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Summary 

We resolved a mechanism connecting tumor epigenetic plasticity with non-genetic adaptive 

resistance to therapy, with MAPK inhibition of BRAF-mutant melanomas providing the model.  

These cancer cells undergo multiple, reversible drug-induced cell-state transitions, ultimately 

yielding a drug-resistant mesenchymal-like phenotype. A kinetic series of transcriptome and 

epigenome data, collected over two months of drug treatment and release, revealed changing levels 

of thousands of genes and extensive chromatin remodeling. However, a 3-step computational 

algorithm greatly simplified the interpretation of these changes, and revealed that the whole 

adaptive process was controlled by a gene module activated within just three days of treatment, 

with RelA driving chromatin remodeling to establish an epigenetic program encoding long-term 

phenotype changes. These findings were confirmed across several patient-derived cell lines and in 

melanoma patients under MAPK inhibitor treatment. Co-targeting BRAF and histone-modifying 

enzymes arrests adaptive transitions towards drug tolerance in epigenetically plastic melanoma 

cells and may be exploited therapeutically. 
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Introduction   

The acquisition of therapy resistance in cancer patients remains a major clinical challenge 

(Arkenau et al., 2011; Brock et al., 2009; Pritchard et al., 2012; Salgia and Kulkarni, 2018). While 

various genetic mutations have been reported to cause resistance (Nazarian et al., 2010; Wagle et 

al., 2011), recent literature also points to the importance of epigenetic modulations to drug-

tolerance that can precede the emergence of drug-resistant genotypes in a variety of tumor types 

(Bai et al., 2019; Hata et al., 2016; Hugo et al., 2015; Pisco et al., 2013; Rambow et al., 2018; 

Ramirez et al., 2016; Sharma et al., 2010; Wang et al., 2018). For such epigenetic processes, tumor 

cells adapt to the drug treatment by orchestrating master transcription factors and chromatin 

remodelers within a regulatory network. The resultant changes of chromatin profile via histone 

modifications eventually establish specific gene expression programs of the drug-tolerant state 

(Brown et al., 2014; Dawson and Kouzarides, 2012; Fang et al., 2016; Flavahan et al., 2017; Kelly 

et al., 2010; Knoechel et al., 2014; Liau et al., 2017; Shaffer et al., 2017; Strub et al., 2018; Suvà 

et al., 2014). Unlike genetic mechanisms, epigenetic cell-state transitions can be reversed upon 

drug removal (Sharma et al., 2010; Su et al., 2017; Sun et al., 2014). Indeed, such reversibility has 

been observed in in vitro and in vivo tumor models (Roesch et al., 2010; Sharma et al., 2010; Su 

et al., 2017; Sun et al., 2014; Das Thakur et al., 2013) and increasingly reported in clinical settings 

(Cara and Tannock, 2001; Kurata et al., 2004; Lee, 2012; Mackiewicz-Wysocka et al., 2014). 

Nevertheless, the mechanistic details of these epigenetic modulations remain incompletely 

understood, thus limiting the options for therapeutic interventions designed to arrest the non-

genetic resistance.  

Accumulating evidence suggests that phenotypic plasticity is an essential characteristic 

associated with non-genetic resistance (Flavahan et al., 2017; Hoek et al., 2008; Kemper et al., 

2014; Landsberg et al., 2012). Phenotypic plasticity, defined as the ability of cells to reside in 

distinct phenotypes and switch between them without genomic alterations, is an intrinsic property 

of cells to survive stressful conditions. Cancer cells can also exploit plasticity to survive drug 

treatment by transitioning from a drug-sensitive phenotype to drug-tolerant phenotypes (Flavahan 

et al., 2017; Kochanowski et al., 2018). Paradigmatic examples include certain BRAF-mutant 

melanomas under MAPK pathway inhibitor (MAPKi) treatment. The drug-naïve melanoma cells 

initially reside as drug-sensitive melanocytic phenotypes (MITFhigh and elevated pigmentation 

genes).  Upon continuous MAPK inhibition, they can evolve into a transient, slow-cycling, neural-

crest-like phenotype (MITFlow/NGFRhigh) (Fallahi-Sichani et al., 2017; Su et al., 2017) and 

eventually towards a mesenchymal phenotype (MITFlow, SOX10low, and elevated mesenchymal 

markers) (Kemper et al., 2014; Müller et al., 2014; Su et al., 2017; Tsoi et al., 2018). The 

mesenchymal phenotype is notorious for its resistance to MAPKi as well as many other treatment 

regimens including immunotherapy (Hugo et al., 2015, 2016; Ramsdale et al., 2015). 
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Several studies have explored the molecular markers associated with the drug-tolerant or drug-

resistant phenotypes including: down-regulation of SOX10 (Shaffer et al., 2017; Sun et al., 2014) 

and upregulation of JNK/c-JUN (Fallahi-Sichani et al., 2015, 2017; Ramsdale et al., 2015) in the 

mesenchymal phenotype, as well as upregulation of KDM5 (Roesch et al., 2010, 2013) in a slow-

cycling (likely neural crest) drug-tolerant phenotype. However, there remains a clear unmet need 

to identify the early-stage adaptive processes that are triggered immediately following the drug 

exposure to lead the transition towards drug-tolerant phenotypes. Such an understanding may 

unveil the molecular nature of phenotypic plasticity and compelling drug targets that can arrest the 

entire adaptive resistance process prior to the establishment of resistant phenotypes. 

We sought to resolve the early-acting regulatory process of adaptive resistance through kinetic 

characterizations of the transcriptome and functional epigenome of patient-derived BRAF-mutant 

melanoma cell lines featuring varying degrees of phenotypic plasticity. Systems-level analysis of 

the transition dynamics, followed by experimental validations, discerned the critical transcription 

factors and chromatin remodelers within a regulatory network that initiated and drove the adaptive 

cell state transition. The mechanism informed the design of combination therapies to disrupt the 

chromatin remodeling and to arrest the adaptive transition at a very early stage. The phenotypic 

plasticity was found to correlate with the efficacy of the drug combinations across multiple 

melanoma cell lines, implicating that the plasticity may be epigenetically encoded in the baseline 

chromatin profiles. The signatures of the adaptive mechanism were also found in sequential patient 

biopsies. Together, our study resolved an early-acting epigenetic mechanism of non-genetic 

resistance, which may be exploited to prevent targeted therapy resistance in melanoma.  

Results 

Reversibility of the adaptive transition in patient-derived BRAF-mutant melanoma cell lines 

We used an epigenetically plastic BRAFV600E-mutant melanoma cell line M397 as a model 

system to interrogate the kinetics of the adaptive cell state transition in response to continuous 

BRAF inhibition. We treated the cells with a BRAF inhibitor (BRAFi) for a month, then separated 

them into two sets: one with an additional month of continuous drug treatment, and the other 

untreated for one month (Figure 1A). Cells were collected for a time-series transcriptome and 

functional characterization (Figures 1 and S1; Table S1). The resultant gene expression data after 

29 days (D29) of drug exposure showed significant enrichments of mesenchymal signatures, 

cellular invasiveness, migration, and loss of MITF targets (Figures 1C and S1D; Table S2). The 

adapted cells were slow-cycling, as evidenced by reduced proportion of cells in the S and G2/M 

phases (Figure 1E). An additional month of drug exposure maintained the cells in a steady state 

with a relatively stable transcriptome profile (Figures 1B and S1C). Drug removal (DR) triggered 

a reversion to a state with a transcriptome profile that resembled the untreated (D0) state (Figures 

1B, S1C and S1D), as illustrated by the fact that the molecular signature enrichments of D29 vs. 

D0 and DR30 vs. D29 were essentially mirror images of each other (Figure 1C). Furthermore, the 

reverted cells recovered their proliferative and cell cycle characteristics, and were re-sensitized to 
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BRAF inhibition (Figures 1D-1F). These results suggest a fully reversible adaptive transition at 

the transcriptomic, phenotypic, and functional levels. We further confirmed the existence of such 

reversibility, at the functional level, in other BRAF-mutant melanoma cell lines with varying 

sensitivities to BRAFi (Figures 1D, 1F, S1A, and S1D). Therefore, the BRAFi-induced adaptive 

resistance is reversible at both transcriptomic and functional levels with generality across a panel 

of patient-derived BRAF-mutant melanoma cell lines. 

Information theoretic analysis of the transcriptome kinetics resolved two gene modules 

associated with the reversible transition 

To extract the underlying regulatory modules that change coordinately in the reversible 

transition, we applied information theory-based surprisal analysis to the time-course transcriptome 

data (Eq. 1). Surprisal analysis was initially formulated to understand the dynamics of 

nonequilibrium systems (Levine, 1978). It has been extended, in multiple publications 

(Kravchenko-Balasha et al., 2012, 2014, 2016b, 2016a; Poovathingal et al., 2016; Remacle et al., 

2010; Zadran et al., 2013, 2014), to characterize biological processes in living cells. It 

approximates quantum state distributions of molecular species within a cell’s molecular ensemble 

in order to assess the maximum entropy of those biomolecules. Particularly, for a system 

characterized by a kinetic series of transcriptome, Equation 1 from surprisal analysis can de-

convolute the changes of thousands of genes into one unchanged gene expression baseline and a 

series of gene expression modules. Each module contains a group of genes that are coordinately 

changing together across time points (an example gene list for module-1 is visualized in dashed-

line, circled regions in Figure 2A). We applied this analysis, and then used the resulting gene 

modules to computationally estimate and visualize cell-state transition trajectories (STAR 

Methods).  

amplitude of contribution
module  at of transcript 

time t to module 

0

measured expression baseline
level of transcript expression level of deviati

at time t transcript 

ln ( ) ln ( ) ( )

j i
j

i i j ij

j

i
i

t t t G   

on terms from 
the baseline 

of transcript  (gene modules)i

  (Eq.1) 

Specifically, in Equation 1,  ln Xi t , the natural logarithm of the measured level of transcript 

i at time t, is defined as the expression baseline of transcript i (
0ln i ), minus the sum of gene 

module alterations weighted by the relative contribution to each module by transcript i 

(  j ij

j

t G ). Each gene module is represented by a time-dependent module amplitude (or score 

λj(t)) that denotes the importance of the gene module j to the global transcriptome at time t. 

Module-specific contribution scores from each transcript Gij denote weight of gene i on module j. 

Thus, the biological functions of each module j can be inferred from genes with higher positive or 
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negative module-specific contribution scores Gij. The gene expression baseline is the reference 

point for the entire transition.  

The application of Eq. 1 to the time-series of transcriptome data de-convoluted them into two 

time-dependent gene modules plus the gene expression baseline. To visualize the kinetic changes 

of the entire transcriptome and each gene module, we plotted the time-series transcriptome profiles 

and de-convoluted gene modules as self-organizing mosaic maps (SOMs) (Figures 2A and S2A). 

The gene expression baseline calculated from the surprisal analysis (top row of SOMs in Figures 

2A and S2A) shows no time dependence.  This demonstrates the validity of surprisal analysis in 

analyzing this system (Remacle et al., 2010). The second and third rows are plots of the two 

resolved, time-varying gene modules. The SOMs for D0 and DR30 appear nearly identical, 

reflecting the reversibility of the adaptive response at the transcriptome level as well as at the 

resolved gene module level. When the baseline state and the two regulatory gene modules are 

summed (the row labeled ‘sum’ in Figures 2A and S2A), the resultant SOMs from surprisal 

analysis closely matched the experimental transcriptome data (bottom row of Figures 2A and S2A). 

Thus, the expression change of thousands of genes during the reversible transition can be 

delineated by a time-invariant expression baseline, plus the changes of two time-varying gene 

modules. 

The reduction of the transcriptome kinetic series into two gene modules enables visualization 

of drug-adaptation trajectories taken by the cells.  This is achieved by projecting the time-series 

transcriptome onto the 2-D cell-state space defined by the gene modules, with each axis 

representing the module score of each gene module. The plot is a cyclic loop (Figure 2B) 

comprised of a forward trajectory (blue), and a drug-removal, reverse trajectory (green), which 

indicates that the cells undertake a different return path to the original drug-sensitive state. This 

cyclic shape suggests that the two gene modules operate sequentially.  The first module, Mearly, 

was fully activated within the first 3 days of drug treatment (y-axis of Figure 2B), while the second 

module, Mlate, (x-axis of Figure 2B) gradually activated between days 3 and 29 (D3 and D29).  

Continued treatment beyond D29 caused minimal change in either module (blue dash line circled 

region of Figure 2B), in agreement with the stable transcriptome profile observed from D29 to 

D59 (Figures 1B and S2A). Interestingly, upon drug removal, there was an immediate reduction 

in the first module, followed by a gradual reversion of the second module to its original pre-

treatment module score. The different operational dynamics of these modules resulted in the cyclic 

transition trajectories that the cells took. 

To further investigate the biological meaning of the two gene modules, we conducted gene 

set enrichment analysis (GSEA) on genes ranked by their module-specific contribution scores (Gij). 

