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Computational and experimental demonstrations
of one-pot tandem catalysis for electrochemical
carbon dioxide reduction to methane
Haochen Zhang 1,6, Xiaoxia Chang 2,6, Jingguang G. Chen 3, William A. Goddard III 4, Bingjun Xu 2,

Mu-Jeng Cheng 5 & Qi Lu 1

Electroreduction of carbon dioxide to hydrocarbons and oxygenates on copper involves

reduction to a carbon monoxide adsorbate followed by further transformation to hydro-

carbons and oxygenates. Simultaneous improvement of these processes over a single

reactive site is challenging due to the linear scaling relationship of the binding strength of key

intermediates. Herein, we report improved electroreduction of carbon dioxide by exploiting a

one-pot tandem catalysis mechanism based on computational and electrochemical investi-

gations. By constructing a well-defined copper-modified silver surface, adsorbed carbon

monoxide generated on the silver sites is proposed to migrate to surface copper sites for the

subsequent reduction to methane, which is consistent with insights gained from operando

attenuated total reflectance surface enhanced infrared absorption spectroscopic investiga-

tions. Our results provide a promising approach for designing carbon dioxide electroreduction

catalysts to enable one-pot reduction of products beyond carbon monoxide and formate.
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The electrochemical reduction of CO2 to energy-dense
chemicals is an attractive strategy for storing the inter-
mittent renewable electricity produced by solar and wind

sources1–3. To ensure sustainability of the entire process, the
electrochemical CO2 reduction reaction (CO2RR) is typically
conducted in an aqueous electrolyte, in which the protons
required are obtained. In this system, tremendous progress has
been made in catalyst4–6 and reactor design7,8 to drive the two-
electron reduction of CO2 to produce CO or formate. However,
strategies for direct reduction of CO2 to more valuable fuels and
chemicals have been less successful because the catalysts capable
of catalyzing this conversion are very limited. Only Cu exhibits
appreciable activity and Faradaic efficiency (FE) for reducing CO2

to hydrocarbons and oxygenates9–11. The lack of predictive cat-
alyst design principles for CO2RR limits the development of
catalysts capable of directly converting CO2 to products beyond
CO and formate

To achieve higher efficiencies in the CO2RR toward hydro-
carbons and oxygenates, the most common approach involves
modifying the Cu surface to produce and/or enrich active sites
with a specific structure. These efforts include oxidation and
reduction treatment to expose grain boundary-terminated Cu
surfaces12,13, plasma treatment14,15, and electro-redeposition16 to
introduce stable Cu+ species, morphology control to expose high
density low-coordinated surface sites17,18, and alloying with an
additional metal to tune the binding strength to the reaction
intermediates19–22. Despite the recent progress, the improvement
in the performance as compared to the pure Cu remains unsa-
tisfactory. In particular, the selectivity of alloy catalysts toward
products beyond CO and formate do not surpass that of pure
Cu10,11. Therefore, novel approaches to design more efficient
CO2RR catalysts capable of selectively producing valuable pro-
ducts are highly desirable.

On polycrystalline Cu surfaces, CO2 is first converted to
adsorbed CO adsorbate (*CO) followed by its further reduction to
hydrocarbons and oxygenates. However, the optimal sites for
these two processes could have quite different properties because
the formation of *CO requires the optimal binding strength for
*COOH23–25 while the formation of hydrocarbons and oxyge-
nates requires the optimal binding strength for *CO25–27. The
simultaneous optimization of the binding strength of *COOH
and *CO on one type of reactive site can be challenging due to the
linear scaling relationship26. For example, the Au3Cu nano-
particle catalyst exhibited a very high activity for reducing CO2 to
CO. However, this catalyst was nearly incapable of producing
further reduced products19. An oxide-derived Cu catalyst exhib-
ited a much improved FE for reducing CO to alcohols. However,
this catalyst cannot effectively and directly reduce CO2 to pro-
ducts beyond CO and formate12.

Therefore, the conversion of CO2 using tandem catalysis can be
a promising strategy to improve the overall efficiencies for further
reduced products. By co-locating Cu with a CO-producing sur-
face (e.g., Au and Ag), the Cu may be supplied with abundant CO
via spillover. A higher coverage of CO on the Cu surface can not
only increase the rates of hydrocarbon and oxygenate produc-
tion28–30 but also suppress the competing hydrogen evolution
reaction (HER) by weakening the binding strength of Hads

