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Background: Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only the
cancer-specific cellular metabolism will safeguard healthy tissues.
Methods: We developed the very efficient FASTCORMICS RNA-seq workflow (rFASTCORMICS) to build 10,005
high-resolution metabolic models from the TCGA dataset to capture metabolic rewiring strategies in cancer
cells. Colorectal cancer (CRC) was used as a test case for a repurposing workflow based on rFASTCORMICS.
Findings: Alternative pathways that are not required for proliferation or survival tend to be shut down and, there-
fore, tumours display cancer-specific essential genes that are significantly enriched for known drug targets. We
identified naftifine, ketoconazole, and mimosine as new potential CRC drugs, which were experimentally vali-
dated.
Interpretation: The here presented rFASTCORMICS workflow successfully reconstructs a metabolic model based
on RNA-seq data and successfully predicted drug targets and drugs not yet indicted for colorectal cancer.
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1. Introduction

The Warburg effect [1] describes the first documented metabolic
rewiring event in cancer cells, favouring aerobic glycolysis over oxida-
tive phosphorylation. To compensate for the energetically less efficient
glycolysis, cancer cells increase theflux rate through the glycolytic path-
way [2], whichmakes tricarboxylic acid cycle intermediates available to
serve as precursors for fatty acids, nucleotides, and amino acids.

Since Otto Warburg's work, other metabolic alterations were re-
ported in different cancer types, such as the up-regulation of the pen-
tose phosphate pathway, the lipid synthesis pathway [3], or a high
dependency on glutamine availability to maintain anaplerosis [4]. Met-
abolic rewiring occurs through mutations of key metabolic enzymes,
oncogenes, and tumour suppressors that tightly control metabolic
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reactions. Further, it affects other hallmarks of cancer such as immune
evasion or tissue invasion [5].

By identifying cancer-specific metabolism and the underlying (mu-
tated) genes, new therapies can be developed that reduce the growth
of cancer cells without affecting normal cells [6]. Furthermore, focussing
on common metabolic alterations, such as glutamine consumption,
would allow targeting the whole cancer cell population instead of sub-
clones only.

Cancer-specific metabolic networks, extracted from generic recon-
structions such as Recon X [7–9] and HMR [10,11], are promising tools
to study metabolic rewiring strategies at a cell-wide level [12–14].
Applications to context-specific models include structural analysis
(comparing healthy and cancer metabolic networks) to find cancer-
specific pathways and in silico gene knock-outs to find potential drug
targets [15] or oncometabolites [16]. Moreover, context-specificmodels
allow us to determine cancer-specific flux distributions through ran-
dom sampling and flux variability analysis [17]. Metabolic modelling
approaches were used to successfully integrate cancer patient data
and to study the metabolism of cancer cells [16,18]. However, the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context section
Evidence before this study

High costs in drug development led pharmaceutical companies to
invest in drug repurposing,which consists of reusing commercially
available and wellassessed drugs with known efficiency and side
effects for new indications. Drug repurposing accounted for
20% of the drugs released in 2013.
Metabolic models, in silico knock out strategies, and flux balance
analysis (FBA) have successfully been applied to predict cancer
drug targets. The in silico essential genes prediction has some
main advantage over other technologies, such as CRISPR/Cas9,
to be cheap, fast, and easily applied to every cell line and context.

Added value of this study

Tobuild high quality context-specificmetabolicmodels that can be
used, among others, for drug target prediction, we developed
rFASTCORMICS that builds metabolic models in a matter of sec-
onds based on RNA-seq data. For this study, we reconstructed
10,005 models from the TCGA (The Cancer Genome Atlas) data
set thatwe used to extract gene and reaction signatures for 13 dif-
ferent types of cancers. We also predicted 17 new repurposing
drug candidates for colon cancer of which we validated three
drugs in vitro on colon cancer cell lines.

Implications of all the available evidence

The drug prediction workflow can easily be adapted for other high
proliferative cancer cells and drug targets and drugs can be vali-
dated in follow-up studies in vitro and in vivo. Ultimately, the
workflow can be used to identify repurposed drugs for different
cancer and cancer subtypes.
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identification of metabolic rewiring strategies was hindered by the low
resolution power and high computational demand of most context-
specific model building algorithms [19].

The recently developed FASTCORE family (FASTCORE [20] and
FASTCORMICS [21]) can be used in a high-throughput manner offering
superior resolution power and accuracy [19]. Because FASTCORMICS
builds a model in a matter of seconds to minutes on an ordinary laptop
[19,21,22], metabolic models can be used as a routine tool for data anal-
ysis and clinical diagnostics.

To systematically study metabolic rewiring and to show that
FASTCORMICS can be used to integrate and analyse patient data, we ex-
tended FASTCORMICS [21], originally designed for microarray data, to
build context-specific models via the integration of RNA-seq data. So
far, only two algorithms have been benchmarked by their developers
with RNAseq data as input: RegrEx [23] and Lee2012 [24]. Lee 2012
minimizes the error between the flux prediction and the experimental
data, which increases the sensitivity of the algorithm to noise. Whereas,
RegrEx tries to find a balance between the goodness of the fit of the
predicted flux distribution to the measured expression data, (which in-
creases the sensitivity of these algorithms to noise) and the complexity
of themodel (by reducing the number of features). To address this prob-
lem, RegrEx added a L1-normregularizationwhich in-turn increases the
computational demand of the algorithm due to resources extensive
cross-validations for parameter tuning.

