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ABSTRACT   

Whiplash-associated disorder (WAD) is a commonly occurring injury that often results from neck trauma suffered in 
car accidents. However the cause of the condition is still unknown and there is no definitive clinical test for the presence 
of the condition. Researchers have begun to analyze the size of neck muscles and the presence of fatty infiltrates to help 
understand WAD. However this analysis requires a high precision delineation of neck muscles which is very challenging 
due to a lack of distinctive features in neck magnetic resonance imaging (MRI). This paper presents a novel atlas-based 
neck muscle segmentation method which employs discrete cosine-based elastic registration with affine initialization. Our 
algorithm shows promising results based on clinical data with an average Dice similarity coefficient (DSC) of 
0.84±0.0004.  
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1. INTRODUCTION  
Sudden forward and backward movement of the head and neck can often cause injury to the neck muscles which may 

lead to chronic neck pain. This condition is known as whiplash associated disorder (WAD). WAD is the major source of 
claims for traffic-related damages [1]. In the Western world, almost one in 1000 residents suffer neck trauma and 100 in 
1000 of these neck-trauma patients will go on to suffer from WAD [2]. This results in a significant cost to society [3]. 
The cross-sectional area (CSA) of neck muscles and levels of intra-muscular fat have been shown to vary in patients with 
WAD when compared to healthy individuals [4]. Researchers have begun to analyze the size of neck muscles and the 
presence of fatty infiltrates in order to better understand WAD [4]. However this analysis requires a high-precision 
delineation of neck muscles which is very challenging because of the difficulty with detecting the muscle outlines on 
neck MRI. 

Although manual delineation has been used in prior studies, it is time-consuming and tedious and also suffers from the 
problem of inter- and intra-observer variations [6]. Therefore, it is not well suited in statistical analysis and patient 
follow-up procedures [5]. Alternatively, automatic delineation does not have these drawbacks but has the problems of 
accuracy due to the following issues associated with neck MRI images: The anatomy of the neck muscles is very 
complex with many muscles of similar intensity and texture sharing a compact space. The boundaries of some muscles 
are also not clear due to the problems of imaging artifacts such as partial volume effect, low contrast and inhomogeneity. 
Intramuscular fat can also generate false boundaries. The anatomical variability among individuals also hinders the 
accurate segmentation of neck muscles [6]. To the best of our knowledge, no work on automatic neck muscle 
segmentation has been proposed in the currently available literature. However, some segmentation work has been 
conducted on other muscles of the human body such as the leg, pectoral region and tongue [6–13]. 

Algorithms for the segmentation of leg muscles have been proposed in [6–9]. Andrews et al. in [6] demonstrated a 
globally minimized probabilistic segmentation approach using a generalized log-ratio-based shape model with pre- 
segmentation of fat, bone and muscle classes. Baudin et al. in [7] proposed a procedure for automatic voxels detection 
inside muscles using a border graph designed from local intensity variances and obtained good results using these voxels 
as seeds for subsequent segmentation. However, it may be difficult to ensure that these seeds reside within the inside of a 
muscle region. Essafi et al. in [8] employed wavelets for representing shape variation of calf muscles. This method  
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depends on matching explicit face profiles to muscle boundaries and can experience difficulty in detecting false 
boundaries. Wang et al. in [9] implemented an iterative corrective learning method by combining corrective learning 
with an auto-context learning model for canine leg muscle segmentation. 

Pectoral muscle segmentation in breast MRI and mammography was considered in [10–12]. Ganesan et al. in [10] 
provided a review of research papers on pectoral muscle segmentation. Gubern-Mérida et al. in [11] studied the 
performance and complexity between a multi-atlas and probabilistic model-based pectoral muscle segmentation. Kwok 
et al. in [12] proposed an adaptive algorithm for automatically extracting the pectoral muscle from digitized 
mammograms by estimating the contour using a straight line approximation on a mediolateral oblique view. 

