
ar
X

iv
:1

50
3.

05
61

2v
2 

 [
m

at
h.

C
O

] 
 1

 F
eb

 2
01

6

Almost-spanning universality in random graphs

David Conlon∗ Asaf Ferber† Rajko Nenadov‡ Nemanja Škorić‡

Abstract

A graph G is said to be H(n,∆)-universal if it contains every graph on at most n vertices with

maximum degree at most ∆. It is known that for any ε > 0 and any natural number ∆ there

exists c > 0 such that the random graph G(n, p) is asymptotically almost surely H((1 − ε)n,∆)-

universal for p ≥ c(logn/n)1/∆. Bypassing this natural boundary, we show that for ∆ ≥ 3 the

same conclusion holds when p ≫ n−

1

∆−1 log5 n.

1 Introduction

Given a family of graphs H, a graph G is said to be H-universal if it contains every member of

H as a subgraph (not necessarily induced). Universal graphs have been studied quite extensively,

particularly with respect to families of forests, planar graphs and graphs of bounded degree (see, for

example, [4, 5, 8, 9, 11, 13, 14, 15, 17] and their references). In particular, it is of interest to find

sparse universal graphs.

Let H(n,∆) be the family of all graphs on at most n vertices with maximum degree at most ∆.

Building on earlier work with several authors [2, 5, 6], Alon and Capalbo [3, 4] showed that there

are graphs with at most c∆n
2−2/∆ edges which are H(n,∆)-universal. A simple counting argument

shows that this result is best possible.

The construction of Alon and Capalbo is explicit. An earlier approach had been to study whether

random graphs could be H(n,∆)-universal. The binomial random graph G(n, p) is the graph formed

by choosing every edge of a graph on n vertices independently with probability p. We say that G(n, p)

satisfies a property P asymptotically almost surely (a.a.s.) if Pr [G(n, p) ∈ P] tends to 1 as n tends to

infinity. The first result on universality in random graphs was proved by Alon, Capalbo, Kohayakawa,

Rödl, Ruciński and Szemerédi [5], who showed that for any ε > 0 and any natural number ∆ there

exists a constant c > 0 such that the random graph G(n, p) is a.a.s. H((1 − ε)n,∆)-universal for

p ≥ c(log n/n)1/∆.

In this theorem, some slack is allowed by only asking that the random graph contains subgraphs

with (1 − ε)n vertices. However, one can also ask whether the random graph G(n, p) contains all

subgraphs of maximum degree ∆ with exactly n vertices, that is, whether it is H(n,∆)-universal.

Because we no longer have any extra room to manoeuvre, this problem is substantially more diffi-

cult to treat than the almost-spanning version. Nevertheless, Dellamonica, Kohayakawa, Rödl and
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Ruciński [14] have shown that for any natural number ∆ ≥ 3 there exists a constant c > 0 such that

G(n, p) is a.a.s. H(n,∆)-universal for p ≥ c(log n/n)1/∆. The case ∆ = 2 was later treated by Kim

and Lee [17], who obtained similar bounds to those in [14].

These results on embedding large bounded-degree graphs in the random graph have proved useful

in other contexts [12, 18]. To give an example, we define the size Ramsey number r̂(H) of a graph

H to be the smallest number of edges m in a graph G which is Ramsey with respect to H, that is,

such that any 2-colouring of the edges of G contains a monochromatic copy of H. A famous result

of Beck [10] states that the size Ramsey number of the path Pn with n vertices is at most cn for

some fixed constant c > 0. An extension of this result to graphs of maximum degree ∆ was recently

given by Kohayakawa, Rödl, Schacht and Szemerédi [18], who showed that there is a constant c > 0

depending only on ∆ such that if H is a graph with n vertices and maximum degree ∆ then

r̂(H) ≤ cn2−1/∆(log n)1/∆.

A key component in their proof is an embedding lemma like that used in [5]. One could therefore

hope to improve this bound by improving the bounds for universality in random graphs.

Here we make some initial progress on these problems by improving the theorem of Alon, Capalbo,

Kohayakawa, Rödl, Ruciński and Szemerédi [5] on almost-spanning universality as follows.

Theorem 1.1. For any constant ε > 0 and integer ∆ ≥ 3, the random graph G(n, p) is a.a.s.

universal for the family H((1 − ε)n,∆), provided that p ≫ n− 1
∆−1 log5 n.

This result bypasses a natural barrier, since (log n/n)1/∆ is roughly the lowest probability at

which we can expect that every collection of ∆ vertices will have many neighbors in common, a

condition which is extremely useful if one wishes to embed graphs of maximum degree ∆. On

the other hand, the lowest probability at which one might hope that the random graph G(n, p) is

a.a.s. H((1− ε)n,∆)-universal is n−2/(∆+1). Indeed, below this probability, G(n, p) will typically not

contain (1−ε) n
∆+1 vertex-disjoint copies of K∆+1 (see, for example, [16]). Thus, for ∆ = 3 our result

is optimal up to the logarithmic factor, while for ∆ ≥ 4 the gap remains.