In this study, 10,005 context-specific models (9264 cancer and 741
control samples, GSE62944 [25] collected by the TCGA Research Net-
work (http://cancergenome.nih.gov/)) were reconstructed using the
FASTCORMICS RNA-seq workflow (rFASTCORMICS), a new adaptation
of the FASTCORMICS workflow specifically designed for RNA-seq data
that prevents the use of arbitrary thresholds. The rFASTCORMICS
models showed an enrichment for known essential genes (identified
by CRISPR-Cas9 screens in cancer cell lines [26,27]) and approved can-
cer drug targets among the predicted in silico essential genes.

Three non-cancer drugs (namely naftifine, ketoconazole, and
mimosine), targeting the predicted essential genes in colon cancer,
were successfully validated in vitro. All three tested drugs significantly
reduced the proliferation rates in cancer while having a minor or no ef-
fect on the proliferation rate of the control cells.

2. Material and methods

For this study, 10,005 sample-specific and 26 tissue-specific models
were reconstructed with rFASTCORMICS using Recon 2. The tissue-
specific models consisted of 13 generic cancer and 13 generic control
models. rFASTCORMICS is freely available for non-commercial users at:

https://wwwen.uni.lu/research/fstc/life_sciences_
research_unit/research_areas/systems_biology/software/

rfastcormics. rFASTCORMICS runs under Matlab (MathWorks) and
requires a compatible IBM CPLEX solver, the COBRA Toolbox, the Statis-
tics and Machine Learning Toolbox, and the Curve Fitting Toolbox.

2.1. FASTCORMICS RNA-seq (rFASTCORMICS)

For RNA-seq data, arbitrary thresholds between 0.3 and 1 FPKM
(Fragments Per Kilobase of transcript per Million mapped reads) are
commonly used to segregate between expressed and non-expressed
genes. Previous studies [28,29] showed how arbitrary gene expression
thresholds affect the model predictions. However, in [30], a novel
workflow to identify active genes was proposed; it compares the gene
expression levels to the promoter activity signatures using data from
the ENCODE project. In this study, the authors showed that the mea-
sured signal is composed of 2 partially overlapping Gaussian corre-
sponding to the expressed genes and the noise, respectively. Based on
the approach in [30], rFASTCORMICS fits a half-Gaussian curve to the
log2-transformed FPKM values of each sample separately and a density
plot is drawn for each sample using the ksdensity function in MATLAB
(see Fig. 1). The rationale is that themain peak of the signal curve com-
prises the expressed genes while leaky genes are mostly found in the
leftmost side of the curve. The right half of the main peak was mirrored
and aGaussian curve (expression curve)wasfitted using the cftool func-
tion (see Fig. 1). Then, the Gaussian curve is subtracted from the kernel
density estimation of the signal curve to obtain the portion of the signal
that was not included in the Gaussian distribution. A second Gaussian
curve (inexpression curve) was fitted onto this portion using the cftool
function in Matlab.

Lastly, the log2-transformed FPKM values were converted into
zFPKM values using:

zFPKM ¼ log2 FPKMð Þ−mu
sigma

ð1Þ

wheremu is the log2-transformed FPKMvalue at themaximumvalue of
the density plot and sigma the standard deviation. Because the best
correlation between RNA-seq data and histone marks (at the promoter
regions) was found for a zFPKM score of −3 by [30], the maximum of
the inexpression curve was chosen as threshold if it is above −3
zFPKM, otherwise −3 is taken. mu (zFPKM score of 0) was selected as
expression threshold. If the zFPKM value of a gene is below the
inexpression threshold, a score of −1 (not expressed) is assigned; if it
is above the expression threshold, a score of 1 (expressed) is assigned;
and if it was between the two thresholds a score of 0 (unknown expres-
sion status) is assigned (See Fig. 1 and Supplementary Fig. S.1).

