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We demonstrate quantum many-body state reconstruction from experimental data generated by
a programmable quantum simulator, by means of a neural network model incorporating known
experimental errors. Specifically, we extract restricted Boltzmann machine (RBM) wavefunctions
from data produced by a Rydberg quantum simulator with eight and nine atoms in a single mea-
surement basis, and apply a novel regularization technique to mitigate the effects of measurement
errors in the training data. Reconstructions of modest complexity are able to capture one- and
two-body observables not accessible to experimentalists, as well as more sophisticated observables
such as the Rényi mutual information. Our results open the door to integration of machine learning
architectures with intermediate-scale quantum hardware.

Quantum state tomography [1] is an important tool for
reconstructing generic quantum states, but traditional
techniques require a number of measurements scaling ex-
ponentially in the system size [2]. In certain cases, meth-
ods that exploit particular entanglement properties [3–6]
allow for more efficient tomography of states prepared in
experiment. However, such approaches still involve ex-
plicit reconstruction of local density operators [3, 7], in-
curring a significant computational overhead in the esti-
mation of nontrivial observables from experimental data
– especially in the presence of measurement errors in-
troduced by realistic experimental hardware. In order
to facilitate the characterization of noisy intermediate-
scale quantum hardware [8] and simulators that are cur-
rently being realized experimentally, a state reconstruc-
tion method which can efficiently extract physical quan-
tities of interest directly from raw, noisy experimental
datasets is therefore highly desirable.

Neural network-based machine learning has recently
emerged as a powerful technique for learning compact
representations of high-dimensional data [9–11]. In ex-
perimental quantum science, these tools have already
been applied profitably to the classification of experimen-
tal snapshots [12, 13] and qubit readout [14]. The same
data-driven approach can be applied to tomographic
tasks. Recent theoretical work [15] has demonstrated
that a generative model called a restricted Boltzmann
machine (RBM) is capable of accurate reconstruction of
quantum states and observables directly from synthetic
data sets generated by numerical algorithms.

In this Letter, we present a proof-of-principle demon-
stration of neural network quantum state reconstruction
from experimental data. Our experimental system con-

sists of a one-dimensional array of strongly interacting
Rydberg atoms [16, 17]. Leveraging the high purity
and approximate positivity of the experimental state, we
train RBMs using a single measurement basis. Specif-
ically, we use a data set consisting of bit-strings ob-
tained via repeated, simultaneous single-shot readout of
the ground and Rydberg populations of all atoms. The
RBMs learn a higher-fidelity and more efficient represen-
tation of the underlying bit-string probability distribu-
tions than standard inference from the limited size train-
ing data set. This approach also enables us to imple-
ment an efficient procedure for denoising the full proba-
bility distribution from bit-flip-type measurement errors,
by incorporating a dedicated “noise layer” in the network
architecture. We test the validity of our approach by
comparing predictions of the trained RBMs with numer-
ical results for observables that are off-diagonal in the
measurement basis, including the quantum mutual infor-
mation. These results demonstrate the utility of RBMs in
reconstructing approximately pure, positive states from
experimental data, and pave the way to further integra-
tion of neural network models with quantum hardware.

Experimental system - Our experimental ap-
proach [16, 17] involves a programmable Rydberg atom
quantum simulator, a flexible neutral-atom system for
realizing Ising-type quantum spin models [16, 18–23]. In
the experiments utilized in this study (Fig. 1a), a one-
dimensional array of N trapped Rubidium atoms is pre-
pared; N = 8 atoms are used for the reconstructions
presented below, but we have also applied our protocol
to arrays of N = 9 atoms [24]. Each atom can occupy a
ground state |g〉 or an excited (Rydberg) state |r〉, and
two atoms excited to the Rydberg state at a distance r in-
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Figure 1. Experiment and reconstruction. (a) Model
of the reconstruction process. Individual 87Rb atoms (grey
circles) are trapped in an array of optical tweezers and cou-
pled to a Rydberg state with Rabi frequency Ω. Site-resolved
fluorescence imaging provides imperfect measurement in the
σ̂z basis. Our neural network model describes the true quan-
tum state as an RBM (blue and green neurons), while the
binary data τ accessible to the experimentalist are included
as an auxiliary ‘noise’ layer (red neurons). By training on this
data, the network learns parameters λ describing the experi-
mental quantum state, which are subsequently used to com-
pute observables 〈Ô〉 of interest. (b) Representation of the
ordered state at the end of the adiabatic sweep – see main
text equation (2). Darker circles represent a higher probabil-
ity of Rydberg excitation, and the shading indicates quantum
fluctuations localized at bonds (3,4) and (5,6). (c) The effec-
tive laser detuning ∆ and Rabi frequency Ω as a function of
sweep time t. Circular markers indicate the times at which
the sweep was halted to collect data. Vertical line: approxi-
mate transition to ordering in the finite system. The nearest-
neighbor interaction is Vnn = 30 MHz, the final detuning is
10 MHz, and the peak Rabi frequency is 2 MHz; the total
sweep time is Tev = 3.4µs.

teract with a van der Waals-type potential V (r) ∝ r−6.
When subjected to a uniform laser drive, the effective
Hamiltonian of the many-body system may be written
as [16, 18, 25, 26]

Ĥ(Ω,∆) = −∆

N∑
i=1

n̂i−
Ω

2

N∑
i=1

σ̂xi +
∑
i<j

Vnn
|i− j|6 n̂in̂j , (1)

where Vnn is the interaction strength between Rydberg
atoms at adjacent sites, σ̂αi , with α = x, y, z, are the Pauli
pseudo-spin operators at site i (defined as σ̂zi = |ri〉〈ri|−
|gi〉〈gi|, σ̂xi = |ri〉〈gi| + h.c., etc), and n̂i = 1

2 (1 + σ̂zi )
projects onto the Rydberg state at site i. The parameters
Ω,∆ denote the effective Rabi frequency and detuning,

respectively, which characterize the laser drive, and can
be varied in time as Ω(t),∆(t) to drive the system into
nontrivial ordered phases [16, 25, 27, 28].

We focus on the transition into the Z2 phase [16], where
a high density of Rydberg excitations is energetically
favorable, subject to the constraint that no two adja-
cent atoms are excited. The atoms are initially pumped
into the fiducial state |g g g g g . . . 〉, coinciding with the
ground state of Hamiltonian (6) at t = 0, and then evolve
adiabatically under a “sweep” of the laser parameters
Ω(t),∆(t) for a time Tev, with Ĥ(Ω(Tev),∆(Tev)) lying
deep in the Z2 phase (Fig. 1c). For our eight-atom sys-
tem, the final Z2-ordered state at t = Tev is well approx-
imated by the ground state of the Rydberg Hamiltonian
with a small transverse field and short-range interactions
only [24]:

|ψ〉 =
1√
2
|rgrggrgr〉+ 1

2
|rgrgrggr〉+ 1

2
|rggrgrgr〉 (2)

This state exhibits quantum fluctuations on two pairs of
adjacent atoms, as indicated in Fig. 1b. At intermediate
times t, in particular when ∆(t),Ω(t) approach the quan-
tum critical point (defined in the thermodynamic limit)
for the transition into Z2 ordering, the ground state can-
not be written in such a simple form.

