each row in the table explains
one of the causes, illustrates it with an example, and reports
the number of misclassifications attributable to that cause.

For the 20 cases in row 1, our approach demarcated only the
first sentence or the enumerated-list header of a requirement.
In practice, when an analyst reviews the automatically gener-
ated demarcations, these incomplete cases are relatively easy
to spot and fix. Nonetheless, we elected to count these cases as
false negatives. The eight cases in row 2 are unavoidable due
to NLP seldom being fully accurate. The six cases in row 3
are marginal situations where we could not decide whether the
automated classification was at fault or the manual annotations
(ground truth) were overly conservative. Again, we found it
more sensible to treat these cases as false negatives.
RQ4. We answer RQ4 using a computer with a 3GHz dual-
core processor and 16GB of memory. We consider the exe-
cution time of our approach both from a solution provider’s
perspective and from a user’s perspective. Both the provider
and the user need to run the first two phases of our approach,
namely, document parsing and feature matrix construction as
explained in Section III. In the case of the provider, these two
phases will be executed on a large corpus of already annotated
RS for the purpose of model training. In the case of the user,
the two phases are applied over an individual RS in preparation
for the third phase of the approach, namely classification.

TABLE VI: Demarcation Quality vs. Execution Time (RQ5).
Feature Group (Execution Time in Milliseconds per Cand (ms/c))

TokSem
(2 ms/c)

Tok
(1.2 ms/c)

TokSynFrq
(101 ms/c)

P (%)P (%) R (%) P (%) R (%)A (%) A (%) A (%) A (%)R (%)R (%) P (%) P (%) R (%)A (%)

79.9 88.968.867.6 96.4 96.596.095.7 80.988.4 93.893.5
RF

(CSL) 88.6 96.493.6
Best Tradeoff

All-{Syn5}
(49 ms/c)

All
(102 ms/c)

Over our training set (T) which is composed of 16161
cands, the first two phases of the approach took 27.3 minutes
to run, i.e., an average of ≈101 milliseconds per cand. Train-
ing the classification model took negligible time (16 seconds).
This execution time is acceptable from the provider’s
standpoint, since training is a one-off and performed only
occasionally as the training set is revised or expanded.

From the user’s standpoint, performing the first two phases
of our approach over the validation set (E) led to the following
results: 37 seconds for RS1, 50 seconds for RS2, 72 seconds
for RS3, and 67 seconds for RS4; these RS collectively contain
2145 cands, giving an average processing time of ≈105
milliseconds per cand. The time required for the third phase,
i.e., classification, was negligible (<1 second per RS). Based
on these results, if we assume an average of 30 cands per
page in an RS, the end user should anticipate ≈3 seconds
of processing time per page. Such an execution time is
adequate for batch (offline) processing on an RS. In RQ5,
we attempt to optimize the execution time in order to make
our approach more suitable for interactive analysis.

RQ5. To compute the token-based features of Table I, one
needs to execute only the preprocessing portion of the NLP
pipeline in Fig. 2. The syntactic and frequency-based features
additionally require constituency and dependency parsing;
whereas the semantic features additionally require semantic
parsing (but not constituency or dependency parsing). These
prerequisite relations induce four groups of features: (1) only
token-based features, denoted Tok, (2) the combination of
token-based, syntactic and frequency-based features, denoted
TokSynFrq, (3) the combination of token-based and semantic
features, denoted TokSem, and (4) all features, denoted All.

In Table VI, we show for each group of features the results
of ten-fold cross validation over our entire dataset alongside
the time it took to run the prerequisite NLP modules and
compute the features in that group. Following the conclusions
from RQ1 and RQ3, we use Random Forest with cost-sensitive
learning for classification. The execution times reported in
the table are averages per cand and given in milliseconds.
We observe that Tok and TokSem are inexpensive to compute
and achieve good recall. However, these two feature groups
lead to drastically lower precision – by a factor of 20% –
than TokSynFrq and All. At the same time, TokSynFrq is not
a better alternative than All either, since it slightly reduces
classification quality while offering no tangible speedup.

The fact that syntactic and frequency-based features explain
most of the execution time prompted a followup investigation.
In particular, we looked into whether the exclusion of any of
these features would allow us to make the NLP pipeline more
efficient, without significantly impacting classification quality.

