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A key feature of ground states of gapped local 1D Hamiltonians is their relatively low entangle-
ment — they are well approximated by matrix product states (MPS) with bond dimension scaling
polynomially in the length N of the chain, while general states require a bond dimension scaling
exponentially. We show that the bond dimension of these MPS approximations can be improved
to a constant, independent of the chain length, if we relax our notion of approximation to be more
local: for all length-k segments of the chain, the reduced density matrices of our approximations are
ε-close to those of the exact state. If the state is a ground state of a gapped local Hamiltonian, the
bond dimension of the approximation scales like (k/ε)1+o(1), and at the expense of worse but still
poly(k, 1/ε) scaling of the bond dimension, we give an alternate construction with the additional
features that it can be generated by a constant-depth quantum circuit with nearest-neighbor gates,
and that it applies generally for any state with exponentially decaying correlations. For a completely
general state, we give an approximation with bond dimension exp(O(k/ε)), which is exponentially
worse, but still independent of N . Then, we consider the prospect of designing an algorithm to find
a local approximation for ground states of gapped local 1D Hamiltonians. When the Hamiltonian is
translationally invariant, we show that the ability to find O(1)-accurate local approximations to the
ground state in T (N) time implies the ability to estimate the ground state energy to O(1) precision
in O(T (N) log(N)) time.

I. INTRODUCTION

In nature, interactions between particles act locally,
motivating the study of many-body Hamiltonians con-
sisting only of terms involving particles spatially near
each other. An important method that has emerged from
this course of study is the Density Matrix Renormaliza-
tion Group (DMRG) algorithm [1, 2], which aims to find
a description of the ground state of local Hamiltonians
on a one-dimensional chain of sites. DMRG has been
an indispensable tool for research in many-body physics,
but the rationale for its empirical success did not become
fully apparent until long after it was being widely used.
Its eventual justification required two ingredients: first,
that the method can be recast [3, 4] as a variational al-
gorithm that minimizes the energy over the set of matrix
product states (MPS), a tensor network ansatz for 1D
systems; and second, that the MPS ansatz set actually
contains a good approximation to the ground state, at
least whenever the Hamiltonian has a nonzero spectral
gap. More specifically, Hastings [5] showed that ground
states of gapped local Hamiltonians on chains with N
sites can be approximated to within trace distance ε by
an MPS with bond dimension (a measure of the complex-
ity of the MPS) only poly(N, 1/ε), exponentially smaller
than what is needed to describe an arbitrary state on
the chain. Even taking into account these observations,
DMRG is a heuristic algorithm and is not guaranteed to
converge to the global energy minimum as opposed to a
local minimum; however, a recently developed alternative
algorithm [6–8], sometimes referred to as the “Rigorous
RG” (RRG) algorithm, avoids this issue and provides a

way one can guarantee finding an ε-approximation to the
ground state in poly(N, 1/ε) time.

These are extremely powerful results, but their value
breaks down when the chain becomes very long. The
bond dimension required to describe the ground state
grows relatively slowly, but it still diverges with N .
Meanwhile, if we run the RRG algorithm on longer and
longer chains, we will eventually encounter anN too large
to handle given finite computational resources. Indeed,
often we wish to learn something about the ground state
in the thermodynamic limit (N → ∞) but in this case
these results no longer apply. Analogues of DMRG for
the thermodynamic limit [9–14] — methods that, for ex-
ample, optimize over the set of constant bond dimension
“uniform MPS” consisting of the same tensor repeated
across the entire infinite chain — have been implemented
with successful results, but these methods lack the second
ingredient that justified DMRG: it is not clear how large
we must make the bond dimension to guarantee that the
set over which we are optimizing contains a good approx-
imation to the ground state.

Progress toward this ingredient can be found in work
by Huang [15] (and later by Schuch and Verstraete [16]),
who showed that the ground state of a gapped local 1D
Hamiltonian can be approximated locally by a matrix
product operator (MPO) — a 1D tensor network object
that corresponds to a (possibly mixed) density operator
as opposed to a quantum state vector — with bond di-
mension independent of N . Here their approximation
sacrifices global fidelity with the ground state, which de-
cays exponentially with the chain length, in exchange for
constant bond dimension, while retaining high fidelity
with the ground state reduced density matrices on all
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segments of the chain with constant length. In other
words, the statistics for measurements of local operators
are faithfully captured by the MPO approximation, a no-
tion of approximation that is often sufficient in practice
since many relevant observables, such as the individual
terms in the Hamiltonian, are local.

However, the result does not provide the necessary in-
gredient to justify infinite analogues of DMRG because
MPO do not make a good ansatz class for variational
optimization algorithms. One can specify the matrix el-
ements for an MPO, but the resulting operator will only
correspond to a valid quantum state if it is positive semi-
definite, and verifying that this is the case is difficult: it is
NP-hard for finite chains, and in the limit N →∞ it be-
comes undecidable [17]. Thus, if we attempt to perform
variational optimization over the set of constant bond di-
mension MPO, we can be certain that our search space
contains a good local approximation to the ground state,
but we have no way of restricting our search only to the
set of valid quantum states; ultimately the minimal en-
ergy MPO we find may not correspond to any quantum
state at all.

In this work, we fix this problem by showing an anal-
ogous result for MPS instead of MPO. We show that for
any gapped nearest-neighbor Hamiltonian on a 1D chain
with N sites, and for any parameters k and ε, there is
an MPS representation of a state |ψ̃〉 with bond dimen-
sion poly(k, 1/ε) such that the reduced density matrix of

|ψ̃〉〈ψ̃| on any contiguous region of length k is ε-close in
trace distance to that of the true ground state. Impor-
tantly, the bond dimension is independent of N . For gen-
eral states (including ground states of non-gapped local
Hamiltonians), we give a construction with bond dimen-
sion that is also independent of N but exponential in k/ε.
Thus, we provide the missing ingredient for variational
algorithms in the thermodynamic limit as we show that a
variational set over constant bond dimension MPS con-
tains a state that simultaneously captures all the local
properties of the ground state.

We present two proofs of our claim about ground states
of gapped Hamiltonians. The first yields superior scal-
ing of the bond dimension, which grows asymptotically
slower than (k/ε)1+δ for any δ > 0; however, it constructs

an MPS approximation |ψ̃〉 that is long-range correlated
and non-injective. In contrast, the second proof con-
structs an approximation that is injective and can be gen-
erated by a constant-depth quantum circuit with nearest-
neighbor gates, while retaining poly(k, 1/ε) bond dimen-
sion. The latter construction also follows merely from the
assumption that the state has exponential decay of cor-
relations. The proof idea originates with a strategy first
presented in [18] and constructs |ψ̃〉 by beginning with the
true ground state |ψ〉 and applying three rounds of oper-
ations: first, a set of unitaries that, intuitively speaking,
removes the short-range entanglement from the chain;
second, a sequence of rank 1 projectors that zeroes-out
the long-range entanglement; and third, the set of inverse
unitaries from step 1 to add back the short-range entan-

glement. Intuitively, the method works because ground
states of gapped Hamiltonians have a small amount of
long-range entanglement. The non-trivial part is arguing
that the local properties are preserved even as the small
errors induced in step 2 accumulate to bring the global fi-
delity with the ground state to zero. The fact that |ψ̃〉 can
be produced by a constant-depth quantum circuit acting
on an initial product state suggests the possibility of an
alternative variational optimization algorithm using the
set of constant-depth circuits (a strict subset of constant-
bond-dimension MPS) as the variational ansatz. Addi-
tionally, we note that the disentangle-project-reentangle
process that we utilize in our proof might be of inde-
pendent interest as a method for truncating the bond
dimension of MPS. We can bound the truncation error
of this method when the state has exponentially decaying
correlations.

We also consider the question of whether these lo-
cally approximate MPS approximations can be rigorously
found (à la RRG) more quickly than their globally ap-
proximate counterparts (and if they can be found at all
in the thermodynamic limit). We prove a reduction for
ground states of translationally invariant Hamiltonians
showing that finding approximations to local properties
to even a fixed O(1) precision implies being able to find
an approximation to the ground state energy to O(1)
precision with only O(log(N)) overhead. Since strate-
gies for estimating the ground state energy typically in-
volve constructing a globally accurate approximation to
the ground state, this observation gives us an intuition
that it may not be possible to find the local approxima-
tion much more quickly than the global approximation,
despite the fact that the bond dimensions required for
the two approximations are drastically different.

II. BACKGROUND

A. One-dimensional local Hamiltonians

In this paper we work exclusively with gapped nearest-
neighbor 1D Hamiltonians that have a unique ground
state. Our physical system is a set of N sites, arranged
in one dimension on a line with open boundary conditions
(OBC), each with its own Hilbert space Hi of dimension
d. The Hamiltonian H consists of terms Hi,i+1 that act
non-trivially only on Hi and Hi+1.

H =

N−1∑
i=1

Hi,i+1 (1)

We will always require that Hi,i+1 be positive semi-
definite and satisfy ‖Hi,i+1‖ ≤ 1 for all i, where ‖·‖ is
the operator norm. When this is not the case it is always
possible to rescale H so that it is. We call H translation-
ally invariant if Hi,i+1 is the same for all i. We will also
always assume that H has a unique ground state |ψ〉 with
energy E and an energy gap ∆ > 0 to its first excited
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state. We let ρ = |ψ〉 〈ψ| refer to the (pure) density ma-
trix representation of the ground state. For any density
matrix σ and subregion X of the chain, we let σX refer
to TrXc(σ), the reduced density matrix of σ after tracing
out the complement Xc of X.

B. Matrix product states and matrix product
operators

It is often convenient to describe states with one-
dimensional structure using the language of matrix prod-
uct states (MPS).

Definition 1 (Matrix product state). A matrix prod-
uct state (MPS) |η〉 on N sites of local dimension d

is specified by Nd matrices A
(i)
j with i = 1, . . . , d and

j = 1, . . . , N . The matrices A
(i)
1 are 1 × χ matrices and

A
(i)
N are χ × 1 matrices, with the rest being χ × χ. The

state is defined as

|η〉 =

d∑
i1=1

. . .

d∑
iN=1

A
(i1)
1 . . . A

(iN )
N |i1 . . . iN 〉 (2)

The parameter χ is called the bond dimension of the
MPS.

The same physical state has many different MPS rep-
resentations, although one may impose a canonical form
[19] to make the representation unique. The bond dimen-
sion of the MPS is a measure of the maximum amount
of entanglement across any “cut” dividing the state into
two contiguous parts. More precisely, if we perform a
Schmidt decomposition on a state |η〉 across every possi-
ble cut, the maximum number of non-zero Schmidt coef-
ficients (i.e. Schmidt rank) across any of the cuts is equal
to the minimum bond dimension we would need to ex-
actly represent |η〉 as an MPS [20]. Thus to show a state
has an MPS representation with a certain bond dimen-
sion, it suffices to bound the Schdmidt rank across all the
cuts. This line of reasoning shows that a product state,
which has no entanglement, can be written as an MPS
with bond dimension 1. Meanwhile, a general state with
any amount of entanglement can always be written as an
MPS with bond dimension dN/2.

A cousin of matrix product states are matrix product
operators (MPO).

Definition 2 (Matrix product operator). A matrix prod-
uct operator (MPO) σ on N sites of local dimension d

is specified by Nd2 matrices A
(i)
j with i = 1, . . . , d2 and

j = 1, . . . , N . The matrices A
(i)
1 are 1 × χ matrices and

A
(i)
N are χ × 1 matrices, with the rest being χ × χ. The

operator is defined as

σ =

d2∑
i1=1

. . .

d2∑
iN=1

A
(i1)
1 . . . A

(iN )
N σi1 ⊗ . . .⊗ σiN (3)

where {σi}d
2

i=1 is a basis for operators on a single site.
The parameter χ is called the bond dimension of the
MPO.

However, MPO representations have the issue that

specifying a set of matrices A
(i)
j does not always lead

to an operator σ that is positive semi-definite, which is a
requirement for the MPO to correspond to a valid quan-
tum state. Checking positivity of an MPO in general
is NP-hard for chains of length N and undecidable for
infinite chains [17].

C. Notions of approximation

We are interested in the existence of an MPS that ap-
proximates the ground state |ψ〉. We will have both a
global and a local notion of approximation, which we
define here. We will employ two different distance mea-
sures at different points in our theorems and proofs, the
purified distance and the trace distance.

Definition 3 (Purified distance). If σ and σ′ are two
normalized states on the same system, then

D(σ, σ′) =
√

1−F(σ, σ′)2 (4)

is the purified distance between σ and σ′, where

F(σ, σ′) = Tr(
√
σ1/2σ′σ1/2) denotes the fidelity between

σ and σ′.

Definition 4 (Trace distance). If σ and σ′ are two nor-
malized states on the same system, then

D1(σ, σ′) =
1

2
‖σ − σ′‖1 =

1

2
Tr(|σ − σ′|) (5)

is the trace distance between σ and σ′.

