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ABSTRACT  

This thesis addresses the regional geology of the planet Mercury as seen by the 

MErcury Surface, Space ENvironment, and Ranging (MESSENGER) mission. I 

aimed to investigate the existence and origin of volcanic photogeological units and 

landforms on Mercury not mappable at the global scale. 

Using MESSENGER images, I have made the first 1:3,000,000-scale geological map 

of the Hokusai (H05) quadrangle. My map shows that this region has a similar 

history of effusive volcanism to the rest of Mercury, with widespread plains 

formation having given way to lower volume effusions that were ultimately 

confined to impact craters. However, I found that H05 contains plains that do not 

conform to the definitions of the two globally recognised plains units on Mercury, 

intercrater plains and smooth plains, which are thought to be volcanic in origin. I 

mapped such plains as intermediate plains, due to their intermediate roughness 

between the two global plains types, and I suggest that they represent incompletely 

volcanically resurfaced regions of Mercury’s crust. 

The apparent absence of even small volcanic constructs on Mercury, emphasised 

to me during my mapping of the volcanologically diverse H05, led me to search for 

such constructs across Mercury. The two candidates I found, if volcanic, were 

probably built by low-volume eruptions that were uncharacteristic of most of 

Mercury’s volcanic history. 

During my search for volcanoes, I investigated the circum-Caloris knobs. Through 

mapping, photogeological observations and topographic measurements, I have 

shown that these small (<15 km across) landforms are not volcanoes, but instead 

are Caloris ejecta blocks that have undergone long-lived, or even recent, 

modification into cones. My observations suggest that volatile-loss might have 

driven modification of the blocks. 

The intermediate plains, candidate volcanoes, and circum-Caloris knobs will be 

important targets for the BepiColombo mission, which launched during the 

preparation of this thesis.
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CHAPTER 1  
INTRODUCTION  

1 . 1  Thesis overview 

1 . 1 . 1  Geological mapping 

This thesis contains a geological study of Mercury using data from NASA’s MErcury 

Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. 

The aim of this work was to use MESSENGER data to provide science context and 

targets for the joint ESA-JAXA BepiColombo mission to that planet, which 

launched on 20th October 2018. To that end, the primary objective of this work, as 

defined from the outset, was to produce a 1:3 million (1:3M) scale geological map 

of one of Mercury’s quadrangles. This would contribute to an international effort 

to map the entire planet at this scale before the arrival of BepiColombo in 

December 2025. 

1 . 1 . 2  Ancillary science 

From the beginning of this work, it was known that the construction of the 

quadrangle geological map would involve the systematic study of a whole region 

at a higher level of detail than previously conducted. It was anticipated that such 

detailed observations within the quadrangle could lead to ancillary studies 

concerned with geology beyond the boundaries of the chosen quadrangle. For 

example, MESSENGER produced the first global image dataset of Mercury, which 

led to many immediate geological discoveries before the end of the mission in April 

2015, including large impact basins, widespread volcanic plains, explosive 

volcanism, and hollows. The quadrangle maps are being produced at a finer scale 

than has ever been employed before on Mercury, which means that subtler, 

previously unidentified geological features might be observed. An obvious follow-

up study would be to investigate the global distribution of such features. Such an 

ancillary study would serve to enrich the thesis, which might otherwise be 

impoverished if it contained a regional map only with no wider results. Therefore, 

studies inspired by, but not strictly related to, the quadrangle geological map 
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would be regarded as equally important as the map itself. Naturally, this ancillary 

science could not be defined until after I had made considerable headway into 

making my map.  

1 . 1 . 3  Methodology 

To complete the objectives of this thesis, I employed photogeological methods 

commonly employed in planetary science. I observed landforms using 

MESSENGER monochrome and enhanced colour image products and topographic 

data derived from laser altimetry and stereophotogrammetry. I combined 

information about landform shapes and textures (geomorphology) with colour 

information (pertaining to surface composition and maturity) to ascertain the 

geological processes that operated to generate the observed landscape in my 

quadrangle. I interpreted the geology of Mercury cognizant of potential analogues 

on Earth, which is more directly and completely understood thanks to centuries of 

field observations. The Moon also proved to be a useful comparison, due to it being 

an airless body like Mercury. As Earth’s nearest neighbour, it has a more extensive 

history of photogeological observation for comparison with Mercury, and it has the 

benefit of field observations and sampling due to the Apollo and Luna programs. 

Nevertheless, any conclusions drawn based on remote sensing must be treated 

with caution due to the lack of ground truth. This is particularly true of Mercury, 

which has not had any landed missions. Remote sensing geological observations 

are particularly addled by convergence of form, whereby landforms with similar 

appearances (e.g. lava flow fronts and fault scarps) can arise from completely 

unrelated processes. As a result, despite using multiple strands of evidence, the 

interpretations presented in this thesis should be treated as working hypotheses. 

New observational evidence from BepiColombo could corroborate or falsify these 

interpretations, or indeed shed no further light on them. In the future, in-situ 

observations or samples might provide definitive answers, but until then my 

conclusions reflect the currently available balance of evidence. 

1 .2  Thesis structure 

This thesis is divided into eight chapters, including this introductory chapter. 

Chapter 2 contains a chronological account of the planetary science of Mercury. It 
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concludes with a summary of the state of knowledge of Mercury’s geology 

following the end of the MESSENGER mission, and statements of the research 

questions addressed throughout the rest of this thesis. 

Chapters 3 and 4 pertain to my geological mapping of Mercury. Chapter 3 describes 

why I selected the Hokusai quadrangle for mapping and how I constructed its map. 

Chapter 4 describes and discusses the geological history of the Hokusai quadrangle 

as a whole, and additional case studies of special interest localities. 

Chapter 5 describes two candidate small volcanic constructs I have identified on 

Mercury. I also discuss how these constructs might have been built in a way that is 

consistent with Mercury’s general paucity of volcanic constructs. This chapter has 

been published separately as a peer-reviewed paper (WRIGHT ET AL., 2018). The 

narrative of the paper remains largely unchanged in the chapter except that 

supporting information for the paper has been included in the main body of the 

chapter. 

Chapter 6 is a study of the circum-Caloris knobs, which are conical landforms that 

are probably ejecta blocks, rather than volcanic constructs. My observations show 

that these knobs have undergone long-lived, post-formation modification that 

could be volatile-driven. If so, then these knobs represent a new landform type, 

generated by a hitherto undescribed process, on Mercury. These knobs may be 

analogous to landforms on Earth called ‘molards’. 

Chapter 7 synthesises the findings from this thesis and suggests future work to be 

carried out before and after the arrival of the BepiColombo spacecraft at Mercury. 

The conclusions of this thesis are briefly summarised in Chapter 8. 

The research that makes up every chapter in this thesis was led by me. I completed 

my work in collaboration with my supervisors, Professor David Rothery, Dr 

Matthew Balme and Dr Susan Conway, who provided guidance and discussion 

throughout the preparation of this thesis. The geological mapping strategy 

outlined in Chapter 3 is based on that of Valentina Galluzzi, but I enacted the 

strategy myself and modified it for the specific needs of my map. Naturally, I 

created my map in the image of the other published MESSENGER-era quadrangle 

maps of Mercury so that these maps could be integrated easily in the future.
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CHAPTER 2  
PLANET MERCURY  

2. 1  Introduction 

In this Chapter, I outline our current understanding of the planet Mercury. I 

present this background information in an approximately chronological narrative 

from pre-spacecraft observations of the planet, through to the present day. My 

review is focussed on discoveries and observations pertinent to the surface geology 

and geological processes of the planet. 

2.2  Pre-spacecraft observations of Mercury 

2 . 2 . 1  Early observations 

As a classical planet, Mercury has been known since antiquity. It is the fastest 

moving planet in the night sky, which is why it is associated with fleet-footed 

messenger gods in many world religions. With the advent of telescopic astronomy 

(GALILEI, 1610), and the widespread acceptance of the heliocentric model of the 

solar system, it became apparent that Mercury is the innermost planet with an 

orbital period of ~88 Earth days. 

2 . 2 .2  Transits 

In 1677, Edmond Halley observed a transit of Mercury across the Sun’s disc 

(HALLEY, 1679). He realised that solar transits could be used to estimate the 

absolute diameter of the Sun, which could then be used to calculate the absolute 

distances between the planets and the Sun, and the absolute diameters of the 

planets (HALLEY, 1679). Indeed, the 1769 transit of Venus yielded the first useful 

determination of the Earth–Sun distance, the astronomical unit (AU). The scale of 

the solar system allowed the angular size of Mercury apparent in telescopes to be 

converted into its absolute diameter. When this was done, it was found that 

Mercury was the smallest planet in the solar system, an observation that would 

endure the discoveries of Uranus and Neptune, and be reinstated after the 

reclassification of Pluto as a dwarf planet. 
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In 1769, astronomer Charles Green observed, during a transit of Mercury, that the 

planet has a crisper outline than Venus, and inferred that Mercury has little or no 

atmosphere (HERDENDORF, 1986). 

2 . 2 . 3  Telescopic observations 

2 . 2 . 3 . 1  Early mass estimates 

Mercury’s mass was estimated using several methods through the 19th and 20th 

centuries, for example by measuring its perturbations of the comet Encke 

(LYTTLETON, 1980). Although each method produced a different result, the fact 

remained that Mercury’s mass was very high, given its small size, which meant the 

planet contained a lot of dense material. This could only be explained by the planet 

having a large metal core (HUTTON, 1778). 

2 . 2 . 3 . 2  Direct surface observation 

Mercury’s angular separation from the Sun as seen from Earth (elongation) never 

exceeds 28°, which makes telescopic observations of the planet from Earth very 

difficult. Early pioneers in this field include Giovanni Schiaparelli, who attempted 

to map Mercury’s surface features and in so doing judged that Mercury’s rotational 

period matched its orbital period of 88 days (SCHIAPPARELLI, 1889). This state is 

called ‘synchronous rotation’, where the celestial body is locked in a 1:1 spin:orbit 

resonance. This view prevailed into the second half of the 20th century. 

2 . 2 . 3 . 3  Ground-based radar 

In more recent history, the most informative telescopic observations of Mercury 

have been made by radar. A very important discovery was that Mercury’s rotational 

period is in fact ~59 days (PETTENGILL AND DYCE, 1965), meaning that the planet is 

not synchronously rotating. Giuseppe Colombo subsequently theorised that 

Mercury was locked in a 3:2 spin:orbit resonance, since 59 is approximately 2/3 of 

88 (COLOMBO, 1965). One consequence of this is that a solar day on Mercury (i.e. 

sunrise to sunrise) lasts two Mercury years (i.e. 176 Earth days; see Fig. 2.1). 

Furthermore, this means Mercury has two points on its surface separated by 180° 

longitude that are sub-solar on alternate orbits at perihelion (SOTER AND ULRICHS, 

1967). These points were termed Mercury’s ‘hot poles’. There are also two points 

separated by 180° longitude on Mercury’s surface that are sub-solar on alternate 
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orbits at aphelion. These are separated by 90° longitude from the hot poles and are 

called the ‘warm poles’. SOTER AND ULRICHS (1967) estimated that the maximum 

daytime temperature of a hot pole would be 130 K above that of a warm pole. 



Chapter 2: Planet Mercury 

8 

 



MESSENGER Observations of Volcanism on Mercury 

9 

Fig. 2.1 Cartoon illustrating Mercury’s 3:2 spin:orbital resonance. In each panel, 

Mercury’s position in its orbit (red ellipse) is indicated by a two-tone grey circle. The 

illuminated and shadowed hemispheres of Mercury are coloured light and dark grey, 

respectively. The blue marker indicates a point on the planet’s surface that will be tracked in 

each panel and be demonstrated to be one of Mercury’s hot poles. Mercury rotates in a 

prograde fashion as indicated. Each panel is separated in time by 22 Earth days, equivalent 

to one quarter of a Mercury year. (a) Arbitrary initial configuration (Day 0). Mercury is at 

aphelion. The location indicated by the blue marker is experiencing sunrise. (b) Day 22. 

Mercury has moved less than a quarter of the way around its orbit due to its low orbital speed 

near aphelion. Mercury has rotated through ~135° on its axis. The Sun has not yet moved 

overhead at the blue marker point. (c) Day 44. Half a Mercury year has passed, and the 

planet is at perihelion. The planet has rotated through 270°. The Sun is directly overhead the 

blue marker point. (d) Day 66. Mercury has rotated through 405°, i.e. ~1.1 axial rotations 

have taken place since Day 0. (e) Day 88. Mercury has returned to aphelion and has 

completed one full orbit and made 1.5 axial rotations. The blue marker point is passing into 

the shadowed side of Mercury for the first time. (f–h) During Mercury’s second year, Mercury 

completes a second axial rotation, but the blue marker point remains unilluminated. (i) Day 

176. On this day, Mercury has completed a second orbit of the Sun and its third axial rotation 

(3:2 spin:orbit ratio). This configuration is identical to Day 0. The blue marker point is 

experiencing sunrise again, which means that a solar day (sunrise-to-sunrise) on Mercury 

lasts two Mercury years. The blue marker point is subsolar at alternate perihelions, making 

it one of the two hot poles. The subsolar point at Day 0 is one of the two warm poles. Cartoon 

not to scale. 

 

2 . 2 . 4  Formation 

Several hypotheses for how Mercury could form, with a large iron core, from the 

same material found in the solar nebula as the other terrestrial planets were 

suggested. One suggestion was that as Mercury formed close to the Sun, thermal-

driven physical fractionation of metal and silicate material caused the planet to 

accrete dense, refractory elements, such as iron, preferentially, while lighter 

materials were distributed farther from the Sun (WEIDENSCHILLING, 1978). Another 

suggestion was that proto-Mercury was a larger planet with an Earth-like 

composition and internal structure, but soon after its formation its silicate material 
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was vaporised, due to high solar activity, leaving a diminished silicate portion and 

a disproportionately large core (CAMERON, 1985). A third alternative considered 

that proto-Mercury suffered a giant impact after its formation that stripped away 

most of its silicate material (BENZ ET AL., 1988). Both the last two mechanisms 

require that the stripped silicate material is not re-accreted, and require Mercury’s 

silicates to have endured intense heating. 

2 . 2 .5  Expectations for spacecraft observations 

Based on the observations that Mercury is a small planet with a thin or absent 

atmosphere, exploration of the planet was expected to reveal a geologically dead 

planet with a cold interior, no magnetic field, a volatile-depleted composition, and 

a cratered, Moon-like surface. 

2.3  Mariner 10 flybys of Mercury 

Mariner 10 (Fig. 2.2) was the first spacecraft to fly past Mercury (DUNNE AND 

BURGESS, 1978). Giuseppe Colombo derived a trajectory that put Mariner 10 into a 

heliocentric orbit that allowed the spacecraft to fly past Mercury multiple times. 

Mariner 10 made three flybys of Mercury (1974–1975) before it ran out of fuel 

(DUNNE AND BURGESS, 1978). 

The spacecraft’s heliocentric orbital period was 176 Earth days, or twice Mercury’s 

orbital period (88 Earth days). This meant that Mercury completed two orbits 

between each Mariner 10 flyby. Due to Mercury’s 3:2 spin:orbit resonance (Fig. 2.1), 

Mercury completed exactly three axial rotations in the time between Mariner 10 

flybys. An unfortunate consequence of this, from a planetary surface imaging 

perspective, was that Mariner 10 viewed the same illuminated hemisphere of 

Mercury during each of its flybys. As a result, Mariner 10 imaged ~45% of the 

planet’s surface (Fig. 2.3; DAVIES ET AL., 1978). 
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Fig. 2.2 Mariner 10. Instruments labelled. Image credit: NASA/Jet Propulsion Laboratory. 

  



Chapter 2: Planet Mercury 

12 

 

Fig. 2.3 Mercury as imaged by Mariner 10. (a) Mosaic of images captured during the 

approach of the first flyby. (b) Mosaic of images captured during the departure after the first 

flyby. The eastern portion of the Caloris impact basin is visible on the terminator. Image 

credit: NASA. 

2 . 3 . 1  Magnetic field 

Perhaps the most unexpected result from the Mariner 10 mission was that Mercury 

has a magnetic field (NESS ET AL., 1974). Based on the data from the first and third 

flybys, it was determined that this magnetic field is most likely being generated 

internally by the planet (CONNERNEY AND NESS, 1988). Internal magnetic fields are 

generated by fluid motion of an electrically conducting layer within a planet, such 

as a liquid iron core (JACOBS, 1979). Contemporary models of Mercury’s thermal 

evolution implied that its core would be completely solid (SOLOMON, 1976). The 

observation of an intrinsic magnetic field at Mercury therefore required an 

unaccounted for internal heat source, an unexpectedly low rate of planetary heat 

loss, or a lower melting temperature of iron in order for the core to remain liquid 

and mobile in the present day (CONNERNEY AND NESS, 1988). 
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2 . 3 . 2  Geology 

Mariner 10 also returned the first images of the surface geology of Mercury 

(MURRAY ET AL., 1974). As predicted, in these images Mercury superficially 

resembled the Moon, in that they showed a surface dominated by impact craters. 

The largest impact feature imaged was the Caloris basin (Fig. 2.3b), which, based 

on its visible eastern portion, had an estimated diameter of ~1,300 km (MURRAY ET 

AL., 1974). No evidence of atmosphere-driven processes was observed, which 

suggested that at no point during the planet’s history did it possess a dense 

atmosphere (MURRAY ET AL., 1974). 

Mariner 10 showed that Mercury had at least two photogeological units of global 

extent: intercrater plains and smooth plains (TRASK AND GUEST, 1975). Intercrater 

plains were the most widespread plains and were defined as “level to gently rolling 

ground between and around large craters and basins [with a] high density of 

superposed small craters in the size range 5–10 km” (TRASK AND GUEST, 1975). The 

high density of superposing craters implies that the intercrater plains represent an 

older surface than the smooth plains (ÖPIK, 1960). The smooth plains have a low 

crater density, consistent with an age of formation postdating the end of the Late 

Heavy Bombardment of the inner solar system (~4.1–3.8 Ga; STROM ET AL., 1975). 

The most extensive smooth plains seen by Mariner 10 were associated with the 

Caloris basin (MURRAY ET AL., 1974), the interior of which constitutes Caloris 

Planitia. 

The origin of the intercrater plains and the smooth plains on Mercury was a topic 

of much debate during and after the Mariner 10 mission. At this time, the lunar 

maria were known to be composed of basaltic lavas (ANDERSON ET AL., 1969) but 

lunar light plains, or ‘Cayley Formation’ type plains, had recently been discovered 

to be basin ejecta material (EGGLETON AND SCHABER, 1972). The widespread 

occurrence of the intercrater plains and the absence of obvious source impact 

basins was used as evidence that these plains originated during volcanic 

resurfacing of Mercury during its early history (STROM ET AL., 1975). 

Photogeologically, the smooth plains resemble the lunar maria (STROM ET AL., 1975), 

which are demonstrably volcanic in origin (ANDERSON ET AL., 1969). However, the 

lack of source vents, flow fronts and other indicative volcanic landforms within 



Chapter 2: Planet Mercury 

14 

both the intercrater plains and the smooth plains meant that volcanism on 

Mercury remained unconfirmed (WILHELMS, 1976). The lack of strong colour 

signatures coincident with photogeological units in early Mariner 10 studies also 

cast doubt on a volcanic interpretation of Mercury’s plains (RAVA AND HAPKE, 1987), 

since volcanic materials are often spectrally distinct from their non-volcanic 

surroundings, such as the contrast between the volcanic lunar maria and the non-

volcanic lunar highlands. 

Some geological mappers of Mercury included a third plains unit, often termed 

‘intermediate plains’, which was variously described as being intermediate in 

roughness or crater density between the intercrater and smooth plains (SCHABER 

AND MCCAULEY, 1980; GUEST AND GREELEY, 1983; MCGILL AND KING, 1983; GROLIER AND 

BOYCE, 1984; SPUDIS AND PROSSER, 1984; TRASK AND DZURISIN, 1984; KING AND SCOTT, 

1990; STROM ET AL., 1990). Most of these mappers suggested a volcanic origin for 

the intermediate plains, but with the same caveats as faced by the volcanic 

interpretation of the other plains on Mercury. 

2 . 3 . 3  Stratigraphy 

Following photogeological unit definition, geologists devised a chronostratigraphy 

for Mercury to correlate geological events across the planet. Based on the 

established chronostratigraphy of the Moon (WILHELMS ET AL., 1987), Spudis and 

Guest (1988) used the stratigraphic relationships between the Tolstoj, Caloris, 

Mansur, and Kuiper impact features to define five time systems for Mercury: the 

Pre-Tolstojan, the Tolstojan, the Calorian, the Mansurian, and the Kuiperian (Fig. 

2.4). 
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Fig. 2.4 Mariner 10-derived chronology for Mercury with lunar chronology for 

comparison. The Hermean chronology on the right was devised by SPUDIS AND GUEST (1988) 

based on the lunar chronology of WILHELMS ET AL. (1987) on the left. The absolute ages of 

the Hermean time systems were scaled from absolute age estimates from lunar samples, and 

are therefore highly approximate. 

The impact features that define these time systems are in different states of 

degradation. Under the assumption that impact craters in similar degradation 

states formed at similar times, and that craters degrade at the same rate, a crater-

based morphostratigraphy could be extrapolated over the entire planet. Geological 

mappers of Mercury from Mariner 10 data classified impact crater materials 

according to their degradation (SCHABER AND MCCAULEY, 1980; DEHON ET AL., 1981; 

GUEST AND GREELEY, 1983; MCGILL AND KING, 1983; GROLIER AND BOYCE, 1984; SPUDIS 

AND PROSSER, 1984; TRASK AND DZURISIN, 1984; KING AND SCOTT, 1990; STROM ET AL., 

1990). The Calorian time system is bracketed by the Caloris and Mansur impact 

events. Craters superposing Caloris that appear more degraded than Mansur 

formed during the Calorian. Craters with a similar appearance elsewhere on the 

planet probably also formed in the Calorian. Similarly, craters more degraded than 

Kuiper and less degraded than Mansur formed during the Mansurian, etc. 
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2 . 3 . 4  Tectonics 

Mariner 10 also revealed abundant, widespread, shortening tectonic features with 

various orientations, but no similarly distributed extensional features. The most 

widely distributed tectonic features were ‘lobate scarps’ (Fig. 2.5). Smaller ‘wrinkle 

ridges’ appeared to be characteristic of the smooth plains and resembled similar 

features in the lunar maria (MURRAY ET AL., 1974). The least common tectonic 

landforms were high-relief ridges (WATTERS ET AL., 2004). Extensional features, 

such as grabens, appeared to be restricted to Caloris Planitia (MURRAY ET AL., 1974). 

The dominance of crustal shortening structures suggested that Mercury had 

undergone global contraction, most likely due to secular cooling of the planet’s 

interior (Fig. 2.6; SOLOMON, 1978). The original estimate of cumulative crustal 

shortening due to the lobate scarps corresponded to a planetary radius decrease of 

~2 km (STROM ET AL., 1975). This placed constraints on the rate of internal heat loss, 

which informed attempts to explain the apparent presence of a core dynamo in 

Mercury (CONNERNEY AND NESS, 1988). 

  



MESSENGER Observations of Volcanism on Mercury 

17 

 

Fig. 2.5 Shortening tectonic structures on Mercury. (a) Cartoon of a lobate scarp. 

Impact craters cross-cut by a lobate scarp appear shortened, indicating that scarps 

accommodate strain due to compression (black arrows). The curvilinear trace of the scarp, 

which probably represents a fault surface break, indicates that the fault is shallowly dipping 

(i.e. a thrust fault). (b) Cartoon of a high-relief ridge, another shortening structure. High-

relief ridges are much less abundant than lobate scarps on Mercury and are more linear. This 

suggests that the faults bounding the structure are more steeply dipping (i.e. reverse faults). 

An alternative, but not mutually exclusive, hypothesis for the lobate scarps was 

tectonism due to tidal despinning (Fig. 2.6). The tidal despinning hypothesis 

suggested that Mercury achieved its present-day 3:2 spin:orbit resonance by tidal 

braking from an original, shorter rotational period (MELOSH AND DZURISIN, 1978). 
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When the planet was rotating faster, it would have had an equatorial bulge. As the 

planet’s rotation rate decreased, this bulge would have relaxed, causing equatorial 

compression and polar extension. The tidal spinning hypothesis predicted 

predominantly north–south oriented equatorial thrust faults, with circum-polar 

normal faults and mid-latitude strike-slip faults (MELOSH, 1977). This pattern of 

faulting, particularly circum-polar normal faulting, was not observed but 

ambiguity remained since Mariner 10 images covered only 45% of the surface of 

Mercury. 

 

Fig. 2.6 Comparison of global contraction and tidal despinning tectonic models for 

Mercury. Global contraction due to secular cooling predicts globally distributed, randomly 

oriented thrust faults. Tidal despinning predicts latitudinal bands of thrust, strike-slip, and 

normal faults with preferred orientations. Modified from MELOSH (1977). 

The wrinkle ridges in the lunar maria appear to be strongly controlled by the 

geometry of the basin hosting the maria, and so are thought to have formed in 

response to compressional stresses due to volcanic loading of the lithosphere 
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(SOLOMON AND HEAD, 1980). It was unclear in Mariner 10 data if Mercury’s wrinkle 

ridges formed chiefly due to lithospheric loading or in response to the global 

tectonic regime. This uncertainty partially arose out of the limited extent of 

smooth plains, which hosts wrinkle ridges, in the Mariner 10 hemisphere. PLESCIA 

AND GOLOMBEK (1986) reviewed planetary wrinkle ridges and their terrestrial 

analogues and favoured a tectonic origin for wrinkle ridges. 

2.4  Between Mariner 10 and MESSENGER 

2 . 4 . 1  Liquid core confirmation 

After Mariner 10, more than 30 years passed before the next spacecraft visited 

Mercury. However, several important advances in Mercury science were made 

during this time. For example, using radar, MARGOT ET AL. (2007) measured the 

libration of Mercury, which indicated that the rotation of the planet’s silicate layer 

is decoupled from the solid inner core by a liquid outer core. This raised the 

likelihood that core freezing could be driving compositional convection in the 

liquid core, which could generate Mercury’s magnetic field. Furthermore, core 

freezing could still be decreasing the volume of the planet such that global 

contraction is ongoing (MARGOT ET AL., 2007). 

2 . 4 . 2  Volcanic origin for smooth plains 

Improved colour calibration of Mariner 10 images allowed colour relationships to 

be reassessed. ROBINSON AND LUCEY (1997) found that colour did correlate with 

previously mapped photogeological units. For example, smooth plains near the 

crater Rudaki were observed to be redder than the Mercury average. They also 

exhibited sharp embayment relationships with the surrounding high-standing 

topography. Conversely, fresh impact ejecta was found to be bluer and insensitive 

to topographic undulations (ROBINSON AND LUCEY, 1997). These observations 

provided evidence that Mercury’s smooth plains are volcanic in origin, since 

volcanics are expected to have spectral contrasts with their non-volcanic 

surroundings. 
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2.5  MESSENGER at Mercury 

MESSENGER made three flybys of Mercury between 2008 and 2009 before 

becoming the first spacecraft to orbit Mercury in 2011 (the mission ended on 30th 

April 2015). It carried a suite of instruments designed to address the questions still 

surrounding Mercury after the end of the Mariner 10 mission (SOLOMON ET AL., 

2001, 2007). This mission imaged the entire surface of Mercury under varying 

illumination conditions, which allowed the geology and geochemistry to be 

studied in greater detail than ever before. 
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Fig. 2.7 Labelled artist’s conception of the MESSENGER spacecraft and its 

instruments. EPPS: Energetic Particle and Plasma Spectrometer, for measuring the 

charged particles in the magnetosphere. MDIS: Mercury Dual Imaging System, including the 

monochrome narrow-angle camera (NAC) and the multispectral wide-angle camera (WAC), 

for imaging the surface of Mercury. MAG: Magnetometer, for measuring Mercury’s 

magnetic field. MLA: Mercury Laser Altimeter, for measuring Mercury’s topography and 

overall shape. XRS: X-Ray Spectrometer, for measuring the elemental composition within 

the top millimetre of Mercury’s surface. GRNS: Gamma-Ray and Neutron Spectrometer, for 

measuring elemental composition to a depth of 10 cm using gamma-ray spectroscopy and 

hydrogen mineral composition from emitted low-energy neutrons. MASCS: Mercury 

Atmospheric and Surface Composition Spectrometer, for measuring the composition of the 

exosphere and surface using infrared light. To survive in the harsh thermal environment 

around Mercury, the instruments were protected by a Sun-facing ceramic sunshade. Image 

credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institute of 

Washington. 

 

Important results from the global surface mapping campaign included: complete 

imaging of the Caloris basin (and the circum-Caloris plains), which was confirmed 

as the largest, well-preserved impact structure on Mercury (FASSETT ET AL., 2009); 

the discovery of the full extent of the northern smooth plains (Borealis Planitia), 

which cover ~7% of the planet’s surface (HEAD ET AL., 2011; OSTRACH ET AL., 2015); 

measurement of a relatively high abundance of volatile sulfur (~4 wt %) and low 

abundances of surface-darkening titanium (~0.8 wt %) and iron (~4 wt %; NITTLER 

ET AL., 2011); new model ages for the Kuiperian and Mansurian time systems (BANKS 

ET AL., 2017); a revised crater degradation classification scheme (KINCZYK ET AL., 

2016); the first global geological map of Mercury (PROCKTER ET AL., 2016; KINCZYK ET 

AL., 2018B); the discovery of impact-delivered water ice in the permanently 

shadowed regions at Mercury’s poles (D. J. LAWRENCE ET AL., 2013), and new 

measurements of Mercury’s physical parameters (see Section 2.5.5, Table 2.1: 

MAZARICO ET AL., 2014; PERRY ET AL., 2015). In the sections that follow, I discuss in 

more detail the advances made so far during the MESSENGER-era of Mercury 

exploration that have a bearing on the following chapters of my thesis. 
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Fig. 2.8 Potassium/thorium ratios of the major rocky bodies of the inner solar 

system. Potassium is a more volatile element than thorium, which is refractory. Therefore, 

planets with high potassium/thorium ratios are generally enriched in volatile species. Earth 

and Venus have very similar potassium/thorium ratios. Mars has a higher 

potassium/thorium ratio, which likely reflects a higher volatile content due to it having 

accreted farther from the Sun than Earth and Venus. The Moon has a lower 

potassium/thorium ratio than the Earth, despite its identical distance from the Sun, most 

likely due to it having been formed during an energetic giant impact, which would have driven 

off its volatile species. Mercury has a high potassium/thorium ratio, indicative of an overall 

volatile-rich composition. Image credit: NASA/Johns Hopkins University Applied Physics 

Laboratory/Carnegie Institute of Washington. 

2 . 5 . 1  Crustal formation 

2 . 5 . 1 . 1  Effusive volcanism 

Multiple lines of evidence from MESSENGER data indicate that most of Mercury’s 

crust was formed by voluminous effusive volcanic eruptions. The correlation 

between photogeological units and colour originally identified by ROBINSON AND 

LUCEY (1997) in Mariner 10 data was reaffirmed strongly by MESSENGER (ROBINSON 

ET AL., 2008; DENEVI ET AL., 2009). In particular, most smooth plains of Mercury 
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were coincident with a colour unit termed ‘high-reflectance red plains’ (DENEVI ET 

AL., 2009). High-reflectance red plains embay their surroundings with sharp 

contacts and have a strong colour contrast with ‘intermediate terrain’, which 

corresponds to Mercury’s ‘average’ colour (DENEVI ET AL., 2009). The smooth plains 

of Borealis and Caloris Planitiae mostly consist of high-reflectance red plains 

(DENEVI ET AL., 2013; OSTRACH ET AL., 2015), although the colour unit of the circum-

Caloris plains is ‘low-reflectance blue plains’. Low-reflectance blue plains also have 

sharp contacts and embayment relationships, which suggest that they are at least 

partly volcanic. The colour difference could therefore indicate a different 

composition from the high-reflectance red plains (DENEVI ET AL., 2009). 

Major element data from MESSENGER’s X-Ray Spectrometer (XRS) are consistent 

with the high-reflectance red plains having a low-iron, basaltic composition, 

whereas low-reflectance regions were consistent with a more ultramafic 

composition (NITTLER ET AL., 2011; WEIDER ET AL., 2012). 

 

Fig. 2.9 Global map of Mercury’s smooth plains deposits. Smooth plains mapped by 

DENEVI ET AL. (2013) at 1:1.25M. 

Important photogeological evidence for a volcanic origin for at least some smooth 

plains on Mercury includes the observation of possible lava channels and source 

vents northwest of Caloris (BYRNE ET AL., 2013), and a candidate shield volcano in 

Caloris Planitia (HEAD ET AL., 2008, but see Chapter 5 and ROTHERY ET AL., 2014). 

With the full extent of the smooth plains revealed, the observation that there are 
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no impact basins whose ejecta could have formed the smooth plains made during 

the Mariner 10 era was corroborated by MESSENGER (DENEVI ET AL., 2013). 

 

Fig. 2.10 An assemblage of volcanic features northwest of Caloris described by BYRNE 

ET AL. (2013). Several elongate, smooth plains-floored (white outlines) depressions are 

interpreted as lava flow-modified channels (‘valles’, sing. ‘vallis’). High-standing materials 

surrounded by smooth plains are interpreted as kipukas. Several kipukas within the valles 

are elongate along the vallis axis, which is interpreted to be a result of streamlining due to 

mechanical and thermal erosion by channel-confined lavas. Modified from BYRNE ET AL. 

(2013). Orthographic projection of the ~250 m/pixel global monochrome basemap centred 

on 115°E, 60°N. 
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MESSENGER-era crater counts of the smooth plains support a volcanic 

interpretation for their origin. Multiple independently conducted crater size-

frequency distribution studies of Caloris Planitia and the circum-Caloris plains 

indicate that they are younger than the Caloris impact itself by ~100 Myr (FASSETT 

ET AL., 2009; DENEVI ET AL., 2013; MANCINELLI ET AL., 2016). This means that at least 

some of these plains must have formed due to volcanism following the impact. 

BYRNE ET AL. (2016) measured the crater size-frequency distribution of several 

smaller smooth plains deposits across Mercury. They found that no smooth plains 

deposit unconfined by impact craters >~6.5 × 104 km2 has a model age <3.5 Ga. 

They conclude that large-volume effusive eruptions on Mercury ceased around 

3.5 Ga. However, small-volume effusive eruptions appear to have endured within 

impact craters for at least one billion years after this. For example, the crater size-

frequency distribution of the smooth plains with a distinct colour signature within 

the crater Rachmaninoff have a crater retention model age of ~1–2 Ga, much 

younger than the formation of the impact itself (~3.5 Ga: PROCKTER ET AL., 2010; 

CHAPMAN ET AL., 2012). BYRNE ET AL. (2016) concluded that large-volume effusive 

eruptions ceased in response to the horizontally compressive stress regime 

imposed by Mercury’s global contraction. The occurrence of small volumes of 

younger volcanic smooth plains within impact craters seems to support this 

hypothesis, since impacts ‘reset’ the local stress regime and propagate fractures 

that could be exploited by magma that had otherwise stalled in the subsurface 

(BYRNE ET AL., 2016). 

The origin of the intercrater plains is more difficult to ascertain. WHITTEN ET AL. 

(2014) noted that multiple overlapping secondary crater fields superposed on 

smooth plains can replicate the appearance of the intercrater plains. This means 

that it is possible that intercrater plains are merely older volcanic plains than the 

smooth plains observable today. This hypothesis is corroborated by the 

observation that the intercrater plains conceivably represented an approximately 

level surface before it was heavily cratered and tectonised (WHITTEN ET AL., 2014). 

Furthermore, the areal density of superposed impact craters on both the smooth 

and intercrater plains of Mercury, arranged from most-cratered to least-cratered, 

show a smooth and continuous increasing density progression from intercrater 
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plains, to overlapping intercrater and smooth plains, to smooth plains (WHITTEN 

ET AL., 2014). In the global map of Mercury, intercrater plains cover >70% of the 

planet (PROCKTER ET AL., 2016; KINCZYK ET AL., 2018B), and do not appear to be 

controlled by the limited extents of basin ejecta deposits (WHITTEN ET AL., 2014). 

Nevertheless, no definitive volcanic landforms have been observed in the 

intercrater plains (WHITTEN ET AL., 2014). 

WHITTEN ET AL. (2014) judged that the regions mapped as intermediate plains on 

the basis of Mariner 10 data should be remapped as either intercrater plains or 

smooth plains using MESSENGER data. As a result, the global geological map of 

Mercury contains the smooth and intercrater plains units but not intermediate 

plains units (PROCKTER ET AL., 2016; KINCZYK ET AL., 2018B). 

2 . 5 . 1 . 2  Flotation crust 

Mercury’s surface composition as measured by MESSENGER is inconsistent with 

the planet having an anorthitic flotation crust akin to the Moon’s (NITTLER ET AL., 

2011). Instead, Mercury’s surface appears to be mostly secondary volcanic crust, 

most likely generated by high degrees of partial melting of the mantle. Eruptions 

would have been enhanced in the absence of a low-density flotation crust (HEAD 

AND WILSON, 1992). The limited surface elevation range on Mercury measured by 

MLA (ZUBER ET AL., 2012) and stereo-derived topography (BECKER ET AL., 2016) 

corroborates the absence of a buoyant flotation crust. 

Mercury is a fully differentiated planetary body, and so the planet will have gone 

through a magma ocean stage during its development (BROWN AND ELKINS-TANTON, 

2009). This begs the question: why did a planet-wide flotation crust not form at 

that time? An important clue is that MESSENGER measured a very low iron 

concentration on Mercury’s surface (NITTLER ET AL., 2011). Since Mercury’s crust 

appears to have formed from partial melting of the mantle, it follows that 

Mercury’s mantle is also low in iron (NITTLER ET AL., 2011). This means that the bulk 

silicate fraction of Mercury has a low density. It follows that any magma ocean that 

developed on Mercury would also have had a low density, which would prevent 

crystallising anorthite from being buoyant enough to form a flotation crust 

(NITTLER ET AL., 2011). 



MESSENGER Observations of Volcanism on Mercury 

27 

Experimental melts simulating Mercury’s silicate composition show that nearly all 

rock-forming minerals, apart from graphite, are prohibited from forming a 

flotation crust by the low iron content of Mercury’s mantle (VANDER KAADEN AND 

MCCUBBIN, 2015). By using estimates of the carbon content in Earth’s mantle as a 

proxy for Mercury’s mantle carbon content, VANDER KAADEN AND MCCUBBIN (2015) 

estimated that the global thickness of Mercury’s flotation crust would have been 

1–100 m. This thickness estimate is highly uncertain due to uncertainties in the 

carbon content of Mercury’s mantle and the efficiency of graphite flotation 

(VANDER KAADEN AND MCCUBBIN, 2015). Nevertheless, data from MESSENGER’s 

Neutron Spectrometer (NS), gathered during the spacecraft’s terminal low-orbital 

campaign, are consistent with up to ~5 wt % carbon in Mercury’s low-reflectance 

material and ~1 wt % carbon elsewhere (PEPLOWSKI ET AL., 2016). The low 

stratigraphic position of Mercury’s low-reflectance material (ERNST ET AL., 2015) is 

consistent with this material being a remnant of the planet’s primary graphite 

flotation crust (PEPLOWSKI ET AL., 2016). It is possible that continual impact 

bombardment of Mercury has distributed carbon from the lower crust over the 

surface of the planet, thus darkening it (Fig. 2.11). 
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Fig. 2.11 Model for the formation of Mercury’s early crust proposed by VANDER 

KAADEN AND MCCUBBIN (2015). (a) Following the formation of Mercury’s metal-rich core, 

the planet’s silicate fraction formed a metal-poor magma ocean. (b) As Mercury’s magma 

ocean cooled, it began to crystallise. Due to the low density of the residual melt, most 

crystallised minerals (plagioclase, olivine, pyroxene) formed cumulates at the core-mantle 

boundary. Carbon, which is not incorporated as a major component of most rock-forming 

minerals, would have crystallised under Hermean conditions as graphite and been 

sufficiently buoyant to form a thin flotation crust. Note that the thickness of this graphite 

crust is vertically exaggerated for clarity in this cartoon. (c) After solidification of the magma 

ocean, heat from the core would have driven partial melting of the planet’s mantle, leading 

to secondary crust formation by volcanic plains emplacement stratigraphically above the 

graphite primary flotation crust. (d) Subsequent impact cratering exhumed lower crustal 

graphite and distributed it over Mercury’s surface, thus darkening it. This model, 

explanation, and cartoon have been adapted from VANDER KAADEN AND MCCUBBIN (2015). 



MESSENGER Observations of Volcanism on Mercury 

29 

2 . 5 .2  Volatile-rich planet 

 

Fig. 2.12 Evidence for volatile-driven activity on Mercury. (a) Putative explosive 

volcanic deposit (bright material) called Nathair Facula and central, irregular depression 

interpreted as an explosively excavated volcanic vent. Orthographic projection centred on 

63.8°E, 35.8°N of the ~166 m/pixel global MDIS monochrome mosaic. (b) Hollows in Kyōsai 

crater give its floor a moth-eaten appearance. Sinusoidal projection centred on 5.1°E, 25.1°N 

of NAC frame EN0250852067M. 

2 . 5 . 2 . 1  Explosive volcanism 

Perhaps the most convincing photogeological evidence that volcanism of some 

form occurred during Mercury’s history is the observation of irregular, rimless 

depressions several tens of kilometres across (HEAD ET AL., 2008) distributed across 

Mercury (e.g. Fig. 2.12a) that are often accompanied by high-albedo, diffuse red 

spots centred on, and extending beyond, the depression (MURCHIE ET AL., 2008). 

The irregular depressions are interpreted as explosively excavated volcanic craters, 

since, unlike impact craters, they can be highly non-circular and lack uplifted rims, 

and the red spots (now named ‘faculae’, sing. ‘facula’) are interpreted as explosive 

volcanic deposits (HEAD ET AL., 2008; KERBER ET AL., 2009, 2011; GOUDGE ET AL., 2014; 

THOMAS ET AL., 2014A; JOZWIAK ET AL., 2018). 

Most putative volcanic craters are located within impact craters (THOMAS ET AL., 

2014A; JOZWIAK ET AL., 2018). This suggests that impact craters facilitated these 

volcanic eruptions somehow, possibly by propagating fractures that could then be 
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exploited by ascending magmas, or by removing a thickness of overburden that 

posed a barrier to magma ascent (THOMAS ET AL., 2014A; BYRNE ET AL., 2016; JOZWIAK 

ET AL., 2018). 

The discovery of explosive volcanism on Mercury was surprising since the 

exsolution of volatile species in a magma is required to drive the explosion 

(CASHMAN ET AL., 2000). As explained in Section 2.2.4, the planetary formation 

mechanisms that allow Mercury to retain a large iron core would have exposed the 

planet’s materials to high temperatures. This would have driven-off volatiles, 

leaving Mercury’s interior depleted in such species (NITTLER ET AL., 2011). The 

surface geochemistry of Mercury appears volatile-rich, but this conceivably could 

be an exogenic veneer, however the observation of explosive volcanism on Mercury 

provides evidence that volatiles are present in Mercury’s interior, which suggests 

that they are endogenic. 

As an airless body, pyroclasts from explosive eruptions on Mercury would have 

followed essentially ballistic trajectories (WILSON AND HEAD, 1981). Furthermore, 

even a modest magma volatile content would have caused violent explosion 

eruptions (WILSON AND HEAD, 1981). KERBER ET AL. (2009) calculated that 

~5,500 ppm of CO (an important lunar magmatic volatile) would be required to 

ejecta pyroclasts from a prominent pit in southwestern Caloris Planitia with 

sufficient velocity to reach the outermost extent of its putative deposit, Agwo 

Facula (range 24 km). For comparison, basalts erupted from Kilauea, Hawai’i 

indicate ~1,300–6,500 ppm (H2O, CO2, S) for their mantle source (GERLACH, 1986). 

The volatile content inferred for Mercury is far greater than that of the Moon 

(WILSON AND HEAD, 1981), which is volatile-depleted as a result of a giant impact 

(TAYLOR, 1987). Therefore, the discovery that Mercury is not volatile-depleted calls 

into doubt many older hypotheses for the planet’s formation (see Section 2.5.4). 

More recent studies have suggested that the volatile species driving explosive 

volcanism on Mercury is sulfur, carbon, or some combination of the two (WEIDER 

ET AL., 2016). This is because MESSENGER XRS and NS data suggest that the largest 

putative explosive volcanic deposit on Mercury, Nathair Facula, is depleted in 

sulfur and carbon compared with the rest of Mercury’s surface (NITTLER ET AL., 2011; 

PEPLOWSKI ET AL., 2016). Whether these volatile species come from a mantle source 
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or are imbued in the magma by assimilation from the crust during ascent remains 

uncertain (JOZWIAK ET AL., 2018), since no direct evidence of mantle volatiles has 

been found so far. 

Where smooth plains and putative explosive volcanic deposits are in contact, the 

explosive deposits always superpose the smooth plains (HEAD ET AL., 2009; ROTHERY 

ET AL., 2014). No observations of a facula partially obscured by smooth plains have 

been made. This suggests that explosive volcanism on Mercury outlasted large-

volume effusive volcanism. The limited lateral extent and thickness of Mercury’s 

putative pyroclastic deposits means that they are not good targets for crater size-

frequency distribution studies, but, cognisant of the difficulties in employing this 

method, THOMAS ET AL. (2014C) found tentative model ages for five explosive 

volcanic deposits on Mercury that suggest they formed 3.9–3.3 Ga. It is possible 

that global contraction inhibited magma ascent within Mercury in general, but 

explosive volcanism was able to continue for longer as a result of the buoyancy 

imparted to such magmas by their volatile content (THOMAS ET AL., 2015). 

2 . 5 . 2 . 2  Hollows 

Hollows provide further evidence of volatiles species within Mercury’s crust 

(BLEWETT ET AL., 2011, 2013; THOMAS ET AL., 2014C). Hollows are depressions typically 

up to several hundred metres across and up to tens of metres deep, which makes 

them smaller than typical putative explosive volcanic vents on Mercury (e.g. Fig. 

2.12b). They have steep sides and flat, uncratered floors. This crisp morphology 

implies that they are geologically young and/or actively forming. They have 

irregular, but typically rounded outlines, but they lack raised rims. Hollows often 

occur in close proximity to one another, and large hollows appear to have formed 

when smaller, clustered hollows coalesced (BLEWETT ET AL., 2011). They appear 

relatively bright and blue in enhanced colour compared with intermediate terrain 

on Mercury (BLEWETT ET AL., 2011). 

Hollows typically occur on the floors of impact craters, or on crater peaks, walls, 

or proximal ejecta (BLEWETT ET AL., 2011). Most craters with hollows developing 

within their materials have exhumed low-reflectance material (DENEVI ET AL., 2009; 

BLEWETT ET AL., 2013). Hollows that exist outside impact craters still appear to form 



Chapter 2: Planet Mercury 

32 

in low-reflectance material, although the origin of such low-reflectance material 

itself is not clear (XIAO ET AL., 2013). Hollows appear to be anti-correlated with the 

high-reflectance red plains (BLEWETT ET AL., 2013; THOMAS ET AL., 2014C), which 

suggests that these plains lack the necessary materials for hollow formation. 

Therefore, it has been suggested that they form by the loss of a surface darkening 

agent in the low-reflectance material, leaving the resultant hollow with a 

characteristically bright appearance (BLEWETT ET AL., 2013). 

When hollows were first discovered, several ideas about how they formed were 

discussed. Volcanism can produce depressions by caldera and pit collapse, but 

hollows are much smaller than the explosive volcanic vents elsewhere on Mercury 

(ROTHERY ET AL., 2014; THOMAS ET AL., 2014B, 2014A; JOZWIAK ET AL., 2018) and have 

very different colour signatures (BLEWETT ET AL., 2011), most noticeable where 

hollows and explosive vents occur alongside each other. Furthermore, hollows 

appear to occur, among other places, on crater ejecta, which is an unlikely location 

for volcanic eruptions (BLEWETT ET AL., 2011). 

The most likely formation mechanism for hollows is that Mercury’s interior 

contains materials that volatilise when exposed to surface conditions (BLEWETT ET 

AL., 2011). This explains why hollows are associated with impact craters, which 

exhume material from pressure-temperature conditions in the subsurface where 

they are stable, and deposit them at the surface where they become susceptible to 

volatilisation. The existence of volatiles in the subsurface of Mercury is already 

established by the widespread explosive volcanic vents (THOMAS ET AL., 2014A; 

JOZWIAK ET AL., 2018). The exact mechanism of volatile-loss is still debated. Some 

studies have found some evidence that hollows occur more commonly on Sun-

facing slopes within impact craters (BLEWETT ET AL., 2013; THOMAS ET AL., 2014C), 

which suggests that volatile-loss could be an insolation-driven process, such as 

sublimation, thermal desorption, or photon-stimulated desorption (PIETERS AND 

NOBLE, 2016). If sublimation is responsible, then that would make the hollows 

analogous to the Swiss-cheese terrain at the south pole of Mars (THOMAS ET AL., 

2000; MALIN ET AL., 2001). Alternatively, micrometeorite bombardment might 

provide the energy for volatile release, but this mechanism would operate equally 

well on anti-Sun slopes, so it is not presently favoured. 
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If hollows formed by the loss of a volatile component from the low-reflectance 

material, then the question remains as to what the lost volatile component is. 

High-resolution multispectral images of hollows were examined by THOMAS ET AL. 

(2016) to measure the reflectance spectra of hollows walls, where hollow growth 

appears to be ongoing, and hollow floors, where the inert lag deposit gathers and 

hollow formation is not ongoing. They found that the final lag after hollow 

formation has a flatter spectral slope than that of any other previously measured 

surface unit (see DENEVI ET AL., 2009). This means that the lost volatile component 

must have a redder spectral slope and a higher reflectance than the parent low-

reflectance material. This is consistent with the volatile component being calcium 

or magnesium sulfides (THOMAS ET AL., 2016). The low iron abundance of Mercury’s 

surface means that most sulfur on Mercury is in calcium and magnesium sulfides 

(NITTLER ET AL., 2011). THOMAS ET AL. (2016) also found that carbon is not lost during 

hollow formation, which means that it must be inert. This is consistent with 

graphite being the darkening agent of the low-reflectance material and Mercury’s 

surface in general (MURCHIE ET AL., 2015). This does not preclude carbon from 

acting as a volatile within magmas, due to their high temperatures. 

2 . 5 . 3  Tectonics 

MESSENGER’s complete imaging of Mercury’s surface allowed several studies of 

global tectonics. BYRNE ET AL. (2014) mapped shortening tectonic features across 

the whole globe. They calculated that Mercury has lost ~7 km of its planetary 

radius since its formation. This brought the amount of global contraction in line 

with thermophysical models of Mercury’s cooling, which were in conflict with the 

~2 km of planetary radius loss based on Mariner 10 data (DOMBARD AND HAUCK, 

2008). 

WATTERS ET AL. (2015) mapped lobate scarps >50 km in length and found that their 

distribution and density are non-uniform (Fig. 2.13). They report that contractional 

landforms are concentrated in longitudinal bands and are generally oriented 

north–south at low latitudes and east–west at high latitudes, although they offer 

no explanation about how their observations are not influenced by illumination 

bias (FEGAN ET AL., 2017). If these observations are real, then they cannot be 

explained by global contraction alone (Fig. 2.6). The observed preferred 
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orientation of lobate scarps is consistent with the pattern of faulting predicted by 

the tectonics of a tidally despun planet (MELOSH, 1977), particularly if high-latitude 

lobate scarps were reactivated structures exploiting earlier normal faults 

(DOMBARD AND HAUCK, 2008). A later study using artificially illuminated MLA 

digital elevation models of Borealis Planitia, an approach that mitigates the 

problems of illumination bias, also found predominantly east–west trending polar 

faults and north–south trending mid-latitude faults (CRANE AND KLIMCZAK, 2019). 

A combination of global contraction and tidal despinning still cannot account for 

the spatial concentration of lobate scarps (WATTERS ET AL., 2015). It appears that 

where the faults are concentrated, Mercury’s crust has been thickened by mantle 

downwelling (JAMES ET AL., 2015), which would accentuate compressional stresses, 

as has been shown to be the case on Earth (NEIL AND HOUSEMAN, 1999). So it appears 

that Mercury’s global tectonics is best explained by tidal despinning before the end 

of the Late Heavy Bombardment, so that impacts and volcanism could remove any 

traces of polar normal faults, followed by global contraction that exploited pre-

existing lithospheric weaknesses inherited from tidal despinning. In addition, 

mantle dynamics played a role in spatially concentrating faults throughout the 

planet’s history (KING, 2008; WATTERS ET AL., 2015). 