In proving Theorem 1.1, we will make use of a recent result of Ferber, Nenadov and Peter [15]

which improves the bounds in [6] and [14] for bounded-degree graphs which satisfy certain density

and partitioning properties (see Section 2.2). When embedding a graph H ∈ H((1 − ε)n,∆), we

will first find a subgraph H ′ ⊆ H suitable for the application of the main result of [15] by removing

all small components and certain short cycles in H. We then embed H ′, after which we place the

deleted pieces in an appropriate way so as to obtain an embedding of H.

1.1 Notation

For a graph G = (V,E), we denote by v(G) and e(G) the size of the vertex and edge sets, respectively.

For a vertex v ∈ V , we write Γ
(i)
G (v) := {w ∈ V : dist(v,w) = i} for the set of vertices at distance

exactly i from v. For simplicity, we let Γ
(0)
G (v) := {v} and ΓG(v) := Γ

(1)
G (v). Furthermore, for

a set S ⊆ V , we define Γ
(i)
G (S) := {w ∈ V : minv∈S dist(v,w) = i}. Similarly, we let B

(i)
G (v) :=

⋃i
j=0 Γ

(j)
G (v) be the ball of radius i around v in G, i.e., the set of all vertices at distance at most i from

v. For an integer k and a set of vertices S ⊆ V , we say that S is k-independent if B
(k)
G (v)∩(S\{v}) = ∅

for every v ∈ S, i.e., every two vertices in S are at distance at least k + 1 in G. If there is no risk of

ambiguity, we omit G from the subscript.
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Given a (hyper)graph H = (V,E), we say that two edges e1, e2 ∈ E are independent if e1 ∩ e2 =

∅. For two graphs G′ and G′′, we write G′ ∼= G′′ if they are isomorphic. A family of subsets

A1, . . . , Ak ⊆ V , for some integer k, is a partition of V if Ai ∩Aj = ∅ for all distinct i, j ∈ {1, . . . , k}

and V =
⋃k

i=1 Ai. Note that we allow subsets Ai to be empty. Finally, for an integer k ∈ N, we use

the standard notation [k] := {1, . . . , k}.

We use the standard asymptotic notation O, o, Ω and ω. Furthermore, given two functions a

and b, we write a ≪ b if a = o(b) and a ≫ b if a = ω(b).

2 Tools and preliminaries

In this section, we present some tools to be used in the proof of our main result.

2.1 Probabilistic tools

We will use lower tail estimates for random variables which count the number of copies of certain

graphs in a random graph. The following version of Janson’s inequality, tailored for graphs, will

suffice. This statement follows immediately from Theorems 8.1.1 and 8.1.2 in [7].

Theorem 2.1 (Janson’s inequality). Let p ∈ (0, 1) and consider a family {Hi}i∈I of subgraphs of

the complete graph on the vertex set [n]. Let G ∼ G(n, p). For each i ∈ I, let Xi denote the indicator

random variable for the event that Hi ⊆ G and, for each ordered pair (i, j) ∈ I × I with i 6= j, write

Hi ∼ Hj if E(Hi) ∩ E(Hj) 6= ∅. Then, for

X =
∑

i∈I

Xi,

µ = E[X] =
∑

i∈I

pe(Hi),

δ =
∑

(i,j)∈I×I
Hi∼Hj

E[XiXj ] =
∑

(i,j)∈I×I
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj)

and any 0 < γ < 1,

Pr[X < (1 − γ)µ] ≤ e
− γ2µ2

2(µ+δ) .

2.2 Universality for “nicely partitionable” graphs

In the following definition, we introduce a family of graphs that admit a “nice partition”.

Definition 2.2. Let n, d and t be positive integers and let ε be a positive number. The family of

graphs F(n, t, ε, d) consists of all graphs H on n vertices for which there exists a partition W0, . . . ,Wt

of V (H) such that

(i) |Wt| = ⌊εn⌋,

(ii) W0 = Γ(Wt),

(iii) Wt is 3-independent,
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(iv) Wi is 2-independent for every 1 ≤ i ≤ t− 1, and

(v) for every 1 ≤ i ≤ t and for every w ∈ Wi, w has at most d neighbors in W0 ∪ . . . ∪Wi−1.

The following result, due to Ferber, Nenadov and Peter [15], shows that for an appropriate p a

typical G ∼ G(n, p) is F(n, t, ε, d)-universal.

Theorem 2.3 (Theorem 4.1 in [15]). Let n and t = t(n) be positive integers, let d = d(n) ≥ 2 be an

integer and let ε = ε(n) < 1/(2d). Then the random graph G(n, p) is a.a.s. F(n, t, ε, d)-universal,

provided that p ≫ ε−1tn−1/d log2 n.

We remark that this result is actually stronger than we need, since it gives a statement about

spanning graphs while in this paper we only deal with almost-spanning graphs. Thus, when applying

Theorem 2.3, we will make our graph spanning by adding a certain number of isolated vertices.

2.3 Universality for graphs of small size

In this section, we prove auxiliary lemmas which will allow us to ignore small components in the

proof of Theorem 1.1 (see Phase III in the proof of Theorem 1.1).

Lemma 2.4. Let ∆ ≥ 3 and k be integers and let H ∈ H(logk n,∆) be a connected graph with

v(H) ≥ ∆+2. Then G ∼ G(n, p) contains H with probability 1−e−ω(n), provided that p ≫ n−2/(∆+1).