We observed that there is only one feature, Syn5, requiring
a constituency parse tree. To compute the remaining syntactic
features and the frequency-based features that rely on syntactic
analysis (Frq2 and Frq3), one can replace constituency parsing
with text chunking (shallow parsing) [31]. Text chunking has
already been shown to be a robust and accurate alternative to
constituency parsing for extracting the atomic-phrase structure
of textual requirements [32], [33]. Based on the RQ2 results,
Syn5 contributes very little to classification. Excluding Syn5
and using text chunking instead of constituency parsing
thus provides a good tradeoff for speedup. Using this
configuration, denoted All−{Syn5} in Table VI, we reduce
the execution time from 102 to 49 milliseconds per cand
with negligible impact on classification quality. We believe
that the improved execution time is sufficient for an interactive
mode of use, considering that, at any point in time, the user
will be reviewing at most a handful of pages of an RS.
Assuming 30 cands per page, our tradeoff solution reduces
the execution time from 3 seconds to 1.5 seconds per page.

V. RELATED WORK

ML has been utilized as a way to provide computerized
assistance for several requirements engineering tasks, e.g.,
trace link generation [34], [35], [36], [37], requirements iden-
tification and classification [38], [39], [40], prioritization [41],
ambiguity detection [42], [43], relevance analysis [44], and
review classification [45], [15]. The application of ML over
textual requirements is almost always preceded by some form
of NLP. Among the research strands employing ML and NLP
jointly for requirements analysis, our work most closely relates
to the ones concerned with requirements identification and
classification. Below, we compare with these strands.

Winkler and Vogelsang [39], [5] propose an approach
based on deep learning [9] for addressing the same prob-
lem that we address: requirements demarcation. They train
their classifier on word embeddings [46] from requirements
documents in the automotive domain. While we pursue the
same general objective as Winkler and Vogelsang’s, our so-
lution is different in two key respects: First, Winkler and
Vogelsang focus on requirements stored in IBM DOORS [47].
This enables them to narrow demarcation to distinguish-
ing a requirement from the additional material related to
that very requirement. In contrast, we deal with free-form
RS, meaning that we have no a-priori knowledge about
the association between a requirement and its surrounding
material. Second, and more importantly, Winkler and Vo-
gelsang train their model over a specific domain (automo-
tive), whereas our approach is domain-independent. Falkner
et al. [8] propose an ML-based approach for identifying
requirements in request for proposals (RFPs) related to railway
safety. They train their classifier on unique words in docu-
ments. This approach, just like Winkler and Vogelsang’s, is
trained on domain-specific documents. Therefore, it cannot
process, due to the nature of the training data, documents from
arbitrary domains the way our approach can.

There are several threads of work where ML and NLP are
used together for requirements identification and classification
tasks other than demarcation. Ott [48] uses ML techniques
trained on token-level information for automatically grouping
requirements that belong to the same topic, e.g., temperature or
voltage in automotive requirements. Cleland-Huang et al. [38]
build an iterative classifier for automated classification of non-
functional requirements. The classifier learns how key indica-
tor terms in textual requirements map onto different categories
such as performance and security. Casamayor et al. [49], Riaz
et al. [50], and Li et al. [51] propose similar techniques based
on keywords to predict categories for different requirements.
Guzman et al. [52] and Williams and Mahmoud [53] mine
requirements from twitter feeds through a combination of ML
and NLP preprocessing. Rodeghero et al. [54] use ML along-
side lightweight NLP for extracting user-story information
from transcripts of developer-client conversations.

The approaches discussed above are based primarily on
the frequency statistics and the token/phrase-level charac-
teristics of the underlying textual descriptions. Kurtanović
and Maalej [40] additionally use syntactic criteria obtained
from constituency and dependency parsing for distinguishing
functional and non-functional requirements and further clas-
sifying non-functional requirements into sub-categories. Our
combination of token-based, frequency-based and syntactic
features as well as the use of these features in tandem with
semantic ones is novel. As our empirical results in Section IV
indicate (see RQ2), all feature types are influential for an
accurate differentiation of requirements and non-requirements.

