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ABSTRACT Since the oxygen evolution catalysis process is vital yet arduous in the energy 

conversion and storage devices, it is highly desirous but extremely challenging to engineer earth-

abundant, noble-metal-free nanomaterials with superior electrocatalytic activity toward effective 

oxygen evolution reaction (OER). Herein, we construct a prism-like cobalt-iron layered double 

hydroxide (Co-Fe LDH) with a Co/Fe ratio of 3:1 utilizing a facile self-templated strategy. 

Instead of carbon species-coupled treatment, we focus on ameliorating the intrinsic properties of 

LDHs as an OER electrocatalyst accompanied with hierarchical nanoflake shell, well-defined 

interior cavity and numerous microporous defects. In contrary to conventional LDHs synthesized 

via a one-pot method, Co-Fe LDHs fabricated in this work possess a huge specific surface area 

up to 294.1 m2 g-1 that not only provide abundant active sites, but also expedite the kinetics of 
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OER process. The as-prepared Co-Fe LDH electrocatalysts exhibit advanced electrocatalytic 

performance, and a dramatic stability of OER in an alkaline environment. Particularly, the 

contribution of micropore defects is clearly discussed according to the EIS analysis, in which the 

time constant of OER at the micropore defect is several orders of magnitude smaller than that at 

the exterior of Co-Fe LDHs, forcefully verifying the intrinsic catalytic activity enhancement 

derived from the micropore defects. This work provides a promising model to improve OER 

electrocatalysts activity via produce defects and research the contribution of micropore defects.

KEYWORDS: LDH electrocatalysts, micropore defects, EIS analysis, oxygen evolution 

reaction, wettability

INTRODUCTION

As the rapid consumption of fuel resources led to an increasingly serious environmental problem, 

efficient electrolytic water splitting has been considered as an promising strategy to meet the 

urgent demands of converting and storing energies.1-4 Unfortunately, the anodic oxygen 

evolution reaction (OER) of water splitting involves a four-proton-coupled electron transfer 

process with high overpotential and sluggish kinetics, which hinders overall water splitting 

efficiency.5,6 Generally, superior electrocatalysts with a low overpotential in OER process are 

those state-of-the-art noble-metal-based catalysts, such as IrO2 and RuO2, which are costly with 

finite resource.7,8 Nevertheless, recent studies reported that it is feasible to use noble-metal-free 

materials as electrocatalysts for efficient OER.9-11 And among these promising alternatives, 

transition metal layered double hydroxides (LDHs) have attracted much attention due to their 

tunable chemical composition, environment-friendly peculiarity, and cost effectiveness.12-14 They 
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3

have a universal formula of [M2+
1−xM3+

x(OH)2]x+·[An−
x/n]x−·mH2O, and consist of positively-

charged host layers and weakly bound charge-balancing interlayer hydrated anions. In particular, 

LDHs possess high ionic conductivity and superior stability in alkaline environment, which 

makes it potential to be applied as efficient electrocatalyst for OER.15,16

LDHs bid fair to be high-performance electrocatalysts with the first row transition-metal 

elements containing Co, Fe or Ni in the host layer composition.17-19 More recently, to pursue 

enhanced catalytic activity, efforts have been devoted into the synergistic effects and charge-

transfer kinetics of carbon species-coupled LDHs. However, little attention has been paid to the 

intrinsic properties of LDHs.20-22 It is well-known that the oxidation reaction facilitates the 

production of a catalytical active phase with the high valence, but in some aspects the process 

can be hindered by the close-packed basal planes.3,23-25 The key to promoting the intrinsic 

catalytic activity of LDHs is to rationally adjust surface properties or increase the number of 

active sites.19 A facile self-templated strategy has the potential to engineer LDH nanostructures 

for achieving advanced electrocatalytic performance,26-28 in comparison with the one-pot 

strategies, such as electrodeposition, hydrothermal reaction, and others.29,30

Nowadays, the self-templated strategy, directly and efficiently converting templates into 

hollow structures especially with complex architectures, has attracted increasing attention. 31-33 

Lou’s group pioneered in advanced self-templated methods and elegantly divided them into three 

categories, including “Selective etching”, “Outward diffusion” and “Heterogeneous 

contraction”.27 To establish well-defined multiple or hierarchical hollow structure, “Outward 

diffusion” is applied by relocating the mass in templates from inner region to outer region.27,28 