Pure state ansatz - In general, the ground state of
the Hamiltonian (6) has real, positive amplitudes in the
occupation number basis |σ〉 = |σ1, . . . , σN 〉 – defined as
the simultaneous eigenstates of n̂1, . . . , n̂N – as long as
Ω > 0 [29], which can always be arranged by applying
a suitable global unitary [30]. Therefore, if the quantum
state of the simulator evolves perfectly adiabatically and
with negligible loss of purity, it is uniquely characterized
by the probability distribution p(σ) it assigns to projec-
tive measurements in the |σ〉 basis, and at any time may
be written explicitly as the pure state

|ψ〉 =
∑
σ

√
p(σ)|σ〉. (3)

Of course, some loss of purity is inevitable – in our ex-
periments, due primarily to single-atom decay and de-
phasing processes [31] – and the true state is described
by a mixed density operator ρ̂. Although this pure state
approximation cannot capture all of the physics of the ex-
perimental state, it can in principle accurately describe
local subsystems, to the extent that the corresponding
reduced density operators of the true and reconstructed
states agree [24], and we adopt the pure, positive state
ansatz in all of our reconstruction efforts.

Neural network model - While the quantum
state (3) can in principle be inferred directly from a
set of raw measurements (i.e. by inverting the mea-
surement counts of each configuration to estimate p(σ)),
such an approach is severely limited to small systems
and datasets with a very large number of samples. In
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contrast, generative models used in unsupervised machine
learning tasks provide the ability to capture the structure
of the distribution p(σ), generalizing beyond a limited set
of training samples. This results in a higher-fidelity re-
construction and a model size scaling sub-exponentially
in the system size, as we demonstrate explicitly in [24],
Sec. IV, for data sets of the type used in this manuscript.
Moreover, using a generative model rather than direct
inference from the data enables automatic correction of
this distribution for known measurement errors using a
“noise layer” (see Fig. 1a and detailed description below).

We therefore parametrize p(σ) with a generative model
known as an RBM [32, 33], a stochastic neural network
with two layers of binary units. The “visible” layer σ
describes the atomic states of the Rydberg chain in the
occupation number basis, while a hidden layer h captures
correlations between visible units. The RBM defines the
following probability distribution for the visible layer:

pλ(σ) =
1

Zλ

∑
h

e h
>Wσ+b·σ+c·h (4)

=
1

Zλ
e b·σ

∏
j

(
1 + e cj+

∑
iWjiσi

)
(5)

where Zλ is a normalization constant, and the real-valued
network parameters are λ = {W , b, c}, with W be-
ing the weights connecting the two layers and b (c) the
visible (hidden) bias vectors. We use the visible layer
of the RBM to define the projective measurement dis-
tribution p(σ) of the pure state (3), resulting in an
RBM wavefunction [15, 34] with positive amplitudes:
ψλ(σ) = 〈σ|ψλ〉 =

√
pλ(σ). We point out that, al-

though pure states with nontrivial phases [15, 35], as well
as mixed state models [36, 37], could be applied using
similar neural network models, measurements in other
bases – not used for the reconstruction process described
in this Letter – would be required for this to provide an
advantage.

Measurement process and noise layer - We utilize
results of measurements taken in the occupation num-
ber basis, based on detection of the ground state |g〉
and Rydberg state |r〉 [16] at each site in the array.
Each individual measurement consists of an N -bit string
τ = (τ1, . . . , τN ), with τj = 0, 1 indicating that atom j
was recorded as being in the ground or Rydberg state
respectively.

Such measurements are never perfect, and there are
small measurement error probabilities p(1|0) ∼ 1%,
p(0|1) ∼ 4% [31] for an atom in the ground state to
be recorded as excited at the time of measurement and
vice-versa. These result in experimental data τ that
do not correspond to projective measurement. Instead,
the measurement process can be described as a positive-
operator valued measure (POVM) [38] with measure-
ment operators Π̂τ =

∑
σ p(τ |σ)|σ〉〈σ|, where p(τ |σ) =

Figure 2. Reconstruction of diagonal observables. Here
and throughout the paper, crosses indicate experimental val-
ues and blue squares are the RBM values reconstructed from
experimental data. Red circles are Lindbladian master equa-
tion predictions [24]. Error bars for reconstructions are de-
fined by variation in the final epochs of training across train-
ing subsets, and for Lindbladian predictions by variation over
different effective Doppler disorder realizations [24]. In order
to facilitate comparison with experiment, the values reported
here for the RBM and Lindbladian observables are computed
including the known measurement error rates p(0|1) = 0.04,
p(1|0) = 0.01. (a) Expected value n̄ of the Rydberg popula-
tion, averaged over all sites, as a function of detuning ∆ at
which the sweep is halted. (b) Rydberg excitation number
at site i for ∆ = 10 MHz. (c) Nearest-neighbor correlations
ḡzz(1) in the z basis, spatially averaged (see text for defini-
tion). (d) Average correlation ḡzz(s) as a function of distance
s for ∆ = 10 MHz.

∏N
j=1 p(τj |σj) is the probability of the experimentalist

recording bitstring τ if the atoms are prepared in the
state |σ〉. The probability distribution sampled in ex-
periment is then Pexp(τ ) = Tr

[
ρ̂Π̂τ

]
.

The experimental measurement process is incorpo-
rated into our model via a third binary layer, the so-
called noise layer (Fig. 1a), which represents the ob-
served POVM outcomes τ . The measurement error
rates p(τ |σ) are included as connections between the
visible and noise layers [39], by assigning a probability
p̃λ(τ ) =

∑
σ p(τ |σ)pλ(σ) to the measurement result τ .

The full three-layer network is trained to learn param-
eters λ which maximize the log-likelihood of the recorded
POVM outcomes under p̃λ(τ ). During training, the noise
layer acts as a buffer between the noisy data and the
RBM, preventing the parameters from λ from fitting to
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Figure 3. Reconstruction of off-diagonal observables.
(a) Spatial average x̄ of the transverse field 〈σ̂x

i 〉. (b) Trans-
verse field expectation values at site i for ∆ ≈ 0.7 MHz. (c)
Averaged nearest-neighbor correlations in the x basis. (d)
Nearest-neighbor correlation 〈σ̂x

i σ̂
x
i+1〉c as a function of posi-

tion i for ∆ = 10 MHz. The two peaks correspond to the
bonds highlighted in Fig. 1b.

spurious features in the data produced by measurement
errors. This noise layer regularization significantly im-
proves the fidelity between |ψλ〉 and the state ρ̂ underly-
ing the data; numerical tests [24] based on Lindbladian
simulation of our experiment result in fidelities greater
than 90% for the full many-body state at the end of the
sweep. All reconstructions presented below are obtained
in this fashion.