Every gene was then mapped to the reactions of Recon 2 via the
gene-protein-reaction rules (GPR rules). Similar to FASTCORMICS [21],
rFASTCORMICS can be used to reconstruct sample-specific and generic
tissue/cell-specific models. For sample-specific models, reactions with
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Fig. 1. The RNA-seq FASTCORMICSworkflow: Theworkflowuses a discretization step that
considers the intensity distribution across all genes to discretize the genes into expressed,
undefined expression status, and inexpressed. The discretized values are then mapped to
the input model to obtain 3 sets of reactions: core reactions, non-core, and inactive
reactions. The bounds of the inactive reactions are set to zero and are removed from the
model along with reactions that are no longer able to carry a flux. A modified version of
FASTCORE is used to include all the remaining core reactions, with the exception of
transporter reactions that are transferred from the core to an unpenalized set (these
reactions are not forced in but, as they are not penalized, their inclusion is favoured over
non-core reactions). In Recon X models, several hundreds of transporter reactions are
controlled by a set of only a few genes. To avoid the unwanted activation of transporter
reactions in inactive pathways, transporter reactions are not forced to be active but their
activation is not penalized. To obtain consistent models, FASTCORE includes a minimal
amount of non-core reactions.
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a score of −1 are considered as being inexpressed and, therefore, their
bounds are set to 0, except for reactions that are required for the bio-
mass function to carry a flux. The score of a reaction is determined by
the score of its associated genes through the GPR rules. These Boolean
rules definewhich gene(s) are necessary for a reaction to take place. De-
pending on the activity of the gene(s) and the Boolean rules (Boolean
AND/OR), the associated reaction is active or inactive. E.g. if a reaction
is under the control of two genes A and B and the BOOLEAN rule is
“Gene A AND Gene B", then both genes have to be expressed for the re-
action to be active. In practice, after discretization we obtain a value for
each gene 1 (expressed), 0 (unknown) and− 1 (unexpressed). For the
previous example, we take theminimum (A,B) as both need to be active
to obtain the value associated to the reaction. If A = 1 and B = 1, the
reaction is active, if A = 1, and B = 0 then the reaction is tagged as un-
known, if A = 1 and B = -1, the reaction is inactive. For OR only one of
the genes has to be expressed to get an active reaction. We take the
maximum of the discretized gene values accordingly. If A = 1 and B
=1, the reaction is tagged as active, if A=1 andB=0 then the reaction
is tagged as active as well, if A = 1 and B = -1, the reaction is active as
well. If A = 0 and B = -1 then the reaction is tagged as unknown.

For tissue/cell-specific generic models, the bounds of the reactions
that are associated with a− 1 in at least 90% of the samples are set to 0.

To eliminate blocked reactions, FASTCC [20] was run and the
remaining reactions (not eliminated by FASTCC) with a score of 1
were included in the core set. Note that, for the tissue-specific generic
models, a score of 1 has to be found in N90% of the samples. Finally, a
modified version of FASTCORE [20] that allows the definition of an
unpenalized set is run. Their inclusion is not forced but only favoured
over non-core reactions. The unpenalized set contains reactions that
tend to be under the control of promiscuous genes such as transporter
reactions. The output is a vector that contains the indices of reactions
from the input model to be included in the context-specific output
model.

Because rFASTCORMICS does not require an optimization or objec-
tive function such as biomass production or ATP demand, it can be
used to build models of low proliferative cells. rFASTCORMICS needs
as input expression data, a generic reconstruction, and a dictionary
that maps the expression gene identifiers with the model gene identi-
fiers. Other inputs, such as the medium composition are optional. The
medium composition that was used to reconstruct the models can be
found in the supplementary Table S.3.

2.2. Cancer and healthy core metabolic genes and reactions

Wedefine the healthy core as genes/reactions that are active in each
of the 741 healthy models and the cancer core as genes/reactions that
are active in every model in 100 sets of 741 randomly selected cancer
models. For non-metabolic genes (genes not present in the humanmet-
abolic reconstruction Recon 2), the discretization of rFASTCORMICSwas
used to determine if a gene/reaction is active. Healthy and cancer core
gene/reactions are metabolic (and non-metabolic) genes/reactions
that are expressed in every healthy and cancer sample, respectively.

2.3. Reaction and gene signatures

For each reaction and gene, the absolute difference of the expression
ratio (number of models that express a gene/reaction divided by the
number of models for a given context) between the cancer and the con-
trol models for each tissue was computed. The aim is to find genes that
tend to have a condition-specific expression pattern. A reverse feature
selection approach on the top 100 most different reactions/genes was
performed using the rfe function of the caret package [31] in R with
the accuracy (AUC score) as metric. Methods such as linear and radial
support vector machines and rpart, were tested. For each tissue type,
the method and the number of features (gene or reaction signatures)
with the best accuracy score were selected.

The aimof the feature selectionwas tofind the best balance between
over-fitting (too high number of features) and under-fitting (insuffi-
cient number of features) and by such to further reduce the number of
reactions/genes that are sufficient to assign a new samples in one of
the two conditions. These genes and reactions are more likely to be in-
volved in rewiring strategies and are conserved or eliminated across
cancer samples. Secondly, it allows assessing the resolution power of
the workflow (defined as the capacity to distinguish between two con-
ditions). The feature selection step starts with amatrix of 100 rows cor-
responding to the genes/reactions. The number of columns is equal to
the number of tissue samples. We used the cancer or control labels as
response. After this step, the remaining number of features varies be-
tween4 and100 genes/reactions dependingon the number of genes/re-
actions that allowed obtaining the best accuracy.

Finally, a cross-validated support vector machine classifier was run,
using the Classification Learner toolbox in Matlab, to assess the predic-
tion power of the machine learning model.

2.4. Gene signature enrichment tests

The gene signatures were pooled and a list of 502 unique genes was
obtained. An enrichment test has been performed, comparing the 502
unique genes to the 1721 unique metabolic genes of Recon 2 using the
hypergeometric test function (hypercdf) in Matlab.

Driver genes. A list of known driver genes for each tissue was re-
trieved from the driver genes database, driverDBv2 [32]. By default,
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genes that were called by at least two algorithms in the database are
considered driver genes.

Loss-of-function mutations. A list of genes affected by loss-of-
function mutations with their corresponding functional annotation
was retrieved from the Supplementary Files of [33].