Based on the self-templated strategy, structural defects are expected to arise in LDHs fabrication 

process. It is worth mentioning that the structural defects are beneficial to boost the activity of 
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electrocatalyst via the vast active sites exposure and superior charge transport capabilities, 

certified by more and more studies.19 Although more and more studies have certified the 

significant effect of defects on electrocatalyst, the contribution and cause of structural defects to 

the overall electrocatalytic performance of catalyst is rarely studied. Generally, electrochemical 

impedance spectroscopy (EIS) is an effective technique, in which the impedance of an 

electrochemical system is studied as a function of the frequency of an applied a.c. wave. When a 

steady-state system is perturbed (say by an applied a.c. voltage), it relaxes to a new steady state. 

The time (in seconds) taken for this relaxation is known as the time constant “τ”, and the analysis 

of relaxation process would provide information about the system. In the case of the frequency 

domain, the fast processes with a low time constant occur at high frequencies, while the slow 

processes with a high time constant occur at low frequencies.34,35 

Herein, we constructed a highly efficient and LDHs-based OER catalyst through the self-

templated strategy. The defective Co-Fe LDHs exhibit remarkable OER activity and excellent 

stability primarily by integrating the advantages of defect-boosted structure and superior charge 

transport capability. More importantly, we clearly observe the defects structure and deeply 

discusses the contribution of micropore defects. On account of EIS data, the time constant of 

OER at the micropore defects is several orders of magnitude smaller than that at the exterior of 

Co-Fe LDHs, forcefully certifying the good electrocatalytic activity derived from the micropore 

defect. In addition, the good wettability of the defective Co-Fe LDHs further contribute to high 

electrocatalytic performance. The findings in this work are conducive to the development of a 

viable route to designing cost-effective electrocatalysts for OER.

EXPERIMENTAL SECTION
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5

Synthesis of the Co precursor

The Co precursor was synthesized according to the literature work with a little modification.28 

C4H14CoO8 (0.35 g) and PVP (0.75 g) were dissolved and ultrasonically mixed for 5 min in 

ethanol (50 mL) at room temperature. The obtained mixture was transferred into a 250 mL 

round-bottom flask, and then heated and refluxed at 90 C under vigorous magnetic stirring for 5 

h. Afterwards, the product was washed by centrifuging (5 min, 10000 rpm) with ethanol and 

ultrapure water for several times, and dried under vacuum to collect the Co precursor.

Synthesis of the Co-Fe layered double hydroxide (LDH)

The Co precursor (20 mg) was ultrasonically dispersed in ethanol (2 mL) as solution A. 

FeSO4·7H2O (10 mg) was ultrasonically dissolved in ultrapure water (5 mL) followed by the 

addition of ethanol (5 mL), and this solution was denoted as solution B. Next, solution A and 

solution B were mixed quickly, and aged for 10 min under N2 protection. A green precipitate of 

Co-Fe LDHs was collected, followed by centrifuging and washing with ethanol for several times, 

and drying in vacuum oven. 

Electrochemical Performance

All electrochemical measurements were executed on a workstation (CHI 660E, CHI Instruments 

Inc, Shanghai) in a three-electrode setup, coupled with a graphite electrode as a counter 

electrode, Hg/HgO (1 M NaOH) electrode as a reference electrode, and a modified rotating disk 

electrode (RDE, Φ = 4 mm) as a working electrode. To prepare the working electrode, the 

catalyst powder (2 mg) was added in a solution (1 mL) of ethanol-ultrapure water (1:1 by vol) 

and Nafion (1 wt.%), and ultrasonically dispersed to obtain homogeneous catalyst ink. Then, the 

ink (2 mg mL-1, 10 μL) was dropped onto the well-polished RDE surface, and air-dried at 
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6

ambient environment. KOH solution (1 M) was utilized as the electrolyte during the whole test, 

and the rotation rate of the RDE is 1600 rpm. The polarization curves were surveyed by the 

linear sweep voltammetry (LSV) in the range of 0.2 ~ 0.8 V vs. Hg/HgO at a scan rate of 5 mV s-

1 with 95% iR correction. Particularly, 20 cycles of cyclic voltammetry (CV) measurements at a 

scan rate of 50 mV s-1 were executed to stabilize the current before the LSV test. To dynamically 

evaluate the OER kinetics of catalysts, polarization curves were plotted by the potential versus 

logarithm current density (j). The stability was studied using LSV and amperometric i−t methods 

at a fixed potential. Electrochemical impedance spectroscopy (EIS) was measured by applying 

an AC amplitude of 5 mV over the frequency range of 106 ~ 10-1 Hz. In this study, the recorded 

potential was all quoted against the reversible hydrogen electrode (RHE) by the equation: ERHE = 

EHg/HgO + 0.098 + 0.059 pH. The overpotential (η) was calculated based on the following 

formula: η = ERHE - 1.23 V. The current density was calibrated via dividing the current by 

geometric area of the working electrode. 

