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Abstract

A bipartite graph H is said to have Sidorenko’s property if the probability that the uniform
random mapping from V (H) to the vertex set of any graph G is a homomorphism is at least
the product over all edges in H of the probability that the edge is mapped to an edge of G. In
this paper, we provide three distinct families of bipartite graphs that have Sidorenko’s property.
First, using branching random walks, we develop an embedding algorithm which allows us to
prove that bipartite graphs admitting a certain type of tree decomposition have Sidorenko’s
property. Second, we use the concept of locally dense graphs to prove that subdivisions of
certain graphs, including cliques, have Sidorenko’s property. Third, we prove that if H has
Sidorenko’s property, then the Cartesian product of H with an even cycle also has Sidorenko’s
property.

1 Introduction

For two graphs H and G, a homomorphism from H to G is a mapping g : V (H)→ V (G) such that

{g(v), g(w)} is an edge in G whenever {v, w} is an edge in H. Let Hom(H,G) denote the set of all

homomorphisms from H to G. A beautiful conjecture of Sidorenko [13] (also made by Erdős and

Simonovits [14] in a slightly different form) asserts the following.

Conjecture 1.1. For all bipartite graphs H and all graphs G,

|Hom(H,G)| ≥ |V (G)||V (H)|
(

2|E(G)|
|V (G)|2

)|E(H)|
. (1)

That is, the probability that a uniform random mapping from V (H) to V (G) is a homomorphism

is at least the product over all edges of the probability that the edge is mapped to an edge of G.

∗Mathematical Institute, Oxford OX2 6GG, United Kingdom. Email: david.conlon@maths.ox.ac.uk. Research

supported by a Royal Society University Research Fellowship.
†School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Seoul, South Korea. Email:

jhkim@kias.re.kr. The author was supported by a National Research Foundation of Korea (NRF) Grant funded by

the Korean Government (MSIP) (NRF-2012R1A2A2A01018585) and KIAS Internal Research Fund CG046001. This

work was partially carried out while the author was visiting Microsoft Research, Redmond and Microsoft Research,

New England.
‡Department of Mathematics, MIT, Cambridge, MA 02139-4307. Email: cb lee@math.mit.edu. Research sup-

ported by NSF Grant DMS-1362326.
§Mathematical Institute, Oxford OX2 6GG, United Kingdom. Email: joonkyung.lee@maths.ox.ac.uk. Sup-

ported by the ILJU Foundation of Education and Culture.

1

ar
X

iv
:1

51
0.

06
53

3v
2 

 [
m

at
h.

C
O

] 
 4

 M
ay

 2
01

8
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/225541371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: A strongly tree-decomposable graph (each colored tree represents H[X] for some X ∈ F).

We say that a graph H has Sidorenko’s property if (1) holds for all graphs G. While Sidorenko

[13] himself noted that the conjecture holds for some simple graphs such as trees, even cycles and

complete bipartite graphs, a spate of recent work [1, 6, 7, 9], some of which we will describe below,

has greatly expanded the class of graphs known to have Sidorenko’s property. In this paper, we

further this progress, providing three more families of graphs that satisfy the conjecture.

Our first family consists of those graphs which are amenable to a certain embedding process

using branching random walks. Though the method can be applied more broadly, we will focus on

using the technique to show that graphs admitting a particular type of tree decomposition have

Sidorenko’s property. A tree decomposition of a graph H, a concept introduced by Halin [5] and

developed by Robertson and Seymour [12], is a pair (F , T ) consisting of a family F of vertex subsets

of H and a tree T on vertex set F satisfying

1.
⋃

X∈F X = V (H),

2. for each {v, w} ∈ E(H), there exists a set X ∈ F such that v, w ∈ X, and

3. for X,Y, Z ∈ F , X ∩ Y ⊆ Z whenever Z lies on the path from X to Y in T .

A strong tree decomposition of a graph H is a tree decomposition (F , T ) of H satisfying the

following two extra conditions:

1. The induced subgraphs H[X], X ∈ F , are edge-disjoint trees.

2. For every pair X,Y ∈ F which are adjacent in T , there is an isomorphism between the

minimum subtrees of H[X] and H[Y ] containing X ∩ Y that fixes X ∩ Y .

A graph H is strongly tree-decomposable if it admits a strong tree decomposition. One can easily

verify that every strongly tree-decomposable graph is bipartite. Our first theorem is as follows.

Theorem 1.2. If H is strongly tree-decomposable, then H has Sidorenko’s property.

The family of strongly tree-decomposable graphs completely contains some other families for

which the conjecture was previously known. For example, the family of reflection trees studied by
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Li and Szegedy [9] consists exactly of those strongly tree-decomposable graphs for which T is a

star, while the family of tree-arrangeable graphs considered in [7] consists of those graphs H such

that F = {NH(a) ∪ {a} | a ∈ A} for an independent set A in V (H). However, our new family is

broader than either of these, Figure 1 showing an example of a strongly tree-decomposable graph

that is neither a reflection tree nor tree arrangeable.

The second family of graphs we consider consists of subdivisions of certain graphs. The

subdivision of a graph H is the graph obtained from H by replacing its edges with paths of length

two that are internally vertex disjoint. As a corollary of a more general theorem relating Sidorenko’s

conjecture to a conjecture about subgraphs of locally dense graphs, we obtain the following results.

Theorem 1.3. (i) For every positive integer k, the subdivision of Kk has Sidorenko’s property.

(ii) If H has Sidorenko’s property, then the subdivision of H also has Sidorenko’s property.