Experimental Reconstruction: accessible ob-
servables - In the experiment, at fifteen subsequent
time-steps t (Fig. 1c), the sweep is halted and measure-
ments τ are sampled from the state ρ̂(t). At each time-
step, a dataset of around 3,000 samples is collected and
used to train a single three-layer model with 2N = 16
hidden units. After training the networks, standard
sampling methods can be applied to compute expecta-
tion values of observables, with a computational cost
scaling polynomially in the network size [24]. We con-
sider in particular the connected correlation functions
〈σ̂αi σ̂αj 〉c = 〈σ̂αi σ̂αj 〉 − 〈σ̂αi 〉〈σ̂αj 〉 for α = x, y, z, and their
spatial averages, ḡαα(s) = 1

N−s
∑N−s
i=1 〈σ̂αi σ̂αi+s〉c.

In Fig. 2, we verify that our reconstructions learn to
represent their training sets, by examining their ability
to accurately reproduce observables which are diagonal
in the occupation number basis. Besides the Rydberg
excitation profiles 〈n̂i〉 (Figs. 2a,b) the networks learn

Figure 4. Rényi Mutual Information in the many-
body state. The quantum (Rényi) mutual information I2,
defined as I2(s) = S2(ρ̂As ) + S2(ρ̂Bs ) − S2(ρ̂), where S2(ρ̂) =
− logTrρ̂2 is the second-order Rényi entropy, ρ̂ is the (mixed)
state of the whole system, and ρ̂As , ρ̂Bs are the reduced density
matrices for the subsystems As = {1, ..., s}, Bs = {s+1, ...N}
respectively, defined by a partitioning of the system at bond
(s, s + 1). The mutual information is plotted for a partition
at bond (3,4), as a function of detuning. Inset: The mutual
information I2(s) as a function of the cut bond s for ∆ = 10
MHz.

the strong two-body correlations 〈σ̂zi σ̂zj 〉c present in the
experimental data (Figs. 2c,d). We compare the results
of the reconstruction process to the exact solutions of a
Lindblad master equation for the full many-body evo-
lution. Our Lindbladian simulation predicts Rydberg
excitation profiles in excellent agreement with experi-
ment, but its significantly weaker correlations suggest our
model for the sweep dynamics is partially incomplete.

Experimental Reconstruction: inaccessible ob-
servables - Turning to experimentally inaccessible quan-
tities (Fig. 3), the reconstructions and simulation agree
qualitatively in the temporal and spatial profiles of the
transverse field 〈σ̂xi 〉, although the RBMs predict some-
what larger values in the ordered phase. Note that the
distinct spatial variation of the transverse field correla-
tions, a signature of quantum fluctuations captured in
the approximate state (2), is reconstructed directly from
our experimental data (Fig. 3d). Training on synthetic
data [24] indicates that a large portion of the disagree-
ment between reconstruction and simulation in e.g. the
correlations ḡxx(1) (Fig. 3c) is due to the discrepancy be-
tween our Lindbladian model and experiment evident in
Fig. 2, not the RBM model itself.

Beyond few-body observables, an important question
is whether entanglement properties are reproduced ac-
curately in reconstruction. From our RBMs, the Rényi
entropy – which requires specialized or hardware-specific
protocols to access directly in experiment [40, 41] – may
be extracted in a scalable fashion by applying a state-
replication and swap procedure virtually [15, 42]. In fact,
for pure experimental states, positive-pure ansatzes such
as the RBM wavefunction provide a lower bound on the
mutual information defined by the Rényi entropy ([43],



5

[44], see also [24], Sec. VIII), regardless of the sign struc-
ture of the true state. We demonstrate a reconstruction
of the mutual information defined by the second-order
Rényi entropy in Fig. 4, finding that the RBM values
are in remarkable agreement with the results of numer-
ical simulation. Reconstructions on experimental states
of N = 9 capture a similar buildup in the mutual infor-
mation during the sweep predicted by Lindbladian sim-
ulation [24].

Conclusions - In this Letter, we have demonstrated
neural network reconstruction of experimental quantum
states from data produced by a programmable Rydberg-
atom quantum simulator. Using measurements in the
occupation number basis, we trained a generative model
commonly used in unsupervised machine learning tasks,
the restricted Boltzmann machine. Once trained, the
RBM was sampled to produce a variety of observables not
accessible in the original experimental setup, including
the Rényi entropy - a basis independent measure of the
quantum entanglement of the wavefunction.

Our approach takes advantage of the real-positive na-
ture of the ground state wavefunction expected from the
effective Hamiltonian, thereby requiring data in only one
measurement basis. It provides access to diagonal and
off-diagonal observables, and can be integrated without
alteration into existing platforms where a positive wave-
function ansatz is a valid approximation, such as Bose-
Hubbard experiments and some non-frustrated quantum
spin simulators [19, 45–47].

An additional noise layer in the RBM architecture mit-
igates measurement errors, one of the major challenges
in accurate reconstruction from experimental data. We
anticipate that such noise layer regularization, readily
applicable to other models of mixed states [36] and more
general noise processes, will be crucial in future efforts in
state reconstruction and snapshot characterization from
imperfect measurement data.

In future applications, measurements in rotated bases
could be used to certify the reconstructions, by provid-
ing direct experimental access to observables which are
informationally complete for local subsystems. In addi-
tion, access to multiple bases allows for an RBM-based
protocol [15] suitable for non-positive states, of immedi-
ate relevance to non-equilibrium situations and fermionic
quantum simulators [48, 49]. In this context, beamsplit-
ter operations, used to extract Rényi entropies [40, 50],
can also provide direct experimental access to quanti-
ties which are off-diagonal in the occupation number ba-
sis [51], and it may be possible to extract equivalent infor-
mation from random unitary protocols [41, 52–54]. We
envision that raw data from such schemes will be used di-
rectly as input for neural network-based quantum state
reconstruction.

More generally, machine learning techniques offer a
means of increasing the amount of useful information

that can be extracted from experiments, especially when
hardware constrains the quantity or quality of accessi-
ble measurements. They can be used to offload the bur-
den of technically expensive – or fundamentally impos-
sible – measurements from experimental platforms in a
noise-resilient fashion, and we expect experimentalists
will profit from deeper integration of machine learning
architectures with quantum devices.
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Supplementary Information

In this Supplementary Information, we first provide a
derivation of the approximate eight-atom ordered ground
state. Next, we discuss how the unsupervised RBM
learning process is carried out on experimental datasets,
and demonstrate how the networks generalize from the
finite datasets used in training. We also detail a regu-
larization method used to mitigate the effect of measure-
ment errors in the training set and provide numerical
evidence that this technique significantly improves the
fidelity of state reconstruction from noisy data. Finally,
we examine how intrinsic decoherence processes impact
the quality of the pure-state reconstruction procedure.
An appendix provides proofs of two bounds regarding the
fidelity and entanglement properties of reconstructions.