RESULTS AND DISCUSSION

Figure 1a depicts the fabrication process of defect-boosted Co-Fe LDHs based on a self-

templated strategy using a Co precursor. The crystal structures of the as-prepared samples were 

inquired by X-ray diffraction (XRD). As illustrated in Figure S1, the XRD pattern of the Co 

precursor reveals the diffraction peaks that could be assigned to cobalt acetate hydroxide (JCPDS 

No. 22-0582). When a suitable content of Fe ions was incorporated, all the broadened diffraction 

peaks in Figure 1b could be indexed to Co-Fe LDHs (JCPDS No. 50-0235). The results 

demonstrated LDH structures are produced effectively. In the rest of the paper, unless otherwise 

stated, we mention Co-Fe LDHs as that with a Co/Fe ratio of 3:1 for convenience, which refers 
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7

to the initial ratio in the synthetic process. From field-emission scanning electron microscopy 

(FESEM) images (Figure 1c, d), it can be seen that the individual Co precursor exhibits a smooth 

prismatic architecture and the prisms have a length of approximately 500 nm. Transmission 

electron microscopy (TEM) images of the Co precursor further illustrate the compact and solid 

characteristics of the samples (Figure S2). For Co-Fe LDHs, FESEM image confirms the 

retention of the prismatic architecture (Figure 1e), however, the smooth surface eventually 

becomes hierarchical shells composed of disorderly oriented nanoflakes. For comparison, the 

FESEM images with various Co/Fe ratios are shown in Figure S3. The results illustrate the 

obvious influence of Fe incorporation towards the morphology of samples with various Co/Fe 

ratios, in which the prismatic architectures are gradually collapse into disordered nanoflakes with 

the increasing amount of Fe ions. Figure 1f displays the results of energy-dispersive X-ray 

spectroscopy (EDX) mapping, which clearly confirms the presence and the uniform distribution 

of Co and Fe in LDH structures. LDH prisms with hierarchical shells and well-defined inner 

cavity are further exhibited in TEM images (Figure 1g, h), where abundant porous structure with 

loosely interconnected Co-Fe LDH nanoflakes can be observed. Figure 1i, S4 show high-

resolution TEM (HRTEM) images of Co-Fe LDHs, from which a set of dislocations, lattice 

distortions, and micropore defects are observed. This unique structural feature provides rich 

active sites and a brilliant mass transfer pathway. Besides, the TEM images with various Co/Fe 

ratios are shown in Figure S5. Integrating the FESEM and TEM images towards the Co/Fe ratios 

of 6:1, 3:1, 3:2, and 1:1, prismatic architectures are gradually collapse into disordered nanoflakes 

with the increasing amount of Fe ions, while we can only observe the abundant porous structure 

with loosely interconnected nanoflakes in the Co/Fe ratio of 3:1. The results illustrate the 

obvious influence of Fe ions incorporation towards the morphology of Co/Fe ratios, and only the 
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3:1 ratio resulted in the complete formation of Co-Fe LDH structures, which is consistent with 

the generally acknowledged phenomena that x in the universal formula of LDHs should lie in the 

range 0.2-0.33 to stabilize LDH compounds.39 Figure 1j exhibits lattice fringes with a d-spacing 

of 0.26 nm that can be indexed to (012) lattice planes of Co-Fe LDHs. The inset in Figure 1j 

shows the corresponding Fast Fourier Transform (FFT) pattern, corresponding well to XRD 

results in Figure 1b. 