Only gene signatures of tissues also found in the [33] study were
considered, corresponding to a set of 362 genes.

Essential genes. Data on essential genes were taken from:

(1) [26] performed CRISPR-Cas9 screens on two chronic myeloge-
nous leukaemia cell lines (KBM7 and K562) and two Burkitt's
lymphoma cell lines (Raji and Jiyoye) to identify essential
genes. Essential genes were defined by a CRISPR score (CS) that
gives information on the effectiveness of the gene inhibition
and the reproducibility of the CRISPR-Cas9 screening. A CS-
score below 0.1 and a corrected p-value below 0.05 were used
as thresholds to consider a gene as essential [26].

(2) [30] who used CRISPR-Cas9 on five TKO cell lines to define core
fitness genes (essential genes common to 3–5 cancer cell lines).
Two listswith essential geneswere obtained; one listwhich enu-
merates essential genes in 3 out of 5 cell line and a second list
with essential genes in 5 out of 5 cell lines.

Geneswith SNPs associatedwith ahigh impact on thephenotype.
The mutation annotation files (.maf) files containing the impact (high,
moderate, and low impact) of each SNP on the phenotype (as predicted
by MUSE, MUTECT2, varScan2, and sniper) was downloaded with the
GDCqueryMaf function from the TCGAbiolinks package [34] in R.

As stated previously, the number of high impact genes (found in 1 or
more of the 13 tissues in the gene signature)was compared to the num-
ber of genes found amongRecon 2 (See Supplementary Information and
Supplementary Figs. S.15 and S.16).

Enrichment in super-enhancers. The curated list of super-
enhancers was taken from [35](from Supplementary Table 3) to com-
pute the enrichment analysis in the top 100 highly expressed genes
and from [35](from Supplementary Table 5) to compute the enrich-
ment analysis of hypo-methylated super-enhancers in the gene
signatures.

2.5. Gene deletion and essential genes

In silico knock-outswere simulated for the 13 cancer and control ge-
neric tissue models with two different input models Recon 2.04. To be
able to compare the models with an in vitro experiment, the models
were constrained for the medium composition with the medium con-
strain option and the optimization function of the rFASTCORMICS
workflow to force the models to produce ATP and biomass.

For each model, in silico gene deletions were performed using the
singleGeneDeletion command from theCOBRA toolbox,while optimizing
for the ATP demand and the biomass reaction separately. Before
performing the in silico gene deletion, themaximal flux through the ob-
jective function (either ATPdemand or biomass) is assessed through op-
timization. The solution represents the growth rate of the wild type.
Then, during the single genedeletion, for each gene, thefluxes of its con-
trolled reactions is set to 0, and the flux through the objective function
was maximised. Consequently, for each gene, we obtained a growth
rate, measuring how the gene deletion affects the objective function.
The growth or production ratio is obtained by dividing the growth rate
of the knocked-out model by the growth rate of the wild type model.
By comparing the maximal fluxes through the objective function be-
tween the wild type (no gene deletion) and the genes were considered
essential if their deletion causes a reduction of at most 10% and 50% in
thehealthy and cancermodels, respectively. The deletion (or inhibition)
should only minimally affect the healthy cells and mainly target cancer
cells, inhibit their growth, or cause them to undergo cell death.
To find possible drug targets in cancer, essential genes between the
healthy and cancer models were compared and different lists have
been created: genes which are essential in all models (reducing ATP de-
mand/biomass reaction by at least 50%), genes which are essential in
cancer (reducing ATP demand/biomass reaction by at least 50%), and
genes which are only essential in cancer and not in healthy (reducing
growth rate by maximum 10% in healthy and at least 50% in cancer).
This resulted in three sub-cases: comparison between ATP demands,
biomass reactions, and ATP demand for healthy and biomass reaction
for cancer.

For each list, the union and intersection of the essential genes from
each tissue was considered, resulting in a total of 14 cases (see Supple-
mentary Table S.5).

2.6. Enrichment analysis for essential genes and cancer drugs

For each list of essential genes, an enrichment analysis for the pre-
dicted essential genes and cancer drugs was performed using the
hypergeometric test function (hypercdf in Matlab).

Data on essential genes from different cell lines were taken from
[26,30] and [36] who determined essential genes in two cell lines
(KBM and HAP1) by using extensive gene trapping mutagenesis.
Genes with a p-value below 0.05 were defined as essential.

To test for cancer drug enrichment, the DrugBank database [37] was
datamined to find approved and inhibiting drugs for each gene present
in the genome-scale metabolic reconstruction as well as drugs, which
were labelled as antimetabolites and anti-neoplastic agents. Then, the
drugs associated to the genes in the different essential gene lists were
extracted and compared to 5 different online lists of approved cancer
drugs. The online lists (as of April 2017) and the names of the databases
can be found in the Supplementary Data (see Supplementary Table S.6).

2.7. Validation

2.7.1. in silico validation
The FASTCORE family was recently benchmarked against several of

its most used competitors [38]. The workflow used in this paper was
also run with rFASTCORMICS (see Supplementary Fig. S.29). Addition-
ally, models for each tissuewere reconstructed using the INIT algorithm
[10] from the COBRA toolbox (see supplementary Text and Supplemen-
tary Table S.9) to assess the performance of rFASTCORMICS against an-
other model building algorithms.