The third family of graphs are those formed through taking certain Cartesian products. The

Cartesian product H1 �H2 of two graphs H1 and H2 is the graph on V (H1)×V (H2) where (x1, x2)

and (y1, y2) are adjacent if and only if either (i) x1 and y1 are adjacent in H1 and x2 = y2, or

(ii) x2 and y2 are adjacent in H2 and x1 = y1. In [7], it was proved that if H is a graph having

Sidorenko’s property and T is a tree, then H �T also has Sidorenko’s property. In particular, this

result implies that grid graphs of all dimensions have Sidorenko’s property. Here, we prove that a

similar result holds when trees are replaced by even cycles.

Theorem 1.4. Let k ≥ 2 be a positive integer. If H has Sidorenko’s property, then H �C2k also

has Sidorenko’s property.

In recent, independent work, Szegedy [15] developed a recursive procedure that generates a

large family of graphs having Sidorenko’s property. Szegedy’s result is related to, but more general

than, our Theorem 1.2. For example, it shows that 2-dimensional grids, which are not strongly tree-

decomposable (but are amenable to other methods [7]), have Sidorenko’s property. Nevertheless,

there are generalizations of Theorem 1.2, obtained through further iteration analogous to the way

in which one builds strongly tree-decomposable graphs from trees, which bring our result in line

with Szegedy’s. Since the statements of these more general results are quite technical, we have

chosen to omit further discussion here. However, we refer the reader to the supplementary note [4]

for further information.

It is less clear how Szegedy’s method relates to Theorems 1.3 and 1.4. Szegedy has himself

shown that his class is closed both under taking Cartesian products with trees and under taking

subdivisions and it is plausible that it is also closed under taking Cartesian products with even

cycles. This would give a satisfactory analogue of Theorem 1.4, but, even if this doesn’t hold, our

result shows that one can simply add this new operation to the definition of the class.

Parczyk [10] has also used Szegedy’s method to recover Theorem 1.3(i), that the subdivision

of the complete graph has Sidorenko’s property, but it is unlikely that his method can be used

to recover all the results of Section 3 below, since they relate Sidorenko’s conjecture to another

conjecture whose status is undetermined. Things are muddied further by the fact that the results of

Section 3 may also be generalized to hypergraphs. For example, if H is a k-uniform hypergraph for

which the analogue of Sidorenko’s conjecture (or the Kohayakawa–Nagle–Rödl–Schacht conjecture)
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holds, then we may subdivide each edge by adding a new vertex connected to each of the k vertices

in that edge to produce another graph which satisfies Sidorenko’s conjecture. These considerations

suggest the following open problem, which lies outside the reach of current methods.

Problem 1.5. Show that the subdivision of an arbitrary graph H has Sidorenko’s property.

2 Strongly tree-decomposable graphs

The proof of Theorem 1.2 is based on a randomized algorithm that produces a homomorphism in

Hom(H,G), with the desired bound for |Hom(H,G)| following from an appropriate estimate on the

entropy of the random homomorphism.

Before getting into the proof, we give a brief overview of entropy. Suppose that X is a random

variable taking values in some finite set S. The entropy of X is defined by

H(X) =
∑
x∈S

P[X = x] log

(
1

P[X = x]

)
.

Given two random variables X and Y over the same space, the relative entropy of Y with respect

to X is

H(Y |X) = H(X,Y )−H(X).

For three random variables X,Y , and Z, we say that X and Y are conditionally independent

given Z if the distribution of X conditioned on (Y, Z) = (y, z) is identical to the distribution of X

conditioned on Z = z for all possible values y, z. Finally, we note some simple properties of entropy

which will be crucial in what follows.

Lemma 2.1. Let X, Y , and Z be random variables and suppose that X takes values in a set S.

Then

(i) H(X) ≤ log |S|,

(ii) H(X|Y,Z) = H(X|Z) if X and Y are conditionally independent given Z.

2.1 Trees

We start with the case where H = T is a tree. Let r be a fixed vertex of T and think of T as a tree

rooted at r. To generate a (not necessarily uniform) random homomorphism wT from T to G, we

consider the T -branching random walk, or simply T -BRW, on G. If we fix an order r = u0 , u1 , .., ut
of all vertices in T in which no child precedes its parent, this algorithm proceeds as follows:

1. For the root r, wT (r) is a random vertex in G chosen according to the stationary distribution,

that is, with probability proportional to its degree,

P[wT (r) = y] =
degG(y)

2|E(G)|
.
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2. Suppose that ui , i ≥ 1, is the first vertex that has not yet been embedded. Then, if vi is

the parent of ui , wT (ui) is a vertex chosen uniformly at random from all vertices that are

adjacent to wT (vi) in G. (Note that vi = uj for some j < i, as vi must precede ui .)

In others words, when the child ui of vi is born, it resides on a vertex of G chosen uniformly

at random from all vertices that are adjacent to wT (vi) in G.

3. Repeat Step 2 until all vertices have been embedded.

Unless G has no edge, wT is clearly a homomorphism from T to G. Moreover, the distribution

of wT does not depend on either the choice of the root vertex r or the order of the remaining

vertices. To see this, fix h ∈ Hom(T,G) and note that

P[wT = h] =
degG(h(r))

2|E(G)|

(
1

degG(h(r))

)dr ∏
v∈V (T )\{r}

(
1

degG(h(v))

)dv−1

=
1

2|E(G)|
∏

v∈V (T )

(
1

degG(h(v))

)dv−1
, (2)

where dv = degT (v). As the last term depends only upon T and G, the claim follows.