The cross-cutting relationships between lobate scarps and impact craters in 

different states of degradation suggest that lobate scarp activity has occurred over 

much of the last 3–4 Gyr (BANKS ET AL., 2015), but crater size-frequency 

distributions suggest the largest lobate scarps observed today had reached their 

present day size ~3.5 Ga (GIACOMINI ET AL., 2015). Lobate scarp formation has been 

shown to have been active in Mercury’s geologically recent past (WATTERS ET AL., 

2016), which suggests global contraction is ongoing today, albeit at a slower rate 

than occurred during the Late Heavy Bombardment (BANKS ET AL., 2015). 

MESSENGER also revealed long-wavelength undulations in Mercury’s surface 

elevation (ZUBER ET AL., 2012) that are unrelated to crustal thickness variations 

(SMITH ET AL., 2012) or faulting (BYRNE ET AL., 2014). Three approximately east-

northeast–west-southwest trending undulations (two crests and a medial trough) 

appear to have warped Caloris Planitia, which requires the warping to postdate 

smooth plains emplacement within Caloris (FASSETT ET AL., 2009; DENEVI ET AL., 
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2013; BYRNE ET AL., 2014; MANCINELLI ET AL., 2016). In Borealis Planitia, a broad, 

circular topographic rise (the ‘northern rise’) also appears to postdate regional 

smooth plains emplacement (ZUBER ET AL., 2012). It has been suggested that these 

undulations have been caused by lithospheric folding or dynamic mantle processes 

(BYRNE ET AL., 2014). However, recent finite-element models have suggested that 

the compression required to fold Mercury’s lithosphere to generate the observed 

undulations would be equivalent to hundreds of kilometres of planetary radius loss 

(rather than ~7 km), making it highly unlikely that lithospheric folding played a 

substantial role in forming the undulations (KAY AND DOMBARD, 2019). 

Furthermore, the amplitude of dynamic topography predicted by convective 

mantle support (KING, 2008) is one to two orders of magnitude below that of the 

undulations (KLIMCZAK ET AL., 2013). Therefore, the problem of the source of these 

topographic undulations remains unsolved. 

2 . 5 . 4  Formation of Mercury 

The discovery that Mercury is relatively enriched in volatiles has meant that the 

formation of the planet has had to be reconsidered (PEPLOWSKI ET AL., 2011). The 

partial vaporisation and giant impact formation mechanisms introduced in Section 

2.2, which were put forward to explain the presence of a disproportionately large 

iron core within Mercury, are no longer viable since they would involve a short 

period of intense heating of the planet, which would be expected to leave the 

planet depleted in volatile species (PEPLOWSKI ET AL., 2011). 
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Fig. 2.13 Distribution and orientation of lobate scarps on Mercury mapped by 

WATTERS ET AL. (2015). (a) Map of lobate scarps >50 km in length superimposed on a map 

of smooth plains (light yellow) by DENEVI ET AL. (2013). (b) Double-headed arrows indicate 

local fault orientation and are scaled to reflect total local fault length. Equatorial lobate 

scarps are generally north–south, whereas higher latitude scarps are more often east–west. 

(c) Histogram of total fault length binned by longitude. There is an apparent marked 

decrease in lobate scarp length between 0–60°E and 150–240°E, probably due to smooth 

plains from Borealis Planitia and the Caloris smooth plains. From WATTERS ET AL. (2015). 

 

One new suggestion is that Mercury was a hit-and-run impactor whose core was 

not catastrophically disrupted by the collision and instead migrated away from the 

collision site (ASPHAUG AND REUFER, 2014). If Mercury formed farther out in the 

solar system from its present day orbit then it might have accreted a volatile-rich 

silicate shell larger than it currently possesses. Many numerical simulations of 

planetary formation predict hit-and-run collisions between proto-planets and 

proto-planetary migration (ASPHAUG AND REUFER, 2014). It is possible that a larger, 

naturally volatile-rich Mercury, which formed farther out in the solar system, 

migrated inward and was involved in a hit-and-run collision. By having Mercury 

move away from the site of the giant impact, it could not reaccrete much of its 

silicates stripped by the collision, explaining how the planet has a large core but 

only a thin mantle (ASPHAUG AND REUFER, 2014). However, it would seem that this 

model would cause heating of Mercury that would drive off the planet’s volatiles. 

Whether more volatiles could be retained during multiple, low-energy hit-and-run 

collisions is unclear. 

Currently, the most favoured formation model for Mercury is the iron-rich 

accretion model of WEIDENSCHILLING (1978). Recently, it has been suggested that 

the solar magnetic field in the protoplanetary disk aided rapid accretion of iron-

rich aggregates at Mercury’s present-day orbit (KRUSS AND WURM, 2018). After the 

iron-rich proto-Mercury reached a sufficient size, it would be able to accrete and 

retain chondritic material that would endow it with the volatile-rich crust observed 

today (PEPLOWSKI ET AL., 2011). 
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2 . 5 .5  Summary 

In summation, MESSENGER has shown that Mercury is a unique planet in the solar 

system. Its bulk composition (volatile- and metal-rich) means that the planet had 

a formation and early development unlike any of the other terrestrial planets. 

Furthermore, the cooling of the relatively large core means that Mercury’s 

lithosphere has been in compression for most of the planet’s history, which has 

dominated the planet’s tectonics and influenced the expression of its volcanism. 

The volatile content of Mercury is demonstrated by hollows probably active today 

and explosive volcanism that has persisted through Mercury’s geological history, 

and it remains to be seen what further unexpected landforms and processes these 

volatiles could have contributed to. A graphical summary of the geological history 

of Mercury based on MESSENGER data is shown in Fig. 2.14. 
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Fig. 2.14 Summary of the geological history of Mercury. On the right is an absolute 

timescale. The time systems of Mercury are shown to the left of the absolute time scale. The 

basal ages of the Kuiperian and the Mansurian are taken from (BANKS ET AL., 2017). 

Approximate basal ages for the Calorian and Tolstojan are taken from (SPUDIS AND GUEST, 

1988). The base of the Pre-Tolstojan is undefined. To the left of the Hermean time systems 

are graphical representations of the prevalence and duration of various geological processes 

during Mercury’s history. References containing the absolute ages indicated in this figure 

are labelled appropriately. Impact cratering is thought to have been very intense on Mercury 

before the end of the Late Heavy Bombardment of the inner solar system ~3.8 Ga. As an 

airless body, impact cratering remained an important geological process throughout 

Mercury’s history, albeit at a reduced rate. Lobate scarps are thought to have increased in 

activity following an initial stage of planetary expansion (for which there is no observable 

geological evidence) during core formation and reached peak activity ~3.5 Ga. After this, 

lobate scarp activity declined due to the decrease in the rate of secular cooling, but new, 

young lobate scarps continued to be formed until the relatively recent past. Effusive 

volcanism, which generated the widespread intercrater plains, was most active before the 

onset of global contraction. The last large-volume effusive eruptions formed the smooth 

plains, and these eruptions ceased at around the time lobate scarp activity reached its peak. 

Explosive volcanism was presumably active during the same interval as effusive volcanism, 

however there is no evidence that it resurfaced substantial areas of Mercury’s surface, so it 

must be assumed that this process has always been much less dominant than effusive 

volcanism when both eruptive styles were active together. However, the superposition of 

putative explosive volcanic deposits on smooth plains suggests that explosive volcanism 

outlasted effusive volcanism. Evidence for Kuiperian explosive volcanic activity has been 

reported, but most volcanic activity appears to have ceased before this. All hollows appear 

geologically recent, but the materials for their formation appear to be endogenic, which 

suggests that hollow formation could have occurred throughout Mercury’s history. 
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In Table 2.1 I summarise MESSENGER-derived properties of Mercury as a reference 

for the reader. 

Physical properties 

Mass 3.30×1023 kg (MAZARICO ET AL., 2014) 

0.055 Earth masses 

Mean radius 2439.36 km (PERRY ET AL., 2015) 

0.38 Earth radii 

Surface gravity 3.70 ms−2 (MAZARICO ET AL., 2014; PERRY 

ET AL., 2015) 

0.38g 

Axial tilt (relative to the normal of the 

orbital plane) 

2.06’ (0.034°) (MAZARICO ET AL., 2014) 

Rotational period 58.6 Earth days (MAZARICO ET AL., 2014) 

Orbital characteristics 

Aphelion 0.47 AU 

Perihelion 0.31 AU 

Orbital period 88 Earth days 

Table 2.1 Mercury planetary properties measured by MESSENGER. 

2 . 5 . 6  BepiColombo 

BepiColombo (BENKHOFF ET AL., 2010), the next spacecraft mission to Mercury, 

launched on 20th October 2018. It is a joint European Space Agency (ESA) and 

Japan Aerospace Exploration Agency (JAXA) mission comprising two spacecraft 

with scientific payloads, the Mercury Planetary Orbiter (MPO) and the Mercury 

Magnetospheric Orbiter (MMO), designed to study Mercury after orbital insertion 

on 5th December 2025. ESA delivered MPO, which will focus on studying the 

surface of the planet (ROTHERY ET AL., 2010). 

Before BepiColombo arrives, it is important that as much as possible is known 

about Mercury based on MESSENGER data. From a planetary geology standpoint, 

the most valuable tools for generating science targets and objectives for a new 

spacecraft mission are detailed geological maps. As stated previously, MESSENGER 

data have been used to create the first global geological map of Mercury (PROCKTER 
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ET AL., 2016; KINCZYK ET AL., 2018B). This map is being produced at a small map scale 

(1:15M), which is useful for a global picture of the planet, but it does not exploit the 

maximum resolution of MESSENGER data. Larger scale quadrangle geological 

maps are being produced using MESSENGER data to provide science context and 

targets for BepiColombo (GALLUZZI ET AL., 2019). These maps are being produced 

for publication at the 1:3M-scale, which allows greater detail to be shown on each 

quadrangle map than can be shown on the global map. MESSENGER-era 

quadrangle geological maps of three quadrangles have been published so far 

(GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017) and the maps 

of the remaining quadrangles are to be published before the arrival of 

BepiColombo (GALLUZZI ET AL., 2019). 
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Fig. 2.15 The BepiColombo spacecraft and the instruments that will study Mercury’s 

geology. (a) Exploded artist’s conception of the BepiColombo spacecraft stack. MMO: 

Mercury Magnetospheric Orbiter. MOSIF: MMO Sunshield and Interface Structure. MPO: 

Mercury Planetary Orbiter. MTM: Mercury Transfer Module. (b) The instruments of MPO. 

SYMBIO-SYS: Spectrometers and Imagers for MPO BepiColombo Integrated Observatory 

System. Encompasses: Stereo Channel (STC) for colour and monochrome imaging of the 

whole planet at 50 m/pixel resolution or better; the High Spatial Resolution Imaging 

Channel (HRIC) for 5 m/pixel colour and monochrome imaging, and; Visible and near-

Infrared Hyperspectral Imaging channel (VIHI) for imaging in 256 narrow channels (400–

2,000 nm) at up to 100 m/pixel. BELA: BepiColombo Laser Altimeter for measuring the 

topography of Mercury at all latitudes. MERTIS: Mercury Radiometer and Thermal Infrared 

Spectrometer for mineralogical, temperature, and thermal inertia mapping. MIXS: Mercury 

Imaging X-ray Spectrometer for element mapping, including Si, Ti, Al. Fe, Mg, Na, Ca, P, Mn, 

K, S, Cr, Ni, and O. SERENA: Search for Exosphere Refilling and Emitted Neutral Abundance. 

Encompasses Emitted Low-Energy Neutral Atoms (ELENA), Start from a Rotating Field 

Mass Spectrometer (STROFIO), Miniature Ion Precipitation Analyser (MIPA), and 

Planetary Ion Camera (PICAM). Together these instruments will identify the sources, sinks 

and compositions of exospheric atoms and ions. 
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2.6  Research questions 

The MESSENGER mission has answered many questions about the geology of 

Mercury, but as I have highlighted in the previous sections, work remains to be 

done, some of which can be achieved before the arrival of BepiColombo. 

As part of this thesis, I have constructed a geological map of the Hokusai 

quadrangle (H05) of Mercury. In Chapter 3 I explain why I selected this quadrangle 

for mapping and in Chapter 4 I discuss the geological history of the region that my 

map (Appendices 1 and 2) records. 

While I constructed my map, I studied the global context of H05 and I became 

particularly interested in the history and modes of volcanism on Mercury and the 

various volatile-driven processes on the planet. I set out to investigate the 

following research questions: 

 What is the geological history of the Hokusai quadrangle? Are there any 

photogeological units of regional extent that have not been demarcated in 

the global geological map of Mercury? If there are, what are the probable 

provenances of such units? 

 Are volcanic plains the only expressions of effusive volcanism on Mercury? 

For example, small shield volcanoes have been observed on the Moon, Mars 

and Io. Are there small volcanic constructs on Mercury? If so, under what 

circumstances are they likely to have formed? If not, what has inhibited 

volcanic construction?
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CHAPTER 3  
GEOLOGICAL MAPPING OF THE HOKUSAI 

(H05)  QUADRANGLE OF MERCURY  

3 . 1  Selection of H05 as the mapping area 

3 . 1 . 1  Mariner 10 quadrangle maps 

 

Fig. 3.1 Mariner 10-era quadrangles of Mercury. Longitudes are given in degrees west. 

Western hemisphere quadrangles are shown with shaded relief maps and bright crater rays. 

The shaded relief maps indicate the image coverage of Mercury provided by Mariner 10. Note 

how western hemisphere quadrangles have primary names based on prominent topographic 

features contained within them, as well as subsidiary names (in brackets) that come from 

albedo features seen in Earth-based radar images. Quadrangles unimaged by Mariner have 

albedo names only. From DAVIES ET AL. (1978). 

Before the arrival of Mariner 10 in 1974, Mercury was divided into 15 latitudinally 

and longitudinally defined ‘quadrangles’ in preparation for studies of its surface 

(DAVIES ET AL., 1978). The arrangement of those quadrangles is shown in Fig. 3.1. 
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By conducting photogeological interpretation of Mariner 10 data, geological maps 

of H01 (GROLIER AND BOYCE, 1984), H02 (MCGILL AND KING, 1983), H03 (GUEST AND 

GREELEY, 1983), H06 (DEHON ET AL., 1981), H07 (KING AND SCOTT, 1990), H08 

(SCHABER AND MCCAULEY, 1980), H11 (TRASK AND DZURISIN, 1984), H12 (SPUDIS AND 

PROSSER, 1984) and H15 (STROM ET AL., 1990) were made at the 1:5M-scale. Due to 

the lack of Mariner 10 data, no maps of the eastern hemisphere of Mercury were 

produced. The extent of Mariner 10 1:5M-scale geological mapping of Mercury is 

shown in Fig. 3.2. 
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Fig. 3.2 Mercury geological mapping coverage at the beginning of the MESSENGER 

mission. The 1:5M scale quadrangle geological maps of Mercury based on Mariner 10 data 

are shown (SCHABER AND MCCAULEY, 1980; DEHON ET AL., 1981; GUEST AND GREELEY, 1983; 

MCGILL AND KING, 1983; GROLIER AND BOYCE, 1984; SPUDIS AND PROSSER, 1984; TRASK AND 

DZURISIN, 1984; KING AND SCOTT, 1990; STROM ET AL., 1990). Note that eastern hemisphere 

quadrangles are labelled here with their topographic feature names given to them during the 

early stages of the MESSENGER mission. This figure is an updated version of Fig. 3.1, with 

Mercury’s prime meridian in the centre and positive east degrees of longitude, which is the 

convention of this thesis. During the MESSENGER mission, quadrangle boundaries were 

modified so that northern and southern boundaries of the equatorial quadrangles are at 21.5° 

north and south, respectively. After DAVIES ET AL. (1978). 

 

3 . 1 .2  MESSENGER quadrangle maps 

By the end of the mission, the MESSENGER spacecraft had achieved imaging with 

a global coverage and higher resolution than Mariner 10. This has allowed for the 

first quadrangle geological maps based on MESSENGER data to be produced 

(GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017), including 

regions unseen by Mariner 10 (GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016). The 

boundaries of the quadrangles were slightly redefined after the arrival of 

MESSENGER, as shown in Fig. 3.2. MESSENGER-era quadrangle maps are being 

produced at the 1:3M-scale (Fig. 3.3; GALLUZZI ET AL., 2019). These maps are being 

produced as part of an international effort to have 1:3M-scale maps covering all of 

Mercury in time for the arrival of the BepiColombo mission (BENKHOFF ET AL., 2010). 

The map I produced as part of this thesis was intended from the beginning of my 

project to contribute to this international Mercury quadrangle mapping effort. 
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Fig. 3.3 Status of MESSENGER quadrangle geological maps when this work was 

beginning. Mercury quadrangles with MESSENGER-era geological maps are highlighted in 

yellow and the maps are shown in colour. At the beginning of this work, these maps were 

unpublished but in an advanced state of preparation (GALLUZZI ET AL., 2016; MANCINELLI ET 

AL., 2016; GUZZETTA ET AL., 2017). Where only Mariner 10 maps were available, these are 

shown in greyscale. Quadrangles highlighted in red were known to be the subject of studies 

by other workers and I did not consider mapping them. The remaining quadrangles, outlined 

in black, were considered for mapping. After DAVIES ET AL. (1978). 

3 . 1 . 3  Selection process 

The quadrangles available to map during my PhD were H05 (Hokusai), H09 

(Eminescu), H10 (Derain), H11 (Discovery), H12 (Michaelangelo), H13 (Neruda), 

H14 (Debussy) and H15 (Bach). I evaluated each of these using the following 

criteria: 

1. Does a Mariner 10 geological map of the quadrangle exist? 

2. What is the mapping status of adjacent quadrangles? 

3. What MESSENGER datasets and resolution are available for the 

quadrangle? 

4. What known features of interest exist within the quadrangle? 
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5. What possible science questions could be investigated by making a 

geological map of the quadrangle? 

Here, I summarise my reasoning for selecting the H05 quadrangle. 

3 . 1 . 3 . 1  Previous maps of H05 

As stated previously, H05 was not imaged by Mariner 10 so the quadrangle has no 

pre-existing geological maps. This formed an important part of my decision to 

select H05 for mapping, since I would be producing the first geological map of the 

region. 

3 . 1 . 3 . 2  Quadrangles adjacent to H05 

H05 is bordered by H01 in the north, H02 in the west, H04 in the east, H06 in the 

southwest, H10 in the south and H09 in the southeast (Fig. 3.4). 

When I was evaluating quadrangles for mapping at the start of my work in October 

2015, there were no published MESSENGER-era geological maps of any Mercury 

quadrangles. At that time, I was aware that the maps of H02 (GALLUZZI ET AL., 2016) 

and H04 (MANCINELLI ET AL., 2016), the quadrangles to the west and east of H05, 

were in the final stages of preparation for publication. This information was 

important during my decision making process, since by mapping H05 I would be 

able to collaborate with the mappers of its adjacent quadrangles to fix the 

boundaries between our quadrangles. Furthermore, I was aware that a map of H03 

(non-adjacent to H05) was underway at that time (GUZZETTA ET AL., 2017). By 

mapping H05, I would be completing geological mapping coverage of the mid-

northern latitudes of Mercury. Finally, I was aware that other workers, operating 

outside the European Mercury quadrangle mapping effort (GALLUZZI ET AL., 2019), 

were seeking to prepare a geological map of H01 using MESSENGER data (OSTRACH 

ET AL., 2018). 
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Fig. 3.4 Quadrangles adjacent to H05. Quadrangle boundaries are marked in yellow. 

MESSENGER-era geological maps are shown for H02 (GALLUZZI ET AL., 2016) and H04 

(MANCINELLI ET AL., 2016). Mariner 10 maps are shown for H01 (GROLIER AND BOYCE, 1984) 

and H06 (DEHON ET AL., 1981). Orthographic projection of the~166 m/pixel global basemap 

centred on H05 (CHABOT ET AL., 2016). Mariner 10 mapping shapefiles are publicly available 

at https://tinyurl.com/y8nejo2p. H02 and H04 shapefiles are reproduced with kind 

permission of the authors. 

At the time of selection, no other quadrangles had MESSENGER-era geological 

maps bordering H05. Furthermore, the partial maps of H01 (GROLIER AND BOYCE, 

1984) and H06 (DEHON ET AL., 1981), made using Mariner 10 data, do not extend to 

the shared boundaries of those quadrangles with H05 (Fig. 3.4). As eastern 

hemisphere quadrangles, no Mariner 10 maps of H09 or H10 existed at the time of 

https://tinyurl.com/y8nejo2p
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quadrangle selection. Therefore, during the course of my work, my map of H05 

would could be checked against the MESSENGER maps of H02 and H04 only. 

3 . 1 . 3 . 3  Availability of MESSENGER data for H05 

Due to MESSENGER’s highly elliptical orbit, with its periherm latitude drifting 

between 55.7°N and 84.1°N over the course of the mission (Fig. 3.5), dataset 

availability and spatial resolution are generally better in the northern hemisphere 

than the southern hemisphere. This was an important factor in my decision to map 

H05, since it was the last quadrangle available for me to map in the northern 

hemisphere.  

 

Fig. 3.5 MESSENGER orbital configurations at Mercury. MESSENGER’s initial orbit 

after capture is shown in brown. Over the course of the mission, MESSENGER’s orbital major 

axis rotated clockwise, in response to gravitational forcing by the Sun and Mercury, causing 

MESSENGER’s ‘argument of apoapis’ (ω) to decrease from its original value of 119.2°. While 

90° < ω < 180°, MESSENGER’s periherm latitude drifted north toward 84.1°N and the 

periherm altitude drifted upward. Several orbital correction manoeuvres during the mission 

prevented the periherm altitude from drifting high enough to compromise data resolution. 

When ω became less than 90°, MESSENGER’s periherm latitude began to drift south and its 

periherm altitude began to fall. Several orbital correction manoeuvres delayed the deorbiting 

of the spacecraft, until its fuel supply was exhausted. MESSENGER impacted onto Mercury 

on 30th April 2015. Image credit: NASA/Johns Hopkins University Applied Physics 

Laboratory/Carnegie Institute of Washington. 
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Certain MESSENGER instruments, including the Mercury Laser Altimeter (MLA; 

CAVANAUGH ET AL., 2007), were within operational range of Mercury over the 

northern hemisphere. Fig. 3.6 shows all the MLA data tracks available for H05. 

MLA data are sparse south of 5°S and unavailable south of 20°S. Therefore, even 

equatorial quadrangles have only partial MLA data coverage. As the northernmost 

quadrangle available to map, H05 had the best MLA data coverage. 

 

Fig. 3.6 Mercury Laser Altimeter (MLA) coverage of H05. Red lines indicate individual 

MLA data tracks. Note how MLA has denser track spacing in the north than the south. 

Lambert conformal conic projection (central meridian 45°E, standard parallels 30°N and 

58°N) of the ~166 m/pixel global monochrome mosaic. 

In the case of the Mercury Dual Imaging System (MDIS; HAWKINS ET AL., 2007), 

MESSENGER’s highly elliptical orbit resulted in a trade-off between data coverage 

and resolution. Fig. 3.7 shows all the individual monochrome narrow-angle camera 

(NAC) frames from MDIS for H05. At higher northern latitudes, the spacecraft was 

at lower altitudes, allowing NAC to capture images of the planet’s surface with 

higher spatial resolution. However, the instrument’s footprint on the surface was 

smaller at lower altitudes, meaning data coverage was sparser. Nevertheless, the 

availability of high-resolution NAC images permits more accurate mapping of unit 

contacts and more detailed unit descriptions. Furthermore, poor NAC coverage at 

H05 is supplemented by complete coverage of the quadrangle by the multispectral 
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wide-angle camera (WAC) of MDIS. As a result, H05 was the quadrangle best 

characterised by MESSENGER data available to map at the time of mapping area 

selection. 

 

Fig. 3.7 Mercury Dual Imaging System (MDIS) narrow-angle camera (NAC) coverage 

of H05. Yellow polygons show the extent of individual NAC frames. Same projection and 

background as in Fig. 3.6. 
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3 . 1 . 3 . 4  Known features of interest within H05 

 

Fig. 3.8 Nomenclature of H05. Named features within H05 as of 14/01/2019. It should be 

noted that several features within H05 received their official names after I began this work. 

Unity Rupes received its name on 30/01/2016. The naming scheme for ‘faculae’ on Mercury 

was implemented on 27/02/2018 and Nathair, Neidr, and Suge Faculae received their names 

on 06/04/2018. Same projection and background as in Fig. 3.6. 

H05 is dominated by Borealis Planitia (Fig. 3.8), the ‘northern smooth plains’ of 

Mercury (HEAD ET AL., 2011). These smooth plains are broadly interpreted to be 

volcanic in origin (DENEVI ET AL., 2013) and probably represent multiple extensive 

lava flows stacked to a maximum thickness of ~2 km in places (OSTRACH ET AL., 

2015). Previous studies of Borealis Planitia have focussed on latitudes above ~50°N 

(HEAD ET AL., 2011; OSTRACH ET AL., 2015), however H05 contains the southernmost 

extent of Borealis Planitia, which appears to exhibit different colour properties 

compared with the majority of the plains (see Fig. 3.18 in Section 3.2.1.2). This 

observation could be explained by lateral heterogeneities in mantle source 

compositions for erupted lavas, or by impact gardening mixing surface volcanic 

colour signatures with the colours of underlying units, or a non-volcanic origin for 

smooth plains in southern Borealis Planitia. These hypotheses could be tested by 

high-resolution mapping, such as would be carried out during my quadrangle map 
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production (see Section 3.3.3). Until now, the highest resolution study of Borealis 

Planitia was conducted at a scale of 1:1.25M (DENEVI ET AL., 2013). 

The Rachmaninoff impact basin was first imaged during the third MESSENGER 

flyby (Fig. 3.9; PROCKTER ET AL., 2010). This young impact feature, suggested to 

postdate the Late Heavy Bombardment of the inner solar system ~3.8 Ga 

(PROCKTER ET AL., 2010), contains the lowest surface elevation on Mercury (BECKER 

ET AL., 2016; STARK ET AL., 2017). Depending on the crustal thickness in the region 

(SORI, 2018), it is possible that Rachmaninoff has excavated lower crustal or even 

uppermost mantle material. Furthermore, a diversity of colour units that correlate 

with photogeological units is suggestive of a basin with a rich geological history. 

Rachmaninoff contains high-reflectance red plains that contrast with the 

surrounding low-reflectance blue material and appear to have a crater retention 

age resolvably younger than the basin itself (PROCKTER ET AL., 2010; CHAPMAN ET AL., 

2012). This probably requires a volcanic origin for the relatively young interior red 

plains of Rachmaninoff, and this volcanism could represent some of the most 

recent plains formation on Mercury (PROCKTER ET AL., 2010; CHAPMAN ET AL., 2012). 

Furthermore, Rachmaninoff contains Suge Facula, a prominent bright, red spot 

with diffuse boundaries. Elsewhere on Mercury, such faculae (formerly ‘red spots’; 

MURCHIE ET AL., 2008), contain irregularly shaped, rimless depressions, which are 

interpreted as explosively excavated volcanic craters. The bright spots are 

interpreted as deposits of ballistically emplaced pyroclasts. However, the basin 

floor of Rachmaninoff encompassing Suge Facula has no obvious vent structure, 

but instead has a pitted appearance (THOMAS ET AL., 2014A; JOZWIAK ET AL., 2018). 

This texture is believed to arise from the sublimation of a volatile species within a 

young volcanic unit, rather than a primary volcanic explosion (THOMAS ET AL., 

2014A; JOZWIAK ET AL., 2018). Detailed mapping of Rachmaninoff, so far carried out 

using only flyby MESSENGER data (PROCKTER ET AL., 2010), can test this hypothesis 

and reveal the evolution of this intriguing basin. 

The region immediately to the north of Rachmaninoff contains other prominent 

faculae, including Nathair Facula, the largest bright spot on Mercury, and Neidr 

Facula (Fig. 3.9). Whereas 82% of volcanic vents on Mercury occur within impact 

craters (JOZWIAK ET AL., 2018), the two large vents associated with these faculae 
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appear to have formed directly on Mercury’s plains. Mapping of the surrounding 

region may shed light on how these vents and deposits formed. 

 

Fig. 3.9 Rachmaninoff basin setting. Rachmaninoff and the surrounding region were first 

imaged during MESSENGER’S third flyby. Mosaic of NAC frames EN0162744123M, 

EN0162744150M, EN0162744128M, and EN0162744155M. Mean ground resolution 

~446 m/pixel. 

Hokusai crater is another interesting impact structure, and it gives its name to the 

whole H05 quadrangle. Hokusai is a 114 km-diameter ringed peak-cluster basin 

(BAKER ET AL., 2011) with crater rays that extend thousands of kilometres from the 

impact site (XIAO ET AL., 2016). Bright crater rays are understood to be possessed by 

only the youngest impact structures on planetary surfaces (OBERBECK, 1971), and 

are known on the Moon (OBERBECK, 1971) and Mars (MCEWEN ET AL., 2005), as well 

as Mercury (HAPKE ET AL., 1975). As well as being brighter than their surroundings, 

rays on Mercury are typically bluer than surrounding terrain (HAPKE ET AL., 1975; 
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BLEWETT ET AL., 2009). As an airless body in the innermost solar system, space 

weathering is thought to be very efficient on Mercury, and exposed surfaces are 

believed to darken and redden with age (BRADEN AND ROBINSON, 2013). Thus, craters 

with blue rays are believed to be among the youngest geological features on 

Mercury (BANKS ET AL., 2017). It is therefore important for detailed maps of 

Hokusai’s rays to be made, as they could be used as global stratigraphic markers 

for the youngest surface processes operating on Mercury’s surface. Recent research 

focussing on Hokusai has considered whether the crater is a candidate rampart 

crater (see CARR ET AL., 1977) formed by fluidisation of its impact ejecta by large 

volumes of impact melt (KINCZYK ET AL., 2018A) and whether the Hokusai impact 

could have delivered the water that forms the ice deposits in the permanently 

shadowed regions of Mercury’s north pole (ERNST ET AL., 2018). 
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Fig. 3.10 Ray system of Hokusai crater. One of the earliest MESSENGER images that 

resolves Hokusai crater (yellow arrow), captured during MESSENGER’s second flyby. WAC 

frame EW0131772403C. Mean ground resolution ~2.4 km/pixel. 

3 . 1 . 3 . 5  Summary 

I chose H05 as the quadrangle that I would produce a geological map of as part of 

my research for the following reasons: 

1. H05 has no pre-existing geological maps, therefore producing a geological 

map of the quadrangle would be a unique and valuable contribution to 

Mercury science. 

2. MESSENGER-era geological maps are available for some of the adjoining 

quadrangles. This will allow the boundary interpretations of my map of H05 

to be checked against the results of independent workers. 
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3. H05, as the last remaining quadrangle available for mapping in the northern 

hemisphere of Mercury, has good MDIS and MLA coverage, the two most 

important MESSENGER datasets for geological mapping. 

4. At the time of mapping quadrangle selection, H05 was already known to 

contain several features of interest, including extensive smooth plains, 

Rachmaninoff basin and its associated volcanic features, and Hokusai crater 

itself. 

3 .2  Data 

All the data I used to make the geological map of H05 are publicly available for 

download from the Planetary Data System. All of these data are products of NASA’s 

MESSENGER mission. 

3 . 2 . 1  Basemaps 

3 . 2 . 1 . 1  Monochrome 

The primary data for photogeological mapping of planetary surfaces are 

monochrome image mosaics for use as basemaps. The abundance of MESSENGER 

data allowed the construction of several regional and global mosaics during and 

after the mission with different illumination conditions (Fig. 3.11). I have consulted 

each of the basemaps discussed below during my mapping, since they convey 

different geological information, however I chose a primary basemap on which I 

digitised the map. The primary basemaps for geological mapping of H05 are the 

Basemap Reduced Data Record (BDR) tiles produced by the MESSENGER team 

during the spacecraft’s orbital imaging campaign (Fig. 3.12). These basemap tiles 

have a mean ground resolution of 166 m/pixel and are mosaics of MDIS WAC and 

NAC frames with solar incidence angles of ~68°, which is optimal for 

photogeological interpretation (CHABOT ET AL., 2016). This basemap has 100% 

coverage over H05. 
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Fig. 3.11 Cartoon of shadows and solar incidence angles. This cartoon illustrates the 

convention used in this thesis when referring to solar incidence angle. Solar incidence, i, is 

measured from the vertical (i.e. perpendicular to the planetary surface). ‘High’ solar 

incidence angle MDIS frames are captured when the Sun is close to the local horizon; long 

shadows are cast. ‘Low’ solar incidence refers to when the local solar time is close to midday; 

short shadows are cast. 
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Fig. 3.12 Primary H05 basemap. This is the primary basemap I used to make the geological 

map of H05. Individual basemap tiles are labelled and outlined in yellow. The tiles H05NW0, 

H05NE0, H05SW0 and H05SE0 make up the H05 quadrangle. 5° of latitude and longitude 

overlap is included in the basemap to allow boundary checking with the adjacent 

quadrangles after completion of the map. Illumination is primarily from the east, but is 

variable in solar incidence angle across the basemap. ~166 m/pixel. Lambert conformal conic 

projection (central meridian 45°E, standard parallels 30°N and 58°N). 

Other basemaps became available for mapping during my PhD. These include 

basemaps with low solar incidence angles (Fig. 3.13), suitable for investigating 

surface reflectance variations, and basemaps with high solar incidence angles, from 

both west and east, useful for enhancing low topographic features (Fig. 3.14 and 

Fig. 3.15). 
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Fig. 3.13 H05 basemap with low solar incidence. Mosaic of MDIS WAC and NAC frames 

optimised for minimal solar incidence. Individual basemap tiles are labelled and outlined in 

yellow. Note how desired illumination conditions are available in the west only. ~166 m/pixel. 

Same projection as in Fig. 3.12. 
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Fig. 3.14 Western illumination H05 basemap with high solar incidence. Mosaic of 

MDIS WAC and NAC frames with western illumination. Individual basemap tiles are labelled 

and outlined in yellow. Frames with solar incidence close to 80° are incorporated where 

available. Note how the desired illumination conditions are available in the east only. Solar 

incidence steadily decreases from east to west across the basemap. At the westernmost edge 

of H05, areas with no western illumination data of sufficient resolution are shown in black. 

~166 m/pixel. Same projection as in Fig. 3.12. 
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Fig. 3.15 Eastern illumination H05 basemap with high solar incidence. Mosaic of 

MDIS WAC and NAC frames with eastern illumination. Individual basemap tiles are labelled 

and outlined in yellow. Frames with solar incidence close to 80° are incorporated where 

available. Most of this basemap is composed of high-incidence angle frames, except the 

southeast corner. Small areas of no coverage are shown in black and are limited to the south 

west. ~166 m/pixel. Same projection as in Fig. 3.12. 

Before the ~166 m/pixel mosaics were released by the MESSENGER team, global 

mosaics with lower resolution were available. I referred to these occasionally while 

mapping, and so they are included here for completeness. These include a global 

mosaic of Mercury with ~250 m/pixel resolution (Fig. 3.16) and the M1M2M3M10 

mosaic composed of MESSENGER’s flyby data combined with Mariner 10 data (Fig. 

3.17). 
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Fig. 3.16 250 m/pixel basemap. A secondary basemap with lower resolution. Useful 

because it has fewer seams between different regions of the mosaic. Quadrangles are labelled 

and outlined in yellow. Same projection as in Fig. 3.12. 
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Fig. 3.17 H05 MESSENGER flyby data basemap. MESSENGER flyby data generally have 

poorer spatial resolution than orbital data (~500 m/pixel), however the extremely high solar 

incidence in the east of the basemap enhances topographic features thus assisting 

photogeological interpretation. Quadrangles are labelled and outlined in yellow. Regions of 

the mosaic covered by MESSENGER flybys 2 and 3 are labelled and outlined in red and 

orange, respectively. Same projection as in Fig. 3.12. 

3 . 2 . 1 . 2  Colour 

The most important colour dataset for assisting photogeological interpretation was 

the enhanced colour MESSENGER global mosaic (Fig. 3.18). This mosaic was 

constructed using MDIS WAC frames captured with the 430, 750, and 1,000 nm 

bands. Principal component analyses were conducted by the MESSENGER team in 

this spectral space and they created the enhanced colour mosaic by placing the 

second principal component (PC2), the first principal component (PC1) and the 

430/1,000 ratio in the red, green and blue channels respectively (DENEVI ET AL., 

2009, 2016). PC1 corresponds closely to standard reflectance. PC2 represents the 

spectral slope from short-to-long wavelengths. Such slopes are positive for all 

terrains on Mercury, meaning the planet is generally red, but terrains with 

shallower spectral slopes (low PC2) are ‘blue’ in a relative sense. Similarly, the 

430/1,000 ratio measures ‘blueness’ since it is a ratio of reflectance at blue 
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wavelength to reflectance at the near-infrared. Why these particular spectral 

parameters have been selected by the MESSENGER team has not been released 

publicly. Given the spectral parameters used, it is obvious that PC2, which 

measures ‘redness’, should be assigned to the R-channel, and that the 430/1,000 

ratio, which measures ‘blueness’, should be assigned to the B-channel. As a result, 

in this mosaic, regions that appear redder or bluer really are redder or bluer than 

intermediate terrains on Mercury. This mosaic has a mean ground resolution of 

~665 m/pixel. 

 

Fig. 3.18 MESSENGER enhanced colour H05 basemap. The most prominent bright spot, 

Nathair Facula, is labelled. HRP indicates a region of Borealis Planitia that exhibits the 

colour terrain unit high-reflectance red plains. LBP indicates a region in southern Borealis 

Planitia that instead exhibits low-reflectance blue plains. The regions labelled HRP and LBP 

are contiguous and the colour change between them is gradational. Quadrangles are labelled 

and outlined in black. ~665 m/pixel. Same projection as in Fig. 3.12. See DENEVI ET AL. (2009). 

Higher spatial resolution colour data are available for H05 in the form of the MD3 

colour basemap tiles (Fig. 3.19). These three colour tiles place the 1,000, 750, and 

430 nm bands in the red, green and blue channels, respectively, and have a ground 

resolution of ~333 m/pixel. 
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Fig. 3.19 MESSENGER MD3 colour tile basemap of H05. Individual basemap tiles are 

labelled and outlined in yellow. ~333 m/pixel. Same projection as in Fig. 3.12. 

3 . 2 . 2  Topography 

Topographic data were also used during mapping. At the beginning of my work, 

the only digital elevation model (DEM) available for H05 was the gridded MLA 

DEM (Fig. 3.20; ZUBER ET AL., 2012). In October 2016, one year after beginning my 

work, a global stereo-derived DEM of Mercury was released (Fig. 3.21; BECKER ET 

AL., 2016). In March 2017, a quadrangle DEM of H05 with higher spatial resolution 

was released (Fig. 3.22; STARK ET AL., 2017). Once available, this DEM became the 

primary source of topographic information used when mapping H05. 
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Fig. 3.20 MLA gridded topography of H05 and the surrounding quadrangles.  This 

DEM was constructed using MLA data tracks. The topography between tracks has been 

interpolated (ZUBER ET AL., 2012). As shown in Fig. 3.6, MLA data tracks are more widely 

spaced in southern H05, resulting in a higher degree of interpolation uncertainty. 

Furthermore, publicly available pixel values for this DEM do not correspond to surface 

elevation values, hence no vertical scale is shown. Quadrangles are labelled and outlined in 

black. ~665 m/pixel. Same projection as in Fig. 3.12. 
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Fig. 3.21 Stereo-topography DEM of H05 and the surrounding quadrangles. 

Quadrangles are labelled and outlined in black. ~665 m/pixel. Same projection as in Fig. 3.12. 

By BECKER ET AL. (2016). 

 

Fig. 3.22 Stereo-topography DEM of H05. No overlap with the surrounding quadrangles 

is shown. ~222 m/pixel. Same projection as in Fig. 3.6. By STARK ET AL. (2017). 
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3 .3  Methods 

3 . 3 . 1  Software 

3 . 3 . 1 . 1  Data processing 

Unless otherwise stated, all basemap, MDIS NAC and WAC frames, and DEMs 

presented in this work were downloaded from the PDS and processed for ingestion 

into a Geographic Information System (GIS) using the United States Geological 

Survey (USGS) Integrated Software for Imagers and Spectrometers version 3 

(ISIS3). The native format of MESSENGER data (.IMG) on the PDS cannot be 

projected within a GIS. The data processing steps for converting raw .IMG files to 

GIS-ready products are shown in Fig. 3.23. In general, raw data were first converted 

from their native .IMG format to a .cub format that can be further manipulated by 

ISIS3. Derived products, such as basemaps, generally required map projection only, 

whereas MDIS frames also required radiometric and photometric calibration. 



Chapter 3: Geological Mapping of the Hokusai Quadrangle of Mercury 

72 

 

Fig. 3.23 Flowchart of ISIS3 data processing. MESSENGER data were downloaded from 

the PDS. Raw MDIS frames (‘MDIS.IMG’) were processed using the steps on the right path. 

Derived MESSENGER products, such as basemap tiles or DEMs, were processed using the 

steps on the left path. ‘BDR.IMG’ represents raw BDR basemap tiles. ‘LOI.IMG’ represents 

low-incidence angle basemap tiles. ‘HIE.IMG’ and ‘HIW.IMG’ represent eastern and western 

illumination high-incidence angle basemap tiles, respectively. ‘DEM.IMG’ represents raw 

DEM products. 
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3 . 3 . 1 . 2  Geological mapping 

All map work presented in my thesis was conducted within the Esri ArcGIS 10.1 

GIS software package. 

3 . 3 . 2  Projection 

H05 is a mid-northern-latitude quadrangle. These are conventionally mapped in a 

Lambert Conformal Conic (LCC) projection (DAVIES ET AL., 1978). Conceptually, the 

surface of a globe is projected onto the curved surface of a cone; the curved surface 

of the cone is then ‘unrolled’ to make the flat, projected coordinated system. Two 

standard parallels represent the intersections between the globe and the cone of 

projection (Fig. 3.24). The latitudes of the first and second standard parallels are 

chosen to lie at 1/6 and 5/6 of the latitudinal range of the map to minimise 

distortion across it (DEETZ AND ADAMS, 1935). Since the latitudinal bounds of H05 

are 22.5°N and 65°N, the first and second parallels for its LCC projection were set 

at 30°N and 58°N, respectively. Throughout the remainder of this thesis, this 

projection is referred to as the native LCC of H05. 

 

Fig. 3.24 Construction of a Lambert Conformal Conic Projection for H05. The ‘cone 

of projection’ is the transparent shape that intersects the globe along the labelled standards 

parallels shown as black lines. Quadrangle boundaries are shown as yellow lines. 

Orthographic projection of Mercury’s northern hemisphere centred on 90°E, 10°N. 
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LCC projections preserve angles locally. As a result, the general shapes of 

geographic features are preserved. For example, circular impact craters on a 

planetary surface appear circular over the entirety of a map projected as a LCC. 

However, distances are distorted such that the map scale is true along the standard 

parallels only. Between the standard parallels the scale is compressed and outside 

them the scale is expanded (Fig. 3.25). For example, an impact crater that is 

200 km in diameter within H05 on Mercury will measure ~6.67 cm in diameter on 

the map at a publication scale of 1:3M. However, on the same map, a 200 km 

diameter crater located at 44°N (i.e. between the standard parallels) will measure 

~6.60 cm in diameter (~0.99× true scale). A 200 km-diameter crater at the edge 

of the H05 basemap at 71°N would measure ~6.73 cm across (~1.01× true scale; 

DEETZ AND ADAMS, 1935). 

 

Fig. 3.25 Tissot’s Indicatrices of deformation for the Lambert Conformal Conic 

projection of the H05 basemap. The central meridian (45°E) and first (30°N) and second 

(58°N) standard parallels that define the projection are labelled and shown as black lines. 

Red, yellow, and blue shapes illustrate the distortion caused by the projection. Quadrangle 

boundaries are shown by yellow lines. ~166 m/pixel monochrome basemap in the native 

projection of H05. 
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Nevertheless, a LCC is a suitable projection in which to conduct geological 

mapping of H05. The preservation of landform shapes across the entirety of the 

basemap will ward against misinterpretation of geological structures. 

Furthermore, the distortion of landform sizes caused by the projection is small and 

therefore unlikely to affect geological interpretations significantly. 

3 . 3 . 3  Scale 

As stated previously, my map of H05 was intended from the beginning of my work 

to be compatible with the other MESSENGER-era quadrangle geological maps of 

Mercury being produced (GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA 

ET AL., 2017). Therefore, the final publication scale of my geological map of H05 

was set as 1:3M-scale. To make the mapping linework as accurate as possible and 

to make it appear ‘smooth’, digitisation needed to be carried out at a larger scale 

than the final publication scale. The other MESSENGER-era mappers (GALLUZZI ET 

AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017) were cognisant of USGS 

guidance for planetary mappers that the digitisation scale should be two to five 

times larger than the publication scale (TANAKA ET AL., 2011). Furthermore, the 

USGS recommends that the scale of digitisation be held constant. Following this 

‘top-down’ recommendation, a map to be published at 1:3M-scale should be 

digitised at a scale between 1:1.5M and 1:600k. An alternative ‘bottom-up’ solution 

to the problem of digitisation scale suggests that it should be 2,000 times the raster 

resolution (TOBLER, 1987). By this rationale, the recommended digitisation scale 

would be ~1:300k, since the resolution of my basemaps is ~166 m/pixel. Bearing 

both these recommended constraints in mind, I elected to map H05 at a constant 

scale of 1:400k. 

3 . 3 . 4  Mapping 

I created my geological map of H05 by digitising vector layers on top of basemap 

raster layers in ArcMap 10.1. All these digitisations belong to one of the three 

feature classes, contained within my geodatabase: 

1. Geological contacts (polylines). 

2. Linear features (polylines). 

3. Surface features (polygons). 
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Polylines are composed of geographically located vertices linked by vector line 

segments. As explained in Section 3.3.3, digitisation was completed at a constant 

scale of 1:400k, in order for mapping detail to be equal over the entirety of the map. 

To this end, polyline digitisation was conducted in vertex streaming mode, 

whereby polyline vertices were created automatically at regular intervals (known 

as the ‘stream tolerance’) as the cursor is moved over the map. I set the stream 

tolerance to 300 m, roughly two times the ground resolution of my basemaps 

(~166 m/pixel). This is because the pixel size represents the absolute limit of 

MESSENGER data resolution. No features smaller than the pixel size can be 

resolved, therefore it would be meaningless, or even misleading, for the ‘resolution’ 

of geological mapping to be higher than this. 

All linework was drawn such that intersecting geological features were digitised by 

line segments that intersect at a common vertex, rather than line segments 

overlapping. 

3 . 3 . 4 . 1  Contacts 

Geological contacts mark the location of a physical boundary between geological 

units. In the case of Mercury, there is evidence that a thick regolith has developed 

over the course of several billion years due to impact bombardment (KRESLAVSKY 

ET AL., 2014), such that little or no bedrock geology is visible in MESSENGER data 

for conventional photogeological interpretation. Instead, and in keeping with the 

previous geological maps of Mercury (TRASK AND GUEST, 1975; GALLUZZI ET AL., 2016; 

MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017), the contacts I digitised show the 

boundaries between different surface geomorphic provinces and impact crater 

materials. A more detailed explanation of crater material contacts is given in 

Section 3.3.5. 

I have mapped two ordinary types of geological contact: (1) certain, where there is 

a sharp and easily located boundary between geomorphic units, and (2) 

approximate, where my interpretation is that a contact between geomorphic units 

must exist, but that its exact location is uncertain. 

I have also included geological faults within the contact feature class. I chose to do 

this in anticipation of different geomorphic units appearing on opposite sides of a 
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fault (i.e. a faulted contact). I originally included the possibility of four different 

fault types within my map: (1) thrust (certain), where a clearly defined fault break 

exists with obvious shortening kinematics; (2) thrust (uncertain), where a feature 

resembling a thrust is present, but this identification is ambiguous; (3) fault 

(certain), where a clearly defined fault break exists, but the kinematics of the fault 

are unclear, and; (4) fault (uncertain), for faults of uncertain existence. As mapping 

progressed, fault identification improved until only thrust (certain) and thrust 

(uncertain) were required. 

3 . 3 . 4 . 2  Linear features 

All non-contact linear features, such as crater rims, ridges and grabens, are 

included within this feature class. 

I digitised the crater rims of all superposing impact craters ≥5 km in diameter. 

Craters ≥20 km in diameter are shown with a black polyline with a double-hachure 

that points into the crater interior. Craters ≥5 km and <20 km in diameter are 

shown with an unornamented black line. Craters rim segments that have been 

buried by superposing impact ejecta or plains material are shown with a black dot-

dash line. For further information about impact crater mapping, see Section 3.3.5. 

I have mapped two classes of wrinkle ridges in H05. Ordinary wrinkle ridges have 

no obvious control on their orientation and are marked with an unornamented 

magenta line digitised along the surface break of the wrinkle ridge. Wrinkle ridge 

rings appear to occur in circular segments and their orientation is obviously 

controlled by impact craters buried directly underneath them. These are marked 

with an orange line digitised in the same manner as ordinary wrinkle ridges. 

Other mapped linear features include networks of small ridges and grabens within 

smooth plains hosted inside impact craters. Although these features are almost 

certainly fault bounded, these bounding faults, often too small to be resolved in 

the basemap, are too closely spaced to appear distinct at the publication scale of 

the map. I have digitised the medial lines of these small ridges and grabens. 

The brinks of irregular pits, interpreted to be explosively excavated volcanic 

craters, are the final class of linear feature. I have marked these with a black single-

hachured line where the hachure points down into the pit. 
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3 . 3 . 4 . 3  Surface features 

Surface features include faculae, hollow fields and secondary impact crater clusters 

and chains. They are digitised originally as polygons, rather than being created as 

polygons from their digitised outlines. They are rendered as transparent 

ornaments on the map to allow the underlying geological units and contacts to 

show through. This is to maximise the geological information apparent in the map 

and to reflect the surficial nature of these features: faculae are thought to be thin 

deposits of pyroclasts, and hollows and secondary impact craters are merely 

depressions in the surrounding geological units. 

3 . 3 . 4 . 4  Geological unit production 

To generate the geological units polygon feature class, I used the ArcMap tool 

‘Feature To Polygon’ with the entire finalised contacts feature class as the input. 

3 . 3 . 5  Crater classification 

Impact crater deposits are too numerous at the quadrangle scale on Mercury for 

them to be mapped as unique units. Instead, since impact craters degrade over 

geological time, they are grouped according to their morphological degradation 

class (MCCAULEY ET AL., 1981). In theory, this will convey information about the 

relative ages of non-overlapping impact craters in the mapping region. This is 

based on the assumption that craters in the same degradation state originally 

formed at similar times and advance in degradation at a similar rate, as explained 

in Chapter 2. Crater materials in the same degradation class that are in contact 

with each other have this contact marked. This makes it clear to the reader which 

crater superposes which. The presence or absence of several morphological 

features (bright rays, secondary crater field, textured distal ejecta, crisp rim, wall 

terraces, internal peak/ring) are used to assign an individual crater to a 

degradation class. However, it should be noted that, all other factors being equal, 

smaller craters will degrade faster on Mercury than larger ones (GALLUZZI ET AL., 

2016). Furthermore, given the qualitative nature of crater degradation, assigning a 

crater to a degradation class is highly subjective and the more classes that are 

available for assignment the less reproducible a classification can be. Nevertheless, 

if a classification scheme with more classes can be properly implemented, the 
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resultant map would have higher temporal resolution and contain more geological 

information than a map with fewer degradation classes. 

Mariner 10-era geological mappers of Mercury classified large impact craters into 

one of five crater degradation classes. These were named c1 (most degraded), c2, c3, 

c4 and c5 (very fresh; MCCAULEY ET AL., 1981). This numbering suggests the 

stratigraphic order that the c1 craters generally formed early in Mercury’s history, 

the c2 craters formed more recently, and so on. Originally, the 1:15M scale global 

geological map of Mercury (PROCKTER ET AL., 2016) being produced by the 

MESSENGER team reversed this numbering scheme, however more recent 

conference abstracts of this map have the original stratigraphic crater degradation 

class numbering scheme (KINCZYK ET AL., 2018B). All craters ≥40 km in diameter 

have been assigned a degradation class in the global map. 