VI. THREATS TO VALIDITY

The validity dimensions most pertinent to our evaluation are
internal, construct and external validity.
Internal Validity. Bias was the main internal validity threat that
we needed to counter. To mitigate bias risks, the manual clas-
sification of our dataset, as we discussed in Section IV-C, was
done entirely by either experts or a trained third-party (non-
author). These individuals had no exposure to our demarcation
tool, and were thus not influenced by its results. Until the de-
marcation approach was finalized and fully implemented, the
researchers had no knowledge of the content of the RS in the
validation set other than the application domains and the num-
bers of requirements and non-requirements in these RS; this
minimal information about the validation set was necessary
for planning our experimental procedures (see Section IV-E).
Construct Validity. We treated requirements demarcation as
a binary classification problem. We do not account for un-
certainty, i.e., situations where a human oracle is unable to
make a conclusive decision. In our evaluation, as noted in
Section IV-C, we asked the annotator involved to err on the
side of caution and, when in doubt, favor the requirement class
over the non-requirement class. This choice is consistent with
the nature of our classification problem and the need to priori-
tize recall over precision, as discussed in Section II-A. Second,
our units of classification are sentences. This means that we
treat individual requirements spanning over multiple sentences

as multiple requirements. Adapted notions of precision and
recall may need to be defined, if multi-sentence requirements
happen to be dominant; this was not the case in our dataset
where such requirements were infrequent.
External Validity. Our evaluation was based on a relatively
large dataset with the RS in the dataset originating from a vari-
ety of sources and domains. The results obtained over our vali-
dation data is reflective of real-world conditions, particularly in
that the classification model is confronted with RS no portion
of which has been revealed to the model during training. These
factors combined with our consistently strong accuracy results
provide confidence about the generalizability of our approach.
That said, a broader examination of requirements specification
practices would be beneficial for further fine-tuning our feature
set and conducting more thorough empirical evaluations.

VII. CONCLUSION

We proposed a machine learning-based approach for dis-
tinguishing requirements statements from other material in
textual requirements specifications. The main characteristic of
our approach is that it is applicable to a wide variety of require-
ments specifications without needing any input from the user.
The features that we use for learning are based on linguistic
and frequency information that are generalizable and meaning-
ful irrespective of the domain and terminology of individual
requirements specifications. To calculate these features for the
statements in a given requirements specification, we employed
a combination of natural language processing techniques. We
empirically evaluated our approach using a dataset made up of
30 industrial requirements specifications. The results indicate
that our approach has an average precision of 81.2% and
average recall of 95.7%. We compared the effectiveness of our
approach against several intuitive baselines, and demonstrated
that our approach offers major benefits over these baselines.

Our current approach is based on binary classification. In
reality, deciding between requirements and non-requirements
is not always a clear-cut choice even for experts. In the future,
we would like to provide more detailed information about
the automatically predicted demarcations, e.g., through color
coding, so that the analysts can know how conclusive the
predictions are. A definitive evaluation of our approach which
considers uncertainty would require user studies. Another
direction for future work is to broaden the applicability of
our approach beyond requirements specifications. While we
do not foresee issues that would limit our current features to
only requirements specifications, additional features may be
necessary for accurately handling other types of requirements-
relevant documents, e.g., product descriptions and calls for
tenders. Further, the effectiveness of our approach over such
documents needs to be evaluated via new empirical studies.

Acknowledgment. This project has received funding from
QRA Corp, Luxembourg’s National Research Fund under the
grant BRIDGES18/IS/12632261, and the European Research
Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 694277).

REFERENCES

[1] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications, 1st ed. Wiley, 2009.

[2] D. Berry, E. Kamsties, and M. Krieger, “From contract drafting to
software specification: Linguistic sources of ambiguity, a handbook,”
2003, last accessed: March 2019. [Online]. Available: http://se.
uwaterloo.ca/∼dberry/handbook/ambiguityHandbook.pdf

[3] M. Luisa, F. Mariangela, and N. I. Pierluigi, “Market research for
requirements analysis using linguistic tools,” Requirements Engineering
Journal (RE J), vol. 9, no. 1, pp. 40–56, 2004.

[4] K. Pohl, Requirements Engineering - Fundamentals, Principles, and
Techniques, 1st ed. Springer, 2010.

[5] J. Winkler and A. Vogelsang, “Using tools to assist identification of non-
requirements in requirements specifications–a controlled experiment,” in
Proceedings of the 24th International Working Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ’18), 2018,
pp. 57–71.

[6] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer., “Extracting domain
models from natural-language requirements: Approach and industrial
evaluation,” in Proceedings of the 19th International Conference on
Model Driven Engineering Languages and Systems (MODELS’16),
2016, pp. 250–260.

[7] K. Pohl and C. Rupp, Requirements Engineering Fundamentals, 1st ed.
Rocky Nook, 2011.

[8] A. Falkner, C. Palomares, X. Franch, G. Schenner, P. Aznar, and
A. Schoerghuber, “Identifying requirements in requests for proposal:
A research preview,” in Proceedings of the 25th International Working
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’19), 2019, pp. 176–182.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed. MIT
Press, 2016.