Lemma 1 ([21]).

D1(σ, σ′) ≤ D(σ, σ′) ≤
√

2D1(σ, σ′) (6)

We also note that D1(σ, σ′) = D(σ, σ′) if σ and σ′ are
both pure. If the trace distance between ρ and σ is small
then we would say σ is a good global approximation to
ρ. We are also interested in a notion of distance that is
more local.

Definition 5 (k-local purified distance). If σ and σ′ are
two normalized states on the same system, then the k-
local purified distance between σ and σ′ is

D(k)(σ, σ′) = max
X:|X|=k

D(σX , σ
′
X) (7)

where the max is taken over all contiguous regions X
consisting of k sites.

Definition 6 (k-local trace distance). If σ and σ′ are
two normalized states on the same system, then the k-
local trace distance between σ and σ′ is

D
(k)
1 (σ, σ′) := max

X:|X|=k
D1(σX , σ

′
X) (8)
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where the max is taken over all contiguous regions X
consisting of k sites.

Note that these quantities lack the property that 0 =

D(k)(σ, σ′) = D
(k)
1 (σ, σ′) implies σ = σ′ [35], but they

do satisfy the triangle inequality. It is also clear that
taking k = N recovers our notion of global distance:

D(N)(σ, σ′) = D(σ, σ′) and D
(N)
1 (σ, σ′) = D1(σ, σ′).

Definition 7 (Local approximation). We say a state σ
on a chain of N sites is a (k, ε)-local approximation to

another state σ′ if D
(k)
1 (σ, σ′) ≤ ε

As we discuss in the next subsection, previous results
show that |ψ〉 has a good global approximation |ψ̃〉 that
is an MPS with bond dimension that scales like a polyno-
mial in N . We will be interested in the question of what
bond dimension is required when what we seek is merely
a good local approximation.

D. Previous results

1. Exponential decay of correlations and area laws

A key fact shown by Hastings [22, 23] about nearest-
neighbor 1D Hamiltonians with a non-zero energy gap
is that the ground state |ψ〉 has exponential decay of
correlations.

Definition 8 (Exponential decay of correlations). A
pure state σ = |η〉 〈η| on a chain of sites is said to have
(t0, ξ)-exponential decay of correlations if for every t ≥ t0
and every pair of regions A and C separated by at least t
sites

Cor(A : C)|η〉

:= max
‖M‖,‖N‖≤1

Tr ((M ⊗N)(σAC − σA ⊗ σC))

≤ exp(−t/ξ). (9)

We call ξ the correlation length of |η〉.

Lemma 2 ([22, 23]). If |ψ〉 is the unique ground state of
a Hamiltonian H =

∑
iHi,i+1 with spectral gap ∆, then

|ψ〉 has (t0, ξ)-exponential decay of correlations for some
t0 = O(1) and ξ = O(1/∆).

While the exponential decay of correlations holds for
lattice models in any spatial dimension, the other results
we discuss are only known to hold in one dimension.

For example, in one dimension it has been shown that
ground states of gapped Hamiltonians obey an area law,
that is, the entanglement entropy of any contiguous re-
gion is bounded by a constant times the length of the
boundary of that region, which in one dimension is just
a constant. This statement was also first proven by Hast-
ings in [24] where it was shown that for any contiguous
region X

S(ρX) ≤ exp(O(log(d)/∆)) (10)

which is independent of the number of sites in X, where S
denotes the von Neumann entropy S(σ) = −Tr(σ log σ).
The area law has since been improved [7, 25] to

S(ρX) ≤ Õ(log3(d)/∆) (11)

where the Õ signifies a suppression of factors that scale
logarithmically with the quantity stated.

It was also discovered that an area law follows merely
from the assumption of exponential decay of correlations
in one dimension: if a pure state ρ has (t0, ξ)-exponential
decay of correlations, then it satisfies [26]

S(ρX) ≤ t0 exp(Õ(ξ log(d))) (12)

The area law is closely related to the existence of an
efficient MPS approximation to the ground state. To
make this implication concrete, one needs an area law
using the α-Renyi entropy for some value of α with
0 < α < 1 [18], where the Renyi entropy is given by
Sα(ρX) = −Tr(log(ραX))/(1−α). An area law for the von
Neumann entropy (corresponding to α = 1) is not alone
sufficient [27]. However, for all of the previously stated
area laws, the methods are strong enough to also give
the existence of efficient MPS approximations. Hastings’
[24] original area law implied the existence of a global

ε-approximation |ψ̃〉 for |ψ〉 with bond dimension

χ = eÕ( log(d)
∆ )

(
N

ε

)O( log(d)
∆ )

(13)

The improved area law in [7, 25] yields a better scaling
for χ which is asymptotically sublinear in N

χ = e
Õ

(
log3(d)

∆

)(
N

ε

)Õ(
log(d)

(∆ log(N/ε))1/4

)
(14)

Finally, the result implied only from exponential decay
of correlations [26] is

χ = et0e
Õ(ξ log(d))

(
N

ε

)Õ(ξ log(d))

(15)

Crucially, if the local Hilbert space dimension d and
the gap ∆ (or alternatively, the correlation length ξ) are
taken to be constant, then all three results read χ =
poly(N, 1/ε).

2. Constant-bond-dimension MPO local approximations

The problem of finding matrix product operator repre-
sentations that capture all the local properties of a state
has been studied before. Huang [15] showed the existence
of a positive semi-definite MPO ρχ with bond dimension

χ = e
Õ

(
log3(d)

∆ +
log(d) log3/4(1/ε)

∆1/4

)
= (1/ε)o(1) (16)
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that is a (2, ε)-local approximation to the true ground
state ρ, where o(1) indicates the quantity approaches 0
as 1/ε→∞. Crucially, this is independent of the length
of the chain N . Additionally, because the Hamiltonian is
nearest-neighbor, we have Tr(Hρχ)−Tr(Hρ) ≤ (N−1)ε,
i.e., the energy per site (energy density) of the state ρχ is
within ε of the ground state energy density. Huang con-
structs this MPO explicitly and notes it is a convex com-
bination over pure states which themselves are MPS with
bond dimension independent of N . Thus, one of these
MPS must have energy density within ε of the ground
state energy density. However, it is not guaranteed (nor
is it likely) that one of these constant-bond-dimension
MPS is also a good local approximation to the ground
state; thus our result may be viewed as an improvement
on this front as we show the existence not only of a low-
energy-density constant-bond-dimension MPS, but also
one that is a good local approximation to the ground
state.

An alternative MPO construction achieving the same
task was later given in [16]. In this case, the MPO is
a (k, ε)-local approximation to the ground state and has
bond dimension

χ = (k/ε)e
Õ

(
log3(d)

∆ +
log(d) log3/4(k/ε3)

∆1/4

)
= (k/ε)1+o(1).

(17)
The idea they use is simple. They break the chain into

blocks of size l, which is much larger than k. On each
block they construct a constant bond dimension MPO
that closely approximates the reduced density matrix of
the ground state on that block, which is easy since each
block has constant length and they must make only a
constant number of bond truncations to the exact state.
The tensor product of these MPO will be an MPO on
the whole chain that is a good approximation on any
length-k region that falls within one of the larger length
l blocks, but not on a region that crosses the boundary
between blocks. To remedy this, they take the mixture
of MPO formed by considering all l translations of the
boundaries between the blocks. Now as long as l is much
larger than k, any region of length k will only span the
boundary between blocks for a small fraction of the MPO
that make up this mixture, and the MPO will be a good
local approximation.

This same idea underlies our proof of Theorem 1, with
the complication that we seek a pure state approxima-
tion and cannot take a mixture of several MPS. Instead,
we combine the translated MPS in superposition, which
brings new but manageable challenges.

III. STATEMENT OF RESULTS

A. Existence of local approximation

Theorem 1. Let |ψ〉 be a state on a chain of N sites of
local dimension d. For any k and ε there exists an MPS
|ψ̃〉 with bond dimension at most χ such that

(1) |ψ̃〉 is a (k, ε)-local approximation to |ψ〉

(2) χ = eO(k log(d)/ε)

provided that N is larger than some constant N0 =
O(k3/ε3) that is independent of |ψ〉.

If |ψ〉 has (t0, ξ)-exponential decay of correlations, then
the bound on the bond dimension can be improved to

(2’) χ = et0e
Õ(ξ log(d))

(k/ε3)O(ξ log(d))

with N0 = O(k2/ε2)+t0 exp(Õ(ξ log(d)) and if, addition-
ally, |ψ〉 is the unique ground state of a nearest-neighbor
1D Hamiltonian H with spectral gap ∆, it can be further
improved to

(2”) χ = (k/ε)e
Õ

(
log3(d)

∆ +
log(d)

∆1/4
log3/4(k/ε3)

)

with N0 = O(k2/ε2)+ Õ(log(d)/∆3/4). Here χ is asymp-
totically equivalent to (k/ε)1+o(1) where o(1) indicates
that the quantity approaches 0 as (k/ε)→∞.

However, the state |ψ̃〉 that we construct in the proof of
Theorem 1 is long-range correlated and cannot be gener-
ated from a constant-depth quantum circuit. Thus, while
|ψ̃〉 is a good local approximation to the ground state |ψ〉
of H, it is not the exact ground state of any gapped local
1D Hamiltonian.

Next, we show that it remains possible to approximate
the state even when we require the approximation to be
produced by a constant-depth quantum circuit; the scal-
ing of the bond dimension is faster in k and 1/ε, but it
is still polynomial.

Theorem 2. Let |ψ〉 be a state on a chain of N sites of
local dimension d. If |ψ〉 has (t0, ξ)-exponential decay of

correlations, then, for any k and ε, there is an MPS |ψ̃〉
with bond dimension at most χ such that

(1) |ψ̃〉 is a (k, ε)-local approximation to |ψ〉

(2) χ = et0e
Õ(ξ log(d)) (

k/ε2
)O(ξ2 log2(d))

(3) |ψ̃〉 can be prepared from the state |0〉⊗N by a quan-

tum circuit that has depth Õ(χ2) and consists only of
unitary gates acting on neighboring pairs of qubits

If, additionally, |ψ〉 is the unique ground state of a
nearest-neighbor 1D Hamiltonian with spectral gap ∆,
then the bound on the bond dimension can be improved
to

(2’) χ = e
Õ

(
log4(d)

∆2

) (
k/ε2

)O( log(d)
∆ )

The sort of constant-depth quantum circuit that can
generate the state |ψ̃〉 in Theorem 2 is shown in Figure
1. Proof summaries as well as full proofs of Theorems 1
and 2 appear in Section IV.

We also note that, unlike Theorem 1, Theorem 2 does
not require that the chain be longer than some threshold
N0; the statement holds regardless of the chain length,
although this should be considered a technical detail and
not an essential aspect of the constructions.
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FIG. 1: Constant-depth quantum circuit that constructs
the (k, ε)-local approximation |ψ̃〉 in Theorem 2 starting

from the initial state |0〉⊗N . It is drawn here as a depth-
2 circuit where unitaries Uj act on segments consisting of
O(ξ2 log(d) log(k/ε2)) contiguous sites. Each of these uni-
taries could themselves be decomposed into a sequence of
nearest-neighbor gates with depth poly(k, 1/ε).

B. Reduction from estimating energy density to
finding local properties

The previously stated results show that there exists
a state that is both a (k, ε)-local approximation and an
MPS with bond dimension poly(k, 1/ε). They say noth-
ing of the algorithmic complexity required to find a (k, ε)-
local approximation. The proofs describe how to con-
struct the local approximation from a description of the
exact ground state, but following this strategy would re-
quire first finding a description of the exact ground state
(or perhaps a global approximation to it). One might
hope that a different strategy would allow the local ap-
proximation to be found much more quickly than the
global approximation, since the bond dimension needed
to represent the approximation is much smaller. How-
ever, the following result challenges the validity of this
intuition, at least in the case that the Hamiltonian is
translationally invariant, by showing a relationship be-
tween the problem of finding a local approximation and
the problem of estimating the energy density.

Problem 1 (Estimating energy density). Given a
nearest-neighbor translationally invariant 1D Hamilto-
nian H on N ≥ 2 sites and error parameter ε, produce
an estimate ũ such that |u− ũ| ≤ ε where u = E/(N −1)
is the ground state energy density.

Problem 2 (Approximating local properties). Given
a nearest-neighbor translationally invariant Hamiltonian
H, an error parameter δ, and an operator O whose sup-
port is contained within a contiguous region of length
k, produce an estimate ṽ such that |v − ṽ| ≤ δ, where
v = 〈ψ|O |ψ〉 /‖O‖ is the expectation value of the opera-
tor O/‖O‖ in the ground state |ψ〉 of H.

Problem 1 is the restriction of Problem 2 to the case
where k = 2 and the operator O is the energy interaction
term. Thus, there is a trivial reduction from Problem 1
to Problem 2 with δ = ε. However, the next theorem,
whose proof is presented in Section IV, states a much
more powerful reduction.