We will call the distribution of wT on Hom(T,G) the T -BRW distribution and write pT :

Hom(T,G)→ [0, 1] for the probability distribution function of the T -BRW, i.e.,

pT (h) = P[wT = h].

Notice that (2) implies

pT (h) > 0 for all h ∈ Hom(T,G). (3)

The T -BRW also has an interesting projection property: if S is a fixed subtree of T , then, for

an arbitrary homomorphism h : V (T ) → V (G), the map h restricted to V (S), which is denoted

by h|V (S), or simply h|S , induces a homomorphism from S to G. Hence, wT |S induces another

probability distribution over Hom(S,G). The following proposition asserts that wT |S is identically

distributed to wS . For a subset X of V (T ) and h : X → V (G), let Gh(T ) be the set of all

homomorphisms from T to G that extend h, i.e., Gh(T ) = {g ∈ Hom(T,G) : g = h on X}.

Proposition 2.2. Let S be a subtree of a tree T and h ∈ Hom(S,G). Then,

P
[
wT = h on S

]
= pS (h),

where wT is the T -BRW on G, or equivalently∑
g∈Gh(T )

pT (g) = pS (h).

Proof. As the distribution of wT is independent of the root as well as the order of the vertices,

one may regard wT as a T -BRW that maps vertices in S before any other vertices in T . Then wT |S
and wS are constructed in the same way and the desired equality follows.
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For ordered edges (u, v) and (s, t) of T and G, respectively, one may apply Proposition 2.2 to the

tree S consisting of the single edge (u, v) and the homomorphism h on S with (h(u), h(v)) = (s, t)

to obtain

P
[
(wT (u),wT (v)) = (s, t)

]
= pS (h) =

degG(s)

2|E(G)|
1

degG(s)
=

1

2|E(G)|
.

In other words, the T -BRW wT restricted to any edge (u, v) of T has the uniform distribution on

the set of all ordered edges in G. Therefore,

H(wT (u),wT (v)) = log(2|E(G)|). (4)

We conclude this subsection by giving a lower bound for the entropy of the T -BRW wT , which

in turn implies that trees satisfy Sidorenko’s property.

Proposition 2.3. For a tree T and a graph G, the T -BRW wT on G satisfies

H(wT ) ≥ log
(
|V (G)||V (T )|

(
2|E(G)|
|V (G)|2

)|E(T )| )
and, therefore,

|Hom(T,G)| ≥ |V (G)||V (T )|
(

2|E(G)|
|V (G)|2

)|E(T )|
.

Proof. The second part easily follows from the first part and Lemma 2.1(i), which implies that

H(wT ) ≤ log |Hom(T,G)|.

For the first part, observe, by the definition of conditional entropy and Lemma 2.1(ii), that

H(wT ) = H(wT (r)) +
t∑

i=1

H(wT (ui)|wT (u0 , ..., ui−1))

= H(wT (r)) +

t∑
i=1

H(wT (ui)|wT (vi)),

where vi is the parent of ui . Denote by Cv the set of all children of v. Rearranging the last sum,

we have that

H(wT ) = H(wT (r)) +
∑

v∈V (T )

∑
u∈Cv

H(wT (u)|wT (v))

= H(wT (r)) +
∑

v∈V (T )

∑
u∈Cv

(H(wT (u),wT (v))−H(wT (v))) .

Since, by (4),∑
v∈V (T )

∑
u∈Cv

H(wT (u),wT (v)) =
∑

uv∈E(T )

H(wT (u),wT (v)) = |E(T )| log(2|E(G)|)
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and, by Lemma 2.1(i),

−H(wT (r))+
∑

v∈V (T )

∑
u∈Cv

H(wT (v)) =
∑

v∈V (T )

(degT (v)−1)H(wT (v)) ≤ (2|E(T )|−|V (T )|) log |V (G)|,

we have that

H(wT ) ≥ log
(
|V (G)||V (T )|

(2|E(G)|
|V (G)|2

)|E(T )|)
,

as desired.

2.2 Branching random walks starting from a partial embedding

In order to embed strongly tree-decomposable graphs, we will first need to understand T -BRWs

starting from a partial embedding. Let T be a tree, G a graph with at least one edge, and X a

subset of V (T ). Let S be the minimum subtree of T that contains X. If X = ∅, then S consists of

a single fixed vertex of T . Take an ordering of the vertices of T such that the vertices of S precede

all other vertices and, if the tree T is seen as being rooted at the first vertex, no child precedes its

parent. The T -branching random walk on G, or simply T -BRW, starting from a partial embedding

h : X → V (G) is then defined as follows:

1. If Gh(S) := {g ∈ Hom(S,G) : g|X = h} is empty, then there is no T -BRW starting with h.

Otherwise, wT (· |h) : V (T )→ V (G) restricted to S is defined according to the distribution

P
[

wT (· |h) = y on S
]

=

{
p
S
(y)∑

g∈Gh(S) pS (g) if y ∈ Gh(S)

0 if y /∈ Gh(S) .

(Recall that pS is the probability distribution function of the S-BRW on Hom(S,G) and

pS (g) > 0 for all g ∈ Hom(S,G) as seen in (3) above).

2. Once wT (· |h) is defined on S, the embedding wT (· |h) may be defined in the same way that

was used for the construction of the T -BRW. That is, for the first vertex u that has not yet

been embedded and its parent v, wT (u |h) is a vertex chosen uniformly at random from all

vertices adjacent to wT (v |h) in G.