2.7.2. Compound descriptions
Ketoconazole, a synthetic imidazole based antifungal drug, is

known as pan-inhibitor of the PXR nuclear receptor in xenobiotic
metabolism (Cyp3A4) in vivo [39]. Ketoconazole increased the intra-
tumour drug levels and antitumour activity of fenretinide upon co-
treatment [40]. Comparable results, namely effects on the pharmacoki-
netics of the BCL-2 inhibitor venetoclax, were shown in patients with
non-Hodgkin lymphoma [41]. Although ketoconazole reduces cell pro-
liferation in a dose-dependent manner on the HT29 colon cancer cells
in vitro [42], its mechanism in CRC is still elusive.

Naftifine, an allylamine derivative, is a synthetic, broad spectrum,
antifungal agent. It also shows anti-inflammatory properties such as de-
creased superoxide production and reduced polymorphonuclear leuko-
cyte chemotaxis and endothelial adhesion [43]. It inhibits squalene
epoxidase [44], which catalyses the initial oxygenation step in sterol
biosynthesis. As a result, decreased levels of sterols and a corresponding
accumulation of squalene is observed in the cells. Recently, SQLE inhibi-
tion was proposed as potential therapeutic target for Breast cancer
treatment [45]. In vitro, naftifine exhibited anti-tumourigenic effects
on lymphoma and myeloma cell lines, whereas no effect was seen on
healthy fibroblasts using equal concentrations [46]. The chemical fea-
tures of naftifine are similar to those of known Wnt inhibitors
(cinnarizine, flunnarizine).



Table 1
rFASTCORMICS permits the fast reconstruction of models The models were reconstructed
using as input the TCGA dataset and Recon 2 for rFASTCORMICS. The average running time
per model was around 2.8 min on a computer with an Intel(R)Xeon(R)CPU E3 1241-v3@
3.50 GHZ processor running in parallel on 4 cores. Only tissues with at least 20 control
samples were considered for the analysis.

Description Numerics

Number of tumour models 9264
Number of control models 741
Total number of models 10,005
Total number of tissue types 30
Number of tissue considered for analysis 13
Running time for 10,005 model reconstructions 112 h
Average running time per model reconstruction per core 161 s
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Mimosine is a non-protein amino acid similar to tyrosine. Mimosine
was shown to have anti-cancer, anti-inflammatory, anti-fibrotic, anti-
viral, herbicidal, and insecticidal properties [47]. Recently, it was sug-
gested as promising agent for treatment of malignant gliomas due to
the ability to promote ROS generation, resulting in apoptosis in vitro
[48]. In SW620 colon adenocarcinoma cells it reversibly inhibits of cell
cycle progression [49] and is therefore a potential candidate for CRC
treatment (see Supplementary Table S.7 for more details on the action
and literature references).

2.7.3. Cell line and culture conditions
The primary tumour cell lines T6 and T18 (stage II and stage IV colon

adenocarcinoma)were established from fresh primary colon cancer tis-
sue immediately after surgical resection and fully characterized as pre-
viously described in [50]. The cell lines Caco-2 and HT29 both human
colon adenocarcinoma and the normal colon cell line CCD-18CO were
obtained from the American Type Culture Collection (ATCC, Rockville,
USA). All cells as well as the CCD18-CO cell line (normal colonic fibro-
blast) were cultured in Dulbecco modified Eagle medium (DMEM) F-
12 (Lonza), supplied with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin (PS). Cells were regularly split (± twice a
week) by using trypsin-EDTA (Lonza) as a detaching agent and they
were counted, after Trypan Blue staining, with a Cedex XS cell counting
system (Roche).

2.7.4. Compounds preparation
Ketoconazole (Sigma, Ref.: K1003) and naftifine (Sigma, Ref.:

N1790) were dissolved in DMSO (Sigma, Ref.: M0253) and stock con-
centration of 25mMwere prepared. L-mimosine (Sigma)was dissolved
in D-PBS, containing 10% NaHCO3 reaching a stock concentration of
50 mM.

2.7.5. Cell proliferation
12,000 colon cancer cells (T6, T18, HT29, Caco-2, or 5,000 colonic fi-

broblasts (CCD18-CO) were seeded into a 96well plate in 100 μL of cul-
ture medium. After 24 h, new media containing various concentrations
of ketoconazole, naftifine, or mimosine was added. The IncuCyte ZOOM
system was used to measure cell proliferation over 5 days at 37∘C with
5% CO2. (Essen BioScience).

3. Results and validation

3.1. Performance

The integration of large datasets into metabolic models requires fast
model-building algorithms, such as FASTCORMICS [21]. Here, we used
rFASTCORMICS to reconstruct 10,005 metabolic models in less than
5 days on a computer with an Intel®Xeon®CPU E3 1241-v3@ 3.50
GHZ processor using Recon 2 [8] and RNA-seq data from the TCGA
dataset as input Table 1).

