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Abstract 

NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite provides observations of total 

column-averaged CO2 mole fractions (XCO2
) at high spatial resolution that may enable novel 

constraints on surface-atmosphere carbon fluxes. Atmospheric inverse modeling provides an 

approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from 

inversion frameworks depends on key inputs, including spatially and temporally dense CO2 

observations and reliable representations of atmospheric transport. Since XCO2
 observations 

are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal 

atmospheric transport imparts substantial variations in these data, and must be either resolved 

explicitly by the atmospheric transport model or accounted for within the error covariance 

budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify 

the imprint of atmospheric transport in along-track OCO-2 soundings. We compare high-pass 

filtered (<250 km, spatial scales that primarily isolate mesoscale or finer scale variations) 

along-track spatial variability in XCO2
 and XH2O from OCO-2 tracks to temporal synoptic and 

mesoscale variability from ground-based XCO2
 and XH2O observed by nearby Total Carbon 

Column Observing Network (TCCON) sites. Mesoscale atmospheric transport is found to be 

the primary driver of along-track, high frequency variability for OCO-2 XH2O. For XCO2
, both 

mesoscale transport variability and spatially coherent bias associated with other elements of 

the OCO-2 retrieval state vector are important drivers of the along-track variance budget. 

Plain Language Summary 

Numerous efforts have been made to quantify sources and sinks of atmospheric CO2 at 

regional spatial scales. A common approach to infer these sources and sinks requires accurate 

representation of variability of CO2 observations attributed to transport by weather systems. 

While numerical weather prediction models have a fairly reasonable representation of larger-

scale weather systems, such as frontal systems, representation of smaller-scale features (<250 

km), is less reliable. In this study, we find that the variability of total-column averaged CO2 

observations attributed to these fine-scale weather systems accounts for up to half of the 

variability attributed to local sources and sinks. Here, we provide a framework for 

quantifying the drivers of spatial variability of atmospheric trace gases rather than simply 

relying on numerical weather prediction models. We use this framework to quantify potential 

sources of errors in measurements of total-column averaged CO2 and water vapor from 

NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite. 
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1 Introduction 

Knowledge of regional surface-atmosphere carbon dioxide (CO2) fluxes are required to 

understand anthropogenic and climatic influences on the global carbon cycle. Despite 

longstanding research efforts to develop a robust budget for surface fluxes of CO2 (Bolin and 

Keeling, 1963; Enting and Mansbridge, 1989; Tans et al., 1990; Keeling et al., 1996; Peters et 

al., 2005; Chevallier et al., 2010; Peylin et al., 2013; Basu et al., 2018), these studies diverge 

in their estimates of the geographic distribution of sources and sinks of CO2 (Gurney et al., 

2002; Baker et al., 2006; Stephens et al., 2007). For example, Gurney et al. (2002) found 

uncertainties in regional scale carbon fluxes were greater than 0.5 Gt C yr-1 across various 

inversion frameworks. In these studies, carbon fluxes are inferred from spatial and temporal 

variations in atmospheric CO2 observations via atmospheric inverse methods. Atmospheric 

inversions typically apply Bayesian optimal estimation methods to optimize assumed (a 

priori) fluxes that have been used as boundary conditions to simulate spatiotemporal CO2 

variations in an atmospheric transport model. Mismatches between the simulated and 

observed atmospheric CO2 provide the basis for scaling the assumed fluxes. The optimization 

requires rigorous attention to errors associated with the assumed flux structure, the 

observations, and the fidelity of atmospheric transport modeled by the framework (Rogers, 

2000). 

One limitation to inverse modeling studies has been the density and geographic distribution 

of atmospheric observations available to constrain surface fluxes (Gurney et al., 2002). 

Traditionally, observations of atmospheric CO2 have been measured in situ or via flask 

sampling within the atmospheric boundary layer. These observatories are concentrated within 

Northern Hemisphere temperate latitudes, and there is a scarcity of observations in key 

regions for the global carbon cycle, including the tropics (Stephens et al., 2007) and the 

Southern Ocean (Landschützer et al, 2015). The sparse in situ network for atmospheric CO2 

observations was the impetus for the launch of several satellites, including Japan Aerospace 

Exploration Agency’s (JAXA) Greenhouse gases Observing SATellite (GOSAT) (Yokota et 

al, 2009; Ross et al., 2013), NASA’s Orbiting Carbon Observatory-2 satellite (OCO-2) (Crisp 

et al., 2004; Eldering et al., 2017), and Chinese National Space Administration’s (CNSA) 

TanSat (Yang et al., 2018). These low Earth, polar-orbiting satellites measure the total 

column averaged dry air mole fraction of atmospheric CO2 (denoted as XCO2
) at high spatial 

density. For example, OCO-2 acquires approximately 1 million soundings every day, each 
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with a footprint on the order of 1 km2 (Crisp et al., 2004; Eldering et al., 2017). Theoretical 

studies have hypothesized that the high spatiotemporal density of XCO2
 observations may 

allow for a reduction of errors in flux inferences from inversion models (Rayner and O’Brien, 

2001; Baker et al, 2006; Miller et al., 2007). 

 

A second limitation to the fidelity of inverse modeling studies is the inverse modeling 

framework itself, via either incorrect parameterization of atmospheric transport (Masarie et 

al., 2011; Williams et al., 2014; Chevallier et al., 2010; Houwelling et al., 2015; Basu et al., 

2018) or inappropriate representation of error covariance structures (Chevallier and O'Dell, 

2013). The goal of this paper is to discuss the unique requirements for atmospheric transport 

fidelity and the description of variance budgets for XCO2
from the OCO-2 satellite. One 

advantage of measuring the column averaged mole fraction is that its variations can be used 

more effectively to constrain surface fluxes via mass balance. Measurements made within the 

planetary boundary layer are sensitive not only to fluxes at the surface, but also to the rate at 

which the surface flux signal is entrained into the free troposphere. The column, however, is 

unaffected by the vertical entrainment rate, so in theory it is more directly related to surface 

fluxes via mass balance (Rayner and O’Brien, 2001; Olsen and Randerson, 2004). For 

example, Basu et al. (2018) concluded that fluxes inferred from perfect, or error-free, satellite 

observations of XCO2
 are less sensitive to uncertainty in atmospheric transport than perfect in 

situ observations of CO2 in the planetary boundary layer by applying flux inversion 

techniques to the output from different atmospheric transport models forced with the same 

CO2 initial and boundary conditions. 