3. Repeat Step 2 until all vertices have been embedded.

If X = ∅, the T -BRW starting from h : X → V (G) is the usual T -BRW. Moreover, it is not

difficult to show that the T -BRW starting from h has the same distribution as the usual T -BRW

conditioned on wT |X = h. We conclude this subsection by proving this fact.

Proposition 2.4. With the same notation as above and x ∈ Hom(T,G),

P
[

wT (· |h) = x on S
]

= P
[
wT = x on S

∣∣∣wT = h on X
]

and

P[wT (· |h) = x] = P
[
wT = x

∣∣∣ wT = h on X
]
.

In particular, the distribution of wT (· |h) is independent of the order of vertices in T .
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Proof. As Proposition 2.2 gives

pS (x|S) = P[wT = x on S]

and ∑
g∈Gh(S)

pS (g) =
∑

g∈Gh(S)

∑
f∈Gg(T )

pT (f) =
∑

f∈Gh(T )

pT (f) = P[wT = h on X],

we have that

P
[

wT (· |h) = x on S
]

=
pS (x|S)∑

g∈Gh(S)

pS (g)
=

P[wT = x on S]

P[wT = h on X]
= P

[
wT = x on S

∣∣∣wT = h on X
]
.

Since wT and wT (· |h) are constructed in the same way once their values on S have been determined,

we also have

P[wT (· |h) = x] = P
[
wT (· |h) = x on S

]
P
[
wT (· |h) = x

∣∣∣wT (· |h) = x on S
]

= P
[
wT = x on S

∣∣∣wT = h on X
]
P
[
wT = x

∣∣∣wT = x on S
]

= P
[
wT = x

∣∣∣wT = h on X
]
,

as required.

2.3 Embedding strongly tree-decomposable graphs

Recall that a graph H is strongly tree-decomposable if it has a tree decomposition (F , T ) satisfying

two extra conditions:

1. The induced subgraphs H[X], X ∈ F , are edge-disjoint trees.

2. For every pair X,Y ∈ F which are adjacent in T , there is an isomorphism that fixes X ∩ Y
between the minimum subtrees of H[X] and H[Y ] containing X ∩ Y .

Suppose that G has at least one edge. We will attempt to construct a homomorphism w of H

into G by regarding T as a rooted tree with root R, for a fixed R ∈ F , and taking a fixed order

R = X0, X1, X2, ..., Xt of all sets in F in which no child precedes its parent. We then proceed as

follows:

1. Take w
H[R]

, the H[R]-BRW, and set w = w
H[R]

on R. Mark R as explored.

2. Suppose w is defined on Zi−1 :=
⋃i−1

j=0Xi, i ≥ 1, and Xi is the first set that has not yet

been explored. Take w
H[Xi]

(· |h), the H[Xi]-BRW starting from h = w|Xi∩Zi−1 , and set

w = w
H[Xi]

(· |h) on Xi \ Zi−1, provided that there exists a H[Xi]-BRW starting from h.

Mark Xi as explored.

If there is no H[Xi]-BRW starting from h, then the process stops and there is no output. (We

will presently show that this case cannot occur.)
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3. Repeat Step 2 until every set in F has been explored.

We first show that there is always an output w and it is a homomorphism from H to G.

Lemma 2.5. The above process always outputs a homomorphism from H to G. Moreover, the

distribution of the homomorphism does not depend on the choice of the order X1, ..., Xt of the sets

in F provided that X0 is a fixed set R.

Proof. We will prove inductively that w is a homomorphism from H[Zi] to G for i = 0, 1, ..., t. For

i = 0, this follows since G has at least one edge and H[R] is a tree. Hence, the H[R]-BRW is well-

defined and yields a homomorphism from H[R] to G. For i ≥ 1, suppose w|Zi−1 is a homomorphism.

Since Xi is a leaf of the subtree Ti := T [{X0, X1, X2, ..., Xi}] of T , every non-trivial path in Ti
containing Xi must contain its parent Yi and the third property of tree decompositions gives

Xi ∩ Zi−1 = Xi ∩ Yi.

Since H is strongly tree-decomposable, there is an isomorphism that fixes Xi ∩ Yi between the

minimum subtrees of H[Xi] and H[Yi] containing Xi ∩ Yi. Since Yi ⊂ Zi−1, the relevant subtree of

H[Yi] has already been embedded by w. In particular, there is a homomorphism, say g, from the

relevant subtree of H[Xi] to G with g = w on Xi ∩ Yi. Hence, by the results of Section 2.2, there

exists an H[Xi]-BRW starting from w|Xi∩Yi . This shows that w is a well-defined mapping from

Zi = Zi−1 ∪Xi to V (G).

To show that w is a homomorphism on Zi, suppose {u, v} is an edge of H with u, v ∈ Zi. Since

both w|Zi−1
and w|Xi

are homomorphisms, it is enough to show that either u, v ∈ Zi−1 or u, v ∈ Xi,

though not necessarily exclusively. If not, we may assume that u ∈ Xi and v ∈ Xj ⊂ Zi−1 for

some j < i. We now take a set U ∈ F that contains both u and v. Such a set exists by the second

property of tree decompositions. If U is a descendant of Xi in T , then the path from U to Xj in

T must go through Xi. As v ∈ U ∩ Xj , we have v ∈ Xi and hence u, v ∈ Xi, contradicting our

assumption. If U is not a descendant of Xi in T , then the path from Xi to U in T must contain

Yi, the parent of Xi. Since u ∈ Xi ∩ U , we have u ∈ Yi ⊂ Zi−1 and hence u, v ∈ Zi−1, again

contradicting our assumption.