Proof. Let (h1, . . . , hv(H)) be an arbitrary ordering of the vertices of H and let V1, . . . , Vv(H) ⊆ V (G)

be disjoint subsets of order n/ logk n. We wish to use Janson’s inequality to prove the lemma. For

that, we will restrict our attention to the “canonical” copies of H: the family {Hi}i∈I consists of

all those copies of H in Kn with the property that the vertex hj belongs to the set Vj for every

j ∈ {1, . . . , v(H)}. We now estimate the parameters µ and δ defined in Theorem 2.1.

Let X be the number of copies Hi, i ∈ I, that appear in G. Then µ = E[X] satisfies the bound

µ =

(

n

logk n

)v(H)

pe(H) ≥

(

n

logk n

)v(H)

pv(H)∆/2 ≫

(

n

logk n
· n−∆/(∆+1)

)v(H)

≫ n,

where the last inequality follows from v(H) ≥ ∆ + 2.

Next, note that for any proper subgraph J ⊂ H we have

• e(J) ≤
(v(J)

2

)

if v(J) ≤ ∆, and

• e(J) ≤ 1
2((v(J) − 1)∆ + ∆ − 1) = 1

2 (v(J)∆ − 1) otherwise.

The second estimate follows from the fact that H is connected and therefore there exists at least one

vertex in J with degree at most ∆ − 1. We can now rewrite δ as

δ =
∑

(i,j)∈I×I
Hi∼Hj

pe(Hi)+e(Hj)−e(Hi∩Hj) =
∑

J⊂H

∑

Hi∩Hj
∼=J

p2e(H)−e(J).

Using the observations above, we split the sum based on the size of v(J), getting

δ ≤
∑

J⊂H
v(J)≤∆

∑

Hi∩Hj
∼=J

p2e(H)−(v(J)
2 ) +

∑

J⊂H
v(J)≥∆+1

∑

Hi∩Hj
∼=J

p2e(H)−(v(J)∆−1)/2 .
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We can bound the number of summands by first deciding on an embedding of J , which can be done

in (n/ logk n)v(J) ways, and then on an embedding of the remaining parts of the two copies of H

which intersect on J (at most (n/ logk n)2(v(H)−v(J)) ways), yielding

δ ≤
∆
∑

j=2

(

v(H)

j

)(

n

logk n

)2v(H)−j

p2e(H)−(j2) +

v(H)−1
∑

j=∆+1

(

v(H)

j

)(

n

logk n

)2v(H)−j

p2e(H)−(j∆−1)/2.

Finally, by pulling µ2 outside, we obtain

δ ≤ µ2





∆
∑

j=2

(

v(H)

j

)(

n

logk n

)−j

p−(j2) +

v(H)−1
∑

j=∆+1

(

v(H)

j

)(

n

logk n

)−j

p−(j∆−1)/2



 .

By substituting for p, we get the following upper bound on the first sum,

δ1 :=
∆
∑

j=2

(

v(H)

j

)(

n

logk n

)−j

p−(j2) ≪
∆
∑

j=2

(log n)2kjn−jn
j(j−1)
∆+1 ≤

∆
∑

j=2

(log n)2∆kn
∆

∆+1
(j−1)−j

= (log n)2∆k
∆
∑

j=2

n−
∆+j
∆+1 ≤ (log n)2∆k∆n−1−1/(∆+1) ≪ 1/n.

Proceeding similarly for the second sum, we have

δ2 :=

v(H)−1
∑

j=∆+1

(

v(H)

j

)(

n

logk n

)−j

p−(j∆−1)/2 ≪

v(H)−1
∑

j=∆+1

(log n)2jkn−jn
j∆−1
∆+1 =

v(H)−1
∑

j=∆+1

(log n)2jkn−
j+1
∆+1 .

Since j ≥ ∆ + 1 in the above sum, we have

n− j+1
∆+1 = n−1− j−∆

∆+1 ≪ (log n)−2k(j+1)n−1,

thus it easily follows that δ2 = o(1/n). Summing up, we get δ = o(µ2/n).

Finally, by applying Theorem 2.1 with parameters µ and δ, we obtain

Pr[X < µ/2] ≤ e−µ2/(8(µ+δ)) .

Since µ ≫ n, this implies the conclusion of the lemma.

The next lemma deals with graphs on at most ∆ + 1 vertices. Since we treat ∆ as a constant, it

is a standard application of Janson’s inequality and we omit the proof.

Lemma 2.5. Let ∆ ≥ 3 be an integer and H any graph on at most ∆+1 vertices. Then G ∼ G(n, p)

contains H with probability 1 − e−ω(n), provided that p ≫ n−2/(∆+1).

Finally, we make use of Lemmas 2.4 and 2.5 to show that every large induced subgraph of G(n, p)

contains all connected graphs from H(logk n,∆) simultaneously.