31.
Recently, several bimetallic surfaces including Cu-Zn20 and Cu-
Au22 were investigated in the CO2RR. The Cu-Zn surface
exhibited improved selectivity for ethanol over ethylene, and the
Cu-Au surface exhibited an improved partial current density
toward reduction products beyond CO from approximately 0.005
to 0.16 mA cm−2 compared to a bare Cu foil at a low over-
potential. A tandem catalysis mechanism was proposed to explain
these improvements. However, CO spillover was not demon-
strated in these systems. Therefore, the origin of the observed

synergetic improvements remains unclear. Another recent study
demonstrated that a Cu-Ag bimetallic surface can be more
selective for C2+ product formation21. However, this improve-
ment was not due to CO spillover but suppression of the HER
from the formation of the compressively strained alloy surface.
Herein we report a combined computational and experimental
study of one-pot tandem catalytic CO2RR. By constructing well-
defined model surfaces with isolated thin Cu layers on a CO-
producing substrate (i.e., Au and Ag), the CO produced on the
CO-producing Au or Ag would migrate to Cu with a low acti-
vation energy and be further reduced by Cu. In comparison to
pure Cu, our model surface exhibited better CH4 selectivity and
activity as well as suppressed HER10,11. Operando attenuated
total reflectance surface enhanced infrared absorption spectro-
scopic (ATR-SEIRAS) investigations yielded the first spectro-
scopic evidence of CO spillover on a Cu-based bimetallic catalyst.
More importantly, our results clearly demonstrate a new para-
digm for the design of CO2RR catalysts to achieve further reduced
products beyond CO and formate.

Results
Theoretical investigations of carbon monoxide spillover. Ag
and Au are known to be the most efficient monometallic surfaces
for CO production from the CO2RR4,5. Our computational
investigation begins with examination of the possibility for CO
spillover from a CO-producing Ag or Au site to a surface Cu site
prior to further reduction. The surface is divided into eight
regions along the direction from bare Ag (or Au) sites toward
surface Cu sites for the discussion of CO spillover, and only the
ΔGCO of sites with the strongest binding energy in each region on
the Cu-added Ag or Au surface are considered in the CO spillover
discussion (Fig. 1a and Supplementary Table 1). As shown in
Fig. 1b, *CO adsorption is typically more stable on surface Cu
sites than Ag or Au sites. The ΔGCO at bare substrate sites
nonadjacent to Cu (i.e., site nos. 1–3) exhibit similar values (i.e.,
~0.73 eV for Ag and ~0.34 eV for Au, respectively). As the CO
molecule approaches the surface Cu, ΔGCO decreases sub-
stantially (stronger adsorption) and reaches a minimum value at
site no. 5 on Ag (−0.34 eV) and Au (−0.75 eV) where CO forms a
bond with the surface Cu atoms. Significantly better CO
adsorption is observed on surface Cu than its substrate for both
Ag (1.07 eV) and Au (1.09 eV). Moreover, the free energy barrier
for CO spillover on both surfaces is calculated to be very small
(no more than 0.16 eV), which can be easily surmounted at room
temperature (Supplementary Table 2) and is consistent with
previous works32,33. Thus our computational results indicate that
CO spillover from the Ag or Au substrate to the surface Cu is
thermodynamically and kinetically feasible. The one-pot tandem
reduction of CO2 may be viable by converting CO2 to CO on a
CO-producing substrate followed by CO spillover and further
reduction on a surface Cu site.

Theoretical investigations of carbon monoxide reduction after
spillover. The further reduction of CO on surface Cu after spil-
lover is investigated. The conversion of CO to C1 products is
chosen as the model reaction process for this investigation
because (a) this process is less controversial and the results can be
supported by previous work34–37, and (b) other processes require
C-C coupling via mechanisms that are unclear and currently
under debate38–40. The kinetics and thermodynamics for all
possible pathways toward C1 products are calculated (Fig. 2,
Supplementary Fig. 1 and Supplementary Table 3). Different from
traditional calculations with a fixed electron number, the number
of electrons in each calculation is adjusted to maintain a potential
of −1.0 VSHE, which is more representative of experimental
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reaction conditions. The most energetically favored pathway
toward CH4 at −1.0 VSHE is determined to be *CO→ *CHO→
*CHOH→ *CH→ *CH2→ *CH3→ *+ CH4 on both the Ag-Cu
and Au-Cu surfaces (Fig. 2 and Supplementary Fig. 1). The
surface Cu exhibits the ability to reduce CO to CH4 at −1.0 VSHE.
As suggested by the results in Fig. 2 and Supplementary Fig. 1, the
hydrogenation of *CO to *CHO, which is the most difficult
reaction among all the reaction steps, exhibits the highest free
energy barrier (ΔG≠) with a value of 0.57 and 0.50 eV for the Ag-
Cu and Au-Cu surfaces, respectively. All reactions along the
pathway at a potential bias of −1.0 VSHE are thermodynamically
downhill and kinetically feasible with ΔG≠ values being <0.75 eV,
a number leading to a turnover frequency of approximately 1 s−1

at room temperature based on the transition state theory34,35. The
hydrogenation of *CH, *CH2, and *CH3 exhibits no free energy
barrier. Similar results were also reported by Chan et al. in the
study of CO2 reduction on stepped copper41,42. This result
indicates that CO reduction by the surface Cu on Ag or Au will be
kinetically feasible. In contrast, pathways toward other possible
C1 product methanol are kinetically unfavorable, although they
are thermodynamically feasible. Accordingly, both the thermo-
dynamics and kinetics indicate that the surface Cu on Ag or Au
can reduce CO2 to CH4 in a one-pot tandem fashion.