The MESSENGER-era quadrangle mappers of Mercury have adopted a three-class 

crater classification scheme (GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; 

GUZZETTA ET AL., 2017). This is because these mappers wanted to construct a 

morphostratigraphy for their quadrangles, where all craters in a fresher 

degradation class were also stratigraphically younger than any crater in a more 

degraded class. Since the quadrangle maps were produced at a larger scale than 

the global map, they classify all craters ≥20 km in diameter. Some examples of 

degraded craters at the lower size limit of classification were found superposing 

apparently fresher large impact crater materials. In order to reconcile the apparent 

contradiction between crater morphology and stratigraphy, the three-class crater 

classification scheme was created. Classes C3 and C1 are reserved for the freshest 

and most degraded craters, respectively, and craters intermediate in appearance 

are classified as C2. Reducing the number of classes made the classification more 

reproducible, allowing for successful merging of quadrangle maps (GALLUZZI ET AL., 

2019), and also eliminated examples of small craters in degraded classes overlying 

large craters in fresher classes by reclassifiying them both into C2 materials. 

In this work, I have used both classification systems simultaneously on all impact 

craters ≥20 km in diameter. I have done this so that digital versions of my map can 

be compared with both the global geological map of Mercury (PROCKTER ET AL., 

2016; KINCZYK ET AL., 2018B) and the MESSENGER-era quadrangle maps (GALLUZZI 
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ET AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017). For clarity in what 

follows, throughout the remainder of this thesis I refer to the classes of the three-

class scheme with uppercase lettering (i.e. C1, C2, C3) and the classes of the five-

class scheme with lowercase lettering (i.e. c1, c2, c3, c4, c5). In all other respects, I 

have mapped craters in the style of the MESSENGER-era quadrangle maps 

(GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017). Craters large 

enough to be assigned a degradation class also had their floor contacts digitised 

and their floor materials categorised as either smooth or hummocky (see Sections 

3.4.3.2 and 3.4.3.3). No contact between the proximal and distal ejecta of classified 

craters was digitised. 

 

Fig. 3.26 Crater degradation classification schemes employed in H05. The red arrows 

show the approximate correspondence between classes in the five-class scheme (KINCZYK ET 

AL., 2018B) used on all craters ≥40 km in diameter and the three-class scheme (GALLUZZI ET 

AL., 2016; MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017) used on all craters ≥20 km in 

diameter. Note that in the three-class scheme, no contact or distinction is made between the 

proximal and distal crater ejecta. Cartoon modified after GALLUZZI (2015). 

3 .4  Unit descriptions and interpretations 

In this section, I introduce the various mapped units within H05 that were defined 

before mapping commenced. For a discussion of the geological history of H05, see 

Chapter 4. 
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3 . 4 . 1  Intercrater plains 

The most widespread geomorphic unit on Mercury (TRASK AND GUEST, 1975; 

WHITTEN ET AL., 2014; PROCKTER ET AL., 2016), the intercrater plains have been 

described as ‘level to gently rolling ground between and around large craters and 

basins’ (TRASK AND GUEST, 1975). Intercrater plains host large, degraded craters, as 

well as fresher craters. These plains are characterised by a high density of degraded 

secondary impact craters that can no longer be associated with a primary impact 

crater. These craters have different morphologies in different regions of H05, 

either being immature and bowl-shaped, or mature with flat floors and subdued 

rims. Intercrater plains have no striking colour properties and generally coincide 

with the intermediate terrain colour unit (DENEVI ET AL., 2009). 

The intercrater plains probably represent the remains of extensive lava flows that 

erupted before the end of the Late Heavy Bombardment of the inner Solar System 

(WHITTEN ET AL., 2014). They have been substantially reworked by impact 

bombardment and incorporate distal ejecta from many degraded impact craters. 

This explains the poor correspondence between the geomorphically defined 

intercrater plains and colour terrain units on Mercury. 

3 . 4 . 2  Smooth plains 

Smooth plains are abundant in H05 due to its inclusion of a substantial portion of 

Borealis Planitia (Fig. 3.8). In Borealis Planitia, smooth plains are characterised by 

a low density of superposing impact craters and an abundance of wrinkle ridges 

(Fig. 3.27). Superposing craters generally have textured ejecta blankets that appear 

to thin toward their contacts with the surrounding smooth plains. Wrinkle ridges 

that do not form rings overlying impact craters appear to be randomly oriented, 

except where they intercept wrinkle ridge rings; here, they tend to intersect 

perpendicular to the ring. Wrinkle ridges form linked networks that extend across 

much of Borealis Planitia. Borealis Planitia generally has a sharp contact with 

adjacent units. In colour data, Borealis Planitia generally corresponds to the colour 

terrain unit high-reflectance red plains (DENEVI ET AL., 2009), except in the 

southwest of H05 where instead it appears to be low-reflectance blue plains 

(DENEVI ET AL., 2009). 
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Fig. 3.27 Expressions of the smooth plains of Borealis Planitia in H05. (a–c) High-

reflectance red plains material in Borealis Planitia. (a) ~166 m/pixel BDR basemap. (b) 

~665 m/pixel enhanced colour basemap. (c) Mapped units. The contact between the 

geomorphic units smooth plains (sp) and intercrater plains (icp) is sharp. In the centre of 

the view, an impact crater has a mixed surface expression as a partial rim (black hachured 

line) and a wrinkle ridge ring (orange line). (d–f) Low-reflectance blue plains material in 

Borealis Planitia. (d) ~166 m/pixel BDR basemap. (e) ~665 m/pixel enhanced colour 

basemap. (f) Mapped units. As in (c), a sharp geomorphic contact exists between the smooth 

plains (sp) and the intercrater plains (icp). All panels are shown at the publication scale of 

1:3M, in the map’s native LCC, with graticules showing 2° intervals of latitude and longitude. 

Away from Borealis Planitia, smooth plains exist in small patches within the other 

plains units of H05, such as the floors of degraded secondary crater chains or 

volcanic vents. Here, the contact between the smooth plains and the surrounding 

units is often less clear. Smooth plains are also found in patches perched in the 

proximal ejecta of geomorphically fresh craters, such as Rachmaninoff and 

Rustaveli (Fig. 3.28). These smooth patches have sharply defined boundaries. 
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Fig. 3.28 Comparison of Rachmaninoff and Rustaveli in H05. (a–c) Rachmaninoff 

basin. 1:12.5M-scale. (a) ~166 m/pixel BDR basemap. (b) ~665 m/pixel enhanced colour 

basemap. (c) Mapped units. Perched patches of smooth plains are indicated (sp). (d–f) 

Rustaveli crater. 1:10M-scale. (d) ~166 m/pixel BDR basemap. (e) ~665 m/pixel enhanced 

colour mosaic. (f) Mapped units. Perched patches of smooth plains are indicated (sp). 

Graticules in all panels show 5° intervals of latitude and longitude. All panels show the native 

LCC of H05. 

The smooth plains constituting Borealis Planitia are probably the remains of the 

last large-volume effusive eruptions on Mercury (DENEVI ET AL., 2013; OSTRACH ET 

AL., 2015; BYRNE ET AL., 2016). The fact that wrinkle ridge rings of different diameters 

occur alongside each other in Borealis Planitia requires multiple emplacement 

events (OSTRACH ET AL., 2015), which argues for multiple effusions and against a 

basin ejecta origin, such as was the case for the Cayley Plains on the Moon 

(EGGLETON AND SCHABER, 1972), for these smooth plains on Mercury. 

Small patches of smooth plains perched on the proximal ejecta of impact basins 

are interpreted as ponds of fluidised impact ejecta and/or impact melt, as is well 

documented on the Moon (HOWARD AND WILSHIRE, 1975). Small patches within 

low-lying regions of the other plains units of H05 could either represent small-
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scale effusions (MALLIBAND ET AL., 2018) or ponds of impact melt or ejecta (WHITTEN 

ET AL., 2014). 

3 . 4 . 3  Crater materials 

Craters ≥20 km in diameter had their floor contacts and the extent of their 

continuous distal ejecta digitised. Ejecta, walls, and internal uplift (central 

peaks/rings) of each classifiable crater were assigned a common degradation class 

based on their morphology. As I have used both the three-class and the five-class 

crater classification schemes, I describe here the characteristics of the three-class 

system and then state any further characteristics that would allow a classification 

in the five-class system. 

3 . 4 . 3 . 1  Crater degradation classes 

Fresh craters are assigned the C3 degradation state in the three-class system. C3 

craters have sharp crater rims, and where terraces are present these are well-

organised. Any internal uplift (central peaks/rings) has a fresh appearance. The 

contacts between the crater wall, floor, and internal uplift are distinct. C3 craters 

have radially textured ejecta that extends approximately one crater diameter away 

from the crater rim. Often secondary crater chains and clusters can be attributed 

to primary craters in this degradation class. The crater and its ejecta typically have 

few superposing impact craters, unless these are obvious self-secondaries. The 

contact between the crater’s distal ejecta and the surrounding material is relatively 

well-defined. In the five-class system, craters satisfying these criteria are classified 

as c4 craters. If a crater also possesses bright crater rays, then it is classified as c5. 

Moderately degraded craters are assigned the C2 degradation state in the three-

class system. C2 craters have easily identified crater rims but crater terraces are not 

pristine. Original internal uplift is still present but may have been modified by 

subsequent impacts. The crater’s ejecta is less obviously textured and the contact 

with the surrounding materials, particularly if they are intercrater plains, is 

difficult to discern. C2 craters and their ejecta often have multiple superposing C3 

and other C2 impact craters. In the five-class system, craters satisfying these criteria 

are classified as c3 if obvious distal ejecta is still present, or c2 if it is missing or 

greatly subdued. 
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The most degraded craters are assigned the C1 degradation state in the three-class 

system. C1 craters have rims that have been partially or totally overprinted by 

subsequent impacts and often the best indication that a crater of this class is 

present is by consulting topographical data. Crater terraces are both highly 

disorganised and incomplete, or obliterated altogether and the contact with the 

floor material is unclear. Any original internal uplift has been greatly subdued if it 

has not been entirely overprinted. No distal ejecta is discernible. These craters may 

be classified as c2 craters in the five-class system, unless their walls have been 

breached by the surrounding plains, in which case they are classified as c1 craters. 

3 . 4 . 3 . 2  Smooth crater floors 

This is one category of crater floor material mapped in craters ≥20 km in diameter, 

characterised by a smooth and level surface and few superposing impact craters. 

This material may represent solidified impact melt retained within the impact 

cavity. Alternatively, it could be post-impact volcanic plains that erupted directly 

from the crater floor. It is not always possible to distinguish between these two 

possibilities, so such interpretations are left off the map. In degraded craters, post-

impact volcanic resurfacing is more likely to be responsible for smooth material on 

the crater floor. This problem is discussed further in Chapters 4 and 5. 

3 . 4 . 3 . 3  Hummocky crater floors 

This is the other category of crater floor material mapped in craters ≥20 km in 

diameter. It is rough-textured or rolling material found within craters. 

When found in fresh craters this can often be ascribed to crater wall debris or a 

crisp original floor morphology. In more degraded craters, this texture formed as a 

result of impact bombardment of the original crater floor. 

3 .5  Geology of H05 

In the following chapter, I outline the geological history of H05 as determined by 

mapping the units described in this chapter.
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CHAPTER 4  
GEOLOGICAL H ISTORY OF THE HOKUSAI 

QUADRANGLE  

4.1  Introduction 

In this chapter, I present my geological map of the Hokusai quadrangle (H05) of 

Mercury, which was to be a major product of my thesis research as defined from 

the outset. Appendices 1 and 2 contain publication-scale versions of the map with 

the three- and five-class degradation systems, respectively. In Section 4.2.1, I report 

the results of my classification of impact crater materials into two different 

degradation state schemes. In Section 4.2.2, I describe the ‘intermediate plains’ 

unit that I mapped in H05, alongside the established smooth plains and intercrater 

plains units described in Chapter 3. In Section 4.2.3, I outline the major geological 

unit-forming events that affected H05 to produce its present-day photogeological 

units and I present my interpretation of the quadrangle’s general stratigraphy in 

Section 4.2.4. In Section 4.2.5, I discuss the tectonic features of the quadrangle. 

Following this quadrangle overview, I describe in more detail the geology of two 

regions of particular interest in H05: the impact crater Rachmaninoff and the 

surrounding region (Section 4.3.1); and the southwestern region of H05 where I 

mapped evidence of ancient impact basins (Section 4.3.2). 

4.2  Mapping results 

The major geological units in H05 were mapped in accordance with the unit 

descriptions given in Chapter 3, which are based on the map units of the other 

MESSENGER-era quadrangle geological maps of Mercury (GALLUZZI ET AL., 2016; 

MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017). This map is shown in Fig. 4.1 and 

included at its full publication scale in Appendix 1. However, during my mapping I 

found that the geology of H05 cannot be represented adequately with the 

provisions from the other quadrangle maps. This followed from my simultaneous 

use of the 3-class quadrangle (GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; 

GUZZETTA ET AL., 2017) and 5-class MESSENGER team (KINCZYK ET AL., 2018B) crater 
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degradation systems and my discovery of plains in H05 that do not conform to the 

strict definitions of smooth plains or intercrater plains (GALLUZZI ET AL., 2016; 

MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017). 

 

Fig. 4.1 Geological map of H05 using three crater degradation state classes. This 

small-scale map figure is included in this chapter to illustrate the types of features that were 

digitised. ~1:26M-scale. The 1:3M-scale publication version of the map with the finalised 

symbology is in Appendix 1 of this thesis. No overlap with the surrounding quadrangles is 

shown. This projection is the native Lambert Conformation Conic (LCC) projection of H05. 
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4 . 2 . 1  Crater classification 

As explained in Chapter 3, I classified all impact crater materials according to their 

degradation state. I used two systems in parallel: the 3-class system used in the 

MESSENGER-era quadrangle maps (GALLUZZI ET AL., 2016; MANCINELLI ET AL., 2016; 

GUZZETTA ET AL., 2017), where crater materials are classified as C1 (very degraded), 

C2 (degraded), or C3 (fresh); and the 5-class system used in the MESSENGER global 

map (KINCZYK ET AL., 2018B), where crater materials are classified as c1–c5 

(degraded–fresh). The 3-class system was easier to implement and I believe that 

my classifications are robust. Classifying craters into the 5-class system was more 

difficult because of the increased number of intermediate degradation states 

between well-defined end-members. I followed the class definitions of KINCZYK ET 

AL. (2016), which have slightly different criteria for classification depending on the 

original morphology (simple, complex, peak-ring, etc.) of each crater. Classes c1, c4 

and c5 are well-defined, such that I believe all of my classifications into these 

classes are robust and reproducible by other mappers. Classes c2 and c3 are more 

nebulously defined, such that other mappers might classify some moderately 

degraded craters in H05 differently from me. 

Despite a lower classification confidence when implementing the 5-class system, 

it offers the opportunity for higher temporal resolution when interpreting the 

geological history of H05 from its map. This is true only if all craters of a relatively 

undegraded class formed after craters of a more-degraded class. When GALLUZZI ET 

AL. (2016) attempted to implement the 5-class system, they found instances of 

degraded craters superposing relatively fresh craters. This prevented them from 

using the five crater class system to construct a coherent morphostratigraphy, as 

explained in Chapter 3. This apparent contradiction of the principle of 

superposition is most likely explained by the observation that smaller craters 

degrade more rapidly than larger impact craters (KINCZYK ET AL., 2016). Therefore 

they devised the 3-class system. However, I found no instances of degraded craters 

superposing fresher craters in H05 using either system. The most likely 

explanation for the good correlation between crater degradation and stratigraphy 

in H05, compared with H02, is that H05 contains abundant smooth plains, which 

are superposed by the freshest craters only. The reduced extent of older surfaces 
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in H05 means that it contains fewer degraded impact craters than H02, which 

means that the likelihood of crater degradation contradicting stratigraphy in H05 

is lower. This means that if my classifications shown in Fig. 4.2 are reliable, then a 

coherent geological history across the whole of H05 can be reconstructed using 

the 5-class system. This geological history would have higher temporal resolution 

than is afforded by the 3-class system for the other MESSENGER-era quadrangle 

maps of Mercury. I detail the major H05 unit-forming events in Section 4.2.3 using 

the 5-class crater system. Furthermore, I would recommend that future quadrangle 

geological mappers of Mercury also employ the 5-class crater classification system, 

in the first instance, to maximise the amount of geological information displayed 

on their maps, before having to revert to the 3-class system if necessary. 
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Fig. 4.2 Geological map of H05 using five crater degradation state classes. This map 

figure shows a small amount of detail as it is only ~1:26M-scale. A 1:3M-scale version of the 

map is in Appendix 2 of this thesis. No overlap with the surrounding quadrangles is shown. 

Native LCC projection of H05. 

4 . 2 . 2  Intermediate plains 

In addition to smooth plains and intercrater plains, Mariner 10-era quadrangle 

geological maps had additional plains units, including ‘intermediate plains’ 

(SCHABER AND MCCAULEY, 1980; GUEST AND GREELEY, 1983; MCGILL AND KING, 1983; 

GROLIER AND BOYCE, 1984; SPUDIS AND PROSSER, 1984; TRASK AND DZURISIN, 1984; KING 

AND SCOTT, 1990; STROM ET AL., 1990). The exact definitions and interpretations of 
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intermediate plains vary between maps, but generally these plains appear to have 

a surface texture intermediate in roughness between smooth plains and intercrater 

plains mapped elsewhere in a given quadrangle. However, following their study 

using MESSENGER data, WHITTEN ET AL. (2014) recommended that all occurrences 

of intermediate plains in the Mariner 10 maps could be remapped as either smooth 

plains or intercrater plains. To achieve this, smooth patches within intermediate 

plains regions would be remapped as smooth plains and the remaining regions 

(encompassing a variety of textures) are included in the intercrater plains 

(WHITTEN ET AL., 2014). Thus, these two are the only plains units included in the 

first global geological map of Mercury (KINCZYK ET AL., 2018B). 

However, some MESSENGER-era quadrangle mappers have included an 

intermediate plains unit in their maps (GALLUZZI ET AL., 2016; GUZZETTA ET AL., 2017). 

An important result of geological mapping of H05 is that the distinction between 

the plains units on Mercury recognisable at a global scale (i.e. smooth plains and 

intercrater plains) is not so clearly defined at the quadrangle scale, and that a 

consistently mappable intermediate plains unit is a useful geomorphic designation. 

Furthermore, while the different sub-types of the intercrater plains defined by 

WHITTEN ET AL. (2014) may not be important to distinguish at the 1:15M-scale of the 

global map (KINCZYK ET AL., 2018B), these different sub-types are worth splitting 

into separate formal units at the quadrangle-scale, particularly if a plausible 

provenance for each can be found. 

4 . 2 . 2 . 1  Description 

The regions I have designated as ‘intermediate plains’ in H05 were all mapped as 

intercrater plains in the global geological map of Mercury (KINCZYK ET AL., 2018B). I 

use the name intermediate plains merely to reflect the observation that these 

plains have a texture intermediate in roughness between the intercrater plains and 

the smooth plains in H05 (Fig. 4.3). I do not suggest at this stage that the 

intermediate plains are necessarily intermediate in age between the intercrater 

plains and the smooth plains. Intermediate plains are characterised by hummocky 

terrain composed of degraded impact crater rims. The intervening low-lying 

regions are often topographically level and have smooth surfaces. These smooth 

patches are a significant defining character of the intermediate plains unit, making 
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up ~50% of its total area, which is a substantially larger percentage of smooth 

material than that contained within the intercrater plains (WHITTEN ET AL., 2014). 

In many instances, it is obvious that the locations of the smooth patches are 

delimited by depressions formed by underlying impact craters. While the 

hummocky and smooth regions are separable on the basis of texture, they have 

indistinguishable albedo and colour for the most part. Intermediate plains 

generally resemble intercrater plains in terms of colour and albedo, in that they are 

blue and have low reflectance. The smooth patches qualitatively appear to have a 

similar superposing crater density to the smooth plains, however these patches do 

not have a sufficient area to test this observation with a statistically robust crater 

size-frequency distribution study since they typically occupy several hundred 

square kilometres only. I have mapped some larger smooth patches that occupy 

obvious crater interiors, and are fully topographically confined, as smooth plains 

instead of intermediate plains. Nevertheless, many smooth patches are 

interconnected in networks such that contacts separating them from more 

hummocky regions would approach fractal complexity and could not be 

meaningfully displayed at the map publication scale of 1:3M. Thus, I decided to 

map the intermediate plains as a single unit defined by degraded crater controlled-

hummocky plains with intervening smooth patches. 
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Fig. 4.3 Comparison of plains units within H05. (a) Smooth plains in monochrome. 

Smooth plains are characterised by a low spatial density of superposing impact craters. Any 

superposing impact craters are generally in a relatively undegraded state. Wrinkle ridges are 

abundant. ~166 m/pixel BDR basemap. (b) Smooth plains in enhanced colour. The 

geomorphic unit smooth plains typically corresponds to the colour-composition unit high-

reflectance red plains, as shown here. Same view as (a). ~665 m/pixel enhanced colour 

basemap. (c) Intermediate plains in monochrome. Intermediate plains have a variable 

texture that is intermediate in roughness between smooth plains and intercrater plains. 

~166 m/pixel BDR basemap. (d) Intermediate plains in enhanced colour. Intermediate plains 

albedo and colour typically correspond to those of the intercrater plains. ~665 m/pixel 

enhanced colour basemap. (e) Intercrater plains in monochrome. Intercrater plains in H05 

have a high density of superposing impact craters in all states of degradation. ~166 m/pixel 

BDR basemap. (f) Intercrater plains in enhanced colour. Intercrater plains are generally 

bluer than smooth plains and correspond to the intermediate terrain, low-reflectance blue 

plains, and low-reflectance material colour units. ~665 m/pixel enhanced colour basemap. 

All panels are shown at the publication scale of 1:3M, in the map’s native LCC projection, 

with graticules showing 5° intervals of latitude and longitude. 

 

Intermediate plains in H05 are generally in contact with both smooth plains and 

intercrater plains, rather than being entirely contained within either unit (Fig. 4.4). 

This suggests that the formation of the intermediate plains is closely linked to the 

formation and extent of the smooth and intercrater plains. Intermediate plains 

contacts with smooth plains are typically sharp, whereas contacts with intercrater 

plains are more uncertain in their location, particularly where the intermediate 

plains exhibit their hummocky, rather than smooth, texture. I have found two 

putative volcanic vents within the intermediate plains (See Section 4.3.2 for further 

discussion). 
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Fig. 4.4 Spatial relationship between the intermediate plains, smooth plains, and 

intercrater plains in H05. (a) In western H05, intermediate plains (ip) are located directly 

between the smooth plains (sp) of Borealis Planitia in the north and the intercrater plains 

(icp) in the south. The contact with the smooth plains is sharply defined, whereas the 

intercrater plains contact is much less certain. (b) Part of the most extensive region of 

intermediate plains in H05 shown. This intermediate plains unit has a more complex spatial 

relationship with smooth and intercrater plains than in (a), as it is bordered by and contains 

both. The colours of the geological units in both panels match those in the legend of Fig. 4.2. 

Semi-transparent geological units are overlain on the ~166 m/pixel monochrome basemap. 

Native LCC projection of the H05 map. 

4 . 2 . 2 . 2  Interpretation 

Based on my observations that the smooth patches within the intermediate plains 

pond in topographic lows, form interconnected networks in places, and 

geomorphologically resemble and are typically in contact with the smooth plains, 

I suggest that these smooth patches were emplaced as lava flows. Some smooth 

patches may be due to ponds of impact melt, however the locations of the smooth 

patches are not obviously colocated with craters that could have distributed impact 

melt, which means this alternative explanation is unlikely in most cases. I suggest 

that the lava flows were of insufficient volume to achieve the thickness required to 

mask the hummocky texture from the underlying intercrater plains completely. As 

a result, intermediate plains cannot be mapped as smooth plains, because it is not 

sufficiently smooth, nor is it satisfactory for it to be mapped as intercrater plains 
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because that would remove visualisation of the proposed small-volume effusions 

from the map. 

There is already a precedent for smooth plains material ‘flooding’ surrounding 

terrain on Mercury. BYRNE ET AL. (2013) describe a landscape northwest of the 

Caloris basin that contains volcanically flooded impact features, valleys with 

smooth plains on their floors (which they interpret as lava channels), and they also 

observe areas where the intercrater plains material surrounding these volcanically 

flooded regions has a muted topographic expression. They interpret this ‘graded 

terrain’, that is in contact with smooth plains, as intercrater plains that has been 

inundated by a volume of lava, in the same way that I interpret the intermediate 

plains in H05. 

It is difficult to tell whether effusions in southwestern H05 occurred in either the 

early or late stages of smooth plains formation in Borealis Planitia. If the 

interpretation of the intermediate plains as intercrater plains with a thin infilling 

of superposing lavas is correct, then age dating by measuring the crater size-

frequency distribution of the intermediate plains would be problematic since it 

would be difficult in many cases to determine if a crater superposes the 

intermediate plains or is a crater ‘inherited’ from the underlying intercrater plains. 

Instead, I made several observations along the intermediate plains-Borealis 

Planitia contact to establish the stratigraphic relationship between the two (Fig. 

4.5). I tried to make similar observations to ROTHERY ET AL. (2017), who examined 

the relationship between the circum-Caloris plains and Caloris Planitia. 

Unfortunately, MESSENGER data are of insufficient resolution to distinguish 

between the three possible relationships outlined in Fig. 4.5. This means the 

intermediate plains could be the same age as much of the smooth plains (Fig. 4.5a), 

older (Fig. 4.5b), or younger than most of the smooth plains in H05 (Fig. 4.5c). In 

Sections 4.2.3 and 4.3.2 I discuss observations that suggest that at least some of the 

intermediate plains formed after most of the smooth plains in H05 were emplaced. 
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Fig. 4.5 Possible stratigraphic relationships between the smooth and intermediate 

plains. (a) Smooth and intermediate plains formed due to effusions from distributed centres 

simultaneously, making both surfaces similar in age. sp = smooth plains, ip = intermediate 

plains, and icp = intercrater plains. (b) Intermediate plains formed early during distributed 

effusions. In time, perhaps due to global contraction (BYRNE ET AL., 2016), eruption centres 

migrated away from where intermediate plains are observed today to where smooth plains 

have accumulated in greater thickness. Intermediate plains are stratigraphically older than, 

and are onlapped by, smooth plains. (c) Smooth plains accumulated in global lows, such as 

Borealis Planitia. In response to the growing thickness of lava, eruption centres migrated 

away from the centre of the thick volcanic pile to the edge (MCGOVERN AND LITHERLAND, 

2011). Intermediate plains formed due to late-stage, low-volume effusions that did not reach 

the required thickness to mask the texture of the underlying intercrater plains entirely. 

4 . 2 . 3  Main unit formation 

Here I outline the geological history of H05, based on my map shown in Fig. 4.2. 

Several figures throughout this section (Fig. 4.8, Fig. 4.9, Fig. 4.10, Fig. 4.13, Fig. 

4.14, and Fig. 4.15) show the major unit-forming epochs as determined from the 

complete map. 

The oldest geological events that occurred in H05, for which observable evidence 

exists in MESSENGER data, are the formations of three candidate ancient impact 

basins. FASSETT ET AL. (2012) proposed numerous large (≥300 km) basins across the 

whole of Mercury, including the three they informally refer to as ‘b30’, ‘b31’, and 

‘b45’, which extend into H05 (Fig. 4.6). b30 and b31 were first identified as circular 

topographic depressions in a stereo DEM constructed from MESSENGER flyby 

data by PREUSKER ET AL. (2011). b45 was subsequently proposed on the basis of 

orbital stereo DEM data. FASSETT ET AL. (2012) deemed the existence of each of these 

candidate ancient basins to be ‘probable’, rather than ‘certain’, on the basis that 
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each has only ~20% of its rim present. A updated version of the FASSETT ET AL. 

(2012) catalogue of ancient basins has upgraded the confidence of the existence of 

b30 and b31 from probable to certain (ORGEL ET AL., 2019). 

 

Fig. 4.6 Topography of locations of candidate ancient basins that extend into H05. 

The basins are labelled and the approximate locations of their rims are marked in black 

according to the basin centre coordinates and diameters measured by FASSETT ET AL. (2012). 

Quadrangles are labelled and their boundaries are shown in red. The topography dataset for 

H05 is the stereo-derived, ~222 m/pixel DEM of STARK ET AL. (2017), whereas the remainder 

of the figure uses the global 665 m/pixel DEM (BECKER ET AL., 2016). Higher resolution DEMs 

of H02, H06 and H10 were not available at the time of writing. Native LCC projection of the 

H05 map. 
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In H05, I found additional geological evidence supporting the existence of the 

~1,390 km diameter basin, b30. A series of narrow (~20 km across), linear raised 

ridges (up to ~1 km of relief) with wide (30–50 km across), intervening troughs 

radiate from the basin centre beyond the approximate location of the north-

eastern rim of b30. The ridges do not appear to be fault-bounded, which suggests 

that they are not lobate scarps. Instead, I suggest that these ridges and troughs are 

impact sculpture (see FASSETT ET AL., 2009) due to radial scouring of, and secondary 

crater chain (catena) formation in, the terrain to the northeast of the b30 impact 

site. This is the same as the proposed formation mechanism for the Van Eyck 

Formation in the Caloris Group (MCCAULEY ET AL., 1981; FASSETT ET AL., 2009), and a 

comparison of the Van Eyck Formation with the region north-east of b30 shows 

that they are very similar in appearance (Fig. 4.7). The somewhat more degraded 

appearance of the impact sculpture around b30 compared with that of Caloris most 

likely reflects the older age of the b30 impact. 

 

Fig. 4.7 Comparison of terrain associated with candidate ancient basin, b30, and the 

Caloris Group Van Eyck Formation. (a) Linear ridges and troughs radiating away from 

the northeastern rim of b30 (black line). H05 mapping LCC projection. (b) View of the Van 

Eyck Formation northeast of the Caloris basin rim. Sinusoidal projection centred on 170°W. 

Both panels show the ~166 m/pixel monochrome basemap. 

If the linear troughs and valleys that appear to radiate from the candidate ancient 

basin b30 are correctly interpreted as radial scour and catenae, then it must be 

explained why such impact sculpture is found in only a small azimuthal interval 
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around the basin. The full extent of radial troughs and ridges is shown in Fig. 4.7 

and this region is completely contained within H05. I observed no obvious radial 

troughs or ridges in the adjoining quadrangles occupied by b30 (H02, H06 and 

H10). I suggest that this is primarily due to preservation bias, rather than an 

originally asymmetric distribution of impact sculpture around b30. Much of the 

Van Eyck Formation is embayed by smooth plains, suggesting that the Van Eyck 

Formation could have been more extensive immediately after the Caloris impact 

but has since been buried in places by smooth plains material. b30 is certainly older 

than both the smooth plains and the intercrater plains, which suggests that much 

of the original extent of its impact sculpture could have been buried by both of 

these plains units in combination. This hypothesis is corroborated by the fact that 

the radial ridges represent not only locally high relief, but are also generally 

elevated 1–2 km above datum, allowing them to escape burial since plains 

preferentially infill low-lying regions. The troughs between the ridges are infilled 

by smooth and intermediate plains, which I interpret to reflect deeper and 

shallower degrees of floor burial by lava flows, respectively. Any additional original 

sculpture associated with b30 might have been buried by so great a combined 

thickness of intercrater and smooth plains material that no surface expression of it 

remains except that which I have outlined in Fig. 4.8. 
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Fig. 4.8 Illustration showing the oldest geological units within H05 for which there 

is observable evidence. Geological basement of uncertain origin and composition is shown 

in dark grey. The original locations of the rims of candidate ancient basins (FASSETT ET AL., 

2012) are shown as dashed black lines. Ancient basin interiors are light grey. Hypothetical 

original extents of basin ejecta are shown in transparent light blue. Geological evidence for 

these ancient basins, in the form of radiating ridges and other high-standing topography, is 

shown with a black outline in opaque light blue. Based on the apparent differential 

preservation of basin sculpture around b30, I tentatively suggest that basin b45 formed first, 

followed by b30, then b31. Native LCC projection of H05. 

Subsequent overprinting or obliteration of impact sculpture by impacts and their 

ejecta could be a further erosional agent. Since the three ancient basins in H05 are 

closely colocated, it may be possible to suggest the order in which they formed. On 

the basis of the extent of geological evidence for all three candidate ancient basins 

in H05, I tentatively suggest the order of formation described in Fig. 4.8. Since b30 

is the only candidate basin with a substantial geological expression, its spatially 

differential preservation is the most important line of evidence I used to suggest a 

formation order for the basins. In Fig. 4.8, I show conservative estimates for the 
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original extent of the basins’ ejecta, i.e. one basin radius beyond the presumed 

location of their rims. The linear ridges and troughs, that appear to radiate from 

b30, are well expressed in the region where the b30 and b45 ejecta blankets might 

be expected to interact. However, ridges and troughs are greatly subdued or absent 

in the region where b30 and b31 materials might have interacted. This provides 

some evidence that b45 formed first, b30 formed second, creating sculpture 

potentially more extensive than observable today, and b31 formed last, partially 

removing sculpture in the region to the northwest of the rim of b30. 

Regardless of the formation order of the basins, they are the earliest geological 

events with any direct visible evidence for their occurrence in H05. The basins in 

turn provide evidence for the original crust of Mercury into which their impactors 

collided. This basement is of uncertain origin and composition, and is not 

unambiguously expressed at the present-day surface of H05. As mentioned in 

Chapter 2, it has been suggested that Mercury had a very thin (~100 m thick), 

perhaps laterally discontinuous, flotation crust of graphite (VANDER KAADEN AND 

MCCUBBIN, 2015). It has also been suggested that graphite might be the surface 

darkening agent that contributes to the low albedo of the low-reflectance material 

(LRM) distributed across the surface of Mercury, and hence that LRM forms the 

remains of the primary crust (PEPLOWSKI ET AL., 2016). LRM does not appear to be 

associated with the raised ridges radiating from b30, which might be expected to 

contain remnants of the ejecta of that basin. Therefore, it is not clear whether b30, 

or any of the other candidate ancient basins, formed in a primary crust of graphite. 

However, a much younger impact crater, Rachmaninoff, has exhumed a substantial 

amount of LRM. Rachmaninoff contains the lowest surface elevation on Mercury 

and overlies thin crust (SORI, 2018). Therefore, the LRM exhumed by this impact 

might be representative to some degree of the basement at the bottom of the H05 

stratigraphy. Rachmaninoff is discussed in detail in Section 4.3.1. 

Following the formation of the basement and the subsequent formation of the 

ancient basins, many smaller impact craters formed that are still observable today, 

despite heavy degradation. The remains of these impact craters are classified as c1 

material. Since fresh observable impact craters on Mercury generally have ejecta 

blankets that extend approximately one crater diameter beyond their respective 
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crater rims, in Fig. 4.9 I show present-day c1 crater material in opaque light blue, 

surrounded by an annulus extending one crater diameter beyond each crater rim 

in transparent light blue, indicating the possible original extent of each crater’s 

impact ejecta. This is to illustrate, to a first approximation, the fraction of the 

impact ejecta that survives from this period of H05’s geological history. As Fig. 4.9 

illustrates, c1 crater material has been heavily reworked and overprinted by 

subsequent geological events. 

 

Fig. 4.9 Map of the most degraded impact crater materials in H05. Observable c1 

degradation state crater materials are shown in opaque light blue. Hypothetical original 

extents of c1 crater materials are shown in transparent light blue as an annulus extending 

one crater diameter beyond the respective crater rim. Here, ancient basin ejecta is 

interpreted as c1 crater material and symbolised as such. Native LCC projection of H05. 

The first major secondary crust, for which there is unequivocal geological evidence 

in H05, is the intercrater plains unit. As can be seen in Fig. 4.10, present-day 

observable intercrater plains have a strong control on the current extent of c1 crater 

material. Intercrater plains appear to have buried the original floor of basin b30 

and they embay the rims of most c1 crater material. The most extensive c1 crater 
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material is found in topographically high regions, which provides further evidence 

that the intercrater plains formed primarily as lava flows that infilled low-lying 

topography and that higher regions escaped burial (Fig. 4.11). 

 

Fig. 4.10 Map showing the present and original (inferred) extent of the intercrater 

plains in H05. Intercrater plains (opaque brown) are interpreted (transparent brown) to 

have buried the original basement in H05 by their formation as effusions of lava. Observable 

intercrater plains appear to have a strong control on the present-day extent of c1 crater 

materials, suggesting that these craters formed before the intercrater plains. Observable c2 

crater materials (opaque blue) are shown with hypothetical original ejecta blanket extents 

(transparent blue) as in Fig. 4.8. Intercrater plains appear to control the extent of c2 craters 

to differing degrees, which suggests that craters in this class formed during and after most 

of the intercrater plains emplacement. Background is the ~166 m/pixel H05 monochrome 

basemap. Native LCC projection of H05. 
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Fig. 4.11 The relationships between plains units and degraded crater materials in 

H05. (a) A typical c1 crater. (b) Geological map of the crater shown in (a). Intercrater plains 

have completely buried the distal ejecta blanket and embay the topographically elevated 

proximal ejecta. Intercrater plains appear to have buried part of the northern rim of the 

crater. Later smooth plains material appears to have been emplaced subsequent to infilling 

of the crater floor by intercrater plains material. c2 crater material in this view has been 

embayed to differing degrees, which suggests that craters in this degradation state formed 

during and after the formation of most intercrater plains. (c) A c1 crater with more extensive 

ejecta. This c1 ejecta appears to have been preserved because it is located on globally high-

standing topography (see part (d)). Plains material occupies some of the nearby low-lying 

areas, but appears to have been unable to flood much of the c1 material. This, in combination 

with a coincidental lack of superposing impact craters, appears to be responsible for the 

uncommon extensiveness of c1 crater material here. (d) Same view as (c). ~222 m/pixel stereo 

DEM (STARK ET AL., 2017). Backgrounds of all panels are the ~166 m/pixel H05 monochrome 

mosaic basemap. Geological units shown in (b) and (c) are coloured as in Fig. 4.2. Red lines 

indicate the extent of H05. All panels are in the native LCC projection of the H05 map. 

 

By comparing Fig. 4.9 and Fig. 4.10, more original c2 material is observable today 

than c1 material. In Fig. 4.11a and Fig. 4.11b, c2 crater material that both superposes, 

and is superposed by, intercrater plains can be seen, suggesting that c2 crater 

formation and intercrater plains emplacement were contemporaneous. 

Furthermore, ejecta from the ~200 km diameter crater, Copland, appears to be 

buried by intercrater plains, except in the southeast (Fig. 4.12). There does not 

appear to be a substantial elevation difference between Copland’s unburied ejecta 

and the nearby intercrater plains, which provides some indication that intercrater 

plains emplacement involved multiple, spatiotemporally distributed eruption 

centres with lava flow lengths on the order of hundreds, rather than thousands, of 

kilometres, as has been suggested for smooth plains emplacement elsewhere on 

Mercury (ROTHERY ET AL., 2017). This could explain why some parts of a crater’s 

ejecta, which effectively formed together in a geological instant, can be buried by 

plains in some parts and unburied in others that are separated by hundreds of 

kilometres. 
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Fig. 4.12 The relationship between c2 crater material and intercrater plains in H02. 

(a) Copland crater (~200 km across). This crater has a sharp rim in places and has a 

degraded but recognisable distal ejecta blanket that superposes very degraded craters 

nearby. These observations qualify it for classification as a c2 crater, rather than a c1 crater. 

(b) Detail of the geological map of H05, focussed on Copland. Copland’s western ejecta 

blanket is buried by intercrater plains but the southeastern ejecta blanket is unburied. The 

colours of the geological units match those in the legend on Fig. 4.2. Both panels show the 

~166 m/pixel high-incidence western illumination mosaic tiles in the native LCC projection 

of the H05 map. 

The emplacement of the smooth plains as effusions of lava was the next major 

geological event that took place in H05 (Fig. 4.13). The smooth plains of Borealis 

Planitia dominate the geology of H05. Smooth plains are interpreted as the 

remains of the most recent large volume effusions of lava on Mercury (BYRNE ET AL., 

2016). As such, they embay all c1 and c2 craters with which they are in contact. c3 

craters appear to have formed during and immediately after the emplacement of 

the smooth plains, since some small c3 craters appear to superpose them. Away 

from the smooth plains, c3 crater ejecta extends substantially closer to estimated 

original ejecta extents, as illustrated in Fig. 4.13. This suggests that all c3 craters 

formed after the end of intercrater plains formation. 

The smooth plains in most of Borealis Planitia correspond to the high-reflectance 

red plains colour unit, however the smooth plains in southwestern H05, at the 

location of b31, correspond to low-reflectance blue plains (DENEVI ET AL., 2009). 

Therefore, it is possible that the relatively small extent of low-reflectance blue 
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plains smooth plains associated with b31 is merely due to impact craters depositing 

blue material on top of them. However, most of the impact craters in this region 

are embayed by the smooth plains, and therefore predate them. It is more likely 

that the colour difference between the smooth plains associated with b31 and those 

elsewhere in H05 is due to an original compositional difference between the lavas. 

For example, there could be lateral compositional heterogeneity in the mantle 

source region beneath b31 and the rest of Borealis Planitia. Alternatively, the 

compositional difference could be due differences in the residence times in the 

magmatic plumbing systems at b31 and the rest of Borealis Planitia, such that the 

erupted lavas at one location were more evolved than at the other. A similar 

contrast between the smooth plains inside and outside of an impact basin is seen 

at Caloris. The interior plains, Caloris Planitia, correspond to high-reflectance red 

plains, whereas the exterior plains correspond to low-reflectance blue plains 

(DENEVI ET AL., 2009). 

Intermediate plains do appear to embay c3 crater material, which supports my 

interpretation that this plains unit formed close in geological time to the smooth 

plains and could be smooth plains material of insufficient thickness to bury the 

underlying hummocky texture of the intercrater plains. If both intermediate and 

smooth plains represent the remains of effusions of lava, then the geological 

history of H05 could be reconstructed in more detail if the relative ages of the 

smooth plains and the intermediate plains could be determined. As explained 

earlier in Section 4.2.2.2, if the intermediate plains are younger than the smooth 

plains, then the intermediate plains might represent small volume, terminal 

effusions in H05, which would explain why they are of insufficient thickness to 

bury the intercrater plains to a sufficient depth to appear as smooth plains. 

Alternatively, if eruption centres migrated from where the intermediate plains 

exist to smooth plains areas, then intermediate plains could be older lava flows. It 

will take high-resolution observations of the intermediate plains by BepiColombo 

to determine their stratigraphic position and characterise the geological history of 

H05 further. 

Smooth plains contain wrinkle ridge rings, which indicate buried impact craters. 

Based on the observations outlined earlier in Section 4.2.3, I suggest that most of 
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these buried impact craters originally impacted into either intercrater plains 

material or H05 basement, and formed at a time when c1, c2 or early c3 craters were 

formed. 

 

Fig. 4.13 Map showing the present and original (inferred) extent of the smooth 

plains in H05. Smooth plains (light pink) probably represent the most recent large-volume 

effusions of lava on Mercury. All c2 craters in contact with smooth plains material are 

embayed by it, which suggests that most of these craters formed before the end of smooth 

plains emplacement. Observable c3 crater materials (green) are shown with hypothetical 

original ejecta extents (transparent green) as in Fig. 4.8. Smooth plains do appear to control 

the extent of c3 ejecta in places, whereas intercrater plains do not, which suggests that c3 

craters formed before, during, and after the emplacement of the smooth plains. Intermediate 

plains appear to have a similar effect on the extent of c3 crater materials, which suggests 

that intermediate plains are closer in age to smooth plains than intercrater plains. 

Background is the ~166 m/pixel H05 monochrome basemap. Native LCC projection of H05. 

c4 craters formed following the end of large-volume smooth plains emplacement. 

While I found no examples of crater materials in this degradation state that are 

embayed by volcanic smooth plains, the large craters Rachmaninoff and Rustaveli 

have small patches of smooth plains on their proximal ejecta that I interpret as 
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ponds of impact melt. Textured c4 crater ejecta extends approximately one crater 

diameter beyond the rim of its respective crater regardless of the target material 

(Fig. 4.14). This suggests that all major plains formation in H05 had ceased by the 

time these craters formed. 

 

Fig. 4.14 Map showing the ejecta of all mapped impact craters in H05, except those 

with bright crater rays. c4 craters (heliotrope) have textured ejecta blankets that extend 

approximately one crater diameter beyond their crater rims irrespective of whether 

surrounding material is intercrater, intermediate, or smooth plains, which suggests that all 

these craters formed after the end large-scale volcanic plains formation. Rachmaninoff (Ra) 

and Rustaveli (Ru), c4 craters with prominent patches of superposing smooth plains, are 

labelled. Background is the ~166 m/pixel H05 monochrome basemap. Native LCC projection 

of H05. 

A small number of rayed c5 craters are the most recent impact craters to have 

formed in H05 (Fig. 4.15). Rays from these craters always superpose c4 craters 

where they are in contact, which suggests that all c5 craters in H05 formed after c4 

craters. The putative explosive volcanic deposits Nathair and Neidr Faculae both 
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appear to superpose the distal ejecta of the c4 crater Rachmaninoff, which would 

imply that at least the most recent explosive volcanic eruptions at these sites 

occurred after many c4 craters formed. 

 

Fig. 4.15 Map showing the most recent geological features within H05. c5 craters have 

bright crater rays (semi-transparent white polygons). Hokusai (Ho) is surrounded by bright 

rays, which means that it appears paler than other c5 craters in the map. Crater rays are not 

embayed by any plains materials, which confirms that rayed craters formed after the end of 

large-volume effusive eruptions in H05. Major pyroclastic deposits in H05 superpose c4 

crater materials, which suggest that the most recent faculae formed after the beginning of 

c4 crater formation, or perhaps even more recently. Native LCC projection of H05. 

4 . 2 . 4  Correlation of main units 

Based on the geological history outlined in the previous section, I have constructed 

a schematic chronostratigraphy for H05 (Fig. 4.16). Following the advice of 

GALLUZZI ET AL. (2016), the simple formation order of the crater materials is shown, 

rather than all possible superposition relationships (e.g. mapped c4 material does 

superpose c1 material in some places, but is not illustrated in Fig. 4.16). 
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Fig. 4.16 Approximate chronostratigraphy of H05. On the right, a schematic 

stratigraphy shows the relative order of formation of the major geological units based on the 

main superposition relationships observed in the map. Undulating boundaries between units 

indicate that the overlying unit has an erosional relationship with the underlying unit. 

Question marks indicate an ambiguity in the placement of a unit in the stratigraphy. Dotted 

lines represent inferred, but unobserved, unit relationships. On the left, a geological 

timescale shows the extents of the time systems of Mercury. The bases of the Tolstojan and 

Calorian shown here were determined by SPUDIS AND GUEST (1988). The bases of the 

Mansurian and Kuiperian shown here were determined by BANKS ET AL. (2017). Approximate 

bounding absolute model ages for the major geological units are taken from the literature 

and tied to the geological timescale. Based on a similar figure in GALLUZZI ET AL. (2016). 

4 . 2 . 4 . 1  Summary of H05 geological evolution 

1. H05 basement of speculative origin formed. 

2. Early c1 craters and ancient impact basins formed, followed by the 

remainder of c1 craters. 

3. c2 craters and the intercrater plains formed, however c2 crater formation 

appears to have outlasted intercrater plains formation in H05. 
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4. c3 craters and smooth plains predominantly of volcanic origin formed. 

Intermediate plains formed alongside smooth plains. c3 crater formation 

appears to have outlasted smooth and intermediate plains formation. Some 

explosive volcanic vents and deposits may date from this time. 

5. c4 craters formed. Some smooth plains, of probable impact melt origin, 

superpose c4 crater proximal ejecta. This is the oldest stratigraphic age that 

can be ascribed to explosive volcanic vents and deposits in H05. 

6. c5 craters formed. Explosive volcanic vents and deposits might also have 

formed at this time. 

4 . 2 . 5  Tectonics 

Here I describe the formation and development of the tectonic structures in H05 

(Fig. 4.17) separately from the formation of the main map units. 

 

Fig. 4.17 Map of tectonic structures in H05 overlain on colourised topography. 

~1:26M-scale. Background is the ~222 m/pixel  stereo-DEM (STARK ET AL., 2017), overlain on 

the H05 ~166 m/pixel basemap. Native LCC projection of H05. 
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The most abundant tectonic features within H05 are the wrinkle ridges in Borealis 

Planitia (Fig. 4.18). Wrinkle ridges are thought to form in compressive stress 

regimes and appear to be the surface expressions of thrust faults (BYRNE ET AL., 

2014). As explained in Chapter 3, they come in two mapped forms: common 

wrinkle ridges and wrinkle ridge rings. Both wrinkle ridge types have 

indistinguishable appearances, except that wrinkle ridge rings form closed or 

nearly closed loops that appear to overlie impact craters rims that have been buried 

by the smooth plains hosting the wrinkle ridges. This observation argues that aside 

from the control on the orientations of the wrinkle ridge rings by buried impact 

craters, both common and ring wrinkle ridges are formed as a result of folding in 

response to reverse faulting at shallow depth with very similar fault parameters. 

The orientations of common wrinkle ridges are not obviously controlled by the 

margins of Borealis Planitia, which distinguishes them from the wrinkle ridges 

elsewhere on Mercury. The wrinkle ridges in the Caloris (MURCHIE ET AL., 2008) 

and Rembrandt (WATTERS ET AL., 2009) basins are obviously radial or concentric to 

the basin rims, similar to the wrinkle ridges in the lunar maria (SOLOMON AND 

HEAD, 1980). Since wrinkle ridge orientations in H05 do not appear to be controlled 

by the margins of the lavas that host them, then the compression that generated 

them probably had some influence stronger than that of volcanic loading, such as 

global contraction (BYRNE ET AL., 2014). A recent study of the wrinkle ridges 

throughout the whole of Borealis Planitia suggests that structures are 

predominantly oriented east–west north of 70°N and north–south south of 50°N 

(CRANE AND KLIMCZAK, 2019). Their study utilised the MLA DEM (ZUBER ET AL., 2012) 

to map structures, which mitigates against illumination bias when mapping linear 

features (FEGAN ET AL., 2016). Therefore the latitude dependent orientation of 

wrinkle ridges in Borealis Planitia seems real, which means the wrinkle ridges 

cannot have formed solely in response to global contraction, which would yield 

randomly oriented structures (STROM ET AL., 1975). Instead, some wrinkle ridges 

may be exploiting and reactivating buried structures related to the tidal despinning 

of the planet (MELOSH, 1977; CRANE AND KLIMCZAK, 2019). 
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Fig. 4.18 Wrinkle ridges in H05. (a) Smooth plains with abundant wrinkle ridges. 

~166 m/pixel monochrome mosaic. Note how wrinkle ridge rings of different diameters are 

closely colocated. (b) Same view as (a). Transparent geological units are coloured as shown 

in the legend of Fig. 4.2. Common wrinkle ridges (magenta lines), wrinkle ridge rings (orange 

lines), and grabens (black lines) are shown. Background is the ~166 m/pixel monochrome 

mosaic. Both panels are in the native LCC projection of the H05 map. 

Since wrinkle ridge rings form due to thrust faults that have propagated along the 

structural discontinuity between crater walls and their infills, this geometry 

suggests that wrinkle ridge rings lie above shallowly rooted faults. Numerical 

dislocation models, where fault parameters are derived from measured fault-

induced topography, suggest that wrinkle ridge faults penetrate to a depth of 

~25 km (PETERSON ET AL., 2017), but this depth is far below the base of Borealis 

Planitia, where the wrinkle ridges are found, which is 1–3 km thick (OSTRACH ET AL., 

2015). These fault penetration depths seem inconsistent with the geometry of 

wrinkle ridge rings as deep-penetrating faults arranged in a ring could intersect at 

depth. Geological studies of fault-bounded landforms in Borealis Planitia suggest 

that wrinkle ridge faults are shallowly rooted (CRANE AND KLIMCZAK, 2019). This is 

more consistent with my observation that common wrinkle ridges closely resemble 

wrinkle ridge rings. Therefore, I tentatively suggest that all wrinkle ridge landforms 

are probably shallowly rooted to a basal décollement, probably at the interface 

between the volcanic unit in which the wrinkle ridges are found and the underlying 

basement (Fig. 4.19). This basement was probably modified by impact cratering, 

such that its regolith could act as the decoupling layer between the volcanic plains 
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and the basement, forming the décollement. This is the same mechanism by which 

basin-edge lobate scarps are proposed to have formed (FEGAN ET AL., 2017). 

 

Fig. 4.19 Cartoon showing how wrinkle ridge rings formed. (a) In this model, a lava 

flow field (orange) advanced over a substantially older, regolith-covered plains unit (grey) 

that is superposed by impact craters of different sizes (yellow). (b) The first lava flow field 

buried smaller craters in its path, but only embayed larger craters. Smaller craters may have 

topographic signature as a depression in the smooth plains, if not a morphological 

expression, due to volcanic sagging. Later, new impact craters formed. A second lava flow 

field advanced over the first. (c) The second lava flow completely infilled topographic 

depressions from small impact craters buried by the first lava flow field. Smaller craters that 

superposed the first lava flow are now buried by the second lava flow. Larger craters that 

were superposed on the original plains were buried by the second lava flow field. (d) Large-

volume effusions ceased due to global contraction (BYRNE ET AL., 2016). The weak regolith 

layer between the basement plains and the lavas acted as a decoupling layer, focussing fault 

development along the boundary between walls of buried craters and their infilling lavas. 