Lemma 2.6. Let ε > 0 be a constant and ∆ ≥ 3 and k be integers. Then, for p ≫ n−2/(∆+1),

G ∼ G(n, p) a.a.s. has the following property: for every V ′ ⊆ V (G) of order |V ′| ≥ εn, G[V ′]

contains every connected graph H ∈ H(logk n,∆).
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Proof. Let G ∼ G(n, p), with p as stated in the lemma. By Lemmas 2.4 and 2.5, for a fixed subset

V ′ ⊆ V (G) of order |V ′| ≥ εn and a connected graph H ∈ H(logk+1(εn),∆), we have

Pr[H ⊆ G[V ′]] = 1 − e−ω(n).

Note that as logk n ≤ logk+1(εn), these estimates also apply for every connected graph H ∈

H(logk n,∆). Since there are at most 2n choices for V ′ and at most

logk n
∑

vH=2

∆vH/2
∑

eH=1

(

v2H
eH

)

≤ ∆ log2k n ·

(

log2k n

∆ logk n

)

= o(2n)

connected graphs H ∈ H(logk n,∆), an application of the union bound completes the proof.

2.4 Systems of disjoint representatives in hypergraphs

The following lemma will allow us to place a set of short cycles in the proof of Theorem 1.1 (see

Phase II in the proof of Theorem 1.1). We make no effort to optimize the logarithmic factor in the

bound on the edge probability p.

Lemma 2.7. Let ε > 0 be a constant, ∆ ≥ 3, 3 ≤ g ≤ 2 log n and t ≤ εn/(32 log3 n) be integers and

let D ⊆ [n] be a subset of size εn/(4 log n). Then G ∼ G(n, p) satisfies the following with probability

at least 1 − o(1/n), provided that p ≫
(

log7 n/n
)1/(∆−1)

: for any family of subsets {Wi,j}(i,j)∈[t]×[g],

where

(i) Wi,j ⊆ V (G) \D and |Wi,j| = ∆ − 2 for all (i, j) ∈ [t] × [g], and

(ii) Wi,j ∩Wi′,j′ = ∅ for all i 6= i′,

there exists a family of cycles {Ci = (ci1 , . . . , cig )}i∈[t], each of length g, such that

(i) V (Ci) ⊆ G[D] and V (Ci) ∩ V (Ci′) = ∅, for all i 6= i′, and

(ii) Wi,j ⊆ ΓG(cij ) for all (i, j) ∈ [t] × [g].

Lemma 2.7 will follow as a corollary of Lemma 2.9 and the following generalization of Hall’s

matching criterion due to Aharoni and Haxell [1].

Theorem 2.8 (Corollary 1.2, [1]). Let g be a positive integer and H = {H1, . . . ,Ht} a family of

g-uniform hypergraphs on the same vertex set. If, for every I ⊆ [t], the hypergraph
⋃

i∈I Hi contains

a matching of size greater than g(|I|−1), then there exists a function f : [t] →
⋃t

i=1E(Hi) such that

f(i) ∈ E(Hi) and f(i) ∩ f(j) = ∅ for i 6= j.

The following lemma allows us to find the matchings required by Theorem 2.8 in a greedy way,

i.e., edge by edge.

Lemma 2.9. Let ε > 0 be a constant, ∆ ≥ 3, 3 ≤ g ≤ 2 log n and k ≤ εn/(32 log3 n) be integers and

let D ⊆ [n] be a subset of order εn/(4 log n). Then G ∼ G(n, p) satisfies the following with probability

at least 1− o(1/n2), provided that p ≫
(

log7 n/n
)1/(∆−1)

: for any family of subsets {Wi,j}(i,j)∈[k]×[g],

where

6



(i) Wi,j ⊆ V (G) \D and |Wi,j| = ∆ − 2 for all (i, j) ∈ [k] × [g], and

(ii) Wi,j ∩Wi′,j′ = ∅ for all i 6= i′,

and any subset D′ ⊆ D of order |D′| ≥ |D| − g2k, there exists i ∈ {1, . . . , k} and a cycle C =

(c1, . . . , cg) ⊆ G[D′] of length g such that Wi,j ⊆ ΓG(cj) for all j ∈ {1, . . . , g}.

Proof. Our aim is to show that for a subset D′ ⊆ D and a family {Wi,j}(i,j)∈[k]×[g] satisfying properties

(i) and (ii), the graph G ∼ G(n, p) fails to satisfy the conclusion of the lemma with probability at most

e−ω(k log3 n). Since we can choose the family {Wi,j}(i,j)∈[k]×[g] in at most
(

n
∆−2

)kg
≤ 2(∆−2)kg logn =

2o(k log3 n) ways and D′ in at most
( n
g2k

)

≤ 2g
2k logn ≤ 24k log3 n ways, the lemma follows by a simple

application of the union bound. It remains to prove the desired bound on the probability of a failure.

We first introduce some notation. Given a cycle C = (c1, . . . , cg) ⊆ Kn of length g, we define the

graph C ⊕ i by

V (C ⊕ i) = V (C) ∪

g
⋃

j=1

Wi,j, and E(C ⊕ i) = E(C) ∪
⋃

j∈[g]
v∈Wi,j

{cj , v}.

Furthermore, let V1, . . . , Vg ⊆ D′ be arbitrarily chosen disjoint subsets of order εn/(16 log2 n) (this

is possible since |D′| ≥ εn/(8 log n)), define the family of canonical cycles C as

C := {C = (c1, . . . , cg) | C is a cycle and cj ∈ Vj for all j ∈ [g]}

and set

C+ := {C ⊕ i | C ∈ C and i ∈ [k]}.