Mlate was positively associated with melanocytic signatures (e.g. MITF targets) and negatively 

correlated with mesenchymal signatures, cell invasiveness, and NFκB, TGFβ, and JNK signaling 

pathways (Figure 2B; Table S3). Consequently, the gradual change of the Mlate score from positive 

to negative values between D3 and D29 indicates that the drug-treated cells de-differentiated 

towards neural-crest and mesenchymal phenotypes, with loss of melanocytic signatures, and an 
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increase of NFκB, TGFβ, and JNK signaling. Similarly, Mearly was positively associated with 

HDAC1 activity and negatively associated with cell cycle regulation (Figure 2B), suggesting that 

the initial drug exposure led to an immediate histone deacetylation and cell cycle arrest. Therefore, 

the two gene modules resolved from surprisal analysis delineated the stepwise, reversible dynamic 

changes of cellular functions during the cyclic transitions associated with adaptive resistance 

development. 

Dynamic system modeling discerned the regulatory relationship between the early- and late-

gene modules  

A possible implication of the sequential operation of Mearly and Mlate is that the biological 

processes associated with the two modules are coupled where the completion of the Mearly gene 

program triggers the expression of Mlate genes. This implies a co-dependency of these two modules. 

We tested this hypothesis by fitting the dynamic dependence of the two modules to a coarse-

grained model resembling a simple two-gene feedback circuit (Eq. 2). This approximation yields 

an estimate for how the two gene modules are coupled (Figure 2C; see STAR Methods).   

early

early late

late

early late

M

M M

M

M M

gene
gene gene

gene
gene gene

e e e l e

l e l l l

d
B M M

dt

d
B M M

dt

 

 

 
          

 
          

 (Eq.2) 

Here, the brackets denote the averaged expression level of module-associated genes at a given 

time point. Be and Bl represent the basal production of Mearly- and Mlate-associated genes, 

respectively. Coefficients Me-e and Ml-l reflect self-regulation of Mearly and the Mlate expression, 

respectively, while coefficients Ml-e and Me-l reflect the Mlate regulation over the expression of 

Mearly genes and vice versa.  

The ODE fitting of gene expression associated with Mlate and Mearly for both forward and 

reverse trajectories revealed that Mearly exerted significant control over both itself and Mlate.  This 

is evidenced by the significantly larger pre-factors Me-e and Me-l (Figures 2D and S3; Table S4). 

By contrast, Mlate yielded only minimal influence over itself or Mearly. The strong influence of 

Mearly applied to both the drug-treated forward and drug-release reverse trajectories (Figures 2D, 

2E, S2B and S3). In other words, Mearly dominated the entirety of the forward D0-D29 transition 

path towards drug resistance as well as the drug removal trajectory back to the drug-sensitive state. 

Further, the dependence of Mlate on Mearly suggested an orchestrated process whereby certain 

important transcription factors associated with Mearly played a key role in regulating downstream 

genes associated with Mlate, ultimately driving the adaptive transition towards the drug resistant 

phenotype. Thus, dynamic system modeling revealed the strong influence of the early-acting gene 

module on the late-acting gene module, and implied that Mearly may contain the key regulators that 

initiated the adaptive cell state transition.   
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Inference of critical early-acting upstream transcriptional regulators based upon the inter-

dependence of the two gene modules 

Guided by the importance of Mearly module in driving the adaptive resistance (Figure 2D), we 

hypothesized that certain key transcription factors (TFs) or co-factors within Mearly regulate the 

downstream genes within Mlate and thus drive the adaptive transition. To test this hypothesis, we 

used two complementary approaches to infer the early-acting TFs in M397. For the first approach 

(Figures 3A and S4A), we hypothesized that functionally relevant TFs associated with Mearly 

should have their target effector genes enriched in the gene set associated with the subsequent 

action of Mlate. Therefore, we first filtered out all the possible TFs and co-factors within Mearly and 

then acquired their downstream targets from the TF targets database, followed by assessing their 

enrichment in the genes associated with Mlate (STAR Methods). This identified that subset of 

Mearly-related TFs whose downstream targets are overrepresented within the genes associated with 

Mlate module. Five statistically enriched TFs and co-factors were identified, with Pearson 

correlation coefficients ρ > 0.9 (Figures 3B, panel i).  These include MEIS3, which is required for 

neural-crest invasion (Uribe and Bronner, 2015), NKX3-2, which mediates the epithelial-

mesenchymal  transition in neural crest development (Lim and Thiery, 2012), and LEF1 whose 

down-regulation is related to non-genomic MAPKi resistance in melanomas (Hugo et al., 2015). 

These enriched TFs may regulate the cancer cell phenotype changes associated with the forward 

and reverse transitions (Figure 3C). Most interestingly, the histone modifying enzyme KDM5B 

(H3K4 demethylase), whose expression displayed a sharp increase by D3, was also found to have 

many target genes overrepresented in Mlate (Figure 3D).  Importantly, this histone modifier has 

been previously associated with reversible drug-tolerant states in several tumor types, including 

melanomas (Hinohara et al., 2018; Roesch et al., 2010, 2013).  

For the second inference approach, we performed enrichment analysis of cis-regulatory 

elements in the promoter regions of all genes strongly associated with Mlate (Figure S4B). We 

ranked these elements according to their statistical significance (Figure 3B, panel ii).  The top one 

ranked element was the binding motif of the NFκB family member RelA, which was recently 

identified as an important regulator associated with this adaptive transition (Su et al., 2017). The 

expression kinetics of RelA was not associated with either Mlate or Mearly. Instead, the expression 

level of RelA gradually increased from the start of BRAF inhibition to D29, implying its consistent 

activity over the entire adaptive transition towards the mesenchymal state (Figure 3D). 

Interestingly, NFKBIE, which is highly anti-correlated with Mearly (ρ = -0.88) and represses NFκB 

activation by preventing RelA nuclear translocation, displayed a sharp drop by D3 (Figure 3D).  

This suggests that activation of RelA and associated downstream genes in Mlate might be mediated 

by the immediate down-regulation of NFKBIE, thus releasing RelA into the nucleus. A second 

transcription regulator similarly identified was AP-2α, which has been reported to be involved in 

melanoma progression and metastasis (Berger et al., 2005). Taken together, these analyses greatly 

simplified the interpretation of the kinetic transcriptome data by inferring a few controlling, early-

acting TFs and co-factors (Figures 3B and S4B), including RelA and KDM5B, from the large 
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numbers of transcripts altered during the course of BRAF inhibition and drug release (Figures S5A 

and S5B). 

Reversibility of chromatin accessibility and histone modification profiles shed light on 

downstream transcription factors associated with the adaptive transition 

Information theory analysis and dynamic ODE modeling of transcriptome kinetics pinpointed 

a few key early-acting TFs that likely trigger the initiation of the cell state transition towards 

resistance. To obtain a complete mechanistic picture, we seek to further identify the late-acting 

driver regulators that are the downstream targets of those early-acting TFs via cellular epigenome 

characterization at different stages of the reversible transition (Figure 5A).  

Since the previous inference and enrichment analyses pointed to the fast activation of histone 

modifiers KDM5B and HDAC1 in Mearly that represses activation histone marks (Figures 2B and 

3B), we first accessed the regulatory regions associated with open chromatin. We accomplished 

this via transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and 

chromatin immunoprecipitation sequencing (ChIP-seq) against two activation histone marks, 

H3K4me3 and H3K27ac, which are targets of KDM5B and HDAC1. Similar to the transcriptome 

profiles, the overall chromatin accessibility displayed reversible changes during drug treatment 

and removal. That accessibility gradually decreased following BRAFi exposure, but after a month 

of drug removal reverted to a profile similar to that of untreated cells (Figures 4A, 4B and S5C). 

Overall modification levels of the two histone marks displayed the same reversibility (Figure S5D 

and S5E).  However, the drop in these marks after 3-day BRAFi exposure was large relative to the 

corresponding small reduction of the ATAC-seq signal (Figures 4A and S5D), suggesting that 

these histone modifications may precede and perhaps drive the changes in chromatin accessibility. 

Further, the promoter region of many well-reported regulators for the adaptive resistance in 

melanoma also displayed reversible changes that aligned well with their reversible expression 

patterns (Figure S5E). We also tabulated the numbers of differential peaks of H3K4me3 and 

H3K27ac that changed between day 0 and subsequent time points (Figure 4C). The differences 

between states at long-term drug removal (DR30) and at day 0 were minimal. This was especially 

true for H3K27ac, where only two peaks reflected acetylation differences between day 0 and long-

term drug removal. These data demonstrated the genome-scale chromatin landscape underwent 

reversible changes upon drug treatment and removal, thus supporting a potential epigenetic 

mechanism of the reversible adaptive transition. 

To search for causal TFs driving the dynamic changes of the chromatin landscape, we used 

K-means clustering to analyze the genome-wide chromatin restructuring at four time points spread 

across the reversible transition (Figure 4B). We identified four clusters of chromatin accessibility 

peaks with unique kinetics, plus a fifth, time-invariant cluster. For these four clusters, we mined 

the underlying DNA sequences and searched for over-represented TF binding motifs. The highly 

enriched motifs in the reversible transition (right side of Figure 4B) contain binding motifs of 

certain TFs reported previously to be involved in the adaptive resistance of melanomas, including 
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MITF (Sáez-Ayala et al., 2013), SOX10 (Sun et al., 2014), Jun-AP1 (Fallahi-Sichani et al., 2015, 

2017; Ramsdale et al., 2015), and RelA (Su et al., 2017).  Some of these TFs, such as RelA and 

AP-2, were overlapping with those inferred from the transcriptome data (Figure S4B). To further 

resolve whether these modifications were modulated by RelA whose motif is ranked top one in 

the common cis-regulatory element inference (Figures 3B and S4B), we quantified the H3K4me3 

and H3K27ac ChIP-seq signals across all the RelA binding sites and found marked reduction after 

3 days of drug exposure, with recovery upon drug removal (Figure 4D). It suggests that RelA binds 

primarily to distal sequences containing both activation histone marks H3K4me3 and H3K27ac, 

and might regulate them through interactions with the KDM5B and HDAC1 during the adaptive 

transition.  

In addition to confirming RelA as a critical early-acting regulator that may cause the 

epigenome changes, we further mined downstream regulators that may be the direct targets of 

RelA and showed consistent epigenome alteration patterns at the RelA binding region across the 

reversible transition. We achieved this by quantifying the changes in chromatin accessibility and 

two activation histone marks of all TFs/co-factors associated with Mlate that contain RelA binding 

motifs (STAR Methods). SOX10 was identified to display the most significant changes across all 

three epigenome alterations at the RelA binding region (Table S5). Consider the importance of 

SOX10 in regulating mesenchymal phenotype in melanoma (Shaffer et al., 2017; Sun et al., 2014; 

Verfaillie et al., 2015), we hypothesized that SOX10 is likely one key downstream regulator for 

the cell state transition towards resistance. Taken together, these data illustrated the reversibility 

of adaptive resistance at the level of the global chromatin landscape. The kinetics of the reversible 

epigenome profiles further pointed to a collection of early-acting and downstream-effector TFs, 

particularly RelA and SOX10, in regulating such adaptive epigenetic resistance. 

Mechanistic regulatory network of adaptive resistance 

Based on the transcriptional regulators inferred from gene module interactions and epigenome 

profiling, we tied these inferences together with prior knowledge and formed a mechanistic 

regulatory network (Figure 5A). We hypothesized that for drug-naïve cells, NFKBIE and SOX10 

are both epigenetically activated and that downstream TGFβ signaling is repressed (Sun et al., 

2014). BRAF inhibition triggers a sharp drop in NFKBIE expression and a sharp increase in the 

expression of the histone demethylase KDM5B (Figure 3D). The reduction of NFKBIE would 

promote the nuclear translocation of RelA (Whiteside, 1997). In the nucleus, RelA would then 

recruit KDM5B and HDAC1 to repress SOX10 and NFKBIE expression by erasing the activation 

histone marks in their promoter regions, consistent with the rapid decrease of activation histone 

marks at RelA binding sites (Figures 4D). The downregulation of SOX10 expression has been 

reported to promote BRAFi adaptive resistance through promoting the up-regulation of TGFβ 

signaling and mesenchymal transition (Figure 3C) (Shaffer et al., 2017; Sun et al., 2014). Our 

mechanistic hypothesis provides a rationale for how this happens, and further indicates how the 

downregulation of NFKBIE promotes RelA nuclear translocation, thus establishing a positive 

feedback loop (Figure 5A). Drug removal reverses this process, starting with the gradual recovery 
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of SOX10 expression (Figure 3D), the loss of mesenchymal signatures (Figure 3C), and the 

eventual re-opening of the chromatin (Figure 4A).  We extensively tested this mechanism in the 

following ways.  