A potential complication of using XCO2
, however, is that it is sensitive to CO2 within the free 

troposphere, where most weather occurs. The variance budget is therefore strongly affected 

by horizontal advection (Geels et al., 2004; Keppel-Aleks et al., 2011), not just surface 

fluxes, which are the real target of obtaining and inverting atmospheric observations. In fact, 

at subseasonal timescales, horizontal advection dominates the variance budget in XCO2
 

(Keppel-Aleks et al., 2011). Keppel-Aleks et al. (2012) used ground-based observations of 

XCO2
 at several midlatitude sites in the Total Carbon Column Observing Network (TCCON) 

to show that synoptic-scale variations, which occur on spatial scales on the order of 1000 km 

and temporal scales of about one to two weeks, could be up to half the peak-to-trough 

seasonal cycle in XCO2
. Likewise, horizontal advection drives up to 60 to 70% of diurnal 
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variations of boundary layer CO2 in the midlatitudes (Parazoo et al., 2008), and these 

horizontal eddy-induced variations are roughly half the size of the seasonal CO2 variations 

driven by regional net ecosystem exchange of XCO2
(Parazoo et al., 2011). At finer spatial 

scales on the order of 100 km, mesoscale variability in XCO2
, which occurs on timescales of 

around one day, can be larger than diurnal variations in XCO2
 resulting from CO2 exchange 

with the local terrestrial ecosystem (Keppel-Aleks et al., 2012). Mesoscale transport imposes 

especially large errors on flux inversions over cities at time scales smaller than a month 

(Lauvaux et al, 2016). However, even with global scale inversions, the variations on XCO2
 

imparted by fine scale transport may ultimately degrade the inverted fluxes. This is largely 

due to the fact that signal imposed by fine and large-scale atmospheric transport is spatially 

correlated, thus these variations cannot simply be addressed simply by averaging multiple 

observations (Miller et al, 2015). 

Thus, efforts to use XCO2
 from OCO-2 for flux inference must reliably account for transport-

induced time/space variations, either through explicit simulation within the atmospheric 

transport model or by representation of transport-induced errors within the error covariance 

matrix. We note that larger-scale synoptic weather systems are more likely to be simulated 

explicitly by atmospheric inverse modeling frameworks, which generally have horizontal 

resolutions between 0.5° to 5° (Corbin et al., 2008), whereas mesoscale systems occur at 

spatial scales smaller than the grid-cell resolution for all but the highest resolution 

atmospheric transport models. These smaller mesoscale systems, therefore, may not be 

represented explicitly by atmospheric transport models despite affecting the distribution of 

XCO2
. Because mesoscale or frontal systems may also have clouds, which obscure space-

based XCO2
 measurements, it is important to quantify the variance and spatial coherence of 

XCO2
 that will be averaged from satellite measurements before for comparison with a single 

model grid-cell value (Corbin et al., 2008). 

In this study, we use complementary information from space-based (OCO-2) and ground-

based (TCCON) remote sensing of XCO2
 to quantify the imprint of mesoscale atmospheric 

transport and to refine the variance budget of OCO-2 XCO2
. While the current suite of carbon 

observing satellites provide spatially dense observations, the time in between satellite 

overpasses at a specific location is too long (16 days for OCO-2) to sample temporal 

variations of XCO2
 driven by mesoscale (i.e., the duration of a thunderstorm) or synoptic-scale 
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systems (i.e., the time in between frontal systems, which is typically on the order of a week in 

mid latitude regions). In contrast, ground-based networks, such as TCCON, provide 

temporally dense, but spatially sparse observations. To use these observations together, we 

must develop a framework that relates the spatial variations in OCO-2 data to the temporal 

variations in TCCON data. 

Throughout our analysis, we are cognizant of the fact that observing system error may also 

introduce variance to satellite data (Baker et al., 2010; Chevallier et al., 2014). For example, 

Worden et al. (2017) showed that natural variability (i.e., variations due to natural surface 

fluxes, anthropogenic emissions, and atmospheric transport) of XCO2
 along simulated 

representative OCO-2 tracks was negligibly small (approximately 0.08 ppm over 100 km 

neighborhoods) in comparison to variations of 1.28 ppm per 100 km attributed to instrument 

noise and slow varying biases, such as those caused by surface pressure or albedo variations, 

observed in OCO-2 data. Therefore, while the primary purpose of this study is to understand 

synoptic and mesoscale variations of XCO2
, we also leverage retrievals of total column-

averaged mole fractions of water vapor (XH2O) from OCO-2 (Nelson et al., 2016) and 

TCCON observations to validate our approach to estimating terms in Equation 5. Retrievals 

of water vapor from OCO-2 have a high signal-to-noise ratio (from several hundred to greater 

than 1000) (Nelson et al., 2016). Therefore, we expect that synoptic and mesoscale variations 

of atmospheric transport XH2O are more readily quantifiable from space-based observations. 

This manuscript is organized around answering the following science questions. 

1.) What is the imprint of synoptic and mesoscale systems on XCO2
 (and XH2O)? 

2.) How predictive are large-scale spatial gradients in XCO2
 (or XH2O) of the imprint of 

synoptic and mesoscale atmospheric transport on OCO-2 observations? 

3.) How large are other sources of fine-scale variation in XCO2
 (and XH2O) in the OCO-2 

variance budget? 

In Section 2, we describe the methods and framework we used to quantify variability 

attributed to synoptic and mesoscale atmospheric transport from both TCCON and along-

track OCO-2 observations of XCO2
 and XH2O. In Section 3, we describe the variance budgets 

for OCO-2 XCO2
 and XH2O in the context of validation data from TCCON. In Section 4, we 
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provide discussion and recommendations for future work toward robust flux influence from 

the satellite data. 

 

2 Methods 

2.1 Framework to compare temporal and spatial variability of trace gases 

This framework provides the basis to which we compare temporal mesoscale variability of 

along-track XCO2
 and XH2O observed at TCCON ground sites to along-track spatial mesoscale 

variability from OCO-2 data. We define along-track mesoscale spatial variability of XCO2
 and 

XH2O for tracks that occur within a 10° by 10° box of TCCON sites (Fig. 1). The domains of 

analysis chosen were large enough to encompass several representative atmospheric transport 

model grid cells, such as the 3° by 2° grid cells used by Basu et al. (2018) to infer carbon 

fluxes. 

 

Figure 1.  XCO2
tracks over a 10° × 10° domain centered on Lamont, Oklahoma for one 16-

day repeat cycle in early July 2016. (a.) Raw XCO2 soundings and (b.) High-pass filtered 

XCO2
. The radius of the red and black circle represents the monthly mean range (denoted as 

aspace) of explained variability of XCO2
and XH2O, respectively in July. The blue box represents 

a typical 3° × 2° grid cell used in atmospheric inversion models, such as those used in Basu 

et al. (2018). 
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We start from the tracer conservation equation in one dimension: 

𝜕𝑐

𝜕𝑡 
= −𝑢

𝜕𝑐

𝜕𝑥 
+ 𝑆𝑐 (Equation 1) 

where c represents the tracer concentration, in this case XCO2
, u represents the column-

weighted wind velocity in one direction (assumed along the OCO-2 track), and Sc represents 

the column-average surface sources and sinks of CO2 (with appropriate scaling to convert 

from flux to XCO2
 column-average variation). In this equation, we have neglected molecular 

diffusion of XCO2
, which is small relative to the other terms, and any variations in u and CO2 

in the vertical profile by simply using the total column averages. We decompose c into its 

mean and variable components (Equation 2) 

𝑐 =  𝑐 + 𝑐′ (Equation 2) 

 

and Reynolds average Equation 1 to yield an equation for the time rate of change of 𝑐 

(Equation 3). For our analysis, we assume that the filter used to determine the average 

concentration, 𝑐, results in a c' that reflects mesoscale variations in the tracer concentration 

while synoptic and slower- and larger-scale variations remain in 𝑐. 