[10] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 4th ed. Morgan Kaufmann,
2016.

[11] D. Jurafsky and J. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 2nd ed. Prentice Hall, 2009.

[12] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing, 2nd ed. CRC Press, 2010.

[13] G. A. Miller, “WordNet: a lexical database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[14] Princeton University, “About WordNet,” 2010, last accessed: March
2019. [Online]. Available: https://wordnet.princeton.edu/documentation

[15] Z. Kurtanovic and W. Maalej, “Mining user rationale from software
reviews,” in Proceedings of the 25th International Requirements Engi-
neering Conference (RE’17), 2017, pp. 61–70.

[16] I. Habernal, J. Eckle-Kohler, and I. Gurevych, “Argumentation mining
on the web from information seeking perspective,” in Proceedings of the
Workshop on Frontiers and Connections between Argumentation Theory
and Natural Language Processing (ArgNLP’14), 2014.

[17] W. A. Cook, Case grammar theory. Georgetown University Press,
1989.

[18] Aspose.Words, “Java word documents manipulation APIs,” 2018, last
accessed: March 2019. [Online]. Available: https://products.aspose.com/
words/java

[19] R. Eckart de Castilho and I. Gurevych, “A broad-coverage collection
of portable NLP components for building shareable analysis pipelines,”
in Proceedings of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT (OIAF4HLT’14), 2014, pp. 1–11.

[20] S. Petrov, L. Barrett, R. Thibaux, and D. Klein, “Learning accurate,
compact, and interpretable tree annotation,” in Proceedings of the 21st
International Conference on Computational Linguistics (COLING’06),
2006, pp. 433–440.

[21] J. Nivre, J. Hall, and J. Nilsson, “MaltParser: A data-driven parser-
generator for dependency parsing,” in Proceedings of the 5th Interna-
tional Conference on Language Resources and Evaluation (LREC’06),
2006, pp. 2216–2219.

[22] B. Walenz and J. Didion, “JWNL: Java WordNet Library,” 2011, last
accessed: March 2019. [Online]. Available: http://jwordnet.sourceforge.
net

[23] International Organization for Standardization, “ISO/IEC/IEEE
29148:2011 - Systems and software engineering - Requirements
engineering,” 2011.

[24] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement (EPM), vol. 20, no. 1, pp. 37–46, 1960.

[25] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
Medica (BM), vol. 22, no. 3, pp. 276–282, 2012.

[26] D. M. Berry, “Evaluation of tools for hairy requirements and software
engineering tasks,” in Proceedings of the 25th International Require-
ments Engineering Conference Workshops (REW’17), 2017, pp. 284–
291.

[27] S. Suthaharan, Modeling and Algorithms. Springer US, 2016, pp. 123–
143.

[28] P. Louridas and C. Ebert, “Machine learning,” IEEE Software, vol. 33,
no. 5, pp. 110–115, 2016.

[29] P. Reutemann, J. van Rijn, and E. Frank, “Weka MultiSearch Parameter
Optimization,” 2018, last accessed: March 2019. [Online]. Available:
http://weka.sourceforge.net/packageMetaData/multisearch/index.html

[30] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” Journal of Machine Learning Research (JMLR), vol. 13,
no. 1, pp. 281–305, 2012.

[31] L. Ramshaw and M. Marcus, “Text chunking using transformation-based
learning,” in Natural language processing using very large corpora.
Springer, 1999.

[32] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated check-
ing of conformance to requirements templates using natural language
processing,” IEEE Transactions on Software Engineering (TSE), vol. 41,
no. 10, pp. 944–968, 2015.

[33] ——, “Automated extraction and clustering of requirements glossary
terms,” IEEE Transactions on Software Engineering (TSE), vol. 43,
no. 10, pp. 918–945, 2017.

[34] H. Asuncion, A. Asuncion, and R. Taylor, “Software traceability with
topic modeling,” in Proceedings of the 32nd International Conference
on Software Engineering (ICSE’10), 2010, pp. 95–104.

[35] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A ma-
chine learning approach for tracing regulatory codes to product specific
requirements,” in Proceedings of the 32nd International Conference on
Software Engineering (ICSE’10), 2010, pp. 155–164.

[36] H. Sultanov and J. H. Hayes, “Application of reinforcement learning to
requirements engineering: requirements tracing,” in Proceedings of the
21st International Requirements Engineering Conference (RE’13), 2013,
pp. 52–61.