These faults thrusted the lava units up and out of their host craters, to form outwardly 

verging folds observable today as wrinkle-ridge rings. Circumferential wrinkle ridges shielded 

the interiors of large buried craters from the compressive stress regime, allowing networks 

of grabens to form within some examples (FREED ET AL., 2012). Multiple lava flow events are 

required for wrinkle ridge rings of different sizes to exist alongside each other within the 

smooth plains (OSTRACH ET AL., 2015) as shown here and observed in my map of H05. 
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Lobate scarps, which are the most important tectonic features on Mercury, are not 

abundant in H05. This appears to be due to the widespread smooth plains in H05 

compared to most other quadrangles. Lobate scarps occur more commonly in the 

intercrater plains (STROM ET AL., 1975). The most prominent lobate scarp in H05 is 

Unity Rupes, in the southeast of the quadrangle (Fig. 4.20). This lobate scarp was 

unnamed when I started my mapping, but since it was the largest tectonic feature 

in H05, I applied to the IAU for it to be named. Lobate scarps on Mercury are 

named after ships used during expeditions of scientific discovery. The Unity was 

an East Indiaman that conveyed Edmond Halley to St Helena where he observed a 

transit of Mercury in 1677 (COOK, 1998), making ‘Unity’ a fitting name for a lobate 

scarp on the planet. Unity Rupes was officially named on 31st January 2016. 

Unity Rupes has been interpreted as a right-lateral ramp at the northernmost 

extent of a system of lobate scarps extending ~2,000 km south of it containing 

Blossom Rupes (MASSIRONI ET AL., 2015). The southernmost extent of the system has 

a corresponding left-lateral ramp. This system indicates broad east-to-west 

movement of Mercury’s crust by thrust faulting. The importance of strike slip 

tectonics at Unity Rupes separates it from most other lobate scarps on Mercury, 

which appear to be chiefly compressional. Beagle Rupes is an important example 

of a well-studied lobate scarp on Mercury that exhibits transpressional lateral 

ramps similar to Unity Rupes. It served as a useful comparison when I attempted 

to determine the sequence of faulting that formed the Unity Rupes system. 
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Fig. 4.20 Unity Rupes. White triangles indicate the main Unity Rupes fault surface break. 

Yellow triangles indicate a small fault break that intersects with the prominent bend in Unity 

Rupes and trends northward. A red triangle indicates a linear rise similar to that associated 

with lobate scarps that does not have an obvious fault break. A crater that is cross cut by 

Unity Rupes, and used to estimate the movement on the fault, is indicated with a white 

arrow. The white box indicates the extent of Fig. 4.21. ~500 m/pixel M1M2M3M10 mosaic. 

Red line shows the extent of H05. Mercator projection centred on 85°E, 27°N. 

I have made one key observation of Unity Rupes that narrows down the possible 

sequences of faulting that led to the present landscape. Upon close inspection of 

the junction between the main Unity Rupes fault break and the smaller, northward 

spur, it appears that the northward spur has been cross-cut by the main fault break, 

and so the spur is older than the rest of Unity Rupes (Fig. 4.21). This means that 

originally the Unity Rupes fault was generally north–south trending, until the bend 
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developed, at which point movement on the northward spur ceased. The more 

recent fault developed in the hinterland of the northward spur and appears to have 

been active for longer as it has attained much greater relief. Thrust propagation 

into the hinterland is sometimes referred to as ‘out-of-sequence’ thrusting since on 

Earth propagation of thrusts into the foreland has been documented more widely 

(MORLEY, 1988). 

 

Fig. 4.21 Interacting faults at Unity Rupes. The main continuous Unity Rupes fault break 

(black triangles) cross-cuts the apparently earlier northward spur (yellow triangles). A 

possible hint of the abandoned northward spur fault break and uplift behind the main Unity 

Rupes fault (question mark). Sinusoidal projection centred on 82.6°E, 25.7°N. MDIS NAC 

frame EN1033975119M. ~18 m/pixel. 

Out-of-sequence thrusting has been reported at Beagle Rupes on Mercury 

(ROTHERY AND MASSIRONI, 2010), where a fault geometry was described very similar 
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to that observed at Unity Rupes (Fig. 4.22). The faults labelled 2 and 3 in Fig. 4.22 

form a junction that resembles the junction at Unity Rupes. Fault 3 cross-cuts fault 

2, and so it is the younger of the two. Both these faults are interpreted to be part 

of the Beagle Rupes system and they lie in its hinterland. The fault geometry at 

Beagle Rupes led ROTHERY AND MASSIRONI (2010) to suggest the whole fault system 

bottoms out into a regional décollement at a depth of ~30 km. It is possible that 

the Unity Rupes system also links into a décollement. The nature of this 

décollement, and whether or not it could be the same as the Beagle Rupes one, can 

only be speculated upon at this stage. Unity Rupes and Beagle Rupes are ~1,500 km 

apart. Given the higher relief of lobate scarps (~2 km), compared with wrinkle 

ridges (~400 m), it seems likely that the décollements for both Beagle Rupes and 

Unity Rupes lie at an interface at a greater depth than the base of the volcanic 

plains that host the wrinkle ridges. A deeper interface is required to allow faults 

with greater down-dip widths, which build higher topography, to propagate. 

Therefore, the décollement could be the base of the crust, the brittle-ductile 

transition within the lithosphere (PACHECO ET AL., 1992), or a crustal discontinuity 

such as the buried floor of an ancient basin (WATTERS ET AL., 2004). The candidate 

ancient basin ‘b44’ (102.6°E, 10.3°S, diameter ~450 km; FASSETT ET AL, 2012) may 

have provided a decollement for Beagle Rupes, but no ancient basins are currently 

suggested to lie underneath or close to Unity Rupes. 

There are other similarities between Beagle Rupes and Unity Rupes. At the 

northernmost extent of Beagle Rupes there are fault segments detached from, but 

parallel to, the main fault break (I have marked one at the top-centre of Fig. 4.22). 

Unity Rupes has a very similar arrangement, although it has a linear topographic 

rise between its main break and the detached fault segment. Since this linear rise 

has no obvious surface break it might be pre-existing topography unrelated to 

Unity Rupes or it could be due to folding directly due to the compression 

responsible for forming the Unity Rupes system (see CRANE AND KLIMCZAK, 2019) 

related to hinterland fault propagation. 
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Fig. 4.22 Beagle Rupes. This lobate scarp has many fault break geometries similar to those 

that I have observed at Unity Rupes. The north–south trending main fault break of Beagle 

Rupes becomes a right-lateral ramp at fault’s northernmost extent, which resembles Unity 

Rupes closely. The small fault segment at the top of the figure sits behind a continuation of 

the main thrust front of Beagle Rupes. A similar arrangement appears at Unity Rupes. The 

faults marked 1, 2, and 3 were interpreted by ROTHERY AND MASSIRONI (2010) to be part of 

the Beagle Rupes fault system and to have formed after the main fault break in the order that 

they are numbered in the figure, based on their cross-cutting relationships. The junction 

between fault breaks 2 and 3 is very similar to the fault junction at Unity Rupes (Fig. 4.21). 

Also note the elliptical crater Sveinsdóttir at the left of this figure. This crater cannot be used 

to investigate the kinematics of Beagle Rupes by circle-fitting because the rim did not 

originally form as a circle (GALLUZZI ET AL., 2015). ~500 m/pixel M1M2M3M10 mosaic. 

Mercator projection centred on 108°E, 8°S. Simplified from ROTHERY AND MASSIRONI (2010) 

(their Fig. 1) with kind permission from the authors. 
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I estimated the slip vector of Unity Rupes by following the method of GALLUZZI ET 

AL. (2015). Impact craters that have been deformed by faults can be used to estimate 

the direction and amount of movement of faults on planetary bodies (GOLOMBEK 

ET AL., 1996; PAPPALARDO AND COLLINS, 2005). Circles are fitted to the walls of craters 

cross-cut by a fault (Fig. 4.23). The vector joining the centres of the circle fitted to 

the crater wall on the footwall side of the fault and the circle fitted to crater wall 

on the hangingwall side of the fault indicates the slip trend and the horizontal 

component of movement on the fault (GALLUZZI ET AL., 2015). With additional 

elevation data, the vertical component of movement can be determined, which 

would allow the reconstruction of the fault plane (GALLUZZI ET AL., 2015). This is 

achieved by comparing the elevation of the crater rim or floor on either side of the 

fault. The circle-fitting method relies on two assumptions: that the faulted craters 

were circular when they originally formed; and that crater deformation is entirely 

due to fault movement. Most fresh impact crater rims on Mercury are well 

approximated by circles (HERRICK ET AL., 2012), and impact craters begin to exhibit 

ellipticity only when the impact angle is ~10° from the horizontal or less (BOTTKE 

ET AL., 2000). The second assumption is more difficult to justify. Faulting of craters 

may conceivably deform them in more ways than by sliding on the fault. For 

example, faulting may cause collapse of the crater walls. Furthermore, impact 

craters on Mercury are subject to degradation by regolith gardening and 

bombardment, which would cause deformation unrelated to fault movement. 

Nevertheless, GALLUZZI ET AL. (2015) obtained fault plane solutions of 15 lobate 

scarps on Mercury using this method.  

My applications of the GALLUZZI ET AL. (2015) method to Unity Rupes in H05 are 

illustrated in Fig. 4.23 and the results are recorded in Table 4.1. The faulted crater 

lies on the north–south trending part of Unity Rupes south of its bend and the 

junction with the northward spur (Fig. 4.20). As can be seen in Fig. 4.23, the crater 

is very degraded (I classified it as c2). The highly degraded state of this crater is not 

ideal for characterising the activity of Unity Rupes. The degradation means that no 

meaningful estimate of the vertical component of Unity Rupes’ movement can be 

made, since degradation acts to decrease the original rim-to-floor depth of the 

crater by eroding the walls and infilling the floor (BAKER AND HEAD, 2013). Crater 
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wall degradation may result in outward retreat of the crater rim. This would have 

the effect of increasing the diameters of the fitted circles, but it should not affect 

the apparent centres of the craters. Thus, the magnitude and direction of 

horizontal transport determined by the method should remain valid. Furthermore, 

crater rim retreat has been shown to be insignificant on Mercury (WOOD ET AL., 

1977). Therefore, I applied the method to Unity Rupes in order to investigate the 

contention of MASSIRONI ET AL. (2015) that much of it serves as a lateral ramp. 
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Fig. 4.23 Circle fits to impact crater faulted by Unity Rupes. (a) ~166 m/pixel BDR 

basemap circle fit. (b) MDIS NAC mosaic circle fit. NAC frames EN0252092730M 

(~26 m/pixel), EN0252093741M (~26 m/pixel), and EN0254596575M (~38 m/pixel). (c) 

~500 m/pixel M1M2M3M10 mosaic circle fit. (d) ~166 m/pixel high-incidence angle mosaic 

with eastern illumination circle fit. (e) ~166 m/pixel high-incidence angle mosaic with 

western illumination circle fit. (f) Illustration of the circle fitting method. Circles are fitted 

to the impact crater rims on both the hangingwall and footwall sides of Unity Rupes. The 

bearing from the centre of the footwall circle to the centre of the hangingwall circle gives the 

direction of transport, or ‘slip trend’. The horizontal distance between the centres of the two 

circles is the amount of horizontal movement on the fault (Δx). Some items in the key are 

used only in the illustrative sketch in part (f) to reduce visual clutter in the other parts. Parts 

(a–e) show the same view of the faulted crater indicated in Fig. 4.20. All parts are 

stereographic projections, which preserve local angles, centred on 85°E, 27°N. 
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Fig. 4.23 

ref. 

Footwall 

diameter (km) 

Hangingwall 

diameter (km) 

Slip 

trend (°) 

Δx (km) 

a 32.5 32.1 259 2.3 

b 34.5 34.1 247 4.7 

c 34.0 33.0 255 4.0 

d 36.0 34.0 259 5.0 

e 33.7 34.1 257 3.3 

mean 34.1 ± .1.3 33.5 ± 0.9 255 ± 5 3.9 ± 1.1 

Table 4.1 Crater circle fitting measurements for Unity Rupes. 

If the slip trend I measured using the circle fitting method (255 ± 5°) is correct, 

then, at the location of the faulted crater, Unity Rupes exhibits nearly pure 

thrusting, since the fault break and the slip trend are approximately perpendicular 

(Fig. 4.23f). If this transport direction is uniform throughout the Unity Rupes 

system, then, due to the bend in the fault, most of the surface break is sub-parallel 

to the transport direction. This is consistent with Unity Rupes forming a right-

lateral ramp as suggested by MASSIRONI ET AL. (2015). 

4.3  Regions of interest 

Producing the reginal map of H05 drew my attention to some geologically complex 

regions of special interest. I address the most important localities in the following 

subsections. 

4 . 3 . 1  Rachmaninoff 

The Rachmaninoff impact basin (Fig. 4.24) was introduced in Chapter 3 as a feature 

of interest that led me to select H05 as my mapping quadrangle. Here, I describe 

the formation and geological evolution of the basin. 
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Fig. 4.24 Perspective view of Rachmaninoff crater. This view was created in ArcScene 

using the ~166 m/pixel basemap overlain on the ~222 m/pixel stereo DEM of H05 by STARK 

ET AL. (2017). Original image projection was the native LCC projection of H05. 

I have designated Rachmaninoff as a c4 crater, based on its crisp rim and 

widespread textured ejecta blanket that dominates the geology of southeast H05. 

This designation agrees with that of KINCZYK ET AL. (2016) on the global geological 

map of Mercury (PROCKTER ET AL., 2016; KINCZYK ET AL., 2018B). c4 craters formed 

during the Mansurian (KINCZYK ET AL., 2016; BANKS ET AL., 2017), long after the end 

of large-volume effusive eruptions on Mercury (BYRNE ET AL., 2016), and the 

superposition of distal Rachmaninoff ejecta on smooth plains northeast of the 

crater supports this interpretation (Fig. 4.24). 

The floor of Rachmaninoff has striking colour variations, with a typically rough and 

low-albedo annulus between the crater wall and the peak-ring, and a smoother and 

higher albedo region contained within the peak-ring, except in the south where 

the peak-ring is absent. PROCKTER ET AL. (2010) were the first to suggest that the 

smooth plains that are mostly confined within the peak-ring, and are much redder 

than the blue, low-reflectance material elsewhere on the basin floor, formed due 

to post-impact volcanism. This interpretation is supported by crater size-frequency 

distribution studies, which suggest that the red plains are younger than the blue 

basin floor and Rachmaninoff’s ejecta blanket (PROCKTER ET AL., 2010; CHAPMAN ET 
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AL., 2012). The plains within the peak-ring contain a network of grabens that BLAIR 

ET AL. (2013) attribute to the thermal contraction of a thick volcanic unit. 

 

Fig. 4.25 Perspective view of Rachmaninoff in enhanced colour. Important colour 

variations interpreted in this section are labelled. ~665 m/pixel. 

Where the high-albedo red plains lie outside the peak-ring in the south, they 

terminate in particularly high-albedo spots with diffuse boundaries. Suge Facula is 

one of these spots. Unlike most other faculae on Mercury, Suge Facula and the 

others within Rachmaninoff do not contain rimless depressions that are 

interpreted as the explosive volcanic vents responsible for depositing pyroclasts to 

form the high albedo region (a facula). This suggests that faculae can be created by 

means other than deep-seated, centralised explosive volcanic eruptions. 

Rachmaninoff’s crater floor within Suge Facula has a somewhat pitted appearance, 

leading THOMAS ET AL. (2014A) to classify it as ‘pitted ground’, rather than a vent 

deposit. THOMAS ET AL. (2014B) suggested that pitted ground formed due to volatile 

loss from the substrate disturbing an overlying cooling lava; an interpretation that 

remains generally accepted (JOZWIAK ET AL., 2018). 

Due to the complex geological history of this basin, I have made several 

reconstructions of Rachmaninoff at different stages of its development based on 

my own observations (Fig. 4.26–Fig. 4.28 and Fig. 4.31). 
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Fig. 4.26 Illustration of the geology of Rachmaninoff immediately following its 

formation. Assuming the red plains in the crater are volcanic in origin, I show my inferences 

of the original extent of rough crater floor and impact melt. Drawn from the perspective view 

shown in Fig. 4.24. 

Rachmaninoff probably formed after the end of large-volume volcanic eruptions 

on Mercury due to global contraction (BYRNE ET AL., 2016), since it is a c4 crater with 

ejecta superposing nearby smooth plains, yet the presence of volcanic plains within 

the crater suggests that the impact took place when subsurface magma storage was 

still occurring. The interior of Rachmaninoff contains the lowest surface elevation 

on Mercury (BECKER ET AL., 2016; STARK ET AL., 2017) and the underlying crust is also 

the thinnest on the planet (SORI, 2018). Therefore, it is probable that material 

excavated by Rachmaninoff originally came from the lowermost crust or 

uppermost mantle. Rough Rachmaninoff floor materials are made of low-
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reflectance material (LRM), which is believed to be dark due to its graphite content 

(PEPLOWSKI ET AL., 2016). Since Rachmaninoff has exhumed material from deep 

within the stratigraphy of H05 it appears consistent that this basal material should 

be the carbon-rich primary flotation crust hypothesised by VANDER KAADEN AND 

MCCUBBIN (2015). The fact that other impacts in H05 do not appear to have 

exhumed LRM could be due to the primary graphite crust being laterally 

discontinuous or buried too deeply away from the thin crust at Rachmaninoff. The 

carbon on and beneath the crater floor probably played a role as a volatile 

substance in the volcanic evolution of the crater that followed its formation 

(WEIDER ET AL., 2016). 

After the crater’s initial formation, several geologically significant effects occurred. 

The impact removed overburden, promoted uplift, temporarily reset the pre-

existing stress regime, propagated fractures, and deposited heat, all of which could 

have facilitated the generation and extraction of magma from the subsurface 

(BYRNE ET AL., 2016). These effects would have been most strongly felt in the centre 

of the crater, where the volcanic plains appear to be thickest, based on their colour 

(thinner volcanic plains would have their red colour signature more readily 

subdued by mixing with the substrate by impact gardening). Modelling suggests 

that in order for thermal contraction of a cooling lava to produce the pattern of 

graben seen in Rachmaninoff, the plains must be ~1 km thick in the centre (BLAIR 

ET AL., 2013). The less pronounced red colour of the northwestern and northeastern 

plains could be because they have a thickness substantially less than 1 km. If these 

plains are thinner, this might reflect a general shift from eruption centres 

distributed throughout the crater in the geological time immediately following the 

impact, to more eruptions concentrated in the centre of the crater. This would 

make the outer plains older than the inner plains. Alternatively, the outer plains 

might have formed after the central plains became critically thick such that magma 

could no longer ascend to the surface there, and low-volume terminal effusions 

may have been redirected to outside the peak-ring. Neither hypothesis for the 

outer plains can be rejected, since the inner and outer plains are not in contact at 

any location for their stratigraphic relationship to be assessed. Based on 

Rachmaninoff postdating the smooth plains, the crater likely formed <3.5 Ga. 

Initial model age estimates of the central red plains in Rachmaninoff suggested 
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they formed ~1 Ga (PROCKTER ET AL., 2010), although this very young age was since 

revised to an older age, albeit one that still resolvably postdates the impact (~2 Ga; 

CHAPMAN ET AL., 2012). 

 

Fig. 4.27 Illustration showing the post-impact volcanism in Rachmaninoff. At least 

three eruption centres were active during the first stage of post-impact volcanism in 

Rachmaninoff: one in the northwest, one in the northeast (possible ascent path illustrated) 

and one in the centre (possible ascent path illustrated). The northwestern and northeastern 

volcanic plains are interpreted as thinner deposits than the central volcanic plains based on 

their less pronounced red colour. The basal topography of the central plains is based on that 

suggested by BLAIR ET AL. (2013). 

Suge Facula and the other faculae within Rachmaninoff appear to have formed at 

the same time as the central lavas in Rachmaninoff, or later (Fig. 4.28). It is 

interesting that Suge Facula lies at the boundary between smooth volcanic plains 

in Rachmaninoff and other impact-related units. If Suge Facula formed because 



Chapter 4: Geological History of the Hokusai Quadrangle 

132 

lavas flowed over a volatile–bearing substrate (Fig. 4.29), as suggested by THOMAS 

ET AL. (2014A), then Suge facula probably does represent the most distal reach of 

the central Rachmaninoff lavas. Furthermore, if Suge Facula formed in this fashion, 

then it might yield some insight into the succession of lava flows that took place 

in Rachmaninoff. 

 

Fig. 4.28 Illustration showing the extent of early volcanism in Rachmaninoff. Suge 

Facula and other regions of pitted ground in Rachmaninoff are interpreted as disrupted lava 

flows. Following its eruption, thermal contraction of the volcanic pile is believed to be 

responsible for creating the network of grabens in Rachmaninoff’s centre (BLAIR ET AL., 2013).  
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Fig. 4.29 Cartoon illustrating how pitted ground may form due to substrate 

devolatilisation. (a) In this model, an advancing lava flow moves undisturbed over a 

substrate containing an insubstantial quantity of volatile material but approaches a 

compositionally distinct substrate with a high volatile content. (b) The lava flows over the 

volatile-bearing substrate. Heat from the lava is conducted into the substrate and vapourises 

the volatile material. Volatile material explosively propagates through the lava and escapes. 

The lava surface is disrupted by shallow subsurface explosions and minor fountaining. (c) 

When devolatilisation has ceased, the lava surface has developed a pitted texture in response 

to subsurface collapse and excavation. 

I interpret Suge facula and the other faculae in Rachmaninoff with the pitted 

ground texture as the most distal reaches of centrally sourced lava flows in the 

crater. Therefore, the thickness of the lava diminishes toward the eastern extent of 

Suge facula, which I interpret as the approximate location of the flow terminus. In 

the model where pitted ground formed when a hot lava flowed over a volatile-

bearing substrate, the lava must be of some specific thickness such that explosive 

loss of volatiles in the subsurface creates pits at the surface. Furthermore, for the 

pitted ground texture to be present today, it must not have been buried too deeply 

by subsequent lava flows or obliterated by impacts. Therefore, the eastern extent 

of Suge Facula is controlled by either the lava flow length or the presence of 

volatiles in the substrate. Given that no ‘normal’ smooth red plains occur beyond 

Suge Facula, it appears that the extent of the lava controls the extent of Suge Facula 

and that the eastern margin of Suge Facula is the approximate location of the flow 

terminus. The western extent of Suge Facula might have been controlled by the 

thickness of the lava. Since the lava thickness will increase toward the centre of 

Rachmaninoff, it will be thicker in the west of Suge Facula compared with the east, 

where I interpret the lava to terminate. The location of the western margin of Suge 

Facula might reflect a threshold thickness of lava above which subsurface volatile 
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loss does not manifest at the surface. Alternatively, as the supply of lava waned 

following the creation of an originally more extensive region of pitted ground, 

subsequent lava flows emanating from the centre of Rachmaninoff might not have 

reached as far as the proposed flow terminus at the eastern margin of Suge Facula, 

but were of sufficient thickness to bury any pitted ground texture that developed 

west of Suge Facula. This latter hypothesis is supported by evidence for late-stage 

flows in the centre of Rachmaninoff discussed below. Both scenarios would 

produce the observed surface morphologies illustrated in Fig. 4.30. 

 

Fig. 4.30 Illustration of the formation of Suge Facula pitted ground. Lava erupted 

from the centre of Rachmaninoff and built up until it could flow past the peak-ring. Early 

lava flows might have flowed over volatile-bearing substrates and developed into pitted 

ground by the mechanism described in Fig. 4.29. Later flows buried this pitted ground, if it 

formed, such that most volcanic plains within Rachmaninoff have a smooth surface. The 

location of Suge Facula represents an example of a distal lava flow in Rachmanininoff that 

did not have its pitted ground buried. This lava flow was sufficiently thin such that 

devolatilisation of the substrate disrupted the lava surface giving it a pitted texture to form 

Suge Facula. Explosions and fire-fountaining must have been sufficiently minor to avoid 

observable amounts of pyroclastic material accumulating on the peak-ring. This mechanism 

also applies for the other more minor regions of pitted ground within Rachmaninoff, which 

also appear to coincide with the most distal reaches of lava flows emanating from the centre 

of Rachmaninoff. Cartoon not to scale. 
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Once the majority of the effusions in the centre of Rachmaninoff ceased, a network 

of circumferential and radial grabens formed. BLAIR ET AL. (2013) used 

thermomechanical simulations to model the formation of the grabens in 

Rachmaninoff. They found that thermal contraction of a thick volcanic pile was 

the best fit mechanism for their formation. This was the only proposed mechanism 

that could produce the observed pattern of grabens. Other proposed mechanisms 

were extension due to uplift of the basin floor and subsidence due to volcanic 

loading. Models predict that basin floor uplift occurs geologically rapidly after the 

impact (within 10 kyr to 1 Myr; BLAIR ET AL., 2013). This would require the volcanic 

plains in Rachmaninoff to have been emplaced and cooled beneath their elastic 

blocking temperature shortly after the impact. Since the interior smooth plains of 

Rachmaninoff have a resolvably younger crater-retention age than the basin itself, 

it seems probable that the most recent eruptions in Rachmaninoff postdate the 

crater by at least ~100 Myr. Furthermore, uplift models do not induce a stress state 

that produces the observed pattern of grabens, making graben formation due to 

uplift unlikely (BLAIR ET AL., 2013). Subsidence due to volcanic loading for all the 

considered models had flexural wavelengths greater than the extent of the central 

smooth plains (BLAIR ET AL., 2013). For a range of elastic thicknesses of the 

lithosphere, crustal thicknesses and volcanic load thicknesses, all models predicted 

that the entirety of the volcanic plains in Rachmaninoff would be in compression 

due to volcanic loading (BLAIR ET AL., 2013). This would preclude the formation of 

the observed grabens, requiring another process, such as thermal contraction of a 

thick volcanic pile to dominate over flexure due to loading. 

However, the thermal contraction model also predicts grabens that extend into the 

very centre of Rachmaninoff (BLAIR ET AL., 2013). No grabens are observed within a 

radial distance of ~10 km from the crater’s centre. Instead, small ridges are 

observed (Fig. 4.31). Modelling suggests that the compressional stresses required 

to generate these ridges would not have been sufficient to preclude or reverse the 

generation of grabens at the centre of Rachmaninoff (BLAIR ET AL., 2013). This 

supposition is supported by observations of cross-cutting systems of grabens and 

ridges elsewhere on Mercury (WATTERS ET AL., 2009). It has been suggested that the 

central graben have been buried by a late-stage lava flow (BLAIR ET AL., 2013). This 



Chapter 4: Geological History of the Hokusai Quadrangle 

136 

hypothesis is corroborated by the shallower grabens occurring at the inner edge of 

the observable network. It is possible that they have been partially infilled by this 

late-stage flow. Ridge formation, probably due to volcanic loading, might have 

occurred before and during late-stage flow emplacement, but the ridges observable 

today could entirely postdate late-stage flows (BLAIR ET AL., 2013). Ridge formation 

represents the latest volcano-tectonic event to take place within Rachmaninoff. 

Further geological activity within the crater is restricted to hollow formation, 

which is prevalent in the peak ring of the basin. 
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Fig. 4.31 Illustration showing the terminal stages of volcanism in Rachmaninoff. A 

terminal stage of effusive volcanism is corroborated by the embayed appearance of the 

innermost grabens in the centre of Rachmaninoff. Small ridges formed in the very centre of 

Rachmaninoff due to subsidence of the basin in response to volcanic loading (BLAIR ET AL., 

2013). 

 

4 . 3 . 1 . 1  Volcanic vents exterior to Rachmaninoff 

As stated in Chapter 3, an important factor in my decision to map H05 was that 

this quadrangle contains the largest putative pyroclastic deposit on Mercury 

(Nathair Facula) and its source vent (Fig. 4.32a). When I mapped this vent I found 

that its putative pyroclastic deposit superposes Rachmaninoff’s distal ejecta (which 

in turn superposes volcanic smooth plains nearby). This implies that the most 

recent explosive volcanic eruptions that formed Nathair Facula occurred after the 

Rachmaninoff impact. Eruptions probably took place at Nathair Facula in the same 

interval of geological time that post-impact eruptions took place within 

Rachmaninoff, although these sites of volcanism are so distant from each other 

that no superposition relationship to establish their relative ages can be observed. 

Following the example of ROTHERY ET AL. (2014), who studied the vent formerly 

known as the ‘kidney-shaped depression’ (HEAD ET AL., 2008, 2009; KERBER ET AL., 

2009), hosted within the bright spot now known as Agwo Facula, I examined the 

floor of the vent within Nathair Facula to estimate the number of eruptive episodes 

that took place within the vent. In contrast to the Agwo Facula vent, the Nathair 

Facula vent lacks the prominent septa between eruption centres that aided 

ROTHERY ET AL. (2014) in their interpretations. I hypothesise that this could be due 

to the different settings of these two vents. Agwo Facula is located in southwestern 

Caloris Planitia, and so its vent structure is likely composed of competent smooth 

plains material. According to my mapping, the Nathair Facula vent is located in 

intercrater plains, which is more heavily cratered than smooth plains, and 

therefore likely to possess much less strength (LE FEUVRE AND WIECZOREK, 2011). 

This may have prevented septa from forming and/or surviving within the Nathair 

Facula vent. Alternatively, the high inferred volcanic gas concentration at Nathair 
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Facula (KERBER ET AL., 2011) may have made it sufficiently explosive such that septa 

could not form or were destroyed by subsequent eruptions. 

 

Fig. 4.32 Vent within Nathair Facula. (a) Note the different floor and wall textures 

throughout the vent, including gullies on the northern wall. Mosaic of NAC frames 

EN0224508427M, EN1003815055M, EN1003843856M, and EN1993843866M. ~26 m/pixel. 

Orthographic projection centred on 63.8° E, 35.8° N. (b) Vent map with labels indicating 

floor textures from very degraded (1) to very fresh (5). My numbering conveys my interpreted 

relative order of eruption of the identified eruption centres within the vent: 1 = first, 2 = 

second, 3 = third, 4 = fourth, and 5 = fifth. Bold, hachured line indicates vent brink. Fine lines 

indicate boundaries between floor textures. 

Nevertheless, I have identified geomorphic textures on the floor of the Nathair 

Facula vent (Fig. 4.32b) that suggest that the locus of volcanic eruptions migrated 

in geological time, similar to what ROTHERY ET AL. (2014) observed at the Agwo 

Facula vent, which they interpret as a compound volcanic vent (DAVIDSON AND DE 

SILVA, 2000). Similar to my classification of impact crater degradation states, I 

demarcated distinct floor textures within the Nathair Facula vent and assigned 

them a number according to how degraded they appear. ‘1’ appears to be the most 

degraded floor area and has a uniform and featureless texture. I suggest that this 

is mostly due to its being the oldest eruption centre in the Nathair Facula vent such 

that regolith gardening and subsequent eruptions and deposition of pyroclasts 

have largely buried its original floor texture. On the basis of its crisp appearance 

and apparent cross-cutting relations with its surrounding floor textures, I suggest 
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that ‘5’ is the youngest eruption centre within the vent. The relative order of the 

remaining demarcated regions is somewhat more equivocal, but all the floor 

textures taken together suggest that at least five eruption centres exist within the 

Nathair Facula vent, making it a ‘compound volcano’ (DAVIDSON AND DE SILVA, 

2000). 

The demarcated eruption centres within the Nathair Facula vent are not 

approximately circular in shape, as might be expected if they were excavated 

explosively. This possibly reflects that within each demarcated region multiple 

eruptions took place before the centre of eruption migrated to the next region. 

Each region likely reflects a composite shape formed by multiple eruptions that 

occurred within a relatively short interval of geological time, which provides an 

explanation for the irregular outlines and uniform textures of the larger, older 

centres (1 and 2). The younger centres (3, 4, and 5) appear to have circular pits 

within them that could be candidate eruption sites, but I could not confidently 

determine the relative order of the eruption sites within regions 3, 4, or 5. Younger 

eruption sites within eruption centres 3 and 5 have likely overprinted eruption 

centre 1, which would contribute to the convoluted outline of eruption centre 1. 

Overall, eruptions from the Nathair Facula vent appear to have migrated from 

south to north. This is reflected in both an increase in floor texture crispness 

toward the north of the vent, but also an increase in vent wall geomorphic 

complexity. The vent walls south of ~36°N are relatively featureless, similar to a 

wall in an impact crater in an advanced state of degradation. North of ~36°N, the 

vent walls show evidence of recent mass movement downslope and gully formation 

(MALLIBAND ET AL., 2019A). This suggests that the southern (older) eruptions in the 

Nathair Facula vent occurred long enough ago that slope evolution by mass 

movement has slowed sufficiently such that regolith gardening has become the 

most important modifying agent of the southern vent slopes. Eruptions at the 

northern (younger) sites occurred sufficiently recently that evidence of gully 

formation has yet to be erased by regolith gardening. 

The nearby Neidr Facula vent (Fig. 4.33) does not have such a diversity of floor and 

wall textures as the Nathair Facula vent. The non-circular outline of the Neidr 

Facula vent suggests that it too was excavated by multiple eruptions, making it 
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another example of a compound volcanic vent on Mercury. If my interpretations 

of the Nathair Facula vent are correct, then the absence of distinct floor textures 

within the Neidr Facula vent suggests that if multiple eruptions did occur, then 

they did so within a relatively short span of geological time. Furthermore, septum 

development between individual eruption sites may have been precluded due the 

vent forming within incompetent intercrater plains material. Rachmaninoff distal 

ejecta is superposed by Neidr Facula material, which implies that at least the most 

recent eruptions from this vent postdate the Rachmaninoff impact, as with Nathair 

Facula. The formation order of the Nathair Facula and Neidr Facula is more 

difficult to determine as these features do not overlap. I suggest that eruptions at 

Nathair Facula extended into the more recent past than those at the Neidr Facula 

vent, since the Neidr Facula vent lacks the same crispness of floor and wall textures 

(particularly gullies) apparent within the Nathair Facula vent. 

 

Fig. 4.33 Vent within Neidr Facula. I did not observe diverse floor or wall textures 

comparable to those of the Nathair Facula vent (Fig. 4.32) within the Neidr Facula vent. 

Mosaic of NAC frames EN0249844224M and EN0249844228M, ~30 m/pixel. Orthographic 

projection centred on 57.4°E, 36.0°N. 

An interesting observation both the Nathair Facula vent and the Neidr Facula vent 

have in common is that they are large (>>10 km across) vents that occur outside 

impact features. Volcanism on Mercury seems to have been highly sensitive to the 

prevailing stress conditions. Large-volume effusive volcanism appears to have 

ceased in response to the horizontally compressive stress regime induced by global 
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contraction (BYRNE ET AL., 2016). Most putative explosive volcanic vents on Mercury 

occur within impact structures (GOUDGE ET AL., 2014; THOMAS ET AL., 2014A; JOZWIAK 

ET AL., 2018), which temporarily reset preexisting stress fields (BYRNE ET AL., 2016). 

The vents associated with Nathair Facula and Neidr Facula, located in southeastern 

H05, appear to be important exceptions to this observation, as they are not 

obviously associated with any observable or inferred impact structures (Fig. 4.34). 

However, together with two smaller vents, they form a line that is subparallel to 

the nearby margin of Borealis Planitia. This is similar to how late-stage volcanism 

in the lunar maria tends to occur toward mare margins (HEAD AND GIFFORD, 1980) 

due to the stress state induced by the load of mare basalts (MCGOVERN AND 

LITHERLAND, 2011). The stress field due to loading by Borealis Planitia may have 

played a role in the location of these vents. This is consistent with these vents 

postdating smooth plains emplacement. 
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Fig. 4.34 Putative explosive volcanic vents and deposits in southeastern H05. Four 

putative volcanic vents are arranged in a line sub-parallel to the margin of Borealis Planitia 

to the north. The vents within Nathair Facula and Neidr Facula are not located within impact 

craters. The two small vents in the west are in impact craters. ~665 m/pixel enhanced colour 

mosaic. Native LCC projection of the H05 map. 
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4 . 3 . 2  Southwestern H05 

As stated in earlier section of this chapter, and in Chapter 3, many interesting 

geological features in H05 have been studied previously. During my mapping, I 

found that the geology of southwestern H05 is particularly rich. Here I describe 

the main features of interest in this region and explain their significance in the 

wider context Mercury’s geology. 

The geology of southwestern H05 is dominated by intermediate plains and impact 

sculpture from the ancient basin b30 (Fig. 4.35; FASSETT ET AL., 2012). The 

assemblage of landforms in southwestern H05 is similar to that described by BYRNE 

ET AL. (2013) that lies between Borealis Planitia and the circum-Caloris smooth 

plains (Fig. 4.36). 
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Fig. 4.35 Geology of southwestern H05. (a) Monochrome mosaic of southwestern H05. 

The smooth floored troughs radiating from b30 are located in the centre-right of the figure. 

(b) Transparent geological units are coloured according to the key in Fig. 4.2 and are overlain 

on the ~166 m/pixel global monochrome mosaic. The red line indicates the extent of H05. 

The black arc indicates the proposed location of the buried rim of the ancient basin b30 

(FASSETT ET AL., 2012). Both panels are in the native LCC projection of H05. 

 

BYRNE ET AL. (2013) describe smooth plains that occupy valleys and interpret them 

as volcanically flooded and modified Caloris impact sculpture. This is the same as 

my interpretation of the troughs radiating from b30 with smooth plains covered 

floors. Some of the ‘broad channels’ described by BYRNE ET AL. (2013), such as 

Paestum Vallis and Angkor Vallis, contain streamlined kipukas, which they 

interpret to be remnants of the pre-existing terrain before lava inundation. They 

attribute the streamlined appearance of the kipukas at least in part to thermal and 

mechanical erosion by low-viscosity lavas. The troughs in southwestern H05 do 

not contain streamlined kipukas like those observed by BYRNE ET AL. (2013). There 

is no obvious spectral difference between the smooth plains in Paestum and 

Angkor Valles and the smooth plains in the radial troughs in H05 that would 

suggest a compositional (and therefore a viscosity) difference between the lavas. A 

higher viscosity lava might be expected to erode the surrounding landscape less 

effectively (BYRNE ET AL., 2013). Therefore, the lack of obvious streamlined kipukas 

could instead be due to lower velocity lava flows in H05. The broad channels 

described by BYRNE ET AL. (2013) connect two large expanses of smooth plains, 

which suggests that the flux of lava along the broad channels was high. The troughs 

in H05 are at the southernmost extent of Borealis Planitia, and their southern 

reaches border elevated intermediate plains. Rather than hosting high-velocity 

channel flow, the troughs in H05 more likely contained slower flowing lavas that 

were running up against higher terrain. 
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Fig. 4.36 Part of the study region of BYRNE ET AL. (2013). These authors interpret this as 

a landscape that has been inundated by low-viscosity lavas. Lava appears to have drained 

through, and modified in places, several channels (labelled). Transparent geologial units 

overlain on the ~166 m/pixel global monochrome mosaic. Mercator projection centred on 

110.0°E, 59.0°N. Geological shapefiles are those of MANCINELLI ET AL. (2016) and are 

reproduced here with the kind permission of the authors. Geological units are unavailable 

north of 65°N as this was the northernmost extent of mapping by MANCINELLI ET AL. (2016). 

The intermediate plains of southwestern H05 also contain two irregularly shaped 

pits (Fig. 4.37). These have the same red colour signature as putative pyroclastic 

vents elsewhere on Mercury (MURCHIE ET AL., 2008, 2015; KERBER ET AL., 2011; 

GOUDGE ET AL., 2014; THOMAS ET AL., 2014A; JOZWIAK ET AL., 2018). These pits are 
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comparable in size to Nathair Facula’s pit. Nathair Facula, the largest putative 

explosive volcanic vent on Mercury, in southeastern H05. However, pits A and B 

(named in Fig. 4.37) in southwestern H05 do not have red colour anomalies so 

extensive or so bright as Nathair Facula. This could be because the explosive 

volcanic activity that created the red deposits at pits A and B occurred earlier in 

Mercury’s history than that which created Nathair Facula. Pyroclastic deposits 

probably degrade in time due to space weathering (JOZWIAK ET AL., 2018), which 

tends to reduce spectral contrasts (HAPKE, 2001). Alternatively, it is possible that 

the explosions that excavated these pits had a lower volatile content than those at 

Nathair Facula’s vent. It has been suggested that Nathair’s Facula’s vent was 

excavated by eruptions with an exceptionally high gas fraction (KERBER ET AL., 2011). 

If the red colour of the deposit is due to the removal of a relatively blue volatile, 

then lower volatile-content eruptions might not only have smaller deposits but 

also deposits with a less intense red colouration. 
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Fig. 4.37 Candidate effusive volcanic vents in H05. (a) Pit A is located within 

intermediate plains and close to a contact with the smooth volcanic plains of Borealis 

Planitia to the north. Smaller superposed pits can be seen on the northern wall of the main 

pit. ~166 m/pixel basemap. (b) Pit A has a faint red colour anomaly associated with it that 

appears to be centred on the small superposed pits. ~665 m/pixel enhanced colour mosaic. 

(c) Pit B is also located in intermediate plains. It has a small internal depression within it. 

The floor of the pit appears to be smooth plains material. The brink of the pit has an irregular, 

scalloped outline. ~166 m/pixel basemap. (d) Pit B also has a red colour anomaly. 

~665 m/pixel enhanced colour mosaic. All panels are in the native LCC projection of the H05 

map. 

However, in the case of Pit A, an alternative explanation for its pyroclastic deposit 

exists. Pit A has smaller depressions located on its northern brink (Fig. 4.37a). The 

red colour anomaly appears to be focussed on these northern brink depressions, 
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rather than the centre of Pit A itself (Fig. 4.37b). This observation suggests that at 

least the most recent explosive volcanic activity at Pit A was small in volume and 

concentrated at the pit’s northern brink. If my interpretation that the intermediate 

plains represent shallowly volcanically infilled intercrater plains is correct, then 

the possibility that significant, and earlier, effusive activity occurred at Pit A is 

raised. This would help to explain the lack of a large red colour anomaly at Pit A. 

Further evidence that the pits in southwestern H05 are effusive volcanic vents 

exists at Pit B. The floor of Pit B is formed of smooth material, as are other low-

lying regions in the surrounding intermediate plains (Fig. 4.37c). 

BYRNE ET AL. (2013) describe in their study area ‘coalesced depressions’ that 

resemble pits A and B in southwestern H05 (Fig. 4.38). Their coalesced 

depressions, which are of similar scale to pits A and B, are found within smooth 

plains, lack faculae, and  also have smooth floors. BYRNE ET AL. (2013) suggest that 

the circular pit located within one of their coalesced depressions (Fig. 4.38a) is 

similar to the nested calderas of the Tharsis Montes region of Mars (BYRNE ET AL., 

2012). Similar pits elsewhere on Mercury have been interpreted as collapses above 

drained magma chambers (GILLIS-DAVIS ET AL., 2009). On the basis of these 

observations, BYRNE ET AL. (2013) interpret their coalesced depressions as candidate 

effusive volcanic vents from which relatively minor amounts of smooth plains 

material within their respective vicinities were sourced. Despite widespread 

effusive volcanic plains, only a few candidate effusive volcanic vents on Mercury 

have been suggested (BYRNE ET AL., 2013; JOZWIAK ET AL., 2018). This is probably 

because the characteristic eruption conditions on Mercury (high volume, high 

effusion rate, low viscosity; BYRNE ET AL., 2013) caused most effusive vents to bury 

themselves or each other with their flow fields in the same way that the source 

vents for large igneous provinces on Earth are seldom exposed due to volcanic 

burial (WHITE ET AL., 2009). Therefore, due to their rarity, the observation of two 

candidate effusive volcanic vents in southwestern H05 is important for 

understanding the emplacement of volcanic plains in that region and on Mercury 

in general. 
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Fig. 4.38 Landforms of probable volcanic origin elsewhere on Mercury that resemble 

southwestern H05 landforms. A ‘coalesced depression’ that is a candidate effusive 

volcanic vent (BYRNE ET AL., 2013), which appears similar to pit B in H05. One explanation 

for the circular pit within the coalesced depression could be that it is a nested caldera (BYRNE 

ET AL., 2013). (b) ‘Graded terrain’ that is interpreted as intercrater plains that has been 

inundated but not completely buried by volcanic smooth plains material (BYRNE ET AL., 2013). 

The origin of the graded terrain shown here is essentially the same as my interpretation of 

the formation of the intermediate plains unit in H05. A second example of a coalesced 

depression, identified by BYRNE ET AL. (2013), that is a candidate effusive volcanic vent, more 

similar to pit A, is indicated. Both panels, ~166 m/pixel global monochrome mosaic. Both 

panels are Mercator projections centred on 110.0°E, 59.0°N. 

BYRNE ET AL. (2013) also describe ‘graded terrain’, which lies alongside the smooth 

plains, and particularly the broad channels, in their study area. This terrain is 

characterised by a more muted expression of the intercrater plains close to channel 

confined smooth plains. The graded terrain contains impact craters that despite 

not having obvious breached perimeters, nevertheless appear to have been 

volcanically flooded to varying degrees. BYRNE ET AL. (2013) suggest that at least 

some volume of erupted lavas within the region were not channelised but instead 

spread out over the surroundings. The ‘grading’ of the muted intercrater plains 

into normal intercrater plains with increasing distance from the broad channels 

suggests that as the lava flux in the region dropped, overland lava flows retreated 

until they became channel confined. I suggest that the intermediate plains in 

southwestern H05 formed in a similar manner. These intermediate plains also 
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contain smooth patches, both within and outside of host impact craters, which are 

not all obviously connected. I suggest that lavas partially inundated regions where 

I have mapped intermediate plains in H05 but that effusions ceased before the 

texture of the underlying intercrater plains was completely buried. Lavas were able 

to pond deeply within impact craters and other low-lying regions, creating smooth 

patches. These smooth patches appear as deficient in superposing impact craters 

as the smooth plains of Borealis Planitia, which suggests that the intermediate 

plains could have formed alongside it, but this qualitative observation cannot be 

corroborated by a statistically significant crater count since even their combined 

area is too small. 

The similarities between southwestern H05 and the assemblage of features 

described by BYRNE ET AL. (2013) suggests that other partially volcanically inundated 

landscapes could be found elsewhere on Mercury. Furthermore, these two regions 

demonstrate that the volcanic history of the planet can easily be oversimplified by 

mapping only smooth and intercrater plains. 

Pits A and B lie close to the proposed location of the buried rim of the b30 basin 

(Fig. 4.39). Putative explosive volcanic vents within the Caloris basin occur very 

close to its rim (MURCHIE ET AL., 2008), perhaps because their magmas ascended 

along structural weaknesses associated with the rim (GOUDGE ET AL., 2014; JOZWIAK 

ET AL., 2018), or because early volcanic loading of the interior of Caloris created a 

stress field that favoured subsequent eruptions to occur at its edge (MCGOVERN AND 

LITHERLAND, 2011), or because the thick plains of Caloris Planitia posed a barrier to 

later eruptions (ROTHERY ET AL., 2014). Whatever combination of these effects led 

to explosive volcanic vents in Caloris occurring close to its rim, all three of them 

are equally valid for explaining why pits A and B occur where the rim of b30 is 

proposed to be buried. 
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Fig. 4.39 Locations of candidate effusive volcanic vents in H05. Pits A and B are shown 

in relation to the location of the rim of the b30 basin proposed by FASSETT ET AL. (2012). The 

pits lie very close to the predicted location of the buried basin rim and close to the contact 

with the smooth plains of Borealis Planitia to the north. ~166 m/pixel basemap. Native LCC 

projection of the H05 map. 

Pits A and B are also located close to the contact between their host intermediate 

plains and Borealis Planitia to the north. The location of these pits may have been 

influenced by the volcanic load of Borealis Planitia, in addition to that of b30. If 

this is the case, then pits A and B must have formed towards the end of smooth 

plains emplacement in order for the load of Borealis Planitia to concentrate 

eruptions towards its outer margin. If pits A and B did form after the majority of 

Borealis Planitia, and were also effusive volcanic vents that supplied some of the 

lava that created the intermediate plains around them, then that would mean 
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intermediate plains formation occurred during the later stages of smooth plains 

emplacement in H05. 

4.4  Concluding remarks 

My geological mapping of H05 has shown that the quadrangle has had a rich 

history. Traces of ancient impact basins of comparable scale to the Caloris basin 

are evident in the quadrangle, and structures related to these basins appear to have 

influenced the subsequent geological evolution of the quadrangle by affecting 

magma composition, ascent and eruption. The intercrater plains and smooth 

plains appear to have been emplaced largely by effusive volcanism. Effusive 

volcanism persisted after large-volume smooth plains emplacement as 

intermediate plains formation, within which I have identified candidate source 

vents, and more locally as post-impact volcanism. Explosive volcanism from pits 

appears to have outlasted effusive volcanism in H05. Minor surface pitting within 

Rachmaninoff appears to be linked to post-impact effusive volcanism within that 

crater, whereas the most recent explosive eruptions from large pits within Nathair 

and Neidr Faculae certainly postdate Rachmaninoff. The sequence of geological 

events within H05 corresponds well with the five degradation state classification 

scheme, unlike in the other Mercury quadrangle maps produced in the 

MESSENGER era.
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CHAPTER 5  
CONSTRUCTIONAL VOLCANIC EDIFICES 

ON MERCURY  

5. 1  Introduction 

The MESSENGER mission has documented abundant evidence for widespread 

volcanic activity on Mercury, but an enduring curiosity has been the lack of 

diversity of volcanic forms on the planet, compared with the other rocky bodies in 

the Solar System. During my research, I serendipitously observed two small 

(<15 km in diameter) prominences with shallow summit depressions. In this 

chapter, I investigate the possibility that they are constructional volcanic edifices, 

a class of volcanic landform that has not been unambiguously identified on 

Mercury, and discuss how they may have formed due to small-volume, late-stage 

eruptions. I also discuss the paucity of constructional volcanic edifices on Mercury 

compared with Earth and the Moon. I suggest that this paucity is because volcanic 

eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable 

for edifice construction, were highly spatiotemporally restricted throughout 

Mercury’s geological history due to the strong influence of global contraction. This 

chapter of my thesis is adapted from a peer-reviewed, open-access Journal of 

Geophysical Research: Planets paper (WRIGHT ET AL., 2018). In Section 5.2 I outline 

the previous studies that have described the physical volcanology of Mercury. In 

Section 5.3 I describe the data and methods I used to search for and study volcanic 

edifices. In Section 5.4 I describe the candidate volcanic edifices that I found. I 

discuss the implications of these small edifices in Section 5.5 and state my 

conclusions in Section 5.6. 

5.2  Background 

Constructional volcanic edifices, which form from the accumulation of erupted 

products proximal to their vents (DAVIDSON AND DE SILVA, 2000), have been 

recognised throughout the Solar System (SIGURDSSON ET AL., 2000) but have not 

been positively identified on Mercury. The morphology of volcanic landforms 
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reflects the style and environment of eruption, which in turn provides insight into 

interior processes of planetary bodies. Therefore, characterising the full range of 

volcanic landforms and their spatiotemporal distributions is required to 

understand the geological evolution of the body on which they occur. 

5 . 2 . 1  Smooth plains volcanism 

Mercury has abundant smooth plains, first imaged by Mariner 10, most of which 

are interpreted as effusive lava plains (STROM ET AL., 1975; HEAD ET AL., 2008; DENEVI 

ET AL., 2013; OSTRACH ET AL., 2015). More recent imaging by MESSENGER shows that 

smooth plains cover ~27% of the planet’s surface (Fig. 5.1; DENEVI ET AL., 2013) and 

suggests that Mercury’s intercrater plains are older, more heavily cratered lava 

plains (WHITTEN ET AL., 2014), indicating that the planet’s crust is predominantly 

volcanic. This volcanic style is analogous to large igneous provinces (LIPs) on 

Earth, which have high erupted volumes that form thick plains (BRYAN AND ERNST, 

2008). The most extensive smooth plains on Mercury are those constituting 

Borealis Planitia (informally the ‘northern smooth plains’; HEAD ET AL., 2011; 

OSTRACH ET AL., 2015) and those smooth plains associated with the Caloris impact 

basin. The plains interior to the basin are formally ‘Caloris Planitia’ (STROM ET AL., 

1975), and the plains surrounding Caloris have been informally referred to as the 

‘circum-Caloris’ plains (FASSETT ET AL., 2009; DENEVI ET AL., 2013). Observations of 

the relationships between Caloris Planitia and the circum-Caloris smooth plains 

(ROTHERY ET AL., 2017) and their superposing crater densities (FASSETT ET AL., 2009; 

DENEVI ET AL., 2013; OSTRACH ET AL., 2015) suggest that they formed within a short 

span of geological time. Absolute ages on Mercury have intrinsically large errors 

due to uncertainties in the crater production function used to derive them (e.g. 