Ag-Cu model surface for electrochemical study. The Ag-Cu
surface rather than the Au-Cu surface is chosen as the model

catalyst for electrochemical investigations due to the cost-
effectiveness of Ag over Au. The Cu-modified Ag surface is
prepared at the beginning of CO2 electrolysis by conducting the
reaction in a bicarbonate electrolyte containing a predetermined
(ppm) level of Cu2+. Owing to the reduction potential of Cu2+

(Cu2+(aq)+ 2e−→ Cu(s) (+0.16 VSHE for ppm level Cu2+))
being significantly more positive than the electroreduction
potential of CO2 (typically <−1.3 VSHE), the ppm-level Cu2+ is
instantly electrochemically deposited onto the Ag foil when the
electrolysis is initiated, making the deposition process indis-
tinguishable during chronoamperometry. This is supported by
the observation that the reduction current of Cu2+ is indis-
tinguishable in current profiles at all potentials (Supplementary
Fig. 2). Further, the surface morphologies at the early stage and at
the conclusion of the electrolysis are similar (Supplementary
Fig. 3). The deposited Cu form islands that are a few tens of
nanometers in size on the Ag surface (Fig. 3a–c), which is con-
sistent with previous results using a similar technique43.
The coverage of surface Cu can be tuned by controlling the initial
Cu2+ concentration in the electrolyte and is characterized using
scanning electron microscopy (SEM) and X-ray photoelectron
spectroscopy (XPS) (Fig. 3a–c, Table 1, Supplementary Fig. 4).
The highly crystalline nature of surface Cu is confirmed by high-
resolution transmission electron microscope (HR-TEM) with
samples prepared using focused ion beam technique (Supple-
mentary Fig. 5).

The CO2 electrolysis study of these Ag-Cu surfaces is
conducted at −1.1 VRHE because Ag foil exhibits the highest FE
for CO production at this potential (Fig. 4c)23. The distribution of
the major products is shown in Fig. 3d. As the Cu2+

concentration increases from 0 to 1.5 ppm, which corresponds
to a Cu coverage increases from 0% to 50.2% (Table 1), the CH4

FE increases substantially from 0% to approximately 60%, and the
CO FE decreases concomitantly from >80% to approximately
10% (Fig. 3d). The CH4 FE achieved on this partially Cu-covered
Ag-Cu surface (i.e., Cu coverage of 50.2%) is much higher that on
a bare polycrystalline Cu foil at the same potential (Supplemen-
tary Fig. 6)11. This result indicates that CH4 production on Cu
can be efficiently improved via the prior reduction of CO2 to CO
on a nearby Ag surface. Because a further increase in the Cu
coverage decreases the CH4 FE, the essential role of Ag surface
exposure is to provide sufficient CO supply to achieve a high CH4

FE. At a Cu2+ concentration of 2.5 ppm, the Cu coverage reaches
85.3%, and the CH4 FE value decreases to approximately 35%,
which is consistent with results obtained on a polycrystalline Cu
foil at the same potential (Supplementary Fig. 6)11. The Ag-Cu
surfaces are not very selective to C2H4, which is most likely due to
the preferential adsorption of those *CO that migrates from the
Ag surface on the edge of Cu islands where the reduced
dimension may promote the exposure of low-coordinated surface
sites. These low-coordinated sites may bind *CO too strongly that
prevent the further movement of *CO for dimerization.

Potential dependence study at the silver–copper surface. The
Ag-Cu surface with the optimal Cu coverage achieved at a Cu2+