 
Figure 1. a) The fabrication process of defect-boosted Co-Fe LDHs. b) XRD pattern of Co-Fe 

LDHs. FESEM images of c, d) Co precursor, and e) Co-Fe LDHs. f) Elemental mapping of an 

individual Co-Fe LDH prism. g) TEM image, h, i) HRTEM image, and j) simulated HRTEM 

image and FFT pattern (inset) of Co-Fe LDHs.
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9

Typical X-ray photoelectron spectroscopy (XPS) was employed to investigate the chemical 

composition and surface electronic states of Co-Fe LDHs. As shown in Figure S6a, the overview 

survey spectrum indicates the coexistence of Co, Fe, O, and C elements in samples with different 

binding energies (BE). The spectral peaks at 531.8 and 284.5 eV belong to O1s and C1s, 

respectively (Figure S6b, c). The high-resolution XPS of Co 2p spectrum (Figure 2a) is split into 

Co 2p3/2 and Co 2p1/2, located at 781.4 and 797.5 eV, respectively, accompanied by two satellite 

peaks. The prominent Co 2p3/2 satellite peak is generally considered an indicator of a high-spin 

Co2+ state. 14,20 The Fe 2p spectrum has been fitted into two BE peaks at 711.6 and 725.4 eV due 

to Fe 2p3/2 and Fe 2p1/2, respectively (Figure 2b). Considering the BE difference of 13.8 eV, it is 

believed that the Fe species exist in the form of Fe3+.23 Figure 2c displays the Raman spectrum of 

Co-Fe LDHs. Characteristic peaks at 456 and 535 cm-1 are observed, and attributed to the 

vibration modes of Metal-Oxygen-Metal (M-O-M) bond.36 These results unambiguously confirm 

the successful formation of Co-Fe LDHs. 

 
Figure 2. XPS analysis of a) Co 2p region, and b) Fe 2p region for Co-Fe LDHs. c) Raman 

spectrum of Co-Fe LDHs. d) Nitrogen adsorption–desorption isotherm, and e) the corresponding 

pore size distribution of Co-Fe LDHs. f) Contact angle measurements.
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As a key factor for electrocatalyst, Brunauer-Emmett-Teller (BET) specific surface area and 

porosity distribution were evaluated by N2 adsorption/desorption isotherms (Figure 2d, e) using 

Barrett–Joyner–Halenda (BJH) method. Co-Fe LDHs with hierarchical prismatic structure have a 

high BET surface area of 294.1 m2 g-1 which is greater than that of recently reported LDH 

electrocatalysts.17,19 The average pore diameter is calculated as 1.4 nm. The hysteresis of the 

curve initiating from a low P/P0 value implies the microporous structure of the loosely packed 

LDH nanoflakes, which is consistent with TEM observations in Figure 1i. As we discussed in the 

previous section, the incorporation of Fe ions in Co precursor generated numerous micropore 

defects in crystal lattices of Co-Fe LDHs. Undoubtedly, engineering affluent defects into Co-Fe 

LDHs facilitates exposure of abundant active sites, thereby enhancing electrocatalytic activity. 

Figure 2f depicts the static contact angles of Co precursor and Co-Fe LDHs. Co-Fe LDHs have a 

much smaller contact angle than that of the Co precursor, revealing a more hydrophilic surface of 

the former. The good surface wettability of the catalyst facilitates electrolyte penetration and 

accelerates hydroxyl group migration and oxygen release.36 Therefore, this result portends the 

good OER performance derived from the defect-rich structures based on the self-templated 

strategy. 

We thoroughly explored and analyzed the key factors related to electrocatalytic activity and 

gained insight into OER performance. The effect of Co/Fe ratio in LDH prisms on polarization 

curves was investigated. As depicted in Table S1 and Figure 3a, LDH prisms with a Co/Fe ratio 

of 3:1 possess the lowest onset potential and the highest current density at 1.65 V (vs. RHE). To 

analyze the electrochemical active surface area (ECSA), the double-layer capacitance (Cdl) was 

characterized by CV at a suitable potential range without a redox process (Figure S7). Figure 3b 

shows the Cdl of samples at the Co/Fe ratios of 6:1, 3:1, 3:2, and 1:1, respectively. The sample 
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11

with a Co/Fe ratio of 3:1 displayed the largest Cdl in accordance with the analysis result of 

polarization curves, certifying that the incorporation of Fe ions in an appropriate ratio 

contributed to the improvement of OER activity. In addition, the turnover frequencies (TOFs), 

directly related to actual number of active sites, are calculated to reveal the inherent properties of 

Co-Fe LDHs for OER. As shown in Figure 3c, as-prepared Co-Fe LDHs with a Co/Fe ratio of 

3:1 have a TOF of 0.312 s-1, which is the largest among Co-Fe LDH samples in this work. 