I. APPROXIMATE EIGHT-ATOM GROUND
STATE

The full Rydberg Hamiltonian is

Ĥ(Ω,∆) = −∆

N∑
i=1

n̂i −
Ω

2

N∑
i=1

σ̂xi +
∑
i<j

Vnn
|i− j|6 n̂in̂j

(6)

The ground state for ∆ > 0, Vnn � ∆ � |Ω| lies in
the blockaded subspace spanned by the maximally-excited
basis states

|e1〉 = |r g r g g r g r〉 (7)
|e2〉 = |r g g r g r g r〉 (8)
|e3〉 = |r g r g r g g r〉 (9)

which have no adjacent Rydberg excitations; neglecting
interactions beyond second-nearest neighbors (which are
small compared to all other relevant frequencies in the
sweep), these states are all degenerate under the classical
part of the Hamiltonian −∆

∑N
i=1 n̂i +

∑
i<j

Vnn
|i−j|6 n̂in̂j .

This degeneracy is lifted by a nonzero transverse field,
which couples the blockaded states at second order. Us-
ing perturbation theory, an effective Hamiltonian Heff
may be constructed for the blockaded subspace, whose
nonzero matrix elements are

〈e1|Heff|e2〉 = 〈e1|Heff|e3〉 = −Ω2

4∆
(10)

The corresponding ground state is |Ψ〉 = 1√
2
|e1〉 +

1
2 (|e2〉+ |e3〉).

II. RECONSTRUCTION METHODS

A. Note on terminology

Below we discuss strategies for training on experimen-
tal data which has been corrupted by a fixed, known
noise process. σ will denote the variables prior to cor-
ruption by measurement errors, while τ will denote those
which have been subjected to the noise channel – that
is, for a fixed true value σ, the noisy outputs are dis-
tributed according to p(τ |σ). In our experiment, τ are
the only accessible variables, which yield the bitstrings
recorded in each dataset. A model with parameters
λ specifies a distribution pλ(σ) over the uncorrupted
variables σ, and a corresponding corrupted distribution
p̃λ(τ ) =

∑
σ p(τ |σ)pλ(σ).

B. Standard RBM training method

The standard training method involves fitting the
RBM distribution pλ(σ) = 1

Zλ

∑
h e

h>Wσ+b·σ+c·h di-
rectly to the experimental datasets; in other words, it
assumes a noise-free source of data:

p(τ |σ) = δτ ,σ (11)

The optimal parameters λ = {W,b, c} for which the
RBM best reproduces the measurement data are found
by minimizing the negative log-likelihood

Lλ = − 1

|D|
∑
τ∈D

log pλ(τ ) (12)

of the RBM distribution pλ averaged over the dataset D
(|D| denotes the size of the dataset). The gradient of the
log-likelihood cost function with respect to the trainable
parameters λ may be written

∇λLλ = 〈∇λEeff(σ)〉pλ(σ) −
1

|D|
∑
τ∈D
∇λEeff(τ ) (13)

where 〈·〉pλ(σ) denotes the expectation value with respect
to the distribution pλ(σ), and the effective energies

Eeff(σ) = b · σ +
∑
j

log
(
1 + eWjiσi+cj

)
(14)

are defined by pλ(σ) = 1
Zλ
eEeff(σ). The exact calcula-

tion of the first term in this gradient requires knowledge
of the partition function Zλ =

∑
σ e
Eeff(σ), generally not

feasible for large system sizes. Instead, it can be ap-
proximated by sampling alternately from the conditional

http://dx.doi.org/10.1111/j.2517-6161.1989.tb01764.x
http://dx.doi.org/10.1111/j.2517-6161.1989.tb01764.x
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://arxiv.org/abs/1901.11365
http://arxiv.org/abs/1901.11365
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
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distributions pλ(σ|h) and pλ(h|σ). Because of the re-
stricted nature of the RBM graph – there are no intra-
layer connections – the conditional distributions factorize
and each unit in a given layer can be sampled simul-
taneously (block Gibbs sampling). The learning signal
is then calculated with the contrastive divergence algo-
rithm [55], where the intractable part of the gradient is
approximated as an average over configurations of the
visible layer obtained after k steps of block Gibbs sam-
pling (starting from random data samples). In practice,
moderate values k ∼ 10 are sufficient for training with
stochastic gradient descent.

C. Noise-regularized training method

In the case where the training set is known to be cor-
rupted by a noise process p(τ |σ), our goal is to learn a
model pλ(σ) whose corresponding noise-corrupted distri-
bution p̃λ(τ ) fits the observed data. We therefore define
the corresponding log-likelihood cost function

Lλ = − 1

|D|
∑
τ∈D

log p̃λ(τ ) (15)

and train the network to minimize it on each dataset.
The cost gradient takes a form nearly identical to that of
the standard training method (13),

∇λLλ = 〈∇λEeff(σ)〉pλ(σ) −
1

|D|
∑
τ∈D
〈∇λEeff(σ)〉p̃λ(σ|τ )

(16)

The second term in the gradient update step is now com-
puted not directly from the training set samples τ ∈ D,
but rather from the Bayesian posterior distribution

p̃λ(σ|τ ) =
p(τ |σ)pλ(σ)

p̃λ(τ )
(17)

which the RBM assigns to visible states σ, given an ob-
servation τ in the noisy training set.

This alteration to the cost gradient may be viewed as a
regularization of the training based on prior knowledge of
the sampling process. Regularization in machine learning
generally refers to techniques for improving the general-
ization performance of a model trained on a particular
data set to new datasets drawn from the ‘ground truth’
source. A typical regularization scheme like weight de-
cay does not specify a priori how the in-sample and true
distributions differ, and therefore typically requires some
sort of validation process – testing the model on held-
out data – to select good hyperparameters. In contrast,
our regularization method is applied in a context where
all accessible datasets are corrupted by the same noise
process. This makes validation as a means of selecting
regularization hyperparameters impossible – but if the

Figure 5. Three layer model. Schematic for how noise-
corrupted data is modeled using a three-layer graph. The
upper two layers h,σ constitute an RBM with trainable pa-
rameters λ, which defines a distribution pλ(σ) over the uncor-
rupted variables σ upon tracing out the hidden units h. The
corrupted distribution is obtained through the noise process
p(τ |σ) as p̃λ(τ ). The noise process is indicated here by ar-
rows which link uncorrupted and corrupted variables at each
site.

noise process is known, this is no obstacle as there are no
free hyperparameters to select.