 

𝜕𝑐

𝜕𝑡
=  −𝑢

𝜕𝑐

𝜕𝑥
−

𝜕𝑢′𝑐′

𝜕𝑥
+ 𝑆�̅� (Equation 3) 

 

The first term on the right hand side represents the advection of the mean gradient in c by the 

mean wind, while the second term represents turbulent flux divergence. Equation 3 

underscores that spatial gradients in the mean tracer concentration give rise to temporal 

variations through the action of atmospheric transport. We can subtract equation 3 from 

equation 1, expanded by replacing u and c with the corresponding mean and anomaly terms 

from equation 2 (and equivalent equation for u), to yield an equation for the time rate of 

change for the fluctuating component, c': 

𝜕𝑐′

𝜕𝑡
=  −𝑢

𝜕𝑐′

𝜕𝑥
− 𝑢′

𝜕𝑐

𝜕𝑥 − 𝑢′
𝜕𝑐′

𝜕𝑥 +
𝜕𝑢′𝑐′

𝜕𝑥
+ 𝑆𝑐

′  (Equation 4) 

In equation 4, the first term on the right hand side represents the advection of mesoscale 

gradients by the mean wind, the second term and third terms represent the production of 

mesoscale anomalies in c by eddies acting on the mean gradient and mesoscale gradient, 
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respectively. The fourth term represents the turbulent flux convergence. We can simplify 

equation 4 by assuming that the production term from eddies acting on mesoscale gradients 

and the turbulent flux convergence are both small. We also neglect variations in sources, 𝑆𝑐
′ , 

since our framework accounts for only climatological mean surface fluxes (described in detail 

in 3.2.1 below). We can then use scaling arguments to approximate these terms: 

〈𝑐′〉𝑡𝑖𝑚𝑒

𝜏𝑡𝑖𝑚𝑒
= 𝑢

〈𝑐′〉𝑠𝑝𝑎𝑐𝑒

𝑎𝑠𝑝𝑎𝑐𝑒
+ 〈𝑢′〉 〈

𝜕𝑐

𝜕𝑥
〉 (Equation 5) 

In equation 5, 〈𝑐′〉𝑡𝑖𝑚𝑒 represents the characteristic magnitude of temporal variations at a 

TCCON site over a relevant mesoscale timescale 𝜏𝑡𝑖𝑚𝑒. The variable 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒  represents the 

characteristic magnitude of along-track spatial variations from OCO-2 over a relevant 

mesoscale length scale, aspace. The last term on the right-hand side (RHS) represents the 

advection of the mean gradient 〈
𝜕𝑐

𝜕𝑥
〉 by mesoscale transport 〈𝑢′〉. 

The crux of our analysis is to compare 〈𝑐′〉𝑡𝑖𝑚𝑒 and 𝜏𝑡𝑖𝑚𝑒 inferred from empirical analysis of 

TCCON observations with 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 and aspace inferred from geostatistical analysis of high-

pass filtered OCO-2 tracks. This analysis is conducted with an eye toward using the OCO-2 

derived estimates of 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒  and aspace to improve the representation of fine scale transport 

errors within the error covariance budget provided to inverse models used for flux inference. 

2.1 TCCON 

We quantified temporal synoptic and mesoscale variations in XCO2
 and XH2O using ground-

based remote sensing data from sites in the TCCON network (Table 1). TCCON sites are 

instrumented with ground-based Fourier Transform Spectrometers that acquire direct solar 

absorption spectra approximately every two minutes during sunny conditions (Wunch et al., 

2015). TCCON instruments obtain near infrared spectra in the same spectral region as OCO-2 

(0.65 – 2.63 μm), and total column CO2 is retrieved in the 1.58 and 1.60 μm absorption bands 

and total column H2O is retrieved in the 1.54 – 1.65 μm absorption bands using the GFIT 

algorithm (Wunch et al., 2011). Because TCCON measures direct solar absorption spectra, 

the signal to noise ratio is higher compared to that of OCO-2, and the uncertainties on 

TCCON XCO2
 have a calibration accuracy of 0.4 ppm (Wunch et al., 2010). TCCON data are 

calibrated to the World Meteorological Organization (WMO) standard ensuring absolute 

accuracy of measurements better than 0.25% (Washenfelder et al., 2006; Wunch et al., 2011). 
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We analyzed data from TCCON sites that have data records longer than 5 years and that 

observe across a full annual cycle to minimize biases introduced by seasonal and interannual 

variations. 

 

Table 1. Locations of TCCON sites and observational periods analyzed in this study with 

associated references.  

TCCON Site Location Observational Periods Citation 

Bialystok, 

Poland 

53.33°N, 

23.03°E 

March 13, 2009 – April 

14, 2017 

Deustcher et al. (2014) 

 

Karlsruhe, 

Germany 

49.10°N, 

8.44°E 

April 19, 2010 – 

January 24, 2018 

Hase et al. (2014) 

Orleans, France 47.97°N, 

2.11°E 

August 29, 2009 – April 

29, 2017 

Warneke et al. (2014) 

 

Garmisch, 

Germany 

47.48°N, 

11.06°E 

July 16, 2007 – March 

16, 2018 

Sussman and Rettinger (2014) 

 

Park Falls, 

Wisconsin 

45.95°N, 

90.27°E 

June 2, 2004 – 

December 31, 2017 

Wennberg et al. (2014a), Washenfelder et al. 

(2006) 

Lamont, 

Oklahoma 

36.60°N, 

97.49°W 

July 6, 2008 – 

December 31, 2017 

Wennberg et al. (2014b) 

 

Darwin, 

Australia 

12.42°S, 

130.89°E 

August 28, 2005 – 

March 28, 2017 

Griffith et al. (2014), Deutscher et al., (2010) 

 

Reunion Island, 

France 

20.90°S, 

55.49°E 

September 16, 2011 – 

January 30, 2018 

De Mazière et al. (2014) 

  

Lauder, New 

Zealand 

45.04°S, 

169.69°E 

February 2, 2010 – 

November 1, 2017 

Sherlock et al. (2014) 

 

 

2.1.1 Removing diurnal cycle climatology of XH2O and XCO2
 to quantify temporal synoptic 

and mesoscale variability 

We separated the imprint of synoptic and mesoscale systems on variations in TCCON XCO2
 

and XH2O by assuming that the only sources of variations were surface fluxes or atmospheric 

transport. For both XCO2
 and XH2O, we assumed that flux-driven diurnal variations could be 

accounted for by calculating a monthly climatological daily cycle of XCO2
 variations for each 

site, since atmospheric transport patterns may be random but surface fluxes are phase-locked 
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to the diurnal cycle. We note there are changes in surface fluxes in response to physical 

climate changes, such as thunderstorms/rain, cloud coverage, or boundary layer temperature, 

induced by mesoscale and synoptic-scale systems (Baldocchi et al., 2001). There is, however, 

no easy way to attribute the changes in XCO2
 and XH2O to either changing fluxes or 

synoptic/mesoscale transport without running a coupled atmosphere/land model. We choose 

instead to use an empirical, data-driven approach that necessitates neglecting weather-driven 

changes in surface fluxes. 