Therefore, the process constructing w continues until w has been extended to all sets in F .

Since
⋃

X∈F X = V (H) (by the first property of tree decompositions), w is a homomorphism from

H to G. Moreover, using

P
[
w = h

]
= P[w = h on X0]

t∏
i=1

P
[
w = h on Xi

∣∣∣ w = h on Zi−1

]
and

P
[
w = h on Xi

∣∣∣ w = h on Zi−1

]
= P

[
w = h on Xi

∣∣∣ w = h on Xi ∩ Yi
]
,

we easily see that if CY is the set of children of Y in T , then

P
[
w = h

]
= P

[
w = h on X0

] t∏
i=1

P
[
w = h on Xi

∣∣∣ w = h on Xi ∩ Yi
]

= P
[
w = h on X0

] ∏
Y ∈F

∏
X∈CY

P
[
w = h on X

∣∣∣ w = h on X ∩ Y
]
.
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Similarly, for any other order R = X0 = X ′0, X
′
1, X

′
2, ..., X

′
t in which no child precedes its parent,

P
[
w′ = h

]
= P

[
w′ = h on X ′0

] ∏
Y ∈F

∏
X∈CY

P
[
w′ = h on X

∣∣∣ w′ = h on X ∩ Y
]
.

On X0 = X ′0 = R, both w and w′ are H[R]-BRWs and, hence,

P[w′ = h on X ′0] = P[w = h on X0].

Further, for all adjacent pairs X,Y ∈ F , conditioned on w′ = w = h on X ∩ Y , both w|X and

w′|X are H[X]-BRWs starting from h and

P
[
w′ = h on X

∣∣∣ w′ = h on X ∩ Y
]

= P
[
w = h on X

∣∣∣ w = h on X ∩ Y
]
.

Thus, P[w = h] = P[w′ = h], which means that the distribution of w is independent of the

order.

In the following proposition, we show that the choice of root R is also irrelevant.

Proposition 2.6. The distribution of the homomorphism w described above does not depend on

the choice of root R. In particular, w|X is the H[X]-BRW for each X ∈ F , i.e.,

P[w = h on X] = p
H[X]

(h|X)

for h ∈ Hom(H,G).

Proof. Since X in the second part may be chosen as the root of T , the equality easily follows from

the first part. To prove the first part, let w1 and w2 be the random homomorphisms constructed

using the above procedure with roots Y1, Y2 ∈ F , respectively. We will show that w1 and w2 have

the same distribution whenever Y1 and Y2 are adjacent in T . The general case follows easily from

repeated application of this special case.

Since the order of sets in F other than the root does not affect the distributions of w1 and w2 ,

we may embed Y2 immediately after Y1 when Y1 is the root. If, on the other hand, Y2 is the root,

then Y1 is to be embedded immediately after Y2. Order all remaining sets in F in the exact same

order for both cases. It therefore suffices to prove that, for each h ∈ Hom(H,G),

P[w1 = h on Y1] ·P[w1 = h on Y2 | w1 = h on Y1 ∩ Y2]
= P[w2 = h on Y2] ·P[w2 = h on Y1 | w2 = h on Y1 ∩ Y2]. (5)

We will first show that if S1 and S2 are the minimum subtrees of H[Y1] and H[Y2] containing

Y1 ∩ Y2, respectively, then

P[w1 = h on Y2 | w1 = h on Y1 ∩ Y2] =
P[w2 = h on Y2]∑
g∈Gh(S2)

pS2
(g)

,
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and, similarly,

P[w2 = h on Y1 | w2 = h on Y1 ∩ Y2] =
P[w1 = h on Y1]∑
g∈Gh(S1)

pS1
(g)

,

where Gh(Si) = {g ∈ Hom(Si, G) : g = h on Y1 ∩ Y2}. The first equation follows from noting that

P
[
w1 = h on Y2

∣∣∣ w1 = h on Y1 ∩ Y2
]

= P
[
w1 = h on S2

∣∣∣ w1 = h on Y1 ∩ Y2
]

×P
[
w1 = h on Y2

∣∣∣ w1 = h on S2

]
=

pS2
(h|S2)∑

g∈Gh(S2)

pS2
(g)

P
[
w1 = h on Y2

∣∣∣w1 = h on S2

]
,

and

P
[
w2 = h on Y2

]
= P

[
w2 = h on S2

]
P
[
w2 = h on Y2

∣∣∣w2 = h on S2

]
= pS2

(h|S2)P
[
w1 = h on Y2

∣∣∣w1 = h on S2

]
,

where, in the last equality, we used the fact that w1 and w2 are constructed in the same way once

their values on S2 are determined to be h. The same argument also works for the second equation.