In applying equation (16) to the unsupervised train-
ing of an RBM, both contributions to the gradient now
require computation of expectation values over marginal-
ized distributions pλ(σ), p̃λ(σ|τ ) of the RBM, and are
therefore intractable to compute exactly. As in the noise-
free training case, this problem may be circumvented us-
ing the contrastive divergence method: the first term is
estimated by repeated sampling from the conditional dis-
tributions pλ(σ|h), pλ(h|σ), while the second uses the
same alternating sampling from the ‘data-clamped’ dis-
tributions p̃λ(σ|h, τ ), p̃λ(h|σ, τ ) = pλ(h|σ). As noted
above, pλ(σ|h), pλ(h|σ) are both efficiently computable
due to the restricted structure of the RBM layers σ,h.
Similarly, p̃λ(σ|h, τ ) is efficiently computable if the error
probabilities satisfy a weaker condition, namely factoriz-
ing over the uncorrupted variables:

p(τ |σ) =
∏
i

p(τ |σi) (18)

In this case, the clamped distribution may be computed
explicitly as

p̃λ(σ|τ ,h) =
∏
i

p(τ |σi)pλ(σi|h)∑
σ′
i=0,1 p(τ |σ′i)pλ(σ′i|h)

(19)

=
∏
i

p̃λ(σi|τ ,h), (20)

amenable to efficient block-Gibbs sampling.
Fig. 5 provides an intuitive way to understand the noise

regularization – the corrupted variables τ may be in-
cluded as a third noise layer appended to the standard,
two-layer RBM graph, with conditional probabilities de-
pending on the σ layer only. These can be interpreted as
effective biases for the noise layer, which depend on the
uncorrupted variables – for example, the independent bit-
flip errors used to model our Rydberg experiment may be
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written as

p(τ |σ) =
1

Z̃
eb̃σ·σ+b̃τ ·τ+W̃σ·τ

W̃ = log
p(1|1)p(0|0)

p(1|0)p(0|1)

b̃σ,i = log
p(0|1)

p(0|0)

b̃τ,i = log
p(1|0)

p(0|0)

For brevity, we will sometimes refer to RBMs trained
with this regularization as ‘three-layer’ machines, as op-
posed to their ‘two-layer’ counterparts trained in the
standard fashion. Similar graphical models known as
Deep Belief Nets [56] have previously been used for unsu-
pervised learning tasks, but with a different, layer-wise
training algorithm that does not incorporate prior in-
formation; a gated RBM architecture similar to the the
three-layer machine has also been applied to Gaussian
noise models in occluded images [39].

D. Sampling from trained RBMs

After an RBM has been trained, new configurations
of the uncorrupted variables {σ} can be drawn from
the distribution pλ(σ) using the block-Gibbs sampling
techniques discussed above. The expectation value of
a generic observable Ô can then be approximated with
a Monte Carlo average 〈Ô〉ψλ

' n−1mc

∑nmc

k=1OL(σk),
where the “local estimate” of the observable is OL(σ) =∑
σ′

ψλ(σ′)
ψλ(σ) 〈σ′|Ô|σ〉, and ψλ(σ) =

√
pλ(σ). In the case

of nontrivial noise processes, to sample from the cor-
rupted distribution p̃λ(τ ) one may first generate an un-
corrupted batch {σ} of data and then sample once from
the conditional distribution p(τ |σ) for each uncorrupted
configuration.

For an RBM with N visible and Nh hidden units, the
times for training and Monte Carlo observable estima-
tion scale as O(NNh), or in terms of the model com-
plexity α = Nh/N , as O(αN2); note that the number
of visible units is fixed by the system size. Although
arbitrary binary distributions require an exponentially
large number of hidden units to model exactly [57], many
quantum states relevant to experiment, such as ground
states of paradigmatic Hamiltonians and some matrix
product states, have been found to admit efficient de-
scriptions [15, 34, 58–60]. In the present work with eight
atoms, the Hilbert space is small enough that all ampli-
tudes and expectation values can be computed exactly,
providing a valuable check on our procedure. Such a
benchmark quickly becomes impossible with current clas-
sical hardware when the number of atoms approaches
∼ 20 for pure states, and at even smaller chain lengths
for the exact evaluation of non-pure states.

III. TRAINING DETAILS

A. Methods

The reconstructions presented in this work were
trained using the three-layer scheme detailed above on
experimental datasets of N ≈ 3000 samples each. Train-
ing was performed using stochastic gradient descent with
a decayed learning rate, the gradients being estimated via
contrastive divergence with k = 30 sampling steps. Since
the visible layers of our machines are relatively small, ex-
act computation of the negative-log-likelihood was possi-
ble on each set. Hyperparameters for training were there-
fore selected by cross-validation on a randomly chosen ex-
perimental set; the same hyperparameters were used in
training on all datasets. The reconstructions presented
in the text were trained on the full datasets; RBMs were
also trained on 90/10 splits of each dataset in order to
verify that the out-of-sample negative log likelihood did
not grow during training. Error bars on reconstructed
observables were computed from their variation across
these training subsets in the final epochs of training. We
found it beneficial to train each machine with the error
rates set to zero for the first epoch.

To check that the networks learned a consistent repre-
sentation of the experimental data, we performed a scal-
ing analysis of the number of hidden units Nh of the
RBM when training on experimental data. Increasing
the number of hidden units, we found convergence of the
observables and log-likelihood for Nh ∼ N (see Fig. 6 for
examples). The reconstructions presented in this work
used RBMs with Nh = 2N = 16.

B. Training on larger systems

As a test of the robustness of our reconstruction proce-
dure, we also trained RBMs on a second set of Rydberg
atom data sampled from a larger chain of N = 9 atoms.
The dynamics of this system is governed by a master
equation identical in structure to that used for modeling
the eight-atom data presented in the main text, but with
slightly different detuning and Rabi frequency profiles,
and different effective decoherence rates.

Fig. 7 compares the results of this reconstruction to
predictions of the relevant Lindbladian model, as well as
experimental values where appropriate. Without alter-
ation of the training procedure, the RBMs reconstruct
quantum dynamics, as manifested in the transverse field
and mutual information, in good agreement with Lind-
bladian predictions. This is a key benefit conferred to the
experimentalist by the RBM reconstruction method. In-
deed, given previous knowledge regarding the properties
of the quantum state prepared in the experiment, RBM
reconstruction of experimentally inaccessible observables
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Figure 6. Examples of the scaling of observables with hid-
den layer size, for RBMs trained on experimental data. Top:
spatially averaged transverse field values. Bottom: the Renyi
mutual information at bond s = 3. Error bars are defined by
variation of reconstructed observables in the final epochs of
training.

allows for rapid and inexpensive detection of errors in
state preparation and manipulation.