Theorem 3. Suppose one has an algorithm that solves
Problem 2 for any single-site (k = 1) operator O and
δ = 0.9 in f(∆, d,N) time, under the promise that the
Hamiltonian H has spectral gap at least ∆. Here d de-
notes the local dimension of H and N the length of the
chain. Then there is an algorithm for Problem 1 under
the same promise that runs in time

f

(
min(2∆, (N − 1)ε, 2)

12
, 2d,N

)
O(log(1/ε)). (18)

Estimating the energy density to precision ε is equiva-
lent to measuring the total energy to precision ε(N − 1),
so the quantity min(2∆, (N − 1)ε, 2) is equivalent to the
global energy resolution, twice the gap, or two, whichever
is smallest. Thus, one may take ε = O(1/N) and under-
stand the theorem as stating that finding local properties
to within O(1) precision can be done at most O(log(N))
faster than finding an estimate to the total ground state
energy to O(1) precision. If local properties can be found
in time independent of N (i.e. there is an N -independent
upper bound to f), then the ground state energy can
be estimated to O(1) precision in time O(log(N)), which
would be optimal since the ground state energy scales ex-
tensively with N , and Ω(log(N)) time would be needed
simply to write down the output.

Another way of understanding the significance of the
theorem is in the thermodynamic limit. Here it states
that if one could estimate expectation values of local ob-
servables in the thermodynamic limit to O(1) precision
in some finite amount of time (for constant ∆ and d),
then one could compute the ground state energy den-
sity of such Hamiltonians to precision ε in O(log(1/ε))
time. This would be an exponential speedup over the
best-known algorithm for computing the energy density
given in [15], which has runtime poly(1/ε). Taking the
contrapositive, if one could show that poly(1/ε) time is
necessary for computing the energy density, this would
imply that Problem 2 with δ = O(1) is in general un-
computable in the thermodynamic limit, even given the
promise that the input Hamiltonian is gapped. It is al-
ready known that Problem 2 is uncomputable when there
is no such promise [28].

It is not clear whether a O(log(1/ε)) time algorithm for
computing the energy density is possible. The poly(1/ε)
algorithm in [15] works even when the Hamiltonian is not
translationally invariant, but it is not immediately appar-
ent to us how one might exploit translational invariance
to yield an exponential speedup.
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IV. PROOFS

A. Important lemmas for Theorems 1 and 2

The pair of lemmas stated here are utilized in both
Theorem 1 and 2. The first lemma captures the essence
of the area laws stated previously, and will be essential
when we want to bound the error incurred by truncating
a state along a certain cut.

Lemma 3 (Area laws [26], [25]). If σ = |ψ〉 〈ψ| has
(t0, ξ)-exponential decay of correlations then for any χ
and any region of the chain A, there is a state σ̃A with
rank at most χ such that

D(σA, σ̃A) ≤ C1 exp

(
− log(χ)

8ξ log(d)

)
(19)

where C1 = exp(t0 exp(Õ(ξ log(d)))) is a constant inde-
pendent of N .

If σ is the unique ground state of a nearest-neighbor
Hamiltonian with spectral gap ∆, then this can be im-
proved to

D(σA, σ̃A) ≤ C2 exp

(
−Õ

(
∆1/3 log4/3(χ)

log4/3(d)

))
(20)

where C2 = exp(Õ(log8/3(d)/∆)).

Proof. The first part follows from the main theorem of
[26]. The second follows from the 1D area law presented
in [25], and log(d) dependence explicitly stated in [7].

In both proofs we will also utilize the well-known fact
that Schmidt ranks cannot differ by more than a factor
of d between any two neighboring cuts on the chain.

Lemma 4. Any state σAB on a bipartite system AB
satisfies relations

rank(σAB)rank(σB) ≥ rank(σA) (21)

rank(σAB)rank(σA) ≥ rank(σB) (22)

rank(σA)rank(σB) ≥ rank(σAB) (23)

Proof. We can purify σAB with an auxiliary system C
into the state |η〉. We can let σ = |η〉 〈η| and note that
rank(σAB) = rank(σC). Thus each of these three equa-
tions say the same thing with permutations of A, B, and
C. We’ll show the first equation. Write Schmidt decom-
position

|η〉 =

rank(σAB)∑
j=1

λj |νj〉AB ⊗ |ωj〉C (24)

and then decompose |νj〉 to find

|η〉 =

rank(σAB)∑
j=1

rank(σB)∑
k=1

λjγjk |τjk〉A⊗|µk〉B⊗|ωj〉C (25)

where {|µk〉}rank(σB)
k=1 are the eigenvectors of σB . This

shows that the support of σA is spanned by the set of |τjk〉
and thus its rank can be at most rank(σAB)rank(σB).

Corollary 1. If |η〉 is a state on a chain of N sites with
local dimension d, and the Schmidt rank of |η〉 across the
cut between sites m and m + 1 is χ, then the Schmidt
rank of |η〉 across the cut between sites m′ and m′ + 1 is

at most χd|m−m
′|.

Proof. Without loss of generality, assume m ≤ m′. The
reduced density matrix of |η〉 〈η| on sites [m+ 1,m′] has

rank at most d|m
′−m| since this is the dimension of the

entire Hilbert space on that subsystem. Meanwhile the
rank of the reduced density matrix on sites [1,m] is χ.
So by the previous lemma, the rank over sites [1,m′] is

at most χd|m
′−m|.

B. Proof of Theorem 1

First we state and prove a lemma that will be essential
for showing the first part of Theorem 1. Then we provide
a proof summary of Theorem 1, followed by its full proof.

Lemma 5. Given two quantum systems A and B and
states τA on A and τB on B, there exists a state σAB on
the joint system AB such that σA = τA, σB = τB, and
rank(σAB) ≤ max(rank(τA), rank(τB))

Proof. We’ll apply an iterative procedure. For round 1
let α1 = τA and β1 = τB . In round j write spectral
decomposition

αj =

aj∑
i=1

λj,i |sj,i〉 〈sj,i|A (26)

βj =

bj∑
i=1

µj,i |rj,i〉 〈rj,i|B (27)

where aj and bj are the ranks of states αj and βj , eigen-

vectors {sj,i}
aj
i=1 and {rj,i}

bj
i=1 form orthonormal bases of

the Hilbert spaces of systems A and B, respectively, and

eigenvalues {λj,i}
aj
i=1 and {µj,i}

bj
i=1 are non-decreasing

with increasing index i (i.e. smallest eigenvalues first).
Then define

|uj〉 =

min(aj ,bj)∑
i=1

√
min(λj,i, µj,i) |sj,i〉A ⊗ |rj,i〉B (28)

which may not be a normalized state. Define recursion
relation

αj+1 = αj − TrB(|uj〉 〈uj |)
βj+1 = βj − TrA(|uj〉 〈uj |) (29)

and repeat until round m when αm+1 = βm+1 = 0. Let

σAB =

m∑
j=1

|uj〉 〈uj | (30)
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Clearly rank(σAB) ≤ m. We claim that m ≤
max(rank(τA), rank(τB)). To show this we note the fol-
lowing

aj+1 + bj+1 ≤ max(aj , bj). (31)

We can see this is true by inspecting the ith term in the
Schmidt decomposition of |uj〉 in Eq. (28), and noting
that either its reduced density matrix on system A is
λj,i |sj,i〉 〈sj,i| or its reduced density matrix on system B
is µj,i |rj,i〉 〈rj,i| (or both). So when the reduced density
matrices of |uj〉 〈uj | are subtracted from αj and βj to
form αj+1 and βj+1 in Eq. (29), each of the min(aj , bj)
terms causes the combined rank aj+1 + bj+1 to decrease
by at least one in comparison to aj + bj .

This alone implies that m ≤ max(a1, b1) + 1, since by
Eq. (31), the sequence {aj+bj}j must decrease by at least
min(a1, b1) after the first round, and then by at least 1 in
every other round, reaching 0 when j = max(a1, b1) + 1.
However, we can also see that the last round must see a
decrease by at least 2, because it is impossible for am = 0
and bm = 1 or vice versa (since Tr(αj) must equal Tr(βj)
for all j). Thus m ≤ max(a1, b1).

Moreover, Eqs. (29) and (30) imply that σA = α1 = τA
and σB = β1 = τB .

FIG. 2: Basic schematic overview of the proof of Theorem
1. Many states |φj〉 are constructed with staggered divisions
between regions Mj,i of length l, then the |φj〉 are summed in
superposition. Properties supported within a length-k region
X are faithfully captured by |φj〉 for values of j such that X
does not overlap the boundaries between regions Mj,i. Most
values of j qualify under this criteria as long as l is much larger
than k. Additional structure is defined (the regions Bj,j′ in
Part 1, and Bj,i in Part 2) in order to force 〈φj |φj′〉 = δjj′ ,
but this structure is not reflected on the schematic.

Proof summary of Theorem 1. In Ref. [16], an MPO that
is a (k, ε)-local approximation to a given state |ψ〉 was
formed by dividing the chain into many length-l seg-
ments, tensoring together a low-bond-dimension approx-
imation of the exact state reduced to each segment, and
then summing over (as a mixture) translations of loca-
tions for the divisions between the segments. We fol-
low the same idea but for pure states: for each integer
j = 0, . . . , l − 1, we divide the state into many length-
l segments and create a pure state approximation |φj〉

that captures any local properties that are supported en-
tirely within one of the segments. Then to form |ψ̃〉, we
sum in superposition over all the |φj〉, where each |φj〉
has boundaries between segments occurring in different
places (see Figure 2). Thus, for any length-k region X, a
large fraction of the terms |φj〉 in the superposition are
individually good approximations on region X. The fact
that a small fraction of the terms are not necessarily a
good approximation creates additional, but small, error
in the local approximation.

In order to avoid interaction between different terms in
the superposition, we add additional structure to make
the |φj〉 in the superposition exactly orthogonal to one
another. In our construction for general states, this ad-
ditional structure consists of a set of disjoint, sparsely
distributed, single-site regions Bj,j′ , one for each pair of
integers j 6= j′ with 0 ≤ j, j′ < l. We force |φj〉 to be the
pure state |0〉 and |φj′〉 to be |1〉 when reduced to Bj,j′ to
guarantee that 〈φj |φj′〉 = 0. Our construction for states
that have exponential decay of correlations is similar: we
define a series of regions Bj,i and for each pair (j, j′) force
|φj〉 and |φj′〉 to have orthogonal supports when reduced
to one of these regions.

Our approach for constructing |φj〉 differs if |ψ〉 is a
general state (Part 1), or if it is a state that either has ex-
ponentially decaying correlations or (additionally) is the
ground state of a nearest-neighbor Hamiltonian (Part 2).
In the latter case, we examine each length-l segment in-
dividually and truncate the bonds of the exact state on
all but a few of the rightmost sites within that segment.
The area law implies these truncations have minimal ef-
fect. We use those few rightmost sites to purify the mixed
state on the rest of the segment. Then |φj〉 is a tensor
product over pure states on each of the segments. The
bond dimension can be bounded within each segment of
|φj〉 which is sufficient to bound the bond dimension of

|ψ̃〉.
This does not work for general states because without

an area law, bond truncations result in too much error,
and without the truncations we do not have enough room
to purify the state. For a general state, there is simply
too much entropy in the length-l segment to fully absorb
with only a few sites at the edge of the segment. Instead,
we have the various segments absorb each other’s entropy
by developing a procedure to engineer entanglement be-
tween different length-l segments that exactly preserves
the reduced density matrix on each segment and keeps
the Schmidt rank constant (albeit exponential in k/ε)
across any cut. The crux of this procedure is captured in
Lemma 5.

Proof of Theorem 1. Part 1: Proof of items (1) and (2).
First we consider the case of a general state |ψ〉 and con-

struct an approximation |ψ̃〉 satisfying items (1) and (2).
A different construction is given in Part 2 to show items
(2’) and (2”), but it is similar in approach. Throughout
this proof, we use a convention where sites are numbered
0 to N − 1, which differs from the rest of the paper.
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We choose integer l to be specified later. We require
l > k. To construct |ψ̃〉, we will first construct states
|φj〉 for j = 0, . . . , l − 1 and then sum these states in
superposition. Any reference to the index j will be taken
mod l. Consider a fixed value of j. To construct |φj〉 we
break the chain into n = bN/lc blocks where n−1 blocks
{Mj,i}n−1

i=1 have length exactly l and the final block Mj,0

has length at least l and less than 2l. We arrange the
blocks so that the leftmost site of block Mj,1 is site j; thus
block Mj,i contains the sites [j+ l(i−1), j+ li−1] for i =
1, . . . , n−1, and the last block Mj,0 “rolls over” to include
sites at both ends of the chain: sites [j + l(n− 1), N − 1]
and [0, j − 1]. A schematic of the arrangement is shown
in Figure 2. Any reference to the index i will be taken
mod n.