STROM AND NEUKUM, 1988; NEUKUM ET AL., 2001; MARCHI ET AL., 2009; LE FEUVRE AND 

WIECZOREK, 2011). However, both Borealis and Caloris Planitia, and the circum-

Caloris plains, are estimated to have formed ~3.7 Ga (DENEVI ET AL., 2009; HEAD ET 

AL., 2011; OSTRACH ET AL., 2015), and large-volume effusive volcanism is believed to 

have ceased soon after (i.e. ~3.5 Ga; BYRNE ET AL., 2016). 
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Fig. 5.1 Global map of smooth plains on Mercury. Modified from DENEVI ET AL. (2013). 

5 . 2 .2  Explosive volcanism 

MESSENGER also identified bright, spectrally red spots with diffuse outer 

boundaries, usually with an irregular depression in their centres. These red spots, 

now formally termed ‘faculae’ (sing. ‘facula’), are interpreted as deposits of 

ballistically emplaced pyroclasts surrounding explosively excavated volcanic 

craters (HEAD ET AL., 2008; MURCHIE ET AL., 2008; KERBER ET AL., 2009, 2011; 

BARNOUIN ET AL., 2012; GOUDGE ET AL., 2014; THOMAS ET AL., 2014A; JOZWIAK ET AL., 

2018). The oldest pyroclastic deposit dated by THOMAS ET AL.(2014B) using its crater 

size-frequency distribution was determined to have formed ~3.9 Ga, and explosive 

volcanism of this kind appears to have been active until at least ~1.0 Ga (THOMAS 

ET AL., 2014B; JOZWIAK ET AL., 2018), or even ~280 Ma (BANKS ET AL., 2017). 

5 . 2 . 3  A shield volcano? 

A candidate shield volcano was proposed within Caloris Planitia based on images 

captured during MESSENGER’s first flyby (HEAD ET AL., 2008). Shield volcanoes 

form by effusions of low-viscosity lavas from a point source, along with a relatively 

minor explosive component and, in addition to those on Earth, have been reported 

on the Moon, Venus, Mars, and Io (SIGURDSSON ET AL., 2000). Shield volcanism 

represents an end-member eruptive style that brackets a continuum with LIPs 

(GREELEY, 1982). Evidence for the shield volcano in Caloris Planitia included 

apparent embayment of nearby impact craters and an albedo change (now known 
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as ‘Agwo Facula’) surrounding a ‘kidney-shaped depression’ (HEAD ET AL., 2008). 

However, subsequent orbital data cast doubt on the shield interpretation of this 

edifice. Higher-resolution images captured under a range of illumination 

conditions show that impact craters proximal to the Caloris depression are not 

obviously embayed by flows (ROTHERY ET AL., 2014). Furthermore, detrended MLA 

data (where long-wavelength slopes are removed from local topography) show that 

although the excavated depression, regarded as a vent, is more than 1 km deep, its 

brink is not substantially elevated above its surroundings, and the external flank 

slopes of the candidate ‘shield’ are ~0.14° (ROTHERY ET AL., 2014). This slope value 

is even lower than those typical for low shields on Mars (0.43°; HAUBER ET AL., 2009) 

and at the lowermost bound of the extremely low-angle shields that have been 

identified on that planet (0.15–0.35°; VAUCHER ET AL., 2009). Martian shields have 

some of the lowest flank slopes in the Solar System, suggesting that the low 

topographic rise around the Caloris vent could have been constructed by other 

means. A study that considered 20 additional explosive vents on Mercury, situated 

on otherwise generally flat plains, found that six of these are associated with little 

(<1°) or no relief (THOMAS ET AL., 2014A). Therefore, these landforms more likely 

represent subtle ramps generated by the ballistic emplacement of pyroclasts from 

the explosive eruption of a compound volcanic vent, rather than a true shield 

constructed predominantly of lava flows (ROTHERY ET AL., 2014). 

These findings suggest that explosive volcanism on Mercury has been chiefly 

excavational in nature, producing large craters with thin deposits, morphologically 

resembling those of maar volcanoes (WHITE AND ROSS, 2011) or phreatic explosions 

(BROWNE AND LAWLESS, 2001). Examples of constructional volcanic edifices, where 

the landform is characterised by a topographic rise, rather than a large crater 

(DAVIDSON AND DE SILVA, 2000), have hitherto not been observed on Mercury, 

despite extensive study with orbital MESSENGER observations of Borealis Planitia 

(HEAD ET AL., 2011; BYRNE ET AL., 2013; OSTRACH ET AL., 2015), the Caloris plains 

(DENEVI ET AL., 2013; ROTHERY ET AL., 2017), and intercrater plains (WHITTEN ET AL., 

2014). 
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5 . 2 . 4  Constructing volcanic edifices 

Given the lack of erosional processes that could fully remove evidence of volcanic 

edifices in the smooth plains, their paucity suggests that Mercury’s volcanic 

eruptions during its early history (>3.5 Ga; BYRNE ET AL., 2016) were somehow 

unable to build substantial topography. This has been attributed to the planet’s 

erupted lavas having very low viscosities (STOCKSTILL-CAHILL ET AL., 2012). Rare 

streamlined kipukas and eroded lava channels provide evidence that the 

widespread smooth plains of Mercury were emplaced at least partly by 

“voluminous, high-temperature, low-viscosity lavas of mafic to ultramafic 

composition” (BYRNE ET AL., 2013). However, the typical viscosity of Mercury’s lavas 

is predicted to have increased through time. Decreasing eruption temperatures 

and degrees of partial melting will have occurred as secular cooling of the planet’s 

interior progressed, forming melts with higher crystal fractions, silica content, and 

consequently higher viscosities (NAMUR AND CHARLIER, 2017). This suggests that 

late-stage eruptions may have been more capable of constructing edifices than 

earlier ones. 

Lava viscosity is not the only control on edifice construction. For a given lava 

viscosity, construction capacity increases with decreasing effusion rate, erupted 

volume, and flow length, as demonstrated on Earth by the Galápagos shields. These 

have a break in slope between low-slope flank eruptions and steeper summit 

eruptions, giving them an ‘inverted soup dish’ shape, compared with the uniformly 

shallow flanked Hawaiian shields (NAUMANN AND GEIST, 2000). Since edifice 

construction on Earth is associated with lower erupted volumes than LIPs in 

general (BRYAN AND ERNST, 2008), identifying sites of low-volume effusive 

volcanism on Mercury could be the key to discovering constructional volcanic 

edifices on its surface. 

In this chapter, I describe two small (i.e. <15 km in diameter) positive-relief 

features with summit depression that are plausibly of volcanic origin. These 

features were discovered serendipitously but, following a global search of the 

smooth plains, which represent the last effusions of lava, I found no additional 

similar features. I compare the morphologies and settings of the candidate volcanic 
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edifices to volcanoes on Earth and the Moon, and discuss their possible origins, 

volcanic or otherwise. 

5.3  Data and methods 

I searched for volcanic edifices using the ~166 m/pixel monochrome MDIS global 

mosaic (CHABOT ET AL., 2016). Where available, I inspected higher-resolution NAC 

and WAC images and MLA topographic profiles across candidate volcanic edifices. 

I made colour observations using the ~665 m/pixel enhanced colour global mosaic 

(DENEVI ET AL., 2016) and RGB-combined WAC images. I used ISIS3 to perform 

standard radiometric and photometric corrections on the NAC and WAC products. 

I made RGB-combined mosaics by using 1,000, 750, and 430 nm WAC narrow 

band filter images in the red, green, and blue channels, respectively (HAWKINS ET 

AL., 2007; DENEVI ET AL., 2009). The enhanced colour mosaic also uses the 1,000, 

750, and 430 nm WAC bands and places the second principal component, the first 

principal component, and the 430/1,000 ratio in the red, green, and blue channels, 

respectively (DENEVI ET AL., 2009, 2016). I projected these products into individual 

sinusoidal projections with central meridians running through their respective 

geographic centres. This preserves angles and distances at the centre of the 

projection for small features. I used the 665 m/pixel global stereo digital elevation 

model (DEM) of Mercury by BECKER ET AL. (2016) to investigate the topography of 

regions of interest, although this dataset has insufficient resolution to characterise 

features <15 km across well. I analysed these data using Esri ArcMap 10.1 GIS 

software. 

I measured the diameters of my candidate volcanoes using CraterTools (KNEISSL ET 

AL., 2011), which minimizes projection-related errors when measuring distances. 

The diameters were calculated from circles that I fitted to the candidate volcanoes 

using the 3-point method within CraterTools (KNEISSL ET AL., 2011). I measured the 

height of candidate volcano #1 (‘CV1’) using shadow-length calculations (BARNOUIN 

ET AL., 2012). I also derived a profile of CV1 using its shadow shape by employing 

the method of BASILEVSKY (2002) (Fig. 5.2). To do this, I took a NAC frame in which 

CV1 casts a shadow on an approximately horizontal surface (Fig. 5.2a), rotated the 

frame by its solar azimuth so that the shadow of CV1 is cast ‘up the page’ (Fig. 5.2b), 
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and then I scaled down the image in the direction of the solar azimuth by a factor 

given by 

 tan 𝑖  ±  tan 𝑒 5.1 

where i and e are the solar incidence and spacecraft emission angles, respectively. 

This expression uses a ‘+’ if the spacecraft is looking back at the surface toward to 

Sun, or a ‘−‘ if the Sun is behind the spacecraft (BARNOUIN ET AL., 2012). In the scaled 

image (Fig. 5.2c), the distance to the umbral shadow of the candidate volcano cast 

on a flat surface measured from a point on the terminator of the landform (in the 

direction of the solar azimuth) returns the elevation at that point (Fig. 5.2d). 

 

Fig. 5.2 Demonstration of the shadow measurement technique used to make a 

topographic profile of CV1. (a) MDIS NAC frame EN0251749039M featuring CV1. The 

solar azimuth (277°) is illustrated with the yellow line. (b) EN0251749039M rotated so that 

shadows are cast towards the top of the figure (see yellow line). The inputs for equation 5.1 

are shown. (c) EN0251749039M after being scaled down vertically by the scale factor given 

in equation 5.1. The vertical distance between the cast shadow (yellow line) and the 

corresponding point on the terminator of the landform (red line) returns the elevation at 

that point on the terminator. (d) Topographic profile of CV1 constructed by measuring the 

vertical separation between the scaled cast and terminator shadows shown in (c). 

MLA data were available to measure the shape of candidate volcano #2 (‘CV2’). 

Following the method used by KRESLAVSKY AND HEAD (1999), I calculated the point-
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to-point slopes along the MLA track coincident with the landform. I discarded 

point-to-point slopes when along profile spacing between the MLA points was 

more than the normal consecutive shot separation of ~500 m. The calculated flank 

slope of the landform is the median of the retained point-to-point slopes. 

For my comparison with Earth volcanoes, I used Esri World Imagery and the 

Advanced Spaceborne Thermal Emission and Reflection (ASTER) Global Digital 

Elevation Map V0002. For the Moon, I used the global Lunar Reconnaissance 

Orbiter Camera (LROC) WAC 100 m/pixel mosaic, individual LROC NAC frames, 

and the global Lunar Orbiter Laser Altimeter (LOLA) 60 m/pixel DEM (CHIN ET 

AL., 2007; ROBINSON ET AL., 2010; SMITH ET AL., 2010). 

5.4  Results and interpretations 

5 . 4 . 1  Candidate volcano #1 

5 . 4 . 1 . 1  Observations 

Candidate volcano #1 (‘CV1’) is a positive-relief feature, situated within an impact 

crater (diameter ~125 km; Fig. 5.3a), at 123°02’14”E, 34°07’40”S. When I first 

observed CV1, its host crater was unnamed, so I applied to the International 

Astronomical Union for the crater to be named ‘Heaney’, after the Irish Nobel 

Laureate, Seamus Heaney. Heaney crater was officially named on 20th March 2017.  

CV1 is approximately circular in plan view (Fig. 5.3b) and has a basal diameter of 

6.1 km, a height of ~530 m (from shadow calculations), and flank slopes of ~10° 

(treating it as a simple cone). It is the highest topographic prominence within 

Heaney and is located 30.5 km from the crater’s centre. There is a bowl-shaped 

depression, 1.7 km across, at the summit of CV1, with a separate depression running 

up from the base of the northern flank. Based on shadow calculations, the summit 

depression has a depth-diameter (d/Drim) ratio of 0.14, which is shallower than the 

d/Drim ratio (0.19) of the fresh impact crater indicated in Fig. 5.3b (see also FASSETT 

ET AL., 2017). The ratio of the summit depression diameter to the basal diameter of 

CV1 is ~0.28. It is unclear in any existing NAC image whether the summit 

depression is younger or older than the flank depression. To the west, there are 

two much smaller knobs that form a straight line with CV1. In enhanced colour 

(Fig. 5.3c and d), CV1 is surrounded by a diffuse, red colour anomaly, whereas 
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visible ejecta from impact craters nearby have blue colour signatures. The smaller 

knobs have no visible colour anomalies. 

 

Fig. 5.3 Photogeological and colour observations of CV1. In all panels, CV1 is indicated 

with a black arrow, and a nearby, young impact crater is indicated with a white arrow. (a) 

Location of CV1 within Heaney, a young impact crater nearby, and small wrinkle ridges 

within the smooth infill (white lines). ~166 m/pixel. (b) Detail of CV1, the young impact 

crater, and small knobs nearby (white triangles). NAC frame EN0251749039M, 188 m/pixel. 

(c) Enhanced colour view of Heaney crater. The red colour anomaly associated with CV1. The 

high-albedo, blue colour anomaly associated with the young impact crater. A portion of the 

mosaic in the upper-right corner of the figure has been masked out due to a photometric 

seam. ~665 m/pixel. (d) Detail of the colour anomalies of CV1 and the young impact crater. 

~665 m/pixel. All panels show sinusoidal projections centred on 123°E, 34°S. 
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Heaney’s unburied crater rim is relatively crisp, and the continuous ejecta blanket 

extends by about one crater diameter beyond the rim, superposing external 

smooth plains nearby (Fig. 5.4a). Smooth plains with small wrinkle ridges cover 

the floor of Heaney (Fig. 5.3a), subduing the topographic range within the crater 

(Fig. 5.4b) compared with craters of this size without smooth plains. There is no 

evidence that smooth plains material cascaded into the crater from the 

surroundings. The present-day depth of the crater, measured using the global 

stereo DEM (BECKER ET AL., 2016), and defined as maximum rim elevation minus 

minimum floor elevation (ignoring superposing impact craters), is ~3,500 m. 

Impact craters on Mercury of the same diameter as Heaney can have a variety of 

morphologies (Fig. 5.5). Complex craters (50–168 km) have central peaks (Fig. 

5.5a), peak-ring basins (84–320 km) have a ring of peaks (Fig. 5.5b), and 

protobasins (50–195 km) have both a central peak and ring of peaks (Fig. 5.5c; 

BAKER AND HEAD, 2013). Although there is a general trend from complex craters, to 

protobasins, to peak-ring basins with increasing diameter, the morphologies have 

overlapping diameter ranges, which requires additional factors during the impact 

to determine the final crater morphology. Peak-ring basins might form by outward 

collapse of a transient, gravitationally unstable central peak (COLLINS ET AL., 2008), 

or by suppression of central peak formation by a thick column of melt nested in 

the centre of the transient cavity (CINTALA AND GRIEVE, 1998; BAKER AND HEAD, 2013). 

Protobasins might form when the oversteepened central peak is not large enough 

to collapse fully, or when the melt volume is insufficient to suppress central peak 

formation entirely. However, it has been suggested that protobasins form instead 

when the target substrate is heterogeneous (HERRICK, 2014). The formation of 

ringed impact basins remains an unsolved issue in planetary science. 

The present maximum depth of Heaney (3,500 m) offers some constraint on the 

crater’s original morphology, now obscured by the smooth plains. BAKER AND HEAD 

(2013) showed that the mean d/Drim ratio of complex craters on Mercury 

(0.034 ± 0.010) is greater than that of protobasins (0.027 ± 0.007), which in turn 

have a greater mean d/Drim ratio than that of peak-ring basins (0.017 ± 0.006). 

Using these values and the diameter of Heaney (125 km), its predicted original 

depth range is 3,000–5,500 m for a complex crater, 2,500–4,250 m for a 
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protobasin, and 2,050–2,200 m for a peak-ring basin. This suggests that Heaney is 

too deep to have formed as a peak-ring basin, but it could be a partially infilled 

protobasin or complex crater. Estimates for maximum thicknesses of the smooth 

plains in Heaney are 750 and 2,000 m for protobasin and complex crater 

morphologies, respectively. 

 

Fig. 5.4 Observations of Heaney crater. (a) Geological setting of the crater. Heaney has 

a textured ejecta blanket that extends beyond its rim by approximately one crater diameter. 

The black arrows indicate a secondary impact crater chain attributable to Heaney that 

superposes nearby smooth plains. The line marked A–A’ represents the cross section shown 

in (b). ~166 m/pixel monochrome mosaic. Sinusoidal projection centred on 123°E, 34°S. (b) 

The topography of Heaney measured from the global stereo digital elevation of Mercury 

(BECKER ET AL., 2016). The elevation of the smooth plains monotonically decreases toward 

the centre of the crater and gives no obvious indication of the presence of any internal uplift 

(central peak or peak-ring). 
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Fig. 5.5 Comparison of Heaney with other impact features on Mercury that are 

similar in age and size. (a) Sūr Dās (diameter 131 km), with a central peak rather than a 

peak-ring. It is therefore possible that Heaney originally had no peak-ring. (b) Ahmad Baba 

(diameter 126 km), a peak-ring basin. (c) Hawthorne (diameter 120 km), a protobasin. (d) 

Mansur (diameter 95 km), the degradation state of which defines the base of the Mansurian 

time system on Mercury. Heaney has a similar degradation state, suggesting that it formed 

at a similar time. (e) Heaney. The circles represent expected radii of peak-rings for a peak-

ring basin (black) and protobasin (white) of similar diameter to Heaney, per equation 5.2. 

Note that none of the other small knobs in Heaney lie where one would expect to find the 

highest peak elements. (f) Bello (diameter 139 km), located within Beethoven. Bello has a very 

similar size, apparent morphology, and degradation state to Heaney. Smooth plains, of 

probable volcanic origin, obscure any internal peaks that may have been present. All panels 

are views of the ~166 m/pixel monochrome basemap in individual sinusoidal projections with 

central meridians through their respective geographic centres. 
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In enhanced colour, Heaney crater appears to have exhumed dark blue, low-

reflectance material (LRM; ROBINSON ET AL., 2008) in its southern rim and ejecta 

(Fig. 5.3c), whereas its smooth fill corresponds to the surface unit termed low-

reflectance blue plains by DENEVI ET AL. (2009). The crater rim is generally blue but 

appears somewhat redder in the northeast. 

5 . 4 . 1 . 2  Impact interpretation 

An initial hypothesis for the formation of CV1 is that it is part of Heaney’s peak-

ring. The relatively undegraded state of the crater and its ejecta superposing 

smooth plains nearby suggest a late-Calorian/early-Mansurian age for the impact 

(see Fig. 5.5d; KINCZYK ET AL., 2016). The base of the Mansurian is conventionally 

held to be ~3.5–3.0 Ga (SPUDIS AND GUEST, 1988), although a recent study has 

revised the base to ~1.7 Ga (BANKS ET AL., 2017). In any case, large-scale effusive 

volcanism is thought to have ceased long before the Mansurian (BYRNE ET AL., 2016). 

A crater in this degradation state would ordinarily be expected to host a preserved 

central peak or peak-ring (KINCZYK ET AL., 2016). If CV1 were a remnant peak-ring 

element, then its summit depression would merely be a coincidentally superposed 

impact crater. The northern flank depression can be interpreted as part of a 

secondary crater chain, of which the summit depression may also be a part. The 

summit depression’s shallow appearance compared with primary craters of similar 

diameter on the surrounding smooth plains could be due to it being a secondary 

crater, since these exhibit atypical morphometries compared with primary craters 

(STROM ET AL., 2008). In addition, the shallowness of the depression might be due 

to its formation at the apex of a cone, since topographic slopes have been shown 

to affect impact crater depth (ASCHAUER AND KENKMANN, 2017). If the summit 

depression is an impact crater, the red colour anomaly associated with the 

landform could be due to impact ejecta from the summit crater. The smaller knobs 

to the west of the feature could be other peak-ring elements appearing just above 

the subsequent infill. The burial of the rest of the presumably once-present peak-

ring suggest that the smooth infill is due to flooding by thick volcanic lava, rather 

than merely the volume of impact melt originally produced (GRIEVE AND CINTALA, 

1992; CINTALA AND GRIEVE, 1998). Post-impact volcanism of this kind is a common 

process that is well-documented on Mercury (STROM ET AL., 1975; PROCKTER ET AL., 
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2010). Originally, the smooth plains probably had a flat surface, but this will have 

subsided in the centre, where the fill was originally thickest, producing the 

concave-up topography within the present-day crater interior (BLAIR ET AL., 2013). 

I tested this remnant peak-ring element hypothesis by using the empirical relation 

between crater rim diameter, Drim, and peak-ring diameter Dring, found by BAKER 

ET AL. (2011) to be given by the relation 

 𝐷𝑟𝑖𝑛𝑔 = 𝐴𝐷𝑟𝑖𝑚
𝑝  5.2 

The values of A and p are empirical constraints that are different for peak-ring 

basins and protobasins and are given in Table 2 of BAKER ET AL. (2011). Given 

Heaney’s rim diameter of 125 km, its peak-ring radius is predicted by this relation 

to be ~29 or ~25 km for a peak-ring basin or protobasin morphology, respectively 

(Fig. 5.5e). Therefore, CV1 is at a radial distance from Heaney’s centre (30.5 km) 

more consistent with the crater being a flooded peak-ring basin than a protobasin. 

However, the remnant peak-ring element interpretation is not well supported. As 

stated previously, my measurements show that Heaney is very deep for it to be an 

infilled peak-ring basin. Furthermore, it is unclear why the rest of the presumed 

peak-ring is buried by smooth plains material with no clear surface expression, 

when CV1 has 530 m of relief. Measurements of the heights of peak-rings on 

Mercury suggest that it is unlikely that the range of peak element heights in 

undegraded basins is greater than 500 m (BAKER AND HEAD, 2013). This seems to 

require: (1) CV1 to be exceptionally tall compared with the rest of the peak-ring, 

allowing it to have escaped burial; (2) extreme differential erosion of the peak-ring, 

or; (3) the peak-ring to have been highly incomplete when it formed. 

The crater Bello, of comparable diameter, depth, degradation state, and, I therefore 

interpret, age, also has a floor covered by smooth plains, leaving no trace of any 

central peak or peak-ring that might once have been present (Fig. 5.5f). This 

suggests that the floors and peaks of both Heaney and Bello are deeply buried. CV1 

is situated toward Heaney’s crater wall, where the fill is probably thinnest, yet even 

the immediately adjacent peak elements that might be expected to be present do 

not manifest. It seems unlikely that the rest of any peak-ring is buried just beneath 

the surface, as the wrinkle ridges within the fill do not form a ring marking its 
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expected location as they can do with buried peak-ring impact craters elsewhere 

on Mercury (BAKER ET AL., 2011). 

After their formation, peak-rings are subject to erosion, which can render them 

incomplete. Impact craters on Mercury often contain landforms known as ‘hollows’ 

that are interpreted to have formed by the loss of a volatile component of the 

exhumed material to space (BLEWETT ET AL., 2011). There are many examples of 

impact features on Mercury, similar in age to Heaney, such as Raditladi and 

Lermontov, that show extensive hollowing (BLEWETT ET AL., 2013). However, it 

seems unlikely for this process to erode peak-rings entirely since hollows appear 

to have maximum depths of only several tens of metres (BLEWETT ET AL., 2011), 

compared with peak elements, which are generally several hundreds of metres high 

(BAKER AND HEAD, 2013). Furthermore, neither Heaney nor Bello shows evidence of 

pervasive hollowing in their crater walls (see THOMAS ET AL., 2014C), as one might 

expect if hollowing were responsible for eroding their peak-rings. 

The most widespread erosive process on Mercury is impact cratering. In Heaney, 

there are no impact craters that postdate the smooth plains along the circle where 

a peak-ring would be expected to be found. Furthermore, it seems unlikely that 

cratering predating the plains could have removed all but one peak of the ring. 

There are no ‘ghost craters’ (STROM ET AL., 1975) in the smooth infill suggestive of 

impact overprinting of an originally complete peak-ring before smooth plains 

emplacement. Therefore, I believe that erosion of an originally complete peak-ring, 

by hollowing or impact cratering, is an improbable explanation for the prominence 

of CV1. 

There are other impact crater morphologies, such as protobasin and complex 

crater, which Heaney could have originally exhibited with implications for the 

impact interpretation of CV1. The rings of peaks in protobasins on Mercury are 

lower in height than those of peak-ring basins and are often very incomplete, with 

no evidence that the missing peak elements were removed after formation (BAKER 

AND HEAD, 2013), and so could be more easily buried by volcanism. If CV1 is a 

remnant peak-ring element of an original, incomplete protobasin then, as 

previously stated, it is at a somewhat greater radial distance from the centre of 

Heaney than would be expected. Furthermore, the absence of any surface 
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expression of an accompanying central peak requires the smooth plains to be very 

thick in the centre of Heaney and much thinner at the edge. The central peaks and 

peak-rings in protobasins of Heaney’s diameter are predicted to be ~1 km high 

(BAKER AND HEAD, 2013). This would require the smooth plains to be >1 km thick in 

the centre of Heaney, to bury a central peak, but to be much thinner at the edges, 

to allow CV1 to remain unburied. This is not inconceivable, given our estimate of 

the maximum fill thickness for a protobasin (~750 m), but it still requires very 

specific floor topography and a largely incomplete peak-ring. Finally, as Sūr Dās 

demonstrates (Fig. 5.5d), it is possible that Heaney did not in fact form with a peak-

ring at all, which would require a non-impact-related origin for CV1. 

The red colour associated with CV1 could be due to material exhumed from depth 

as part of a peak-ring. The reddish parts of the crater rim suggest that this is 

possible. However, if other small knobs within Heaney are interpreted as remnant 

peak-ring elements, then the fact that they do not appear to have the same colour 

anomaly would require the peak-ring to be compositionally diverse on short length 

scales. Furthermore, the colour contact between the low-reflectance blue plains 

crater infill and the embayed reddish crater rim is sharp, whereas the red colour 

anomaly associated with CV1 is more diffuse. However, I acknowledge that these 

knobs occupy only a small number of pixels in available WAC images, meaning 

their spectral properties may not be sufficiently well characterised by 

MESSENGER. 

5 . 4 . 1 . 3  Volcanic interpretation 

If CV1 is not a remnant peak-ring element, then it is plausible that it is a volcanic 

edifice of some kind. As mentioned previously, the thickness of the smooth infill 

is suggestive of post-impact volcanic activity occurring within Heaney. The red 

colour anomaly is similar to those of identified pyroclastic deposits in impact 

craters elsewhere on Mercury (Fig. 5.6; THOMAS ET AL., 2014A). Effusion from a dyke 

underneath CV1 could have contributed to the smooth volcanic plains that cover 

the crater floor. A volcanic origin for CV1 avoids the problems outlined above for 

the impact interpretation. Under this scenario, post-impact volcanism erupted 

directly from the crater floor, burying the original floor morphology, and CV1 was 

constructed afterward. The red colour anomaly could be due to pyroclasts that 
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were deposited by an explosive eruption (THOMAS ET AL., 2015) that could have 

contributed to the excavation of the summit crater. If explosive volcanism did 

occur, this likely represented the final phase of volcanism in Heaney. The northern 

flank depression is either part of a coincidental secondary impact crater chain or 

possibly a primary volcanic structure (see Section 5.5.1). MESSENGER data are 

insufficient to rule out either of these hypotheses, although I have found no 

immediately obvious primary impact craters that could be responsible for the 

northern flank depression. 

Elsewhere on Mercury, there is a close association between LRM, which is thought 

to bear surface-darkening carbon in the form of graphite (PEPLOWSKI ET AL., 2016), 

and sites of explosive volcanism (THOMAS ET AL., 2015). The LRM evident in the 

southern rim and ejecta blanket of Heaney suggests that LRM is present beneath 

the crater (e.g. ERNST ET AL., 2015). Carbon is suggested to be an important volatile 

for driving pyroclastic volcanism on Mercury (WEIDER ET AL., 2016). The relatively 

red colour of explosive volcanic deposits is thought to be due in part to the removal 

of dark, spectrally blue carbon from the magma that leaves the remaining deposit 

redder than the effusive plains around it (WEIDER ET AL., 2016). Concentration of 

volatiles, such as oxised carbon species, in the magma could result either from 

evolution in a shallow magma chamber or by assimilation of volatiles from the 

surrounding crust leading to an explosive eruption (WEIDER ET AL., 2016). 
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Fig. 5.6 The locations of red colour anomalies near Heaney. Depressions interpreted 

as explosive vents are associated with the red colour anomalies in (c) and (d). (a) Context 

view showing the locations of the colour anomalies (dashed white boxes) in (b–d). 

~166 m/pixel monochrome mosaic. (b) Enhanced colour view of the colour anomalies in 

Heaney. ~665 m/pixel. (c) Red anomaly, interpreted as pyroclastic by THOMAS ET AL. 

(2014A), within an unnamed crater (at 115.2°E, 42.0°S). ~665 m/pixel. (d) A similar colour 

anomaly, interpreted as pyroclastic by THOMAS ET AL. (2014A), within an unnamed crater (at 

124.6°E, 39.9°S). ~665 m/pixel. All panels show sinusoidal projections centred on 123°E, 34°S. 

However, MESSENGER data are insufficient to establish an unequivocal volcanic 

origin for CV1. For instance, it is unclear at the available resolution whether CV1 

superposes or is embayed by the smooth plains within Heaney. The impact uplift 

interpretation would be ruled out if CV1 superposes the plains, but if the smooth 

plains postdate it, then a volcanic origin is not assured. Furthermore, additional 
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volcanic features (e.g. individual lava flows, a caldera) cannot be seen at CV1. This 

could be merely due to the lack of resolution, however. For example, identifications 

of lava flow fronts elsewhere on Mercury based on morphological observations 

have proven to be equivocal (HEAD ET AL., 2011; BYRNE ET AL., 2013). 

The small, red colour anomaly coincident with CV1 is poorly characterised in the 

available MESSENGER images. Heaney was imaged by WAC (Fig. 5.7) at high 

incidence angles (>45°) only, which are not ideal for assessing spectral properties, 

and at low spatial resolution (>600 m/pixel). Under these conditions, nearby Sun-

facing slopes, such as parts of the crater wall of Heaney, also appear reddish. I 

therefore consider the presence of a small explosive volcanic deposit at CV1, 

supporting its volcanic origin, to be equivocal as the red colour anomaly is 

plausibly the result of misleading photometric effects. Nevertheless, the smooth 

infill, interpreted to be the product of post-impact volcanism, makes observations 

of volcanic colour signatures in the region unsurprising. Moreover, an unequivocal 

colour anomaly or identified pyroclastic deposit is not prerequisite for CV1 to have 

a volcanic origin. 
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Fig. 5.7 Colour observations of faculae in the region surrounding Heaney. (a) An 

RGB-combined colour image featuring faculae previously suggested by THOMAS ET AL. 

(2014A) to be explosive volcanic deposits (yellow outlines) and others not included in that 

study (white arrows). WAC frames EW1012886465I, EW1012886457G, and EW1012886453F 

were placed in the red, green and blue channels, respectively. 763 m/pixel. (b) The same view 

as in (a) but shown in the enhanced global enhanced colour mosaic. The photometric seam 

masked out in Fig. 5.3c is shown here for completeness. ~665 m/pixel. Both panels show 

sinusoidal projections centred on 123°E, 34°S. 

5 . 4 . 2  Candidate volcano #2 

5 . 4 . 2 . 1  Observations 

Candidate volcano #2 (‘CV2’) is located in the northwest of the Caloris basin rim 

(Fig. 5.8a), at 144°52’24”E, 44°30’49”N, and morphologically resembles CV1 (Fig. 

5.8b). MLA data show that it has a convex-up shape and is 12.1 km in diameter, 

with an elevation above its surroundings of 700 m (Fig. 5.8c). Treating it as a cone, 

CV2 has an average flank slope of 7°, in close agreement with the point-to-point 

slope method, which returns a median slope of 8°. Again, there is a summit 

depression, the internal shadow of which indicates that it is shallower than 

similarly sized impact craters nearby, as is the case for CV1. The ratio of the summit 

depression diameter to the basal diameter of CV2 (~0.21) is also similar to that of 

CV1. Conversely, CV2 has no associated colour anomaly (Fig. 5.9). 
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Fig. 5.8 Photogeological and topographical observations of CV2. (a) The location of 

CV2 (white arrow) 15 km outside Caloris Planitia. ~166 m/pixel monochrome 

mosaic. Sinusoidal projection centred on 145°E, 44.5°N. (b) A larger-scale view of 

CV2 with dots marking the locations of MLA data (MLASCIRDR1109302134). The 

colours indicate the relative elevation. A and A’ mark the ends of the topographic 

profile shown in (c). ~166 m/pixel monochrome mosaic. Sinusoidal projection 

centred on 145°E, 44.5°N. (c) MLA topographic profile of CV2. 
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Fig. 5.9 Enhanced colour view of CV2. CV2 (white arrow) has no associated colour 

anomaly. ~665 m/pixel. Sinusoidal projection centred on 145°E, 44.5°N. 

5 . 4 . 2 . 2  Interpretation 

Other than having a summit depression, CV2 resembles the numerous knobs 

associated with the Caloris basin (Fig. 5.10a). These ‘circum-Caloris knobs’ are 

briefly introduced here, but my full investigation of their origin is contained in 

Chapter 6. The circum-Caloris knobs are most commonly interpreted as Caloris 

ejecta blocks, some of which have been embayed by smooth plains (MCCAULEY ET 

AL., 1981; DENEVI ET AL., 2009; FASSETT ET AL., 2009), although it has been suggested 

that these features are possibly “small volcanic constructs perhaps directly linked 

to the emplacement of the circum-Caloris plains” (FASSETT ET AL., 2009). I consider 

the interpretation of CV2 (Fig. 5.10b) as a volcanic edifice to be a plausible 

alternative to it being an ejecta block because of its morphological resemblance to 

CV1. The convex-up ‘shield’ shape is consistent with a volcanic origin, whereas 

Caloris rim elements (Caloris Montes) are typically blocky and straight-sided 

(MCCAULEY ET AL., 1981; FASSETT ET AL., 2009; ROTHERY ET AL., 2017). The Caloris 

knobs described to the east of Caloris are smaller (i.e. have lower heights and 

typically smaller diameters) than CV2 (ACKISS ET AL., 2015). Knobs west of Caloris 

(closer to CV2) have comparable diameters but appear to be characterised by 

steeper flank slopes (Fig. 5.10c). CV2 is located just 15 km beyond the edge of 

Caloris Planitia, which was emplaced by smooth plains volcanism (DENEVI ET AL., 

2009). The proximity of CV2 to this volcanic province means a volcanic origin for 
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it must be considered. For example, vents attributed to explosive volcanism are 

concentrated within about 220 km of the Caloris rim (MURCHIE ET AL., 2008; 

ROTHERY ET AL., 2014) and other impact features on Mercury (THOMAS ET AL., 2014A). 

 

Fig. 5.10 A morphological comparison of CV2 with knobs in the circum-Caloris 

plains. (a) An example of typical circum-Caloris knobs. The coloured symbols indicate MLA 

data points used to construct the profiles shown in (c). Fortuitously placed MLA tracks 

(knob #1, MLASCIRDR1407230620; knob #2, MLASCIRDR1503132308) cross close to the 

knobs’ peaks. Inspection of the numerous other knobs in this view shows that those crossed 

by MLA tracks are probably representative of the population as a whole. Mosaic of WAC 

frames EW0236023591G and EW0235981138G. ~200 m/pixel. Sinusoidal projection centred 

on 140°E, 35.5°N. (b) CV2 for comparison with the circum-Caloris knobs. ~166 m/pixel. 

Sinusoidal projection centred on 145°E, 44.5°N. (c) MLA topographic profiles of two knobs 

shown in (a) as well as CV2. All profiles are aligned N–S and are shown with the same scale 

and vertical exaggeration. The circum-Caloris knobs have steeper slopes than CV2. 
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5.5  Discussion 

5 . 5 . 1  Comparison with volcanic edifices on other bodies 
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Fig. 5.11 A comparison of select, small volcanic landforms on Earth and the Moon. 

(a) Skjaldbreiður, Iceland. Esri World Imagery, ~100 m/pixel. Sinusoidal projection centred 

on 20.5°W, 64.4°N. (b) The topography of Skjaldbreiður. Same view and projection as in (a). 

The line marked A–A’ indicates the cross section of Skjaldbreiður in Fig. 5.12. ~30 m/pixel. 

(c) Lunar mare domes in Oceanus Procellarum. 100 m/pixel LROC WAC mosaic. Simple 

cylindrical projection centred on 0°E, 0°N. (d) Lunar mare dome topography. Same view and 

projection as in (c). The line marked B–B’ indicates the cross section of lunar mare dome 

Hortensius 5 in Fig. 5.12. ~60 m/pixel. (e) A putative cinder cone in the Marius Hills region 

on the Moon. Note its smaller size compared with the other volcanoes shown LROC NAC 

frame M166195459RE, ~43 cm/pixel. Simple cylindrical projection centred on 0°E, 0°N. (f) 

Marius Hills cinder cone topography. Same projection, but wider context of the view in (e). 

The line marked C–C’ indicates the cross section of the cinder cone in Fig. 5.12. ~60 m/pixel 

gridded LOLA DEM. 

 

If these landforms are volcanic in origin, then they should compare favourably with 

other edifices throughout the Solar System that are interpreted as volcanic. Given 

their sizes, I compare CV1 and CV2 to small volcanic landforms on Earth and the 

Moon (Fig. 5.11). 

There is no evidence that Mercury’s lithosphere ever consisted of multiple tectonic 

plates (SOLOMON, 1978), so other single plate bodies and intraplate settings on 

Earth provide the most plausible analogues for CV1 and CV2. The most comparable 

Earth analogues in terms of size are small (<15 km in diameter), monogenetic 

shields, or cones, such as Mauna Ulu on the Island of Hawai’i (SWANSON, 1973). 

Even interplate settings, such as Iceland, host monogenetic volcanoes that have 

formed in a similar manner to Hawaiian examples (THORDARSON AND LARSEN, 

2007). Skjaldbreiður (Fig. 5.11a and b) has an axisymmetric shape in plan view, as 

do CV1 and CV2, and a similar aspect ratio. The main difference between the 

Mercury landforms and Skjaldbreiður is the relative sizes of the summit craters: 

Skjaldbreiður has a crater-base diameter ratio of 3.75 × 10-3, two orders of 

magnitude fewer than the corresponding ratios of the Mercury landforms. As 

previously stated, there is some colour evidence for explosive excavation of the 

summit crater at CV1 that is not evidenced to have occurred at Skjaldbreiður 

(THORDARSON AND LARSEN, 2007). In any case, eruptions on Mercury are expected 
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to have featured more vigorous fire-fountaining than those on Earth due to rapid 

expansion of even a small volatile content within the magma under vacuum 

(WILSON AND HEAD, 1981). This would allow a wider summit crater to open than 

might happen on Earth (KERBER ET AL., 2009). 

As airless bodies, comparisons of the products of volcanism on the Moon and 

Mercury are also potentially informative. Lunar mare domes (Fig. 5.11c and d) 

provide an instructive comparison for the Mercury candidate volcanoes. These 

landforms are low domes and are interpreted as small (<20 km in diameter) shield 

volcanoes (HEAD AND GIFFORD, 1980). They are generally located toward the edges 

of the lunar maria or close to the edges of mare-hosting impact basins (MCGOVERN 

AND LITHERLAND, 2011). The lunar maria frequently feature sinuous rilles, landforms 

that suggest that these plains were emplaced by high-effusion-rate lavas, with the 

mare domes thought to have formed toward the end of maria emplacement as 

effusion rates waned and lava flow lengths decreased (WÖHLER ET AL., 2006). 

As with the Mercury landforms, mare domes are generally circular and host 

summit craters that are shallower than impact craters of similar diameter (HEAD 

AND GIFFORD, 1980). Lunar mare dome summit craters are also larger than the 

terrestrial equivalents with one example, named Hortensius 5, within Mare 

Insularum, having a crater-base diameter ratio of ~0.33, much closer to those of 

the Mercury examples than Skjaldbreiður. The large sizes of the lunar mare dome 

summit depressions have been attributed to magma withdrawal from the conduit, 

causing the vent to collapse (WÖHLER ET AL., 2006), and to the vigorous nature of 

eruptions into a vacuum (HEAD AND GIFFORD, 1980). Both of these mechanisms can 

explain the large summit diameters of the candidate volcanoes on Mercury. If 

explosive activity did occur at CV1, as the colour data suggest, then this may have 

contributed to the large size of the summit depression. At CV2, where there is no 

colour evidence of an explosive volcanic deposit, magma withdrawal may have 

been the chief driver of summit depression enlargement. 

Although mare domes have lower heights and shallower flank slopes than the 

prospective volcanoes on Mercury, this disparity can be explained by Mercury’s 

higher surface gravity than the Moon. Stronger surface gravity leads to a less 

dispersed fire fountain where pyroclasts and spatter fall closer to the vent (KERBER 
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ET AL., 2009), resulting in a steeper edifice. Furthermore, there are steeper putative 

volcanic constructs on the Moon in the Marius Hills region. Here there are steep 

domes (6–7° slopes) and cones (up to 17° slopes) with summit craters (Fig. 5.11e 

and f) that are interpreted as constructs of varying degrees of lava and pyroclasts, 

superposed on lunar mare material (WEITZ AND HEAD, 1999; S. J. LAWRENCE ET AL., 

2013). The domes are spectrally indistinct from the mare material, suggesting that 

eruption mechanics, rather than magma composition, are responsible for the 

switch from lava plains emplacement to shield construction. Cones in the Marius 

Hills often superpose steep domes, indicating that they are the youngest volcanic 

forms in the region. These are interpreted as cinder cones that formed from 

terminal strombolian eruptions as the eruption rate waned further. Most of the 

Marius Hills cones are C-shaped in plan view, possibly due to flows that overtopped 

the summit crater rim at its lowest point, eroding the cone walls (S. J. LAWRENCE ET 

AL., 2013). It is possible that this cone morphology is analogous to the northern 

flank depression of CV1. Other Marius Hills cones do not have such a gap, which 

makes them more similar to CV2 in appearance. The main difference between the 

Marius Hills cones and the candidate volcanoes on Mercury is size. The Marius 

Hills cones are generally 1–2 km across, whereas CV1 and CV2 have diameters of 

~6 and ~12 km, respectively. These diameters correspond more closely to those of 

lunar mare domes interpreted as shield volcanoes, although these features are not 

as steep as the Mercury landforms. Both the candidate volcanoes on Mercury I have 

described here have flank slopes intermediate between lunar shield volcanoes and 

lunar cinder cones (Fig. 5.12). This apparent discrepancy can be explained if the 

landforms on Mercury are composite volcanoes constructed by the accumulation 

of both lava and pyroclasts (HEAD, 1975; DAVIDSON AND DE SILVA, 2000). 
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Fig. 5.12 Comparisons of Mercury candidate volcanoes with small, volcanic 

landforms on Earth and the Moon. The black arrows indicate the extent of the summit 

depressions in each example where the topography of the depression cannot be resolved. The 

Mercury landforms have sizes comparable to an Icelandic shield volcano, and slopes 

intermediate between the examples of shield volcanoes and a lunar cinder cone shown here. 

No vertical exaggeration. 

5 . 5 .2  Edifice construction on Mercury 

Whether or not CV1 and CV2 are volcanic edifices, it is apparent that Mercury’s 

characteristic eruptive style during its early history overwhelmingly generated 

widespread volcanic plains, akin to LIPs on Earth, with edifice construction 

occurring either very rarely or not at all. Borealis Planitia and the Caloris smooth 

plains, believed to represent the most recent, large-scale effusive activity, have 

model ages of ~3.7 Ga (HEAD ET AL., 2011; DENEVI ET AL., 2013; OSTRACH ET AL., 2015). 

Shortly after this time, at about 3.5 Ga, large-scale effusive volcanism on Mercury 

appears to have ceased across the planet (BYRNE ET AL., 2016). This cessation was 

probably in response to magma ascent pathways being closed by global contraction 

(SOLOMON, 1978; WILSON AND HEAD, 2008; BYRNE ET AL., 2016). As cooling and 

contraction of Mercury’s interior continued after the end of widespread effusive 

volcanism, magma is predicted to have stalled at ever increasing depths beneath 

the planet’s surface (MENAND ET AL., 2010; MACCAFERRI ET AL., 2011). However, 

impacts remove overburden, promote uplift, temporarily reset the pre-existing 
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stress regime, propagate fractures (KLIMCZAK, 2015), and deposit heat (ROBERTS AND 

BARNOUIN, 2012), all of which could facilitate the generation and extraction of 

magma from the subsurface (BYRNE ET AL., 2016). Therefore, impact craters that 

formed a sufficiently short time after the end of large-scale effusive volcanism on 

Mercury are arguably more likely than other locations to host late-stage volcanism. 

I therefore propose a sequence of events that led to the formation of CV1 that is 

both consistent with my observations and explains the paucity of constructional 

edifices on the planet in general (Fig. 5.13). The late-Calorian/early-Mansurian 

appearance of Heaney crater means it probably formed toward the end of, or after, 

large-scale effusive volcanism on Mercury, but probably when crustal magma 

intrusion was still occurring (~3.5 Ga; BYRNE ET AL., 2016). Post-impact volcanism 

has been recognised in impact features elsewhere on Mercury dating from this time 

period or later (PROCKTER ET AL., 2010; BLAIR ET AL., 2013). Crustal storage and 

intrusion permitted the melt to become more evolved (thus increasing magma 

viscosity) and/or assimilate crustal volatiles (THOMAS ET AL., 2015). Due to the 

effects of impacts listed above, the crater was filled by late-stage, post-impact 

effusive volcanism. The erupted volumes of this post-impact volcanism were much 

lower than during the emplacement of the extensive smooth plains on Mercury 

because magma stored locally beneath the impact site only could be mobilised. 

This is similar to the small volumes of magma mobilised from shallow magma 

chambers theorised to form the domes and cones of the Marius Hills (HEATHER ET 

AL., 2003). 
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Fig. 5.13 Conceptual formation model of CV1. Heaney is shown as a protobasin, based on 

evidence discussed in Section 5.4.1.2. This model would also apply to a complex crater 

morphology. (a) Heaney formed as a crater with a peak-ring after the end of large-scale 

effusive eruptions on Mercury, but before magmagenesis in the subsurface was inhibited due 

to secular cooling of the planet’s interior. The impact propagated fractures within, and 

temporarily reset the compressive regime of, the crust. (b) A small volume of mantle-derived 

magma was liberated from subsurface storage by exploiting fractures opened by the impact. 

Eruptions may have occurred at multiple locations onto the crater floor. (c) As geological 

time progressed, the stress regime within the crater became increasingly horizontally 

compressive, such that later eruptions were concentrated at a single, final location. If 

Heaney did form with a peak-ring, then deep fractures associated with this structure might 

have facilitated the ascent of late-stage magmas. CV1 was built as a result of these late-stage, 

small-volume eruptions from a point source. (d) When the magma rise rate became critically 

low, it is possible that a switch to an explosive eruptive style occurred due to the 

concentration of volatiles in the magma, causing a terminal deposition of pyroclasts. 

Cartoon not to scale. 

 

To begin with, eruptions may have occurred at multiple locations within Heaney, 

but the peak-ring area could have been favoured by the presence of high-angle, 

deep, bounding normal faults (KENKMANN ET AL., 2014). Lunar mare domes, for 

example, are also associated with such structural features (HEAD AND GIFFORD, 

1980), and explosive vents within craters on Mercury also cluster toward peak 

elements (THOMAS ET AL., 2015; JOZWIAK ET AL., 2018). Following the initial post-

impact volcanism, the effusion rate slowed as Mercury’s global horizontally 

compressive stress regime began to reassert itself. Evidence for this effect comes in 

the form of small, young lobate scarps elsewhere on Mercury (WATTERS ET AL., 

2016). Heaney’s smooth infill could be accommodating strain due to Mercury’s 

stress regime similarly, since the infill contains possible incipient wrinkle ridges. 

Alternatively, these ridges may have formed due to natural subsidence of the 

smooth infill, evidenced to have occurred to some degree by Heaney’s concave-up 

interior topography (Fig. 5.4b). Subsidence could drive shallow folding and thrust 

faulting, resulting in wrinkle ridge formation (BLAIR ET AL., 2013). In either case, the 

stress regime within Heaney would be expected to have become increasingly 
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horizontally compressive following the impact. If the reassertion of such a stress 

field upon the interior of Heaney were geologically rapid, then any post-impact 

volcanism must have commenced relatively quickly after the impact. This is a 

plausible scenario, since no ghost craters are in the smooth infill of Heaney, 

suggesting that little geological time passed between crater formation and volcanic 

infilling. The increasingly horizontally compressive stress regime closed magma 

ascent pathways until eruptions were concentrated at a single vent at the location 

of CV1. The lower effusion rate, small erupted volume, and single source vent led 

to the construction of a prominent volcano toward the end of this sequence. 

Construction may have been enhanced by the erupted lavas having higher 

crystallinity, lower eruption temperatures, and more evolved compositions 

(NAMUR AND CHARLIER, 2017) than typical plains-forming lavas on Mercury. 

Eventually, the effects of the impact that had mobilised the magma diminished 

and effusion ceased. The final eruption(s) occurred in the style of other explosive 

eruptions elsewhere on Mercury: the exsolution of volatiles concentrated in the 

magma by subsurface evolution and/or crustal assimilation caused the last melt to 

ascend rapidly from depth, leading to a final phase of explosive volcanic activity 

before the extinction of the volcano (THOMAS ET AL., 2015). This last phase of 

explosive volcanism must have been short-lived and was possibly a single event of 

sufficiently small scale to explain the correspondingly small size of the resultant 

pyroclastic deposit compared with other faculae on Mercury (THOMAS ET AL., 2014A) 

and the preservation of the constructional edifice. No observations I have made of 

Heaney crater require that significant intervals of geological time separate the 

impact event, the burial of the crater floor by smooth plains, the construction of 

the edifice, or the final explosive eruptive phase. Therefore, based on studies of 

post-impact volcanism elsewhere on Mercury (PROCKTER ET AL., 2010; CHAPMAN ET 

AL., 2012; FERRARI ET AL., 2015), I tentatively suggest that this whole sequence of 

events was completed in under 100 million years. 

It may be that CV2 formed in a similar manner. In this case, toward the end of the 

emplacement of the Caloris plains, late-stage, low-volume eruptions ascended 

along a fracture associated with the rim of the Caloris basin. The known explosive 

vents within Caloris Planitia are within 220 km of the edge of the basin (THOMAS 

ET AL., 2014A; BESSE ET AL., 2015). Sites of young lunar volcanism are also 
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concentrated toward the edges of the lunar maria (HEAD AND GIFFORD, 1980). This 

is thought to be due to the magma ascent-enhancing stress state found at mare 

basin margins. Lithospheric loads, such as the lunar maria or Caloris Planitia, can 

cause extension in an annulus close to the edge of the load, assisting magma ascent 

(MCGOVERN AND LITHERLAND, 2011). Furthermore, small-volume magmas might 

preferentially erupt close to the edge of Caloris Planitia, where the basin-filling 

lavas are thinnest, since their overburden stresses would pose the least obstacle to 

magma ascent there (ROTHERY ET AL., 2014). 

The fact that few prospective constructional volcanic edifices have been reported 

on Mercury is important. Any small constructional volcanic edifices that do exist 

on Mercury probably represent only a fraction of those that ever formed, since 

edifices are subject to erosion, particularly due to destruction by subsequent 

impacts. However, numerous small volcanic constructs exist on the Moon (HEAD 

AND GIFFORD, 1980), which has had a similar history of impact erosion to Mercury 

(FASSETT AND MINTON, 2013), indicating that if small-scale edifice construction is 

widespread enough, evidence that it occurred can survive billions of years of 

geological time. On this basis, I argue that edifice construction on Mercury must 

have been highly spatiotemporally constrained throughout its geological history, 

assuming such construction occurred at all. I suggest that the scarcity of candidate 

volcanic edifices on Mercury is not a product of their removal by erosion but 

instead reflects the limited availability of small-volume, short flow length, high-

viscosity eruptions. Eruptions of this kind appear to have been very unusual, since 

volcanism during Mercury’s early history primarily formed widespread plains. 