3.2. rFASTCORMICS captures metabolic variations in cancer

3.2.1. Cancer cells do not lose their metabolic identity
To test if rFASTCORMICS can capture metabolic variations between

different contexts, the cosine similarity index and the Jaccard similarity
scorewere calculated, and themodelswere clustered accordingly (Sup-
plementary Figs. S.2 and S.3, respectively). The cosine similarity index is
used to compute the similarity of the models based on the discretized
gene intensities of metabolic genes in the model whereas the Jaccard
similarity score is used to compute the similarity of the models based
on the binarized reaction presence of the models. The clustergrams
show that models originating from the same tissue cluster together, re-
gardless of their health state (Supplementary Fig. S.2). Furthermore,
considering each tissue individually, a clear difference between cancer
subtypes and control models could be observed and, for most tissues,
the control models were more homogeneous than the cancer models
(Supplementary Fig. S.4 and S.5). Taken together, the Jaccard similarity
scores demonstrate that cancer models do not completely lose their
metabolic identity but adapt their metabolism to cope with their envi-
ronment and sustain high proliferation rates.

The reconstructed cancermodels contained significantly fewer reac-
tions than the controls but displayed a higher variance in size (number
of reactions). Due to the lack of sufficient control samples, only 13 tissue
types were considered for further analysis. Among the 13 analysed
cancer types, 9 were significantly more compact than their controls
(KS-test: p-values between 0.0043 and 8.42 e-36), whereas 3 were
significantly larger (KS-test:p-values below 1.59 e-7) and 2 were not
significantly different (Supplementary Fig. S.6 a and b and Supplemen-
tary Table S.1 and S.2).

To overcome the high intra-variability in cancer and to have a more
general overview on the diverse types of cancer, 26 generic tissue-
specific models were reconstructed (cancer and control for each of the
13 tissues). We could confirm that cancer models were overall smaller
and showed higher variance. Clustering of the generic models also
revealed clear differences between cancer and control models (Supple-
mentary Figs. S.7 and S.8). In general, similar tissues cluster together in-
side the respective clusters (Supplementary Fig. S.8).
3.2.2. Reaction and gene signatures can segregate between cancer and con-
trol models

By finding a minimal set of reactions, which can differentiate be-
tween cancer and controlmodels, themain player(s) implicated inmet-
abolic rewiring strategies were identified. The reaction signatures were
retrieved by a reverse feature selection approach (Supplementary
Fig. S.9) (seematerial andmethods for details). The presence or absence
of the reactions correctly predicted the labels of the samples through a
cross-validation assaywith an accuracy N94%, for most tissues (see Sup-
plementary Fig. S.10).

As an example, for liver, the accuracy was 96% with only 19 reac-
tions. Furthermore, many reactions implicated in the consumption of
building blocks (nucleotides, amino acids, and cholesterol) appeared
in the top 100 most differentially active reactions (reactions that tend
to be present in the cancer and absent in the controls or vice-versa),
such as the lysine and branched amino acid metabolism which were
more often found to be active in the controlmodels (see Supplementary
Fig. S.11 for liver models and Supplementary Fig. S.12 for all 13 tissues).

The same approach was used to obtain gene signatures that
contained between 4 and 97 genes for all tested tissues (total: 502
genes). Overall, genes from the signatures are specific to a given tissue
type and allowed obtaining a prediction accuracy above 94% (see Sup-
plementary Fig. S.13). The gene signatures were enriched for trans-
porters, driver genes, loss-of-function mutations, and genes with SNPs
that have a high impact on the phenotype (p-values between 0.02 and
0.0002, see Supplementary Info and Supplementary Figs. S.14, S.15
and S.16).
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The metabolic alterations captured by rFASTCORMICS allow us to
determine if the sample is cancerous with a high certainty. These alter-
ations are not random but part of a rewiring strategy common to the
cancer cells of a tumour.

3.3. The cancer core metabolism is compacter and enriched in essential
genes

To discover a common cancer coremetabolism, which can be specif-
ically targeted, the expression ratio (number of models that express a
gene/reaction divided by the total number of models) of the reactions/
genes across every cancer and control model was computed. We sepa-
rately defined a cancer core metabolism and a healthy core metabolism
based on the genes/reactions present in every healthymodel and a ran-
dom set of cancer models of equal size. For the reactions, 211 and 760
reactions have been found to be present in every selected cancer and
control model, respectively (see Supplementary Fig. S.17). These results
are in accordance with the genes for which the cancer core metabolism
was also smaller (65 versus 225 genes, (see Supplementary Fig. S.18).

In addition, we were interested if a smaller size of the cancer core
was linked to an enrichment of core fitness genes (essential genes com-
mon to several cancer types). Therefore, the core metabolic genes were
compared to two CRISPR-Cas9 essential gene screening studies from
different cancer cell lines [26,27]. We found an enrichment for essential
genes in the cancer metabolic core when compared to all the metabolic
genes (hypergeometric test:with p-values between 10e-16 and 0.0309)
(see Supplementary Fig. S.19). A weaker enrichment in the healthy core
was consistent with the higher number of reactions in the healthy core.