We first examined the change in overall chromatin accessibility and levels of the histone 

marks H3K4me3 and H3K27ac at the promoter regions of SOX10 and NFKBIE over the course of 

the adaptive transition. We found reduction of the overall chromatin accessibility and of the levels 

of both histone marks upon BRAF inhibition, and a recovery of these signals upon drug removal 

(Figure 5B). These observations confirmed the involvement of chromatin alterations in the gene 

expression changes of SOX10 and NFKBIE. We next explored the role of RelA in recruiting 

histone remodelers. We tested whether RelA, KDM5B and HDAC1 simultaneously bind to the 

promoter regions of SOX10 and NFKBIE. We performed ChIP-PCR experiments on untreated 

cells using primers targeting the promoter regions of SOX10 and NFKBIE. The results confirmed 

the co-localization of RelA, KDM5B, HDAC1, and the two histone marks (Figure 5C). 

Quantitative assessment of binding profiles via ChIP-qPCR further revealed that BRAFi treatment 

elevated binding of RelA, KDM5B, and HDAC1 to the SOX10 and NFKBIE promoter sites and 

consequently diminished H3K4me3 and H3K27ac histone marks (Figure 5D). These binding 

enrichment profiles reverted to the levels of the untreated cells after drug removal (Figure 5D). 

Co-immunoprecipitation (Co-IP) assays confirmed the binding of RelA to KDM5B and HDAC1 

(Figure 5E), suggesting that RelA can form a complex with either KDM5B or HDAC1. These 

findings support the role of RelA in recruiting histone remodelers in regulating the expression of 

SOX10 and NFKBIE.  

To further validate that SOX10 and NFKBIE are directly repressed by the recruitment of 

KDM5B and HDAC1 through RelA, we sought to perturb RelA with a drug that inhibits its nuclear 

translocation. According to our hypothesis, such inhibition should decrease the recruitment of the 

histone-modifying enzymes KDMB5 and HDAC1, which, in turn, will increase the H3K4me3 and 

H3K27ac levels at the promoter regions of SOX10 and NFKBIE. We first treated the M397 cells 

with BRAFi for 21 days to induce adaptive resistance with reduced SOX10 expression (Figure 5F). 

Under continued BRAFi treatment, we added a drug (JSH-23) to inhibit RelA nuclear translocation 

(Shin et al., 2004), and monitored short-term interval changes in SOX10 expression. SOX10 

expression rapidly increased following JSH-23 treatment and returned to the level originally 

observed at D0 after 24 hours of drug exposure (Figure 5F). Furthermore, we observed barely 

detectable binding of RelA, KDM5B, and HDAC1 and consequently increased binding of 

H3K4me3 and H3K23ac at the SOX10 and NFKBIE promoter regions after 24 hours of JSH-23 

treatment (Figure 5G). The immediate increase of SOX10 expression and decrease of HDAC1 and 

KDM5B enrichment within 24 hours of JSH-23 exposure further validated our hypothesis that the 

repression of SOX10 and NFKBIE is directly through RelA-mediated epigenetic silencing. 

We performed additional independent perturbations to validate the proposed molecular 

mechanism using genetically engineered M397 cells. We first triggered RelA nuclear translocation 

through CRISPR knockout (KO) of NFKBIE to release the cytoplasmic retention of RelA 
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(Spiecker et al., 2000). According to our proposed mechanism, this translocation should in turn 

enhance recruitment of the histone modifying enzymes HDAC1 and KDM5B, and thus diminish 

levels of activation histone marks H3K4me3 and H3K27ac at the promoter regions of SOX10. This 

prediction was confirmed by ChIP-qPCR result (Figure 5H).  The actual expression of SOX10 was 

consequently reduced in NFKBIE-KO cells relative to control cells (Figure 5I). Similarly, 

knockout of KDM5B partially upregulated H3K4me3 levels at the SOX10 and NFKBIE promoters 

(Figure 5J), thus increasing SOX10 and NFKBIE expression (Figure 5K). In addition, we also 

observed elevated H3K27ac at the SOX10 and NFKBIE promoters, possibly through the decreased 

recruitment of HDAC1 by RelA due to the elevated NFKBIE expression. As a functional 

validation, we tested SOX10-KO and NFKBIE-KO M397 cells, expecting that both engineered 

cells would develop drug tolerance to BRAFi more rapidly than the wild type counterpart.  These 

engineered cell lines indeed behaved as expected according to our proposed mechanism (Figure 

5L). Collectively, these experiments provide strong evidences for the proposed mechanism.  They 

validate the critical role of RelA as a rapid-acting regulator of resistance development by recruiting 

KDM5B and HDAC1 to epigenetically suppressed SOX10 and NFKBIE expression and 

consequently induce BRAFi drug tolerance (Figure 5A).  

Baseline epigenome states correlate with the phenotypic plasticity and drug response across 

melanoma cell lines  

We now turn towards understanding whether the mechanism of adaptive response of M397 

cells to BRAF inhibition can be generalized to other BRAF-mutant melanoma cell lines that exhibit 

varying degrees of phenotypic plasticity and baseline level of resistance to BRAFi. We first tested 

the generality of Mearly and Mlate modules in other melanoma cell by evaluating the co-occurrence 

of gene sets associated with two modules across the CCLE melanoma cell lines. We observed 

higher co-occurrence score relative to random gene permutation (Figure S6A, see STAR Method) 

suggesting the various gene sets associated with two modules are not specific to the cell line we 

studied, but similarly modulated and co-expressed across other cohorts of melanoma cells.  

Furthermore, we investigated the BRAFi-induced transcriptome changes in additional six 

patient-derived BRAF-mutant cell lines, each with a unique drug-naïve phenotypic composition 

that varies from largely mesenchymal (M381) to in-between neural crest and melanocytic (M263), 

to mostly melanocytic (M229) (Su et al., 2017).  In order to permit comparisons between different 

cells, we projected the whole transcriptome kinetic data of each cell line onto the two-dimensional 

space defined by Mearly and Mlate, similar to the two-dimensional plot in Figure 2B (Figure 6A). 

Cell lines at the left side displayed much higher baseline IC50 value than those at the right side, 

suggesting that cells at the BRAFi-induced dedifferentiated state are intrinsically resistant to 

BRAF inhibition. Similar trends were also observed across various BRAF-mutant melanoma cell 

lines from the GDSC database (Figure S6B), indicating cells with higher Mearly and lower Mlate 

scores are generally resistant to BRAFi. Similar to M397, upon BRAF inhibition, each cell line 

exhibited an initial change in the positive direction along Mearly, followed by a motion along the 

negative direction of Mlate (Figure 6A), which implied some mechanistic similarities between the 
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cells. However, different cell lines also exhibited widely different amplitudes of motion along this 

2D landscape, reflecting large variations in transcriptome plasticity (Figure 6A). Our hypothesis 

was that these different amplitudes of transcriptome motion, particularly the motion along the 

controlling module Mearly, were related to the pre-treatment (baseline) epigenome state of the cells.  

Mearly was enriched with early-acting epigenetic modulations that dictate the subsequent 

adaptive transition in M397 (Figure 2B-2E).  Thus, for comparison across cell lines, motion along 

Mearly was chosen as a surrogate of transcriptome plasticity. We correlated the BRAFi-induced 

motion along Mearly with the baseline epigenetic characteristics of the cells.  These correlations 

included the average chromatin accessibility (Figure 6B), the average levels of the two histone 

marks across all the enriched domains (Figures 6C, 6D and S6C), and the levels of two histone 

marks on the TSS region of SOX10 (Figures 6E, 6F and S6D). The strong correlations, particularly 

with SOX10-specific H3K4me3/H3K27ac signals, suggest that cellular plasticity is associated with 

the baseline chromatin state of the drug-naïve cells and implicate the generality of the chromatin 

remodeling mechanism in the adaptive resistance of melanoma cells. These findings also imply 

that cellular plasticity that permits adaptation to BRAFi may be encoded in cells before treatment 

through general and specific structural details of the chromatin.  

The relationships between cellular plasticity, chromatin accessibility (Figure 6G), and 

adaptive resistance to BRAFi suggest that drug targeting the chromatin remodeling machinery in 

combination with BRAFi would arrest the adaptive transition and inhibit the development drug 

resistance in the most plastic cell lines (e.g. M397 or M262) but should have little effect on the 

least plastic lines (e.g. M381). We used a recently-developed KDM5 inhibitor CPI-455 

(Vinogradova et al., 2016) and a second generation HDAC1 inhibitor Quisinostat (Arts et al., 2009) 

to treat the cells in combination with BRAFi vemurafenib. We employed the minimal doses of 

CPI-455 and Quisinostat that were sufficient to inhibit KDM5B and HDAC1 without significant 

cytotoxicity (Figures S6E and S6F). Clonogenic assays revealed that, in comparison with BRAFi 

monotherapy, both of the dual drug combinations (BRAFi + KDM5Bi or BRAFi + HDACi) could 

lead to a sustained growth inhibition across several epigenetically plastic melanoma cell lines, 

including M397 (Figure 6H). These results demonstrate the potential utility of co-targeting the 

driver oncogene BRAF along with chromatin-remodeling machinery to treat certain melanomas 

which demonstrate significant epigenetic changes upon BRAF inhibition. Importantly, the M381 

and M233 cell lines, which exhibited the lowest levels of plasticity (Figure 6A) and chromatin 

accessibility (Figure 6G), did not respond to the therapy combinations (Figures 6H). Thus, the 

responsiveness towards combination therapy with epigenetic drugs can be predicted through the 

degree of cellular plasticity, which may be encoded by the baseline epigenome of cells prior to 

treatment. Collectively, the strong associations across different cell lines between transcriptome 

changes and the baseline chromatin permissiveness suggest both a generality and predictable 

limitations of the molecular mechanism (Figure 5A), and also inform the use of epigenetic drugs 

across melanoma cells of different phenotypes.  

The presence of the epigenetic resistance mechanism in MAPKi-treated melanoma patients     
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To determine whether the adaptive resistance mechanism identified in melanoma cell lines is 

present in melanoma patient samples, we collected paired tumor biopsies from patients bearing 

BRAFV600-mutant tumors prior to MAPKi treatment and at the onset of therapy resistance. Paraffin-

embedded cross sections were stained for MITF, SOX10, NFKBIE, and KDM5B.  Prior to the 

therapy, these four protein markers showed relatively uniform spatial distributions (Figure 7A). 

After MAPKi exposure, some regions of the tumor tissues retained similar MITF, SOX10 and 

NFKBIE expression and loss of KDM5B, while other regions showed elevated KDM5B but loss 

of MITF and SOX10 (Figures 7A and 7B). The mutually exclusive spatial distribution of KDM5B 

and SOX10/MITF was consistent with the chromatin remodeling-mediated adaptive resistance 

mechanism observed (Figure 5A), and suggested the presence of the adaptive resistance mediated 

by the epigenetic reprogramming in melanoma patients undergoing MAPKi treatments.  

To investigate the generality of our findings, we interrogated the expression levels of phenotypic 

markers and critical TFs using published transcriptome data of BRAF-mutant melanoma patients 

(Hugo et al., 2015; Kwong et al., 2015). Gene expression levels from seven paired samples before 

and after MAPKi treatment were compared and enriched against curated gene sets (Figures 7C, 

and S7A; Table S6; STAR Methods). The reduced expression of MITF, NFKBIE, SOX10 and other 

melanocytic genes as well as the elevated expression of KDM5B, JUN, and other mesenchymal-

related genes after treatment suggested the existence of the chromatin remodeling-mediated 

adaptive resistance in these patients. Furthermore, we also analyzed the published transcriptome 

data (Kwong et al., 2015) of the paired melanoma patient samples by projecting them onto the two-

dimensional plot defined by Mearly and Mlate and calculating the changes of Mearly and Mlate score 

upon MAPKi treatment. Like M397, Mearly score increased and Mlate score decreased after 

treatment, indicating the gene signatures associated with Mearly and Mlate displayed consistent 

changes with our cell line model (Figure S7B). In addition, we also evaluated the co-occurrence 

of gene sets associated with Mearly and Mlate modules across the TCGA melanoma patient samples 

(STAR Method). We observed higher co-occurrence score relative to random gene permutation 

(Figure S7C). This suggests that the various functional gene sets associated with two modules are 

not cell line specific, but similarly modulated and co-expressed across other cohorts of melanoma 

patient samples. We further performed Kaplan-Meier survival analysis using the melanoma dataset 

in TCGA (STAR Methods). Consistent with our mechanism, patients with either low baseline 

expression level of KDM5B or higher level of NFKBIE are less likely to develop adaptive 

resistance to MAPK inhibition and consequently have longer overall survival (Figure 7D). Taken 

together, these results confirmed the existence of adaptive resistance in melanoma patients, and 

validated the clinical relevance of the epigenetic mechanism. 