Ibragimov et al. in [13] introduced a method for segmenting tongue muscles from super-resolution MRI images by 
applying a landmark-based game-theoretic framework. 

These previously proposed methods are not applicable to neck muscle segmentation due to its complex anatomy and 
confounding imaging artifacts. Of the automatic segmentation methods available, atlas-based methods are promising as 
they can simultaneously segment several structures while preserving anatomical topology. However, the accuracy of 
atlas-based segmentation depends mainly on image registration. In this work, an atlas-based neck muscle segmentation 
approach based on a framework of registration algorithms is proposed. Initially, MRI volumes are registered using an 
affine registration with a similarity transformation-based initialization. It uses the sum-of-conditional variance with 
partial volume interpolation (SCVPVI) as the similarity measure and Gauss-Newton gradient descent optimization. 
Then, these volumes are registered again slice-by-slice using an elastic motion model in three global steps, with different 
motion parameters, and one local step which is the main novelty of this paper. Finally, the labels from the atlas are 
transferred onto the test MRI volume. 

 
2. PROPOSED METHOD 

In our approach, we use a hierarchical atlas registration framework consisting of five steps to align the atlas and test 
MRI volume to be segmented. The first step uses a linear affine registration and the remaining four a nonlinear elastic 
registration. Then, the atlas labels are mapped onto the test MRI image using the registered parameters. The output of 
each step is used as the input to the next step. The affine registration step uses SCVPVI as the image-matching metric. 
The elastic registration step exploits the sum-of-conditional variance (SCV) as the similarity measure. In the following 
subsections, we present these registration algorithms using ),,( zyxI  and ),,( zyxI ′′′′  as the test and atlas images 

respectively. 

2.1 Sum-of-Conditional Variance with Partial Volume Interpolation (SCVPVI)-based Affine 
Registration 

A linear affine transformation with 12 parameters is used to correct global mismatches in position and orientation 
between the atlas and test volumes. Gradient-based Gauss-Newton optimization is used to optimize the spatial 
transformation parameters. The SCVPVI measure, which was recently proposed for registering multi modal images, is 
used as the similarity measure [14]. The non-rigid geometrical transformation model between the atlas and test volume 
images is defined as [14]: 
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Where 321032103210 ,,,,,,,,,,, ggggffffeeee  are the spatial parameters. 

2.2 Discrete Cosine-based Nonlinear Elastic Registration 
The volume obtained from affine registration is registered again slice-wise using the non-linear discrete cosine 

transformation. It uses eight transform parameters for the further correction of global mismatches in position and 
orientation between the atlas and test volumes in the first step. We repeat this procedure with 18 and 32 transform 
parameters using the previous registration step’s output as input to the current registration step in the second and third  
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steps respectively. Then, each slice of the volumes registered using 32 motion parameters is partitioned into four blocks 
for applying local elastic registration which is applied block-wise using 18 motion parameters. Gradient-based Gauss-
Newton optimization is used to optimize the spatial transformation parameters for all the registration steps. The test 
image ),( yxI  and atlas image ),( yxI ′′′  are related by a coordinate transformation of the form [15]: 
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Where km  are the transform parameters, kϕ are the basis functions and P  is the number of parameters. 

Discrete cosines are used as the basis functions to estimate variability between patients, with those of the geometrical 
transformation given by [15]: 
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of an image to be registered respectively. 

 

3. NUMERICAL RESULTS AND DISCUSSION 
Our experiments were conducted on a HP z230 tower workstation with an Intel(R) Core(TM) i7-4770 CPU, 3.40 GHz 