Observe that if G contains any graph from C+, then G contains the desired cycle. Using Janson’s

inequality, we upper bound the probability that this does not happen. In the remainder of the proof,

we will estimate the parameters µ and δ defined in Theorem 2.1.

Note that each graph C+ ∈ C+ appears in G with probability pg+(∆−2)g = p(∆−1)g. Therefore,

µ = |C+|p(∆−1)g = k

(

εn

16 log2 n

)g

p(∆−1)g ≫ k log3 n.

Next, we wish to show that δ = o(µ2/k log3 n). By definition, we have

δ =
∑

i,j∈[k]

∑

C′,C′′∈C
C′⊕i∼C′′⊕j

pe(C
′⊕i)+e(C′′⊕j)−e((C′⊕i)∩(C′′⊕j)).

We consider the cases i 6= j and i = j separately.

First, if C ′⊕ i ∼ C ′′⊕ j for i 6= j and C ′, C ′′ ∈ C, then we have (C ′⊕ i)∩ (C ′′⊕ j) = C ′∩C ′′. Let

J := C ′ ∩ C ′′ and observe that e(J) ≥ 1, as otherwise C ′ ⊕ i and C ′′ ⊕ j would not have any edges

in common. Let J1 be the family consisting of all possible graphs of the form C ′ ∩ C ′′,

J1 := {J = C ′ ∩ C ′′ | C ′, C ′′ ∈ C and e(J) ≥ 1}.
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We can now estimate the contribution of such pairs to δ as follows:

δ1 =
∑

i 6=j

∑

C′,C′′∈C
e(C′∩C′′)≥1

pe(C
′⊕i)+e(C′′⊕j)−e(C′∩C′′) =

∑

i 6=j

∑

J∈J1

∑

C′,C′′∈C
C′∩C′′=J

p2(∆−1)g−e(J)

≤ k2
∑

J∈J1

(

εn

16 log2 n

)2(g−v(J))

p2(∆−1)g−e(J) = µ2
∑

J∈J1

(

εn

16 log2 n

)−2v(J)

p−e(J).

Since e(J) = 1 for v(J) = 2 and e(J) ≤ v(J) otherwise, we can bound the last sum by

∑

J∈J1

(

εn

16 log2 n

)−2v(J)

p−e(J) ≤
∑

J∈J1
v(J)=2

(

εn

16 log2 n

)−4

p−1 +
∑

J∈J1
v(J)>2

(

εn

16 log2 n

)−2v(J)

p−v(J).

Observe that there are at most
( g
vJ

) (

εn/(16 log2 n)
)vJ graphs J ∈ J1 on vJ vertices. Thus, we have

∑

J∈J1

(

εn

16 log2 n

)−2v(J)

p−e(J) ≤

(

g

2

)(

εn

16 log2 n

)−2

p−1 +
∑

vJ>2

(

g

vJ

)(

εn

16 log2 n

)−vJ

p−vJ

≪ (2 log n)2
(

16 log2 n

εn

)2

n1/(∆−1) +
∑

vJ>2

(

2 log n

vJ

)(

εn

16 log2 n
·

1

n1/(∆−1)

)−vJ

≪
32

εn
≤

1

k log3 n
,

where we used that ∆ ≥ 3. Therefore, we obtain δ1 = o(µ2/k log3 n).

Let us now consider the case C ′ ⊕ i ∼ C ′′ ⊕ i, for some i ∈ [k] and distinct cycles C ′, C ′′ ∈ C. Let

J := C ′ ∩C ′′ and observe that v(J) ≥ 1 and v(J) ≤ g− 1. As before, let J2 be the family consisting

of all possible graphs of the form C ′ ∩ C ′′,

J2 := {J = C ′ ∩ C ′′ | C ′, C ′′ ∈ C and v(J) ∈ {1, . . . , g − 1}}.

Note that if V (J)∩Vq = {v} for some q ∈ {1, . . . , g}, then {v,w} ∈ E(C ′⊕i∩C ′′⊕i) for all w ∈ Wi,q.

Therefore, we have

e(C ′ ⊕ i ∩ C ′′ ⊕ i) = e(J) + v(J)(∆ − 2).

With these observations in hand, we can bound the contribution of such pairs to δ as follows:

δ2 =
∑

i∈[k]

∑

C′,C′′∈C
v(C′∩C′′)≥1

pe(C
′⊕i)+e(C′′⊕i)−e(C′⊕i∩C′′⊕i) =

∑

i∈[k]

∑

J∈J2

∑

C′,C′′∈C
C′∩C′′=J

p2(∆−1)g−(e(J)+v(J)(∆−2))

≤ k
∑

J∈J2

(

εn

16 log2 n

)2(g−v(J))

p2(∆−1)g−(e(J)+v(J)(∆−2)) ≤
µ2

k

∑

J∈J2

(

εn

16 log2 n

)−2v(J)

p−(e(J)+v(J)(∆−2)).