We also define l2 − l single-site blocks on the chain
which we label Bj,j′ for all pairs j 6= j′. Bj,j′ consists
of the site with index 3l2(j + j′) + l(j − j′) + 2l2. This
definition is possible as long as their are sufficiently many
sites: N ≥ N0 = O(l3). It can be verified that since
0 ≤ j, j′ ≤ l − 1, the distance between any Bj,j′ and
Bj′′,j′′′ for any distinct pairs (j, j′) and (j′′, j′′′) is at
least l. For each j, let Bj = ∪j′ 6=jBj,j′ ∪ Bj′,j . For each
j, i, let Aj,i = Mj,i \ Mj,i ∩ Bj . Thus, in most cases
Aj,i = Mj,i since Bj is a relatively small set of sites. Let

Aj = ∪n−1
i=0 Aj,i = Bcj , the complement of Bj .

The state |φj〉 will have the following form

|φj〉 = |Qj〉Aj ⊗
⊗
j′ 6=j

(
|0〉Bj,j′ ⊗ |1〉Bj′,j

)
(32)

where |0〉 and |1〉 are two of the d computational basis
states located on a single site. In other words |φj〉 is a
product state over all single site regions Bj,j′ with some
other (yet to be specified) state |Qj〉 on the remainder of
the chain Aj .

To construct |Qj〉, we apply Lemma 5 iteratively as fol-
lows. We let σ1 = ρAj,j+2 (the reduced matrix of the ex-
act state ρ on region Aj,j+2). We combine σ1 with ρAj,j+3

using Lemma 5 to form a state σ2 on region Aj,j+2Aj,j+3

such that rank(σ2) ≤ max(rank(σ1), rank(ρAj,j+3
)). For

any j, i, the rank of the state on any region Aj,i is less
than d2l since any region contains at most 2l sites. So if
we apply this process iteratively, forming σp+1 by com-
bining σp and the state on region Aj,j+p+2 (j + p + 2
is taken mod n), then we end up with a state σn−2

with rank at most d2l defined over all of Aj except Aj,j
and Aj,j+1. Since by construction Bj contains no sites
with index smaller than 2l2 and Aj,j and Aj,j+1 are con-
tained within the first 2l2 sites, we have Aj,j = Mj,j

and Aj,j+1 = Mj,j+1 meaning each of these two regions
each contain l sites and the total dimension of the Hilbert
space over Aj,jAj,j+1 is at least d2l. Thus we may use
regions Aj,j and Aj,j+1 to purify the state σn−2. We let
|Qj〉 be any such purification.

The key observation is that the state |φj〉, as defined
by Eq. (32), will get any local properties exactly correct
as long as they are supported entirely within a segment

Aj,i for some i 6= j, j+1. As long as l is large, this will be
the case for most length-k regions, but it will not be the
case for some regions that cross the boundaries between
regions Aj,i or for regions that contain one of the single
site regions Bj,j′ or Bj′,j .

To fix this we sum in superposition over the states |φj〉
for each value of j. The motivation to do this is so that
every length-k region will be contained within Aj,i for
some value of i in most, but not all, of the terms in the
superposition. We will show that most is good enough.
We let

|ψ̃〉 =
1√
l

l−1∑
j=0

|φj〉 (33)

We note that 〈φj |φj′〉 = δjj′ since |φj〉 is simply |0〉 when
reduced to region Bj,j′ and |1〉 when reduced to region
Bj′,j , while |φj′〉 is |1〉 when reduced to region Bj,j′ and

|0〉 when reduced to Bj′,j . Thus |ψ̃〉 is normalized:

〈ψ̃|ψ̃〉 =
1

l

∑
j,j′

〈φj |φj′〉 = 1 (34)

This completes the construction of the approximation.
We now wish to show it has the desired properties. To
show item (1), we compute the (local) distance from |ψ〉
to |ψ̃〉. Let ρ̃ = |ψ̃〉〈ψ̃| and consider an arbitrary length-k
region X.

D1(ρX , ρ̃X)

=
1

2

∥∥∥∥∥∥
1

l

l−1∑
j=0

l−1∑
j′=0

TrXc(|φj〉 〈φj′ |)

− TrXc(|ψ〉 〈ψ|)

∥∥∥∥∥∥
1

First we examine terms in the sum for which j 6= j′. Since
Bj,j′ and Bj′,j are separated by at least l sites and l > k,
Xc must include either Bj,j′ or Bj′,j (or both). Since |φj〉
and |φj′〉 have orthogonal support on both those regions,
and at least one of them is traced out, the term vanishes.

Thus we have

D1(ρX , ρ̃X) =
1

2

∥∥∥∥∥∥1

l

l−1∑
j=0

TrXc(|φj〉 〈φj | − |ψ〉 〈ψ|)

∥∥∥∥∥∥
1

≤ 1

l

l−1∑
j=0

D1 (ρX ,TrXc(|φj〉 〈φj |)) (35)

For a particular j, there are two cases. Case 1 includes
values of j for which X falls completely within the Aj,i
for some i with i 6= j, j+1. For these values of j the term
vanishes because the reduced density matrix of |φj〉 〈φj |
on X is exactly ρX . Case 2 includes all other values of
j. For this to be the case, either X spans the bound-
ary between two regions Mj,i and Mj,i+1 (at most k − 1
different values of j), X contains a site Bj,j′ or Bj′,j for
some j′ (at most 2 values of j, since the separation be-
tween sites Bj,j′ implies only one may lie within X), or
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X is contained within Aj,j or Aj,j+1 (at most 2 values of
j). In this case, the term will not necessarily be close to
zero, but we can always upper bound the trace distance
by 1. The number of terms in the sum that qualify as
Case 2 is therefore at most k+ 3, and the total error can
be bounded:

D1(ρX , ρ̃X) ≤ k + 3

l
(36)

Choosing l = (k + 3)/ε shows item (1), that |ψ̃〉 is a
(k, ε)-local approximation to |ψ〉.

To show item (2), we bound the Schmidt rank of the

state |ψ̃〉 across every cut that bipartitions the chain into

two contiguous regions. Since |ψ̃〉 is a superposition over
l terms |φj〉, the Schmidt rank can be at most l times
greater than that of an individual |φj〉. Fix some value
of j and some cut of the chain at site s. Since |φj〉 is a
product state between regions Aj and Bj , and moreover
it is a product state on each individual site in Bj , we
may ignore Bj when calculating the Schmidt rank (it
has no entanglement), and focus merely on |Qj〉Aj . We

constructed the state |Qj〉 by building up mixed states
σp on region Aj,j+2 . . . Aj,j+p+1 until p = n − 2, then
purified with the remaining two regions. Each σp has
rank(σp) ≤ d2l. Now consider an integer b with 1 ≤ b ≤
n− 1 and b 6= j, j + 1. Denote σ = σn−2 and note that

rank(σAj,1...Aj,b)

≤ rank(σAj,j+2...Aj,b)rank(σAj,j+2...Aj,0)

= rank(σb−j−1)rank(σn−j−1) ≤ d4l (37)

where the first inequality follows from Lemma 4.
Moreover, we may choose b such that the cut be-

tween Aj,b and Aj,b+1 falls within l sites of site s. We
find that the region Aj,1 . . . Aj,b differs from the region
containing sites [0, s] by at most l sites at each edge.
Thus the Schmidt rank on the region left of the cut can
be at most d2l larger than that of Aj,1 . . . Aj,b (Corol-
lary 1), giving a bound of d6l for the the Schmidt rank

of |φj〉. This implies the Schmidt rank of |ψ̃〉 is at
most ld6l, which proves item (2). This applies when-
ever N ≥ N0 = O(l3) = O(k3/ε3), a bound which must
be satisfied in order for the chain to be long enough to
fit all the regions Bj,j′ as defined above. This completes
Part 1.

Part 2: Proof of items (2’) and (2”)

This construction is mostly similar to the previous one
with a few key differences. We choose integers l, t, and
χ′ to be specified later. We require t be even and l ≥ 2k,
l ≥ 2t. We assume N ≥ N0 = 2l2. We also require
that d ≥ 4. If this is not the case, we coarse-grain the
system by combining neighboring sites, and henceforth
we assume d ≥ 4.

As in Part 1, to construct |ψ̃〉, we will first construct
states |φj〉 for j = 0, . . . , l−1 and then sum these states in

superposition. Consider a fixed value of j. To construct
|φj〉 we break the chain into n = bN/lc blocks and we
arrange them exactly as in Part 1.

Now the construction diverges from Part 1: the state
|φj〉 will be a product state over each of these blocks

|φj〉 = |φj,0〉Mj,0
⊗ . . .⊗ |φj,n−1〉Mj,n−1

(38)

with states |φj,i〉 for i = 0, . . . , n−1 that we now specify.
The idea is to create a state |φj,i〉 that has nearly the

same reduced density matrix as |ψ〉 on the leftmost l− t
sites of region Mj,i. It uses the rightmost t sites to purify
the reduced density matrix on the leftmost l − t sites.
First we denote the leftmost l − t sites of block Mj,i by
Aj,i = [j + l(i − 1), j + li − t − 1] and the rightmost t
sites by Bj,i = [j + li− t, j + li− 1] (or appropriate “roll
over” definitions when i = 0). We write |ψ〉 as an exact
MPS with exponential bond dimension and form |ψj,i〉
by truncating to bond dimension χ′ (i.e. projecting onto
the span of the right Schmidt vectors associated with
the largest χ′ Schmidt coefficients, then normalizing the
state) at the cut to the left of region Aj,i, every cut within
Aj,i, and at the cut to the right of Aj,i, for a total of at
most 2l − t truncations (recall the final region Mj,0 may
have as many as 2l−1 sites). We denote the pure density
matrix of this state by ρ(j,i) = |ψj,i〉 〈ψj,i|. We can bound
the effect of these truncations using the area law given
by Lemma 3:

D(ρ(j,i), ρ) ≤
√

2l − tεχ
′

(39)

where εχ
′

is the cost (in purified distance) of a single
truncation, given by the right hand side of Eq. (19),
or by Eq. (20) in the case |ψ〉 is the ground state of a
gapped nearest-neighbor 1D Hamiltonian. These trunca-
tions were not possible in Part 1 because we could not
invoke the area law for general states.

Because of the truncations, we can express the re-

duced density matrix ρ
(j,i)
Aj,i

as a mixture of χ′2 pure states

{|φj,i,z〉}χ
′2−1
z=0 each of which can be written as an MPS

with bond dimension χ′:

ρ
(j,i)
Aj,i

=

χ′2−1∑
z=0

pj,i,z |φj,i,z〉 〈φj,i,z| (40)

for some probability distribution {pj,i,z}χ
′2−1
z=0 . We now

form |φj,i〉 by purifying ρ
(j,i)
Aj,i

onto the region Mj,i using

the space Bj,i, which contains t sites, as the purifying
subspace:

|φj,i〉Mj,i
=

χ′2−1∑
z=0

√
pj,i,z |φj,i,z〉Aj,i ⊗ |rj,i,z〉Bj,i (41)

where the set of states {|rj,i,z〉}χ
′2−1
z=0 is an orthonormal

set defined on region Bj,i. This purification will only be
possible if the dimension of Bj,i is sufficiently large, and
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we comment later on this fact, as well as how exactly to

choose the set {|rj,i,z〉}χ
′2−1
z=0 .

The key observation is that state |φj〉 will get any lo-
cal properties approximately correct as long as they are
supported entirely within a segment Aj,i for some i, and
as long as χ′ is large enough that the 2l − t truncations
do not have much effect on the reduced density matrix
there. Thus we will choose our parameters so that χ′ is
large (but independent of N), such that l is much larger
than t and k (so that most regions fall within a region
Aj,i), and such that t is large enough that it is possible
to purify states on Aj,i onto Mj,i. But, as in Part 1, we
have the issue that some regions will not be contained
entirely within region Aj,i for some i.

We again deal with this issue by summing in superpo-
sition:

|ψ̃〉 =
1√
l

l−1∑
j=0

|φj〉 (42)

To complete the construction we also must specify the

orthonormal states {|rj,i,z〉}χ
′2−1
z=0 defined on the t sites in

region Bj,i. We choose a set that satisfies the following
requirements:

(1) The reduced density matrix of |rj,i,z〉 on any single
site among the leftmost t/2 sites of Bj,i (recall we
have assumed t is even) is entirely supported on basis
states 1, . . . , bd/2c

(2) The reduced density matrix on any single site among
the rightmost t/2 sites is entirely supported on basis
states bd/2c+ 1, . . . , d

(3) Let j′ = j + i mod l, and let i0 = i mod l. If
t ≤ i0 ≤ l − t then for all z, |rj,i,z〉 is orthogonal
to the support of the reduced density matrix of |φj′〉
on region Bj,i.