For each calendar month, we binned all available observations (after removing the long-term 

trend) from the multi-year time series into half-hour increments to reveal the characteristic 

diurnal cycle (Fig. S1-2). For any given month, we limited our analysis to daytime 

observations obtained at solar zenith angle less than 75° to reduce the influence of 

spectroscopic errors at high air masses. We then removed the climatological daily cycle from 

each calendar day with observations, and assumed that the residual was the component of 

variability driven by transport. We note that this approach is a simplification, and expect that 

at least some of the residual were due to synoptic, intraseasonal, and interannual variability of 

surface fluxes. Our approach does, however, allow us to approximate the influence of local 

fluxes on the observations without relying on an ecosystem model or sparse flux tower data 

with limited spatial footprints 

Given our assumption that temporal variability of XCO2
 and XH2O is derived from either local 

fluxes or atmospheric transport, we can then estimate the influence of atmospheric transport-

driven variations from the time series of residuals. We calculated the standard deviation from 

the half-hourly bin averaged residuals at bi-weekly time intervals to approximate variability 

at synoptic and smaller timescales. We likewise calculated the standard deviation of the 

residuals within each day to approximate mesoscale variability. These time periods were 

sufficient to sample variability attributed to multiple synoptic scale weather systems, such as 

high and low pressure systems and frontal passages, or mesoscale systems, such as individual 

thunderstorms. 

We evaluate our approach for calculating the influence of climatological fluxes on the diurnal 

cycle of XCO2
 at the Park Falls TCCON site since it is co-located with an Ameriflux eddy 

covariance (EC) tower that provides observations of diurnally varying NEE (Desai et al 

2015). We estimate the influence that the observed eddy covariance fluxes have on the daily 
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cycle of XCO2
 (and denote this quantity as XCO2,𝐸𝐶 using equations 6 and 7: 

〈
𝑑𝑋𝐶𝑂2,𝐸𝐶

𝑑𝑡
〉 =

𝑁𝐸𝐸𝐸𝐶 · 𝑔 · 𝑀𝑊𝑑𝑟𝑦 𝑎𝑖𝑟

𝑃𝑠
                          (Equation 6) 

XCO2,𝐸𝐶 = ∫ 〈
𝑑𝑋𝐶𝑂2,𝐸𝐶

𝑑𝑡
〉

𝜏𝑃𝑀

𝜏𝐴𝑀

𝑑𝜏                           (Equation 7) 

 

where 𝑁𝐸𝐸𝐸𝐶 represents the observed net ecosystem exchange, g represents the gravitational 

constant of 9.81 ms-2, 𝑀𝑊𝑑𝑟𝑦 𝑎𝑖𝑟 represents the molecular weight of dry air, Ps represents the 

surface pressure, and 𝜏 represents time. We calculated XCO2,𝐸𝐶  at hourly time steps over a 

period 𝜏 from when the local solar zenith angle crosses 70 degrees in the morning and 

afternoon. The seasonal cycle of the within-day variation in XCO2
 observed by the TCCON 

instrument agrees well with the seasonal cycle of the expected within-day variation in XCO2
 

from NEE observations (R2 of 0.8; Fig. 2a). The magnitude of the error bars derived from 

NEE, which represent the standard deviation among individual days, are substantially smaller 

than the magnitude of the error bars derived from the TCCON XCO2
 drawdown (Fig. 2b).  

During winter, the average standard deviation for XCO2,𝐸𝐶 is less than 0.1 ppm while the 

average standard deviation from XCO2,𝐹𝑇𝑆 is about 0.4 ppm.  In contrast, the average summer 

standard deviation is about 0.3 ppm for XCO2,𝐸𝐶 and 1.2 ppm for XCO2,𝐹𝑇𝑆.  Across seasons, 

the uncertainty from assuming a climatological within-day drawdown therefore reflects at 

most 30% of the total variability across the days on which observations are obtained. This 

suggests that most of the within-in day variation for XCO2
 results from processes other than 

local fluxes, confirming the motivation of the present study. 

 

Figure 2. (a.) A comparison of the climatological monthly mean diurnal mean amplitude of 
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XCO2
 observed at the TCCON site (XCO2,𝐹𝑇𝑆) compared to the estimated imprint of drawdown 

based on the observed net ecosystem exchange at the adjacent FluxNet eddy covariance 

tower in Park Falls, Wisconsin (XCO2,𝐸𝐶). (b.) The standard deviation of monthly mean 

XCO2,𝐹𝑇𝑆S compared to the standard deviation of XCO2,𝐸𝐶 plotted in panel a. Note that the axes 

in panel b. are different. 

2.2 OCO-2 

We analyzed spatial variations in XCO2
 and XH2O retrieved from OCO-2 satellite observations. 

OCO-2 is a sun-synchronous, polar-orbiting satellite with a spatial footprint for individual 

soundings of 2.4 km along-track and 1.25 km cross-track; the instrument measures 8 cross-

track bins at each time step resulting in a narrow (~10 km wide) sampling swath (Eldering et 

al., 2017). The satellite acquires a repeat cycle of approximately every 16 days using three 

scanning modes, described below. The instrument comprises three grating spectrometers that 

measure radiances from reflected near-infrared sunlight in two CO2 bands, the 1.61 weak 

absorption band (WCO2) and the 2.06 μm strong CO2 (SCO2) absorption band, and in the 

0.72 μm oxygen (O2A) absorption band. These radiances are used in a full physics retrieval 

algorithm (version 8r, O'Dell et al., 2012; 2018), which uses optimal estimation to infer the 

vertical column of both CO2 and O2 while simultaneously adjusting other elements of the 

retrieval state vector, including the surface albedo for each band, aerosol optical depth 

(AOD), and other parameters that affect measured radiances (O’Dell et al., 2012; 2018). The 

reported error for each XCO2
 sounding is estimated using instrument noise, and then post-

processed to account for errors associated with the forward model used in the retrieval 

algorithm (O’Dell et al., 2012; Wunch et al., 2017). The measurements are bias-corrected by 

accounting for biases in individual cross-track observations using multivariate linear 

regression to identify physically unrealistic correlations between XCO2
 and other elements of 

the retrieval state vector (such as surface pressure, aerosols, or unphysical variations of the 

retrieved vertical profile of CO2) and systematic offsets of OCO-2 XCO2
 target mode 

retrievals in comparison to TCCON observations (O’Dell et al., 2018). The (lower bound) 

bias-corrected single sounding errors for retrieved XCO2
 are generally less than 1 ppm 

(compared to a mean global value of approximately 410 ppm; Tans and Keeling, 2018), with 

the largest errors over land and higher latitudes (generally above 45° N or S) and smallest 

errors over the ocean (Eldering et al., 2017). Similarly, XH2O was retrieved from OCO-2 

using the 1.61 and 2.06 μm weak and strongly absorbing H2O spectral bands with mean 
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biases of approximately 70 ppm, compared to typical XH2O concentrations that varies from 

roughly 700 to 9000 ppm globally (Nelson et al., 2016). 