IV. GENERALIZATION CAPABILITIES

A generative model is of little use if it merely mim-
ics the statistics of the training set. Successful machine
learning applications are built upon the ability to general-
ize from a given dataset, extracting representations of the
data that capture relevant features of the ground truth
distribution from which it was sampled. This requires
some structure in the data for the machine to learn, and
the extent to which it succeeds in doing so depends upon
the architecture of the machine as well as the size of the
dataset.

For relatively small datasets such as those used in this
work, it is natural to wonder whether the apparatus of
machine learning is necessary at all. In particular, given

Figure 7. Some examples of observables reconstructed from
nine-atom data, plotted as a function of sweep time t. From
top to bottom: average transverse field x̄, Renyi mutual infor-
mation I2 corresponding to a partition at bond s = 3; aver-
aged nearest-neighbor correlations in the measurement basis
(including same noise model as in the main text). The ma-
chines were trained with the same hyperparameters as in the
eight-atom case, using Nh = 2N = 18 hidden units.

access to the frequency distribution (FD)

PFD(τ ) =
1

Ns

∑
τi∈D

δτ ,τi (21)

defined by a particular dataset D consisting of Ns sam-
ples, one may define a naive frequency distribution re-
construction of a pure state corresponding to the data,
which simply memorizes the training set:

|Ψ〉 =
∑
τ

√
PFD(τ )|τ 〉 (22)

The FD state model can be computed and stored in a
time linear in the size of the dataset, by building a lookup
table that associates each observed bitstring τ with its
empirical probability in the dataset, and assigning proba-
bility zero to all other bitstrings. Such a model may then
be used to produce Monte-Carlo estimates of desired ob-
servables, in the same fashion as for RBM states.

In general, the FD reconstruction approach can-
not scale to high-entropy distributions – if H2 is
the second-order Renyi entropy of the ground-truth
distribution PGT(τ ), the fidelity F (PFD, PGT) =∑
τ

√
PFD(τ )PGT(τ ) between the frequency distribution

and the ground truth obeys the inequality

F (PFD, PGT) ≤
√
Nse

−H2/4 (23)



11

2 4 6 8 10 12 14 16

0.75

1.00

Ns =1e+03

2 4 6 8 10 12 14 16
0.90

1.00

F
id

el
it

y
F Ns =5e+03

2 4 6 8 10 12 14 16
0.98

1.00

Ns =2e+04

2 4 6 8 10 12 14 16

System size N

0.99

1.00

Ns =1e+05 FD RBM

Figure 8. Generalization from ground-state datasets: fidelity
improvements conferred by RBMs over frequency-distribution
reconstructions, for a selection of dataset sizes Ns. Note the
change in scale.

– for a proof, see Section (VII). In particular, if the
measurement-basis entropy is proportional to the system
size – as is the case in even some very simple states, such
as a product state of spins not aligned with the measure-
ment basis – the frequency-distribution fidelity will de-
cay exponentially in system size. The ability to extract a
modest number of physically relevant features is therefore
essential for accurate state reconstruction from generic
datasets of realistic size. However, our eight-atom sys-
tem is small enough compared to the size of the datasets
(
√
Ns ∼ 2L) that the FD approach is not a priori infea-

sible.
To quantify the performance of RBM and FD recon-

structions in the small-system regime, we sampled syn-
thetic datasets (in the occupation number basis) of size
Ns up to 105 from ground states of the Rydberg Hamil-
tonian in equation (6), for a selection of system sizes
up to N = 16 atoms. Ground state wavefunctions
were computed using the QuSpin exact diagonalization
package [61]; the Hamiltonian parameters were constant
throughout and chosen to place the system near the phase
transition into Z2 state: Vnn = 30MHz, Ω = 2MHz,
∆ ≈ 1MHz. For each dataset, we computed the fidelity
FFD of the frequency distribution state onto the ground-
truth Rydberg wavefunction; an RBM with Nh = N
hidden units was then trained on the same dataset, and
its fidelity FRBM onto the true state was also recorded.
The RBMs were all trained with the hyperparameters de-
scribed in section III, but with k = 10 contrastive diver-
gence steps. Fig. 8 plots the resulting fidelities achieved
by both reconstructions as a function of system size –
RBMs of fixed complexity achieve significantly higher fi-
delities for large systems, with small improvements even
at N = 8.

2 4 6 8 10 12 14 16
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M
o
d

el
p
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et
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s FD, Ns=1e+03
Ns=5e+03
Ns=2e+04
Ns=1e+05

RBM

Figure 9. Dependence of model size on physical system size
(note the log scale). The solid line indicates the number of
parameters required to specify an RBM model with Nh = N .
The dashed lines indicate the number of parameters required
to build a lookup table for the FD model, for various dataset
sizes Ns.

Another issue of practical relevance is model size: given
a dataset D of a particular size Ns, how many parameters
are required to store each trained model? For the RBM,
the number of (real-valued) parameters required to spec-
ify the model completely is determined by the size of the
bias vectors and weight matrix, N · Nh + N + Nh, and
therefore quadratic in the system size for a fixed model
complexity Nh/N . For the FD model, the number of pa-
rameters is determined by the size of the lookup table,
i.e. the number of unique samples present in the dataset,
and therefore bounded above by the dataset size Ns.

In Fig. 9, the model sizes of the RBM and FD recon-
structions from Fig. 8 are compared as a function of sys-
tem size; for N & 8 atoms the RBMs are a significantly
more efficient (not to mention more accurate) description
of the quantum state.

Finally, we note that even for small systems, gener-
ative models provide an additional advantage in state
reconstruction from noisy data: in the presence of mea-
surement errors, the FD model is not representative of
the ground truth for any dataset size, and simply in-
verting the conditional probabilities will generally result
in unphysical prior distributions. Denoising methods
for cleaning noisy binary datasets prior to reconstruc-
tion [62–64] may be applied, but a model training step is
still required.

V. EFFECTS OF DECOHERENCE

For pure state reconstruction to be useful in near-term
quantum simulators, realistic decoherence processes must
be accounted for. Here, we provide a brief description of
the Lindbladian master equation used in our modeling
of the experiment, and discuss means of assessing the
quality of pure state reconstructions in the presence of
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Figure 10. Purity of the master equation solutions as a func-
tion of sweep time t.

decoherence.