We assess how large t must be for it to be possible to
satisfy these three conditions. The third item specifically
applies only for values of i that lead to values of j′ that
are at least t away from j (modulo l) so that the puri-
fying system Bj,i does not overlap with Bj′,i′ for any i′.
The support of the reduced density matrix of any |φj′〉
on region Bj,i has dimension at most χ′2. Thus, if the
dimension ofBj,i is more than 2χ′2 it will always be possi-

ble to choose an orthonormal set {|rj,i,z〉}χ
′2−1
z=0 satisfying

the third condition. The first and second conditions cut
the accessible part of the local dimension of the purify-
ing system in half, so a purification that satisfies all three
conditions will be possible if bd/2ct ≥ 2χ′2. Any choice
of set that meets all three conditions is equally good for
our purposes.

We now demonstrate that the three conditions imply
that for any pair (j, j′) there are regions of the chain on
which the supports of the reduced density matrices of
states |φj〉 and |φj′〉 are orthogonal. If it is the case that

j − j′ mod l < t or j′ − j mod l < t, then for every i
the region Bj,i overlaps with Bj′,i′ for some i′. Because
Bj,i 6= Bj′,i′ , there will be some site that is in the right
half of one of the two regions, but in the left half of
the other, and items 1 and 2 imply that the two states
will be orthogonal when reduced to this site. If this is
not the case, then as long as there is some i for which
j′ = j + i mod l, then item 3 implies the orthogonality
of the supports of |φj〉 and |φj′〉. In fact because n ≥ 2l,
there will be at least 2 such values of i. We conclude that
〈φj |φj′〉 = δjj′ , which implies that |ψ̃〉 is normalized as
shown by the computation

〈ψ̃|ψ̃〉 =
1

l

∑
j,j′

〈φj |φj′〉 = 1. (43)

We have now shown how to define the approximation
|ψ̃〉 and discussed the conditions for the parameters t, χ′,
and d that make the construction possible. Now we assess
the error in the approximation (locally). Let ρ̃ = |ψ̃〉〈ψ̃|
and consider an arbitrary length-k region X

D1(ρX , ρ̃X)

=
1

2

∥∥∥∥∥∥
1

l

l−1∑
j=0

l−1∑
j′=0

TrXc(|φj〉 〈φj′ |)

− TrXc(|ψ〉 〈ψ|)

∥∥∥∥∥∥
1

For the same reason that led to the conclusion 〈φj |φj′〉 =
δjj′ , we can conclude that TrXc(|φj〉 〈φj′ |) = δjj′ , so long
as k is smaller than l/2. To see that this holds, it is
sufficient to show that there is a region lying completely
outside of X with the property that |φj〉 and

∣∣φ′j〉 share
no support on the region. Since k = |X| ≤ l/2 and
|Bj,i| = t ≤ l/2, for any j, X can overlap the region Bj,i
for at most one value of i. We showed before that for
any j there would be at least two values of i for which a
subregion of Bj,i has this property, implying one of them
must lie outside X.

Thus we have

D1(ρX , ρ̃X) =
1

2

∥∥∥∥∥∥1

l

l−1∑
j=0

TrXc(|φj〉 〈φj | − |ψ〉 〈ψ|)

∥∥∥∥∥∥
1

≤ 1

l

l−1∑
j=0

D1 (ρX ,TrXc(|φj〉 〈φj |)) (44)

For a particular j, there are two cases. Case 1 occurs
if X falls completely within the Aj,i for some i, in which
case the only error is due to the 2l−t truncations to bond
dimension χ′. Since the trace norm D1 is smaller than
the purified distance D (Lemma 1), the contribution for

these values of j is at most
√

2l − tεχ′ . Case 2 includes
values of j for which X does not fall completely within
a region Aj,i for any i. In this case, the term will not
necessarily be close to zero, but we can always upper
bound the trace distance by 1. The number of terms in
the sum that qualify as Case 1 is of course bounded by l
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(there are only l terms) and the number of Case 2 terms
is at most t+k−1. Thus the total error can be bounded:

D1(ρX , ρ̃X)

≤ 1

l
(l
√

2l − tεχ
′
+ (t+ k − 1))

≤
√

2lεχ
′
+ (k + t)/l (45)

We will choose parameters so this quantity is less than
ε. Parameters l and t will be related to χ′ as

t = log(2χ′2)/ log(bd/2c) (46)

l = 2(k + t)/ε (47)

If |ψ〉 is known only to have exponentially decaying cor-
relations, then we choose

log(χ′) = 16ξ log(d) log(16C1

√
ξ log(d)(k + 3)/ε3/2)

(48)

where C1 = exp(t0 exp(Õ(ξ log(d)))) is the constant from
Eq. (19). We note that t ≤ 3 log(χ′), so we can bound

D1(ρX , ρ̃X) ≤
√

4(k + t)C1√
ε

e−
log(χ′)

8ξ log(d) +
ε

2

≤
√

4(k + 3) log(χ′)C1√
ε

e−
log(χ′)

8ξ log(d) +
ε

2

≤
√

64ξ log(d)(k + 3)C1√
ε

e−
log(χ′)

16ξ log(d) +
ε

2

≤ ε

2
+
ε

2
= ε (49)

where in the third line we have used the (crude) bound√
u ≤ eu with u = log(χ′)/(16ξ log(d)).
In the case that |ψ〉 is known to be the ground state of

a gapped local Hamiltonian, we may choose

log(χ′) = Õ(∆−1/4 log(d) log3/4(C2

√
k + 3/ε3/2)) (50)

where C2 = exp(Õ(log8/3(d)/∆) is the constant in
Eq. (20) and the same analysis will follow. This proves
item (1) of the theorem for the construction in Part 2.

Items (2’) and (2”) assert that |ψ̃〉 can be written as an
MPS with constant bond dimension, which we now show.
Each state |φj〉 is a product state with pure state |φj,i〉
on each each block Mj,i, and |φj,i〉 has bond dimension
at most 2χ′2. Thus, if we cut the state |φj〉 at a certain
site, the bond dimension will be at most 4χ′2 (recall that
block Mj,0 may have sites at both ends of the chain and

can contribute to the bond dimension). Since |ψ̃〉 is a sum

over |φj〉 for l values of j, the bond dimension χ of |ψ̃〉
is at most 4lχ′2. For the case of exponentially decaying
correlations, this evaluates to

χ = 4l(256C2
1ξ log(d)(k + 3)/ε3)16ξ log(d)

≤ et0e
Õ(ξ log(d))

(k/ε3)O(ξ log(d)) (51)

proving item (2’), and for the case of ground state of
gapped Hamiltonian, we find

χ = 4l exp(Õ(∆−1/4 log(d) log3/4(C2

√
k + 3/ε3/2)))

≤ (k/ε)e
Õ

(
log3(d)

∆ +
log(d)

∆1/4
log3/4(k/ε3)

)
(52)

proving item (2”), where the second factor is asymptot-
ically (k/ε)o(1). For completeness, we note that if we
combined neighboring sites because d < 4, we can now
uncombine them possibly incurring a factor of 2 or 3 in-
crease in the bond dimension, which has no effect on the
stated asymptotic forms for χ.

These results hold as long as N ≥ 2l2, which translates
to N ≥ O(k2/ε2) + t0 exp(Õ(ξ log(d))) in the case of ex-
ponentially decaying correlations, and N ≥ O(k2/ε2) +

Õ(log(d)/∆3/4) in the case that |ψ〉 is a ground state of
a local Hamiltonian. This completes the proof.

Now we demonstrate that the state |ψ̃〉 constructed in
the proof of Theorem 1, Part 2, is long-range correlated.
Given an integer m, consider the pair of regions A =
[0, l(l − 1)− 1] and C = [l(l − 1 +m), N − 1], which are
separated by ml sites. Assume n ≥ 2l + m, so that A
and C both contain at least l2 sites. Let operators

Q1 = |φ0,1〉 〈φ0,1| ⊗ . . .⊗ |φ0,l〉 〈φ0,l|
Q2 = |φ0,l+m〉 〈φ0,l+m| ⊗ . . .

. . .⊗ |φ0,n−1〉 〈φ0,n−1| ⊗ |φ0,0〉 〈φ0,0| (53)

The operator Q1 is supported on A and Q2 is supported
on C. Since A and C each contain blocks Mi for at least
l values of i, conditions (1), (2), and (3) above imply that

Q1|ψ̃〉 = Q2|ψ̃〉 = |φ0〉 /
√
l. Thus

Cor(A : C)|ψ̃〉 ≥Tr((Q1 ⊗Q2)(ρ̃AC − ρ̃A ⊗ ρ̃C))

=Tr(Q1 ⊗Q2|ψ̃〉〈ψ̃|)
− Tr(Q1|ψ̃〉〈ψ̃|)Tr(Q2|ψ̃〉〈ψ̃|)

=1/l − 1/l2 (54)

The choice of l is independent of the chain length N , so
the above quantity is independent of N and independent
of the parameter m measuring the distance between A
and C. Thus, the correlation certainly does not decay
exponentially in the separation between the regions.

C. Proof of Theorem 2

In this section, we first state a pair of lemmas that will
be essential for the proof of Theorem 2, then we give a
proof summary of Theorem 2, and finally we provide the
full proof of Theorem 2.

First, an important and well-known tool we use is
Uhlmann’s theorem [29], which expresses the fact that
if two states are close, their purifications will be equally
close up to a unitary acting on the purifying auxiliary
space.
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Lemma 6 (Uhlmann’s theorem [29]). Suppose τA and
σA are states on system A. Suppose B is an auxiliary
system and |T 〉AB and |S〉AB are purifications of τA and
σA, respectively. Then

D(τA, σA) = min
U

√
1− |〈S|AB (IA ⊗ U) |T 〉AB |2 (55)

where the min is taken over unitaries on system B.

Second, we prove the following essential statement
about states with exponential decay of correlations.

Lemma 7. If L and R are disjoint regions of a 1D lattice
of N sites and the state τ = |η〉 〈η| has (t0, ξ)-exponential
decay of correlations, then

D(τLR, τL ⊗ τR) ≤ C3 exp(−dist(L,R)/ξ′). (56)

whenever dist(L,R) ≥ t0, where ξ′ = 16ξ2 log(d) and

C3 = exp(t0 exp(Õ(ξ log(d)))).
If τ is the unique ground state of a gapped nearest-

neighbor 1D Hamiltonian with spectral gap ∆, then this
can be improved to

D(τLR, τL ⊗ τR) ≤ C4 exp(−dist(L,R)/ξ′). (57)

whenever dist(L,R) ≥ Ω(log4(d)/∆2), where ξ′ =

O(1/∆) and C4 = exp(Õ(log3(d)/∆)).

For pure states σ, we call σ a Markov chain for the
tripartition L/M/R if σLR = σL ⊗ σR. Thus Lemma 7
states that exponential decay of correlations implies that
the violation of the Markov condition, as measured by the
purified distance (or alternatively, trace distance) decays
exponentially with the size of M .

Proof of Lemma 7. The goal is to show that an exponen-
tial decay of correlations in τ = |η〉 〈η| implies that τLR
is close to τL ⊗ τR. We will do this by truncating the
rank of τ on the region L to form σ, arguing that σLR is
close to σL⊗σR, and finally using the triangle inequality
to show the same holds for τ .

Lemma 3 says that there is a state σL with rank χ
defined on region L, such that

D(τL, σL) ≤ C1e
− log(χ)

8ξ log(d) (58)

In fact, the choice of σL of rank χ that minimizes the dis-
tance to τL is the state PLτL/Tr(PLτL) where PL is the
projector onto the eigenvectors of τL associated with the
largest χ eigenvalues. Accordingly, we define a normal-
ization constant q = 1/Tr(PLτL) and let |ν〉 =

√
qPL |η〉

and σ = |ν〉 〈ν| = qPLτPL be normalized states.
We first need to show that

Cor(L : R)|ν〉 := max
‖A‖,‖B‖≤1

Tr((A⊗B)(σLR − σL ⊗ σR))

(59)

is small, given only that Cor(L : R)|η〉 is small. Suppress-
ing tensor product symbols, we can write

Tr((AB)(σLR − σLσR))

= 〈ν|AB |ν〉 − 〈ν|A |ν〉 〈ν|B |ν〉
= q 〈η|PLABPL |η〉 − q2 〈η|PLAPL |η〉 〈η|PLBPL |η〉
= q 〈η| (PLAPL)B |η〉 − q2 〈η|PLAPL |η〉 〈η|PLB |η〉
= q 〈η| (PLAPL)B |η〉
−q2 〈η|PLAPL |η〉 (〈η|PLB |η〉 − 〈η|PL |η〉 〈η|B |η〉)
−q2 〈η|PLAPL |η〉 〈η|PL |η〉 〈η|B |η〉

= q (〈η| (PLAPL)B |η〉 − 〈η|PLAPL |η〉 〈η|B |η〉)
−q2 〈η|PLAPL |η〉 (〈η|PLB |η〉 − 〈η|PL |η〉 〈η|B |η〉)

from which we can conclude

Cor(L : R)|ν〉 ≤ (q + q2)Cor(L : R)|η〉 (60)

The normalization constant q is 1/(1−D(τL, σL)2) which
will be close to 1 as long as χ is sufficiently large. If we
choose log(χ) = 8ξ log(d)(1 + log(C1)) or larger, then q
will certainly be smaller than 2 and q + q2 ≤ 6.