OCO-2 uses three scanning modes to optimize retrievals over land and ocean surfaces, 

including nadir (land only), glint (over ocean and land), where the instrument is pointed at the 

glint angle to maximize reflected light over water surfaces, and target where the instrument 

angle is adjusted to point towards a targeted location (typically a ground-based validation 

site). In this analysis, we investigate nadir and glint observations separately, and only used 

soundings without a quality warning flag (Osterman et al., 2018). In the figures, we report 

averages of nadir and glint observations since the only systematic differences were at coastal 

locations where there were not sufficient nadir observations. Note that many tracks exhibit 

significant missing data because of cloud cover. 

2.2.1 Geostatistical analysis 

We used geostatistical analysis to quantify the variance budget for OCO-2 data. We removed 

low frequency variations using a 250 km Hamming high-pass filter. To apply the filter, the 

data were pre-processed by averaging up to 8 cross-track soundings into 1.1 km bins in nadir 

mode or 1.3 km bins in glint mode to create a 1-dimensional track. We gap-filled empty bins 

with a distance-weighted mean of the nearest filled bin. For each 10° by 10° box, we filtered 

tracks containing valid observations in at least 96 bins in glint mode or 113 bins in nadir 

mode (i.e. one-half of the rolling window filter size). To minimize edge effects on the high-

pass filter, we attached a 250-point buffer made up of the average of the first 250 bins (i.e. 

the length of variability passed through the high pass filter) to the beginning and end of each 

satellite track. After running the filter, we repopulated each sounding with the filtered bin-

averaged and gap-filled values and began our semivariogram analysis described below. 

We separated variance of XCO2
 and XH2O along OCO-2 tracks into random errors 

(“unexplained variance”) and the component that is spatially coherent, or systematic, 

(“explained variance”) by calculating semivariograms for the high frequency component of 

XH2O and XCO2
. We calculated the semivariance (γ*) for lag d at position xk for sounding 

values Z using Equation 6, 

𝛾∗(𝑑) =
1

2𝑁(𝑑)
∑[𝑍(�⃗�𝑘) − 𝑍(�⃗�𝑘 + 𝑑)]2

𝑁

𝑘=1

 (Equation 8) 
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where N is the number of soundings separated by lag d (Cressie and Hawkins, 1980). We fit a 

spherical model (Equation 7) to estimate the total variance, c∞, and the spatial range of total 

variance, denoted as aspace (as in equation 5), for each semivariogram (Fig. S3). For the 

spherical model fits, we fixed the unexplained variance, c0, to the semivariance calculated 

from the observations at the smallest observed lag (1.1 km in nadir or 1.3 km in glint mode). 

𝛾(𝑑) = {
𝑐0 + (𝑐∞ − 𝑐0) [

3𝑑

2𝑎𝑠𝑝𝑎𝑐𝑒
−

1𝑑3

2𝑎𝑠𝑝𝑎𝑐𝑒
3 ] for 𝑑 ≤ 𝑎𝑠𝑝𝑎𝑐𝑒

𝑐∞ for 𝑑 > 𝑎𝑠𝑝𝑎𝑐𝑒

 (Equation 9) 

We calculated the explained variance, denoted as 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒, by subtracting the unexplained 

variance from the total variance, c∞-c0. In this framework, the explained variance relates to 

spatially coherent patterns, which could be due to real atmospheric gradients owing to fine 

scale transport or errors arising from spatially coherent correlations between XH2O and XCO2
 

and other elements of the state vector. We compared the square root of unexplained and 

explained variances, denoted as unexplained and explained variability, to temporal variations 

observed at adjacent TCCON sites, described in more detail in Section 2.2. 

2.2.2 North-south gradient calculation 

To investigate the mesoscale tracer transport term on the RHS of Equation 5, we quantified 

the relationship between fine-scale spatial variations and the large-scale gradient in XH2O and 

XCO2
. We calculated the North-South (N-S) gradient from three different datasets. For OCO-

2, we aggregated data within a 10° by 10° box centered at the TCCON sites listed in Table 1. 

We calculated the gradient for each track within the targeted domain by fitting OCO-2 

soundings to a simple least squares linear regression model weighted by self-reported errors 

from the version 8 level 2 retrieval algorithm. Because OCO-2 tracks may have data gaps 

associated with seasonal variations or cloud cover, we filtered the north-south gradients by 

quantifying the uncertainty (𝜎𝑁𝑆
2 ) of the estimated N-S gradient using Equation 8 (Glover et 

al., 2011), where xi represents the latitude and σi is the OCO-2 reported retrieval error at point 

i for N total soundings. We then discarded regression fits that had an uncertainty larger than 

0.01 ppm degree-1. 

𝜎𝑁𝑆
2 =

∑
1

𝜎𝑖
2

𝑁
𝑖=1

∑
1

𝜎𝑖
2 · ∑

𝑥𝑖
2

𝜎𝑖
2 − (∑

𝑥𝑖

𝜎𝑖
2

𝑁
𝑖=1 )

2
𝑁
𝑖=1

𝑁
𝑖=1

 (Equation 10) 
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We compared monthly mean observed N-S gradients from OCO-2 to two additional datasets: 

the monthly mean N-S gradients derived from assimilated 2017 CarbonTracker (CT2017) 

output from the OCO-2 period (from 2014-2017, with observations ongoing) and the N-S 

gradients inferred from the High-Performance Instrumented Airborne Platform for 

Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flight transects over 

the Pacific Ocean that took place between 2009 and 2011. CarbonTracker is a data 

assimilation system that provides three-dimensional atmospheric CO2 fields based on 

assimilating surface CO2 observations from NOAA’s cooperative sampling network (Peters 

et al., 2007; with updates documented at http://carbontracker.noaa.gov). XCO2
 was computed 

in their 2017 (CT2017) dataset with simple pressure-weighted vertical integration of CO2. 