Since J is a subgraph of a cycle, we have e(J) ≤ v(J). Therefore, we can bound the last sum by

∑

J∈J2

(

εn

16 log2 n

)−2v(J)

p−(e(J)+v(J)(∆−2)) ≤
∑

J∈J2

(

εn

16 log2 n

)−2v(J)

p−v(J)(∆−1).
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Note that there are at most
(

g
vJ

) (

εn/(16 log2 n)
)vJ graphs J ∈ J2 on vJ vertices. Thus, we have

∑

J∈J2

(

εn

16 log2 n

)−2v(J)

p−v(J)(∆−1) ≤

g−1
∑

vJ=1

(

g

vJ

)(

εn

16 log2 n

)−vJ

p−v(J)(∆−1)

≪

g−1
∑

vJ=1

(

2 log n ·
16 log2 n

εn
·

n

log7 n

)vJ

≤
1

log3 n
.

Therefore, we obtain δ2 = o(µ2/(k log3 n)).

Finally, we have δ ≤ δ1+δ2 = o(µ2/(k log3 n)) and Theorem 2.1 gives the desired upper bound on

the probability that G does not contain any graph from C+, completing the proof of the lemma.

Proof of Lemma 2.7. Let G ∼ G(n, p) with p as stated in the lemma. For each i ∈ [t], we define a

g-uniform hypergraph Hi := (D,Ei) as follows: a set of vertices {v1, . . . , vg} ⊆ D forms a hyperedge

if and only if G[{v1, . . . , vg}] contains a cycle C = (c1, . . . , cg) such that Wi,j ⊆ ΓG(cj) for all j ∈ [g].

Observe that the existence of a function f with properties as in Theorem 2.8, applied to the family

H := {H1, . . . ,Ht}, implies the existence of the desired family of cycles. Therefore, it is sufficient

to prove that, with probability at least 1 − o(1/n), for every I ⊆ [t] the hypergraph
⋃

i∈I E(Hi)

contains a matching of size at least g|I|.

Since the requirements on the family {Wi,j}(i,j)∈[t]×[g] are the same as in Lemma 2.9, it follows

from the union bound that, with probability at least 1 − o(1/n), G satisfies the property given by

Lemma 2.9 for D, g and every k ∈ [t]. Let I ⊆ [t] be a subset of size k for some k ∈ [t] and set

D′ := D. We now apply the following procedure kg times: using the property given by Lemma 2.9

for D′, there exists a hyperedge e ∈
⋃

i∈I E(Hi) such that e ⊂ D′, and set D′ := D′ \ e. Since |e| = g

and we repeat the procedure kg times, we have |D′| ≥ |D|−kg2 throughout the whole process. Thus,

we can indeed apply Lemma 2.9 in each step. Furthermore, since every edge is vertex disjoint from

the previously obtained edges, we have constructed a matching in
⋃

i∈I E(Hi) of size kg. As I ⊆ [t]

was chosen arbitrarily, this concludes the proof of the lemma.

3 Proof of Theorem 1.1

Our proof strategy goes as follows. Given a graph H ∈ H((1 − ε)n,∆), we first remove vertices

belonging to small connected components from H, writing H1 for the resulting graph. Working in H1,

we then remove carefully chosen induced cycles of length at most 2 log n (again, we remove vertices) in

such a way that the resulting graph H2 belongs to the family of graphs F((1−ε′)n,Θ(log3 n), ε′′,∆−

1), for some parameters ε′ and ε′′ tending to zero with ε. Now, using Theorem 2.3, we find an

embedding of H2. Then, using Lemma 2.7, we place the removed cycles into G in an appropriate

way. Finally, using Lemma 2.6, we complete the embedding of H by embedding small components

one by one. We will now give a formal description of this procedure.

Preparing the graph G. Fix some ε > 0 and integer ∆ ≥ 3. Let R,D3, . . . ,D2 logn ⊆ [n] be

arbitrarily chosen disjoint subsets of {1, . . . , n} such that |R| = (1 − ε/2)n and |Di| = εn/(4 log n)

for each i ∈ {3, . . . , 2 log n}. Let G be a graph with the following properties:

(i) the induced subgraph G[R] is F((1 − ε/2)n, (∆2 + 1)q + 1, ε′,∆ − 1)-universal, where q =

65ε−1 log3 n and ε′ = min{1/(2∆), ε/(2 − ε)},
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(ii) for every subset V ′ ⊆ V (G) of order |V ′| ≥ εn, the induced subgraph G[V ′] contains every

connected graph from the family H(log4 n,∆), and

(iii) G satisfies the property given by Lemma 2.7 for every g ∈ {3, . . . , 2 log n}, t ≤ εn/(32 log3 n)

and D = Dg.

Observe that by Theorem 2.3 and Lemmas 2.6 and 2.7, G ∼ G(n, p) satisfies properties (i)–(iii)

asymptotically almost surely, provided that p ≫ n−1/(∆−1) log5 n. We remark that the bound on p

here is determined by Theorem 2.3.

Preparing the graph H. Let H ∈ H((1− ε)n,∆) and let H1 ⊆ H be the subgraph which consists

of all connected components of H with at least log4 n vertices. The following observation plays a

crucial role in our argument.

Claim 3.1. For every vertex v ∈ H1, at least one of the following properties hold:

(a) B
(logn)
H1

(v) contains a vertex w with degH1
(w) ≤ ∆ − 1, or

(b) H1[B
(logn)
H1

(v)] contains a cycle of length at most 2 log n.