Large-scale effusive volcanism came to a geologically abrupt end globally ~3.5 Ga, 

most likely in response to global contraction (BYRNE ET AL., 2016). This contrasts 

with the more protracted decline of effusive volcanism on the Moon (HIESINGER ET 

AL., 2000), which could explain the dearth of volcanic edifices on Mercury. 

The first candidate edifice I have described may have been able to form due to the 

small erupted volume of material capable of ascending into an impact crater post-

dating large-scale effusive volcanism. This is similar to how monogenetic volcanoes 

on Earth and other terrestrial planets are thought to form from small volumes of 

lava. Assuming Heaney has the minimum diameter required to extract small-
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volume melts, I conservatively estimate that there are ~26 impact features on 

Mercury of sufficient size and youth to host constructional edifices (Table 5.1). 

Other than Heaney, none of these appears to host edifices with summit depression 

similar to the candidates I have described here, but they may host less 

topographically pronounced domes that cannot be identified using MESSENGER 

data. 

My second candidate edifice could be the result of final, small melt volumes 

erupting toward the end of the emplacement of the Caloris smooth plains, similar 

to the formation of lunar mare domes after most of the mare basalts were 

emplaced. 

5.6  Conclusions 

To date, no constructional volcanic edifices have been unambiguously identified 

on Mercury. I have appraised two positive-relief landforms on the planet as 

candidate constructional volcanic edifices, although I cannot rule out non-volcanic 

hypotheses for their origins with MESSENGER data. My interpretations for these 

two candidate volcanic edifices lead me to conclude that: (1) volcanic edifices could 

be found in other impact craters that formed shortly after the end of widespread 

effusive volcanism on Mercury, controlled by impact-related fractures in the 

subsurface; (2) edifices are unlikely to be found toward the centre of thick volcanic 

plateaus, as magmas capable of forming edifices are better able to ascend to the 

surface through the reduced overburden and favourable stress fields at the edge of 

plateaus (MCGOVERN AND LITHERLAND, 2011), and; (3) edifices are not expected to be 

found in more ancient impact craters that formed when large-scale plains 

emplacement was still occurring globally, as the erupted volumes and effusion 

rates are predicted to be too high. No edifices have, to date, been recognised in the 

smooth plains within the Beethoven basin, for example, or other pre-Calorian 

impact basins and craters (FASSETT ET AL., 2012). 
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Crater name Crater diameter (km) lat., long. (°, +ve east) 

Heaney 125 -33.77, 122.29 

Unnamed 125 -70.65, 48.50 

Ahmad Baba 126 58.33, 231.65 

Stravinsky 129 51.95, 281.10 

Zeami 129 -2.96, 212.59 

Sūr Dās 131 -46.98, 266.43 

Chopin 131 -65.45, 236.60 

Sousa 138 46.69, 0.63 

Bello 139 -18.87, 239.82 

Joplin 139 -38.56, 25.51 

Verdi 145 64.36, 190.29 

Sayat-Nova 146 -27.98, 237.30 

Magritte 149 -72.78, 121.63 

Alver 151 -66.97, 77.25 

Lermontov 166 15.24, 311.06 

Nabokov 166 -14.56, 55.76 

Derain 167 -9, 19.70 

Aksakov 174 34.71, 281.26 

Strindberg 189 53.41, 233.33 

Larrocha 196 43.29, 290.17 

Steichen 196 -12.79, 77.04 

Rustaveli 200 52.41, 82.74 

Vivaldi 213 13.76, 274.08 

Mozart 241 7.75, 169.41 

Raditladi 258 27.15, 119.06 

Rachmaninoff 305 27.66, 57.37 

Table 5.1 Impact features that are at least as young and large as Heaney. These 

impact features are good candidate hosts of post-impact volcanism that may have 

constructed low volcanic edifices. They are good targets for high-resolution observations by 

BepiColombo. 
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Although MESSENGER data are sufficient to search for features such as those I 

have described here, the arrival of the BepiColombo spacecraft (ROTHERY ET AL., 

2010) will enable a new search for prospective small volcanoes on the innermost 

planet. High-resolution (approaching 5 m/pixel), stereo (~50 m/pixel), and 

multispectral images (BENKHOFF ET AL., 2010) will enable more detailed 

observations of the surface, facilitating the search for additional volcanoes on 

Mercury, such as low domes or cones without large summit craters, should they be 

present. BepiColombo will also be able to test the origin, volcanic or otherwise, of 

the two landforms described here.
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CHAPTER 6  
THE CIRCUM-CALORIS KNOBS :  LONG-

LIVED POST-DEPOSITION MODIFICAT ION 

OF CALORIS E JECTA BLOCKS  

6. 1  Introduction 

During the course of my search for constructional volcanoes on Mercury, I 

encountered the circum-Caloris knobs. These landforms appear to be peculiar to 

the area surrounding the Caloris basin, and during the preparation of this thesis 

two competing hypotheses for their formation existed; either by volcanism or as 

impact ejecta. In this chapter, I introduce the Caloris basin and all the relevant 

details pertaining to the circum-Caloris knobs (Section 6.2). Following the 

background details about Caloris, I explain the data and methods I used to study 

the circum-Caloris knobs (Section 6.4). My results include the first map of the 

distribution of circum-Caloris knobs >5 km in diameter (Section 6.5.3), detailed 

observations of their geomorphology (Section 6.5.1) and topography (Section 

6.5.5). I discuss the implications of my observations and measurements of the 

circum-Caloris knobs for their formation and evolution in Section 6.6.1. I conclude 

that the circum-Caloris knobs are not volcanic edifices, but instead Caloris ejecta 

blocks. However, the present-day conical shapes of the blocks requires them to 

have been modified after their original emplacement. I suggest that conical shapes 

can be achieved and maintained on these ancient landforms only by an advective 

transport process, such as slope failure, rather than a diffusive erosive process, such 

as impact gardening (Section 6.6.1.1). Post-impact modification of the knobs might 

be controlled in part by volatile-loss from their interiors, making these knobs an 

unrecognised landform formed by a hitherto undescribed process on the surface 

of Mercury. If so, they would also provide support for a volatile-rich 

(sulfur/carbon-bearing species in greater than lunar concentrations) deep interior 

of Mercury. 
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6.2  The Caloris basin 

The Caloris basin (~1,550 km in diameter) is the largest preserved impact structure 

on Mercury (MURCHIE ET AL., 2008). The associated Caloris Group (MCCAULEY ET 

AL., 1981) consequently contains diverse geology (Section 6.2.1). The Caloris basin 

is also associated with widespread smooth plains (Section 6.2.2) both within 

(Caloris Planitia) and without (circum-Caloris plains) it. 

6 . 2 . 1  The Caloris Group 

The Caloris Group (Fig. 6.1) contains the Caloris Montes Formation, the Nervo 

Formation, the Van Eyck Formation, and the Odin Formation. These formations 

were imaged by Mariner 10 and are considered to have formed as a result of the 

Caloris impact (MCCAULEY ET AL., 1981). Since the Odin Formation is characterised 

by the circum-Caloris knobs, which are the focus of this chapter, it is introduced 

separately, and in greater detail, in Section 6.2.3. 

6 . 2 . 1 . 1  Caloris Montes Formation 

The Caloris Montes Formation (Fig. 6.1a) is interpreted as the uplifted rim of the 

Caloris basin. Typically, the Caloris Montes Formation consists of “a jumbled array 

of smooth-surfaced but highly segmented rectilinear mountain massifs” 

(MCCAULEY ET AL., 1981). The formation takes its name from the formally named 

‘Caloris Montes’ that make up the eastern rim of the basin imaged by Mariner 10. 

When MESSENGER imaged the entirety of the basin during its first flyby (MURCHIE 

ET AL., 2008), the Caloris Montes Formation was also identified at the western rim 

of the basin, leaving its definition and interpretation unchanged in the 

MESSENGER-era. Now that it is has been imaged in full, it is apparent that the 

Caloris Montes Formation is discontinuous around the circumference of the 

Caloris basin, which has posed some difficulty in determining the rim position and 

its diameter (FASSETT ET AL., 2009). The Caloris Montes Formation is more 

continuous and better exposed in the north and southeast than it is in the west 

(GOOSMANN ET AL., 2016; KINCZYK ET AL., 2018B). 
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Fig. 6.1 Caloris Group formations. (a) The Caloris Montes Formation constitutes the rim 

of the Caloris basin. Caloris Planitia is a region of smooth plains within the Caloris basin. 

(b) The Nervo Formation appears to be Caloris ejecta mantling the Caloris rim and other 

surrounding materials. (c) The Van Eyck Formation constitutes scour and lineaments radial 

to Caloris. (d) The circum-Caloris smooth plains appear to postdate the Caloris impact. All 

panels show a Mercator projection centred on 167.2°E, 31.5°N of the ~166 m/pixel global 

monochrome mosaic. 

6 . 2 . 1 . 2  Nervo Formation 

The Nervo Formation (Fig. 6.1b), originally the ‘intermontane plains’ (TRASK AND 

GUEST, 1975), is characterised by “rolling to locally hummocky plains that lie in 

inter-massif depressions” (MCCAULEY ET AL., 1981). These plains were observed to 

drape Caloris Montes Formation massifs, and appeared to lie at elevations above 

the surroundings. The Nervo Formation was interpreted as fallback ejecta that has 
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covered some parts of the Caloris basin rim (TRASK AND GUEST, 1975). After the 

arrival of MESSENGER, some doubts about the observations of the Nervo 

Formation made using Mariner 10 data were raised. Following the first 

MESSENGER flyby, no unambiguous exposures of the Nervo Formation as defined 

above were made, even where MESSENGER data overlapped with identification of 

the Nervo Formation in Mariner 10 data (FASSETT ET AL., 2009). The three 

explanations offered for this problem were: (1) Nervo Formation happens to be 

more poorly exposed in western Caloris (imaged by MESSENGER) compared with 

eastern Caloris (imaged by Mariner 10); (2) Nervo Formation defined on the basis 

of Mariner 10 data is actually part of other plains units interior and exterior to the 

Caloris basin, and; (3) Nervo Formation cannot be resolved in MESSENGER flyby 

data of the western Caloris rim (FASSETT ET AL., 2009). Subsequent orbital 

MESSENGER observations have revealed Nervo Formation in western Caloris, 

although it is poorly exposed in the same regions where Caloris Montes Formation 

is poorly exposed (GOOSMANN ET AL., 2016; KINCZYK ET AL., 2018B), which suggests 

exposure of both formations is controlled by the same factors. The Nervo 

Formation continues to be interpreted as Caloris fallback ejecta that has mantled 

high-standing regions around its rim, including the Caloris Montes Formation 

(GOOSMANN ET AL., 2016). 

6 . 2 . 1 . 3  Van Eyck Formation 

The Van Eyck Formation (Fig. 6.1c), originally ‘Caloris lineated terrain’ (TRASK AND 

GUEST, 1975), is considered by MCCAULEY ET AL. (1981) to consist of a lineated facies 

and a secondary crater facies. The lineated facies, which is located proximal to the 

Caloris rim, is made of radial ridges and grooves that were interpreted to have 

formed as ballistically emplaced ejecta mixed with pre-basin bedrock (MCCAULEY 

ET AL., 1981). The secondary crater facies contains numerous secondary crater 

chains attributable to the Caloris basin (MCCAULEY ET AL., 1981). Both facies of the 

Van Eyck Formation were identified around the whole of the Caloris basin after 

MESSENGER’s first flyby (FASSETT ET AL., 2009). Radial lineations were observed to 

transition into the rims of craters in chains, indicating that the lineated and 

secondary crater facies of the Van Eyck Formation are related and not fully 

separable (FASSETT ET AL., 2009). The Van Eyck Formation appears to have formed 
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due to scouring of the pre-impact landscape by Caloris ejecta. This resulted in the 

sculpted landscape observable today. Impact sculpture radial to Caloris has been 

observed from the basin rim to over one basin diameter beyond the rim (FASSETT 

ET AL., 2009). 

6 . 2 . 2  Smooth plains 

As mentioned previously, the Caloris basin is associated with two extensive regions 

of smooth plains (Chapter 5, Fig. 5.1). The smooth plains that occupy the interior 

of the basin constitute Caloris Planitia and have buried the basin’s original floor 

(Fig. 6.1a). Smooth plains are found around the outside of the Caloris basin too 

(informally referred to as the ‘circum-Caloris plains’; Fig. 6.1d). Collectively, I refer 

to Caloris Planitia and the circum-Caloris smooth plains as the ‘Caloris smooth 

plains’ and their mutual relationship is discussed in ROTHERY ET AL. (2017). The 

Caloris smooth plains were initially thought to be volcanic in origin (TRASK AND 

GUEST, 1975), however at the time when Mariner 10 data were being analysed, 

results from Apollo 16 indicated that the smooth Cayley Formation (or lunar light 

plains) were impact ejecta, rather than volcanic lavas (EGGLETON AND SCHABER, 

1972). The smooth plains on Mercury, as imaged by Mariner 10, resembled the 

Cayley Formation, which raised the possibility that some or all of Caloris Planitia 

and the circum-Caloris plains could be a mixture of impact melt and fluidised 

impact ejecta (WILHELMS, 1976). 

At the time of the first MESSENGER flyby, the debate about the impact or volcanic 

origin of the smooth plains on Mercury was ongoing. MESSENGER data were used 

to conclude the debate and established a volcanic origin for most smooth plains 

on Mercury. Important observations that favour a volcanic origin for the Caloris 

smooth plains include: the identification of candidate volcanic vents within Caloris 

Planitia (HEAD ET AL., 2008) and the circum-Caloris plains (BYRNE ET AL., 2013); 

Caloris smooth plains appear to embay the Caloris Montes Formation (FASSETT ET 

AL., 2009); the Caloris smooth plains have distinct colour signatures from Caloris 

Group formations (MURCHIE ET AL., 2008), and; multiple studies have shown that 

the Caloris smooth plains have a younger crater retention age than the Caloris 

Montes Formation (FASSETT ET AL., 2009; DENEVI ET AL., 2013; MANCINELLI ET AL., 

2016). 
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The established volcanic origin for the Caloris smooth plains raises some further 

questions, including the matter of the amount of time that passed between the 

impact and the beginning of post-impact eruptions. There are no ghost craters 

≥10 km in diameter within Caloris Planitia. This probably means that either Caloris 

Planitia is so thick that all craters that formed on the original floor of the Caloris 

basin are so deeply buried that they have no surface manifestation as ghost craters 

or that post-Caloris eruptions began shortly after the Caloris impact (ERNST ET AL., 

2015). 

Another important question about the Caloris smooth plains is whether the 

circum-Caloris smooth plains, or the smooth plains of Caloris Planitia formed first. 

Some crater size-frequency distribution studies have suggested that the circum-

Caloris plains have fewer superposed craters, and are therefore the younger of the 

two (STROM ET AL., 2008; FASSETT ET AL., 2009). 

6 . 2 . 3  The Odin Formation and the circum-Caloris knobs 

The Odin Formation (Fig. 6.2a) is the most enigmatic formation within the Caloris 

Group. It was originally called ‘hummocky plains’ (TRASK AND GUEST, 1975) and was 

later described as consisting of kilometre-scale knobs (Fig. 6.2b) with intervening 

smooth plains (MCCAULEY ET AL., 1981). Similar to the Van Eyck Formation, the 

Odin Formation extends away from the Caloris rim by approximately one basin 

diameter, but it is more widespread proximal to the rim. In Mariner 10 images, the 

Odin Formation resembles the Alpes Formation, associated with Imbrium on the 

Moon (MCCAULEY ET AL., 1981). The Odin Formation was interpreted as high-angle, 

late-arriving ejecta, with blocks, which have been subsequently embayed by 

volcanic smooth plains (MCCAULEY ET AL., 1981). 

However, MESSENGER-era studies of the Odin Formation raised doubts about its 

origin as Caloris impact ejecta. The Odin Formation appears to have a younger 

crater retention age than the Caloris Montes Formation (FASSETT ET AL., 2009). If 

the Odin Formation did form as Caloris ejecta, then it should have the same crater 

size-frequency distribution as the Caloris Montes Formation, since the uplifted 

basin rim and ejecta were generated in the same geological instant. This result has 

led some workers to suggest that the Odin Formation has different crater 
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production/retention properties from smooth plains (DENEVI ET AL., 2013). Others 

have suggested that the Odin Formation must have a volcanic origin and that its 

low crater density is due to its formation postdating the Caloris impact. 

A further enduring difficulty with the Odin Formation is that its Mariner 10 

definition refers to both characteristic knobs and intervening smooth plains 

(MCCAULEY ET AL., 1981). No threshold spatial density of knobs has been prescribed 

in order to distinguish smooth plains with incidental knobs and exposed Odin 

Formation (ROTHERY ET AL., 2017). As a result, mappers of the Caloris smooth plains 

were forced to use approximate or gradational contacts between the smooth plains 

and the Odin Formation (DENEVI ET AL., 2013). 

 

Fig. 6.2 The Odin Formation and the circum-Caloris knobs. (a) The Odin Formation is 

the knobby material occupying an east–west strip in the centre of this panel. (b) Examples 

of larger circum-Caloris knobs proximal to the Caloris rim. Both panels show Mercator 

projections centred on 167.2°E, 31.5°N of the ~166 m/pixel global monochrome mosaic. 

Interpretations of the circum-Caloris knobs themselves depend on the 

interpretation of the Odin Formation, which they help define. If the relatively 

young crater size-frequency distribution of the Odin Formation compared with the 

Caloris impact leads us to draw the conclusion that the Odin Formation is volcanic 

in origin, then the circum-Caloris knobs might be small, volcanic constructs 

(FASSETT ET AL., 2009; MANCINELLI ET AL., 2016). On the other hand, if the Odin 

Formation is interpreted as a Caloris ejecta facies, then the circum-Caloris knobs 
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could be either volcanic constructs or remnant Caloris ejecta blocks. ACKISS ET AL. 

(2015) mapped the locations of the circum-Caloris knobs proximal to northeast 

Caloris. They used shadow-length measurements to calculate the heights of the 

knobs. They found that the spatial density and height distribution of the knobs is 

most consistent with their emplacement as Caloris ejecta that was subsequently 

embayed. However, their study did not map knobs west of Caloris or knobs 

>600 km from the basin rim at any azimuth. 

6.3  Aims and objectives 

In this study, I aimed to investigate the origin of the Odin Formation and the 

circum-Caloris knobs. In particular, I aimed to establish wheher any circum-

Caloris knobs are volcanic constructs or if they are all Caloris ejecta. I also hoped 

that this study would inform the debate about the young crater size-frequency 

distribution of the Odin Formation. 

To do this, I set out to map the locations of the circum-Caloris knobs and make 

detailed observations of their appearances, contexts, slopes and shapes. 

6.4  Data and methods 

6 . 4 . 1  Photogeological observations of knobs 

I used the ~166 m/pixel global MDIS monochrome mosaic to map the locations of 

circum-Caloris knobs. I mapped the locations of all knobs ≥5 km in diameter. I 

chose to implement a threshold diameter since knob frequency is strongly anti-

correlated with diameter. I quickly established that it would not be feasible to map 

the locations of knobs <5 km in diameter and also guarantee that the resultant 

catalogue would be complete. 

I used a Mercator projection focussed on the centre of the Caloris basin (162.7°E, 

31.5°N) to map the knobs using ArcMap 10.1. I chose this projection because it 

conserves angles, and thus shapes, over the whole projection. Furthermore, north 

is toward the top of this projection at all longitudes, which is a property that I knew 

would simplify my data processing (see Section 6.4.2.2). However, this projection 

does distort distances, such that at latitudes far away from the latitude of origin 

(31.5°N) the apparent sizes of objects in the projection are distorted (Fig. 6.3). 
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Initially, when I measured knob diameters in order to categorise them for my map, 

I made my measurements using the ArcMap Measure Tool in ‘geodesic’ mode, 

which makes distance measurement corrections based on the projection being 

used. Final knob diameter measurements were made using the three-point circle 

digitisation functionality in CraterTools (KNEISSL ET AL., 2011). For this method, I 

selected three points on each knob’s perimeter and a circle was digitally fitted to 

these points. The projection-independent diameter of each circle fitted to a knob 

was recorded as the diameter of that knob. 

I mapped the circum-Caloris knobs in a point feature class. Landforms that I 

confidently identified as circum-Caloris knobs were included in this feature class 

along with more ambiguous landforms that in my view conceivably could be 

unrelated landforms. Some knobs <5 km in diameter were also included in this 

feature class. This is because many knobs were mapped before I implemented the 

5 km diameter threshold. Furthermore, I found it instructive to illustrate regions 

around Caloris where knobs are abundant but not many are ≥5 km in diameter. 

Had I excluded these knobs, then my map of the distribution of the knobs would 

have been misleading. As a result, my catalogue of the circum-Caloris knobs is 

practically complete for knobs ≥5 km in diameter, but contains many, but by no 

means all, knobs <5 km in diameter. I felt that this compromise would capture a 

more informative representation of the distribution of the circum-Caloris knobs. 

These three knob types (certain, uncertain, <5 km) were given corresponding 

distinguishing attributes that allowed me to symbolise them differently and 

separate them as required. 
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Fig. 6.3 Tissot’s indicatrices of deformation for the Mercator projection used 

throughout this chapter. The Mercator projection I used when mapping and measuring 

the circum-Caloris knobs: central meridian 162.7°E, standard parallel 31.5°E. The coloured 

shapes represent the size and shape distortion of theoretical impact craters, all 400 km in 

diameter, by the projection at different latitudes and longitudes. All the shapes are circles, 

since Mercator projections are conformal and preserve shapes. However, only the circles at 

30°N, i.e. close to the projection’s standard parallel (31.5°N), would be measured as 400 km 

in diameter using the linear scale bar. The circles at 60°N have apparent diameters of 

~680 km, which is ~17× true scale. The circles at Mercury’s equator have apparent diameters 

of ~350 km, which is ~0.87× true scale. 

In order to make photogeological observations of individual knobs, I searched the 

Planetary Data System (PDS) for MDIS NAC images (with higher spatial 

resolutions than the ~166 m/pixel global mosaic) that captured knobs ≥5 km in 
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diameter. The best images for making photogeological observations have 

spacecraft emission angles close to 0° (Fig. 6.4) and solar illumination angles 

around 68° (CHABOT ET AL., 2016). I focused on gathering images that met these 

additional criteria, but when this was not possible I prioritised the highest 

resolution images. With these images I observed the shapes and surface textures 

of the knobs in order to gain insight into their origin and evolution. 

6 . 4 . 2  Topographic measurements of knobs 

In order to quantify my photogeological observations of the circum-Caloris knobs, 

I measured topographic profiles of them using two methods: MLA-derived 

topography and shadow-derived topography. 

6 . 4 . 2 . 1  MLA-derived knob topography 

MLA tracks cover the northern hemisphere of Mercury with increasing density 

toward high northern latitudes (CAVANAUGH ET AL., 2007; ZUBER ET AL., 2012). As 

Caloris is situated at mid-northern latitudes, I considered the possibility of MLA 

data coverage of the circum-Caloris knobs to be a very important resource for 

measuring knob topography. After I completed my map of all the circum-Caloris 

knobs ≥5 km in diameter, I used the MLA footprint shapefile to search for MLA 

data tracks that sample the maximum height of knobs. I prioritised MLA data 

tracks that traversed knobs in the direction of steepest ascent/descent, so that I 

could use them to measure the flank slopes of knobs. MLA data are archived as 

tab-separated variable (.tab) files on the Mercury Orbital Data Explorer 

(http://ode.rsl.wustl.edu/mercury/indexDatasets.aspx). 

I downloaded the MLA data for knob-intersecting tracks and converted them to 

point feature classes for visualising in ArcMap. I did this by using the ArcCatalog 

10.1 ‘Create Feature Class From XY Table’ functionality. The inputs required for this 

functionality are a table of X- and Y-coordinates and their coordinate system. Since 

the MLA data tables store the locations of the measured points on the surface of 

Mercury as latitude and longitude pairs, I imported these data as a geographic 

coordinate system for Mercury (with radius 2,440 km) and used longitudes as X-

coordinates and latitudes as Y-coordinates. Z-coordinates can also be generated, 

so I included the corresponding MLA measurements of Mercury’s planetary radius 

http://ode.rsl.wustl.edu/mercury/indexDatasets.aspx
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as the Z-coordinate. Once this processing was complete, I rendered the new point 

feature classes for each knob in ArcMap. 

MLA data tables contain abundant information in addition to the locations and 

elevations of measured points on the surface, including a measure of the signal-to-

noise ratio of the laser pulse return recorded by the spacecraft, which is stored as 

an integer from 0 (best) to 9 (worst; CAVANAUGH ET AL., 2007). MLA data with a 

channel value of ≤4 were retained, and where multiple returns for the same MLA 

pulse were recorded, the planetary radius measurement with the quality channel 

closest to 0 was prioritised. For each MLA point feature class, I selected the 

elevation data points with the best available quality channels (always ≤4) that lie 

on a knob, with a few extra points each side of the knob to guarantee the outermost 

extent of each knob would be retained, using the ‘Select by Attributes’ function in 

ArcMap. I exported this selection as a new feature class. 

For each of these new feature classes, I calculated the projected map coordinates 

(units of metres, rather than degrees) of each data point. I used trigonometry to 

calculate the along profile distance for each point. I then plotted point height vs 

along profile distance to generate topographic profiles for each knob with MLA 

data. From these profiles, I used a modification of the point-to-point method 

(KRESLAVSKY AND HEAD, 1999: see Chapter 5) to calculate flank slopes of their 

respective knobs. The modification and justification are given in Section 6.4.2.2. 

6 . 4 . 2 . 2  Shadow-derived knob topography 

MLA data were unavailable for most knobs. In order to measure the topography of 

more knobs than just those with MLA data I decided to use shadow length 

measurements. Shadow length measurements have been widely deployed on 

multiple planetary bodies for calculating the heights and depths of landforms 

(BASILEVSKY, 2002; BARNOUIN ET AL., 2012), particularly where digital elevation 

models generated from laser altimetry or photogrammetry have been unavailable. 

Basic shadow length measurements estimate the maximum height of a shadow-

casting landform by exploiting the trigonometric relationship between the length 

of a landform’s shadow cast on a horizontal plane and the height of the landform 

(Fig. 6.4; BARNOUIN ET AL., 2012). 
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Fig. 6.4 Cartoon of shadow calculation key variables. i = solar incidence angle. e = 

spacecraft emission angle. L = length of shadow measured in an image with known 

illumination conditions. h = knob height, the quantity to be calculated. This cartoon 

illustrates a positive spacecraft emission, where the spacecraft is looking back toward the 

Sun. Negative emission angles occur when the Sun is behind the spacecraft. In this cartoon, 

the Sun, knob and spacecraft are in the same vertical plane. When this is the case, the sum 

of the incidence angle and emission angle equals the phase angle, φ. Modified from 

BARNOUIN ET AL. (2012). MESSENGER graphic credit: NASA/Johns Hopkins University 

Applied Physics Laboratory/Carnegie Institute of Washington. 

The height of a landform, h, is given by: 

 
ℎ =  

𝐿

tan 𝑖 ±  tan 𝑒
 

6.1 

where L is the length of the shadow measured from the summit of the landform in 

the direction of solar illumination, i is the solar incidence angle and e is the 

spacecraft emission angle. Off-nadir images contain distortions caused by the 

perspective from which such images were captured. Ideally, emission angle 

distortions would be removed by producing orthorectified images where image 

pixels are fixed to their true location on the surface elevation of the planet. This 

results in the horizontal scale of the orthorectified image being constant. However, 

this would require a local DEM for each knob image with comparable resolution 

to its image. Currently, such high-resolution DEMs are largely unavailable for 



Chapter 6: The circum-Caloris knobs 

204 

Mercury. Instead, MDIS images are projected onto a ‘flat’ sphere approximating 

Mercury’s overall shape. This is achieved by fixing a number of points only in each 

image onto the sphere, leaving the intervening pixels ‘stretched’ into position such 

that the spatial scale across the image is not constant. As such, distortions resulting 

from the original image perspective remain and have to be accounted for in the 

shadow length-height relationship. The full derivation of this relationship is shown 

in BARNOUIN ET AL. (2012). 

Since I sought to determine the flank slopes of the circum-Caloris knobs, I decided 

to employ the method of BASILEVSKY (2002). Rather than employing equation 6.1 

on a single shadow length measurement, this method applies a scaling factor 

derived from the equation to an image of known illumination. The scaled shadows 

can then be digitised to make topographic profiles of the landforms in the image, 

as I did in Chapter 5. Here, I modified the method by instead rotating and scaling 

digitised outlines of the shadows cast by knobs in MDIS frames (Fig. 6.5). By 

avoiding rotating images, I reduced the computational intensity of this method. 

 

Fig. 6.5 Knob topographic information contained within digitised shadows. (a) The 

two critical parts of a knob’s shadow are its cast shadow and the shadow terminator on the 

body of the knob itself. (b) By measuring the distance from multiple points on the terminator 

(examples marked with white dots) to the cast shadow in the dirction of the solar 

illumination (measured lengths illustrated with blue lines), the heights of those points on 

the terminator can be calculated. These heights can be used to generate a topographic profile 

of the knob along its terminator. 
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In order for shadow length measurements to be valid, the cast shadow of a knob 

must fall on a smooth (at the scale of the shadow), horizontal surface. In practice, 

this is often not the case. The most important requirement is that the cast shadow 

does not fall on an obvious slope. I did not digitise any knob shadows where I could 

see that the shadow was being cast up or down a slope. Minor modification of a 

knob’s shadow due to short wavelength surface roughness, such as that generated 

by impact craters that are very small compared with the size of the knob, could be 

ignored during shadow digitisation. This was necessary to allow a large dataset to 

be generated. Ideally, a knob’s terminator is a single, linear, sharp demarcation 

between the illuminated side of the knob and the shadowed side. However, knob 

terminators are most often not sharp, due to the Sun acting as an extended light 

source at Mercury. This means that penumbral shadow blurs the terminator. 

Penumbral shadow is much less problematic at the edge of the cast shadow. When 

digitising the terminator and the cast shadow, I deliberately digitised the dark, 

umbral ‘core’ of the shadow. This means that all knob heights estimated using this 

shadow length technique are underestimates, since the shadow lengths the heights 

were calculated from were under-measurements. Since penumbral shadow 

significantly blurs the terminator only (penumbral blurring of the cast shadow was 

very minor by comparison), this effect is the greatest contributor to the 

underestimate. A consequence of digitising the umbral terminator is that very 

often the digitised terminator is convex toward the Sun, rather than straight. This 

means that the topographic profile generated by this method is not a straight line 

traverse of the knob, such as an ideally placed MLA track profile would be. This 

means that additional care is required when interpreting my shadow-derived slope 

measurements. To aid slope interpretation, I always plotted the line of the profile 

on the knob next to the topographic profile graph. A further problem is that some 

knob terminators can be segmented due to topographic undulations on the surface 

of the knob. Since such terminators could not be digitised as a single line, I 

excluded knobs with segmented terminators from this analysis. 

Cognisant of the caveats outlined above, I decided to use MDIS WAC (HAWKINS ET 

AL., 2007) frames with a ground resolution of ~100 m/pixel for shadow digitisation. 

Data of this type were available for the majority of the circum-Caloris knobs. It 
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might seem that higher resolution NAC data should be used where possible, but 

because such data were not available for all the knobs, I thought it would be better 

to digitise the knobs at the best resolution available for all knobs. WAC data offer 

several other advantages over NAC data. The larger pixel size of WAC data de-

emphasises short-wavelength topographic features that would cause substantial 

deflections of knob shadows at the NAC scale. The wider field of view of WAC 

meant that multiple knobs could often be digitised within one WAC frame. This 

reduced the number of WAC frames that needed to be downloaded, processed and 

georeferenced, thus reducing the amount of time required to carry out this 

analysis. WAC images with optimum illumination conditions and viewing 

geometries for shadow length measurements were deliberately collected during 

the global mapping campaign of the MESSENGER mission (CHABOT ET AL., 2016). 

NAC frames that serendipitously imaged circum-Caloris knobs, while useful for 

high-resolution photogeological observations of knobs, were not necessarily 

captured under ideal illumination conditions and viewing geometries for shadow 

length measurements. 

For each knob ≥5 km in diameter, I searched the PDS for WAC frames with 

~100 m/pixel resolution and ideal illumination conditions. Each image was 

downloaded and processed in ISIS3 using standard radiometric and photometric 

corrections. I used ISIS3 to project these images into the Mercator projection 

centred on Caloris that I introduced in Section 6.4.1 (central meridian = 162.7°E, 

standard parallel = 31.5°N). I displayed these projected WAC frames in ArcGIS. I 

then georeferenced these images to the global monochrome mosaic with a manual 

shift. 
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Each knob was attributed with the WAC frame that captures it, in addition to the 

solar azimuth, central solar incidence angle (i), central spacecraft emission angle 

(e), and the central phase angle (φ). These image metadata were collected from the 

Planetary Image Locator Tool (PILOT) and were used to calculate each WAC 

frame’s scale factor. An image’s scale factor is given by 

 1

tan 𝑖 +  tan 𝑒
 

6.2 

if 

 𝜑 = 𝑖 + 𝑒 6.3 

or 

 1

tan 𝑖 −  tan 𝑒
 

6.4 

if 

 𝜑 = 𝑖 − 𝑒 6.5 

This scale factor was then attributed to each knob within the corresponding WAC 

frame. 

In each WAC frame, the shadow of each knob was validated before digitisation. As 

explained previously, knob shadows were rejected for digitisation if they were cast 

on obvious slopes or greatly affected by uneven terrain. Cast shadows and 

terminator shadow were digitised in separate feature classes (Fig. 6.6a). Shadows 

were digitised as lines with 100 m between each line vertex. This is generally meant 

that the digitised shadows had a higher vertex resolution than the images they 

were digitised from. This approach ensured that the digitisation process would be 

able to capture the maximum amount of detail in the shadows in each WAC frame. 

Shadows were digitised at the maximum zoom level at which they could be viewed 

in their entirety on my screen. Again, this approach was used so that each knob 

was digitised with the maximum possible fidelity. All cast shadows and terminators 

were digitised from north to south. All cast shadow and terminator pairs were 

snapped together at their start and end points. At the start point of each knob, I 

created a point feature class called the ‘shadow anchor’ (Fig. 6.6). 
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Fig. 6.6 Illustration of the first steps in the method for generating topography data 

from shadow information. (a) Example of digitised cast shadow (yellow line) and 

terminator (red line). The shadow anchor is a point (white dot) created at the northern 

intersection of each cast shadow and terminator pair. (b) The digitised shadows from (a) 

after rotation around the shadow anchor. (c) The digitised shadows from (b) after being 

scaled by the scale factor calculated from equation 6.2 or 6.4 as appropriate. (d) A closer 

view of the scaled cast and terminator shadows. A grid of parallel, north-south lines (a 

‘fishnet’, in blue), each separated by 100 m, encompassing the rotated and scaled digitised 

shadows used to measure the height of the knob at several points along the knob’s terminator 

is shown. The rotated, but unscaled terminator (blue line) is also shown to illustrate how the 

calculated heights can be related back to the knob. All panels show MDIS WAC frame 

EW0220764090G (~125 m/pixel). Panels (a–c) also show the ~166 m/pixel global 

monochrome mosaic. All panels show Mercator projections centred on 162.7°E, 31.5°N. 
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After all the knobs in all the WAC images were digitised, I implemented my 

modification of the BASILEVSKY (2002) method. I used the ET GeoWizards add-in 

for ArcGIS (TCHOUKANSKI, 2017) to rotate each cast shadow and terminator pair by 

a function of the solar azimuth of the image from which the pair was digitised. The 

shadow anchor for each cast shadow and terminator pair was used as the rotation 

fulcrum. This rotated each knob shadow so that it appeared as if the illumination 

was coming directly from the south (Fig. 6.6b). This essentially achieves the same 

effect as the image rotation used by BASILEVSKY (2002). Each rotated cast shadow 

and terminator pair was then scaled in the north–south direction by its scale factor 

(Fig. 6.6c). Again, this achieves the same effect as scaling the image in the method 

of BASILEVSKY (2002). 

I created a ‘fishnet’ of polylines over each scaled cast shadow, scaled terminator, 

and rotated but unscaled terminator belonging to a given knob (Fig. 6.6d). Each 

fishnet was composed of cells 100 m in width arranged in a single row. I used the 

intersections between the fishnet lines and the rotated and scaled digitised 

shadows, as shown in Fig. 6.7a, to measure the elevations of different points on the 

terminators of each knob. I created points at the intersection between the fishnet 

lines and the scaled cast shadow line and scaled terminator line for each knob. I 

calculated the Y-coordinates (in metres) of these intersection points in their native 

Mercator projection. The absolute spatial location of these intersection points is 

meaningless, but the distance between points linked by the same fishnet line (i.e. 

the difference between their Y-coordinates measured in metres) equals the height 

at the corresponding point on a given knob’s terminator. I calculated a height by 

subtracting the Y-coordinate of each terminator intersection point from the Y-

coordinate of its corresponding shadow intersection point. I attributed the height 

calculated for each scaled cast shadow and terminator pair to the rotated but 

unscaled terminator-fishnet intersection point. I then rotated these terminator 

intersection points, replete with height data, back onto their knob. At this stage, 

each point could be symbolised according to its height, as shown in Fig. 6.7b, 

similar to MLA data points. 
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Fig. 6.7 Illustration of how heights are calculated from intersections between the 

transformed shadows and the measurement fishnet. (a) A closer view of the knob 

shown throughout Fig. 6.6. The yellow and red lines represent the scaled cast shadow and 

terminator, respectively, of the knob. The dark blue line represents the rotated but unscaled 

terminator of the same knob. Matching coloured dots lie along each line where the lines 

intersect the fishnet (light blue). For clarity in this panel, only every fifth intersection along 

each line is rendered. The distance between a red dot and the yellow dot along their shared 

fishnet line equals the knob height at the corresponding point on the knob’s terminator. This 

height is calculated and attributed to the corresponding blue dot on the rotated, but unscaled 

terminator. These blue dots with the height values are then rotated back onto the knob to 

place the height data points at their measurement locations. (b) The final shadow-derived 

topographic profile points, colourised to indicate their heights. Neither panel is shown with 

a graticule nor a north arrow so that the fishnet intersections and profile points can be 

rendered clearly. The location of this knob is clearly labelled in Fig. 6.6. North is at the top 

of both panels. Both panels show Mercator projections of MDIS WAC frame 

EW0220764090G (~125 m/pixel) centred on 162.7°E, 31.5°N. 

In order to plot these height data as a topographic profile, I needed to calculate the 

along profile distance to each point from the start of the profile. Even though the 

fishnet lines that generated the profile points are 100 m apart, the along profile 

distance between subsequent profile points is not necessarily 100 m when they are 

rotated back onto the knob. I used ArcGIS to measure the distance to each profile 

point of a given knob using the original digitised terminator as the measurement 

route. This generated a table containing the along profile distance for each profile 
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point of each knob. These along profile distances were then added to the profile 

points attribute table. Each knob whose shadow was digitised at the beginning of 

this process had a feature class of profile points with heights and along profile 

distances recorded in its attribute table. Since all shadows were digitised from 

north to south, all the shadow profiles begin at the north point of the knob. I 

exported the height and along profile distances from each knob’s attribute table as 

a .csv file for plotting in R (RCORETEAM, 2013). 

Where both MLA-derived and shadow-derived topographic profiles for a given 

knob existed, I compared the two profiles to establish the strengths and 

weaknesses of the shadow technique. 

To calculate the slopes of the knobs, I calculated 3-point slopes along their MLA- 

and shadow-derived topographic profiles (as appropriate). For each point in a 

topographic profile for a given knob, I calculated the linear gradient at the point 

using it and the previous and subsequent points in the profile (i.e. a local slope 

derived from 3 points). I used this modification of the point-to-point slope 

determination method of (KRESLAVSKY AND HEAD, 1999) in order to smooth away 

spuriously high point-to-point slopes introduced during manual shadow 

digitisation. To make a fair comparison, MLA-derived slopes were calculated in the 

same way. I calculated 3-point slopes over the entirety of all the available 

topographic profiles of knobs. Since the three points could be either on the 

ascending or descending sides of the profile, the calculated slopes could be either 

positive or negative. I report the median of the absolute 3-point slope values for a 

given topographic profile of a knob as the typical flank slope along that profile. 

6.5  Results 

I have mapped the locations of 2017 circum-Caloris knobs. I have made detailed 

observations of the 545 knobs that are ≥5 km in diameter and my map contains all 

circum-Caloris knobs whose diameters satisfy this criterion (these catalogues are 

included in the Supporting Digital Media of this thesis). My observations of knobs 

in MDIS data are detailed in Section 6.5.1, followed by my interpretations in 

Section 6.5.2. I present my map of the distribution of knobs in Section 6.5.3 and I 
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explain what I infer from this distribution in Section 6.5.4. My measurements of 

knob topography are contained in Section 6.5.5. 

6 . 5 . 1  MDIS observations of knobs 

6 . 5 . 1 . 1  Knob appearance 

The circum-Caloris knobs ≥5 km in diameter (some examples are shown in Fig. 

6.8) are typically domal to conical in shape. This is clearest when they are isolated, 

however they are commonly closely colocated in chains and clusters such that their 

lower slopes overlap to form multi-knob landforms (Fig. 6.9). I present my 

measurements of knob distribution and knob shape in more detail in Sections 6.5.3 

and 6.5.5. 

 

Fig. 6.8 Examples of the circum-Caloris knobs. (a) Circum-Caloris knobs close to the 

western rim of the Caloris impact basin. The three knobs in the upper left are situated in the 

Odin Formation (my interpretation, see Fig. 6.17). The knobs in the centre-left are 

surrounded by smooth plains. The knobs in the centre-right are closely colocated and overlap 

with each other, which is common for knobs proximal to Caloris. Mosaic of WAC frames 

EW0220807059G, EW0220807071G and EW0220763870G (~86 m/pixel) overlain on the 

~166 m/pixel global monochrome mosaic. (b) Context view of the west of the Caloris basin. 

The labelled white box indicates the extent of (a). The Caloris rim runs north–south along 

the right side of the panel and contains many knobs. Smaller, more distal knobs can be seen 

in the circum-Caloris plains in the left of the panel. ~166 m/pixel global monochrome 

mosaic. Both panels show Mercator projections centred on 162.7°E, 31.5°N. 
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At the spatial resolution of MDIS WAC frames (~100 m/pixel; Fig. 6.8a), which 

have full coverage of the circum-Caloris region, knobs appear as featureless cones 

or domes. They are not characterised by summit craters and are generally devoid 

of craters at this scale. 

 

Fig. 6.9 Detail of overlapping knobs. This knob cluster is shown in the lower-right of Fig. 

6.8a. These knobs lie between smooth plains on the left and the Odin Formation on the right. 

The yellow triangle indicates to a basal point on a knob. To the left of this point, the knob 

presents a sharp basal contact with smooth plains. To the right of this point the knob basal 

contact is with the Odin Formation and is more blurred. Knobs toward the right of the panel 

generally have diffuse basal contacts. The blue triangle indicates a hollow in a low knob 

(<5 km in diameter) in the Odin Formation. WAC frame EW0220763870G (~88.0 m/pixel). 

Mercator projection centred on 162.7°E, 31.5°N. 

NAC frames (a few tens of metres resolution), available for 70 knobs only, show 

that these landforms are substantially less densely cratered than their 

surroundings (Fig. 6.10). Furthermore, some knobs have a wispy texture. Where 

this wispy texture has been identified on a knob, its grain does not obviously run 

directly across or down the slope of the knobs. This wispy texture probably 

indicates that a mature regolith is present on the circum-Caloris knobs. 
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Fig. 6.10 High-resolution images of individual knobs. (a) A knob located just outside 

western Caloris Planitia. The visible knob flanks are smoother and qualitatively less cratered 

than the surrounding Odin Formation. Knobs in this pristine state are typically conical in 

shape. NAC frame EN1015339337M (~36.1 m/pixel). (b) A knob located ~220 km beyond the 

western rim of Caloris. This knob is more cratered than the example shown in (a) but still 

appears to be less cratered than the surrounding plains. This knob is more dome shaped than 

the pristine example in (a). NAC frame EN1045703411M (~27.4 m/pixel). Both panels show 

Mercator projections centred on 162.7°E, 31.5°N. 
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Fig. 6.11 Knob textures. (a) A knob with a fine-scale mottled and streaky appearance. A 

knob at the bottom of the panel has hollows. It is unclear if the reflectance variations across 

the knob at the top of this panel are due to surface roughness or composition. Mosaic of NAC 

frames EN1015281357M and EN1015281357M (~49.3 m/pixel) overlain on the ~166 m/pixel 

global monochrome mosaic. (b) This knob also exhibits a mottled appearance. What appears 

to be an elongate depression on the southern mid-flank of the knob (yellow triangle), close 

to the terminator of its shadow, suggests that at least some mottling could be due to surface 

roughness. This elongate depression could be a slump or a degraded impact crater or catena. 

NAC frame EN1045703971M (~48.4 m/pixel) overlain on the ~166 m/pixel global 

monochrome mosaic. (c) A knob exhibiting a mottled and streaky appearance. NAC frame 

EN0258398544M (~43.2 m/pixel). (d) These knobs have streaks that do not obviously run 

either directly down or across the knob flank slopes. Mosaic of NAC frames EN1015223718M 

and EN1015223842M (~29 m/pixel) overlain on the ~166 m/pixel global monochrome 

mosaic. All panels show Mercator projections centred on 162.7°E, 31.5°N. 
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6 . 5 . 1 . 2  Knob colour 

It is difficult to be conclusive about the colour properties of the circum-Caloris 

knobs. In general, the best MDIS colour data were gathered when the local time 

on Mercury was midday and MESSENGER was flying overhead (i.e. i = 0° and 

e = 0°; HAWKINS ET AL., 2007). This meant that the Sun was illuminating Mercury 

from directly behind the MESSENGER spacecraft and most of the light would 

reflect back to the spacecraft without being scattered. However, since the circum-

Caloris knobs are positive relief features defined by slopes this means that colour 

data for them is potentially compromised by photometric errors due to 

unfavourable viewing angles, illumination, and scattering. 

 

  



MESSENGER Observations of Volcanism on Mercury 

217 

Fig. 6.12 Comparison of knobs in monochrome and enhanced colour. (a) Knobs in 

monochrome. The view shown is similar to that shown in Fig. 6.8a. The yellow triangle 

indicates a knob exhibiting pervasive hollowing. ~166 m/pixel global monochrome mosaic. 

(b) The same view as in (a) shown in the ~665 m/pixel global enhanced colour mosaic. Most 

knobs in this view are not strongly distinct in colour from the surrounding plains. These 

plains most closely conform to the definition of the low-reflectance blue plains colour unit 

(DENEVI ET AL., 2009). Sun-facing slopes on the knobs in this view have a brighter blue colour 

than their surroundings. Conversely, knob slopes in shadow have a darker blue colour. The 

yellow triangle indicates the same knob as in (a). The bright blue colour of this knob is 

characteristic of hollow forming material elsewhere on Mercury (BLEWETT ET AL., 2011). 

~665 m/pixel global enhanced colour mosaic. (c) Knobs in southwestern Caloris Planitia. 

~166 m/pixel global monochrome mosaic. (d) The same view as in (c) shown in the 

~665 m/pixel global enhanced colour mosaic. The smooth plains of Caloris Planitia 

correspond to the high-reflectance red plains colour unit (DENEVI ET AL., 2009). The knobs 

in this view have a similar blue appearance in enhanced colour to the knobs surrounded by 

low-reflectance blue plains in (b). This gives the knobs in Caloris Planitia a stronger colour 

contrast with their surroundings. Note that Sun-facing slopes of both knobs and impact 

craters appear brighter and bluer and their shadowed regions are dark blue, as in (b). All 

panels show Mercator projections centred on 162.7°E, 31.5°N. 

 

In the circum-Caloris plains, which mostly correspond to the low-reflectance blue 

plains colour unit (DENEVI ET AL., 2009), knobs do not have a strong colour 

signature (Fig. 6.12b). Sun-facing slopes appear brighter blue than the 

surroundings and shadowed slopes appear darker, suggesting that these colour 

variations are most likely due to the photometric effects noted previously. 

There is some evidence that the bright blue colouration of the knobs might be real. 

Knobs within Caloris Planitia, which corresponds to the high-reflectance red plains 

colour unit (DENEVI ET AL., 2009), do have a blue colour contrast with the 

surrounding red plains (Fig. 6.12d). Furthermore, I have found many examples of 

knobs that have hollows on or near them (see Section 6.5.1.6). Hollows are 

associated with bright blue material elsewhere on Mercury (BLEWETT ET AL., 2011). 

If knobs potentially host hollow forming materials then it is possible that that 

material will lend a blue colour to knobs. 
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6 . 5 . 1 . 3  Knobs and the surrounding plains 

Knobs can exhibit both sharp and diffuse boundaries with the surrounding plains 

(Fig. 6.9). The sharpness of knob basal contacts appears to at least partly controlled 

by the surrounding plains type. Knobs more commonly present diffuse or 

gradational contacts with surrounding Odin Formation plains. Conversely, 

individual knobs can exhibit both sharp and diffuse contacts with surrounding 

smooth plains. 

Sharp contacts with smooth plains could result from embayment of knob bases by 

smooth plains material, requiring the smooth plains to postdate knob formation 

and evolution by some amount of geological time. Where knob basal contacts with 

surrounding smooth plains are diffuse, this suggests that at least some knob 

evolution has taken place after the local cessation of smooth plains emplacement. 

Alternatively, the observation that an individual knob can appear to have both 

sharp and diffuse contacts with its surroundings may be an observational bias due, 

for example, to changing illumination conditions around the knob. When the 

lower angle basal flank slopes of knobs are poorly illuminated they might be 

unrecognisable within MDIS images, leading me to identify only a sharp 

distinction between the upper slopes and the surroundings. 

6 . 5 . 1 . 4  Knobs and impact craters 

I have observed 38 cases of knobs intersecting with impact craters. The basal slopes 

of some knobs partially obscure impact craters in the surrounding plains (Fig. 6.13). 

This means that knob evolution, at least in these examples, far outlasted local 

plains emplacement, such that these plains could accumulate impact craters that 

subsequently could be encroached upon by knobs. In some examples, knob 

material appears to have avalanched into an impact crater near the base of the 

knob. In most of these cases, I cannot be certain if the impactor hit the knob and 

caused a collapse of knob material into the cavity or if the impact occurred in the 

plains surrounding the knob and the knob spread laterally to engulf the crater. In 

either case, the observation of knob material mantling, infilling, and obscuring 

impact craters suggests that at least the outermost material of these knobs is 

composed of loose material capable of avalanching.  
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As mentioned earlier, at the NAC scale, knobs are qualitatively less densely 

cratered than the surrounding plains. In the cases of small knobs, this could be 

explained by the fact that impacts of sufficient size would completely remove all 

traces of a knob. In the case of larger knobs, which have sufficient surface area to 

accommodate multiple small impact craters (yet they do not often appear to do 

so), this requires any combination of the following: (1) knobs postdate the local 

cessation of plains emplacement in geological time; (2) the physical properties of 

knobs give them a different crater production function from the surrounding 

plains, or; (3) knobs retain impact craters for a shorter time than the surrounding 

plains due to some resurfacing process (e.g. volcanic resurfacing or slope failure). 

Where impact craters are present on knobs, they appear to be spatially 

concentrated on either the flatter summits of domal knobs or, more commonly, on 

the lower angle distal flank slopes of knobs in general. Impact craters are nearly 

entirely absent on the steep mid-flanks of knobs. Where impact craters are present 

on knob flanks, these are typically more degraded than other impact craters 

elsewhere on the knob and on the surrounding plains (Fig. 6.14). 
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Fig. 6.13 Knob interactions with impact craters. (a) The same knob shown in Fig. 6.11c. 

The yellow triangle indicates an impact crater on the smooth plains of Caloris Planitia that 

is partially obscured by knob material. There is a subtle notch in the knob topographically 

above this partially obscured impact crater. NAC frame EN0258398544M (~43.2 m/pixel). 

(b) A knob in the lower-right of this panel is partially obscuring an impact crater (yellow 

triangle) in the Odin Formation 75 km beyond the southwestern Caloris rim. At the top of 

the panel, two large knobs show evidence of pervasive hollowing. NAC frame 

EN0220720878M (~18.8 m/pixel) overlain on the ~166 m/pixel global monochrome mosaic. 