Discussion 

Epigenetic plasticity is precisely titrated during normal development to stabilize cell fate 

commitment and facilitate appropriate cellular responses to external cues (Brown et al., 2014; 

Flavahan et al., 2017; Li, 2002). Cancer cells with dysfunctional epigenome homeostasis can 

exploit this built-in chromatin plasticity to survive drug challenges and other stressful conditions 
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(Dawson and Kouzarides, 2012; Easwaran et al., 2014; Lindroth et al., 2015; Wainwright and 

Scaffidi, 2017). Accumulating evidence indicates that epigenetic dysregulation can vary across 

different tumor cells and can also give rise to all the classic hallmarks of cancer (Flavahan et al., 

2017). For example, for epigenetically plastic cancer cells, a highly permissive epigenetic 

landscape allows them to rapidly adapt to drug challenges by reversibly transitioning into a drug-

tolerant state that fuels malignant progression. Such adaptive transitions have been recently 

observed in clinical biospecimens of glioblastoma (Liau et al., 2017), breast cancer (Jordan et al., 

2016), and many other tumor types (Knoechel et al., 2014; Roesch et al., 2010; Sharma et al., 

2010). Despite the strong influence of epigenetic plasticity on therapy resistance, the mechanistic 

underpinnings of the drug-induced epigenetic reprogramming that initiates the adaptive transition 

are less clear. A systems-level characterization aimed at capturing the dynamic drug adaptation is 

a pressing need for solving this mechanistic puzzle. 

Our goal was to establish a firm mechanistic link between epigenetic plasticity and the 

development of adaptive drug resistance in BRAF-mutant melanomas. Using BRAFi-treated 

patient-derived melanoma cell lines as models, our study revealed several properties of cellular 

plasticity. First, the drug-induced cell state changes were completely reversible upon drug removal 

at the transcriptome, epigenome, and functional levels. Second, the cell state changes proceeded 

via the sequential operations of two distinct gene expression programs, with the early-acting gene 

module setting in motion epigenetic and transcriptional programs that encode for longer-term 

changes associated with the late-acting gene module, ultimately yielding the drug-resistant 

mesenchymal-like phenotype. Finally, the activation of the early-acting module upon BRAF 

inhibition is extremely rapid. For M397 cells, activation involves nuclear translocation of the key 

transcription factor RelA, aided by rapid down-regulation of NFKBIE and coupled with the rapid 

recruitment of histone modifiers.  These cells are thus poised with a ‘hair-trigger’ response to drug 

challenge.  

A mechanistic link between epigenetic plasticity and the development of adaptive drug 

resistance was successfully established through a systems-level, multi-omics approach that 

focused on the kinetics of the adaptive response. We first acquired time-resolved transcriptome 

and epigenome data to track the kinetics of the reversible cell state transition over a two-month 

period. Critical regulators that underlie the adaptive transition were distilled from thousands of 

candidate TFs/co-factors through the sequential application of two distinct systems biology 

approaches followed by bioinformatics inferences. First, a top-down information theoretic analysis 

(Alter et al., 2000; Levine, 1978; Remacle et al., 2010; Zadran et al., 2013, 2014) simplified the 

transcriptome changes into the changes of two gene modules, one of which (Mearly) was fully 

activated within the first 3 days of BRAF inhibition. Next, dynamic ODE modeling (Mutambara, 

2017) precisely identified co-dependencies between two modules and uncovered the dominating 

influence of Mearly over both itself and the second module, Mlate. Guided by these gene module 

relationships, bioinformatic inference further identified key TFs and epigenetic regulators from 

which we extracted and experimentally validated a mechanistic regulatory network for the 
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adaptive resistance. Such mechanistic understanding would be difficult to uncover without the 

synergistic integration of this three-part systems-level computational analysis. This analytic 

methodology could potentially be adapted for the understanding of cell state changes in other 

biological contexts. 

We find that the adaptive response was not truly reversible, in that the trajectory that the cancer 

cells took upon drug exposure was not retraced following drug removal. Although drug release 

reversed the transcriptional changes, it did not reverse the order of the two modules, so that Mearly 

was deactivated first upon drug removal. Therefore, the cells took a cyclic route as they traversed 

from drug-naïve to drug-resistant and back (Figure 2B). Similar to the adaptive response to 

drugging, this finding implicates the involvement of Mearly-associated epigenetic reprogramming 

in regulating the first step of the reverse transition as well. It emphasizes the importance of those 

epigenetic regulations that manifest as an early-acting transcriptional program for the rapid 

adaptation to therapeutic challenges in melanomas. Indeed, the sequential operation of Mearly and 

Mlate modules associated with cell state regression was generally observed across several other 

melanoma cell lines, although with different magnitudes of motion (Figure 6A). By interpreting 

that magnitude of motion as a metric of transcriptome plasticity, we found that the plasticity was 

strongly correlated with baseline chromatin accessibility and with the levels of activation histone 

marks of untreated melanoma cell lines (Figure 6B-6F). These findings imply that transcriptome 

plasticity may be epigenetically encoded prior to drug exposure. The sequential operations of Mearly 

and Mlate also resemble observations of sequential transcriptional waves that guide cell 

differentiation in other biological systems (Hnisz et al., 2017; Telley et al., 2016; Yosef et al., 

2013; Zhang et al., 2019). The molecular causes of the differences in baseline epigenome profiles 

across cell lines are unclear. Deciphering the causes of the intertumoral epigenetic heterogeneity 

provides an important area for future investigation.  

A distinct chromatin state was observed in the drug-induced resistant cells compared with 

untreated or long-term drug removal cells. We identified histone remodelers KDM5B and HDAC1 

as important players for establishing the resistant epigenetic state. However, other epigenetic 

remodelers may also contribute to the cell state changes. In fact, the SIRT6 and BET protein 

families have been reported as regulators of MAPKi resistance in other melanoma systems 

(Fallahi-Sichani et al., 2017; Strub et al., 2018). Histone remodelers are generally recruited by TFs 

to regulate specific downstream genes. While other TFs could potentially recruit histone 

remodelers to regulate downstream resistance-associated genes, we identified RelA as a key player 

in regulating SOX10, whose repression is well-documented to trigger the resistant mesenchymal 

phenotype in melanomas (Shaffer et al., 2017; Sun et al., 2014). In fact, the immediate recovery 

of SOX10 expression levels after inhibition of RelA nuclear translocation in drug-tolerant cells 

confirmed the critical role of RelA as a key upstream TF in regulating SOX10 expression and 

associated resistance development (Figure 5F). In addition, the rapid recruitment of histone 

remodelers by RelA to the promoter regions of SOX10 within as early as 3 days after BRAF 

inhibition confirmed the critical role of RelA for initiating the adaptive resistance early on. The 
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question of how BRAF inhibition induces the subsequent RelA-dependent molecular circuit was 

not resolved. The elevated level of reactive oxygen species (ROS) in melanoma cells upon BRAF 

inhibition (Wang et al., 2018) might be relevant, since ROS is known to activate the 

proinflammatory NFκB signaling pathway (Gloire et al., 2006). Phosphoproteomics that can 

resolve early signaling events immediately after BRAF inhibition may prove useful for such 

endeavor (Lee et al., 2012; Wolf-Yadlin et al., 2007). 

One of the most exciting aspects of epigenetic therapy is the ability to potentiate responses to 

existing therapies, which effectively multiplies the drug arsenal against cancer progression (Ellis 

et al., 2009). The intimate role of epigenetic dysregulation in therapy resistance development 

suggested that the epigenetic regulators KDM5B and HDAC1 would be attractive targets for 

combining with BRAFi for arresting the development of adaptive resistance at least in 

epigenetically plastic melanoma cells. This hypothesis was validated in clonogenic assays (Figure 

6H). It is worth noting that BRAF and HDAC inhibitors were reported to be used in sequential 

order to eliminate the melanoma cells that acquired resistance to BRAF inhibition by exploiting 

the lethal ROS levels (Wang et al., 2018). However, our results pointed to an alternative 

therapeutic strategy that using them in combination at the very beginning could retain tumor cells 

in the drug-sensitive stage and thus lead to sustained growth inhibition. While in vitro models may 

not fully recapitulate the cellular behavior in vivo, evidence of our epigenetic mechanism was also 

observed in melanoma tissue samples from patients under MAPK inhibitor treatments. This 

implies a potential role for these combination therapies in treating BRAF-mutant melanomas, with 

the provocative goal of disrupting the development of adaptive resistance against MAPKi (Figure 

7A). In an interesting parallel, the adaptive regression in melanoma towards the drug-tolerant state 

has also been reported to contribute to resistance development in various immunotherapy regimens 

(Hugo et al., 2015; Landsberg et al., 2012; Mehta et al., 2018; Su et al., 2017). Indeed, by analyzing 

transcriptome data of melanoma patients from a recent trial of PD-1 checkpoint blockade (Hugo 

et al., 2016), we observed lower Mlate module score in non-responders than responders (Figure 

S7D), implying the more dedifferentiated melanoma phenotype was less likely to respond to PD-

1 checkpoint blockade. With the increasing options of immunotherapy in treating metastatic 

melanomas in the clinic, combinations of epigenetic drugs with drugs targeting immune 

modulations may warrant further exploration. Moreover, how to sensitize the melanoma cells with 

minimal epigenetic plasticity (e.g. M381) to combinatory targeted inhibitions also requires further 

studies. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell culturing 

M-series patient-derived cell lines used in this study were generated under UCLA institutional 

review board approval # 11–003254. Cells were cultured in a water-saturated incubator at 37 °C 

with 5% CO2 in RPMI 1640 with L-glutamine (Life Technologies), supplemented with 10% fetal 

bovine serum (Omega), and 0.2% antibiotics (MycoZapTM Plus-CL from Lonza). The cell lines 

were tested for mycoplasma and were periodically authenticated to its early passage using 

GenePrint 10 System (Promega). BRAF inhibitor (vemurafenib), KDM5B inhibitor (CPI-455), 

HDAC inhibitor (Quisinostat) and RelA translocation inhibitor (JSH-23), all from Selleck 

Chemicals LLC, were dissolved in DMSO at designated concentrations before applying to cell 

culture media. Cells were plated in 10 cm tissue culture plate at 60% confluency and treated with 

certain drugs for the specified numbers of days. M397 cells were treated with 3 µM of vemurafenib 

for 59 days or for 29 days followed by drug removal removed and cell culture with normal medium 

for another 35 days. Gender of the patients from whom the cell lines were derived: M397, female; 

M229, male; M262, female; M249, female; M263, female; M233, male; M381, male. 

Patient samples 

Melanoma samples before treatment were obtained from surplus biopsies stored in the melanoma 

biobank at the Peking University Cancer Hospital and Institute (Beijing, China). The patient #1 

received vemurafenib and patient #2 received dabrafenib and trametinib combinations. Both 

patients exhibited partial response (PR) to these MAPK inhibitors. The secondary biopsies were 

performed when patients showed progressive disease (PD). The patients consented to the use of 

their biopsy materials for scientific studies and all research was conducted in accordance to the 

guidelines and protocols approved by the institutional ethics review committee and abiding by all 

local laws for research on human derived tissue. Gender of the reported patient samples: patient#1, 

female; patient#2, female. 

METHOD DETAILS 

RNA-seq 

Total RNA was extracted from cell pellets using RNeasy Mini Kit (Qiagen). RNA sequencing 

libraries were prepared with Kapa RNA mRNA HyperPrep kit (Kapa Biosystems) according to 

the manufacturer's protocol. Briefly, 100 ng of total RNA from each sample was used for polyA 
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RNA enrichment using magnetic oligo-dT beads. The enriched mRNA underwent fragmentation 

using heat and magnesium, and the first-strand cDNA was made using random priming. The 

combined 2nd cDNA synthesis with dUTP and A-tailing reaction generated the resulting ds cDNA 

with dAMP to the 3’ ends.  The barcoded adaptors (Illumina) finally were ligated to the ds cDNA 

fragments.  A 10-cycle of PCR was performed to produce the final sequencing library. The libraries 

were validated with the Agilent Bioanalyzer DNA High Sensitivity Kit and quantified with Qubit. 

ATAC-seq 

A previously published protocol (Buenrostro et al., 2015) was used for cell lysis, tagmentation, 

and DNA purification. The Tn5 treated DNA was amplified with a 5-cycle PCR in 50µl reaction 

volumes. The tubes were removed from thermocycler and used 5 µl of a partially amplified library 

to perform qPCR to determine how many additional PCR cycles were needed. For the samples in 

this study, an additional 4-5 cycles of PCR was performed on the remaining 45ul of each partially 

amplified product. 1.8X AmpurXP beads purification was used for the final PCR cleanup. The 

libraries were validated with the Agilent Bioanalyzer DNA High Sensitivity Kit, and quantified 

with qPCR. 

ChIP-seq, ChIP-PCR, and ChIP-qPCR 

H3K4me3, H3K27ac, NFkB p65, KDM5B, and HDAC1 ChIP were performed by using Magna 

ChIP A/G Chromatin Immunoprecipitation Kit. Briefly, cells were cultured to ~80% confluency 

in a petri dish containing 10 mL of growth media and then fixed in 1% formaldehyde by adding 

275 μl of 37% formaldehyde for 10 minutes to cross-link protein–DNA complexes at room 

temperature. The unreacted formaldehyde was quenched by adding glycine to a final concentration 

0.125 M. Gently swirl dish to mix. The nuclear pellet was isolated with Cell Lysis Buffer. The 

pellet was resuspended with 500 μl SDS Lysis Buffer containing 1X Protease Inhibitor Cocktail II 

before sonication for 4 min (10 s on, 30 s off, 10% strength in a Bioruptor to yield DNA fragments 

of 0.2-1.0 kb in length. The lysates were cleared by centrifugation (12,000g for 10 min at 4 °C) 

and diluted tenfold in ChIP dilution buffer to decrease the concentration of SDS. After keeping 

10% of the sample as input, 500 μl supernatant was incubated overnight at 4 °C with antibody and 

20 μL of fully resuspended protein A/G magnetic beads. The washing, elution, reverse cross-

linking, and purification steps were performed according to the manufacturer’s description. Eluted 

DNA was quantified by Qubit dsDNA HS Assay Kit, and used for further PCR, qPCR or ChIP-

seq library preparation.  