Proof. Let us assume the opposite, i.e., for every vertex w ∈ B
(logn)
H1

(v) we have degH1
(w) = ∆ and

H1[B
(logn)
H1

(v)] contains no cycle of length at most 2 log n. Then H1[B
(logn)
H1

(v)] is a tree and, since

∆ ≥ 3, it contains at least
∑logn

j=1 (∆ − 1)j > n vertices, which is clearly a contradiction.

Let I ⊆ V (H1) be a maximal (64ε−1 log3 n)-independent set in H1. Write Ia for the set of all

vertices in I which satisfy property (a) of Claim 3.1 and set Ib := I \Ia. Furthermore, for each v ∈ Ib,

let Cv be a cycle of smallest length in H1[B
(logn)
H1

(v)], let ℓv denote its length and fix an arbitrary

ordering (c1v , . . . , c
ℓv
v ) of the vertices along Cv. By minimality, Cv is an induced cycle. Finally, let

H2 := H1 \
[

⋃

v∈Ib
V (Cv)

]

and note that the (64ε−1 log3 n)-independence of I implies

B
(3 logn)
H1

(v) ∩ V (H2) =

{

B
(3 logn)
H1

(v), for v ∈ Ia,

B
(3 logn)
H1

(v) \ V (Cv), for v ∈ Ib.
(1)

Phase I: Embedding H2 into G[R]. We claim that there exists an embedding of H2 into G[R].

Let H ′
2 be a graph on (1 − ε/2)n vertices obtained from H2 by adding isolated vertices. Using

property (i) of the graph G, in order to show that there exists an embedding of H2 into G[R], it

will suffice to prove that H ′
2 ∈ F((1 − ε/2)n, (∆2 + 1)q + 1, ε′,∆ − 1), where q = 65ε−1 log3 n and

ε′ = min{1/2∆, ε/(2 − ε)}. We prove this by finding a partition W0,W1, . . . ,W(∆2+1)q+1 of V (H ′
2)

with the following properties:

(i) |W(∆2+1)q+1| = ⌊ε′(1 − ε/2)n⌋,

(ii) W0 = ΓH′
2
(W(∆2+1)q+1),

(iii) W(∆2+1)q+1 is 3-independent (in H ′
2),

(iv) Wi is 2-independent (in H ′
2) for every 1 ≤ i ≤ (∆2 + 1)q, and
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(v) for every 1 ≤ i ≤ (∆2 + 1)q + 1 and for every w ∈ Wi, w has at most ∆ − 1 neighbors in

W0 ∪ . . . ∪Wi−1.

First, note that H ′
2 contains at least εn/2 isolated vertices as |V (H2)| ≤ (1−ε)n. Since ε′ ≤ ε/(2−

ε) or equivalently ε′(1−ε/2) ≤ ε/2, we can set W(∆2+1)q+1 to be a set of ε′(1−ε/2)n isolated vertices.

Then W0 = ∅ and W(∆2+1)q+1 is trivially 3-independent. Furthermore, let Sq ⊆ V (H ′
2) \W(∆2+1)q+1

be the set of all remaining vertices in H ′
2 with degree at most ∆− 1 in H2 and observe that for each

v ∈ I we have

Sq ∩B
(3 logn)
H1

(v) 6= ∅. (2)

For v ∈ Ia, this follows from (1) and the definition of the set Ia. For v ∈ Ib, we have from (1)

and |B
(3 logn)
H1

(v)| ≥ 3 log n > |V (Cv)| that B
(3 logn)
H1

(v) ∩ V (H2) 6= ∅. Thus there exists a vertex

w ∈ B
(3 logn)
H1

(v) ∩ V (H2) adjacent to some vertex in Cv, and clearly degH2
(w) ≤ ∆ − 1.

Next, for each i ∈ {1, . . . , q − 1}, we define

Sq−i := Γ
(i)
H2

(Sq).

We first show that S1, . . . , Sq,W(∆2+1)q+1 is a partition of V (H ′
2). Since disjointness follows from the

construction, it suffices to prove that for each w ∈ V (H ′
2) \W(∆2+1)q+1 we have B

(q−1)
H2

(w) ∩ Sq 6= ∅.

This can be seen as follows. Since I is a maximal (64ε−1 log3 n)-independent set in H1, for each

vertex w ∈ V (H2) \ I we have B
(64ε−1 log3 n)
H1

(w)∩ I 6= ∅. Otherwise, we could extend I, contradicting

its maximality. Thus, from (2), we conclude that for each w ∈ V (H2)\I we have B
(q−1)
H1

(w)∩Sq 6= ∅.

Let us now consider the shortest path in H1 from w to a vertex s ∈ Sq, and denote the vertices

along such a path by w = p0, p1, p2, . . . , pq′ = s, for some q′ ≤ q − 1. If p1, . . . , pq′ ∈ V (H2), then

clearly s ∈ B
(q−1)
H2

(w). Otherwise, let i′ be the smallest index such that pi′ /∈ V (H2). But then

degH2
(pi′−1) ≤ ∆ − 1 and thus, by definition, pi′−1 ∈ Sq, which again implies B

(q−1)
H2

(w) ∩ Sq 6= ∅.