The desired equality (5) follows since∑
g∈Gh(S1)

pS1
(g) =

∑
g∈Gh(S2)

pS2
(g),

which, in turn, easily follows from the fact that there is an isomorphism from S1 to S2 that fixes

Y1 ∩ Y2.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let H be a strongly tree-decomposable graph with tree decomposition

(F , T ) and let G be a graph with at least one edge. Using

H(w) = H(w(R)) +

t∑
i=1

H(w(Xi)|w(Zi−1))

and, from Lemma 2.1(ii),

H(w(Xi)|w(Zi−1)) = H(w(Xi)|w(Xi ∩ Zi−1)) = H(w(Xi)|w(Xi ∩ Yi)),

where Yi is the parent of Xi in the tree T rooted at R, we have that

H(w) = H(w(R)) +
t∑

i=1

H(w(Xi)|w(Xi ∩ Yi)) = H(w(R)) +
∑
Y ∈F

∑
X∈CY

H(w(X)|w(X ∩ Y )),
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where CY is the set of children of Y . As H(w(X)|w(X ∩Y )) = H(w(X))−H(w(X ∩Y )), we also

have that

H(w) = H(w(R)) +
∑
Y ∈F

∑
X∈CY

H(w(X))−H(w(X ∩ Y ))

=
∑
X∈F

H(w(X))−
∑

XY ∈E(T )

H(w(X ∩ Y ))

≥
∑
X∈F

H(w(X))−
∑

XY ∈E(T )

|X ∩ Y | log |V (G)|, (6)

where the inequality follows from Lemma 2.1(i). Proposition 2.6 implies that, for each X ∈ F , the

distribution of w|X is the H[X]-BRW distribution and, therefore, by Proposition 2.3,

H(w(X)) ≥ log
(
|V (G)||X|

(2|E(G)|
|V (G)|2

)|E(H[X])|)
= |E(H[X])| log

2|E(G)|
|V (G)|2

+ |X| log |V (G)|.

Since strong tree decomposability implies that∑
X∈F

|E(H[X])| = |E(H)| and
∑
X∈F

|X| −
∑

XY ∈E(T )

|X ∩ Y | = |V (H)|,

it follows that

H(w) ≥
∑
X∈F

|E(H[X])| log
2|E(G)|
|V (G)|2

+
( ∑

X∈F
|X| −

∑
XY ∈E(T )

|X ∩ Y |
)

log |V (G)|

= |E(H)| log
2|E(G)|
|V (G)|2

+ |V (H)| log |V (G)|

= log
(
|V (G)||V (H)|

(2|E(G)|
|V (G)|2

)|E(H)|)
.

Since H(w) ≤ log |Hom(H,G)|, we finally have that

log |Hom(H,G)| ≥ log
(
|V (G)||V (H)|

(2|E(G)|
|V (G)|2

)|E(H)|)
,

or

|Hom(H,G)| ≥ |V (G)||V (H)|
(2|E(G)|
|V (G)|2

)|E(H)|
,

as desired.

3 Subdivisions

We say that a graph G is (ρ, d)-dense if G has density at least d on every U ⊆ V (G) with |U | ≥
ρ|V (G)|. A beautiful conjecture of Kohayakawa, Nagle, Rödl, and Schacht [8] states that for any

graph H and any γ, d > 0, there should exist ρ > 0 such that any (ρ, d)-dense graph G on a

sufficiently large number of vertices contains at least (1−γ)|V (G)||V (H)|d|E(H)| labeled copies of H.

12



If H is a bipartite graph which satisfies Sidorenko’s conjecture, it clearly satisfies this conjecture

with ρ = 1. However, the conjecture is also known for some non-bipartite graphs, including complete

graphs, complete multipartite graphs, the line graph of the cube [3], and odd cycles [11]. Here we

show that any graph for which this conjecture holds may be subdivided to produce a graph that

satisfies Sidorenko’s conjecture.

Theorem 3.1. Suppose that H is a graph for which there exists a function f : (0, 1] → (0, 1] and

a constant a > 0 such that any (f(d), d)-dense graph G contains at least

a|V (G)||V (H)|d|E(H)|

copies of H. Then the subdivision of H has Sidorenko’s property.

We note that both parts of Theorem 1.3 follow easily from this theorem and the discussion

above. It will therefore suffice to prove Theorem 3.1. For our proof, it will be convenient to have

a version of the hypothesis that applies to weighted graphs as well as graphs.

Lemma 3.2. Suppose that H is a graph for which there exists a function f : (0, 1] → (0, 1] and a

constant a > 0 such that any (f(d), d)-dense graph G contains at least

a|V (G)||V (H)|d|E(H)|

copies of H. Then, for any edge-weighted graph W : V (G)×V (G)→ [0, 1] such that
∑

u,u′∈U W (u, u′) ≥
d
(|U |

2

)
for all U ⊆ V (G) with |U | ≥ f(d/2)|V (G)|,∑

x1,...,xh∈V (G)

∏
(i,j)∈E(H)

W (xi, xj) ≥
a

2
|V (G)||V (H)|d|E(H)|.

We omit the proof of this lemma, since it is a standard application of Azuma’s inequality (see,

for example, Corollary 9.7 in [2]).

The following lemma, due to Fox (see [7]), says that in order to prove that a graph H has

Sidorenko’s property, it suffices to prove that all graphs whose maximum degree is bounded in

terms of the average degree contain roughly the correct number of copies of H.

Lemma 3.3. Let H be a bipartite graph. If there exists a constant c, depending only on H, such

that

|Hom(H,G)| ≥ c|V (G)||V (H)|
(

2|E(G)|
|V (G)|2

)|E(H)|

for all graphs G with maximum degree at most 4|E(G)|
|V (G)| , then H has Sidorenko’s property.

In proving Theorem 3.1, we may therefore assume that the maximum degree of G is at most

twice the average degree d. We will now argue that any graph of this type contains a large subgraph

where the minimum degree is at least d/4.