The combination of the fact that σL has small rank
and that σ has small correlations between L and R will
allow us to show that σLR is close to σL⊗σR. We do this
by invoking Lemma 20 of [26], although we reproduce the
argument below. We can express the trace norm as

‖σLR − σL ⊗ σR‖1 = max
‖T‖≤1

Tr(T (σLR − σL ⊗ σR))

= max
‖T‖≤1

Tr(PLTPL(σLR − σL ⊗ σR))

where the second equality follows from the fact that PL
fixes the state σ. We can perform a Schmidt decompo-
sition of the operator PLTPL into a sum of at most χ2

terms which are each a product operator across the L/R
partition

PLTPL =

χ2∑
j=1

TL,j ⊗ TR,j (61)

and also such that ‖TL,j‖, ‖TR,j‖ ≤ 1 (see Lemma 20 of
[26] for full justification of this). Then we may write

‖σLR − σL ⊗ σR‖1

≤ max
‖T‖≤1

Tr

 χ2∑
j=1

TL,j ⊗ TR,j

 (σLR − σL ⊗ σR)


≤

χ2∑
j=1

max
‖TL,j‖,‖TR,j‖≤1

Tr ((TL,j ⊗ TR,j) (σLR − σL ⊗ σR))

≤ χ2Cor(L : R)|ν〉

≤ 6χ2Cor(L : R)|η〉 ≤ 6χ2 exp(−dist(L,R)/ξ)

as long as χ ≥ 8ξ log(d)(1 + log(C)) and dist(L,R) ≥ t0.
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Moreover the purified distance is bounded by the
square root of the trace norm of the difference (Lemma
1), allowing us to say

D(σLR, σL ⊗ σR) ≤
√

6χ exp(−dist(L,R)/(2ξ)) (62)

Then, by the triangle inequality, we can bound

D(τLR, τL ⊗ τR)

≤ D(τLR, σLR) +D(σLR, σL ⊗ σR)

+D(σL ⊗ σR, τL ⊗ τR)

≤ D(τLR, σLR) +D(σLR, σL ⊗ σR)

+D(σL, τL) +D(σR, τR)

≤ 3C1 exp

(
− log(χ)

8ξ log(d)

)
+
√

6χ exp

(
−dist(L,R)

2ξ

)
We can choose

log(χ) = 8ξ log(d)(1 + log(3C1)) + dist(L,R)/(4ξ) (63)

Then each term can be bounded so that

D(τLR, τL ⊗ τR) ≤ 2
√

6(3eC1)8ξ log(d)e
− dist(L,R)

32ξ2 log(d)

which proves the first part of the Lemma.
If τ is the unique ground state of a gapped Hamilto-

nian, then we may use the second part of Lemma 3, and
bound

D(τLR, τL ⊗ τR)

≤ 3C2e
−Õ

(
∆1/3 log4/3(χ)

log4/3(d)

)
+
√

6χe−O(∆dist(L,R))

Here we can choose

log(χ) = O

(
log(d)(1 + log(3C2))

3
4

∆1/4
+ ∆dist(L,R)

)

and then each term is small enough to make the bound

D(τLR, τL ⊗ τR)

≤ e
Õ

(
∆5/3dist(L,R)4/3

log4/3(d)

)

+
√

6e
O

(
log(d) log3/4(3eC2)

∆1/4

)
e−O(∆dist(L,R))

≤ e
Õ

(
log3(d)

∆

)
e−O(∆dist(L,R)) (64)

as long as dist(L,R) ≥ Ω(log4(d)/∆2), so that the first
term in the second line is dominated by the second term.

Also note we have used log(C2) = Õ(log8/3(d)/∆) in the
last line. This proves the second part of the lemma.

Proof summary for Theorem 2. First, we make the fol-
lowing observation about tripartitions of the chain into
contiguous regions L, M , and R: since |ψ〉 has exponen-
tial decay of correlations, the quantity D(ρLR, ρL ⊗ ρR)

FIG. 3: Schematic for the proof of Theorem 2. The chain
is divided into regions Mi of length l, which are themselves
divided into left and right halves ML

i and MR
i . The state |ψ̃〉

is constructed by starting with |ψ〉, applying unitaries that
act only on Mi for each i to disentangle the state across the
ML

i /M
R
i cut, projecting onto a product state across those

cuts, and finally applying the inverse unitaries on regions Mi.

is exponentially small in |M |/ξ′, where ξ′ = O(ξ2 log(d)).
This is captured in Lemma 7 and requires the area law
result from [26]. One can truncate ρL and ρR to bond
dimension d|M |/2, incurring small error, then purify ρL
into |α〉 using the left half of region M as the purify-
ing auxiliary space and ρR into |β〉 using the right half.
Since |α〉 ⊗ |β〉 and |ψ〉 are nearly the same state after
tracing out M , there is a unitary U acting only on M
that nearly disentangles |ψ〉 across the central cut of M ,
with U |ψ〉 ≈ |α〉 ⊗ |β〉 (Uhlmann’s theorem, Lemma 6).

The proof constructs the approximation |ψ̃〉 by ap-
plying three steps of operations on the exact state |ψ〉.
First, the chain is broken up into many regions {Mi}n+1

i=0
of length l, and disentangling unitaries Ui as described
above are applied to each region Mi in parallel. The state
is close to, but not exactly, a product state across the cen-
ter cut of each region Mi. To make it an exact product
state, the second step is to apply rank-1 projectors Πi

onto the right half of the state across each of these cuts,
starting with the leftmost cut and working our way down
the chain. Then, the third step is to apply the reverse

unitaries U†i that we applied in step 1.

The projection step is the cause of the error between
|ψ〉 and |ψ̃〉. The number of projections is O(N), but
the error accrued locally is only constant. This follows
from the fact that the projectors are rank 1, so once we
apply projector Πi, region Mj is completely decoupled
from Mj′ when j < i and j′ > i. Thus any additional
projections, which act only on the regions to the right of
Mi, have no effect on the reduced density matrix on Mj

(except to reduce its norm). Using this logic, we show
that the number of errors that actually affect the state
locally on a region X is proportional to the number of
sites in X, and not the number of sites in the whole chain.
To make this error less than ε for any region of at most
k sites, we can choose l = O(ξ′ log(k/ε)).

After step 2, the state is a product state on blocks of l
sites each, and in step 3, unitaries are applied that couple
neighboring blocks, so the maximum Schmidt rank across
any cut cannot exceed dl. This yields the scaling for χ.

The result is improved when |ψ〉 is the ground state of
a gapped local Hamiltonian by using the improved area
law [7, 25] in the proof of Lemma 7 and in the truncation
of the states ρL and ρR before purifying into |α〉 and |β〉.
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Finally, it can be seen that |ψ̃〉 is formed by a constant-
depth quantum circuit with two layers of unitaries, where
each unitary acts on l qubits. The first layer prepares
the product state over blocks of length l that is attained
after applying projections in step 2, and the second layer
applies the inverse unitaries from step 3. Each unitary in
this circuit can be decomposed into a sequence of nearest-
neighbor gates with depth Õ(d2l).

Proof of Theorem 2. We fix an even integer l, which we
will specify later, and divide the N sites of the chain into
n + 2 segments of length l, which we label, from left to
right: M0,M1, . . . ,Mn+1. If N does not divide l evenly,
then we allow segment Mn+1 to have fewer than l sites.
For i ∈ [1, n] let Li be the sites to the left of region Mi

and let Ri be the sites to the right of region Mi.
Lemma 7 tells us that, since |ψ〉 has (t0, ξ)-exponential

decay of correlations, for any i ∈ [1, n], ρLiRi is close to
ρLi ⊗ ρRi when l is much larger than ξ′:

D(ρLiRi , ρLi ⊗ ρRi) ≤ C3 exp(−l/ξ′) (65)

whenever l ≥ t0. We also choose χ = dl and for each i
define ρ′Li and ρ′Ri , each with rank at most

√
χ by taking

A = Li and A = Ri in Lemma 3. Thus we have

D(ρLi , ρ
′
Li) ≤ C1 exp(−l/(16ξ)) (66)

D(ρRi , ρ
′
Ri) ≤ C1 exp(−l/(16ξ)) (67)

Then by the triangle inequality we have

D(ρLiRi , ρ
′
Li ⊗ ρ

′
Ri)

≤ D(ρLiRi , ρLi ⊗ ρRi) +D(ρLi ⊗ ρRi , ρ′Li ⊗ ρRi)
+D(ρ′Li ⊗ ρRi , ρ

′
Li ⊗ ρ

′
Ri)

= D(ρLiRi , ρLi ⊗ ρRi) +D(ρLi , ρ
′
Li) +D(ρRi , ρ

′
Ri)

≤ C exp(−l/ξ′′) (68)

where C ≤ 2C1 +C3, ξ′′ = max(ξ′, 16ξ), whenever l ≥ t0.
Note that |ψ〉LiMiRi

can be viewed as a purification
of ρLiRi with Mi the purifying auxiliary system. Divide
region Mi in half, forming ML

i (left half) and MR
i (right

half). See Figure 3 for a schematic. Each of these sub-
systems has total dimension dl/2 and thus can act as the
purifying auxiliary system for ρ′Li or ρ′Ri . Let |αi〉LiML

i

be a purification of ρ′Li and |βi〉MR
i Ri

be a purification of

ρ′Ri . Thus, |αi〉 ⊗ |βi〉, which is defined over the entire
original chain, is a purification of ρ′Li ⊗ ρ

′
Ri

.
Uhlmann’s theorem (Lemma 6) shows how these purifi-

cations are related by a unitary on the purifying auxilary
system: for each Mi with i ∈ [1, n], there is a unitary Ui
acting non-trivially on region Mi and as the identity on
the rest of the chain such that Ui |ψ〉 is very close to
|αi〉 ⊗ |βi〉, a product state across the cut between ML

i

and MR
i . In other words, Ui disentangles Li from Ri, up

to some small error, by acting only on Mi. Formally we
say that∣∣∣〈αi|LiML

i
⊗ 〈βi|MR

i Ri
Ui |ψ〉LiMiRi

∣∣∣ =
√

1− δ2
i (69)

where δi ≤ C exp(−l/ξ′′) for all i.
An equivalent way to write this fact is

Ui |ψ〉LiMiRi
=
√

1− δ2
i |αi〉LiML

i
⊗ |βi〉MR

i Ri

+δi |φ′i〉LiML
i M

R
i Ri

(70)

where |φ′i〉 is a normalized state orthogonal to |αi〉⊗ |βi〉.
We can define the projector

Πi = ILiML
i
⊗ |βi〉 〈βi|MR

i Ri
. (71)

whose rank is 1 when considered as an operator acting
only on MR

i Ri.
We notice that ΠiUi |ψ〉LiMiRi

is a product state across

the ML
i /M

R
i cut and has a norm close to 1. Suppose we

alternate between applying disentangling operations Ui
and projections Πi onto a product state as we move down
the chain. Each Πi will reduce the norm of the state,
but we claim the norm will never vanish completely (and
delay the proof for later for clarity of argument).

Claim 1. If l ≥ ξ′′ log(3C), then

‖ΠnUn . . .Π1U1 |ψ〉‖ 6= 0 (72)

This allows us to define

|φ̃〉 =
ΠnUn . . .Π1U1 |ψ〉
‖ΠnUn . . .Π1U1 |ψ〉‖

(73)

Note that, to put our proof in line with what is de-
scribed in the introduction and proof summary earlier,
we may act with all the unitaries prior to the projectors
if we conjugate the projectors

|φ̃〉 ∝ Π′n . . .Π
′
1Un . . . U1 |ψ〉 (74)

where Π′i = Un . . . Ui+1ΠiU
†
i+1 . . . U

†
n, which still only

acts on the region Ri.
This can be compared with the state |φ〉 defined by ap-

plying the disentangling operations without projecting:

|φ〉 = Un . . . U1 |ψ〉 (75)

We claim that |φ̃〉 is a good local approximation for |φ〉
(and delay the proof for clarity of argument).

Claim 2. For any integer k′, |φ̃〉 is a (k′, ε′)-local ap-

proximation to |φ〉 with ε′ = C
√
k′/l + 3 exp(−l/ξ′′).

Next we can define

|ψ̃〉 = U†n . . . U
†
1 |φ̃〉 (76)

which parallels the relationship

|ψ〉 = U†n . . . U
†
1 |φ〉 (77)

Now suppose X is a contiguous region of the chain of
length k. Then there is a region X ′ of the chain of length
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at most k′ = k + 2l that contains X and is made up of
regions Mj where j ∈ [a′, b′].