Figure 3. a) Polarization curves, b) Current density differences plotted against scan rates under a 

non-Faradaic range. c) TOFs of Co-Fe LDHs at different Co/Fe ratios of 6:1, 3:1, 3:2 and 1:1 

(inset shows the TOF values at 1.65 V vs. RHE for different Co/Fe ratios of Co-Fe LDHs). d) 

Nyquist plots with a fitted equivalent circuit (inset).
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12

Both the electrochemical measurements provide electrocatalytic properties averaged over all 

active sites on the surface of LDHs, thereby obscuring the true contribution of elementary 

processes. In order to understand in depth the contribution of micropore defects to the overall 

electrocatalytic performance, we performed electrochemical impedance spectroscopy (EIS) 

measurements on Co-Fe LDH samples, taking into account that EIS was a powerful tool for 

decoupling the electrochemical processes in complex electrodes. Figure 3d presents the Nyquist 

plots and fitting results for EIS measurements with a proper equivalent circuit model for Co-Fe 

LDHs with different Co/Fe ratios. In the equivalent circuit model, Rs corresponds to the series 

resistance of the electrolyte, the electrodes, and the circuit leads. The two RC circuits in the 

middle of the diagram describe the charge kinetics at the interface between the electrolyte and 

the outer surface as well as the micropore defects of Co-Fe LDHs, respectively. The third RC 

circuit is associated with adsorption/desorption of the intermediates of the OER. Obviously, the 

Nyquist plot of LDHs with a Co/Fe ratio of 3:1 possesses the smallest semicircle diameter in the 

high frequency region, indicating that proper incorporation of Fe ions in LDH prisms enabled 

ultrafast charge transfer at the electrolyte/electrode interface. The minimum Rs value also 

indicates that LDHs with a Co/Fe ratio of 3:1 has the highest conductivity among the four 

compositions. In Table S2, we can unambiguously assign the high frequency semicircle in EIS 

curves to the kinetic process at the interface between the electrolyte and the micropores in the 

working electrode. The much smaller time constant provides conclusive evidence that the active 

sites on the surface of the micropore defects are much more effective in electrocatalytic OER, in 

good agreement with previous observations by other researchers.3,9,34 It was proposed that the 

synergistic effect of Co and Fe in LDHs lowered the energy barrier of OER, thereby accelerating 

the reaction kinetics.37-39 We found that the synergistic effect is more effective for the active sites 
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13

at the surface of the micropore defects. The capacitance of the micropore defects is much larger 

than that of the outer surface of the electrodes, further confirming the higher electrocatalytic 

activity of the micropore defects in Co-Fe LDHs. The contribution to the larger capacitance is 

partly due to the much larger specific surface area of the micropore defects than that of the outer 

surface of the electrodes (Table S3). The capacitance of the adsorption and the desorption 

process implies that the active sites for electrocatalytic OER account for only a small part of the 

overall surface lattice atoms, and there is still great potential to improve the performance of Co-

Fe LDH electrocatalysts via more advanced structural design in future work.

Figure 4. a) Polarization curves and b) Tafel plots in 1 M KOH. c) LSV curves of Co-Fe LDHs 

before and after 3000 cycles of CV scanning. d) Chronoamperometric measurement at a fixed 

operating potentials (the inset shows the corresponding TEM images before and after 3000 

cycles (upside), and illustration of OER process over Co-Fe LDHs (underside)).
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14

Inspired by the high ionic conductivity and reasonable stability of defect-boosted LDHs in an 

alkaline environment, we evaluated the appealing OER activity of as-prepared Co-Fe LDHs in a 

1 M KOH solution, compared with the conventional LDHs and commercial RuO2. As illustrated 

in Figure 4a, Co-Fe LDHs have a low operating potentials of 1.59 V (vs. RHE) corresponding to 

a low overpotential value of 360 mV at a current density (j) of 50 mA cm-1, which is much lower 

than that of conventional LDHs and commercial RuO2. As the overpotential increases, the 

difference of current density of Co-Fe LDHs augments faster than that of RuO2 and conventional 

LDHs. To deeply delve into the reaction kinetics of Co-Fe LDHs, we have executed a relevant 