ChIP-seq libraries were prepared with Kapa DNA HyperPrep Kit (Kapa, Cat KK 8700) according 

to the manufacturer's protocol. Briefly, 5-10 ng of immunoprecipitated DNA was underwent end-

repaired, A tailing and adaptor ligation. A 10 cycles of PCR was performed to produce the final 
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sequencing library. The libraries were validated with the Agilent Bioanalyzer DNA High 

Sensitivity Kit and quantified with Qubit.  

ChIP-PCR was performed by using KAPA Taq ReadyMix PCR Kit on CFX96 Real Time PCR 

Detection System without adding plate read. ChIP qPCR was performed by using SsoAdvanced 

Universal SYBR Green Supermix on CFX96 Real-Time PCR Detection System. In each 

PCR/qPCR reaction, 2 μl eluted DNA was added. 

Sequencing of RNA-seq, ChIP-seq, and ATAC-seq library 

RNA and ChIP-seq library templates were prepared for sequencing using Illumina HiSeq SR 

Cluster V4 Kit. Sequencing runs were performed on Illumina Hiseq 2500 in the single read mode 

of 51cycle of read1 and 7 cycles of index read with SBS V4 Kits. ATAC-seq library templates 

were prepared for sequencing with Illumina HiSeq PE Cluster V4 Kit, sequencing runs were 

performed in the paired-end mode of 101cycle on Illumina HiSeq 2500 with HiSeq SBS V4 Kits. 

Real-time analysis (RTA) 2.2.38 software was used to process the image analysis and base calling. 

CellTiter-Glo 

5000k cells were seeded onto each well of a 96well plate and were treated with indicated drug 

concentrations for 72hours. ATP-based CellTiter-Glo (Promega) luminescent cell viability assay 

was utilized to quantify the cell number for constructing dose-response curves. IC50 values were 

calculated as standard from at least three biological replicates. 

Cell cycle and apoptosis assays 

For cell cycle analysis, 500k cells were plated and were then treated with EdU. After treatment, 

cells were washed with PBS and fixed. Next, cells were processed for EdU detection using the 

Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit (Thermo Fisher) according to the 

manufacturer’s protocol. DNA content was visualized using SYTOX AADvanced (Thermo 

Fisher). Gates were determined using an unstained control. All experiments were performed with 

at least two biological replicates. 

Cell apoptosis assays were performed by treating indicated cell lines cultured under respective 

conditions. Cells were stained with Annexin V–FITC and propidium iodide for 15 minutes at room 

temperature before flow cytometry analysis. Gates were determined using an unstained control. 

All experiments were performed with at least two biological replicates. 
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Fluorescence imaging of cell lines 

Fluorescent micrographs of cells were acquired with a Nikon C2plus confocal microscope (Ti) 

using Plan Apo λ 20× objective (Nikon Inc., Melville, NY) controlled by NIS elements AR 

software (4.51.00) with the following settings: 30 μm pin hole, 12-bit acquisition, 25-30 PMT 

gain, and laser power of 0.7% (405 nm), 1.0% (488 nm), or 0.4% (640 nm). The cells adhered on 

gelatin-coated glass surfaces in 96-well glass bottom plates (Greiner Sensoplate Plus, Cat# 

655892). To prepare the surface, 100 µL of 0.1% gelatin solution was incubated in each well at 

room temperature for 10 minutes. After incubation, the solution was removed, and the wells were 

air-dried for at least 15 minutes. Typically, 10,000 cells were seeded per well in 100 µL culture 

media and grown to ~70% confluency. To fix the cells, equal volumes of 4% PFA solution was 

gently added to each well. After fixing for 20 minutes at room temperature, the cells were washed 

twice in wash buffer (0.1% BSA in PBS), and blocked and permeabilized in blocking buffer (10% 

normal donkey serum, 0.3% Triton X-100 in PBS) for 45 minutes at room temperature. After 

removing blocking buffer, cells were incubated in mouse anti-MITF primary antibodies (Thermo 

Fisher Scientific, Cat# MA5-14154) diluted to 5 μg/mL in antibody diluent (1% BSA, 1% normal 

donkey serum, 0.3% Triton X-100 in PBS) for 4 hours at room temperature. After washing twice 

in wash buffer, cells were incubated in donkey anti-Mouse IgG, Alexa Fluor 647 secondary 

antibody (Thermo Fisher Scientific, Cat# A31571, RRID:AB_162542) diluted to 4 μg/mL in 

antibody diluent for 1 hour at room temperature. After washing twice in washer buffer, cells were 

counterstained for 20 min at room temperature with Alexa Fluo 488 Phalloidin (Thermo Fisher 

Scientific Cat# A12379), as per manufacturer’s instructions. After washing twice in wash buffer, 

cells were further counterstained for 5 min with 4',6-Diamidino-2-Phenylindole (DAPI) (Thermo 

Fisher Scientific Cat# D1306) diluted to 1 μg/mL in PBS. Finally, after washing twice in PBS, the 

wells were filled with 78% glycerol. 

Western blotting 

Histone proteins were extracted using the Histone Extraction Kit (ab113476). The Invitrogen 

precast gel system NuPAGE was used for SDS-PAGE. The 4–12% Bis-Tris gels were loaded with 

samples. After blotting, the membranes were blocked in 5% BSA with TBS + 0.1% Tween-20 

(TBST) mix for at least 1 hour at room temperature. Membranes were then incubated overnight 

with the primary antibody in 5% BSA with TBST at 4°C. The next day, membranes were washed 

three times for 5 min in TBST, incubated with a suitable HRP-coupled secondary antibody for 1 

hour at room temperature, washed three times and proteins were visualized with SuperSignal™ 

West Pico PLUS Chemiluminescent Substrate (Cat.No.34577) using the ChemiDoc™ XRS+ 

System. 
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RT-qPCR 

For quantitative reverse transcription-polymerase chain reaction (qRT-PCR), total RNA was 

extracted by TRIzol™ Plus RNA Purification Kit (Cat.No.12183555) and reversed to cDNAs. 

Real-time PCR was performed with gene-specific primers on the two-color real-time PCR 

detection system (BIO-RAD) using the SsoAdvanced™ Universal SYBR® Green Supermix 

(Cat.No.1725272) to represent the relative expression levels. 

Co-IP and protein detection 

For cell lysis, cells were cultured to ~80% confluency in a petri dish containing 10 mL of growth 

media and were washed with ice-cold PBS three times. Then the cells were collected with a scraper 

in 1 mL ice-cold PBS supplemented with 1X proteinase inhibitor cocktail (Cell Signalling) and 

centrifuged. The cell pellets were resuspended in cell lysis buffer containing 50 mM Tris-HCl pH 

7.5, 250 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 10% glycerol, and 1X proteinase inhibitor 

cocktail (Cell Signalling). The resuspended cell pellets were incubated in a cold room (4°C) for 

30 min and sonicated in ice-water bath three times for 5-second pulses each. Then the cell lysates 

were cleared by 10,000 × g centrifuge at 4°C for 10 min. The protein was quantified by Qubit 

Protein Assay Kit (Invitrogen). 

For cross-linking antibody to magnetic beads, 20 μl magnetic protein A/G beads (Millipore) were 

washed with cell lysis buffer twice and resuspended in 100 μl cell lysis buffer without glycerol. 5 

μg Anti-NFkB p65 (RelA) antibody was coupled to Magnetic protein A/G beads by incubation at 

4°C overnight on a rotator. The RelA antibody-coupled Protein A/G beads were washed three 

times in 200 µL Conjugation Buffer (20 mM Sodium Phosphate, 0.15M NaCl, pH 7.5). Then the 

RelA antibody-coupled beads were suspended in 250 µL 5 mM BS3 with conjugation buffer and 

incubated at room temperature for 30 min with rotation. The cross-linking reaction was quenched 

by adding 12.5 μl 1M Tris-HCl (pH 7.5) and incubated at room temperature for 15 min with 

rotation. The RelA antibody conjugated protein A/G beads were washed with Cell Lysis buffer 

three times.  

For co-immunoprecipitation (Co-IP) experiment, 200 μl pre-cleared cell lysates were added to 

RelA antibody conjugated protein A/G beads and incubated overnight at 4°C with rotation. The 

beads were then washed 5 times with 500 μl cell lysis buffer without glycerol. The pellet beads 

were collected by a magnetic stand and resuspended in 65 μl SDS buffer (50mM Tris-HCl pH6.8, 

2% SDS, 10% glycerol, 1% β-mercaptoethanol). 

For immunoblotting, the elutes were boiled for 10 min at 95 °C. The 20 μl boiled elutes were 

electrophoresed on 10% Mini-PROTEAN TGX Precast Gels with running buffer containing SDS. 
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Then the gels were transferred on the PVDF membranes in Bio-Rad Wet Blotting Systems. The 

membranes were blocked with 5% non-fat dried milk (Bio-Rad) dissolved in PBS for 1 h at room 

temperature and incubated at 4 °C overnight with the following primary antibodies: 

JARID1B/KDM5B (Bethyl Lab #A301-813A), NFkB p65 (Millipore # 17-10060), 

HDAC1(Millipore # 17-608). After incubating with secondary Goat anti-Mouse/Rabbit antibodies 

coupled with HRP (Thermo), membranes were visualized by ChemiDoc XRS+ Imaging Systems. 

CRISPR engineering of cell lines   

LentiCRISPR v2 plasmids targeting the coding sequence of KDM5B or NFKBIE, and control 

LentiCRISPR v2 plasmid were purchased from GenScript.  Lentiviruses were produced in HEK-

293T cells by transient transfection of LentiCRISPR v2 plasmid and their packaging vectors 

psPAX2 and pMD2.G as previously described (Li et al., 2019). The virus was collected, filtered 

through a 0.45µm syringe filter after 48 hours and the M397 cells were spin-infected with viral 

supernatant supplemented with 10 µg/mL polybrene at 2,500 rpm and 30°C for 90 min. The 

transduced cells were selected using puromycin, starting at 3 days post-transduction. Genome 

editing in the respective locus was examined using a surveyor assay, which was performed 

according to the manufacturer’s instructions (Integrated DNA Technologies) (Li et al., 2018). 

Clonogenic assay 

Melanoma cells were plated onto six-well plates with fresh media at an optimal confluence. The 

media (with drug or DMSO) were replenished every two days. Upon the time of staining, 4% 

paraformaldehyde was applied onto colonies to fix the cells and 0.05% crystal violet solution was 

used for staining the colonies.  

Patient multiplexed IHC and quantification 

Multiplexed IHC staining was performed on FFPE tissue samples from melanoma primary tumors 

and metastatic lesions. Multiplexed IHC staining and antibody validation were performed by 

PerkinElmer. Briefly, the slides were firstly deparaffinized in xylene, followed by treatment with 

microwave for epitope recovery. Hematoxylin and eosin (H&E) staining was performed for 

histopathological evaluation and multiplexed IHC staining was then conducted on the slides via 

an Opal 7-Color IHC Kit (NEL811001KT, PerkinElmer) and a panel of antibodies including anti-

KDM5B (Sigma-Aldrich), anti-MITF (Sigma-Aldrich), anti-SOX10 (Sigma-Aldrich) and anti-

NFKBIE (Sigma-Alrich). The protocol was based on the manual of PerkinElmer Opal staining Kit 

and previous studies (Forde et al., 2018). Finally, DAPI (PerkinElmer) was stained to visualize 

cell nuclei. Images were acquired using a Vectra Polaris Multispectral Imaging System 

(PerkinElmer) for whole-slide scanning. inForm Image Analysis software (inForm 2.4, 
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PerkinElmer) was used to process and analyze all images. Image J was employed to quantitate the 

fluorescence intensities of cells in the designated areas.  

QUANTIFICATION AND STATISTICAL ANALYSIS 

RNA-seq analysis 

Reads were aligned against the human genome (hg19) using TopHat2 (Kim et al., 2013).  Read 

counts were quantified using htseq-count (Anders et al., 2015), with known gene annotations from 

UCSC (Hsu et al., 2006) with anti-sense (AS) genes removed.  Fold-change values were calculated 

from Fragments Per Kilobase per Million reads(FPKM) (Warden et al., 2013) normalized 

expression values, which were also used for visualization (following a log2 transformation). 