concentration of 1.5 ppm is employed to further investigate the
one-pot tandem catalysis in the CO2RR. The potential range for
the electrolysis experiment is −0.6 VRHE to −1.3 VRHE (equiva-
lent to −1.0 VSHE to −1.7 VSHE) to drive sufficient but not
excessive activities. The Ag-Cu surface at these potentials exhibits
nearly identical morphologies (Supplementary Fig. 7). This is
most likely due to the large deposition overpotentials (>1.16 V)
for only ppm-level Cu2+ in the electrolyte and the deposition
processes are limited by the diffusion of Cu2+ rather than the
electrode potential. This is supported by the observation in a
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Fig. 1 Schematic diagram. The computational model is constructed by
adding a single layer of Cu with a coverage of 1/2 ML (monolayer) on top of
the three-layer Ag or Au substrate. The surface CO adsorption is under
−1.0 VSHE. The substrate orientation is chosen to be (111) because it is the
most stable and abundant surface facet for bulk Ag or Au materials. A clean
surface, CO2(g), H2O(l) and H2(g) are used as references to construct the
free energy surfaces. a Top view of the unit cell used for computational
investigations (blue: top layer Ag or Au atoms; light blue: bottom layer Ag
or Au atoms; orange: Cu atoms). The site numbers show the position and
chemical environment of the binding sites. b Energy diagram for CO
adsorption on the Ag-Cu surface (blue line) and Au-Cu surface (orange
line). Data of sites nonadjacent to the surface Cu are shown in hollow
bullets
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previous study that the electrodeposition of Cu begins to be
diffusion-limited with an overpotential of >300 mV at a Cu2+

concentration of 0.15M44. When the overpotential is >800 mV,
such deposition process is completely diffusion-limited and the
deposited Cu exhibits near identical morphologies44,45.

In the −0.6 VRHE to −1.0 VRHE potential range, the Ag-Cu
surface exhibits a similar electrocatalytic behavior as that of a bare
Ag surface with CO and H2 as the major products (Fig. 4). Both
the CO and H2 partial current densities increase as the potential

becomes more negative due to the increased overpotential
(Fig. 4b, d). The increase in CO production is more significant
than that of H2 production, resulting in an increase in CO FE and
a decrease in H2 FE (Fig. 4a–c). As the potential becomes more
negative than −1.0 VRHE, the Ag-Cu surface exhibits a substantial
increase in the CH4 partial current density with a concomitant
decrease in the CO partial current density (Fig. 4b). However, for
the bare Ag surface, the CO partial current density continuously
increases and begins to plateau at −1.1 VRHE, which is most likely
due to mass transport limitations (Fig. 4d). This result clearly
demonstrates that the exposed Ag surface on Ag-Cu behaves very
differently from the bare Ag. If the exposed Ag surface merely
converts CO2 to molecular CO that leaves the Ag-Cu surface, as is
the case for the bare Ag surface, the CO partial current density
should increase as the potential becomes more negative until
mass-transport limitation. In contrast, the CO partial current
density of Ag-Cu surface actually decreases at more negative
potentials where CH4 formation starts to increase (Fig. 4b),
indicating that the extra CO produced on exposed Ag sites
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Table 1 Surface Cu coverage with different Cu2+

concentrations in the electrolyte

Cu2+ concentration/ppm 0.5 1.0 1.5 2.0 2.5

Surface Cu coverage 2.7% 32.3% 50.2% 70.0% 85.3%
Surface Ag coverage 97.3% 67.7% 49.8% 30.0% 14.7%
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beyond a potential of −1.0 VRHE is consumed in other processes
(i.e., CO spillover). In addition, at −1.0 VRHE, the CO partial
current density of Ag-Cu (1.0 mA cm−2) is approximately 46% of
that of the bare Ag surface (2.2 mA cm−2). This value is
consistent with the 49.8% exposed Ag on the Ag-Cu surface
because its CO partial current density is primarily attributed to
the exposed Ag due to the very low CO activity of Cu (less than
0.1 mA cm−2 at potentials more negative than −1.0 VRHE)11. As
the potential decreases from −1.0 VRHE to −1.1 VRHE, the CO
partial current density on the bare Ag increases from 2.23 to 4.82
mA cm−2 representing a factor of 2.16 increase (Fig. 4d).
However, the CO partial current density on the Ag-Cu surface
decreases slightly from 1.0 to 0.9 mA cm−2 under the same
condition (Fig. 4b), assuming that the Ag sites on the Ag-Cu
surface would produce more CO with the same factor of 2.16 and
the missing portion (i.e., 1.26 mA cm−2) is further converted to
CH4 by the surface Cu. The CH4 partial current density can be
estimated to be 5.04 mA cm−2 (1.26 mA cm−2 × 4) since CH4

production requires four times as many electrons as CO
production. Indeed, this value is consistent with the experimen-
tally measured value (i.e., 4.9 mA cm−2). This result indicates
that, at the optimal Cu coverage, nearly 60% of the CO produced
on Ag is further reduced to CH4 on the Cu surface via the tandem
process. At more negative potentials, significant HER activity is

observed on both surfaces, which results in the decreased FE of
CO2RR. The drastically increased HER activity on the Ag-Cu
surface is most likely due to the rapid HER on surface Cu sites at
high potential bias (Supplementary Fig. 6). CO2 electrolysis at
extended time (2 h) is also conducted on Ag-Cu and bare Ag
surfaces (Supplementary Fig. 8). The CH4 formation is stable in
the first hour with an FE of approximately 60%. After that, the
CH4 FE gradually increases to 67% at the end of the 2-h
electrolysis, which is accompanied by the concomitant decrease of
CO and C2H4 FE. The further increase in CH4 FE is likely due to
the surface reconstruction of Cu under CO2 electroreduction
conditions that favors CH4 formation46,47. Further development
of more advanced Ag-Cu catalysts combining Cu and Ag with
optimized material structure is a promising approach to achieve
better performance in CO2RR.