A. Master equation for the Rydberg machine

To account for decoherence processes quantitatively,
we have used a Lindblad model, described in detail in
Ref. [31], which includes two jump operators σ̃rgi =
|g〉〈r|, σ̃ggi = |g〉〈g| to represent decay and dephasing pro-
cesses acting on atom i. The time evolution of the full
state is given by the master equation

dρ̂

dt
= −i[Ĥ(Ω(t),∆(t)) + Ĥdis, ρ̂]

+

N∑
i=1

∑
t=rg,gg

γt

(
σ̃ti ρ̂ σ̃

t†
i −

1

2

{
σ̃t†i σ̃

t
i , ρ̂
}) (24)

where Ĥdis = −∑N
i=1 δin̂i is the static disorder Hamilto-

nian containing the Doppler shifts δi, and γt, t = rg, gg
are decoherence rates estimated from single-atom mea-
surements [31] as 1/γrg =80µs, 1/γgg =40µs respectively.
The Doppler shifts δi were assumed to be Gaussian-
distributed with an rms width of 2π · 43.5kHz. Direct
spontaneous decay processes from the Rydberg states,
which occur over longer timescales, were neglected. Nu-
merical solutions of the master equation (24) were per-
formed using QuTiP [65], and observables were averaged
over 100 disorder realizations {δi}. Uncertainties in ob-
servables were computed from the standard error of the
mean of these realizations.

This master equation predicts a substantial loss in pu-
rity Tr

[
ρ̂2
]
for states produced at the end of the sweep

(Fig. 10), whose detrimental effects on our pure-state re-
construction process we quantify below.

B. Reconstruction fidelities

To assess the quality of quantum state reconstruction,
we consider the fidelity between two states ρ̂, σ̂,

F (ρ̂, σ̂) = Tr
[√√

ρ̂σ̂
√
ρ̂

]
(25)

which reduces to the norm of the overlap in the case
where ρ̂, σ̂ are pure states. An ideal state reconstruction
σ̂ of a mixed state ρ̂ would yield F (ρ̂, σ̂) = 1. For pure
state reconstructions σ̂ = |ψλ〉〈ψλ|, this is not possible
if the true state ρ̂ is non-pure. However, one may still
seek an approximate reconstruction which reproduces the
local reduced density operators of ρ̂. In particular, spe-
cializing to the case of one-dimensional systems, we can
consider contiguous subsystems formed from s adjacent
sites, A(s)

i = {i, i+1, ..., i+s−1}. Given two density op-
erators ρ̂, σ̂ for the global system S of size N , the reduced
density operators which describe the subsystem in each
state are obtained by tracing out the rest of the chain,

ρ̂
(s)
i = TrS/A(s)

i
[ρ̂]

σ̂
(s)
i = TrS/A(s)

i
[σ̂]

Then we define a subsystem averaged fidelity as the spa-
tial average of the fidelity between these local operators,
over all subsystems of a particular size s:

Fs (ρ̂, σ̂) =
1

N + s− 1

N−s+1∑
i=1

F
(
ρ̂
(s)
i , σ̂

(s)
i

)
(26)

Fs (ρ̂, σ̂) is a measure of how well, on average, σ̂ is able
to reproduce the s-local physics of ρ̂.

To examine the quality of the RBM states ρ̂λ =
|ψλ〉〈ψλ| in reproducing local density operators, we
solved the master equation (24) for set of decay rates
γrg = αγexprg , γgg = αγexpgg , with γexprg , γ

exp
gg denoting our

estimates of the experimental values, and α a dimension-
less parameterization of the overall decoherence strength.
For each set of decoherence rates, the master equation
was solved and synthetic data sampled from the result-
ing mixed states. Pure state RBMs were trained on each
of these datasets, and the resulting averaged fidelities
Fs (ρ̂, ρ̂λ) were computed.

As a representative example, Fig. 11 shows how the
fidelities computed in the final state of the sweep vary as
a function of the average Renyi entropy s̄2 of subsystems
of a given size – one observes a roughly linear decay in
the average fidelity with the averaged entropy. These
numerical results suggest that pure state reconstruction
techniques should focus on few-body operators, where
the entropy build-up due to global decoherence process
is limited in proportion to the system size.
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Figure 11. Average subsystem fidelities. For each sub-
ystem size s, the average subsystem fidelity between the re-
constructed state ρ̂λ and the state ρ̂ from which its training
data was sampled is plotted, for varying values of the de-
coherence rates, as quantified by the average Renyi entropy
s̄2 = − 1

N+s−1

∑N−s+1
i=1 logTr

(
ρ̂
(s)2
i

)
of the local reduced den-

sity operators. The data plotted are for states taken at the
end of the sweep, at ∆ = 10MHz. Open circles indicate the
fidelities obtained using the decoherence rates from the ex-
perimental model presented in the main text. The fidelity
behavior at other points in the sweep (not shown) is qualita-
tively similar.

VI. RECONSTRUCTION IMPROVEMENT
FROM NOISE LAYER REGULARIZATION

Numerical experiments have demonstrated that noise
layer regularization results in higher-fidelity pure state
reconstruction when training on uniformly noisy data.

Fig. 12 compares fidelities achieved by regularized and
unregularized RBMs, when trained on synthetic datasets
subjected to the bitflip error channel described in the
main text. The improvement is significant, especially in
the ordered phase, where global state purity is lowest.
It is important to note that in these experiments the
noise process is known ahead of time and built into the
three layer networks as in Fig. 5. We have also trained
three-layer machines using incorrect values of the error
rates on the same noisy synthetic data. Although the
fidelity performance varied somewhat, depending most
sensitively on p(0|1), the quality of the regularized re-
constructions is generally robust, and deep in the ordered
phase all three-layer machines exhibited higher fidelities
than their two layer counterparts on the corresponding

0.98
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F (⇢̂�, ⇢̂)

�10 �5 0 5 10

� (MHz)

0.90

0.95
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Figure 12. Fidelity improvements from noise layer reg-
ularization. As a demonstration of the efficacy of noise layer
regularization, we plot the fidelity F (ρ̂λ, ρ̂) obtained between
the underlying state ρ̂ and the reconstruction ρ̂λ = |ψλ〉〈ψλ|,
when training on synthetic data subjected to measurement
errors (‘noisy’ data), as a function of detuning ∆. We com-
pare regularized training (red solid lines, ‘Three Layer’) with
unregularized training (green solid lines, ‘Two Layer’), for (a)
Data sampled from pure, positive Rydberg ground states, and
(b) Data sampled from the mixed states ρ̂ predicted by our
Lindbladian model. As a benchmark we plot in each case the
fidelity obtained by a two-layer RBM training on ‘clean’ data
without measurement errors (green dashed lines). The regu-
larized training leads to higher fidelities for all states sampled.

datasets, for error rates with bounds set by single-atom
measurements [31]. Generically, of course, a sufficiently
large mismatch between the true and assumed error rates
will lead to decreased reconstruction fidelity. Future work
will investigate more generally the task of selecting a reg-
ularization method for noisy quantum data.