Lemma 3.4. If G is a graph on n vertices with average degree d and maximum degree at most 2d,

there exists a subgraph G′ with at least 2−6n vertices such that the minimum degree of G′ is at least

d/4.
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Proof. We will prove the result by removing one vertex at a time to form graphsG0 = G,G1, . . . , Gt,

eventually arriving at the required graph. Since the maximum degree of G is at most 2d, we see

that d(Gi) ≤ 2d for all i, where d(Gi) is the average degree of Gi. Suppose now that we have formed

the graph Gi, but it does not satisfy the required condition. That is, there is a vertex vi+1 of degree

less than d/4. We remove this vertex to form Gi+1. Since we start from a graph of average degree

at least d, it follows that d(Gi) ≥ d for all i. Note that

d(Gi+1) =
2|E(Gi+1)|
|V (Gi+1)|

=
2|E(Gi)| − 2d(vi+1)

|V (Gi)| − 1
≥ 2|E(Gi)| − d/2
|V (Gi)| − 1

= d(Gi) +
d(Gi)− d/2
|V (Gi)| − 1

≥ d(Gi) +
d

2(|V (Gi)| − 1)
.

Therefore,

d(Gt) ≥ d+
d

2

(
1

n− 1
+

1

n− 2
+ · · ·+ 1

n− t

)
,

which contradicts our observation that d(Gt) ≤ 2d when t = (1− 2−6)n. Hence, for some i < t, Gi

satisfied the required condition, completing the proof.

The key observation in our proof is the next lemma, which says that if a graph has large

minimum degree, then the average codegree, taken over all pairs of vertices, in any large set U is

itself large.

Lemma 3.5. Suppose that G is a graph with n vertices and minimum degree δ. Then, provided

δ|U | ≥ 3n, ∑
{u,u′}⊂U

u6=u′

d(u, u′) ≥ δ2

2n

(
|U |
2

)
,

where d(u, u′) is the codegree of u and u′.

Proof. If we write dU (v) for the number of neighbors of a vertex v in U , we see, by convexity, that∑
{u,u′}⊂U

u6=u′

d(u, u′) =
∑

v∈V (G)

(
dU (v)

2

)
≥ n

(∑
v dU (v)/n

2

)

= n

(∑
u∈U d(u)/n

2

)
≥ n

(
δ|U |/n

2

)
≥ δ2

2n

(
|U |
2

)
,

as required.

We now have all the necessary ingredients for proving Theorem 3.1.

Proof of Theorem 3.1. Let H1 be the subdivision of H. Suppose that G is a graph with

maximum degree at most 4|E(G)|
|V (G)| . By Lemma 3.3, it will be enough to prove that there exists a

constant c, depending only on H, such that

|Hom(H1, G)| ≥ c|V (G)||V (H)|+|E(H)|
(

2|E(G)|
|V (G)|2

)2|E(H)|
. (7)
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Note that we may assume |V (G)| is sufficiently large, since it is easy to see that verifying inequal-

ity (7) for a graph G is equivalent to verifying it for a balanced blow-up of G.

By Lemma 3.4, G has a subgraph G′ with at least 2−6|V (G)| vertices and minimum degree

at least |E(G)|
2|V (G)| . Now define a weighted graph W on V (G′) by W (u, v) = d(u, v)/|V (G′)|. By

Lemma 3.5, the density of W on every set U ⊆ V (G′) with |U | ≥ 6|V (G)|
|E(G)| |V (G′)| is at least

1(|U |
2

) ∑
{u,u′}⊆U

u6=u′

W (u, u′) ≥ 1(|U |
2

) ∑
{u,u′}⊆U

u6=u′

d(u, u′)

|V (G′)|
≥ |E(G)|2

8|V (G)|4
.

Taking d = |E(G)|2/8|V (G)|4, we have that 6|V (G)|/|E(G)| ≤ f(d/2) for |V (G)| sufficiently large.

Therefore, by our assumption on H and Lemma 3.2,

∑
x1,...,xh∈V (G′)

∏
(i,j)∈E(H)

W (xi, xj) ≥
a

2
|V (G′)||V (H)|

(
|E(G)|2

8|V (G)|4

)|E(H)|
.

Expanding out W , this is the same as

∑
x1,...,xh∈V (G′)

∏
(i,j)∈E(H)

d(xi, xj) ≥ a|V (G′)||V (H)|+|E(H)|
(
|E(G)|

4|V (G)|2

)2|E(H)|

≥ 2−6|V (H)|−12|E(H)|a|V (G)||V (H)|+|E(H)|
(

2|E(G)|
|V (G)|2

)2|E(H)|
.

But the first expression counts homomorphisms from H1 to G′, while the last expression is of the

required type (7). This completes the proof.

As an application of Theorem 3.1, we may prove the following more general theorem. We

define the K2,t-replacement of a graph H to be the graph obtained from H by replacing each of its

edges with a copy of K2,t, identifying the edge’s endpoints with the two vertices on one side of the

corresponding copy of K2,t. Note that a K2,1-replacement is equivalent to a subdivision.

Theorem 3.6. Suppose that H is a graph for which there exists an increasing function f : (0, 1]→
(0, 1] and a constant a > 0 such that any (f(d), d)-dense graph G contains at least

a|V (G)||V (H)|d|E(H)|

copies of H. Then the K2,t-replacement of H has Sidorenko’s property.

Proof. For a graph G and an ordered sequence of h = |V (H)| vertices x1, . . . , xh, let H1(x1, . . . , xh)

be the number of homomorphisms from the subdivision H1 of H to G such that the ith vertex of

H is mapped to xi. By Theorem 3.1,

∑
x1,...,xh

H1(x1, . . . , xh) ≥ |V (G)||V (H)|+|E(H)|
(

2|E(G)|
|V (G)|2

)2|E(H)|
.
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Therefore, by convexity,

∑
x1,...,xh

H1(x1, . . . , xh)t ≥ |V (G)||V (H)|
(∑

x1,...,xh
H1(x1, . . . , xh)

|V (G)||V (H)|

)t

≥ |V (G)||V (H)|+t|E(H)|
(

2|E(G)|
|V (G)|2

)2t|E(H)|
.