(c) This knob is partially obscuring an impact crater (yellow triangle) on Caloris Planitia. 

High albedo streaks and blotches on this knob and the knob adjoining it to the south appear 

to be due to surface composition variation. The high albedo regions at the right of the panel 

appear to be due to hollowing in a crater chain wall. NAC frame EN0220764135M 

(~19.9 m/pixel overlain on the ~166 m/pixel global monochrome mosaic). (d) This knob is 

situated ~220 km beyond the south-western rim of Caloris in the circum-Caloris smooth 

plains. The yellow triangle indicates an impact crater that is almost completely buried by 

knob material. NAC frame EN1015541044M (~39.8 m/pixel). All panels show Mercator 

projections centred on 162.7°E, 31.5°N. 
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Fig. 6.14 Impact craters on knob flanks. (a) The yellow triangle indicates an 

approximately circular depression in the flank slope of a knob in the southeastern rim of 

Caloris. This depression is probably a degraded impact crater. The knob is less densely 

cratered than the surrounding smooth plains. NAC frame EN0258283508M (~37.2 m/pixel). 

(b) A knob with more superposing craters than the example in (a). This knob is located 

~550 km beyond the northwestern rim of Caloris. The yellow arrows indicate probable 

impact craters that have undergone degradation. Smaller impact craters elsewhere on the 

knob appear to be relatively pristine. NAC frame EN1037605314M (~16.2 m/pixel). Both 

frames show Mercator projections centred on 162.7°E, 31.5°N. 
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6 . 5 . 1 . 5  Knobs and lobate scarps 

 

Fig. 6.15 Knob interaction with a lobate scarp. (a) A knob situated ~50 km beyond 

the southwestern rim of Caloris with flank materials apparently draped on a lobate 

scarp (yellow triangles). Label (1) indicates a back-scarp graben. The presence of 

such grabens has been used as evidence for geologically young fault movement on 

their host lobate scarps elsewhere on Mercury (WATTERS ET AL., 2016). Label (2) 

indicates a hollow in close association with the knob. Although it is not clear that 

the hollow has formed in knob material, the local plains type is the Odin 

Formation. NAC frame EN0220720885M (~19.1 m/pixel). (b) Context view. The 

extent of (a) is indicated by the white box. The yellow triangles indicate the surface 

break of the lobate scarp draped by the knob shown in (a). This lobate scarp cuts 

across the rim of Caloris, the smooth plains of Caloris Planitia, and the circum-

Caloris smooth plains. ~166 m/pixel global monochrome mosaic. Both panels show 

Mercator projections centred on 162.7°E, 31.5°N. 

I have made one observation of a knob interacting with a lobate scarp (Fig. 6.15). 

The wispy northernmost flanks of this knob appear to be draped over the steep 

front of the lobate scarp. Away from this knob, the surface break of the lobate scarp 

is sharp and quite obvious, however near the knob the appearance of the break is 

muted. This lobate scarp cuts across the rim of the Caloris basin, which means 

some, if not all, of the movement on this fault postdates the Caloris impact. 

Furthermore, this lobate scarp also deforms the smooth plains of Caloris Planitia 

and the circum-Caloris plains. The majority of these plains are thought to be 
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volcanic in origin (DENEVI ET AL., 2013) and multiple crater size-frequency 

distribution studies suggest that these plains are ~100 Myr younger than the 

Caloris impact (FASSETT ET AL., 2009; DENEVI ET AL., 2013). However, the knob 

material is not cut by the lobate scarp. 

6 . 5 . 1 . 6  Knobs and hollows 

I have observed 10 examples of hollows in close association with knobs (Fig. 6.16). 

These hollows appear to be forming within native knob materials, rather than 

material that has subsequently been delivered to the region as impact ejecta, as has 

obviously been the case elsewhere on Mercury (BLEWETT ET AL., 2013; THOMAS ET AL., 

2014C). My ability to observe hollows on or nearby knobs will have been limited by 

the availability of suitable NAC data to resolve the hollows. Furthermore, it is 

possible that hollows are not uniquely associated with the circum-Caloris knobs, 

but are in fact abundant in the intervening plains and are colocated with knobs in 

the cases of my 10 examples by chance. Nevertheless, knobs with resolvable 

hollows on them are an important observation. Hollowing is thought to be an 

important surface modification process operating at least until Mercury’s very 

recent past or possibly even in the present day (BLEWETT ET AL., 2011, 2013). 
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Fig. 6.16 Knobs and hollows. A high-resolution image of an elongate knob ~70 km beyond 

the western rim of Caloris. The yellow triangle indicates a hollow on the flank of the knob. 

NAC frame EN0220720623M (~12.4 m/pixel) overlain on the ~166 m/pixel global 

monochrome mosaic. (b) A knob in the Odin Formation ~220 km west of the Caloris rim. 

This knob has hollows in a near-complete ring around its summit. NAC frame 

EN1045703448M (~28.8 m/pixel). (c) Detail of the knob indicated by the yellow triangle in 

(panels (a) and (b)). NAC frame EN1045674576M (~61.2 m/pixel). (d) Two overlapping 

knobs located ~70 km west of the Caloris rim. The left knob contains a depression that has 

been identified as an explosive volcanic vent (THOMAS ET AL., 2014A). East of this depression, 

and indicated by the yellow triangle, are high albedo materials that have been identified as 

hollows (THOMAS ET AL., 2014C). The knob on the right of the panel appears to have two 

small, blade-like projections close to its summit. 
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6 . 5 . 1 . 7  Odin Formation observations 

In making high-resolution observations of the circum-Caloris knobs, I also 

observed the Odin Formation passively. I found that the inter-knob plains are not 

smooth, particularly in comparison with the smooth plains, when viewed at WAC 

resolution (Fig. 6.17). 

 

Fig. 6.17 Smooth plains and the Odin Formation. (a) ~166 m/pixel global monochrome 

mosaic showing a region west of Caloris with smooth plains in contact with the Odin 

Formation. (b) Geological interpretation overlain on the ~166 m/pixel global monochrome 

mosaic. The inter-knob Odin Formation has a hummocky texture that is distinct from the 

smooth plains. This linework was completed at the 1:200k-scale. Both panels show Mercator 

projections centred on 162.7°E, 31.5°N. 

6 . 5 . 2  Interpretations of MDIS observations 

The observations I have described above have led me to the following 

interpretations of the circum-Caloris knobs. 

6 . 5 . 2 . 1  Knobs are not volcanic constructs 

As stated previously in Chapter 6, two hypotheses about the origin of the circum-

Caloris knobs currently exist. The first is that the knobs are remnants of ejecta 

blocks from the Caloris impact, and that the Odin Formation, which is 

characterised by knobs, represents a Caloris ejecta facies. However, doubt is cast 

on this hypothesis by studies of the Caloris Group, which have consistently 

returned younger crater size-frequency distributions for the Odin Formation 
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compared with estimates of the age of the Caloris impact itself (FASSETT ET AL., 

2009; MANCINELLI ET AL., 2016). The other suggestion for the formation of the 

circum-Caloris knobs is that they are small volcanic constructs (FASSETT ET AL., 

2009). This is plausible, since the majority of the circum-Caloris smooth plains are 

volcanic in origin (DENEVI ET AL., 2009). However, several of the observations I have 

made argue strongly against a volcanic origin for these knobs. 

The most important observation that led me to discount a volcanic origin for the 

circum-Caloris knobs is their lack of any summit crater. As stated in Chapter 5, 

volcanic eruptions into a vacuum with even a modest gas fraction would be highly 

explosive (WILSON AND HEAD, 1981). This is because gas expansion within the 

erupting magma is highly efficient. This explosion would cause a volcanic crater to 

open (KERBER ET AL., 2009). Such volcanic craters characterise volcanic constructs 

on the Moon (HEAD AND GIFFORD, 1980; S. J. LAWRENCE ET AL., 2013). Geochemical 

data returned by the MESSENGER mission suggest that Mercury’s crust is rich in 

volatile species (NITTLER ET AL., 2011; PEPLOWSKI ET AL., 2011). Large volcanic craters 

elsewhere on Mercury (KERBER ET AL., 2009; THOMAS ET AL., 2014A; JOZWIAK ET AL., 

2018) appear to have been excavated by explosive eruptions with high gas-fractions 

(KERBER ET AL., 2009). It is worth noting at this point that this does not require that 

Mercury’s mantle is also volatile rich. Mantle-derived melts would have the 

opportunity to assimilate crustal volatiles such that their eruptions would have 

significant explosive character (THOMAS ET AL., 2015). Furthermore, the candidate 

volcanic edifices I detailed in Chapter 5 have summit craters that are conceivably 

of volcanic origin (WRIGHT ET AL., 2018). Therefore, the absence of craters, besides 

those of obvious incidental impact origin, on the circum-Caloris knobs therefore 

presents a serious obstacle to a volcanic interpretation for their origin. 

Another observation that argues against a volcanic origin for the circum-Caloris 

knobs is that they do not have a red volcanic colour signature resembling those 

associated with putative volcanism elsewhere on Mercury (MURCHIE ET AL., 2008; 

KERBER ET AL., 2009, 2011; GOUDGE ET AL., 2014; THOMAS ET AL., 2014A; JOZWIAK ET AL., 

2018). The smooth plains of Borealis Planitia and Caloris Planitia mostly 

correspond to the high-reflectance red plains colour unit (DENEVI ET AL., 2009). The 

faculae associated with putative pyroclastic volcanism have an even stronger red 
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colour signature than high-reflectance red plains (DENEVI ET AL., 2009). Most 

circum-Caloris knobs are situated in low-reflectance blue plains surrounding 

Caloris (DENEVI ET AL., 2009). If these knobs were formed by volcanism, then any 

red volcanic colour signature should contrast strongly with these surroundings. 

However, no knobs that I observed have red colour anomalies. Since the knobs in 

the circum-Caloris plains are generally indistinct from their low-reflectance blue 

plains surroundings, I would therefore ascribe the knobs in the circum-Caloris 

plains to that same colour unit. This is inconsistent with a volcanic interpretation 

of the knobs. 

Most variations in the blue colour of the knobs appear to be due to photometric 

errors. Where real colour anomalies appear to exist, they are all bright blue, similar 

to the colour anomaly associated hollow-forming material elsewhere on Mercury 

(BLEWETT ET AL., 2011). As I have shown, many knobs seen in high-resolution NAC 

data have resolvable hollows on them. This suggests that at least some knobs 

contain a volatile component. It is difficult to imagine how these knobs could have 

formed as volcanic constructs and simultaneously retained volatiles within them 

in order to facilitate hollow formation later. It is worth remembering at this point 

that hollows are not often found within the volcanic high-reflectance red plains of 

Borealis Planitia and Caloris Planitia or in the explosive volcanic deposits 

elsewhere on Mercury (THOMAS ET AL., 2014C). This means that knobs must be 

made of different materials from volcanic landscapes on Mercury. The simplest 

explanation for a difference in materials between the circum-Caloris knobs and the 

volcanics on Mercury is that the knobs are not volcanic in origin. 

As I have shown, the circum-Caloris knobs are characteristic of the Odin 

Formation, however knobs also occur within the Caloris smooth plains (Fig. 6.17). 

The association of some knobs with a smooth plains unit, generally regarded to 

have formed due to voluminous effusive volcanic eruptions (DENEVI ET AL., 2013), 

means that a volcanic origin for at least some knobs should be considered. 

However, my observation that the knobs present diffuse margins when hosted by 

the Odin Formation and sharp contacts when hosted by the smooth plains 

provides additional evidence of how the knobs are unrelated to the volcanic 

episode that formed the smooth plains. The sharp basal contact with surrounding 
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smooth plains suggests that these knobs formed before the smooth plains and were 

subsequently embayed by it. Diffuse basal knob contacts with the Odin Formation 

suggest that knobs formed within the same span of geological time as the Odin 

Formation. This is consistent the knobs being the remnants of late-arriving ejecta 

blocks. 

6 . 5 . 2 . 2  Knobs as modified Caloris ejecta blocks 

My observations of the circum-Caloris knobs have led me to discount a volcanic 

origin for these landforms. I have found that my observations are consistent with 

the circum-Caloris knobs instead having originally formed as Caloris ejecta. 

Several of my NAC observations of knobs suggest that the circum-Caloris knobs 

are piles of unconsolidated material, or at least have unconsolidated surfaces. I 

have shown examples of knobs that host depressions that I interpret as impact 

craters. Often these depressions exhibit rounded bounding rims and subdued 

topography compared with pristine impact craters (Fig. 6.14). The appearances of 

these craters on the knobs could be explained by degradation of the craters from a 

pristine state, or these craters may have formed with subdued appearances 

originally. Both of these mechanisms are consistent with knobs being piles of 

unconsolidated material. If these impact craters are primarily subdued then this 

could be because unconsolidated material is less capable of supporting steep and 

sharp topographic landforms, such as impact crater rims. Furthermore, during the 

modification stage of impact cratering, unconsolidated target material can flow 

more readily into the impact cavity, resulting in a topographically subdued crater. 

If these impact craters were originally pristine, then their degradation may have 

been enhanced by slumping of unconsolidated knob material (ASCHAUER AND 

KENKMANN, 2017). The observation that knobs are always less densely cratered than 

their surroundings suggests that knobs have shorter crater retention times than 

the surrounding plains. The alternative is that they are substantially younger than 

the Odin Formation and smooth plains, but this is inconsistent with knob 

embayment by the smooth plains. Shorter crater retention times require craters on 

knob surfaces to degrade at a faster rate than on the surrounding plains. On steep 

knob surfaces this is probably due to mass-wasting (ASCHAUER AND KENKMANN, 

2017). Relatively rapid crater degradation by mass-wasting is more consistent with 
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knobs being piles of unconsolidated material, such as disintegrating ejecta blocks 

or pyroclastic cones, rather than consolidated volcanic piles. However, I am able 

to discount the pyroclastic cone hypothesis on the basis of my previous arguments 

about the absence of a pyroclastic colour signature. Furthermore, numerical 

modelling has shown that edifices constructed purely from ballistically emplaced 

pyroclasts cannot realistically achieve the topographic relief exhibited by the 

circum-Caloris knobs (BROŽ ET AL., 2018). Based on these considerations, I believe 

an origin for the circum-Caloris knobs as Caloris ejecta is most consistent with my 

observations. 

The interactions between the circum-Caloris knobs and impact craters provide 

further evidence that these knobs are composed of unconsolidated material. In Fig. 

6.13a I showed a knob with an impact crater partially obscured by the knob’s outer 

edge. If the knob were a volcano active long after the cessation of the voluminous 

eruptions, which generated the smooth plains surrounding the knob, then it would 

be possible for a volcanic knob to grow and bury nearby impact craters with either 

lava flows or ballistically emplaced pyroclasts. As I have explained previously, I do 

not think the circum-Caloris knobs can be pyroclastic constructs due to their lack 

of a red colour anomaly characteristic of explosive volcanism elsewhere on 

Mercury (MURCHIE ET AL., 2008) and the results from numerical simulations that 

show that ballistically emplaced pyroclasts on Mercury are probably incapable of 

constructing the topographic relief of a knob (BROŽ ET AL., 2018). However, my 

observation of an alcove-like notch upslope of the crater on the knob suggests that 

this knob is composed of unconsolidated materials, rather than a coherent volcanic 

pile. If the knob is an ejecta block remnant that is disintegrating then as time passes 

material will be transported from the top of the knob downwards. This will have 

the dual effect of lowering the height of the knob and spreading out knob material 

laterally. Knob material encroaching on an existing impact crater will build up until 

it overtops the crater rim and begins to infill the crater. This process is conceptually 

the same as burial of the crater by lava flows. However, if the knob is shedding 

material when it is struck by an impact near its periphery then it is possible for a 

great volume of knob material to cascade all at once into the newly formed impact 

crater. This would result in the formation of a cavity in the knob, such as might 
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correspond to the notch I have observed in Fig. 6.13a. It is difficult to imagine how 

a similar notch could be formed by a volcano erupting lavas. 

My observation of a knob interacting with a lobate scarp (Fig. 6.15a) provides more 

information about the nature of the circum-Caloris knobs. This lobate scarp is 

intriguing because it cuts directly across the rim of the Caloris basin (Fig. 6.15b). 

This means that at least some, if not all, movement on this fault occurred after the 

Caloris impact. Evidence of geologically young fault movement at this lobate scarp 

comes in the form of back-scarp grabens on the topographic crest of the lobate 

scarp. These grabens are small with respect to their associated lobate scarp. This 

means that they would be more easily erased by impact gardening following the 

cessation of activity on the main fault than the large scarp itself. Not all major 

lobate scarps on Mercury possess recognisable back-scarp grabens, but apparently 

newly formed lobate scarps have pristine back-scarp grabens (WATTERS ET AL., 

2016). This suggests that movement on some portions of the lobate scarp cutting 

across the Caloris rim could be geologically young. This is important because this 

lobate scarp also cuts through the Odin Formation and several large circum-Caloris 

knobs are located in its vicinity. The knob in Fig. 6.15a lies on top of where one 

would expect the surface break of the lobate scarp to be. This knob is not deformed 

by the lobate scarp in a brittle fashion. This suggests that the knob formed more 

recently than the most recent movement on this fault or that knob was originally 

deformed by the lobate scarp but has since been resurfaced. Two important 

additional observations are that: (1) material from this knob appears to be located 

up the steep face of the lobate scarp from the base of the knob, and; (2) a hollow is 

located near the base of the knob. 

The apparent superposition of this knob on this lobate scarp, which has evidently 

built much of its topography after the formation of Caloris Planitia, could be 

explained by this knob being a late-stage volcanic construct. However, this is 

inconsistent with many of my other observations (lack of volcanic crater, lack of 

volcanic colour signature, and the presence of hollows nearby). However, if this 

knob formed from a Caloris ejecta block then it must predate some if not all of the 

fault movement on the lobate scarp it abuts. The fact that the knob does not appear 

to be cut by the lobate scarp would seem to contradict this requirement, however 
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if a substantial portion of the knob is composed of unconsolidated material then 

cascades of loose knob material could have resurfaced any affected regions on the 

surface of the knob. The knob material observed on the steep scarp face apparently 

upslope from the base of the knob is more difficult to explain. If the circum-Caloris 

knobs are the remnants of Caloris ejecta blocks, then I believe the most likely 

explanation for this knob material being present upslope from the present day 

location of the knob is that the original ejecta block was much larger than the 

present day knob. The original ejecta block could have been large enough that it 

existed on both sides of the lobate scarp’s surface break. As the ejecta block evolved 

into the present day knob, it shed material all around it, including on the existing 

or growing lobate scarp steep face. At some stage, the ‘core’ of the shedding ejecta 

block became located on the footwall side of the lobate scarp, where it is today. 

After that, shedding of knob material was restricted to the footwall side of the scarp 

and the material on the steep face of the scarp was deposited when the knob-scarp 

system was in a different configuration from that observed today. 

6 . 5 . 3  Knob distribution 

In Fig. 6.18, I show my map of the locations of the circum-Caloris knobs. Knobs are 

not uniformly distributed around the Caloris basin. Knobs are generally densely 

spaced proximal to the basin rim and more sparsely distributed farther from the 

basin. I found a small number of knobs within Caloris Planitia, the smooth plains 

making up the interior of the basin. Knobs located inside the Caloris basin are 

situated no farther than 100 km inside the basin rim. There are no knobs within 

the deep interior of the Caloris basin. The knobs most distal from the basin occur 

~1,000 km beyond the south-southwestern rim. 
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Fig. 6.18 The distribution of the circum-Caloris knobs. All knobs ≥5 km in diameter are 

shown. Individual knobs are marked with a red triangle. Landforms tentatively identified as 

knobs, but could be potentially unrelated landforms, are marked with yellow circles. Knobs 

marked with small black dots are prominent but <5 km in diameter. Mercator projection 

centred at 162.7°E, 31.5°N. ~665 m/pixel enhanced colour global mosaic. 

Knobs are occasionally arranged in chains that radiate approximately from the 

centre of the Caloris impact basin (Fig. 6.19). 
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Fig. 6.19 Knob chains. (a) An example of a chain of circum-Caloris knobs. (b) Another 

example of a chain of knobs. Some single and multi-knob landforms are elongate in the 

direction of the chain. (c) Context view of Caloris showing the locations of (a) and (b). The 

yellow lines indicate the trends of the knob chains. All panels show Mercator projections 

centred on 162.7°E, 31.5°N. All panels show the ~166 m/pixel global monochrome mosaic. 

 

6 . 5 . 3 . 1  Knob distribution with respect to geological setting 

Fig. 6.18 also shows that knobs are not found in equal spatial densities at all 

azimuths around the Caloris basin. The sketch geological map of the Caloris region 

shown in Fig. 6.20 indicates some probable explanations for this observation. 

Knobs most commonly occur within the Odin Formation, as mapped by DENEVI ET 

AL. (2013), and the Caloris Montes Formation (Caloris rim material). Any future 

update to the Odin Formation mapping is unlikely to overturn this association. 

Knobs also occur in the smooth plains, however they typically lie close to the 

smooth plains contact with the Odin Formation or the Caloris Montes Formation. 

Knobs occur only rarely within the ejecta blankets of superposing craters within 

the mapped region. Most knobs within young crater ejecta blankets lie towards the 

thin outer margins of the ejecta, as can been seen at the Mozart impact basin (Fig. 

6.20). 
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Fig. 6.20 Distribution of the circum-Caloris knobs in relation to key 

photogeological units. Knob symbology matches that shown in Fig. 6.18. Geological units 

redrawn and simplified from DENEVI ET AL. (2013). Mercator projection centred at 162.7°E, 

31.5°N. ~166 m/pixel MDIS global monochrome mosaic. 

6 . 5 . 3 . 2  Knob distribution with respect to elevation 

In Fig. 6.21 I show my map of knobs with respect to Mercury’s surface elevation. I 

was interested to see if surface elevation had any control on where knobs occur. At 

the regional scale of Caloris (Fig. 6.21a) there appears to be no obvious relationship 

between areas with a high spatial density of knobs and either areas of high or low 

topography. However, any relationship between knob distribution and regional 

topography might be obscured since this region has long-wavelength topographic 
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undulations that postdate the emplacement of Caloris and its associated smooth 

plains units (ZUBER ET AL., 2012; BYRNE ET AL., 2014). 

Conversely, at local scales (Fig. 6.21b and Fig. 6.21c) knobs appear more commonly 

on high-standing topography. Locally low-lying regions are more often occupied 

by smooth plains than the knobby Odin Formation. I have found examples of 

individual knobs and knobby plains occurring on the uplifted region above the 

hangingwalls of lobate scarps. Knobs frequently occur on the rims of apparently 

pre-Caloris impact craters, but the floors of these craters have been buried by 

smooth plains. 
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Fig. 6.21 Knob distribution with respect to Mercury’s surface elevation. (a) Locations 

of all mapped knobs overlain on the global stereo-derived DEM of Mercury. At this scale, 

knob distribution does not appear to be obviously influenced by surface elevation. Knobs 

appear in both high and low concentrations in regions of high and low absolute elevation. 

Note the approximately east-northeast–west-southwest trending topographic bulges and 

troughs within and around Caloris. (b) An example where there appears to be a relationship 

between local topography and knob distribution. The plains in the centre-left of this panel 

are knobby and at locally high elevations. West of the knobs, the elevation gently drops and 

the plains become characterised by smooth floored impact craters with rims, where these are 

exposed, with knobs on them. The plains east of the knobs are smooth and at lower 

elevations. The knobs in this panel appear to be situated on the topographically high crests 

of lobate scarps. (c) Another region where local elevation may control knob exposure. A band 

of Odin Formation (OF), including small knobs, is exposed on locally high topography in the 

middle of an otherwise low elevation circular depression just west of the Caloris rim. Large 

knobs occur on the periphery of this depression, but no knobs occur within the centres of the 

lobes of smooth plains (sp) that exist north and south of the central band of Odin Formation. 

All panels show Mercator projections centred on 162.7°E, 31.5°N. All panels show the 

665 m/pixel global stereo-derived DEM of Mercury (BECKER ET AL., 2016) overlain on the 

~166 m/pixel global monochrome mosaic. 

 

6 . 5 . 4  Interpretations of knob distribution 

It is apparent from my map of the circum-Caloris knobs that several factors appear 

to have contributed to their present-day distribution. 

6 . 5 . 4 . 1  Knob distribution with respect to geological setting 

The overwhelming majority of mapped knobs occur within the Odin Formation, 

although knobs were found in the other members of the Caloris Group. As 

previously stated, the knobs within the smooth plains within and without Caloris 

appear to have been embayed by the smooth plains. This means that the embayed 

knobs most likely belong to Odin Formation that is stratigraphically below these 

smooth plains. Examples of knobs on the exposed rims of deeply flooded impact 

craters north east of Caloris provide corroborating evidence for this hypothesis. 



Chapter 6: The circum-Caloris knobs 

240 

6 . 5 . 4 . 2  Knob distribution with respect to elevation 

As stated previously, any relationship between knob distribution and surface 

elevation has been obscured by long-wavelength topographic undulations than 

postdate Caloris (ZUBER ET AL., 2012). However, my observations of knobs appearing 

in higher spatial densities on locally high-standing topography supports my 

hypothesis that the knobs are native to the Odin Formation, which itself is Caloris 

ejecta, and that its exposure in the present day is controlled by the presence or 

absence of thick, post-Caloris volcanic smooth plains. The fact that knobs appear 

on the uplifted hangingwalls of lobate scarps suggests that these lobate scarps had 

built significant local topography by the time the volcanic smooth plains were 

emplaced (~100 Myr after the Caloris impact). If lobate scarp topography 

postdated smooth plains inundation of the region then smooth plains would be 

found on both sides of the lobate scarp surface breaks. 

6 . 5 . 5  Knob topography 

Here I present the results of my topographic measurements of knobs. 

6 . 5 . 5 . 1  MLA-derived knob topography 

Of the 545 knobs ≥5 km in diameter, 22 had MLA tracks with useful data (Fig. 

6.22–Fig. 6.27; these figures were separated for convenience and illustrate the 

knobs in no particular order). These data show that pristine circum-Caloris knobs 

typically have planar flank slopes, whereas degraded knobs are more likely to have 

convex-up flanks. Where MLA data tracks appear to pass along lines of steepest 

ascent and descent of a given knob, the median flank slopes calculated from these 

data are ~15–23°. Knobs >10 km in diameter are rare, but two such knobs have 

heights of ~2 km. 

MLA data proved to be very useful to me in making confident topographic 

measurements of the circum-Caloris knobs, however there are several shortfalls 

with these data that warrant alternative methods for estimating knob topography. 

As mentioned in Section 6.4.2, at the outset of this study I knew MLA data would 

be unavailable for most circum-Caloris knobs. Once I finished mapping the knobs 

and found all those with useful MLA data, I was left with the 22 knob profiles in 

this section. 22 out of 545 knobs ≥5 km in diameter represents just over 4% of the 
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population, which would be a poor sample on which to base all my conclusions. 

MLA data were particularly sparse over the circum-Caloris knobs since many of 

them occur at low northern latitudes. As explained in Chapter 3, MLA lateral track 

spacing increased away from Mercury’s northern pole (CAVANAUGH ET AL., 2007; 

ZUBER ET AL., 2012). 

Where MLA data did coincide with a knob there was no guarantee that the MLA 

data would be useful. Seams due to inconsistent image georeferencing in the 

MESSENGER MDIS mosaics meant that the topography that particular MLA tracks 

covered could not be ascertained confidently. 

In other cases, MLA data clearly did measure knob topography but the returns to 

MESSENGER were given low signal-to-noise ratio flags (i.e. channel ≥5) and so they 

could not be used. MLA worked by firing a laser pulse and measuring the two-way 

travel time in order to calculate the range to Mercury’s surface (CAVANAUGH ET AL., 

2007). A single pulse was capable of producing multiple returns because the laser 

footprint on Mercury’s surface from an altitude of ~200 km is ~16 m across 

(CAVANAUGH ET AL., 2007). Within this 16 m diameter, surface roughness can cause 

multiple reflections. If the strongest first reflection is scattered by steep slopes, 

such as can occur at knobs, then it cannot return to the spacecraft, leaving weaker 

return pulses with lower signal-to-noise ratios, which I could not use in my study, 

to be recorded by MESSENGER. Off-nadir surface ranging also produced low 

signal-to-noise MLA data (CAVANAUGH ET AL., 2007). Off-nadir ranging also 

produced MLA tracks that were deflected from a straight line, which meant several 

tracks that appeared to be summit crossing in fact slightly missed measuring the 

maximum height of their knob (e.g. Fig. 6.24c). A more serious flaw of off-nadir 

MLA data was that steep knobs were apparently capable of eclipsing their slopes 

that faced away from the spacecraft look angle, leading to incomplete data over the 

knob (Fig. 6.23c). 

Even if the MLA data quality for a knob was good, sometimes the distance between 

MLA data points (typically 400 m) was too great for smaller knobs (e.g. Fig. 6.22g). 

This meant that the topography of some knobs was under-sampled by MLA, 

meaning that my slope calculations might be underestimates. 
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I hoped that by using my shadow measurement technique I might be able to 

mitigate some of the problems I would have if I based my conclusions entirely on 

my small sample of knobs with high quality MLA data. 
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Fig. 6.22 MLA measurements of knob topography (1). Panels (a), (c), (e) and (g) show 

MDIS images of knobs and the locations of MLA topography measurements. These panels 

show Mercator projections centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show 

topographic profiles of their corresponding knobs. In the upper-left of each topographic 

profile I have included the median 3-point slope of each knob that I calculated using the 

topographic data between the black arrows. All panels indicate the start and end points of 

each topographic profile with lettering (e.g. A–A’). (a) MDIS WAC frame EW0220893691G 

(123.9 m/pixel) and MLASCIRDR1108030842 data points. This summit-crossing profile 

probably measured the maximum height and flank slopes of this knob. (b) Topographic 

profile from MLASCIRDR1108030842. (c) MDIS NAC frame EN1015339337M (36.1 m/pixel) 

and MLASCIRDR1503130635 data points. This profile probably measured the maximum 

height and true maximum southern flank slope. (d) Topographic profile from 

MLASCIRDR1503130635. (e) MDIS NAC frame EN1015339337M (36.1 m/pixel) and 

MLASCIRDR1501140941 overlain on the ~166 m/pixel global monochrome mosaic. This 

profile runs adjacent to the elongate summit of this knob and across, rather than up and 

down, its flank slopes. The measured height and flank slope are underestimates. (f) 

Topographic profile from MLASCIRDR1501140941. The broad knob summit apparent in this 

topographic profile appears to be due to the profile running parallel to, not across, the sharp 

summit of the knob. (g) MDIS WAC frame EW0231135692G (189.4 m/pixel) and 

MLASCIRDR1501171132. This summit-crossing profile probably measures the true height and 

flank slope of this knob. (h) Topographic profile from MLASCIRDR1501171132. This knob’s 

diameter is just above the 5 km threshold for inclusion in my MLA knob topography dataset. 

The ~475 m MLA data point separation means that this knob’s topography is poorly sampled 

by MLA. 
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Fig. 6.23 MLA measurements of knob topography (2). Panels (a), (c), (e) and (g) show 

MDIS images of knobs and the locations of MLA topography measurements. These panels 

show Mercator projections centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show 

topographic profiles of their corresponding knobs. In the upper-left of each topographic 

profile I have included the median 3-point slope of each knob that I calculated using the 

topographic data between the black arrows. All panels indicate the start and end points of 

each topographic profile with lettering (e.g. E–E’). (a) MDIS WAC frame EW0220893257G 

(~64.8 m/pixel) and MLASCIRDR1403291801 data points. This summit-crossing profile cuts 

diagonally across the true flank slope of the knob apparent in the image. As a result, the 

height of the knob is probably accurate, but the flank slope calculated from the profile is an 

underestimate. (b) Topographic profile from MLASCIRDR1403291801. Despite an oblique 

MLA track crossing, I calculated a relatively steep median flank slope of 18.7° for this knob. 

(c) MDIS NAC frame EN0220720623M (12.4 m/pixel) and MLASCIRDR1109300948 data 

points overlain on the ~166 m/pixel global monochrome mosaic. MLA data are missing at 

the northern base of the knob and along its southern flank. The gap at the northern base is 

because no data with a high signal-to-noise channel were available, possibly due to local 

rough terrain. The gap on the southern flank is probably due to the off-nadir angle of MLA 

(~32°), which would mean that the northern flank of the knob blocked the southern flank 

from MLA’s view. As a result, the slope of this knob was calculated using a partial profile. 

(d) Topographic profile from MLASCIRDR1109300948. This knob’s northern flank has an 

approximately planar 20° slope. (e) MDIS WAC frame EW0220763859G (86 4 m/pixel) and 

MLASCIRDR1503130635 data points. These MLA data sample the narrow plateau at the 

summit of this knob, meaning that the measured maximum height of the knob is probably 

accurate. The MLA data track lies obliquely across the southern flank of the knob, meaning 

that flank slope I calculated for this knob is an underestimate. (f) Topographic profile from 

MLASCIRDR1503130635. The southern flank of this knob is much steeper than the northern 

flank. (g) MDIS WAC frame EW0251314775G (233.8 m/pixel) and MLASCIRDR1503150815 

data points. The MLA data track passes up the steepest ascent of the knob to the summit, 

meaning that the maximum height and flank slope measurements I made are accurate. (h) 

Topographic profile from MLASCIRDR1503150815. The ~445 m spacing of the MLA data 

points means that the topography of this small knob is poorly sampled. 
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Fig. 6.24 MLA measurements of knob topography (3). Panels (a), (c), (e) and (g) show 

MDIS images of knobs and the locations of MLA topography measurements. These panels 

show Mercator projections centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show 

topographic profiles of their corresponding knobs. In the upper-left of each topographic 

profile I have included the median 3-point slope of each knob that I calculated using the 

topographic data between the black arrows. All panels indicate the start and end points of 

each topographic profile with lettering (e.g. J–J’). (a) MDIS NAC frame EN1045848643M 

(101.5 m/pixel) and MLASCIRDR1501151016 data points. These MLA data do not sample the 

summit of the knob and traverse the knob across, rather than along, its flank slopes. As a 

result, my calculated slopes and height for this knob are underestimates. (b) Topographic 

profile from MLASCIRDR1501151016. The trapezoidal shape of this profile is an artefact of 

the oblique crossing of the knob by the MLA data. The shadow of this knob indicates that 

this knob has a triangular cross-section in actuality. (c) Mosaic of MDIS NAC frames 

EN1015339048M (27.1 m/pixel) and EN1015339061M (27.4 m/pixel) with 

MLASCIRDR1503132308 data points overlain on the ~166 m/pixel global monochrome 

mosaic. These MLA data do not sample the summit of the knob and traverse the knob across, 

rather than along, its flank slopes. As a result, my calculated slopes and height for this knob 

are underestimates. (d) Topographic profile from MLASCIRDR1503132308. Despite an 

oblique, non-summit-crossing profile, I have measured a height for this knob in excess of 1 

km and slopes >18°. The true height and slope of this knob are likely to be even greater. (e) 

MDIS WAC frame EW0220807059G (86.1 m/pixel) and MLASCIRDR1407230620 data 

points. This is an ideal profile that crosses the summit of the knob and samples the true 

slopes of the flanks. (f) Topographic profile from MLASCIRDR1407230620. The knob has 

planar upper flanks with a concave-up lowermost slope on its southern side. This knob has 

the steepest flank slope of all the knobs measured using MLA data. (g) MDIS WAC frame 

EW0220807059G (86.1 m/pixel) and MLASCIRDR1503132308 data points. This profile has 

a near-ideal geometry that passes close to the knob summit and samples the true slope of 

the flanks. (h) Topographic profile from MLASCIRDR1503132308. 
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Fig. 6.25 MLA measurements of knob topography (4). Panels (a), (c), (e) and (g) show 

MDIS images of knobs and the locations of MLA topography measurements. These panels 

show Mercator projections centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show 

topographic profiles of their corresponding knobs. In the upper-left of each topographic 

profile I have included the median 3-point slope of each knob that I calculated using the 

topographic data between the black arrows. All panels indicate the start and end points of 

each topographic profile with lettering (e.g. M–M’). (a) MDIS NAC frame EN1015223834M 

(28.2 m/pixel) and MLASCIRDR1501140941 data points overlain on the ~166 m/pixel global 

monochrome mosaic. This is a non-ideal profile that does not sample the knob summit or 

the true slopes of the knob’s flanks. My maximum height and flank slope measurements 

calculated from these data are underestimates. (b) Topographic profile from 

MLASCIRDR1501140941. Despite the non-ideal MLA track geometry, I have calculated 

relatively steep flank slopes of 16.1° for this knob. (c) MDIS WAC frame EW0220807059G 

(86.1 m/pixel) and MLASCIRDR1207182305 data points. This MLA track has ideal knob-

crossing geometry but has unevenly distributed data with the requisite signal-to-noise for 

slope calculations. (d) Topographic profile from MLASCIRDR1207182305. My height 

measurement of this knob is accurate, but my slope calculation might be affected by the 

uneven spacing of the MLA data. (e) MDIS NAC frame EN1015339241M (33.0 m/pixel) and 

MLASCIRDR1409182117 data points. This MLA track has ideal knob-crossing geometry. (f) 

Topographic profile from MLASCIRDR1409182117. The planar southern flank of this knob 

appears to terminate with an abrupt break in slope at its base. This knob has relatively steep 

flank slopes. (g) MDIS WAC frame EW0220849922G (58.9 m/pixel) and 

MLASCIRDR1405280237 data points. This MLA track samples the northern flank of this 

knob well, but lacks data on the southern flank. (h) Topographic profile from 

MLASCIRDR1405280237. This northern flank has a planar surface. 
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Fig. 6.26 MLA measurements of knob topography (5). Panels (a), (c), (e) and (g) show 

MDIS images of knobs and the locations of MLA topography measurements. These panels 

show Mercator projections centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show 

topographic profiles of their corresponding knobs. In the upper-left of each topographic 

profile I have included the median 3-point slope of each knob that I calculated using the 

topographic data between the black arrows. All panels indicate the start and end points of 

each topographic profile with lettering (e.g. Q–Q’). (a) MDIS WAC frame EW0220159587G 

(78.2 m/pixel) and MLASCIRDR1503081900 data points. The high-resolution MDIS data 

that capture this knob all have high solar incidence angles. The MLA track has somewhat 

non-ideal knob-crossing geometry that passes within one kilometre of the summit. (b) 

Topographic profile from MLASCIRDR1503081900. The non-ideal geometry of the MLA 

track may mean that the flank slope I calculated based on this profile is an underestimate 

however the true flank slope of this knob is unlikely to be >>10°. (c) MDIS NAC frame 

EN0258312801M (23.9 m/pixel) and MLASCIRDR1103290204 data points overlain on the 

~166 m/pixel global monochrome mosaic. This MLA track has near-ideal knob crossing 

geometry. (d) Topographic profile from MLASCIRDR1103290204. The low slopes of this 

knob are not likely to be due to the imperfect knob-crossing geometry of the MLA data track. 

(e) MDIS WAC frame EW1000273184G (195.7 m/pixel) and MLASCIRDR1110022037 data 

points. This MLA track has near-perfect knob-crossing geometry, however the track appears 

to have been deflected somewhat due to off-nadir pointing of MLA. (f) Topographic profile 

from MLASCIRDR1110022037. The good knob-crossing geometry of the MLA data track 

means that my calculated knob height and flank slope are accurate. (g) MDIS WAC frame 

EW0227853976G (174.0 m/pixel) and MLASCIRDR1407141333 data points. This MLA track 

has ideal knob-crossing geometry. (h) Topographic profile from MLASCIRDR1407141333. 

This knob appears to have a broad, relatively flat summit, which appears to have contributed 

to the low flank slope I calculated for this knob. 
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Fig. 6.27 MLA measurements of knob topography (6). Panels (a) and (c) show MDIS 

images of knobs and the locations of MLA topography measurements. These panels show 

Mercator projections centred on 162.7°E, 31.5°N. Panels (b) and (d) show topographic profiles 

of their corresponding knobs. In the upper-left of each topographic profile I have included 

the median 3-point slope of each knob that I calculated using the topographic data between 

the black arrows. All panels indicate the start and end points of each topographic profile with 

lettering (e.g. U–U’). (a) MDIS NAC frame EN1056021536M (17.7 m/pixel) and 

MLASCIRDR1407252235 data points overlain on the ~166 m/pixel global monochrome 

mosaic. This MLA track has good knob-crossing geometry. (b) Topographic profile from 

MLASCIRDR1407252235. (c) MDIS NAC frame EN1015223718M (26.0 m/pixel) and 

MLASCIRDR1403270159 data points overlain on the ~166 m/pixel global monochrome 

mosaic. This MLA track traverses a ‘saddle’ between the knob in the centre of the frame and 

a second knob to the southeast. My measurement of the height of this knob is an 

underestimate, but the geometry of the MLA track is ideal for measurement of the slope on 

the knob saddle. (d) Topographic profile from MLASCIRDR1403270159. Even though the 

MLA data do not pass over the summit of either knob, the height of the saddle between the 

knobs is over 1.5 km high. Furthermore, this saddle has steep flank slopes. 
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6 . 5 . 5 . 2  Comparison of MLA and shadow derived knob topography 

Of the 545 circum-Caloris knobs ≥5 km in diameter, 134 cast shadows that I was 

able to digitise. Of these 134, 15 had MLA data for comparison (Fig. 6.28–Fig. 6.31: 

these figures illustrate the knobs in no particular order). 

In order for a straightforward comparison of MLA- and shadow-derived 

topographic profiles to be made, the lines of the MLA and shadow profiles must 

follow very similar knob traverses. More often than not MLA profiles and shadow 

profiles did not closely coincide, but fortunately a few good overlaps occurred (e.g. 

Fig. 6.28g, Fig. 6.29a, Fig. 6.30c). I found that where MLA- and shadow-derived 

profiles made similar knob traverses the shapes of the profiles match very well. 

Furthermore, the 3-point slopes I calculated based on closely coinciding MLA- and 

shadow-derived topographic profiles also match well. Flank slope was an 

important morphometric parameter that I aimed to calculate to characterise the 

knobs. I show plots of shadow-derived knob flank slopes in Section 6.5.5.3. 

Single point comparisons can be made between MLA- and shadow-derived 

topographic profiles of knobs where these profiles intersect near a knob’s summit 

(e.g. Fig. 6.28c and Fig. 6.30a). In these cases, the shapes of the profiles often do 

not match, which is to be expected if the knobs have a non-uniform shape, but 

their estimates of the maximum heights of a knob can be compared. I have found 

that shadow-derived measurements of knob height have a tendency to 

underestimate knob height compared with MLA measurements. As predicted in 

Section 6.4.2.2, this most likely arises from the digitisation method I employed. 

Since I digitised only umbral shadows of knobs, some fraction of the true shadow 

length of each knob was lost. The effect of measuring shorter shadow lengths for 

the knobs is that the calculated knob heights are underestimates. The 

underestimate is typically ~100 m but can be up to 500 m. Furthermore, shadow-

derived topographic profiles of knobs also underestimate knob width compared to 

MLA measurements. This is because lower flank slopes at the outer margins of 

knobs do not cast umbral shadows under these conditions, meaning that I could 

not digitise them. This means that the full width of the knobs could not be 

measured. This also explains why the basal terminations of shadow-derived knob 

profiles generally have steep angles of attack, rather than the concave-up returns 
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to the regional slopes seen in the MLA-derived topographic profiles. As a result, I 

did not analyse my shadow-derived measurements of knob heights and widths 

further. For shadow-derived height measurements to be made of these knobs to be 

trustworthy, a different digitisation rationale, where penumbral shadows are 

carefully digitised, would need to be employed (ACKISS ET AL., 2015). 
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Fig. 6.28 Comparison of MLA- and shadow-derived knob topography (1). Panels (a), 

(c), (e) and (g) show MDIS images of knobs. The frames shown are the ones I used when I 

digitised each knob’s shadow. MLA tracks are marked as red lines with capital letters 

marking their start and end points. The blue lines show the digitised shadows of each knob, 

which also serve as the line of each knob’s shadow-derived topographic profile (starts and 

ends marked with lowercase letters). These panels show Mercator projections centred on 

162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show both the MLA- (red) and shadow-derived 

(blue) topographic profiles on the same axes. These profiles have been aligned so that their 

maximum height measurements plot at the same X-coordinate. In the upper-left of each plot 

I have included the median 3-point slope for both types of topographic profile for each knob. 

The colour of the slope values matches the colour of their profile line. The MLA-derived 3-

point slopes were calculated using data in the same range as indicated by the black arrows 

in Fig. 6.22–Fig. 6.27. Shadow-derived 3-point slopes were calculated using the full range of 

data for each knob. (a) MDIS WAC frame EW0220893691G (123.9 m/pixel). The shadow-

derived profile traverses the knob beneath its summit. Therefore, the maximum height and 

width of the knob I estimated from its shadow profile are underestimates. (b) Topographic 

profiles from MLASCIRDR1108030842 and the knob’s shadow. The shadow-derived knob 

height and width are underestimates. The shadow profile qualitatively reproduces the shape 

measured by the MLA data. (c) MDIS WAC frame EW0220764022G (112.4 m/pixel). The 

shadow profile line crosses the MLA profile line close to the knob summit, which allows the 

profiles to be compared at this point. (d) Topographic profiles from MLASCIRDR1503130635 

and the knob’s shadow. The shadow-derived topographic profile underestimates the height 

of the knob by 450 m. The calculated flank slopes match well. (e) MDIS WAC frame 

EW0220764022G (112.4 m/pixel). The shadow profile traverses the summit of the knob, 

therefore it should provide a better estimate of the knob’s height than the MLA track, which 

has a non-ideal crossing geometry. (f) Topographic profiles from MLASCIRDR1501140941 

and the knob’s shadow. Both profiles show similar height measurements for the knob, despite 

the MLA profile not traversing the knob summit. This indicates that my shadow-derived 

height measurement is an underestimate. However, the shadow-derived slope is greater than 

the MLA-derived slope, as expected. (g) MDIS WAC frame EW0220763834G (83.0 m/pixel). 

The MLA and shadow profiles make very similar traverses of the knob, particularly in the 

north, which means that the shapes of both profiles should match well. (h) Topographic 

profiles from MLASCIRDR1109300948 and the knob’s shadow. As expected, both profiles 

show similar shapes for the knob. Slope estimates from both profiles correspond well. The 

difference between the profiles in the south is most likely because the MLA profile had to be 

interpolated over the southern flank due to the unavailability of data. 
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Fig. 6.29 Comparison of MLA- and shadow-derived knob topography (2). Panels (a), 

(c), (e) and (g) show MDIS images of knobs. The MDIS frames shown are the ones I used 

when I was digitising each knob’s shadow. MLA tracks are marked as red lines with capital 

letters marking their start and end points. The blue lines show the digitised umbral shadows 

of each knob, which also serves as the line of each knob’s shadow-derived topographic profile 

(starts and ends marked with lowercase letters). These panels show Mercator projections 

centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show both the MLA- (red line) and 

shadow-derived (blue line) topographic profiles plotted on the same axes. These profiles have 

been aligned so that their maximum height measurements plot at the same X-coordinate. In 

the upper-left of each plot I have included the median 3-point slope I calculated for both types 

of topographic profile for each knob. The font colour of the slope values matches the colour 

of their associated profile line. The MLA-derived 3-point slopes were calculated using data in 

the same range as indicated by the black arrows in Fig. 6.22–Fig. 6.27. Shadow-derived 3-

point slopes were calculated using the full range of data for each knob. (a) MDIS WAC frame 

EW0220763859G (86.4 m/pixel). The MLA and shadow profiles make similar traverses of 

the knob, which should result in both profiles having similar topography. (b) Topographic 

profiles from MLASCIRDR1503130635 and the knob’s shadow. Both profiles show very 

similar shapes, sizes and slopes for the knob. (c) MDIS WAC frame EW0220893703G 

(126.2 m/pixel). The shadow profile traverses the summit of the knob via steepest slopes of 

approach. The maximum height and flank slope calculated from the shadow profile should 

be greater and more realistic than those calculated from the MLA profile. (d) Topographic 

profiles from MLASCIRDR150115106 and the knob’s shadow. As expected, the shadow-

derived profile is steeper and taller than the MLA profile. (e) MDIS WAC frame 

EW0220807059G (86.1 m/pixel). The shadow profile traverses the summit of the knob via 

steepest slopes of approach. The maximum height and flank slope calculated from the 

shadow profile should be greater and more realistic than those calculated from the MLA 

profile. (f) Topographic profiles from MLASCIRDR1503132308 and the knob’s shadow. As 

expected, the shadow-derived profile is steeper and taller than the MLA profile. (g) MDIS 

WAC frame EW0220807059G (86.1 m/pixel). The MLA and shadow profiles make similar 

traverses of the knob, which should result in both profiles having similar topography. (h) 

Topographic profiles from MLASCIRDR1407230620 and the knob’s shadow. As expected, 

both profiles show very similar shapes for the knob. The somewhat lower flank slope 

calculated from the shadow profile is most likely due to this profile traversing the full extent 

of the broad summit of the knob. 
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Fig. 6.30 Comparison of MLA- and shadow-derived knob topography (3). Panels (a), 

(c), (e) and (g) show MDIS images of knobs. The MDIS frames shown are the ones I used 

when I digitised each knob’s shadow. MLA tracks are shown as red lines with capital letters 

at their start and end points. The blue lines show the digitised umbral shadows of each knob, 

which also serves as the line of each knob’s shadow-derived topographic profile (beginning 

and end marked with lowercase letters). These panels show Mercator projections centred on 

162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show both the MLA- (red) and shadow-derived 

(blue) topographic profiles on the same axes. These profiles have been aligned so that their 

maximum height measurements plot at the same X-coordinate. In the upper-left of each plot 

I have included the median 3-point slope for both types of topographic profile for each knob. 

The colour of the slope values matches the colour of their profile line. The MLA-derived 3-

point slopes were calculated using data in the same range as indicated by the black arrows 

in Fig. 6.22–Fig. 6.27. Shadow-derived 3-point slopes were calculated using the full range of 

data for each knob. (a) MDIS WAC frame EW0220807059G (86.1 m/pixel). The profiles 

make different traverses of the knob, which means the shapes of the profiles could differ. (b) 

Topographic profiles from MLASCIRDR1503132308 and the knob’s shadow. Both profiles 

pass close to the knob summit via steepest slopes of approach. The difference in shape 

between the profiles is probably due to the deflection of the shadow profile by a degraded 

impact crater on the knob summit. (c) MDIS WAC frame EW0220763870G (88.0 m/pixel). 

Both profiles make very similar traverses of the knob and intersect very close to the summit 

of the knob, allowing for a direct comparison of the two profiles at this point. The shapes and 

slopes of both profiles should match. (d) Topographic profiles from MLASCIRDR1501140941 

and the knob’s shadow. As expected, both profiles have very similar shapes and flank slopes. 

Furthermore, both profiles measure the same height for the knob. (e) MDIS WAC frame 

EW0220849922G (58.9 m/pixel). MLA data are unavailable for the southern portion of the 

knob. Furthermore, the shadow profile diverges from the MLA profile in the north and south. 

(f) Topographic profiles from MLASCIRDR1405280237 and the knob’s shadow. As expected 

the MLA- and shadow-derived topographic profiles do not match well. However, both 

methods return similar flank slopes for the knob. (g) MDIS WAC frame EW0220159587G 

(78.2 m/pixel). Both profiles make quite similar traverses of the knob, except in the south 

where they diverge. The MLA data do not measure the summit of the knob. (h) Topographic 

profiles from MLASCIRDR1503081900 and the knob’s shadow. As expected, both profiles 

have similar shapes in the north but differ greatly in the south. The MLA track covers high 

terrain adjacent to the knob in the south, whereas the shadow profile runs to the foot of the 

knob in the southeast. The height and slope calculated from the shadow profile are probably 

more representative of the true values than those calculated from the MLA data. 
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Fig. 6.31 Comparison of MLA- and shadow-derived knob topography (4). Panels (a), 

(c), (e) and (g) show MDIS images of knobs. The MDIS frames shown are the ones I used 

when I was digitising each knob’s shadow. MLA tracks are marked as red lines with capital 

letters marking their start and end points. The blue lines show the digitised umbral shadows 

of each knob, which also serves as the line of each knob’s shadow-derived topographic profile 

(starts and ends marked with lowercase letters). These panels show Mercator projections 

centred on 162.7°E, 31.5°N. Panels (b), (d), (f) and (h) show both the MLA- (red line) and 

shadow-derived (blue line) topographic profiles plotted on the same axes. These profiles have 

been aligned so that their maximum height measurements plot at the same X-coordinate. In 

the upper-left of each plot I have included the median 3-point slope I calculated for both types 

of topographic profile for each knob. The font colour of the slope values matches the colour 

of their associated profile line. The MLA-derived 3-point slopes were calculated using data in 

the same range as indicated by the black arrows in Fig. 6.22–Fig. 6.27. Shadow-derived 3-

point slopes were calculated using the full range of data for each knob. (a) MDIS WAC frame 

EW0242923264G (171.5 m/pixel). The shadow profile traverses the knob summit via steep 

slopes of approach whereas the MLA track crosses the knob’s flank approximately halfway 

up. The MLA-derived profile should underestimate the knob slope and height by about half. 