Operando spectroscopic investigations. To gain further insights
into the CO spillover on the Ag-Cu surface, operando ATR-
SEIRAS is employed to monitor the adsorbed CO at conditions
closely mimicking those in the reactivity studies. Experiments on
bare Ag, bare Cu, and Ag-Cu surface (1.5 ppm Cu2+) at −0.4
VRHE are conducted in a custom-designed stirred spectro-
electrochemical cell (Supplementary Fig. 9)48. The bare Ag
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surface in the ATR-SEIRAS study is prepared by electrochemical
deposition of Ag film in a silver cyanide plating bath on an Au
film that is chemically deposited onto the reflecting plane of a Si
prism49,50. The Ag-Cu surface is then prepared in the same
fashion as in the reactivity study, i.e., by conducting the experi-
ments in a Cu2+-containing bicarbonate on the Ag film. The bare
Cu surface is prepared via the chemical deposition method51. The
bare Ag surface exhibits a C≡O stretching band at 2094 cm−1

(Fig. 5), which is typically attributed to CO molecule bound in an
atop geometry52. The bare Cu surface shows two stretching bands
of atop-bound CO in the 2000–2120 cm−1 range, with the 2088
and 2055 cm−1 bands being attributed to CO adsorption on
defect sites and terraces sites, respectively51. This is also con-
sistent with previous studies by Waegele et al. under similar
electrolysis conditions53. The 2094 cm−1 band on the Ag-Cu
surface is identical to that of bare Ag surface, as the peak position
and width are both identical. The deconvoluted C≡O stretching
band on surface Cu has a broad feature centered at 2048 cm−1,
which is consistent with a previous report54. The difference
between the CO adsorption feature on the bare Cu and the Ag-Cu
surface shows that the underlying Ag exerts an impact on the
properties of Cu. Remarkably, the Ag-Cu surface exhibits a band
in the 1800–1900 cm−1 range, typically assigned to bridge CO
with stronger binding strength, which is absent on both bare Ag
and Cu surfaces55,56. This band is much more intense than the
atop CO band, thus is the major CO species on the Ag-Cu surface
according to Beer–Lambert law. The spectroscopic observations
clearly indicate that the Ag-Cu surface is different from a simple
superposition of bare Cu and Ag surfaces. This is consistent with
our one-pot tandem catalysis theory that the *CO produced on
the exposed Ag sites can migrate to stronger binding sites on the
Ag-Cu surface for further reduction. In addition, the exclusive
band on the Ag-Cu surface is not due to some new reactive site
existing on the Ag-Cu bimetallic interface. If this is the case, the
CO produced on the exposed Ag sites on Ag-Cu will not be
consumed by further reduction, and the CO production should be
promoted at more negatively biased potential until mass-
transport limitation, similar as the case of bare Ag foil. This
contradicts the experimental results shown in Fig. 4b, d.

Constant and square-wave potential electrolysis of CO on the
Ag-Cu surface. To further probe CH4 formation over Ag-Cu
surface with respect to local *CO concentration, the electro-
chemical CO reduction reaction is conducted at −1.1 VRHE using
the same bicarbonate electrolyte, and the results are compared to
those obtained using a bare Cu foil. At constant potential, the Ag-
Cu surface produces fewer hydrocarbons than the bare Cu foil in
CO electrolysis (Fig. 6). This result can be rationalized that Ag is
not active in CO electroreduction, thus fewer active Cu sites are
present on the Ag-Cu surface than on the Cu foil surface.
Therefore, the observed enhancement of CH4 formation on the
Ag-Cu surface in CO2RR is apparently due to the tandem
chemistry between Ag and Cu.