During the HIPPO campaign, partial columns of CO2 were measured from roughly 300 to 

8500 m altitude from aircraft transects spanning from 67°S to 85°N across the Pacific Ocean 

during all seasons between 2009 and 2011 (Wofsy et al., 2011). XCO2
 was then inferred by 

integrating a pressure-weighted mean concentration using reference static pressure from the 

GV Paroscientific Model 1000 sensor (Wofsy et al., 2017). We did not apply averaging 

kernels to either the CT2017 or HIPPO data since we were not attempting to directly compare 

individual columns to their OCO-2 or TCCON counterparts, but rather to approximate the 

large-scale features in XCO2
. 

With sufficient data density, the N-S gradients derived from OCO-2 overpasses were broadly 

consistent with CT2017 output and HIPPO transects. However, when satellite data were 

characterized by gaps or low coverage during the winter season, the satellite estimate of the 

N-S gradient was inconsistent with HIPPO and CarbonTracker. Given this pattern of 

agreement and the need for year-round N-S gradient information, we used the CarbonTracker 

gradient to quantify monthly-mean N-S gradients and to evaluate the impact of the gradient 

on temporal synoptic-scale and mesoscale variability and along-track high frequency 

explained variability. 

3. Results 

3.1 Temporal Variations at TCCON 

3.1.1 Flux-driven diurnal variations 

Local diurnal fluxes account for up to 1 to 2.0 ppm of within-day temporal variability of XCO2
 

http://carbontracker.noaa.gov/
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during the growing season, with the largest diurnal signal observed during boreal summer 

(Fig. 3a). For example, in Lamont, Oklahoma, local ecosystem drawdown contributed a 

decrease of XCO2
 of 1.1 ppm between 7:00 am to 5:30 pm LST (local standard time) in July, 

whereas it showed almost no change throughout the day (10 am to 2 pm) during winter 

months (Fig. S1), as expected given the relatively dormant winter biosphere. At most 

midlatitude TCCON sites, local diurnal fluxes of XCO2
 accounted for less than 0.3 ppm of 

within-day variability during the winter (Fig. 3a). The seasonal cycle of XCO2
 variability 

driven by diurnal fluxes at tropical TCCON sites, such as Darwin, Australia, was tied to the 

onset of the wet and dry seasons and varied from 0.1 ppm and 1.1 ppm (Fig. 3a). We note 

that these are typical within-day variations of XCO2
 attributed to diurnal fluxes, and that the 

actual diurnal fluxes depend on weather, anthropogenic, and other natural interactions. 

Figure 3. Climatological daytime diurnal range of a. XCO2
and b. XH2O . We calculate the 

range between morning and evening, with a limit of solar zenith angle less than 75°. 

The climatological diurnal cycle of XH2O had a strong seasonal cycle across all TCCON sites, 

with defined wet and dry seasons in the tropics, and lower winter and higher summer peak-to-

trough diurnal cycle amplitudes in the midlatitudes (Fig. 3b). In the Northern Hemisphere 

midlatitudes, the within-day local imprint was maximum in the summer (around 200-600 

ppm) and smallest during boreal winter (around 5-100 ppm). Within-day, flux-driven 

variations were largest at the two tropical TCCON sites, which are both located in the 

Southern Hemisphere tropics. Within-day variations in these regions could exceed 500 ppm 

during austral summer but were generally 300-500 ppm during austral winter (Fig. 3b). We 
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note that while many atmospheric processes are analogous for XCO2
 and XH2O, condensation 

and precipitation drive additional spatial and temporal variability in XH2O (Dai and Wang, 

2002). The values we report in Fig. 3b are the peak-to-trough difference in within-day XH2O 

climatology. During summer, most TCCON sites showed a maximum value of XH2O in mid-

to-late afternoon (1400 to 1700h, Fig. S2), consistent with the diurnal phasing of precipitable 

water reported by Dai and Wang (2002). 

 

Figure 4. Comparison of synoptic-scale and variability in TCCON observations. (a.) XH2O 

monthly mean synoptic-scale (bi-weekly) variability, (b.) XH2O mesoscale (within-day) 

variability, (c.) XCO2
 monthly mean synoptic-scale variability, and (d.) XCO2

 monthly mean 

mesoscale variability. Note that the color scales for XH2O and XCO2
 are different. 
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Figure 5. A comparison of monthly mean TCCON temporal mesoscale 〈𝑐′〉𝑡𝑖𝑚𝑒 (within-day) 

variability (red), OCO-2 observed along-track high frequency unexplained (teal) and 

explained (〈𝑐′〉𝑠𝑝𝑎𝑐𝑒) (dark blue) spatial variability, and explained variability (〈𝑐′〉𝑠𝑝𝑎𝑐𝑒) 

estimated from Equation 12 (light blue) using ranges (aspace) observed by OCO-2 for XH2O 

(dashed line) and XCO2
 (solid line). Panels (a.-b.) shows variability for XCO2

and panels (c.-d.) 

XH2O in Lamont, Oklahoma. The bottom panel, e., represents the range (aspace) of along-track 

high frequency explained spatial variability of XH2O (dark purple) and XCO2
 (light purple). 

The error bars for observed parameters represent the standard error. For estimated 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒, 

the error bars represent the error propagation using climatological monthly mean standard 

error of each observed parameter. 

 

3.1.2 Synoptic-scale (bi-weekly) variability 

Mean temporal synoptic-scale (bi-weekly) variations in both XH2O and XCO2
 from TCCON 

were larger in magnitude to the typical daily cycle (Fig. 3 and 4). For XH2O, synoptic-scale 
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variations were, on average, 4 times larger than variability attributed to diurnal fluxes (Fig. 3 

and 4). For some months, synoptic-scale variability of XH2O was over 10 times larger than the 

magnitude of the imprint of local diurnal fluxes. For XCO2
 mean synoptic-scale variations 

were approximately twice as large local flux-driven variability, although for both gases, the 

differences varied seasonally. These variations in both XH2O and XCO2
 were also tied to the 

seasonal cycle in the large-scale N-S gradient (Table 2). As described in Section 2.2.1, we 

quantified temporal synoptic-scale variability by taking the standard deviation of the bi-

weekly residual in XH2O and XCO2
 after accounting for the climatological peak-to-trough 

within-day signal at each TCCON site. 

 

Temporal synoptic-scale variations of XH2O across all TCCON sites were of order 100 to 

1000 ppm with strong regional and seasonal dependence (Fig. 4a). For example, we observe 

synoptic-scale variations in XH2O of 200-400 ppm in Lamont and Park Falls during boreal 

winter and peak synoptic-scale variability of over 1000 ppm during the Northern Hemisphere 

summer (Fig. 4a). At similar latitudinal regions in Europe, synoptic scale variability of XH2O 

only varies from 150 to 800 ppm throughout the year. We acknowledge that on multi-week 

timescales, many processes other than atmospheric transport can alter the atmospheric water 

vapor mole fraction, including diabatic processes in the atmosphere. This complexity is 

evident in the different seasonal patterns in and magnitudes of bi-weekly variability at 

TCCON sites, which varies even within a given latitude band. We therefore present this 

analysis to parallel the XCO2
 analysis described below. 