Fig. 13 compares the predictions of these synthetically
trained two- and three-layer machines (using the known
noise values) for some of the observables discussed in the
main text. We find that noise-layer training allows the
RBMs to provide much tighter agreement in, for exam-
ple, values of the transverse field and mutual informa-
tion. Surprisingly, the three-layer machines actually pro-
duce poorer estimates of the transverse field correlator
in the ordered phase, despite yielding two-body density
operators with higher fidelities for all sampled states. A
more detailed analysis of the ordered phase states reveals
that regularized training does indeed produce better esti-
mates of the one- and two-body expectation values 〈σxi 〉,
〈σ̂xi σ̂xi+1〉 for all sites i. However, at bonds (3, 4) and (5,
6), where quantum fluctuations are strongest, the three-
layer improvement in the two-body expectation value is
relatively small, while the reduction in the one-body ex-
pectation value is substantial. Upon computing the con-
nected correlator 〈σ̂xi σ̂xi+1〉−〈σxi 〉〈σxi+1〉, the overall effect
is an overestimate of the true correlation.
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Figure 13. Observable reconstructions from synthetic
data. A comparison of two- and three-layer reconstructions
of the Lindbladian state when subjected to measurement er-
rors. From top to bottom: average transverse field, average
nearest-neighbor XX correlation, and Renyi mutual informa-
tion at bond 3. ‘noisy’ (‘clean’) indicates training data with
(without) measurement errors. Note the close agreement be-
tween the three layer machines trained on noisy data (blue
squares) and the two-layer machines trained on clean data .

VII. APPENDIX: PROOF OF CLASSICAL
FIDELITY BOUND

Inequality (23) is obtained by bounding the proba-
bility of the most likely outcome using the Renyi en-
tropy H2 in the measurement basis. By definition, H2 =
− log

∑
τ PGT(τ )2, and

∑
τ PGT(τ )2 ≥ maxτ PGT(τ )2,

so − log
∑
τ PGT(τ )2 ≤ −2 log maxτ PGT(τ ). Rearrang-

ing, maxτ PGT(τ ) ≤ e−H2/2. In particular, this bounds
the probability of any event in the training set, so

F (PFD, PGT) =
∑
τ

√
PFD(τ )PGT(τ )

≤
∑
τ

√
PFD(τ )e−H2/2

=
√
Nse

−H2/4

VIII. APPENDIX: RENYI ENTROPY BOUND
FROM POSITIVE PURE STATES

The nth order Renyi entropy of a quantum state ρ̂ is
defined as Sn [ρ̂] = 1

1−n logTrρ̂n.
Consider a system S partitioned into subsets A and

B, and a density operator ρ̂ defined on S; its reduced

density operator in the A subsystem is ρ̂A = TrB ρ̂. Let
|i〉, |j〉 denote orthonormal bases for A,B respectively, so
that the set of product states |i, j〉 forms an orthonormal
basis for the full system S. Let pi,j be the probability
assigned by ρ̂ to the measurement outcome i, j: pi,j =
Tr (ρ̂|i, j〉〈i, j|). The positive-pure partner to the mixed
state is defined as

|ΨP [ρ]〉 =
∑
i,j

√
pi,j |i, j〉, (27)

and the corresponding reduced density operator on A
is ρ̂PA = TrB |ΨP [ρ]〉〈ΨP [ρ]|.

Theorem: For n > 1, the Renyi entropies Sn of the
two density operators satisfy the inequality

Sn
[
ρ̂PA
]
≤ Sn [ρ̂A] (28)

As a consequence, in the case of pure states ρ̂, where
the global Renyi entropy vanishes, the positive-pure part-
ner provides a lower bound on the mutual information:

In
[
ρ̂P
]

= Sn
[
ρ̂PA
]

+ Sn
[
ρ̂PB
]

(29)
≤ Sn [ρ̂A] + Sn [ρ̂B ] (30)
= In [ρ̂] (31)

We note that for the case of the n = 2 Renyi entropy
and pure states ρ̂, this result has been obtained in previ-
ous work [43, 44].

Proof: Choose an auxiliary system R to purify ρ̂:
ρ̂ = TrR|Ψ〉〈Ψ| for some pure state |Ψ〉 living in S ⊗ R.
If |α〉 is an orthonormal basis for R, we can expand
the larger pure state in the joint basis |i, j, α〉 : |Ψ〉 =∑
i,j,α Ψα

i,j |i, j, α〉 for some complex coefficients Ψα
i,j .

In terms of these amplitudes, the reduced density op-
erator of the mixed state on A is

ρ̂A =
∑
α,j

Ψα
i,jΨ

α∗
i′,j |i〉〈i′| (32)

and so

Trρ̂nA =
(
Ψα1
i1,j1

Ψα1∗
i2,j1

) (
Ψα2
i2,j2

Ψα2∗
i3,j2

)
. . .
(
Ψαn
in,jn

Ψαn∗
i1,jn

)
(33)

with summation over all indices implied. The reduced
density operator for positive-pure partner may be ob-
tained from the definition above:

ρ̂PA =
∑
i,i′,j

√
pi,jpi′,j |i〉〈i′| (34)

whence

Tr
(
ρ̂PA
)n

=
(√
pi1,j1pi2,j1

) (√
pi2,j2pi3,j2

)
. . .
(√
pin,jnpi1,jn

)
(35)
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(summation implied). Furthermore,

pi,j =
∑
α

Ψα
i,jΨ

α∗
i,j (36)

and so by the Cauchy-Schwartz inequality,

∣∣∣∣∣∑
α

Ψα
i,jΨ

α∗
i′,j′

∣∣∣∣∣ ≤
√√√√(∑

α

Ψα
i,jΨ

α∗
i,j

)(∑
α′

Ψα′
i′,j′Ψ

α′∗
i′,j′

)
(37)

=
√
pi,jpi′,j′ (38)

Therefore, writing i = (i1, ..., in), j = (j1, ..., jn),

Trρ̂nA =
∑
i,j

(∑
α1

Ψα1
i1,j1

Ψα1∗
i2,j1

)(∑
α2

Ψα2
i2,j2

Ψα2∗
i3,j2

)

. . .

(∑
αn

Ψαn
in,jn

Ψαn∗
i1,jn

)
(39)

≤
∑
i,j

∣∣∣∣∣∑
α1

Ψα1
i1,j1

Ψα1∗
i2,j1

∣∣∣∣∣
∣∣∣∣∣∑
α2

Ψα2
i2,j2

Ψα2∗
i3,j2

∣∣∣∣∣
. . .

∣∣∣∣∣∑
αn

Ψαn
in,jn

Ψαn∗
i1,jn

∣∣∣∣∣ (40)

≤
∑
i,j

(√
pi1,j1pi2,j1

) (√
pi2,j2pi3,j2

)
. . .
(√
pin,jnpi1,jn

)
(41)

= Tr
(
ρ̂PA
)n

(42)

Hence− logTr
(
ρ̂PA
)n ≤ − logTr (ρ̂A)

n, which means that
for n > 1, Sn(ρ̂PA) ≤ Sn(ρ̂A).
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