In CO2RR, CO adsorption can be difficult because CO
adsorbate is suggested to come from the transformation of
radical anion CO2

−• instead of direct CO adsorption57,58. In
addition, the surface CO adsorption can also be negatively
impacted by the near electrode cations that are attracted by
electrostatic forces as the electrode potential is negatively biased
during the electrolysis50. However, the near electrode cations can
be effectively removed at a more positive potential (e.g., 0.4
VRHE), and CO adsorption can be promoted50. Based on these
insights, square-wave potential electrolysis (inset of Fig. 6) of CO
is employed to probe the catalytic behavior of our Ag-Cu surface
with an increased local *CO concentration. The potential is

alternated between 0.4 VRHE (U0) for a fixed time interval of 0.01
s, at which the CO adsorption is maximized50, and an electrolysis
potential (i.e., −1.1 VRHE, UE) at which the CO reduction is
expected to occur. By flipping the electrode potential at a
frequency of approximately 1 Hz, the FE toward hydrocarbon
formation on the Ag-Cu surface is significantly improved from
5% to 18%, which surpassed that on a bare Cu surface. By
increasing the frequency to approximately 2 Hz, the FE toward
hydrocarbon formation is further increased to 30%, which is
twice as high as that of bare Cu. These results suggest that the
increase of electrode *CO concentration can efficiently improve
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the formation of further reduced products. The one-pot tandem
catalysis mechanism that unitizes the complementary surface
chemistry between a CO-producing material and Cu can be a
very effective strategy for achieving this goal. However, to achieve
more valuable products (e.g., C2+ products) requires further
development employing more active CO-producing catalysts (e.g.,
nanoporous Ag4 or oxide-derived Au5) and CO reduction
catalysts (e.g., oxide-derived Cu59,60) as well as their combination
pattern and structure design for binding *CO to more desired
sites after spillover.

Discussion
Density functional theory (DFT) calculations were carried out to
investigate the one-pot tandem catalysis of the CO2RR on Cu-
modified Ag and Au surface models. We found that the surface
Cu stabilized *CO by 1.07 and 1.09 eV compared to Ag and Au,
respectively, indicating that the abundant *CO produced on the
Ag or Au surface can migrate to surface Cu for further reduction.
We found that all reactions along the possible pathways are
downhill under a potential bias of −1.0 VSHE, indicating that the
migrated *CO from the Ag surface can be further reduced on the
surface Cu with barriers that are not larger than those on a bare
Cu surface. Electrochemical studies were conducted using well-
defined Ag-Cu surfaces with tunable Cu coverages to confirm our
computational predictions. The CO spillover phenomenon was
experimentally demonstrated for the first time. At optimum Cu
coverage, nearly 70% of the CO produced on Ag can be further
reduced on surface Cu, resulting in a high CH4 FE of approxi-
mately 60%. This FE is much higher than that on a bare Cu
surface, which has intrinsically limited surface *CO. In addition,
operando ATR-SEIRAS was employed to investigate the spillover
of CO on the Ag-Cu surface. A dominating C≡O stretching band
on the Ag-Cu surface with stronger binding strength was found at
−0.4 VRHE, which was absent on the bare Ag and Cu surface,
suggesting that the major *CO was not from CO2RR on Cu. The
stronger adsorption of *CO on Cu as compared to Ag strongly
suggest the CO spillover as a viable pathway. Moreover, we
conducted square-wave potential electrolysis of CO to assess the
role of a higher *CO concentration on hydrocarbon formation
over the Ag-Cu surface. By alternating the electrolysis potential
between a reductive point and a point that removes the near-
surface cations, the FE for hydrocarbon formation was sig-
nificantly enhanced owing to increased *CO adsorption. These
results suggest that the increase of surface *CO could efficiently
improve the formation of further reduced products. We conclude
that the one-pot tandem catalysis mechanism unitizing the
complementary surface chemistry between a CO-producing
material and Cu can be a very effective strategy for achieving
this goal. Further development employing more active CO-
producing catalysts (e.g., nanoporous Ag4 or oxide-derived Au5)
and CO reduction catalysts (e.g., oxide-derived Cu59,60) as well as
their combination pattern and structure design provides a very
promising route to achieve efficient CO2RRs toward more valu-
able products (e.g., C2+ products).

Methods
Computational details. The total energy of the Cu-modified Ag(111) and Au(111)
surfaces with different adsorbates were calculated using DFT with the Perdew-
Burke-Ernzerhof exchange-correlation functional61 in plane-wave
pseudopotentials62,63, as implemented in the Vienna ab initio Simulation Package
(VASP)64,65. The empirical D2 approach as implemented in VASP was employed
to describe the van der Waals interactions66. All calculated energy values were
extrapolated to kBT= 0. A Monkhorst–Pack k-point net of 3 × 6 × 1 was chosen to
sample the reciprocal space for the slab calculations, and only the gamma point was
sampled for the molecule calculations. A metal slab (4 × 2) consisting of 3 layers
with the bottom layer fixed in its bulk position was employed to simulate the
surface of Ag and Au, and a single layer of Cu with a coverage of 1/2 ML

(monolayer) was placed on the substrate, as shown in Fig. 1a. A vacuum of 25Å
was introduced to each side to avoid interactions between successive metal slabs.
Coordinates of all calculation models are provided (Supplementary Note 1).