‖TrXc(|ψ̃〉〈ψ̃| − |ψ〉 〈ψ|)‖1
≤ ‖TrX′c(|ψ̃〉〈ψ̃| − |ψ〉 〈ψ|)‖1
= ‖TrX′c(|φ̃〉〈φ̃| − |φ〉 〈φ|)‖1
≤ C

√
k/l + 5 exp(−l/ξ′′)

≤ C
√

6k exp(−l/ξ′′) (78)

where the third line follows from the fact that |φ〉 and |ψ〉
are related by a unitary that does not couple region X ′

and region X ′c, and the fourth line follows from Claim 2.
If we choose l = max(t0, ξ

′′ log(3C
√
k/ε)), then the

requirements of Claim 1 are satisfied, and we can see
from Eq. (78) that |ψ̃〉 is a (k, ε)-local approximation to
|ψ〉, item (1) of the theorem.

Item (2) states that |ψ̃〉 can be written as an MPS
with constant bond dimension. This can be seen by the
following logic. The Schmidt rank of |φ̃〉 across any cut
ML
i /M

R
i is 1, as discussed in the proof of Claim 2 (see

Eq. (82)), since the projector Πi projects onto a product
state across that cut and unitaries Uj with j > i act triv-
ially across the cut. By Corollary 1, this implies that the
Schmidt rank across any cut MR

i /M
L
i+1 can be at most

dl/2. Acting with the inverse unitaries U†j on |φ̃〉 to form

|ψ̃〉 preserves the Schmidt rank across the cut MR
i /M

L
i+1,

since none couple both sides of the cut. Because any cut
is at most distance l/2 from some MR

i /M
L
i+1 cut, the

Schmidt rank across an arbitrary cut can be at most a
factor of dl/2 greater, again by Corollary 1, meaning the
maximum Schmidt rank across any cut of |ψ〉 is χ = dl.

Given our choice of l = ξ′′ log(C
√

6k/ε), we find that
the state can be represented by an MPS with bond di-
mension

χ = (
√

6C)ξ
′′ log(d)(k/ε2)ξ

′′ log(d)/2

= ee
Õ(ξ log(d))

(k/ε2)O(ξ2 log2(d)). (79)

This proves item (2). Note that, in the case that our
choice of l exceeds N , it is not possible to form the con-
struction we have described. However, in this case dl will
exceed dN and we may take |ψ̃〉 = |ψ〉, which is a local
approximation for any k and ε and has bond dimension
in line with item (2) or (2’).

Item (2’) follows by using the same equations with C =

2C2 + C4 = exp(Õ(log3(d)/∆)) and ξ′′ = O(1/∆). For
Lemma 7 to apply, we must have l ≥ Ω(log4(d)/∆2), but
this will be satisfied for sufficiently large choices of k/ε2.
Thus the final analysis yields

χ = eÕ(log4(d)/∆2)(k/ε2)O(log(d)/∆). (80)

Item (3) states that |ψ̃〉 can be formed from a low-
depth quantum circuit. In the proof of Claim 2, we
show how the state |φ̃〉 is a product state across divi-

sions ML
i /M

R
i , as in Eq. (82). Thus the state |φ̃〉 can

be created from |0〉⊗N by acting with non-overlapping
unitaries on regions MR

i M
L
i+1 in parallel. Each of these

unitaries is supported on l sites. Then, |ψ̃〉 is related

to |φ̃〉 by another set of non-overlapping unitaries sup-
ported on l sites, as shown in Eq. (76). We conclude that

|ψ̃〉 can be created from the trivial state by two layers
of parallel unitary operations where each unitary is sup-
ported on l sites, as illustrated in Figure 1. In [30], it is
shown how any l-qudit unitary can be decomposed into
O(d2l) = O(χ2) two-qudit gates, with no need for ancil-
las. We can guarantee that these gates are all spatially
local by spending at most depth O(l) performing swap
operations to move any two sites next to each other, a
factor only logarithmic in the total depth. This proves
the theorem.

Proof of Claim 1. We prove by induction. Let |φ̃j〉 =
ΠjUj . . .Π1U1 |ψ〉. Note that ΠiUi |ψ〉 is non-zero for all

i, so in particular |φ̃1〉 is non-zero. Furthermore we note

that, if it is non-zero, |φ̃j〉 can be written as a product
state

∣∣α′j〉LjML
j

⊗ |βj〉MR
j Rj

for some unnormalized but

non-zero state
∣∣α′j〉, and the reduced density matrix of

|φ̃j〉 on Rj is ρ′Rj . If we assume |φ̃j〉 is non-zero then we
can write

|φ̃j+1〉 = Πj+1Uj+1|φ̃j〉 =
∣∣α′j〉⊗Πj+1Uj+1 |βj〉 (81)

and

‖|φ̃j+1〉‖2 = ‖
∣∣α′j〉⊗Πj+1Uj+1 |βj〉‖2

= ‖
∣∣α′j〉‖2‖Πj+1Uj+1 |βj〉‖2

= ‖
∣∣α′j〉‖2Tr(Πj+1Uj+1 |βj〉 〈βj |U†j+1Πj+1)

= ‖
∣∣α′j〉‖2Tr(Πj+1Uj+1ρ

′
RjU

†
j+1Πj+1)

≥ ‖
∣∣α′j〉‖2Tr(Πj+1Uj+1ρRjU

†
j+1Πj+1)

−‖
∣∣α′j〉‖2‖ρRj − ρ′Rj‖1

≥ ‖
∣∣α′j〉‖2Tr(Πj+1Uj+1ρU

†
j+1Πj+1)

−‖
∣∣α′j〉‖2‖ρRj − ρ′Rj‖1

≥ ‖
∣∣α′j〉‖2‖Πj+1Uj+1 |ψ〉‖2

−‖
∣∣α′j〉‖2‖ρRj − ρ′Rj‖1

≥ ‖
∣∣α′j〉‖2(1− C exp(−l/ξ′′))2

−‖
∣∣α′j〉‖2C exp(−l/ξ′′)

> 0

as long as l ≥ ξ′′ log(3C).

Proof of Claim 2. First, consider the cutML
i /M

R
i during

the formation of the state |φ̃〉. When the projector Πi is
applied, the state becomes a product state across this
cut. The remaining operators are Uj and Πj with j > i,
and thus they have no effect on the Schmidt rank across
the ML

i /M
R
i cut, meaning |φ̃〉 is a product state across
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each of these cuts, or in other words

|φ̃〉 = |φ1〉M0ML
1
⊗ |φ2〉MR

1 M
L
2
⊗ . . .

...⊗ |φn〉MR
n−1M

L
n
⊗ |φn+1〉MR

nMn+1
. (82)

Given an integer k and a contiguous region X of
length k, we can find integers a and b such that Y =
MR
a Ma+1 . . .Mb−1M

L
b contains X and |b− a| ≤ k/l + 2.

Then

TrY c(|φ̃〉〈φ̃|)
= |φa+1〉 〈φa+1| ⊗ . . .⊗ |φb〉 〈φb|

∝ TrLaML
aM

R
b Rb

(
ΠbUb . . .ΠaUa |ψ〉 〈ψ|U†aΠa . . . U

†
bΠb

)
The advantage here is that all of the Ui and Πi for which
i 6∈ [a, b] have disappeared. On the other hand, we have

TrY c(|φ〉 〈φ|)
= TrY c(Un . . . U1 |ψ〉 〈ψ|U†1 . . . U†n)

= TrLaML
aM

R
b Rb

(
Ub . . . Ua |ψ〉 〈ψ|U†a . . . U

†
b

)
(83)

Note that, since

Ui |ψ〉 =
√

1− δ2
i |αi〉 ⊗ |βi〉+ δi |φ′i〉 (84)

we can say that

ΠiUi |ψ〉 = Ui |ψ〉 − δi(I −Πi) |φ′i〉 (85)

and thus

ΠbUb . . .ΠaUa |ψ〉
= Ub . . . Ua |ψ〉 −

b∑
j=a

δj(ΠbUb . . .Πj+1Uj+1)(I −Πj)
∣∣φ′j〉

≡ Ub . . . Ua |ψ〉 − δ |φ′〉 (86)

where δ ≤
√∑b

j=a δ
2
j and normalized |φ′〉 is normalized.

This implies

|〈ψ|U†a . . . U
†
bΠbUb . . .ΠaUa |ψ〉|

‖Πa . . . U
†
bΠbUb . . .ΠaUa |ψ〉‖

≥
√

1− δ2 (87)

which shows that D1(τ, τ ′) ≤ δ where

τ = Ub . . . Ua |ψ〉 〈ψ|U†a . . . U
†
b

τ ′ =
ΠbUb . . .ΠaUa |ψ〉 〈ψ|U†aΠa . . . U

†
bΠb

‖Πa . . . U
†
bΠbUb . . .ΠaUa |ψ〉‖2

(88)

and hence

D1(TrXc(|φ〉 〈φ|),TrXc(|φ̃〉〈φ̃|))
≤ D1(TrY c(|φ〉 〈φ|),TrY c(|φ̃〉〈φ̃|))
≤ D1(τY , τ

′
Y ) ≤ D1(τ, τ ′) ≤ δ

≤ C
√
k/l + 3 exp(−l/ξ′′). (89)

This holds for any region X of length k, so this proves
the claim.

D. Proof of Theorem 3

First we state a lemma that will do most of the legwork
needed for Theorem 3. Then we prove Theorem 3.

Lemma 8. Suppose, for j = 0, 1, H(j) is a translation-
ally invariant Hamiltonian defined on a chain of length
N and local dimension d. Further suppose that |ψ(j)〉 is

the unique ground state of H(j) with energy E
(j)
0 , and let

∆(j) be the spectral gap of H(j). We may form a new
chain with local dimension 2d by adding an ancilla qubit
to each site of the chain. Then there is a Hamiltonian K
defined on this chain such that

(1) The ground state energy of K is

EK0 =
1

3
min
j
E

(j)
0 (90)

(2) If E
(0)
0 < E

(1)
0 , then the ground state of K is∣∣0N〉

A
⊗ |ψ(0)〉 and if E

(1)
0 < E

(0)
0 , then the ground

state is
∣∣1N〉

A
⊗ |ψ(1)〉, where A refers to the N an-

cilla registers collectively.

(3) If E
(0)
0 < E

(1)
0 , then the spectral gap of K is at least

min(∆(0), E
(1)
0 − E(0)

0 , 1)/3 and if E
(1)
0 < E

(0)
0 , then

the spectral gap of K is at least min(∆(1), E
(0)
0 −

E
(1)
0 , 1)/3

Proof of Lemma 8. Note that a variant of this lemma is
employed in [28, 31, 32] to show the undecidability of cer-
tain properties of translationally invariant Hamiltonians.

Since H(j) is translationally invariant, it is specified by

its single interaction term H
(j)
i,i+1:

H(j) =

N−1∑
i=1

H
(j)
i,i+1 (91)

The Hamiltonian K will be defined over a new chain
where we attach to each site an ancilla qubit, increasing
the local Hilbert space dimension by a factor of 2. We
refer to the ancilla associated with site i by the subscript
Ai, and we refer to the collection of ancillas together with
the subscript A. Operators or states without a subscript
are assumed to act on the original d-dimensional part of
the local Hilbert spaces. Let

K =

N−1∑
i=1

Ki,i+1 (92)

where

Ki,i+1 =
1

3
H

(0)
i,i+1 ⊗ |00〉 〈00|AiAi+1

(93)

+
1

3
H

(1)
i,i+1 ⊗ |11〉 〈11|AiAi+1

(94)

+ Ii,i+1 ⊗ (|01〉 〈01|+ |10〉 〈10|)AiAi+1
(95)
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with Ii,i+1 denoting the identity operation on sites i and
i+1. In this form it is clear that K is a nearest-neighbor
translationally invariant Hamiltonian and that each in-
teraction term has operator norm 1 (a requirement un-
der our treatment of 1D Hamiltonians). The picture we
get is that if two neighboring ancillas are both |0〉, then

H
(0)
i,i+1/3 is applied, if both are |1〉 then H

(1)
i,i+1/3 is ap-

plied, and if the ancillas are different, then Ii,i+1 is ap-
plied. Following this intuition, we can rewrite K as fol-
lows

K =

2N−1∑
x=0

(
|x〉 〈x|A ⊗

N−1∑
i=1

Kx,i

)
(96)

where the first sum is over all settings of the ancillas and
the operator Kx,i acts on the non-ancilla portion of sites
i and i+ 1, with

Kx,i =


H

(0)
i,i+1/3 if xi = xi+1 = 0

H
(1)
i,i+1/3 if xi = xi+1 = 1

Ii,i+1 if xi 6= xi+1

(97)

We analyze the spectrum of K. If H(j) has eigenvalues

E
(j)
n with corresponding eigenvectors |φ(j)

n 〉 (where E
(j)
n

is non-decreasing with increasing integers n), then the

states
∣∣0N〉

A
⊗ |φ(0)

n 〉 and
∣∣1N〉

A
⊗ |φ(1)

n 〉 are eigenstates

of K with eigenvalues E
(0)
n /3 and E

(1)
n /3, respectively.