 

For XCO2
, typical synoptic-scale variations ranged from 0.1 to 1.3 ppm across all TCCON 

sites, with the largest variations (in excess of 1 ppm) observed over Northern Hemisphere 

TCCON sites during July and August (Fig. 4c). These locations also had the largest seasonal 

cycles of synoptic-scale variability (Fig. 4c). There was less pronounced synoptic-scale 

variability of XCO2
 in the tropics and the southern hemisphere, where synoptic-scale 

variability ranged from 0.1 in the boreal summer to 0.7 ppm in boreal winter (Fig. 4c). The 

magnitude and seasonality of these variations are mostly tied to the meridional (N-S) gradient 

in XCO2
, as we discuss below. 

Synoptic-scale variations of XCO2
 were correlated with the magnitude of the N-S gradient at 

northern hemisphere midlatitude TCCON sites (Table 2). As described in Section 2.3.2, we 
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fit a regression slope to estimate the absolute value of N-S gradients of XCO2
 derived from 

OCO-2 overpasses to those derived from CT2017 output and HIPPO transects (Fig. S4). In 

the Northern Hemisphere midlatitudes, the correlation between monthly mean temporal 

synoptic-scale variations observed from TCCON (Fig 4c.) and the monthly mean N-S 

gradient (Fig. S4-S6) was generally around 0.6 to 0.9 (Table 2). This relationship is 

consistent with the argument that synoptic variations arise from transient eddies acting on the 

large-scale gradient, as indicated by the second RHS term in Equation 5. The weaker 

correlation (R=0.41) observed at Garmisch, Germany was an outlier among Northern 

Hemisphere midlatitude TCCON sites, which may be due to limited observations. In the 

tropics and Southern Hemisphere, the relative absence of N-S gradients of XCO2
 resulted in 

weak relationship with synoptic-scale variations. We note that the length-scales estimated 

from many of the slopes of our best-fit linear regressions between synoptic scale variability 

and the N-S gradient of XCO2
 (2.1° to 6.5°; or roughly 200 to 600 km at Northern Hemisphere 

midlatitude TCCON sites) are on the smaller end of those of typical synoptic-scale systems. 

The temporal synoptic variability of XH2O correlates with the N-S gradient of XH2O across 

most TCCON sites (Table 2). The correlation coefficients were between 0.4 to 0.9 across 

TCCON sites. The highest correlation coefficients were observed at mid-latitude TCCON 

sites (Bialystok, Orleans, Park Falls, and Lamont), and at these sites, the slope of the 

relationship was consistently between 7 and 9 ppm/(ppm/degree) (which can be written as a 

length scale, degree). This is approximately consistent with typical length scales of synoptic-

scale variability of the order of magnitude of 1000 km and larger than that estimated for 

XCO2
. 

3.1.3 Mesoscale (within-day) variability 

Mesoscale variations (Fig. 4b, 5c) of XH2O are, on average, a factor of 1.4 times larger in 

magnitude to variability attributed to local diurnal fluxes (Fig. 3b). For XH2O, mesoscale 

variations were generally a factor of 5 smaller than synoptic-scale variability across all 

TCCON sites (Fig. 4b). As expected based on synoptic scale variations in XH2O, patterns of 

mesoscale variation showed strong regional variations. For example, TCCON sites in North 

America (Park Falls and Lamont), mesoscale variations of XH2O were almost 300 ppm during 

the boreal summer, but less than 100 ppm during the boreal winter (Fig. 4b, 5c). In contrast, 

at TCCON sites at similar latitudes in Europe, mesoscale variations of XH2O were generally 
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less than 200 ppm all year. At tropical TCCON sites, such as Darwin and Reunion Island, 

mesoscale variations were between 160 and 320 ppm all year round, with lower (<200 ppm) 

mesoscale variations occurring during the dry season (Fig. 4b). 

Mesoscale variations of XH2O, like synoptic variations, were generally correlated with the N-

S gradient of XH2O across all midlatitude TCCON sites (R values of 0.4 to 0.9 at TCCON 

sites with statistically significant slopes; Table 2). The slopes, however, were much lower, 

typically around 2°. We expect that these correlations do not necessarily suggest that the 

large-scale N-S gradient drives mesoscale variations, but rather to the fact that both quantities 

change seasonally and have strong temperature dependence via the Clausius-Clapeyron 

relationship. 

Temporal mesoscale variability in XCO2
, which we assume is primarily driven by advection 

from small-scale weather features, was less than 0.5 ppm across all TCCON sites and all 

months (Fig. 4, 5). This represents about half the magnitude of variability attributed to local 

diurnal fluxes during the growing season at northern hemisphere TCCON sites (Fig. 4). In the 

winter, mesoscale variations of XCO2 become larger than the imprint of variability attributed 

to local diurnal fluxes. In Park Falls, Wisconsin, the combined imprint of mesoscale and 

synoptic scale transport was 1 to 2 ppm during summer (Fig. 4), substantially larger than the 

potential bias from assuming climatological fluxes of about 0.3 ppm (Fig. 2). These 

mesoscale variations were approximately 30 to 50% magnitude of synoptic-scale variability 

(Fig. 4c and 4d). Mesoscale variations in XCO2
were only moderately correlated with N-S 

gradients (R-values less than 0.52) in the mid-to-high latitudes in both the northern and 

southern hemispheres (Table 2), consistent with our expectation that the length scale of 

mesoscale systems is small in comparison to the length scale of the N-S gradient. In the 

tropics, there was likewise no correlation between mesoscale variability and the N-S gradient 

of XCO2
 (Table 2). 

We calculated a typical timescale for mesoscale (within-day) variations based on the 

autocorrelation of within-day residuals with climatological local fluxes removed (Fig. S7). 

We found that the autocorrelation of the residuals typically decayed to values between e-1 and 

0 over about 3 hours. This timescale was consistent for both XH2O and XCO2
 across all 

TCCON sites. We therefore used this mean lag time as 𝜏𝑡𝑖𝑚𝑒 in Equation 5 to compare 

temporal variations to spatial variations of XH2O and XCO2
 (Section 3.2.1)
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Table 2. Regression statistics for magnitude of variability in trace gases versus their N-S gradient. We report the slope (± 95% confidence 

interval) in units of degrees and the correlation coefficient, R, of a best-fit linear regression line for the N-S gradient of XH2O and XCO2
 output 

from CT2017 compared to bi-weekly (synoptic-scale) and within-day (mesoscale) temporal variability of XH2O observed by TCCON, and 

explained along-track high frequency spatial variability observed by OCO-2. Bolded slopes and regressions indicate statistically significant fits 

at the 95% confidence interval.  