Aligned reads were counted using GenomicRanges (Lawrence et al., 2013).  Separate comparison 

p-values were calculated from raw counts using limma-voom (Law et al., 2014), and false 

discovery rate (FDR) values were calculated using the method of Benjamini and Hochberg 

(Benjamini and Hochberg, 2018).  Prior to p-value calculation, genes were filtered to only include 

transcripts with an FPKM expression level of 0.1 (after a rounded log2-transformation) in at least 

50% of samples (Warden et al., 2013).  Genes were defined as differentially expressed if they had 

a |fold-change| > 1.5 and FDR < 0.05. Candidate genes were selected based upon the inverse 

overlap between the early and late time series. The “Early Drug” time series included 5 samples 

from Day 3 to Day 29 (with active drug treatment).  The “Late No-Drug” had 6 time-points after 

drug removal at Day 29 (4-35 days post-drug removal). There were also 3 samples with active 

drug treatment after Day 29, but no genes were differentially expressed for that comparison 

consistent with the expectation of similar gene expression patterns after developing resistance; 

however, those 3 late drug samples (along with an untreated control sample) were used for 

visualization in a heatmap of candidate genes (defined as genes with an significant increase in 

expression with drug treatment and a significant decrease in expression after drug removal, or a 

significant decrease in expression with drug treatment and a significant increase in expression after 

drug removal). 

A heatmap of log2(FPKM + 0.1) standardized expression (mean of 0, standard deviation of 1, per-

gene) was visualized using the ‘ggplots’ package in R.  More specifically, standardized expression 

was limited to be within the range of -2 and 2 (so, all values less than -2 were set to -2, and all 

values greater than 2 were set to 2), and clustering was only performed by genes (with samples 

ordered by time, within each category).  Hierarchical clustering was performed using Euclidian 

Distance as the distance metric. 
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Consensus clustering of M397 transcriptome 

To inspect the similarity of the transcriptome of M397 in different time points, we applied 

consensus clustering using the R package of ConsensusClusterPlus (Wilkerson and Hayes, 2010) 

to define clusters. The top 3,000 most varying genes were used for consensus clustering with the 

hierarchical clustering method.  

Analysis of differentially expressed transcription factors 

To annotate differentially expressed transcription factors/co-factors, the differential expression 

analysis was performed by Cuffdiff among D0, DR30, DR35, D29, and D33 (FDR ≤ 0.05). Then 

we downloaded TFs/co-factors list from AnimalTFDB 3.0, and got the up/down-regulated TFs/co-

factors by screened from the differential expression analysis. The result was visualized by a 

volcano plot. 

ChIP-seq analysis 

Reads were mapped to the human genome hg19 by bowtie2 (Langmead and Salzberg, 2012). The 

identical aligned reads were deduplicated to avoid PCR duplicates. Peaks were called on the 

merged set of all ChIP-seq reads of M397 using MACS2 with the following parameters: --

nomodel, --broad (Zhang et al., 2008). Peaks were assigned to the gene with closest TSS. 

Differential analysis between D0 and any other samples( D3, D32, DR) were performed using 

diffReps with a window size 1000.(Love et al., 2014). Differential binding regions were called if 

the absolute log value of the fold change was more than 1 and FDR <0.05. Then the differential 

binding regions were compared and merged to ChIP peaks called form MACS2 To visualize peaks 

in each sample, bed graph file was generated using MACS2 with following parametes: --nomodel, 

--broad, --bdg, --SPMR. Then the generated bed graph file was converted into bigwig file by 

bedGraphToBigWig tool. The average of ChIP-seq signal was calculated and visualized by 

deepTools v3.0.2 (Ramírez et al., 2014). The read counts were normalized by RPKM. RPKM (per 

bin) = number of reads per bin / (number of mapped reads (in millions) * bin length (kb)). To 

assess how H3K4me3 and H3K27ac signal of differential binding regions in the cyclic transition 

of M397 changed in multiple cell lines, we calculated the normalized read counts around the 

differential binding peaks(+/- 1kb) at the window size of 10bp. The different peaks are called from 

the time-series ChIP-seq data we generated at this paper. To evaluate the average H3K4me3 and 

H3K27ac signal at SOX10, we slid the 10bp window size from -3Kb to +10Kb around the TSS to 

counts the normalized reads and calculated the average value for 520-780 bins. 
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ATAC-seq analysis 

All experiments were performed once. First, adaptor sequences were trimmed form the reads using 

Cutadapt. Then Reads were aligned to hg19 with bowtie2 with standard parameters and a 

maximum fragment length of 2,000. (Langmead and Salzberg, 2012). The identical aligned reads 

were deduplicated to avoid PCR duplicates. These de-duplicated reads were then filtered for high 

quality (MAPQ ≥ 30). Peaks were called on the merged set of all ATAC-seq reads of M397 using 

MACS2 with following parameters: --nomodel, -broad, -q 1e-5 (Zhang et al., 2008) and filtered to 

remove putative copy number varied regions (Denny et al., 2016). Differentially accessible regions 

between D0 and any other samples( D3, D32, DR) were identified using diffReps with a window 

size 500. (Shen et al., 2013)). Differential binding regions were called if the absolute log value of 

the fold change was more than 1 and FDR <0.05. Then the differential binding regions were 

compared and merged to ChIP peaks called form MACS2.  To visualize peaks in each sample, the 

same routine in ChIP-seq analysis was applied. ATAC-seq profile of differentially accessible 

region in samples of M397 were generated by using ngs.plot.r with following parameters: -G hg19 

-R bed -L 1000 -GO km -KNC 4 -SC 0,3.5.The profile of unchanged ATAC-seq peaks in samples 

of M397 was plotted by using ngs.plot.r with following parameters; -G hg19 -R bed -L 1000 -GO 

total -SC 0,3.5. HOMER was used to find over-represented motifs in the set of differentially 

accessible peaks by using a background set of peaks that did not significantly change, and using 

the parameter “-size given -len 6,8,10,12 -mset vertebrates -bg” (Denny et al., 2016). The average 

of ATAC-seq signal was calculated and visualized by deepTools v3.0.2 (Ramírez et al., 2014). 

The read counts were normalized by RPKM. RPKM (per bin)=number of reads per bin / (number 

of mapped reads (in millions) * bin length (kb)). For the calculation of the average ATAC-seq 

signal, we constructed the meaningful value around the different peaks (+/- 1Kb) at the window 

size of 10bp and calculated the average value for 140-160 bins. The different peaks are called from 

the time-series ATAC-seq data we generated at this paper. 

Inference of RelA downstream transcription factors  

To identify RelA-binding TFs/co-factors in the Mlate process, we downloaded TF/co-factor list 

from AnimalTFDB 3.0. HOMER was used to annotate RelA-binding motif (HOMER Motif 208) 

at the whole genome level with the following parameters: annotatePeaks.pl tss hg19 -size -

1800,400. Then, TF/co-factors containing RelA-binding-motif were selected out. Within this list 

of TF/co-factors, RelA-motif overlapped H3K4me3, H3K27ac and ATAC-seq peaks were 

analyzed by bedtools v2.27.1. Thirty-six TFs showed changes in the RelA-motif overlapped peaks 

across the adaptive transition (D32 vs D0). However, only two TFs, SOX10 and DNAJC1, 

displayed significant changes (p < 0.05) for all three epigenome alterations (Table S5). 
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Surprisal analysis and SOM visualization 

In order to analyze the dynamic transcriptome changes across all time points, we assume that many 

of them are coordinately changing together as a group (or gene module). Surprisal analysis has 

been well documented in deconvoluting the change of thousands of genes into the change of a 

couple of gene modules and one unchanged gene expression baseline (Remacle et al., 2010; 

Vasudevan et al., 2018; Zadran et al., 2013, 2014). 

When applied here, surprisal analysis simplified the transcriptome dynamics into two major gene 

modules and one unchanged gene expression baseline. Briefly, the natural logarithm of the 

measured level of a transcript i at a specific time point t, ln 𝑋𝑖(𝑡), is expressed as a sum of a log-

transformed gene expression baseline, term ln 𝑋𝑖
0 , and several gene modules 𝜆𝑗(𝑡) × 𝐺𝑖𝑗 , 

representing deviations from the common expression baseline. Each deviation term is a product of 

a time-dependent module score  𝜆𝑗(𝑡), and the time-independent module-specific contribution 

score 𝐺𝑖𝑗of the gene i.  Gene i that displays large positive or negative contribution to a module j 

(high positive or negative Gij value) represents a gene that is functionally positively or negatively 

correlated with the module j. In other words, the biological function of the module j could be 

inferred by functional enrichment analysis of genes with positive and negative Gij values. 

To implement surprisal analysis, we first computed the singular value decomposition (SVD) of the 

matrix 𝑙𝑛 𝐗(𝑡). As described previously (Remacle et al., 2010), the SVD factored this matrix in a 

way that determined the two sets of parameters that are required in the surprisal analysis: the 

Lagrange multipliers (𝜆𝑗(𝑡)) for all gene modules at a given time point and for all times, as well 

as the module-specific contribution scores (𝐺𝑖𝑗)  for all transcripts i at each gene module j. Further 

enrichment analysis of the functions associated with each module were performed based on the 

module-specific contribution scores of the genes associated with that module. The module-1 and 

module-2 scores of other published datasets on melanoma cell lines (Su et al., 2017) or melanoma 

patients’ biospecimens (Hugo et al., 2015, 2016) were calculated as ∑ (𝑙𝑛 𝑋𝑖 ) ∙ 𝐺𝑖𝑗𝑖  which 

considered the both the gene expression as well as the respective gene contribution towards each 

gene module. 

Natural log-transformed transcriptome dataset and contributions from each gene module (𝜆𝑗(𝑡)𝐺𝑖𝑗) 

calculated from surprisal analysis were visualized using self-organized maps (SOMs). Here, the 

SOMs plotted individual sample as a single 2-dimensional heatmap and, at the same time, 

displayed high-resolution patterns. Thousands of input genes were assigned to 625 rectangular 

“tiles” (SOM nodes), each of which represented a mini-cluster of genes, arranged to form a pattern 

within a 2-dimensional mosaic map on the SOM grid. Each mini-cluster of genes was mapped 

onto the same tiles in each map, and the color of each tile represented the relative average 

expression of the gene mini-cluster within that tile. Most similar clusters were placed adjacent to 
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each other in the mosaic map. Tiles at the same location represented the same group of genes 

across different conditions. Gene Expression Dynamics Inspector (GEDI) package was utilized to 

implement the SOM visualization (Eichler et al., 2003). 

Dynamic system modeling of two gene modules 

In order to more precisely infer the mathematical inter-regulation relationship between two gene 

modules, we performed dynamic systems modeling with regards to the average gene expression 

of the top 500 genes that have the highest positive or negative G values (weights). More 

specifically, for drug treatment condition, we have G1 positive genes and G1 negative genes (genes 

that are positive or negatively correlated with Mlate), which are paired with G2 positive and G2 

negative genes (genes that are positive or negatively correlated with Mearly) respectively. 

Therefore, we have 4 different scenarios for drug treatment condition. Similarly, we also have 4 

different scenarios for the drug removal condition. 

We started with a system of first-order mass equations that can consider all possible interaction 

relationships between the two modules. This system initially included terms for baseline, constant 

basal regulation (Bl and Be) on each gene module, first-order autoregulation from itself (Me-e and 

Ml-l), and first-order regulation by the genes from the other module (Me-l and Ml-e). We 

simultaneously fitted all coefficients through unbiased search using Markov Chain Monte Carlo 

(MCMC) in Python 3.0 and Gaussian distribution of coefficient probability. Initial coefficients 

were set on random uniform distributions. We also constrained coefficients such that the resulting 

fit would not lead to artificial oscillations with a frequency beyond the Nyquist frequency of our 

experimental sampling. Using the fitted parameters, our simulated trajectories of module1 (Mlate) 

and module2 (Mearly) can recapitulate the original experimental data.  

Gene set enrichment analysis  

Gene Set Enrichment Analysis (GSEA) was conducted based on GSEA v2.2.3 software with 1000 

permutations and weighted enrichment statistics. Normalized enrichment score (NES) was 

assessed across the curated Molecular Signatures Database (MSigDB) Hallmark, C2 curated gene 

sets, and MITF signature (Hoek et al., 2008). To calculate the single-sample gene set enrichment, 

we used the GSVA program (Hänzelmann et al., 2013) to derive the absolute enrichment scores 

of previously experimentally validated gene signatures. The normalized log2 RPKM values were 

utilized as input for GSVA in the RNA-seq mode. The patient transcriptomic data was based on 

the patient transcriptomic data was obtained from (Kwong et al., 2015). GSEA v3.0 was used with 

the same parameters described above. 
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Transcription factor target and motif enrichment analysis 

Two different approaches were utilized to identify driving transcription factor in module2 (Mearly) 

process. For the first approach, we filtered the TF that are associated with module2 (Pearson 

correlation with module2 amplitude (λ2) bigger than 0.8 or less than -0.8) and define them as 

module2 associated TFs. We then acquired the downstream targets genes for all module2 

associated TFs using public database TFtargets (https://github.com/slowkow/tftargets). The 

KDM5B gene targets were manually verified by ChIP-seq data (GSE101045). We then further 

filter the module2-associated TFs based on the overlap of their downstream target gene with 

certain module1 (Mlate). More specifically, for a certain TF in module2 (Mearly), if its’ downstream-

targeted genes are over-represented in module1 (Mlate) process (Hypergeometric test with 

Bonferroni correction, FDR<=0.05), then this TF is selected as a candidate for driving TF in 

module2. For the second approach, we use HOMER to find enriched motifs in the promoter 

sequence of module1 associated gene set (Pearson correlation with module2 amplitude (λ2) bigger 

than 0.8 or less than -0.8) with following parameters: -len 6,8,10,12 -start -1800 -end 100 -b -mset 

vertebrates. Then, we infer the potential TFs based on the enriched motif information.  