processor and 4 GB RAM running Windows 7 SP1 operating system. In our experiment, clinical neck MR images of 7 
patients of males and females with age ranges from 22 to 34 years were captured by the Canberra Imaging Group at 
Calvary John James Hospital, Deakin, Canberra, Australia using a 3-Tesla Skyra scanner (Siemens, Erlangen, Germany). 
The data set has 3 healthy and 4 acute whiplash subjects. Each patient’s data contains 256 × 256 × 45 neck images with 
voxel sizes around 0.8594×0.8594×4mm3. Manual delineation by an expert of the sternocleidomastoid, obliquus capitus 
inferior, semispinalis capitis and splenius capitis muscles in the volume images were performed to obtain the ground 
truth and atlas volume against which the auto-segmentation results were validated because normally the cross sectional 
area of these muscles changes due to WAD [4]. This data set is very challenging in terms of muscle segmentation 
because of the large anatomical shape variations due to the weight differences among the patients, image inhomogeneity, 
low contrast, similar intensities and textures of muscles, and presence of intra- and inter-muscular fat. 

The leave-one-out technique was used to validate our method: for each person, the remaining 6 individuals are 
regarded as possible atlases. The automatic segmentation results for four neck muscles obtained from one of the test MRI 
volume images using a single optimal atlas are shown in Fig. 1. As can be seen, they match fairly well with those from 
manual segmentation. The automatic and manual segmentations were compared in a slice-wise manner for the C1-C7 
intervertebral levels considered as the region of interest (ROI) for WAD [4] to calculate the mean DSC for each muscle 
in each patient. The average DSC values over 7 patients with variance for the four muscles are tabulated in Table 1, with 
those for symmetrical structures averaged due to lack of space. We note that the splenius capitis muscle has a relatively 
low mean DSC due to the existence of high gradient magnitudes of other muscles nearby. As the average DSC for the 
four muscles is 0.84, our algorithm provides quite accurate muscle segmentation. This DSC value compares favourably 
with those reported from other methods in the human muscle segmentation literature [6,8,9,11,13] as shown in Table 2. 
Only Ibragimov et al. in [13], who used super-resolution MR images, obtained similar accuracy. Andrews et al. in [6] 
also found almost similar results for probabilistic segmentation. However, as the anatomical complexity of neck muscles 
is greater than those of the thigh, tongue and pectoral muscles due to their large number and higher proximity, our 
method demonstrates promising results for muscle segmentation.  Physician can observe the existence of pathology by 
observing the 3D view of the segmented muscles as CSA changes due to WAD.  
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Muscle Name DSC 
Sternocleidomastoid 
Semispinalis capitis 

Splenius capitis 
Obliquus capitus inferior 

0.83±0.0002 
0.85±0.0005 
0.82±0.00002 
0.87±0.001 

 
Table 1. Mean DSC values for four neck muscles over 7 subjects for C1-C7 intervertebral levels. 

 

 
(a)                                                                                                    (b)  

 
 
  
 
 
 
 
 
 
 
 
 
 
 

(c)                                                                                                (d)         
 

Figure 1.  Segmentation results for (a) right sternocleidomastoid, (b) right obliquus capitus inferior, (c) right semispinalis 
capitis and (d) right splenius capitis (red curves represent automatic segmentation and green curves manual 

segmentation). 
 

Method Muscle Name DSC 
Our method Neck muscles 0.84±0.0004 

Andrews et al. [6] Thigh muscles 0.808±0.074 
Ibragimov et al. [13] Tongue muscles 0.81 

Gubern et al. [11] Pectoral muscles 0.74 
Essafi et al. [8] Calf muscles 0.55 
Wang et al. [9] Canine leg muscles 0.78 

 
Table 2. Comparison with other methods for muscle segmentation in terms of mean DSC 
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4. CONCLUSION AND FUTURE WORK 
In this paper, we presented an atlas-based neck muscle segmentation method that used affine and discrete cosine-

based elastic registrations. The numerical results showed that our method could be compared favourably with other 
muscle segmentation methods and our algorithm outperforms in the muscle segmentation paradigm. It obtained a mean 
DSC of 0.84±0.0004 on real clinical data which indicates good accuracy with consistent segmentation. In future work, 
our proposed method will be validated on a large set of clinical data using a multi atlas technique to improve 
segmentation accuracy. 
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