(b) Topographic profiles from MLASCIRDR110320204 and the knob’s shadow. As expected, 

the slope and height I calculated from the MLA data are about half the values I calculated 

from the shadow profile. The shadow-derived values are probably more representative of the 

true values. (c) MDIS WAC frame EW0227853976G (174.0 m/pixel). Both profiles make 

similar traverses of the knob in the north and pass close to the summit of the knob. However, 

the profiles diverge in the south. (d) Topographic profiles from MLASCIRDR1407141333 and 

the knob’s shadow. As expected, the topographic profiles are quite similar in the north but 

deviate in the south. This shape of the MLA profile might be influenced by irregular knob 

topography in the southern region due to nearby superposing impact craters. 

 

6 . 5 . 5 . 3  Knob slopes 

Based on my finding in Section 6.5.5.2 that shadow-derived knob flank slopes are 

trustworthy, I have plotted the flank slopes for the 134 knobs with digitised 

shadows versus their diameters (measured using CraterTools (KNEISSL ET AL., 2011) 

and the ~166 m/pixel global monochrome mosaic) in Fig. 6.32. 
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Fig. 6.32 Knob median 3-point flank slope versus knob diameter. Data for 134 knobs 

with shadow-derived flank slopes. Upper and lower bars for each data point indicate the 

upper and lower quartiles for the 3-point slope values for that knob. I measured these knob 

diameters, using CraterTools (KNEISSL ET AL., 2011), along the shadow profile. 

Fig. 6.32 shows that many (n = 45) of the 134 knobs with digitised shadows are 

<5 km in diameter. This discrepancy arose because I originally tested if knobs were 

≥5 km in diameter by measuring their longest axis. The diameters in Fig. 6.32 were 

measured after I digitised the knobs’ shadows. Often, knobs were illuminated 

along their long axis, meaning their shadow profiles were of a narrower cross-

section. In order for my knob slopes to plot correctly, I needed to measure knob 

diameters along their shadow profiles, replacing my earlier measurements of their 

long-axis diameters, resulting in 45 knobs in Fig. 6.32 having diameters <5 km. 

More importantly, Fig. 6.32 shows that knob slopes can be very steep. The median 

slopes of many knobs are ~20°. The 3-point slope calculation I used generated 

several point estimates for knob slope values along their topographic profiles. 

Some of these point estimates were unfeasibly steep (>>40°). Such point slopes 

appear to have arisen due to minor digitisation defects and are easily discounted. 

However, if I reported only the median 3-point slopes for each knob, I would be 

glazing over the fact that many knobs are characterised by tracts of their flanks 

with significantly steeper slopes than the median value. I used the upper quartile 

of the 3-point slopes for each knob to give an indication of the realistic values for 

their steep slopes. The upper quartile cuts out the very steepest 3-point slope 

calculated values that are evidently due to manual digitisation errors. The upper 
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quartile slopes of many knobs approach, but critically seldom exceed, ~32°.This is 

an important finding, since the angle of repose of unconsolidated material on 

Mercury is ~32° (BARNOUIN ET AL., 2012). This provides additional support for my 

suggestion, based on the photogeological observations in Section 6.5.1, that many 

of the circum-Caloris knobs have been modified by mass-wasting processes. 

6 . 5 . 5 . 4  Knob shapes 

In addition to flank slope, I also characterised knobs by their shape. One of the 

most striking characteristics of apparently pristine knobs is their highly conical 

shape (Fig. 6.13a). More degraded knobs appear to be more domal. I devised a 

‘shape factor’ in order to quantify the conical–domal spectrum of knob shapes. The 

basis for my ‘shape factor’ is explained in Fig. 6.33. 
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Fig. 6.33 Concept of the ‘shape factor’ devised to distinguish conical and domal 

knobs quantitatively. Left shape column: topographic profiles of three theoretical knobs 

fitted by a 4th order polynomial. Centre column: general shape of the 1st derivative of the fitted 

4th order polynomial. Right shape column: general shape of the 2nd derivative of the fitted 4th 

order polynomial. The full width at half maximum (FWHM) of each of these shapes is 

different for each original knob shape. The FWHM is simply the difference of the X-

coordinates that both have corresponding Y-coordinates equal to half the maximum depth 

of the function. As knobs become more conical, the FWHM, or ‘shape factor’, approaches 

zero. In order for the shape factors of knobs of different diameters to be comparable, I 

calculated knob shape factors using topographic profiles for each of the knobs normalised 

to unit width. 

I wanted a shape factor that could distinguish between conical and domal knobs 

that is independent of flank slope. A shape factor of this kind could be plotted 

against flank slope in order to distinguish steep cones, low cones, steep domes and 

low domes from each other. In order for my shape factor to be independent of flank 

slope, I decided to devise it from a quantification of sharpness of the summit 

(effectively the maximum of a mathematical function) of each shadow-derived 

topographic profile of a knob. Furthermore, I wanted to be able to compare shape 

factors of knobs with different diameters. Therefore, I calculated shape factors 

using topographic profiles of the knobs that I had normalised to unit width. I 
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considered the hypothetical knob end-member morphologies that I wanted the 

shape factor to distinguish: rounded and sharp triangular profiles. A triangular 

profile cannot be expressed with a simple polynomial function because a triangular 

function contains a functional discontinuity. As shown in Fig. 6.33, the general 

form of a triangular function’s 2nd derivative has an infinitesimal full width at half 

maximum (FWHM), whereas more rounded knob simulating functions have finite 

FWHMs that become larger as the knob function becomes more rounded. I used 

this as the basis of my shape factor calculation. I began by fitting 4th order 

polynomials to each of the 134 shadow-derived topographic profiles of knobs. I 

used a 4th order polynomial because at least a 4th order polynomial is required if 

the 2nd derivative of the polynomial is to be a parabola capable of having a FWHM 

measurement. I found that 4th order polynomials accurately reproduced my 

shadow-derived knob topographic profiles. I calculated the 2nd derivative of each 

of the 134 4th order polynomials fitted to my unit width shadow-derived 

topographic profiles of knobs. I plotted each of the second derivative functions to 

inspect whether they would produce useful FWHM measurements or not. Useful 

FWHM measurements of a given 2nd derivative function could be made only when 

that function’s shape approximated a U shape. I found that many 2nd derivative 

functions instead approximate J shapes, such that their FWHM is undefined. 68 of 

the 134 4th order polynomials fitted to unit width topographic profiles of knobs 

yielded 2nd derivative functions of which I could measure FWHMs. I used these 

FWHM measurements as my shape factors. I have plotted flank slope versus shape 

factor in Fig. 6.34. 
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Fig. 6.34 Knob median 3-point flank slope versus knob shape factor. Data for 68 knobs 

with shadow-derived slopes and shape factors. Cartoon shapes in the four corners of this 

graph illustrate conceptually what knobs whose data plot close to the shapes look like. Knobs 

whose data plot in the upper-left of the graph are characterised by steep slopes and a conical 

shape. Conversely, knobs whose data plot in the lower-right of the graph are characterised 

by low slopes and a domal shape. A perfectly triangular knob profile has a shape factor of 0. 

A knob profile equivalent to a semi-circle has a shape factor of √3/2 (~0.87). Upper and lower 

bars for each data point represent the upper and lower quartiles of that knob’s flank slope. 

For the circum-Caloris knobs there is no obvious relationship between shape factor and flank 

slope. 

The first thing to note about my shape factor is that the calculation needs to be 

refined. I was able to calculate shape factors for 68 out of 134 knobs ≥5 km in 

diameter with digitised shadows. Testing, calibration and refinement of this shape 

factor is left for future work. Nevertheless, in its present form, my shape factor does 

impart information when the values for the circum-Caloris knobs are compared 

with similar shape factor values I determined for knobs on the Moon (see Section 

6.6.1.4, Fig. 6.45). 

6.6  Discussion 

6 . 6 . 1  Knob formation and modification 

In Sections 6.5.2 and 6.5.4, based on my photogeological observations of individual 

knobs and the distribution of knobs ≥5 km in diameter respectively, I concluded 

that the circum-Caloris knobs are Caloris ejecta blocks that have undergone long-
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lived modification since their original emplacement. Here, I discuss the processes 

that might have acted upon on the ejecta blocks over Mercury’s geological history 

to have modified these Caloris ejecta blocks into the circum-Caloris knobs 

observed today. 

Under the hypothesis that the knobs were originally emplaced as Caloris ejecta, 

the knobs are ~3.9 Gyr old (FASSETT ET AL., 2009). If the Odin Formation, which is 

the native host of the knobs, is interpreted as Caloris ejecta also, then it should 

have the same age, although this has been disputed by analyses of its crater size-

frequency distribution (FASSETT ET AL., 2009; DENEVI ET AL., 2013; MANCINELLI ET AL., 

2016). If the Odin Formation is assumed for the moment to be Caloris ejecta, then 

the knobs observable today must have formed as late-arriving ejecta blocks (Fig. 

6.35a). My observations of the basal contacts of knobs with their surroundings and 

my observations of the distribution of knobs with respect to geological setting and 

local elevation suggest that the true extent of the Odin Formation, and hence the 

circum-Caloris knobs, was obscured when the Caloris smooth plains formed (Fig. 

6.35b) ~100 Myr later (FASSETT ET AL., 2009; DENEVI ET AL., 2013). 

After their deposition, the Caloris ejecta blocks would be subject to erosion, 

leading to landform degradation. On an airless body, such as Mercury, physical 

degradation of landforms is chiefly due to sub-kilometre to kilometre sized impact 

craters whose formation mobilises material (FASSETT ET AL., 2017). This impact 

gardening is a diffusive process that transports material up and down slopes 

(although there is a bias toward downslope transport). Topographic diffusion 

results in sharp topographic contrasts becoming relaxed over time (FASSETT ET AL., 

2017). For example, pristine impact craters on Mercury have sharp uplifted crater 

rims, whereas impact craters similar in age to the Caloris impact have a more 

degraded appearance, with lower, more rounded rims and generally lower depth-

diameter ratios (BAKER AND HEAD, 2013; FASSETT ET AL., 2017). Therefore, impact 

gardening of Caloris ejecta blocks of any original shape is most likely to produce 

rounded landforms after ~3.9 Gyr of erosion (Fig. 6.35c). 
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Fig. 6.35 Cartoon illustrating ejecta block formation and modification into knobs. 

Cross-section perspective. (a) The Odin Formation formed during the Caloris impact 

~3.9 Ga. The circum-Caloris knobs represent late-arriving ejecta blocks excavated from 

Mercury’s lower crust/upper mantle (ERNST ET AL., 2015). At this stage, the circum-Caloris 

knobs had unknown original shapes, represented here arbitrarily by cubes. (b) Sometime 

after the Caloris impact, the volcanic smooth plains of Caloris Planitia and the circum-

Caloris smooth plains were emplaced. The smooth plains embayed the Odin Formation and 

left it completely buried over much of its original extent. Large Caloris ejecta blocks escaped 

complete burial where the smooth plains only shallowly bury the knobs’ native Odin 

Formation. Embayed knobs are effectively geological inliers with unconformable contacts 

with younger smooth plains. (c) Predicted landform evolution of the circum-Caloris knobs if 

they remain inert after their original emplacement. Landform evolution on Mercury is 

dominated by impact gardening, which diffuses topography such that sharp topographic 

contrasts are smoothed and relaxed (FASSETT ET AL., 2017). This scenario can account for 

domal knobs, but not conical knobs. 

However, I have shown multiple examples of knobs with steep conical shapes, 

which are not predicted by erosion of ejecta blocks of arbitrary original shape. In 

order to ‘sharpen’ an arbitrarily shaped ejecta block into a cone, an advective mass 

transport mechanism is required; i.e. one that exclusively transports mass 
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downslope. Furthermore, this mass transport mechanism needs to be faster than 

erosion due to impact gardening and long-lived in order for conical knobs to be 

observable today. 

6 . 6 . 1 . 1  Volatile-driven knob evolution 

When observing the surface of Mercury, rapid and long-lived advective erosional 

surface processes are not forthcoming. However, hollows present one possibility. 

These landforms are geologically young and possibly still undergoing formation 

and growth today (BLEWETT ET AL., 2011). They appear to grow by the loss of some 

volatile component of the crust into space, which opens a depression. As the 

volatile component is exposed in the hollow walls, it is lost and the hollow expands 

laterally by scarp retreat (BLEWETT ET AL., 2011). This is an advective mass movement 

mechanism where material exclusively moves downslope and it forms sharp-

edged, steep-walled hollows with no uplifted rims. If the Caloris ejecta blocks could 

have undergone modification by scarp retreat and mass movement downslope, 

then this could explain my observations of steep, highly conical knobs. 

In Section 6.5.1.6, I showed several examples of knobs and materials closely 

associated with knobs that contain hollows. Since it is not apparent that the 

materials in which the hollows have formed were delivered from elsewhere after 

the formation of the knobs, I interpreted the hollow-forming material to be native 

to the knobs and the Odin Formation that hosts them. Where the volatile that 

forms hollows elsewhere on Mercury occurs close to the surface of a knob, hollows 

form on the knob. However, if a structurally integral volatile material is located 

within the interior of the knob then devolatilisation of this component might cause 

a volatile-rich ejecta block to evolve differently. I illustrate how devolatilisation of 

Caloris ejecta blocks could modify the blocks in a similar manner to hollow 

formation in Fig. 6.36 



Chapter 6: The circum-Caloris knobs 

270 

 

Fig. 6.36 Cartoon illustrating possible volatile-driven modification of Caloris ejecta 

blocks. Caloris ejecta blocks were excavated from a volatile-bearing stratum. The volatile 

component of the ejecta block began to sublime, or was otherwise lost, into space (yellow 

arrows). Loss of structurally integral volatile material caused the ejecta block to 

disintegrate. Disintegration of the ejecta block led to a build-up of inert material at the block 

base. Mass wasting exposed fresh material, allowing devolatilisation and scarp retreat to 

continue. As long as scarp retreat due to devolatilisation outpaced erosion by impact 

gardening, ejecta blocks continued to be modified into conical knobs. If impact gardening 

began to dominate, knobs were degraded into domal forms. 

The Caloris ejecta blocks were probably excavated from Mercury’s lower crust or 

even its upper mantle (ERNST ET AL., 2015). Given the common occurrence of 

hollows in impact ejecta globally on Mercury, it appears that there are substantial 

reservoirs of material within Mercury’s subsurface that becomes volatile when 

exposed on the surface of the planet. Low-reflectance material, which is suspected 

of being volatile bearing, has been excavated from beneath Caloris (ERNST ET AL., 

2015). Therefore, it seems reasonable to suggest that the ejecta blocks that later 

formed the circum-Caloris knobs contained some volatile component. Exposure at 

the surface of Mercury would destabilise this volatile component and cause it to 

be lost into space, perhaps in the same way that volatile-loss appears to cause 

hollows to form. The devolatilisation process could be insolation driven, such as 

sublimation, thermal desorption, or photon-stimulated desorption (DOMINGUE ET 

AL., 2014; PIETERS AND NOBLE, 2016). Alternatively, micrometeorite bombardment, 

which is independent of the Sun, might provide the necessary energy for 

devolatilisation (DOMINGUE ET AL., 2014; PIETERS AND NOBLE, 2016). 

Loss of a structurally integral volatile component of a Caloris ejecta block would 

cause the block to disintegrate and inert knob material would build up at the base 
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of the block to form a slope. The pile of unconsolidated material at the base of the 

block would be able to build up to the angle of repose (~32°) before becoming 

oversteepened. If slopes became oversteepened then they would fail and cause 

material to spread outward from the knob. 

As long as mass wasting continued to expose fresh volatile material, 

devolatilisation of the knob would continue to cause the ejecta block to 

disintegrate until scarp retreat had modified the ejecta block into a knob or cluster 

of knobs. Continued devolatilisation of the knob would maintain the knob in a 

conical form as long as devolatilisation induced slope failures outpaced erosion by 

impact gardening. 

When the volatile component within a knob became exhausted or when it became 

so deeply entombed by an inert lag deposit then devolatilisation would have 

ceased. At around this stage of knob evolution, impact gardening would have 

become the dominant process operating on the knob, which would result in 

steeper, conical knobs being modified into lower, domal knobs. 

This mechanism for knob formation and evolution is consistent with several of the 

observations I have made of the knobs and has wider implications for the geology 

of Mercury if it is true. Furthermore, my hypothesis makes some predictions that 

could falsify it if tested by future studies. 

6 . 6 . 1 . 2  Observations supporting volatile-driven knob evolution 

As mentioned previously, it is reasonable to assume that many Caloris ejecta blocks 

originally had a volatile component within them, given the volatile-bearing 

material excavated by impact craters in Caloris Planitia (ERNST ET AL., 2015) and my 

observations of hollows in knob materials. However, the presence of volatiles in 

Caloris ejecta does not necessitate their involvement in the degradation of the 

blocks into knobs. Nevertheless, I have made several observations that support a 

rapid (for Mercury’s surface), advective erosional process capable of turning 

arbitrarily shaped ejecta blocks into the knobs observed today. 

The dearth of impact craters on the flanks of knobs requires efficient surface 

renewal of the knobs, particularly when an ejecta block origin for the knobs 

requires them to have been emplaced ~3.9 Ga. My observations of knob material 
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burying impact craters and abutting lobate scarps that postdate knob 

emplacement provide evidence that long-lived and voluminous mass wasting has 

occurred during at least some knobs’ histories, which supports an efficient 

advective mass movement resurfacing process. The steep slopes observed on many 

knobs cannot be explained by the action of a diffusive erosional process, such as 

impact gardening. 

6 . 6 . 1 . 3  Molards on Earth: an analogous landform? 

The volatile-driven knob formation process I have outlined above is conceptually 

identical to the formation of landforms on Earth known as ‘molards’ (Fig. 6.37). 

 

Fig. 6.37 Example of a ‘molard’ in Iceland. Molards are conical rock piles that can form 

when ice-cemented permafrost blocks thaw and disaggregate. Image credit: MORINO ET AL. 

(2019). 

A detailed review of molard formation and evolution has been written by MORINO 

ET AL. (2019). Briefly, molards are cones of rubble that have been observed in 

permafrost environments on Earth (MORINO ET AL. (2019) and references therein), 

such as Iceland. Molards can form when permafrost becomes exposed to 

environmental conditions that initiate thawing. For example, landslides and rock 

falls can remove permafrost from sheltered cliffsides and expose them to higher 

daytime temperatures and rainfall, which can cause the permafrost to thaw. The 

ice in permafrost is structurally integral, such that when it melts the remaining 
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rock and soil collapse into a mound (MORINO ET AL., 2019). This process is 

illustrated in Fig. 6.38. 

 

Fig. 6.38 Cartoon illustrating various stages of molard formation from a permafrost 

block. This example shows a permafrost block that has been exposed by a rockfall. Exposure 

initiated melting of the ice on the outside surfaces of the block and uncemented rock and soil 

began to form an apron around the block. As melting continued, a cone formed. When 

melting ceased, other erosional processes, such as rainfall, degraded the cone into more 

dome shape. Reproduced from MORINO ET AL. (2019) with the kind permission of the authors. 

Molards have been observed at the different stages of development shown in Fig. 

6.38. Fig. 6.39 shows a permafrost block shortly after its deposition, and again three 

years later (Fig. 6.40). 
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Fig. 6.39 An undegraded permafrost block. This block was deposited during the 

Móafellshyrna, Iceland landslide and this image was taken in September 2012, shortly after 

the landslide. A human is in the lower-right of the image for scale. The boulder clasts that 

make up the rock fraction of the permafrost can clearly be seen throughout the block and a 

steep slope of rubble has accumulated against the block toward the right of the image. Image 

credit: MORINO ET AL. (2019). 
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Fig. 6.40 A molard formed from a permafrost block. This mound of rubble is what 

remained of the permafrost block shown in Fig. 6.39. This image was taken in July 2015, 

nearly three years after that shown in Fig. 6.39. Image credit: MORINO ET AL. (2019). 

 

The principle of a volatile-rich ejecta block on Mercury is similar to a thawing 

permafrost block on Earth. The observation of molards at different stages of their 

development (i.e. as blocks, cones, and domes) raises the possibility that a similar 

process could have operated on Caloris ejecta blocks to form the circum-Caloris 

knobs in the manner I described in Fig. 6.36. 

6 . 6 . 1 . 4  Comparison with the lunar Alpes Formation 

One important prediction made by my volatile-driven hypothesis of knob 

modification is that similar landforms should not develop on volatile-poor 

planetary bodies. As an airless body, the Moon is subject to similar surface 

conditions and processes to Mercury, however the Moon is not thought to have an 

interior that is as volatile-rich as Mercury’s (NITTLER ET AL., 2011; PEPLOWSKI ET AL., 

2011). Therefore, my volatile-driven hypothesis of circum-Caloris knob formation 

on Mercury predicts that no similarly conical knobs should arise on the Moon by 

the same mechanism. 

As stated previously, the Odin Formation, which hosts the circum-Caloris knobs 

on Mercury, was originally likened to the Alpes Formation on the Moon 

(MCCAULEY ET AL., 1981). The Alpes Formation is interpreted as ejecta from the 

Imbrium impact basin (WILHELMS AND MCCAULEY, 1971). The Imbrium impact has 

been dated to ~3.9 Ga (LIU ET AL., 2012; MERLE ET AL., 2014) and the basin is 

~1,300 km in diameter, making the size and age of the basin very similar to those 

of Caloris (FASSETT ET AL., 2009). Therefore, I chose to compare the knobs in the 

Alpes Formation on the Moon to the circum-Caloris knobs on Mercury. Fig. 6.41 

shows the location of the knobs I measured on the Moon. 
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Fig. 6.41 Geography and geology of the lunar Alpes Formation and its knobs. In both 

panels, the locations of the lunar knobs discussed in this subsection are indicated with white 

triangles. (a) View of northeast Imbrium on the Moon. The Alpes Formation is the knobby 

plains unit that is relatively bright compared to the mare material. This unit is named after 

the Montes Alpes that are labelled in the figure. The Montes Alpes have been interpreted as 

part of the rim of the Imbrium basin (WILHELMS AND MCCAULEY, 1971), rather than impact 

ejecta blocks. (b) Geology of northeast Imbrium. Semi-transparent coloured geological units 

are overlain on LROC imagery. The Alpes Formation is coloured blue-purple and labelled 

‘Ial’. Lunar geology shapefiles are based on USGS map I-703 by WILHELMS AND MCCAULEY 

(1971) and were generated by and made publicly available at 

https://webgis.wr.usgs.gov/pigwad/down/moon_geology.htm. Both panels show 

orthographic projections of the 100 m/pixel global LROC WAC mosaic centred on 14°E, 

50°N. 

 

I used the gridded LOLA ~60 m/pixel global DEM to measure topographic profiles 

of the largest knobs in the Alpes Formation. I used the lunar geology shapefiles 

digitised based on the original map of the nearside of the Moon by WILHELMS AND 

MCCAULEY (1971) to make sure I selected knobs interpreted as ejecta blocks for 

measurement. The Montes Alpes, which resemble the larger circum-Caloris knobs, 

are interpreted as the uplifted Imbrium rim (WILHELMS AND MCCAULEY, 1971; 

WILHELMS ET AL., 1987), rather than ejecta blocks. In order to make my comparison 

of the lunar and circum-Caloris knobs as fair as possible, I searched for lunar knobs 

≥5 km in diameter. For this preliminary comparison, I found seven knobs in 

northeast Imbrium (Fig. 6.41). The topographic profiles that I measured of these 

Alpes Formation knobs are shown in Fig. 6.42 and Fig. 6.43 (these figures are split 

for convenience and show the knobs in no particular order). A shapefile containing 

the locations of the seven lunar knobs is included in the Supporting Digital Media 

of this thesis. 

https://webgis.wr.usgs.gov/pigwad/down/moon_geology.htm
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Fig. 6.42 LOLA measurements of lunar Alpes Formation knob topography (1). Panels 

(a), (c), (e) and (g) show knobs in the lunar Alpes Formation in the 100 m/pixel global LROC 

WAC mosaic. These panels show Mercator projections centred on 8°E, 46°N (selenographic 

coordinates). Panels (b), (d), (f) and (h) show topographic profiles of their corresponding 

knobs, In the upper-left of each topographic profile I have included the median 3-point slope 

of the knob that I calculated using the topographic data between the two black arrows. 
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(Fig. 6.40 cont.) Topographic data were taken from the ~60 m/pixel gridded LOLA DEM. 

In all panels Greek lettering (e.g. α–α’) mark the starts and ends of the topographic profiles. 

 

 

Fig. 6.43 LOLA measurements of lunar Alpes Formation knob topography (2). Panels 

(a), (c) and (e) show knobs in the lunar Alpes Formation in the 100 m/pixel global LROC 

WAC mosaic. These panels show Mercator projections centred on 8°E, 46°N (selenographic 

coordinates). Panels (b), (d) and (f) show topographic profiles of their corresponding knobs, 

In the upper-left of each topographic profile I have included the median 3-point slope of the 

knob that I calculated using the topographic data between the two black arrows. 

Topographic data were taken from the ~60 m/pixel gridded LOLA DEM. In all panels Greek 

lettering (e.g. ζ–ζ’) mark the starts and ends of the topographic profiles. 
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While making topographic measurements of the lunar knobs, I noted some 

differences between them and the circum-Caloris knobs. I made no observations 

of lunar knobs partially obscuring impact craters. Furthermore, lunar knob 

boundaries were more commonly sharp and well-defined than those of the 

unembayed circum-Caloris knobs. 

From these topographic profiles of the lunar knobs, I calculated their median, 

upper and lower quartile 3-point slopes and shape factors in the same way that I 

calculated the flank slopes and shape factors of the circum-Caloris knobs. The data 

for the Alpes Formation knobs are summarised alongside the circum-Caloris knob 

data in Fig. 6.44 and Fig. 6.45. 

 

Fig. 6.44 Comparison of Alpes Formation knob slopes and diameters with the 

circum-Caloris knobs. The same graph as shown in Fig. 6.32 with data for the Alpes 

Formation added as red triangles. The data for the circum-Caloris knobs have been made 

transparent for clarity. The Alpes Formation knobs that I measured do not have examples 

>8 km in diameter. The Alpes Formation knobs appear not to have slopes as steep as those 

that characterise many of the circum-Caloris knobs, even when the upper quartile slopes for 

the lunar knobs are considered. Most lunar knobs have flank slope <<20°. 
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Fig. 6.45 Comparison of Alpes Formation knob slopes and shape factors with the 

circum-Caloris knobs. The same graph as shown in Fig. 6.34 with data for the Alpes 

Formation added as red triangles. Alpes Formation knobs appear to span a similar range of 

shape factors to that of the circum-Caloris knobs, but the most conical shape factors belong 

to the circum-Caloris knobs. 

Based on this preliminary comparison between the Alpes Formation knobs and the 

circum-Caloris knobs, I have made the following observations. The largest knobs 

in northeast Imbrium (diameter 7–8 km) are still smaller than the largest circum-

Caloris knobs (diameter ~13 km). This is a robust finding since I deliberately 

searched for the largest knobs in the Alpes Formation. Furthermore, six out of 

seven Alpes Formation knobs that I measured had slopes in the lower range of 

slopes I obtained for the circum-Caloris knobs. Finally, the Alpes Formation knobs 

span a similar range of shape factors to the circum-Caloris knobs, but the most 

conical shape factors belong to the circum-Caloris knobs. 

My preliminary comparison between the Alpes Formation knobs and the circum-

Caloris knobs suggests that at least some of the circum-Caloris knobs have 

undergone a different landform evolution from the Alpes Formation knobs. The 

strength of these observations is limited by the very low number of Alpes 

Formation knobs that I was able to measure and the uncertainties in the shadow-

derived measurements of the circum-Caloris knobs. In the future, a study 

dedicated to comparing the circum-Caloris knobs and lunar knobs is required. 
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6 . 6 . 2  Wider implications of volatile-rich Caloris ejecta 

If the Caloris ejecta blocks that formed the circum-Caloris knobs were volatile-rich, 

then it follows that other Caloris material could have been volatile-rich too. 

Objections have been raised about the interpretation of the Odin Formation as 

Caloris ejecta based on its younger crater size-frequency distribution compared 

with other Caloris materials (DENEVI ET AL., 2013). However, if the Odin Formation 

was emplaced as a volatile-rich ejecta sheet that degraded to produce the knobby 

appearance that it exhibits today, then it could be possible that its physical 

properties mean it has unusual crater production/retention properties. This may 

be a substantial enough effect to give the Odin Formation a young crater size-

frequency distribution relative to the Caloris impact itself. 

I observed many circum-Caloris knobs along the Caloris rim. It is possible that the 

blocky, isolated massifs of the Caloris Montes Formation formed as a result of scarp 

retreat and that these massifs have been modified into clusters of knobs due to 

volatiles uplifted in the rim from depth. Widespread devolatilisation and 

degradation of the Caloris rim might be part of the reason why the Caloris rim is 

so incomplete. 

Perhaps the most important implication of volatile-rich Caloris ejecta is that the 

circum-Caloris knobs could provide insight into the composition and material 

properties of Mercury’s interior. Permafrost degradation produces different 

landforms depending on the original volume of ice (MORINO ET AL., 2019). If the 

circum-Caloris knobs formed due to devolatilisation of Caloris ejecta blocks, then 

careful analysis of the shapes of pristine knobs might be used to estimate the 

volume fraction of the volatile species in the substratum from which the blocks 

were excavated. They might represent the most easily observed lower crustal or 

upper mantle material exposed at the surface of Mercury (ERNST ET AL., 2015), which 

makes them important targets for the BepiColombo mission (BENKHOFF ET AL., 

2010; ROTHERY ET AL., 2010). 
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6.7  Conclusions 

My observations of the circum-Caloris knobs have shown that they are not small 

volcanic constructs, which was suggested as a solution to their problematic 

interpretation as Caloris ejecta blocks (FASSETT ET AL., 2009). I have made 

observations that strengthen the conclusion of others that the circum-Caloris 

knobs did originate as Caloris ejecta (ACKISS ET AL., 2015). My observations that 

support an ejecta origin for the knobs include their non-volcanic colour signature, 

their lack of volcanic craters, their arrangement in cluster proximal to and chains 

radiating from Caloris, and their apparent preservation on locally high-standing 

topography. My observations of hollows in association with several knobs also 

argue against a volcanic interpretation of the knobs. 

Regardless of how the Caloris ejecta were modified into the circum-Caloris knobs 

observed today, my observations have made it clear for the first time that this 

modification process was long-lived, since knob material has been able to spread 

out to obscure small, post-Caloris impact craters and abut lobate scarps that cross-

cut Caloris. 

Furthermore, my measurements of knob slopes approaching the angle of repose, 

in conjunction with the association of hollows with knobs, suggests that the 

circum-Caloris knobs might be analogous to molards. If this is true, then the 

circum-Caloris knobs represent a hitherto unrecognised landform on Mercury, 

formed by an undocumented physical process on that planet, and they provide 

evidence that Mercury’s deep interior, including at least the upper mantle, is 

volatile-rich.
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CHAPTER 7  
SYNTHESIS ,  FUTURE WORK AND 

BEPICOLOMBO  

7. 1  Synthesis 

My work has made several valuable contributions to our understanding of the 

planet Mercury. Here, I place my findings in the wider context of Mercury 

planetary science. 

7 . 1 . 1  Geological mapping of Mercury 

7 . 1 . 1 . 1  Intermediate plains 

As stated in Chapter 2, most of the intercrater plains and smooth plains on Mercury 

are believed to be the remains of voluminous effusions of lava emplaced >3.5 Ga 

(DENEVI ET AL., 2013; WHITTEN ET AL., 2014; OSTRACH ET AL., 2015; BYRNE ET AL., 2016). 

The first global geological map of Mercury currently recognises these widespread 

units, in addition to probable effusive volcanic units associated with the Caloris 

and Rembrandt basins (KINCZYK ET AL., 2018B). In Chapter 4, I showed that these 

unit definitions are inadequate in certain parts of H05. This is most likely due to 

the scale of digitisation that I used (1:400k). At this large scale, following the 

rationale employed when making the global map (KINCZYK ET AL., 2018B), the 

regions I mapped as ‘intermediate plains’ would require multitudinous, areally 

small enclosed smooth plains patches to be demarcated. These smooth patches 

have gradational contacts, which do not lend themselves to mapping, with the 

surrounding rougher terrain, which in places do not conform to the TRASK AND 

GUEST (1975) definition of the intercrater plains. The global approach is untenable 

at the quadrangle scale, at least in the case of H05, for the following reasons: (1) 

the near-fractal complexity of the digitisation required would be time-consuming 

and in many cases would not render meaningfully at the publication scale (1:3M), 

and; (2) by shoe-horning the smooth patches into the smooth plains and the rough 

areas into the intercrater plains, the opportunity to demarcate this physiographic 

region to assess its stratigraphic position and origin is missed. Therefore, I mapped 
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these regions as intermediate plains, contrary to the advice of WHITTEN ET AL. 

(2014). As a result, I determined an origin for the intermediate plains as partially 

volcanically inundated intercrater plains. This is consistent with the observations 

and interpretations of similar physiographic regions described by BYRNE ET AL. 

(2013). This raises the likelihood that more ‘intermediate plains-type’ regions will 

be identified elsewhere on Mercury that have otherwise been mapped as 

intercrater plains and/or smooth plains in the global map. For example, 

preliminary geological mapping of H10 (MALLIBAND ET AL., 2019B) has identified 

plains inconsistent with the classical definitions of smooth and intercrater plains 

(TRASK AND GUEST, 1975), which are most likely contiguous with the intermediate 

plains in H05. If the intermediate plains are interpreted as late-stage effusive 

volcanism, then the history of effusive volcanism on Mercury might be extended 

measurably beyond its apparently abrupt cessation ~3.5 Ga (BYRNE ET AL., 2016). 

7 . 1 .2  Implications of deep-interior volatiles 

As explained in Chapter 6, it is probable that the circum-Caloris knobs contain 

volatile materials excavated from the deep interior of Mercury; possibly the upper 

mantle (ERNST ET AL., 2015). In the sections that follow, I outline briefly the 

implications of this finding on wider Mercury science. 

7 . 1 . 2 . 1  Explosive volcanism 

I have remarked throughout this thesis that for explosive volcanism to occur a 

volatile species within the magma must cause the ascending magma to fragment. 

Volatiles that drive explosive volcanic eruptions on Earth (e.g. H2O), can be 

incorporated into melts at the source region in the mantle, or be assimilated into 

magmas during their ascent (CASHMAN ET AL., 2000). It is also possible that both 

primary mantle and assimilated volatiles contribute to a given eruption. On 

Mercury, it is not clear how and where magmas involved in explosive eruptions 

acquired their volatiles. Geochemical data from MESSENGER show that Mercury’s 

surface is volatile-rich (NITTLER ET AL., 2011; PEPLOWSKI ET AL., 2011), and hollows 

(BLEWETT ET AL., 2011), which typically form in material excavated by impact craters 

(BLEWETT ET AL., 2013; THOMAS ET AL., 2014C), show that Mercury’s upper crust is also 

volatile-rich. This means that crustal assimilation of volatiles into magmas is 
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certainly possible (THOMAS ET AL., 2014A). So far, the involvement of mantle-derived 

volatiles in the explosive eruptions on Mercury is uncertain, since crustal volatiles 

are so much in evidence and the existence of abundant volatiles in the mantle was 

unproven. However, since the circum-Caloris knobs appear to be volatile-rich, a 

primary mantle volatile source for explosive eruptions is available. This means that 

both crustal and mantle volatiles could have contributed to the explosiveness of 

any given eruption. 

7 . 1 . 2 . 2  Formation of Mercury 

Perhaps the most important implication of my study of the circum-Caloris knobs 

is that models of the formation of Mercury must account for how abundant 

volatiles could be instilled, and retained within, the planet’s mantle. The giant 

impact (BENZ ET AL., 1988) and silicate vaporisation (CAMERON, 1985) models of 

formation of Mercury were devised to explain the large iron core of the planet, but 

the heating that would have been experienced by proto-Mercury during these 

models would have driven away the crustal volatiles observed (NITTLER ET AL., 2011). 

Since the deep interior of Mercury appears to contain volatiles as well, perhaps 

Mercury’s entire silicate fraction is volatile-rich and could have been derived from 

chondritic material. If so, another mechanism for endowing the planet with a large 

iron core is required. Mantle volatiles may still be consistent with an initially 

metal-rich accretion of Mercury (WEIDENSCHILLING, 1978), possibly assisted by 

magnetic fields in the proto-planetary disc (KRUSS AND WURM, 2018), but how and 

when volatile-undepleted material was accreted by Mercury remains unknown. 

7.2  Future work and the role of BepiColombo 

My research has addressed some research questions, but it has raised additional 

ones, some of which may have to wait until the arrival of BepiColombo to be 

answered. 

7 . 2 . 1  Geological mapping of Mercury 

7 . 2 . 1 . 1  The Hokusai quadrangle 

My geological map of the Hokusai (H05) quadrangle (0°–90°E, 22.5°N–65°N) of 

Mercury is complete. As explained in Chapter 3, I constructed my basemap with 5° 
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of latitude and longitude overlap with the adjoining quadrangles (Borealis – H01, 

Victoria – H02, Raditladi – H04, Kuiper – H06, Eminescu – H09, and Derain – 

H10). My own mapping of the 5° of overlap with these adjoining quadrangles is 

ongoing. The published MESSENGER-era quadrangle geological maps of Mercury 

were published upon their completion as standalone maps (GALLUZZI ET AL., 2016; 

MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017) and the process of merging the 

quadrangle maps at their edges began afterward (GALLUZZI ET AL., 2019). 

My first priority for my geological map of H05 is for it to be published in the Journal 

of Maps alongside the maps of H02 (GALLUZZI ET AL., 2016), H03 (GUZZETTA ET AL., 

2017) and H04 (MANCINELLI ET AL., 2016). In order to match the existing quadrangle 

maps, the 3-class crater degradation scheme will have to be published, but I intend 

to include the 5-class system in the same publication. 

Following the publication of my H05 map, the next important step in this work 

would be for me to complete mapping of the 5° overlap with the adjoining 

quadrangles. This would allow me to collaborate with the mappers of the adjoining 

quadrangles in order to fix the geological linework at the boundaries between our 

quadrangles to allow our maps to be merged (GALLUZZI ET AL., 2019). The highest 

priority H05 map boundaries are those with H02 and H04, to the west and east of 

H05 respectively. The maps of H02 (GALLUZZI ET AL., 2016) and H04 (MANCINELLI 

ET AL., 2016) have been published already and so their mappers have been awaiting 

the completion of the H05 map. A geological map of H01, which borders H05 to 

the north, is underway (OSTRACH ET AL., 2018). Although it is being completed 

outside the European effort to map the quadrangles of Mercury for the explicit 

purpose of preparing for BepiColombo (GALLUZZI ET AL., 2019), it will be an 

important future task to check the boundary linework of my H05 map with the 

H01 map. Maps of H06 and H10, which are part of the European BepiColombo 

mapping effort and border southern H05, are currently underway. When these 

maps have been published, linework fixing along the southern boundary of H05 

can begin. In the final stages of the preparation of this thesis, two European 

mappers were assigned to H09, which borders H05 in the southeast. 

The map of H05 naturally points to some future work within that quadrangle. For 

example, a careful crater size-frequency distribution study of the intermediate 
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plains in H05 might be able to determine the age of this unit relative to the 

intercrater plains and the smooth plains. It might be possible to estimate the total 

thickness of the lavas that generated the intermediate plains by observing if there 

is any threshold crater diameter below which craters appear to be missing from the 

size-frequency distribution. The total stack thickness could be estimated by using 

well-established relationships between crater diameter and depth (BAKER AND 

HEAD, 2013). Furthermore, observations of the intermediate plains by 

BepiColombo might be able to determine why the intermediate plains appears 

where they do. When quadrangle geological mapping of Mercury is complete, and 

the full extent of the intermediate plains as identified in H05 is known, we can 

better understand the origin and stratigraphic relationships of this plains type. 

My regional mapping also highlighted some interesting locales in H05 that warrant 

detailed mapping in the future with the highest resolution MESSENGER data 

available. In particular, the Rachmaninoff crater, as I showed in Chapter 4, would 

offer an opportunity to examine material exhumed from the thinnest crust on 

Mercury (SORI, 2018) and provide insight into internal effusive post-impact 

volcanism after the cessation of large-volume effusions (BYRNE ET AL., 2016). 

During my geological mapping, work on mapping the crustal magnetic anomalies 

above Mercury’s northern latitudes was undertaken by HOOD ET AL. (2018). They 

discovered that there is an approximately circular 6 nT magnetic field strength 

anomaly centred on Rustaveli crater in northeast H05. They attribute the magnetic 

anomaly to impactor-delivered iron. HOOD ET AL. (2018) found that circular 

magnetic anomalies associated with other impact craters on Mercury are offset 

from the crater centres. They suggest that this offset could be due to an oblique 

impact angle in some cases. To test this hypothesis, a follow-up study to HOOD ET 

AL. (2018) is underway. I have been asked to produce a detailed geological map of 

Rustaveli. I will pay particular attention to the distribution of the crater’s ejecta, 

secondary craters, impact melt and visible peak-ring elements in order to 

determine what the probable angle and azimuth of the impact were. This study 

will test the hypothesis of WIECZOREK ET AL. (2012) that magnetic anomalies on the 

Moon could result from an asymmetric distribution of magnetically susceptible 

impactor material around the South Pole-Aitken Basin due to an oblique impact. 
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We will use photogeological evidence to determine the probable impact angles and 

azimuths for all the craters on Mercury identified by HOOD ET AL. (2018) that have 

magnetic anomalies to see if the magnetic anomalies offset from the centre of their 

associate crater are offset in the downrange direction. 

7 . 2 . 1 . 2  Other Mercury quadrangles 

Now that my geological map of H05 is complete, geological mapping of the 

remaining unmapped quadrangles of Mercury must continue in preparation for 

the arrival of the BepiColombo mission. At the time of writing, maps of H01 

(OSTRACH ET AL., 2018), H06, H07, H10 (MALLIBAND ET AL., 2019B), and H14 (PEGG ET 

AL., 2019) were underway, maps of H08, H09, and H11 were assigned mappers, and 

maps of them remaining quadrangles (H12, H13 and H15) had not been started. 

One important task for all the MESSENGER-era quadrangle mappers is to 

standardise the units between the quadrangles where possible. Some units, such 

as smooth plains and intercrater plains, are common to all the quadrangles and 

were predefined from the Mariner 10-era, and so these units do not require 

standardisation. However, some newly defined units of regional extent do require 

standardisation across the quadrangles, including the intermediate plains I 

mapped in H05. The MESSENGER-era maps of H02 and H03 both contain units 

called ‘intermediate plains’. An important task of unit standardisation will be to 

determine if the intermediate plains in H02, H03 and H05 are too distinct in 

appearance or probable provenance to be unified. H04 contains a unit called 

‘bright intercrater plains’ not included in the other published quadrangle 

geological maps of Mercury. Standardisation could result in this unit being 

identified in more quadrangles or could recombine the bright intercrater plains in 

H04 with the regular intercrater plains. 

7 . 2 .2  Constructional volcanic edifices 

In Chapter 5, I described two candidate constructional volcanic edifices. I was 

unable to demonstrate a volcanic origin for these landforms using MESSENGER 

data. In particular, the candidate volcano within Heaney crater was poorly 

characterised by MESSENGER due to its location at 34°S, where the spacecraft was 

at a high altitude. BepiColombo’s Mercury Planetary Orbiter will have an orbit 
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much more symmetrical about the equator, such that data availability and 

resolution over the southern hemisphere will be greatly improved. Both the 

candidate volcanic edifices I identified would be important landforms for targeted 

data return by SYMBIO-SYS, MERTIS and BELA. Together, these instruments will 

be able to determine the morphology and composition of the candidate volcanoes. 

Observations indicative of a volcanic origin for these landforms include, but are 

not limited to, lava flows and non-impact summit crater morphologies. 

After I published the contents of Chapter 5 (WRIGHT ET AL., 2018), I became 

involved in a numerical modelling study that aimed to investigate how different 

eruption parameters would affect pyroclast emplacement and edifice construction 

on Mercury. The results of these numerical simulations are presented in BROŽ ET 

AL., (2018). In that paper, we showed that purely pyroclastic eruptions on Mercury 

probably could not have constructed steep volcanic edifices, comparable to 

pyroclastic cones on Earth, due to the planet’s lack of an atmosphere. A natural 

follow-up to this work would be to consider the topography plausibly due to large, 

explosive volcanic eruptions on Mercury to investigate under what eruption 

conditions such topography could have been built. The deposits around most large 

explosive volcanic vents on Mercury do not have substantial topography when 

corrections for the effects of regional slopes and other topographic modifiers have 

been made (ROTHERY ET AL., 2014; THOMAS ET AL., 2014A). However, MLA data 

indicate topographic rises with slopes of ~3° for some pyroclastic deposits (THOMAS 

ET AL., 2014A). Our next paper will take measurements of topography attributable 

to pyroclasts, where present, around large volcanic vents deposited over the course 

of those vents’ activities and estimate the required eruption parameters, such as 

ejected volume and velocity. One compounding issue is that there is mounting 

evidence (Chapter 4; see also ROTHERY ET AL. 2014) that the large explosive volcanic 

vents on Mercury were formed by multiple eruptions over a prolonged period of 

activity. Therefore the topography surrounding such ‘compound’ vents was 

generated by multiple eruptions. If the number of eruptions is uncertain, as it is 

likely to be since subsequent eruptions can overprint earlier ones entirely, then the 

model will overestimate the amount of material ejected by a single eruption. 
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7 . 2 . 3  Circum-Caloris knobs 

In Chapter 6 I suggested that the circum-Caloris knobs have been modified by an 

unknown devolatilisation process. While it might take high-resolution 

observations of the knobs by BepiColombo to determine whether this is true or 

not, it might be possible to find out more about the knobs using MESSENGER data. 

The geomorphology the knobs might indicate what devolatilisation process has 

modified them. For example, if devolatilisation proceeded by sublimation, thermal 

or photon-stimulated desorption, then there might be some asymmetry between 

the Sun-facing and anti-Sun slopes of the knobs. Furthermore, any asymmetry 

present might be expected to become more pronounced at higher latitudes, as the 

contrast in insolation between the Sun-facing and anti-Sun slopes becomes 

greater. Most of the circum-Caloris knobs that I mapped are in the northern 

hemisphere and they span latitudes from 5°S to 62°N. This means that most knobs 

have Sun-facing southern slopes and anti-Sun northern slopes. Since MLA tracks 

and shadow profiles generally make approximately make north-south traverses of 

the knobs, it should be possible for me to modify my existing slope analysis of the 

knobs to test for any north-slope slope asymmetry. If such an asymmetry exists, 

then not only would this corroborate a volatile-driven degradation of the knobs, 

but it would narrow down the range of devolatilisation mechanisms by eliminating 

micrometeorite bombardment. If no such asymmetry exists, then a non-insolation 

devolatilisation mechanism, such as sputtering by micrometeorite bombardment, 

might have been responsible. If no asymmetry is observed then the possibility 

would remain that volatiles are not involved in the modification of Caloris ejecta 

into the circum-Caloris knobs. 

The circum-Caloris knobs would be good observation targets for SYMBIO-SYS, 

MERTIS, and BELA. High-resolution imaging would be able to identify pitting in 

the surface of the knobs that might indicate collapses due to devolatilisation. 

Stereo- and altimetry-derived topography of the knobs would be useful to make 

more accurate measurements of the shapes of the knobs. High-resolution 

compositional measurements of the knobs should be a top priority, since these 

knobs most likely represent lower crustal or upper mantle materials exposed at the 

surface of Mercury. Furthermore, if the knobs and the plains of the Odin 
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Formation continue to release volatiles today, it might be possible for the SERENA 

instruments on BepiColombo to detect them in Mercury’s exosphere. 

Hydrocode models of the Caloris impact would be useful to determine the depth 

from which Caloris ejecta blocks were excavated. My map of the circum-Caloris 

knobs, which gives an indication of the distribution of Caloris ejecta, could be used 

to constrain the impact model parameters, such as impactor size and velocity.
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CHAPTER 8  
CONCLUSIONS  

8.1  Summary 

I have used orbital MESSENGER data to investigate Mercury’s geological history 

from the scale of a mapping quadrangle down to the scale of small cones. As part 

of my thesis, I have produced the first geological map of the Hokusai quadrangle. 

I produced this map to be consistent the other quadrangle geological maps of 

Mercury that were being published during my work (GALLUZZI ET AL., 2016; 

MANCINELLI ET AL., 2016; GUZZETTA ET AL., 2017). My map of H05 completes 

geological mapping of Mercury’s mid-northern latitudes. The intricate volcanic 

history of H05 led me to be most interested in the volcanic evolution of the whole 

planet. I was particularly intrigued by the lack of observations of constructional 

volcanic edifices on Mercury, despite the planet’s surface being composed largely 

of volcanic plains. I made two serendipitous discoveries of candidate volcanic 

edifices. While undergoing a concerted global search for volcanic edifices, I 

investigated the origin and evolution of the circum-Caloris knobs. 

8.2  Conclusions 

During my research, I have found that: 

 The subdivision of Mercury’s plains into two global types (smooth and 

intercrater) is an oversimplification at the quadrangle scale. My inclusion of 

my intermediate plains unit in my map imparts geological information 

pertaining to the multi-phase volcanic resurfacing of Mercury that would 

be lost if the map contained only smooth and intercrater plains. I interpret 

the intermediate plains as low-volume effusions that occurred either at the 

beginning or before the end of the emplacement of the smooth plains. 

 Impact craters ≥20 km in diameter in H05 can be classified according to the 

same 5-class crater degradation system in the global MESSENGER 

geological map of Mercury (KINCZYK ET AL., 2016, 2018B). This gives the map 
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more temporal resolution than the 3-class system in previous MESSENGER 

quadrangle maps. 

 Volcanic edifice construction on Mercury was probably inhibited by the 

high volumes, long flow lengths and low viscosities of the lavas that were 

typical of Mercury’s effusions >3.5 Ga. The waning stage of volcanism, 

which produced many small volcanic constructs on the Moon, might have 

played out differently on Mercury due to the relatively abrupt end to 

effusive volcanism in response to Mercury’s global contraction. 

 The two candidate volcanic edifices that I have described might have 

formed as composite cones after the end of large-volume effusions (smooth 

plains) from small melt volumes that were liberated following impacts. 

These impacts appear to have emulated the effects of the waning stage of 

volcanism, which formed many small volcanic constructs on the Moon, 

which apparently did not occur on Mercury due to the relatively abrupt end 

to effusive volcanism in response to the planet’s global contraction. The 

BepiColombo mission should search for other small volcanic constructs in 

other impact craters that postdate the smooth plains on Mercury. 

 The circum-Caloris knobs are not volcanic constructs but are instead 

remnants of Caloris ejecta blocks that have been modified into knobs. 

 Knob modification certainly took place over a protracted length of time 

following their original emplacement and is possibly ongoing today. 

 It is possible that these knobs are analogous to ‘molards’ (conic mounds of 

rubble formed from thawed permafrost blocks) in that the conic shape of 

the knobs formed as a result of the loss of a structurally integral volatile 

component from the ejecta block. If so, this would mean the circum-Caloris 

knobs were formed by a hitherto undocumented volatile-related surface 

process potentially active on Mercury’s present-day surface. This is a new 

line of evidence regarding the volatile richness of Mercury that suggests that 

volatiles occur in the deep interior of the planet, as well as the crust.
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APPENDIX 1  

Appendix 1 is a publication scale (1:3,000,000) version of my geological map of 

H05 with three crater degradation classes. A hardcopy can be found in the plastic 

document wallet accompanying this thesis. A digital copy of the map sheet, and 

the GIS files used to create it, can be found in the Digital Supporting Media DVD 

accompanying this thesis. 

APPENDIX 2  

Appendix 2 is a publication scale (1:3,000,000) version of my geological map of 

H05 with five crater degradation classes. A hardcopy can be found in the plastic 

document wallet accompanying this thesis. A digital copy of the map sheet, and 

the GIS files used to create it, can be found in the Digital Supporting Media DVD 

accompanying this thesis. 