The transition state for each reaction was first approached using the nudged
elastic band (NEB) method in the neutral state67. Forces on the climbing image
were converged to <0.02 eV Å−1. The plane-wave cutoff, smearing parameter and
functional, and calculator parameters were the same as those used in slab geometry
optimizations. Structures obtained from NEB were employed to generate the input
structure and orientation for the dimer calculation68. The force of the dimer
calculation was converged to <0.1 eV Å−1 to accurately locate the saddle point, i.e.,
the transition state. After that, the free energy of transition state was calculated
under constant potential. An explicit water molecule was used as the proton source
as previous work suggested38.

To establish the electrochemical interface, the approach proposed by Head-
Gordon et al., Goddard et al., and Sautet et al. was applied37–39. In this model, the
Fermi energy is adjusted to a target value by changing the number of electrons in
the system during each step of the geometry optimization, which keeps the work
function and electrode potential constant in the calculations. Then the linear
Poisson–Boltzmann implicit solvation model with a Debye screening length of 3.0
Å was used to neutralize the non-zero charge in the simulation cell and simulate
water and the electrolyte, allowing for a more realistic description of the
electrochemical double layer. A detailed description of this approach has been
provided in our previous work36.

Electrolysis and product quantification. Ag foil (thickness 0.1 mm, 99.998%
metal basis), Cu foil (thickness 0.1 mm, 99.9999% metal basis), Ti foil (thickness
0.127 mm, 99.99+% metal basis), and Ni wire (99.9%) were purchased from Alfa
Aesar. A 5 mm × 18mm piece of Ag or Cu foil was used as the working electrode in
the CO2 and CO electrolysis experiments. The Ag foil was mechanically polished
using sand paper (1200 G, 3M) and thoroughly cleaned in an ultrasonic bath with
deionized water prior to electrolysis. The Cu foil was mechanically polished using
sand paper (1200 G, 3M) followed by electrochemical polishing in phosphoric acid
(85 wt.% in H2O, Sigma-Aldrich, 99.99% metal basis) at 2.0 V vs a Ti foil counter
electrode and thorough rinsing in fresh 0.1 M NaHCO3 solution to remove
phosphoric acid residue prior to each experiment. Ni wires were welded to the edge
of these Ag and Cu foil pieces as current collectors.

The 0.1 M NaHCO3 solution was prepared by dissolving Na2CO3 (99.999%,
Fluka) in deionized water that was obtained from a Millipore system (18.2 MΩ·cm)
and converted to NaHCO3 using CO2 gas (99.99%, Air Liquide). The electrolyte
was treated using Chelex® 100 resin (Sigma-Aldrich) prior to electrolysis. The 1
mM Cu2+ solution was prepared by dissolving Cu2SO4·5H2O (99.999%, Sigma-
Aldrich) in 0.05 M sulfuric acid (99.999%, Sigma-Aldrich) according to a
previously reported protocol43.

The CO2 electrolysis experiments were performed in a gas-tight two-
compartment three-electrode electrochemical cell separated by a piece of a proton
exchange membrane (Nafion® perfluorinated membrane). A graphite rod
(99.999%, Sigma-Aldrich) was used as the counter electrode. The cathodic
compartment contained 18.0 mL of electrolyte and approximately 8.2 mL of
headspace. Prior to electrolysis, the electrolyte in the cathodic compartment was
purged with CO2 (99.99%, Air Liquide) gas for at least 25 min until a pH of 6.8 was
reached. Then the Cu2+ solution was added for the Ag-Cu surface investigations.
The electrolyte in the cathodic compartment was stirred at a rate of 800 rpm during
the electrolysis.

The CO electrolysis experiments were performed under identical conditions as
the CO2 electrolysis experiments except for the gas feed. Prior to electrolysis, the
electrolyte in the cathodic compartment was purged with CO (99.999%, Air
Liquide) gas rather than CO2 for at least 25min, and the pH was measured to be 8.4.

The square-wave potential electrolysis was performed by alternating the
potential between 0.4 VRHE (U0) for a fixed time of 0.01 s and −1.1 VRHE (UE) for 1
and 0.5 s, which is equivalent to a frequency of approximately 1 and 2 Hz,
respectively. Only the cathodic charges were counted for the FE calculation. The
charges from the capacitive current can be neglected owing to them being <1% of
the total cathodic charges.

A Gamry Reference 600+ potentiostat was used for all electrolysis. All
potentials were measured against a Ag/AgCl reference electrode (3.0 M KCl, BASi)
and converted to the RHE reference scale using E (vs RHE)= E (vs Ag/AgCl)+
0.210 V+ 0.05916 V × pH. The IR compensation function of the potentiostat was
used to correct the electrode Ru.