The metabolic rewiring results in a lower pathway presence rate
(fraction of active reactions in a pathway) (see Supplementary
Figs. S.20, S.21, and S.22 and Supplementary Table S.4) in cancer by
loss-of-function mutations in genes controlling alternative metabolic
pathways. Notably, N-glycan degradation and synthesis, oxidative
phosphorylation, fatty acid, alanine, aspartate, and tetrahydrobiopterin
metabolism have a decreased presence rate in the cancer core metabo-
lism whereas the triacylglycerol synthesis and NAD metabolism are in-
creased. Previously [27], showed that core fitness genes had 10-fold
higher expression values across the cell lines in the Cancer Cell Line
Encyclopedia [51]. In agreement with these findings, cancer core meta-
bolic genes, which are enriched for essential genes, have higher expres-
sion values (median = 158) than the healthy core metabolic genes
(median = 68) or other metabolic genes (median = 6.5) (KS test
p-values were between 1.0e-12 and 0.0146, and between 4.8e-45 and
2.3e-24) (see Supplementary Fig. S.23).

Furthermore, it was shown that genes with high expression values
are under high-regulatory control [21], which could also be confirmed
for the core metabolic genes with an enrichment for super-enhancers
(hypergeometric test p-value = 0.0123).

The cancer and healthy core genes have also been computed for the
gene expression data. Here, the data suggests that the cancer core (480
genes in the cancer core against 1725 genes in the controls, the cancer
core is almost completely included in the healthy core) is smaller (and
mostly included in the healthy core) because of the selection pressure
that causes the accumulation of mutations in non-essential genes and
the loss of redundant (alternative) pathways. It further shows that
core genes, as well as essential genes required for the cell survival,
have higher expression values which is guaranteed at least partially by
the control of super-enhancers.

3.4. Predicted essential genes are enriched for cancer drugs

Due to the shut-down of branches in different metabolic pathways,
cancer cells tend to exhibit more essential genes, which can be used as
specific drug targets. Therefore, in silico knock-outs were performed
on the 13 cancer and 13 control generic models to assess the effects
on ATP and biomass production. Single gene deletion revealed 32
genes that are essential for the biomass production in every cancer
model, and 92 essential genes in at least one cancer model, of which
29 and 58 genes did not affect the ATP production in controls, respec-
tively (see Supplementary Fig. S.24 for the workflow).

In general, knock-outs more often affect the biomass reaction (see
Supplementary Figs. S.25, S.26, and S.27) and no gene deletion
completely eliminated the flux through the ATP demand reaction (min-
ima 0.2173 (PKLR) and 0.2936 (PKM), for controls and cancer, respec-
tively) suggesting that the reactions implicated in the ATP production
are maintained by several metabolic pathways able to compensate
each other.

To validate gene essentiality, predicted essential genes were com-
pared to different essential gene screenings [26,30,36] and a strong en-
richment for each set of genes was found. Out of the 1729 unique
metabolic genes, between 128 and 180 genes are considered to be es-
sential by [26,36] (see Supplementary Fig. S.28) and a strong enrich-
ment was found among the different gene lists (Fig. 2).

Because the TCGA dataset contains mainly cancer samples, we were
interested ifwe couldfind any (already known) cancer drugs that target
metabolic genes. To this goal, we retrieved drug data from different re-
sources (see Material and Methods) and tested whether the different
lists of predicted essential genes were enriched for anti-metabolites,
anti-neoplastic agents, and approved cancer drugs. Highest enrich-
ments in all databases have been found for geneswhose deletion affects
only the biomass production in cancerwithout affectingATPproduction
in the controlmodels (p-values between 0.002 and 6.00E-06) but also in
genes whose deletion affects the biomass production regardless of the
control models (p-values between 0.02 and 0.0004, see Supplementary
Table S.5).

Further analysis of the predicted essential cancer genes revealed
gene involvement in the nucleotide metabolism: CAD, DHFR, DHODH,
RPIA, RRM1, RRM2, TYMS, andUMPS [52] which are already known tar-
gets of antineoplastic agents. Other predicted essential genes in cancer
include FASN, KDSR and MVK, for which no anti-cancer drugs yet
exist. However, cerulenin and orlistat are both inhibitor of FASN and
are currently under investigation [53–55].

3.5. Prediction of drug targets and repurposed drugs for colorectal cancer

To validate the repurposing workflow, based on rFASTCORMICS,
which could also be used for any proliferative cancer type, we applied
it to colorectal cancer, one of the most common and lethal cancers
worldwide. We used our approach to identify, among every potential
drug candidate, those drugs that aremost likely to kill or reduce thepro-
liferation of cancer cells while having a low toxicity for healthy cells.
Predicted drug targets were obtained with the above-described
workflow for CRC. 107 genes were predicted to be essential, among
which, 17 were already described drug targets and associated to 43
unique drugs of which 17 are not approved for cancer treatment. A
brief literature review (see Supplementary Table S.8) was performed
for the non-approved drugs to select three drugs, namely naftifine, ke-
toconazole, andmimosine (See Supplementary Table S.7 formore infor-
mation). The selected drugs were tested for their effects on cellular
proliferation of commercial cell lines as well as on patient-derived pri-
mary cultures [50]. In summary, all three drugs reduced the growth
rate of the colorectal cancer cells (see Fig. 3 and Supplementary
Fig. S.30) but had no or only minimal effects on the healthy control
cells. Furthermore, to validate our workflow, we ran the benchmarking
workflow proposed by [38] on a rFASTCORMICS liver model and
showed an enrichment of reactions associated with genes with high ex-
pression level and high confidence levels of gene expression. We also
ran the here presented drug repurposing workflow on the models re-
constructed with the INIT algorithm that identifies essential genes in
order to predict possible drug targets and associated drugs. As already
stated in [38], the models reconstructed with INIT are larger, meaning
they have more reactions than models reconstructed with members of
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Fig. 2. Essential genes predicted by the models are consistent with known cancer drug targets. A strong enrichment in essential genes and cancer drugs was found among the list of
predicted essential genes for colorectal cancer. In grey, genes that cause a reduction of the biomass by 50% in either the healthy or the cancer model, in purple, genes that cause a
reduction of biomass in the cancer model and in red, genes that are only essential in cancer and not in the healthy model. Metabolic genes are shown in white. The x-axis represents
the databases used to extract known cancer drug targets, whereas the “antimetabolites” and “antineoplastic agents” columns have been extracted from the drug categories in the
DrugBank.