Tafel analysis, and Figure 4b displays the Tafel slope. The value for Co-Fe LDHs (44.9 mV dec-

1) is much lower than that of conventional LDHs (55.7 mV dec-1) and commercial RuO2 (44.9 

mV dec-1). Figure S8 reveals the results of Cdl, TOF, and EIS between as-prepared Co-Fe LDHs 

and conventional LDHs. Compared to the as-prepared Co-Fe LDHs, conventional LDHs 

manifest lower Tafel slope and TOF values. Besides, their Nyquist plot possesses the larger 

semicircle diameter in the high frequency region. As expected, the as-prepared Co-Fe LDHs 

have better performance, which could be caused their hierarchical prismatic structure with a high 

BET surface area since the conventional LDHs have a lower BET surface area of 20.59 m2 g-1 

(Figure S9). To further reveal the intrinsic activities, the LSV curves of different samples were 

normalized by electrochemical surface area (non-Faradic double layer capacitance), in which the 

electrochemical surface areas are calculated from double-layer charging curves, assuming a Cdl 

value of 0.06 mF cm-2 for a smooth oxide surface.40 As seen in Figure S10, the as-prepared Co-

Fe LDHs shows the lowest overpotential at a fixed current density, which is basically matched 

with that in Figure 3a,4a. Altogether, those results demonstrate the prominent catalytic kinetics 

of Co-Fe LDHs in an alkaline environment. As listed in Table S4, the OER activity of Co-Fe 
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LDHs in this work is superior or at least comparable to those reported noble-metal-free catalysts 

of LDHs. Furthermore, the durability and the stability of Co-Fe LDHs for OER in an alkaline 

environment were investigated. When a sequential CV scanning of 3000 cycles was carried out, 

the decrease of the current density is negligible compared to the initial density (Figure 4c). 

Figure 4d exhibits the relative constant current density, referring to the ratio of current density (j) 

to initial current density (j0), at a fixed operating potentials, which further demonstrates the 

promising long-term stability of Co-Fe LDHs. Moreover, as displayed in Figure S11 and the 

inset (upside) in Figure 4d, the morphology of Co-Fe LDHs remain almost unchanged after the 

electrochemical aging, and well-defined hierarchical LDH prisms were conserved. After the 

long-term OER, XRD and XPS characterizations were further executed for the as-prepared Co-

Fe LDHs. As seen in Figure S12, the crystal structures of the mentioned sample were inquired, 

and all the broadened diffraction peaks are nearly indexed to Co-Fe LDHs (JCPDS No. 50-

0235). Figure S13 displays the related chemical composition and surface electronic states 

through XPS analysis. The results of XRD and XPS characterizations towards the as-prepared 

Co-Fe LDHs after the long-term OER further verify the good stability, as seen in Figure S12,13.

The OER process over the Co-Fe LDHs is depicted in the inset (underside) of Figure 4d. And 

the structural benefits of LDHs in OER catalysis derived from the intrinsic catalytic activity 

enhancement can be summarized as the following: (i) the hierarchical prismatic structure of Co-

Fe LDHs endows a high BET surface area for ion interaction, thus facilitating the charge 

transport; (ii) the abundant microporous defects can not only produce wealthy active phase 

around the pores and notably enrich the active phase, but also provide wettable channels for ion 

penetration and intimate contact, which is crucial for the remarkably enhanced OER; (iii) the 

well-distributed microporous defects can serve as an effective buffer area for the volume change, 
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and then ensure the good electrochemical stability, which refrains from material swelling or 

severe mechanical deformation during the continuous OER operation.

CONCLUSIONS

In short, defect-boosted Co-Fe LDHs were prepared via a facile self-templated strategy and 

applied as highly efficient OER catalysts. Benefiting from the rich micropore defects with a large 

number of active sites, the as-prepared Co-Fe LDHs show impressive electrocatalytic 

performance and stability. It is worth mentioning that the versatility of the microporous structure 

not only endows the hierarchical LDH prisms with abundant active site exposure, enhanced 

charge/mass transfer capability, and fast reaction kinetics, but also promises a huge exposed 

surface and excellent wettability between the electrocatalyst and the electrolyte. The study 

highlights a cost-effective route to improving the inherent characteristic of noble-metal-free 

catalysts for gaining deeper insights into electrocatalytic design.
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