This shows that S1, . . . , Sq,W(∆2+1)q+1 is indeed a partition of V (H ′
2).

Furthermore, by construction, for each i ∈ {1, . . . , q − 1} and each vertex v ∈ Si, v has at least

one neighbor in
⋃q

j=i+1 Sj and thus at most ∆ − 1 neighbors in
⋃i−1

j=1 Sj . However, the sets Si are

not necessarily 2-independent in H ′
2. This can be fixed in the following way. The square of H ′

2,

denoted by (H ′
2)2, has maximum degree at most ∆2. Therefore, (H ′

2)2 can be partitioned into ∆2 +1

sets L1, . . . , L∆2+1 which are independent in (H ′
2)

2 and thus 2-independent in H ′
2. Now, by setting

W(i−1)(∆2+1)+j := Si ∩ Lj for every i ∈ {1, . . . , q} and j ∈ {1, . . . ,∆2 + 1}, we obtain a partition of

V (H ′
2) satisfying properties (i)–(v).

To conclude, we have shown that H ′
2 ∈ F((1− ε/2)n, (∆2 + 1)q + 1, ε′,∆− 1). Thus, by property

(i) of the graph G, there exists an embedding f : V (H2) → R of H2 into G[R].

Phase II: Embedding removed cycles. Consider some g ∈ {3, . . . , 2 log n} and let Ig ⊆ Ib be the

set of all vertices v ∈ Ib such that ℓv = g. For each (v, j) ∈ Ig × [g], let Wv,j := f(ΓH(cjv) ∩ V (H2)).

Note that, by construction, the family of subsets {Wv,j}(v,j)∈Ig×[g] satisfies requirements (i) and (ii)

of Lemma 2.7 with D = Dg. Thus, in order to apply Lemma 2.7, it suffices to show that Ig is not too

large. The following claim provides an upper bound on I, and thus on Ig, which in this case suffices.

Claim 3.2. |I| ≤ εn
32 log3 n

.
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Proof. Let u, v ∈ I be two distinct vertices from I. Then B
(32ε−1 log3 n)
H1

(u) ∩ B
(32ε−1 log3 n)
H1

(v) = ∅,

as otherwise we would have dist(u, v) ≤ 64ε−1 log3 n and the set I would not be (64ε−1 log3 n)-

independent. On the other hand, for every v ∈ I we have that either Γ
(i)
H1

(v) 6= ∅ for every i ∈

{1, . . . , 32ε−1 log3 n} or B
(32ε−1 log3 n)
H1

(v) contains the whole connected component of v, which is of

order at least log4 n. In either case, we have |B
(32ε−1 log3 n)
H1

(v)| ≥ 32ε−1 log3 n and the desired bound

on I follows.

Therefore, by property (iii) of the graph G, there exists a family {(cv,1, . . . , cv,g)}v∈Ig of vertex

disjoint cycles in G[Dg] such that setting f(cjv) := cv,j for every (v, j) ∈ Ig×[g] defines an embedding of

H2∪
[

⋃

v∈Ig
Cv

]

into G[R∪Dg]. Since this holds for every 3 ≤ g ≤ 2 log n and the sets D3, . . . ,D2 logn

are disjoint, we obtain an embedding of H1 into G.

It is worth remarking that the bound on I, which facilitates the application of Lemma 2.7, is the

reason why we treat small connected components separately.

Phase III: Embedding small components. As a last step, we have to extend our embedding

of H1 to an embedding of the whole graph H. Using the facts that H is of order (1 − ε)n and

each component of H which is not in H1 is of order at most log4 n, we can greedily embed these

components one by one as follows. Consider one such component and let V ′ ⊆ V (G) be the set of

vertices which are not an image of some already embedded vertex of H. Then |V ′| ≥ εn and, by

property (ii) of the graph G, G[V ′] contains an embedding of the required component. Repeating

the same argument for each component which has not yet been embedded, we obtain an embedding

of the graph H.

4 Concluding remarks

The observant reader will have noticed that our argument does not apply when ∆ = 2. In this

case, one cannot hope to show that universality holds all the way down to p ≈ n−1/(∆−1) = n−1.

Even to find a collection of (1 − ε)n3 disjoint triangles, the probability must be at least n−2/3. Since

every graph with maximum degree 2 is a disjoint union of paths and cycles, it is not too hard to use

arguments similar to those in Section 2.3 to show that for any ε > 0 there exists a constant c > 0

such that if p ≥ cn−2/3, the random graph G(n, p) is a.a.s. H((1 − ε)n, 2)-universal.

Our proof relies heavily on the fact that the graphs we are hoping to embed are almost spanning

rather than spanning. In particular, we neither know how to complete the removed cycles nor how

to add small components back into the graph without making heavy use of the almost-spanning

condition. Given this, it seems likely that a spanning analogue of Theorem 1.1 will require new

ideas.

We have already mentioned that a modification of the embedding techniques from Alon et al. [5]

was used by Kohayakawa, Rödl, Schacht and Szemerédi [18] to prove a subquadratic bound on

the size Ramsey number of bounded-degree graphs. It would be interesting to know whether our

embedding technique might be useful for improving this bound.
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