Fig. 3. Effect of candidate drugs on primary CRC cells (a) and normal fibroblasts (b). 12,000 T18 cells (a) or 5,000 CCD-18-CO cells (b) were seeded in 100 μL of growthmedium into each
well of a 96 well plate. 24 h after seeding, medium in each well was exchanged and cells were treated with the corresponding drugs at different concentrations. Cell confluence was
measured over 5 days. Data show representative experiments of three independent biological replicates per cell line, Data points represent mean confluence +− SD of 6 wells.

104 M.P. Pacheco et al. / EBioMedicine 43 (2019) 98–106



105M.P. Pacheco et al. / EBioMedicine 43 (2019) 98–106
the FASTCORMICS family (see Supplementary Table S8). Unfortunately,
no essential genes could be determined for the models reconstructed
with INIT, possibly because of their large model size.

4. Discussion and conclusions

The low computational demands of the FASTCORE family [20,21,56]
and the here presented rFASTCORMICS [21] allow for the building of
metabolic models in a high-throughput manner on an ordinary com-
puter. Having the same characteristics (high resolution, accuracy, and
low computational demands) as the original FASTCORMICS workflow,
rFASTCORMICS can segregate between cancer and control models by
identifying cancer-related rewiring strategies regarding pathways, reac-
tions, and genes. Themetabolic alterations common tomost cancer cells
of a same type, captured by rFASTCORMICS, are not random and are suf-
ficient to distinguish between cancer and controls cellswith an accuracy
above 94%.

The results showed that cancer models were overall smaller, had a
more compact core metabolism, and, among the signatures, genes and
reactions were more often absent. This suggests that cancer likely un-
dergoes more loss-of-function mutations causing the inactivation of al-
ternative pathways of the metabolic network as well as an enrichment
of essential genes among the cancer metabolic core. Thus, the shut-
down of pathways consuming cellular building blocks might confer a
selective advantage to hepatocarcinoma cells while enabling their fast
proliferation. The selective phenotype hypothesis is further supported
by the heterogeneity inmodel sizes and lower similarity scores between
cancer and control models of the same tissue.

Moreover, mutations in the tissue of origin, leading to metabolic al-
terations and cancer, do not completely change the metabolism of the
cancer cells but allow them to sustain high proliferation rates, escape
the immune system, or perform angiogenesis while still being similar
to the tissue of origin. Taken together, themetabolism of cancer cells de-
pends on the tissue of origin and the driver mutations, an observation
which was also made by [57], showing that the dependency of gluta-
mine in a given tumour depends on the tissue of origin and the onco-
genic driver(s).

The rFASTCORMICS correctly predicted essential genes and known
cancer drug targets with high enrichment scores. The in vitro valida-
tion of the three predicted drugs resulted in a reduced proliferation
rate of the colorectal cancer cells while having no or only low effects
on the control cells. This demonstrated that the models, recon-
structed via rFASTCORMICS, mimic the metabolism of both cancer
and healthy cells. In the future, the rFASTCORMICS metabolic models
can be used for drug repurposing, which consist in finding new indi-
cations for already commercialized drugs. More specifically, even
though the workflow was used to identify drugs that act alone, the
workflow can also be adapted to find genes that are essential only
if knocked out together through multiple in silico gene deletions.
Hence, one can find drugs combinations that can be used. Further,
cancer-type and patient-specific drugs can be determined if the
workflow is used together with machine learning approached to
identify different patient groups, which are likely to respond to
drugs in a different manner.

Furthermore, in this paper, we benchmarked our workflow with
different drug and cancer databases. The set of databases and web re-
sources can quite easily be extended. Thus, the workflow could also be
combined with other tools that aim to identify drugs with the same
target [58–61]. Finally, besides CRISPR-Cas9 screens, the workflow
could take advantage of sh-RNA screens or si-RNA screens to validate
essential genes. Furthermore, our workflow could be used to identify
microRNAs, as described in [62–64], that play an important role in dis-
ease progression and target these microRNAs with repurposed drugs.
This would require to expand the current genome-scale metabolic re-
constructions by including microRNAs and their regulatory action on
metabolic genes.”
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