GDSC data analysis 

Cell lines from skin cutaneous melanoma (SKCM) samples, containing the BRAFV600E genetic 

mutation from the GDSC project, were selected to analyze the association between the 

transcriptional states before drug treatment and their drug responses (Iorio et al., 2016). Gene 

expression levels of the selected cell lines were projected to two gene modules (Mearly and Mlate). 

BRAF inhibitors Dabrafenib is selected to analyze the association of transcriptome state and drug 

response. Pearson correlation analysis and linear regression modeling for the two gene modules 

and the log-transformed IC50 values (Drug concentration that reduces viability by 50%) or AUC 

(area under the dose-response curve) values were carried out. 

CCLE and TCGA analysis  

GSVA analysis was utilized to analyze the pathway enrichment scores across RNA-seq data of 

melanoma patient from TCGA database (Akbani et al., 2015) and from melanoma cell line data 

from CCLE (Barretina et al., 2012) database. The enrichment score of Mearly and Mlate associated 

genesets across all samples within the (patient or cell line) dataset were utilized as input to calculate 

pairwise Pearson correlations, and the average Pearson values of all possible pairwise correlations 

are used as co-occurrence score of Mearly and Mlate genesets within each dataset. 
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Patient data analysis  

Paired patient data before and after the MAPKi treatments were used to evaluate relevant gene 

expression levels and gene sets enrichment. These data were collected from two published papers. 

The gene expression levels and associated patient identification numbers in the original papers 

were provided in Table S6. Patient survival analysis was performed with high expression vs. low 

expression of selected genes from the TCGA melanoma (SKCM) data set including all stage III 

and IV patients. Kaplan-Meier method was used to estimate the survival rate, along with a log-

rank statistical test comparing the survival distribution. All tests were two-sided, and p values less 

than 0.05 were considered statistically significant. 

DATA AND SOFTWARE AVAILABILITY  

The accession number for the gene expression, ATAC-seq and ChIP-seq data reported in this paper 

is GEO: GSE134459. 
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Figure 1. Adaptive drug resistance and reversibility across a panel of melanoma cell lines. 

(A) An illustration of the melanocyte-to-mesenchymal transition and the experimental timeline. 

Cells were treated with BRAF inhibitor (BRAFi) vemurafenib for 29 days (D29). BRAFi treatment 

continued for some cells up to D59, while other cells were followed over a 35 day period of drug 

removal (DR35). Cells were harvested for RNA-seq at the time points specified. (B) Heatmap of 

differential expressed genes (DEGs) at a series of time points of drug treatment and drug removal 

for M397 cells. Sidebars denote consensus clustering results of the variated genes from the samples 

(6 clusters) and their treatment conditions. DR30 and DR35 fall into the same cluster with the 

control sample. (C) Enriched molecular signatures associated with the adaptive transition in M397 

cells. (D) Increased drug tolerance and reversed drug sensitivity across multiple melanoma cell 

lines with varying baseline sensitivities to BRAF inhibition evaluated by IC50 values of 

vemurafenib. LT: long-term; DR: drug release. Mean ± SD. (E) Cell cycle distribution across the 

reversible transition of M397 cells. (F) Cell viability and apoptotic profiles of untreated cells (Ctrl) 
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and reverted cells (upon 30 days drug removal) after 3-day BRAFi exposure. DR: drug removal. 

See also Figure S1 and Table S1
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Figure 2. Information theoretic analysis and dynamic systems modeling of the reversible 

adaptive transition in M397 cells. (A) Application of surprisal analysis to the time-series 

transcriptome data over the transition. The transcriptome data, decomposed into a time invariant 

gene expression baseline plus two time-dependent gene modules, are illustrated as self-organizing 

maps (SOMs). Adding the baseline and first 2 gene modules recapitulates the experimentally 

measured transcriptome profiles. (B) The cyclic trajectory of the reversible transition plotted in 

the landscape defined by the first two gene modules. The blue and green dash lines circled the 

milieu of the mesenchymal-like drug-resistant state and drug naïve state, respectively. Selected 

enriched molecular processes (nominal p < 0.05) associated with each gene module are listed. NES: 

normalized enrichment score. (C) Schematic illustration of the simplified model for two gene 

module interactions. (D) The module-module interaction coefficient in the ordinary differential 

equations (ODEs) determined by fitting the model to the average expression level of the top 500 
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genes associated with each gene module. (E) Experimentally measured and ODE fitted average 

expression levels of genes associated with the two modules in the forward and reverse directions 

of the cyclic transition. See also Figures S2, S3 and Tables S2, S3, S4. 
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Figure 3. Bioinformatic inference of the critical regulators that drive the initiation of the 

reversible adaptive transition. (A) A scheme showing the target gene inferences. (B) 

Bioinformatic inferences based on the dynamic relationships between the two gene modules.  (i) 

The list of enriched transcription factors (TF) and co-factors from target gene enrichment are 

ranked according to their absolute correlation coefficients with Mearly scores with relative 

expression levels (z-score) shown as a heatmap. The target gene number and statistical significance 

(p values) for each enriched element are listed to the right. (ii) Enriched motifs from the cis-

regulatory elements of genes highly correlated (ρ > 0.8) with Mlate. Top two significantly enriched 

motifs are listed. -Log2 p values are shown to the right. (C) Relative expression levels of cell-state 

specific genes over the course of the adaptive cyclic transition (D) Gene expression levels, 

normalized to D0, of the critical TFs/co-factors involved in the adaptive transition. See also Figure 

S4 
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Figure 4. Epigenetic reversibility of the adaptive transition. (A) Chromatin accessibility change 

assessed by average peak signal of ATAC-seq across the entire genome. The x-axis shows flanking 

regions of +/- 1kb around the peak center. (B) Heatmap of chromatin accessibility changes 

assessed by average ATAC-seq peak signal across all peaks, at selected time points over the 

transition. K-mean clustering of rows identifies five chromatin regions that grouped into D3 

enriched (group 1), D0/DR30 enriched (group 2), and independent of drug treatment (group 3). 

Color corresponds to the normalized ATAC-seq signal. Relevant transcription factor binding 

motifs are indicated for cluster groups 1 and 2. (C) Venn diagrams showing the numbers and 

overlaps of differential ChIP-seq peaks for H3K4me3 and H3K27ac. Each circle represents 

changes in those peaks between two time points, while the intersection of the circles represent 

changes that are shared between circles. (D) ChIP-seq profile plots show the average H3K4me3 

(left) and H3K27ac (right) ChIP-seq signal across peaks identified by RelA ChIP-seq, with 
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heatmap representation of each peak shown below. The x-axis shows flanking regions of +/- 4kb 

around the peak center. See also Figure S5 and Table S5. 
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Figure 5 Molecular mechanism that underlies the reversible adaptive transition. (A) 
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Illustration of the mechanism of epigenetic regulation before and after BRAF inhibition.  Left 

panel: retention of RelA in the cytoplasm and open chromatin at the promoter regions of SOX10 

and NFKBIE. Right panel: BRAFi induces translocation of RelA into the nucleus, allowing RelA 

to recruit histone modifiers KDM5B and HDAC1 to the target genes to reduce chromatin 

accessibility and epigenetically repress of SOX10 and NFKBIE expression. Functional 

consequences, such as increased TGFβ signaling and adaptive drug resistance, result in turn. The 

illustrations of the cell cycle reflect the measured cell cycle arrest observed upon short-term BRAF 

inhibition. (B) ATAC-seq and ChIP-seq profiles at the promoter regions of NFKBIE and SOX10, 

at selected time points across the reversible transition. (C) ChIP-PCR data illustrates the binding 

and co-localization of RelA, KDM5B, HDAC1, H3K4me3, and H3K27ac to promoter regions of 

SOX10 and NFKBIE (labeled NP1 and SP1, respectively). (D) ChIP-qPCR assessment of the 

binding profiles of RelA, KDM5B, HDAC1, H3K4me3, and H3K27ac on the promoter regions of 

NFKBIE and SOX10 at a series of time points across the reversible transition. (E) Co-

immunoprecipitation of RelA with KDM5B and HDAC1, confirming the binding between RelA 

and the two histone modifiers (*P<0.05 compared to respective D0). (F) The recovery of SOX10 

gene expression levels of M397 cells pretreated with BRAFi for 21 days (D21), and then co-treated 

for 0-24 hours with BRAFi and JSH-23 (*P<0.05 compared to D0) (G) ChIP-qPCR assessment of 

the binding profiles of RelA, KDM5B, HDAC1, H3K4me3, and H3K27ac on the prompter regions 

of NFKBIE and SOX10 for control and JSH-23 24h-treated cells (*P<0.05 compared to respective 

control). (H) ChIP-qPCR of the binding profiles of H3K4me3 and H3K27ac on the promoter 

region of SOX10 from NFKBIE KO M397 cells (*P<0.05 compared to respective WT). (I) SOX10 

expression levels after NFKBIE KO compared to wild type (WT) (*P<0.05 compared to WT) (J) 

ChIP-qPCR of the binding profiles of H3K4me3 and H3K27ac on the promoter regions of 

NFKBIE and SOX10 from KDM5B KO M397 cells (*P<0.05 compared to WT) (K) Expression 

levels of SOX10 and NFKBIE after KDM5B KO compared to WT (*P<0.05 compared to WT). 

(L) Clonogenic assays of NFKBIE KO or SOX10 KO cells related to respective controls. 
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Figure 6. The generality and molecular underpinning of the phenotypic plasticity of patient-
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derived melanoma cell lines in response to BRAF inhibition. (A) Quantification of phenotypic 

plasticity upon BRAF inhibition across a panel of melanoma cell lines. The transcriptome data are 

projected to the 2D plane defined by the two gene modules (Mearly and Mlate) and connected by 

smooth lines. The data points denote 0-day (D0), D3, and D21 BRAFi treatment in 

counterclockwise order, respectively. The color of the line encodes the baseline IC50 value of the 

cell line. (B-F) The correlation between short-term plasticity (motion along Mearly) and the (B) 

average ATAC-seq signal, (C) average H3K4me3 (D) and H3K27ac ChIP-seq signal across all 

peaks, as well as (E) average H3K4me3 and (F) H3K27ac ChIP-seq signal on the transcription 

start site (TSS) region of SOX10 across all cell lines with Pearson correlation coefficients and p-

values as shown. The shaded regions of panels B-F denote 95% CIs of each linear fitting. (G) The 

chromatin accessibility of a panel of melanoma cell lines quantified by the average ATAC-seq 

signal across all peaks with heatmap view of each peak shown below. The x-axis includes flanking 

regions of +/- 4kb around the peak center. (H) Clonogenic assays for BRAFi monotherapy and 

combination therapies simultaneously targeting the driver oncogene BRAF and histone modifiers 

KDM5B and HDAC1. The cell lines are ordered from left to right with increased plasticity. See 

also Figure S6.
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Figure 7. The clinical relevance of the drug-induced chromatin remodeling mechanism. (A) 

Immunohistochemical (IHC) staining of melanoma tissue biopsies from two patients bearing 

BRAF-mutant melanoma before and after MAPKi treatment. Hematoxylin and eosin (H&E) 

staining shown in left column followed by a staining panel from pre-treatment or post-treatment 

biopsies. Post-treatment tissue was collected at the onset of tumor recurrence. The stains are DAPI 

nuclear stain (blue), NFKBIE (green), KDMB5 (yellow), SOX10 (red), MITF (cyan), and merge. 

The region highlighted by white dashed lines in the post-MAPKi tissues display reduced MITF, 
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NFKBIE, and SOX10 expression and elevated KDM5B expression, consistent with the adaptive 

resistance mechanism. The region highlighted by red dashed lines retained the MITF, NFKBIE, 

and SOX10 expressions but with loss of KDM5B after treatment. (B) Digitized mean fluorescence 

intensity (MFI) of the areas highlighted by white dashed lines for the selected markers in two 

patients. Data are represented as mean ± SD (*P<0.05 compared to respective pre-MAPKi). (C) 

Log-fold change in the expression of relevant genes (post-treatment vs baseline), collated from 

published datasets of BRAF-mutant melanoma patients treated with MAPK inhibitors (STAR 

Method). (D) Kaplan-Meier plots assembled using TCGA data sets of tumors from patients with 

stages III and IV melanomas with log-rank P values shown. See also Figure S7 and Table S6. 
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Supplemental Figures 

Figure S1. Reversible adaptive resistance across melanoma cell lines. Related to Figure 1. 
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A. Stacked bar plot shows the fraction of cells viable in G0/G1, S, and G2/M phases (y-axis) 

for different melanoma cell lines. Each cell line has two different assay conditions: 

observed either before treatment, or after pretreated with BRAFi for 30 days and drug 

removal in normal medium for another 30 days. Cells in both conditions underwent cell 

cycle analysis at both drug-naïve condition and retreatment with BRAFi for another 3 days. 