[37] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in Proceedings of
the 39th International Conference on Software Engineering (ICSE’17),
2017, pp. 255–272.

[38] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classifica-
tion of non-functional requirements,” Requirements Engineering Journal
(RE J), vol. 12, no. 2, pp. 103–120, 2007.

[39] J. Winkler and A. Vogelsang, “Automatic classification of require-
ments based on convolutional neural networks,” in Proceedings of the
24th International Requirements Engineering Conference Workshops
(REW’16), 2016, pp. 39–45.

[40] Z. Kurtanović and W. Maalej, “Automatically classifying functional
and non-functional requirements using supervised machine learning,”
in Proceedings of the 25th International Requirements Engineering
Conference (RE’17), 2017, pp. 490–495.

[41] A. Perini, A. Susi, and P. Avesani, “A machine learning approach to
software requirements prioritization,” IEEE Transactions on Software
Engineering (TSE), vol. 39, no. 4, pp. 445–461, 2013.

[42] H. Yang, A. Willis, A. De Roeck, and B. Nuseibeh, “Automatic detection
of nocuous coordination ambiguities in natural language requirements,”
in Proceedings of the 25th International Conference on Automated
Software Engineering (ASE’10), 2010, pp. 53–62.

[43] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh, “Specula-
tive requirements: Automatic detection of uncertainty in natural language
requirements,” in Proceedings of the 20th International Requirements
Engineering Conference (RE’12), 2012, pp. 11–20.

[44] C. Arora, M. Sabetzadeh, S. Nejati, and L. Briand, “An active learning
approach for improving the accuracy of automated domain model ex-
traction,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 1, pp. 4:1–4:34, 2019.

[45] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering Journal (RE
J), vol. 21, no. 3, pp. 311–331, 2016.

http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
https://wordnet.princeton.edu/documentation
https://products.aspose.com/words/java
https://products.aspose.com/words/java
http://jwordnet.sourceforge.net
http://jwordnet.sourceforge.net
http://weka.sourceforge.net/packageMetaData/multisearch/index.html

[46] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proceedings of the 26th International Neural Information
Processing Systems Conference (NIPS’13), 2013, pp. 3111–3119.

[47] IBM DOORS, “IBM - Rational DOORS,” 2018, last accessed: March
2019. [Online]. Available: https://www.ibm.com/us-en/marketplace/
requirements-management

[48] D. Ott, “Automatic requirement categorization of large natural language
specifications at mercedes-benz for review improvements,” in Proceed-
ings of the 19th International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ’13), 2013, pp.
50–64.

[49] A. Casamayor, D. Godoy, and M. Campo, “Identification of non-
functional requirements in textual specifications: A semi-supervised
learning approach,” Information and Software Technology (IST), vol. 52,
no. 4, pp. 436–445, 2010.

[50] M. Riaz, J. King, J. Slankas, and L. Williams, “Hidden in plain sight:

Automatically identifying security requirements from natural language
artifacts,” in Proceedings of the 22nd International Requirements Engi-
neering Conference (RE’14), 2014, pp. 183–192.

[51] C. Li, L. Huang, J. Ge, B. Luo, and V. Ng, “Automatically classifying
user requests in crowdsourcing requirements engineering,” Journal of
Systems and Software (JSS), vol. 138, no. 1, pp. 108–123, 2018.

[52] E. Guzman, M. Ibrahim, and M. Glinz, “A little bird told me: Mining
tweets for requirements and software evolution,” in Proceedings of the
25th International Requirements Engineering Conference (RE’17), 2017,
pp. 11–20.

[53] G. Williams and A. Mahmoud, “Mining twitter feeds for software user
requirements,” in Proceedings of the 25th International Requirements
Engineering Conference (RE’17), 2017, pp. 1–10.

[54] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate extractive
summaries,” in Proceedings of the 39th International Conference on
Software Engineering (ICSE’17), 2017, pp. 49–59.

https://www.ibm.com/us-en/marketplace/requirements-management
https://www.ibm.com/us-en/marketplace/requirements-management

	Introduction
	Background
	Machine Learning
	Natural Language Processing

	Approach
	Parsing the Requirements Specification
	Building an ML Feature Matrix
	Classifying Requirements and Non-requirements

	Evaluation
	Research Questions (RQs)
	Implementation
	Data Collection and Preparation
	Metrics for the Evaluation of ML Classification Models
	Evaluation Procedures
	Discussion

	Related Work
	Threats to Validity
	Conclusion
	References