The gas products were quantified using a gas chromatograph (Agilent 7890B).
The gas chromatograph was equipped with a ShinCarbon ST Micropacked GC
Column. Argon (99.999%, Air Liquide) was used as the carrier gas. First, the
column effluent was passed through a thermal conductivity detector where the
hydrogen was quantified. Then the effluent was passed through a methanizer where
CO was converted to methane and subsequently quantified using a flame ionization
detector.

The liquid products were quantified using a Bruker AVIII 400MHz NMR
spectrometer. After electrolysis, 0.5 mL of the electrolyte was mixed with 0.1 mL of
D2O (99.9%, Sigma-Aldrich), and 1.67 ppm (m/m) dimethyl sulfoxide (≥99.9%,
Alfa Aesar) was added as an internal standard. The 1H spectrum was measured
with water suppression using a presaturation method.
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Operando ATR-SEIRAS. Al2O3, Na2S2O3 (98%), Na2SO3 (98%), NaOH (99.99%),
KOH (99.99%), AgNO3 (99%), KCN (98%), HCHO (37 wt.%), HF (99%),
NaAuCl4·2H2O and NH4Cl were purchased from Sigma-Aldrich.

The Au substrate film for the Ag film was deposited directly on the reflecting
plane of Si prism using a chemical deposition method50. Before depositing, Si
prism was first polished with a slurry of 0.05 μm Al2O3 and sonicated in acetone
(Fisher Chemical) and deionized water. After sonicating, the Si prism was dried
with air and immersed in NH4F (40%, Sigma-Aldrich) for 120 s to create a
hydrogen-terminated surface. Then the reflecting surface was immersed into a
mixture of 0.8 mL HF aqueous solution (2 wt.%) and 4.4 mL Au plating solution
consisting of 5.75 mM NaAuCl4·2H2O, 0.025 M NH4Cl, 0.025 M Na2S2O3·5H2O,
0.075 M Na2SO3, and 0.026 M NaOH for 10 min. The temperature of the mixed
solution was maintained at 55 °C during the deposition. After the deposition, the
Au film was rinsed with deionized water and dried with air.

The Ag film was electrodeposited on the Au substrate film potentiostatically in a
typical three-electrode system using the Au film as the working electrode, a
graphite rod as the counter electrode, and saturated Ag/AgCl (BASi) as the
reference electrode49. The electrolytic bath was prepared with deionized water and
contained 0.15 M AgNO3, 0.54M KCN, and 0.38M Na2CO3. Electrodeposition in
the prepared bath was carried out at 50 mVRHE for 200 mC at room temperature.
Afterwards, the obtained Ag film was rinsed with deionized water and dried with
air. The Ag-Cu surface was then prepared in the same fashion as in reactivity study,
i.e., by conducting the experiments in a Cu2+-containing bicarbonate on the
Ag film.

The Cu reference film directly deposited on the Si prism was prepared using a
similar method as described previously51. Briefly, the polished Si prism was
immersed in NH4F for 60 s and then immersed into a copper seeding solution (0.5
wt.% HF and 750 μM CuSO4) for 120 s followed by a plating solution (0.25 M
HCHO, 0.02 M CuSO4, 20 mM Na2EDTA (99–101%, ACS Reagent), and 0.3 mM
2,2-bipyridine (99%, Reagent Plus)) for 7 min. The pH of the plating solution was
adjusted to 12.2 by KOH and the temperature was maintained at 55 °C during the
deposition. Afterwards, the obtained Cu film was rinsed with deionized water and
dried with air.

A two-compartment, three-electrode spectroelectrochemical cell, separated by a
Nafion® perfluorinated membrane, was designed to accommodate the Si prism and
to avoid any possible cross-contamination from the counter electrode
(Supplementary Fig. 9)48. NaHCO3 0.1 M was used as the electrolyte. The ATR-
SEIRAS experiments were conducted using an Agilent Technologies Cary 660 FTIR
spectrometer equipped with a liquid nitrogen-cooled MCT detector. The
spectrometer was coupled with a Solartron SI 1260/1287 system for electrochemical
measurements. All spectra were collected at a 4 cm−1 spectral resolution and were
presented in absorbance units. In a typical process, the obtained films on Si prisms
were used as working electrodes with a graphite rod as the counter electrode and
saturated Ag/AgCl as the reference electrode.

Physical characterization. SEM images were recorded using a HITACHI S-5500
SEM. The accelerating voltage was 5 kV. TEM sample was prepared using Ga+

focused ion on a ZEISS AURIGA® Field Emission-SEM implemented with
CrossBeam® Workstations. TEM images were recorded using a JEOL JEM-2010F
TEM. The accelerating voltage was 200 kV. XPS measurements were carried out
using a PHI Quantera II with Al Kα radiation. The resulting spectra were analyzed
using the CasaXPS software package (Casa Software Ltd., U.K.) and peaks were fit
using a Gaussian/Lorentzian product line shape with the Shirley-type background.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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