Cells that have gone through drug treatment and drug removal have the same cell cycle 

distribution as cells that never receive drug treatment. 

B. Immunostaining of M397 cells at different stages of reversible adaptive drug resistance. 

M397 cells before treatment (D0, first row), after treatment with BRAFi for 59 days (D59, 

second row), and pretreated with BRAFi for 29 days and then cultured with normal medium 

for another 35 days (DR35, third row) were used for immunostaining of MITF (red), actin 

(green), and DAPI (blue). The cell morphology at D0 is very similar to that at DR35. Cell 

morphology at D59 is very different from the ones at the other two conditions. Left panel 

scale bar 100um, right panel scale bar 20um. 

C. Two-dimensional self-organizing maps (SOMs) of overall transcriptome profiles of cells 

collected at different stages across the reversible adaptive drug response.  

D. Enrichment scores of representative gene sets across different stages of the reversible 

adaptive response. Enrichment scores at different time points are shown as dots connected 

with solid lines. The scores stabilize after prolonged drug treatment (after 21 days of 

BRAFi, blue line) and return to the enrichment score of day 0 after long-term drug removal 

(green line). 
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Figure S2. Surprisal analysis of the reversible adaptive transition in M397. Related to Figure 2. 
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(A) Application of surprisal analysis to the kinetic transcriptome profile with respect to the reversible adaptive transition. The 

transcriptome data, decomposed into a time-invariant gene expression baseline plus two time-dependent gene modules, are 

illustrated as self-organizing maps (SOMs). Adding the expressions of the baseline gene module and time-dependent module-1 

and module-2 recapitulates the experimentally measured transcriptome profiles visualized by the fact that the patterns of the 

SOMs in the last row (experimentally measured transcriptome profiles) are almost identical to those at second last row (predicted 

transcriptome profiles from surprisal analysis by adding first three rows). 

(B) ODE predictions (smooth line) are consistent with the average expression levels of genes associated with module-1 and module-

2 from experimental measurements (dots) in the forward and reverse directions of the adaptive transition. More specifically, for 

drug treatment conditions, we have G1 positive genes (genes that positively contribute to module-1 or Mlate) and G1 negative 

genes (genes that negatively contribute to module-1 or Mlate), which are paired with G2 positive and G2 negative genes (genes 

that positively and negatively contribute to module-2 or Mearly) respectively. Therefore, we have four different scenarios for drug 

treatment and four different scenarios for drug removal. 
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Figure S3. Best fitted parameters from dynamic system modeling of the reversible adaptive 

transition in M397. Related to Figure 2. The module-module interaction coefficients in the 

ordinary differential equations (ODEs) determined from fitting the ODE model to the average 

expression level of the top 500 genes associated with each gene module. More specifically, for 

drug treatment condition, we have G1 positive genes (genes that positively contribute to module-

1 or Mlate) and G1 negative genes (genes that negatively contribute to module-1 or Mlate), which 

are paired with G2 positive and G2 negative genes (genes that positively and negatively contribute 

to module-2 or Mearly), respectively. Therefore, we have four different scenarios for drug treatment. 

Similarly, we also have another four different scenarios for the drug removal. 
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Figure S4. Strategies for inference of the critical regulators that drive the initiation of the 

reversible adaptive transition. Related to Figure 3. 

(A) Target gene inference based on the dynamic relationships between the two gene modules. 

The TFs/co-factors whose expression kinetics are correlated with the module scores of 
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Mearly (left panel) are mapped to their target genes, followed by assessing the target gene 

enrichments in the genes correlated with Mlate scores (middle panel). The inferred 

transition-driving TFs/co-factors whose target genes are significantly overrepresented in 

Mlate are ranked by their absolute correlation coefficients with Mearly scores. The top-5 

elements were listed.  

(B) Common motif inference to extract enriched motifs from genes highly correlated with Mlate 

(left panel) and to identify the TFs that bind to these motifs and regulate cell state regression 

(right panel). Seven significantly enriched motifs with p <0.01 (i.e. -log2P > 6.64) were 

identified and listed. 
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Figure S5. Epigenetic reversibility of the adaptive transition. Related to Figure 4. 
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(A) Graphical illustration of our methodology that integrates systems biology, bioinformatics 

and molecular biology approaches for investigating the molecular mechanism of the 

adaptive resistance. 

(B) A volcano plot showing the transcription factors/co-factors that display significant 

alterations between the drug-resistant state and the drug-sensitive state. 

(C) Differential peaks of the ATAC-seq profiles between two different time points. D0, D3, 

D32, and DR30 denote day-0, day-3, day-32 and drug removal day-30 across the adaptive 

transition, respectively. 

(D) Average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal at the transcription start 

sites (TSS) across all genes with heatmap representation of each peak shown below. The 

x-axis shows flanking regions of +/- 3kb around the TSS. 

(E) ATAC-seq and ChIP-seq profiles at the promoter regions of some representative cell state 

marker genes, at selected time points across the reversible transition. 
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Figure S6. The generality and molecular underpinning of the phenotypic plasticity of 

patient-derived melanoma cell lines in response to BRAF inhibition. Related to Figure 6. 
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(A) Co-occurrence score of Mearly-related gene sets (G2+ and G2- gene sets) and Mlate-related 

gene sets (G1+ and G1- gene sets) in comparison with randomly selected gene sets 

calculated from the transcriptome data across all melanoma cells from the CCLE database. 

(B) Correlations between Mearly or Mlate module scores and BRAFi resistance levels across 

BRAFV600E-mutant melanoma cell lines in the GDSC database. The BRAFi resistance 

levels are quantified by natural log-transformed IC50 (µM) values and AUC. 

(C) Average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal across promoter regions of 

all genes for a panel of melanoma cell lines, with heatmap view around TSS shown below. 

The x-axis shows flanking regions of +/- 1kb around each peak center. The y-axis of the 

top panel represents the read counts normalized by RPKM.  

(D) Average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal at the transcription start 

site (TSS) region of SOX10.  

(E) Short-term clonogenic assay of KDM5 inhibitor (left) and HDAC inhibitor (right) across a 

panel of melanoma cell lines showing no significant toxicity to the cells at the dose used. 

(F) Left, western blot of lysates from melanoma either untreated control (CT) or treated with 

KDM5B inhibitor (CPI) and HDAC inhibitor (Q). H3 is used as loading control. 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/724740doi: bioRxiv preprint first posted online Aug. 5, 2019; 

http://dx.doi.org/10.1101/724740


65 
 

Figure S7. Generality and clinical relevance of adaptive epigenetic mechanism in melanoma 

patients. Related to Figure 7. 

(A) Gene set enrichment analysis (GSEA) on published transcriptome data from a melanoma 

patient (P2 in Table S6) before and after MAPKi treatment for selected gene sets relevant 

to the reversible transition observed in our system. NES, normalized enrichment score. 

(B) The change in Mearly and Mlate module scores calculated by published transcriptome data 

from melanoma patients before and after MAPKi treatment.  

(C) Co-occurrence scores of Mearly-related gene sets (G2+ and G2- gene sets) and Mlate-related 

gene sets (G1+ and G1- gene sets) relative to randomly selected gene sets calculated from 

transcriptome data across all melanoma patients from the TCGA database.  

(D) Average Mlate module scores of responders and non-responders to PD-1 checkpoint 

blockade calculated by published transcriptome data of melanoma patients under PD-1 

checkpoint inhibitor treatment (see STAR Methods) 
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Supplemental Tables 

Table S1: RNA-seq data (in RPKM) for time-course experiments of M397 and relevant gene module scores from information 

theory analysis. Data are provided as Excel spreadsheets. 
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Table S2. GSEA analysis for selected gene sets between different time points. Statistically significant positive enrichments are 

highlighted in yellow and negative enrichments in blue. 

 

Table S3. GSEA analysis of the genes associated with Mearly (G2) and Mlate (G1) gene modules for selected gene sets. Statistically 

significant positive enrichments are highlighted in yellow and negative enrichments in blue. 
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Table S4. Fitting parameters used in the ODE modeling. 

 Input genes for ODE parameter fitting 
Basal 

term 

Influence on 

M
late

 

Influence on 

M
early

 

 M
early

 input M
late

 input B
l
 B

e
 M

e-l
 M

l-l
 M

l-e
 M

e-e
 

Drug 

ON 

M
early

_positive_genes M
late

_positive_genes 8.39 6.33 0.49 -0.05 0.09 0.38 

M
early

_negative_genes M
late

_positive_genes -9.6 7.59 -0.68 -0.15 -0.15 0.52 

M
early

_positive_genes M
late

_negative_genes -3.12 6.83 -0.17 -0.01 -0.09 0.25 

M
early

_negative_genes M
late

_negative_genes 2.75 1.49 0.31 -0.048 0.14 0.41 

         

Drug 

OFF 

M
early

_positive_genes M
late

_positive_genes 5.47 5.35 0.38 0.16 -0.12 0.53 

M
early

_negative_genes M
late

_positive_genes -3.46 6.2 -0.18 0.03 -0.05 0.22 

M
early

_positive_genes M
late

_negative_genes -1.83 0.93 -0.48 0.14 -0.01 0.15 

M
early

_negative_genes M
late

_negative_genes 10.23 3.23 0.45 0.03 0.04 0.16 
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Table S5. The statistical significance of the alterations of chromatin accessibility and histone 

marks across the adaptive transition. The epigenetic alterations were evaluated in the RelA 

binding regions of a list of TFs and co-factors that are strongly associated with Mlate and contain 

RelA binding motifs. The TFs/co-factors that show statistically significant changes across all three 

epigenome alterations are shown in black. 

TF name 
H3K4me3 H3K27ac ATAC-seq 

P values 

SOX10 3.2 × 10
-11

 1.7 × 10
-4

 5.9 × 10
-5

 

DNAJC1 5.9 × 10
-5

 1.2 × 10
-3

 9.5 × 10
-3

 

ACTN1 3.4 × 10
-9

 4.0 × 10
-5

 0.13 

MMS19 3.0 × 10
-9

 1.2 × 10
-4

 6.1 × 10
-2

 

REPIN1 7.0 × 10
-9

 7.3 × 10
-4

 0.18 

IKZF5 7.0 × 10
-7

 1.2 × 10
-4

 0.15 

SIX4 5.1 × 10
-8

 6.9 × 10
-4

 0.42 

VEGFA 5.8 × 10
-7

 5.5 × 10
-4

 0.48 

KLF10 1.1 × 10
-6

 8.8 × 10
-4

 0.73 

E2F3 5.4 × 10
-6

 1.3 × 10
-3

 0.16 

HIVEP2 2.1 × 10
-6

 6.5 × 10
-4

 0.95 

IRX3 1.9 × 10
-6

 1.4 × 10
-3

 0.60 

SGK1 4.1 × 10
-5

 3.1 × 10
-4

 0.14 

TADA3 1.1 × 10
-6

 4.0 × 10
-3

 0.97 

SERTAD3 7.0 × 10
-5

 3.8 × 10
-4

 0.44 

MAF 3.1 × 10
-5

 5.8 × 10
-3

 0.17 

SOX5 3.1 × 10
-6

 1.3 × 10
-2

 0.89 

PHTF1 3.2 × 10
-5

 4.2 × 10
-3

 0.32 

SATB2 6.3 × 10
-5

 2.6 × 10
-3

 0.49 

HOXA13 5.3 × 10
-5

 2.8 × 10
-3

 0.68 

ZBTB24 3.5 × 10
-5

 9.4 × 10
-3

 0.32 

FHIT 3.5 × 10
-5

 8.5 × 10
-3

 0.53 

IRF1 4.9 × 10
-5

 1.3 × 10
-2

 0.58 

ZNF670 3.2 × 10
-4

 2.6 × 10
-3

 0.53 

VDR 9.8 × 10
-5

 1.5 × 10
-2

 0.79 

YAF2 9.5 × 10
-5

 2.9 × 10
-2

 0.47 

RNF25 4.7 × 10
-4

 2.1 × 10
-2

 0.67 

ZNF280B 1.3 × 10
-2

 3.4 × 10
-3

 0.55 

ETS1 1.9 × 10
-2

 4.1 × 10
-3

 0.36 
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CTDSP1 4.5 × 10
-3

 1.7 × 10
-2

 0.85 

TAF10 2.0 × 10
-2

 7.5 × 10
-3

 0.89 

RFX2 6.1 × 10
-3

 0.12 0.53 

FOXP1 4.0 × 10
-3

 0.37 0.53 

STAT1 9.4 × 10
-2

 0.22 0.75 

TARBP1 0.18 0.14 0.94 

ZNF280A 0.16 0.61 0.53 

 

Table S6. Relevant gene expression levels (RPKM) of selected patients before and after the 

MAPKi treatments from published data. Data are provided as Excel spreadsheets. 
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