Recall that eigenvectors of a Hamiltonian span the
whole Hilbert space over which the Hamiltonian is de-
fined. Therefore, the eigenvectors of K listed above span
the entire sectors of the Hilbert space associated with
the ancillas set to

∣∣0N〉
A

or
∣∣1N〉

A
. Suppose |φ〉 is an-

other eigenvector of K. Since it is orthogonal to all of
the previously listed eigenvectors, |φ〉 can be written

|φ〉 =

2N−2∑
x=1

αx |x〉A ⊗ |ηx〉 (98)

for some set of complex coefficients αx with
∑
x|αx|2 = 1

and some set of normalized states |ηx〉. The sum explic-
itly leaves out the x = 0 = 0N and x = 2N − 1 = 1N

binary strings because these states lie in the subspace
spanned by eigenstates already listed. We wish to lower
bound the energy of the state |φ〉.

〈φ|K |φ〉

=

2N−2∑
x=1

2N−2∑
y=1

α∗xαy 〈x|A 〈ηx|K |y〉A |ηy〉

=

2N−2∑
x=1

2N−2∑
y=1

2N−1∑
z=0

α∗xαy 〈x|z〉 〈z|y〉A 〈ηx|
N−1∑
i=1

Kz,i |ηy〉

=

2N−2∑
x=1

|αx|2 〈ηx|
N−1∑
i=1

Kx,i |ηx〉 (99)

We would like to show a lower bound for this quantity.
We make the following claim:

Claim 3. For any state |η〉, and any 1 ≤ a < b ≤ N

〈η|
b−2∑
i=a

H
(j)
i,i+1 |η〉 ≥

b− a
N − 1

E
(j)
0 − 1 (100)

Proof of Claim 3. First we prove it in the case that M :=
b− a divides N . Let region Y refer to sites [a, b− 1], let
ρ = TrY c(|η〉 〈η|), and let σ = ρ⊗ . . .⊗ ρ be N/M copies
of ρ which covers all N sites. Then

Tr(H(j)σ) =
N

M
〈η|

b−2∑
i=a

H
(j)
i,i+1 |η〉

+

N/M−1∑
k=1

〈η|H(j)
kM,kM+1 |η〉

≤N
M
〈η|

b−2∑
i=a

H
(j)
i,i+1 |η〉+

(
N

M
− 1

)
(101)

where the last line follows from the fact that the interac-
tion strength ‖H(j)

i,i+1‖ ≤ 1. Moreover, by the variational

principle, Tr(H(j)σ) ≥ E(j)
0 . These observations together

yield

〈η|
b−2∑
i=a

H
(j)
i,i+1 |η〉 ≥ (M/N)(E

(j)
0 + 1)− 1 (102)

which implies the statement of the claim.
Now suppose M does not divide N . We decompose

N = sM + r for non-negative integers s and r < M . Let
σ = ρ⊗ . . .⊗ ρ⊗ |ν〉 〈ν| where there are s copies of ρ and

|ν〉 is the exact ground state of
∑N−1
i=N−r+1H

(j)
i,i+1, which

has energy Er. Then

Tr(H(j)σ) ≤ s 〈η|
i0+M0−2∑

i=a

H
(j)
i,i+1 |η〉+ Er + s (103)

Here we invoke the variational principle twice. First, note

that the expectation value of
∑N−1
i=N−r+1H

(j)
i,i+1 in the

state |φ(j)
0 〉 (the exact ground state of the whole chain)

is exactly (r − 1)E
(j)
0 /(N − 1). Since |ν〉 is the exact

ground state of that Hamiltonian, Er must be smaller

than this quantity. Second, as before, Tr(H(j)σ) ≥ E(j)
0 .

Combining these observations yields

〈η|
i0+M−1∑
i=i0

H
(j)
i,i+1 |η〉 ≥

1

s
E

(j)
0

(
1− r − 1

N − 1

)
− 1

=
M

N − 1
E

(j)
0 − 1 (104)

Now we use this claim to complete the proof of Lemma
8. For any binary string x we can associate a sequence
of indices 1 = i0 < i1 < . . . < im < im+1 = N + 1
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such that xi = xik for all k = 1, . . . ,m and all i in the
interval [ik, ik+1 − 1]. Moreover we require xik−1

6= xik .
In other words, x can be decomposed into substrings of
consecutive 0s and consecutive 1s, with ij representing
the index of the “domain wall” that separates a substring
of 0s from a substring of 1s. The parameter m is the
number of domain walls. Using this notation, and letting

EK0 = minj E
(j)
0 /3 we can rewrite

〈ηx|
N−1∑
i=1

Kx,i |ηx〉 =

m∑
k=0

〈ηx|
ik+1−2∑
i=ik

1

3
H

(xik )

i,i+1 |ηx〉

+

m∑
k=1

〈ηx| Iik−1,ik |ηx〉

≥
m∑
k=0

(
ik+1 − ik
3(N − 1)

E
(xij )

0 − 1

3

)
+m

≥EK0 +
2m− 1

3
(105)

For any x other than 0N and 1N , there is at least one
domain wall and m ≥ 1. Thus we can say

〈φ|K |φ〉 ≥ EK0 + 1/3 (106)

We have shown that any state orthogonal to the states∣∣0N〉
A
⊗|φ(0)

n 〉 and
∣∣1N〉

A
⊗|φ(1)

n 〉 will have energy at least

1/3 larger than the lowest energy state of the system.

Without loss of generality, suppose E
(0)
0 ≤ E

(1)
0 . Then,

the ground state energy is EK0 = E
(0)
0 /3 and the ground

state is
∣∣0N〉

A
⊗ |φ(0)

0 〉 (note that in the statement of the

Lemma we have
∣∣ψ(0)

〉
=
∣∣∣φ(0)

0

〉
). The first excited state

is either
∣∣0N〉

A
⊗|φ(0)

1 〉,
∣∣1N〉

A
⊗|φ(1)

0 〉, or lies outside the

sector associated with ancillas
∣∣0N〉 and

∣∣1N〉, whichever
has lowest energy. The three cases lead to spectral gaps of

∆(0)/3, (E
(1)
0 − E(0)

0 )/3, and something larger than 1/3
(due to Eq. (106)), respectively. This proves all three
items of the Lemma.

Proof of Theorem 3. We begin by specifying a family of
Hamiltonians, parameterized by t ∈ [0, 1/2] and defined
over a chain of length N with local dimension d.

HZ(t) =

N−1∑
i=1

Ii⊗ Ii+1− (1− t) |0〉 〈0|i⊗|0〉 〈0|i+1 (107)

The ground state of HZ(t) is the trivial product state

|0〉⊗N with ground state energy t(N−1), and thus energy
density t. The interaction strength is bounded by 1 and
the spectral gap is 1− t ≥ 1/2.

Now we construct an algorithm for Problem 1. We are
given H as input, with associated parameters N and d,
and a lower bound ∆ on the spectral gap. Let the true
ground state energy for H be E and let u = E/(N − 1).
We choose a value of s between 0 and 1, and we ap-
ply Lemma 8 to construct a Hamiltonian K combining

Hamiltonians H/2 and HZ(s/2). K acts on N sites,
has local dimension 2d, and has spectral gap at least
min(∆, |s − u|(N − 1), 1)/6. We are given a procedure
to solve Problem 2 with δ = 0.9 for a single site, i.e. we
can estimate the expectation value of any single site ob-
servable in the ground state of K. If s < u, the true
reduced density matrix of K will have its ancilla bits all
set to 1. If s > u the reduced density matrix corre-
sponds to the reduced density matrix of H with all its
ancilla bits set to 0. Thus we can choose our single site
operator to be the ZA operator that has eigenvalue 1
for states whose ancilla bit is |0〉 and eigenvalue −1 for
states whose ancilla bit is |1〉. If we have a procedure to
determine 〈ψ|ZA |ψ〉 to precision 0.9 then we can deter-
mine the setting of one of the ancilla bits in the ground
state and thus determine whether u is larger or smaller
than s. The time required to make this determination is
f(min(∆, (N − 1)|s − u|, 1)/6, 2d,N). Because we have
control over s, we can use this procedure to binary search
for the value of u. We assume we are given a lower bound
on ∆ but since we do not know u a priori, we have no
lower bound on |s− u|, so we may not know how long to
run the algorithm for Problem 2 in each step of the bi-
nary search. If our desired precision is ε, we will impose
a maximum runtime of f(min(∆, (N−1)ε/2, 1)/6, 2d,N)
for each step. Thus, if we choose a value of s for which
|s−u| < ε/2, the output of this step of the binary search
may be incorrect. After such a step, our search window
will be cut in half and the correct value of u will no longer
be within the window. However, u will still lie within
ε/2 of one edge of the window. Throughout the binary
search, some element of the search window will always lie
within ε/2 of u, so if we run the search until the window
has width ε and output the value ũ in the center of the
search window, we are guaranteed that |u− ũ| ≤ ε. The
number of steps required is O(log(1/ε)) and the time for
each step is f(min(2∆, (N − 1)ε, 2)/12, 2d,N), yielding
the statement of the theorem.

V. DISCUSSION

Our results paint an interesting landscape of the
complexity of approximating ground states of gapped
nearest-neighbor 1D Hamiltonians locally. On the one
hand, we show all k-local properties of the ground state
can be captured by an MPS with only constant bond
dimension, an improvement over the poly(N) bond di-
mension required to represent the global approximation.
This constant scales like a polynomial in k and 1/ε, when
parameters like ∆, ξ, and d are taken as constants. On
the other hand, we give evidence that, at least for the case
where the Hamiltonian is translationally invariant, find-
ing the local approximation may not offer a significant
speedup over finding the global approximation: we have
shown that the ability to find even a constant-precision
estimate of local properties would allow one to learn a
constant-precision estimate of the ground state energy
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with only O(log(N)) overhead. This reduction does not
allow one to learn any global information about the state
besides the ground state energy, so it falls short of giv-
ing a concrete relationship between the complexity of the
global and local approximations. Nonetheless, the reduc-
tion has concrete consequences. In particular, at least
one of the following must be true about translationally
invariant gapped Hamiltonians on chains of length N :

(1) The ground state energy can be estimated to O(1)
precision in O(log(N)) time.

(2) Local properties of the ground state cannot be esti-
mated to O(1) precision in time independent of N .

In particular, the second item, if true, would seem to
imply that, in the translationally invariant case when
N →∞, local properties cannot be estimated at all.

Indeed, it is when the chain is very long, or when we
are considering the thermodynamic limit directly that
our results are most relevant. In the translationally in-
variant case as N →∞, our first proof method (Theorem
1) yields a local approximation that is a translationally
invariant MPS. However, the MPS is non-injective and
the state is a macroscopic superposition on the infinite
chain. Thus the bulk tensors alone do not uniquely define
the state and specification of a boundary tensor at infin-
ity is also required [12, 14]. Our second proof method
(Theorem 2), on the other hand, yields a periodic MPS
(with period O(log(k/ε2))) that is injective and can be
constructed by a constant-depth quantum circuit made
from spatially local gates. If we allow the locality of the
gates to be O(log(k/ε2)), then the circuit can have depth
2, as in Figure 1. If we require the locality of the gates
be only a constant, say 2, then the circuit can have depth
poly(k, 1/ε).

The fact that the approximation is injective perhaps
makes the latter method more powerful. Injective MPS
are the exact ground states of some local gapped Hamil-
tonian [19, 33]. Additionally, non-injective MPS form
a set of measure zero among the entire MPS manifold,
so variational algorithms that explore the whole mani-
fold are most compatible with an injective approxima-
tion. In fact, since the approximation can be generated
from a constant-depth circuit, the result justifies a more
restricted variational ansatz using states of that form.

This ansatz could provide several advantages over MPS
in terms of number of parameters needed and ability to
quickly calculate local observables, like the energy den-
sity. However, algorithms that perform variational opti-
mization of the energy density generally suffer from two
issues, regardless of the ansatz they use. First, they do
not guarantee convergence to the global minimum within
the ansatz set, and second, even when they do find the
global minimum, the output does not necessarily corre-
spond to a good local approximation. This stems from
the fact that a state that is ε-close to the ground state
energy density may actually be far, even orthogonal, to
the actual ground state. Therefore, even a brute-force
optimization over the ansatz set cannot be guaranteed to
give any information about the ground state, other than
its energy density.

This leaves open many questions regarding the algo-
rithmic complexity of gapped local 1D Hamiltonians. For
the general case on a finite chain, can one find a local ap-
proximation to the ground state faster than the global
approximation? For translationally invariant chains, can
one learn the ground state energy to O(1) precision in
O(log(N)) time, and can one learn local properties in
time independent of the chain length? Relatedly, in the
thermodynamic limit, can one learn an ε-approximation
to the ground state energy density in O(log(1/ε)) time,
and can one learn local properties at all? These are in-
teresting questions to consider in future work.

We would like to conclude by drawing the reader’s at-
tention to independent work studying the same problem
by Huang [34], appearing simultaneously with our own.
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