Since the first expression counts homomorphisms from the K2,t-replacement of H to G, this com-

pletes the proof.

It is also possible to mix replacements in certain ways. For example, suppose that H is a triangle

and consider

X = Ex,y,zd(x, y)rd(y, z)sd(z, x)t.

This is a normalised count for the number of homomorphisms to G of the graph formed by replacing

the edges of the triangle by a K2,r, a K2,s, and a K2,t, respectively. Note, by symmetry, that X3

can be expressed in the form

X3 = E[d(x, y)rd(y, z)sd(z, x)t]E[d(x, y)sd(y, z)td(z, x)r]E[d(x, y)td(y, z)rd(z, x)s].

Hence, by Hölder’s inequality with exponent 3,

X ≥ E[(d(x, y)d(y, z)d(z, x))(r+s+t)/3] ≥ E[d(x, y)d(y, z)d(z, x)](r+s+t)/3,

where the last inequality follows by convexity. Therefore, the graph obtained by replacing the

edges of the triangle by a K2,r, a K2,s, and a K2,t has Sidorenko’s property. This argument easily

generalises to all complete graphs and some other edge-transitive graphs.

4 Cartesian products with even cycles

Let H,K, and G be graphs. In [7], Kim, Lee, and Lee studied homomorphisms from H �K to G

by relating them to homomorphisms from H to the following auxiliary graph constructed from K

and G.

Definition 4.1. Given graphs K and G, let ψK(G) be the graph with vertex set Hom(K,G) in

which two vertices h1, h2 ∈ Hom(K,G) are adjacent if and only if h1(v) and h2(v) are adjacent in

G for all v ∈ V (K).

The following lemma was proved in [7].

Lemma 4.2. For all graphs H, K and G, there is a one-to-one mapping between Hom(H �K,G)

and Hom(H,ψK(G)). In particular,

|Hom(H �K,G)| = |Hom(H,ψK(G))|.
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We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let k ≥ 2 be a given positive integer. It suffices to prove the theorem when

H has no isolated vertex, since deleting isolated vertices in H only removes connected components

of H�J each of which are isomorphic to J .

Let G be a graph with n vertices and let

p :=
2|E(G)|
n2

=
|Hom(K2, G)|

n2
, α :=

|Hom(C4, G)|
p4n4

, β
k

:=
|Hom(C2k, G)|

p2kn2k
,

for k ≥ 2. By Lemma 3.3, we may assume that G has maximum degree at most 2pn. Since C4 and

C2k have Sidorenko’s property, α and β
k

are both at least 1. Using that |Hom(C2k, G)| =
∑n

i=1 λ
2k
i

for the eigenvalues λi of the adjacency matrix of G, we also have

β
k
p2kn2k ≤ αλ2k−4p4n4 for λ = maxi |λi| and k ≥ 2.

Since λ is at most the maximum degree of G, we know that λ ≤ 2pn. Thus the above yields

β
k
≤ 22k−4α. (8)

Writing v = |V (H)| and e = |E(H)|, we apply Lemma 4.2 and then use the fact that H has

Sidorenko’s property to obtain

|Hom(H �C2k, G)| = |Hom(H,ψC2k
(G))| ≥ |V (ψC2k

(G))|v
(

2|E(ψC2k
(G))|

|V (ψC2k
(G))|2

)e

.

As |V (ψC2k
(G))| = |Hom(C2k, G)| = β

k
p2kn2k, it follows that

|Hom(H �C2k, G)| ≥ (β
k
p2kn2k)v

(
2|E(ψC2k

(G))|
(β

k
p2kn2k)2

)e

. (9)

Lemma 4.2 also yields

2|E(ψC2k
(G))| = |Hom(K2, ψC2k

(G))| = |Hom(K2 �C2k, G)| = |Hom(C2k, ψK2(G))|.

Since C2k has Sidorenko’s property, we obtain

2|E(ψC2k
(G))| ≥ |V (ψK2(G))|2k

(
2|E(ψK2(G))|
|V (ψK2(G))|2

)2k

=
(2|E(ψK2(G))|
|Hom(K2, G)|

)2k
.

Applying Lemma 4.2 once more, we have

2|E(ψK2(G))| = |Hom(K2, ψK2(G))| = |Hom(K2 �K2, G)| = |Hom(C4, G)| = αp4n4,

which, together with |Hom(K2, G)| = 2|E(G)| = pn2, yields

2|E(ψC2k
(G))| ≥

(αp4n4
pn2

)2k
= α2kp6kn4k.
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Together with (9), this inequality implies that

|Hom(H �C2k, G)| ≥ (β
k
p2kn2k)v

(α2kp2k

β2
k

)e
= α2ekβv−2e

k
p2kv+2ken2kv.

Since H has no isolated vertex, we have v − 2e ≤ 0 and hence, by (8), βv−2e
k

≥ 2(2k−4)(v−2e)αv−2e.

Therefore, since α ≥ 1,

|Hom(H �C2k, G)| ≥ 2(2k−4)(v−2e)α2ek+(v−2e)n2kvp2kv+2ke ≥ 2(2k−4)(v−2e)n2kvp2kv+2ke.

Since H �C2k has 2kv vertices and 2kv + 2ke edges, the result now follows from Lemma 3.3.
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