Location XH2O XCO2
 

Synoptic (TCCON) Mesoscale (TCCON) 
Explained (OCO-2) Synoptic (TCCON) Mesoscale (TCCON) 

Explained (OCO-2) 

Slope 

[deg] 

R Slope 

[deg] 

R Slope 

[deg] 

R Slope 

[deg] 

R Slope 

[deg] 

R Slope 

[deg] 

R 

Bialystok, Poland 7.4 ± 3.1 0.75 2.2 ± 0.5 0.92 1.3 ± 0.6 0.80 6.5 ± 5.2 0.44 0.6 ± 1.6 0.06 -0.7 ± 4.0 0.01 

Karlsruhe, 

Germany 

1.5 ± 3.7 0.12 1.8 ± 0.9 0.58 1.9 ± 1.3 0.64 2.9 ± 2.6 0.51 0.4 ± 0.5 0.08 -0.0 ± 0.7 0.00 

Orleans, France 7.6 ± 3.4  0.69 1.9 ± 1.2 0.50 0.7 ± 1.6 0.11 3.1 ± 1.2 0.76 0.7 ± 0.4 0.52 -0.4 ± 0.9 0.13 

Garmisch, 

Germany 

3.5 ± 3.7 0.28 1.4 ± 1.0 0.42 2.1 ± 1.0 0.72 0.8 ± 1.2 0.17 0.4 ± 0.3 0.29 -0.3 ± 1.4 0.02 

Park Falls, WI 7.5 ± 2.2 0.79 2.7 ± 0.6 0.87 1.5 ± 1.2 0.41 3.6 ± 1.6 0.62 0.9 ± 0.8 0.30 0.3 ± 1.2 0.04 

Lamont, OK 8.7 ± 6.9 0.35 1.5 ± 2.4 0.12 1.1 ± 2.2 0.08 2.1 ± 0.9 0.67 0.5 ± 0.5 0.32 0.8 ± 0.4 0.49 

Darwin, Australia 0.8 ± 0.5 0.46 0.3 ± 0.2 0.39 -0.4 ± 0.3 0.36 1.1 ± 0.7 0.41 0.4 ± 0.4 0.27 0.3 ± 1.0 0.04 

Reunion Island 4.6 ± 6.2 0.15 0.8 ± 1.2 0.12 1.1 ± 1.2 0.23 -1.0 ± 3.7 0.02 -0.7 ± 3.0  0.02 0.4 ± 1.1 0.04 

Lauder, New 

Zealand 

4.5 ± 3.7 0.33 2.8 ± 1.1 0.69 0.7 ± 0.6 0.58 4.1 ± 9.5 0.06 2.5 ± 3.6 0.14 0.2 ± 9.9 0.00 
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Figure 6. Variability metrics for remotely sensed XH2O and XCO2
. Monthly mean (a.) 

unexplained variability for XH2O and (b.) explained variability for XH2O derived from high-

pass filtered OCO-2 observations. c. Monthly mean temporal mesoscale (within-day) 

variability in XH2O derived from TCCON observations. Panels d-f are similar, except we 

show values for XCO2
 from OCO-2 (d-e) and TCCON (f) observations. 

 

 

Figure 7. Monthly mean spatial range (aspace) of a. XH2O and b. XCO2
derived from OCO-2 

data near each TCCON site. Note both panels use the same color scale. 
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3.2 OCO-2 along-track spatial variability 

This section compares the relationship between the high-frequency along-track spatial 

variability observed by OCO-2 to mesoscale temporal variability of XH2O and XCO2
 from 

TCCON using the theoretical framework outlined in Section 2.1. Variations in both XH2O and 

XCO2
 evolve in response to local surface fluxes and atmospheric transport, and for XH2O, 

condensation, evaporation, and precipitation within the atmosphere.  While the details of the 

surface fluxes and in situ atmospheric processes differ for the two tracers, they experience the 

same atmospheric advection and mixing fields.   The advantage of a joint analysis of these 

two gases is that both XH2O and XCO2
 are observed simultaneously by TCCON and OCO-2, 

and the precision of XH2O is substantially larger, providing a framework for assessing the 

XCO2
 results. Specifically, if the calculated and observed explained variability of either 

species, 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒, are in agreement, then we can assume that mesoscale atmospheric 

transport is the dominant source of high-frequency variability of that gas. 

 3.2.1 Explained variability (〈𝑐′〉𝑠𝑝𝑎𝑐𝑒) 

Along-track, high frequency (<250 km) explained spatial variations of XH2O from OCO-2 

spanned between 20 and 300 ppm across all TCCON sites (Fig. 6b). The smallest explained 

variations (20 to 60 ppm) were observed at Northern Hemisphere midlatitude sites during the 

boreal winter. The largest explained variations (> 200 ppm) occurred over most Northern 

Hemisphere midlatitude sites during the boreal summer and over the tropical sites (Darwin 

and Reunion Island) during the local wet season. Across all months and TCCON sites, the 

spatial range (aspace) of explained variability generally spanned between 40 to 140 km (Fig. 

7b). 

The explained high-frequency spatial variability of XCO2
 was generally between 0.2 and 1.0 

ppm across all TCCON sites (Fig. 6e). The highest explained variations (>0.5 ppm) were 

observed over Northern Hemisphere TCCON sites. Smaller explained variations (0.2 to 0.5 

ppm) were observed at southern hemisphere TCCON sites. In contrast to XH2O, the aspace for 

XCO2
 occurred at much smaller spatial scales from 10 to 40 km, with mean aspace values for 

explained variability around 20 km (Fig. 7a). 

We can put the explained spatial variability of both XH2O and XCO2
 along OCO-2 tracks 
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(〈𝑐′〉𝑠𝑝𝑎𝑐𝑒) by comparing variations in each gas with the corresponding mesoscale variations 

at TCCON sites (Section 2.3.1) using Equation 5 to relate temporal variations at a given 

location to tracer anomaly advection and turbulent production. We expect the time tendency 

(Term A in Equation 9) to be balanced by the advection of tracer variations by the mean wind 

(Term B) or by small-scale production of variation by eddies acting on the mean gradient 

(Term C). Take, for example, a typical temporal mesoscale variation of XH2O, 〈𝑐′〉𝑡𝑖𝑚𝑒, of 

about 280 ppm (as is approximately the case in Lamont, Oklahoma in June; Figs. 4-6). We 

computed the following scales: 

 (A) 
〈𝑐′〉𝑡𝑖𝑚𝑒

𝜏𝑡𝑖𝑚𝑒
=  

280 ppm

3 hours
= 90

ppm

hour
 

(B) 𝑢
〈𝑐′〉𝑠𝑝𝑎𝑐𝑒

𝑎𝑠𝑝𝑎𝑐𝑒
= 8 (

m

s
)

210 ppm

70 km
= 90

ppm

hour
 

(C) 〈𝑢′〉 〈
𝜕𝑐

𝜕𝑥
〉 = 1 (

m

s
) (140

ppm

deg.
) = 5

ppm

hour
 

 

We used a within-day period (𝜏𝑡𝑖𝑚𝑒) of 3 hours (Section 3.1.3; Fig. S7). For Lamont in June, 

we computed total column pressure and H2O vertical profile weighted mean horizontal wind 

speed (�̅�) of 8 m/s and mesoscale variability of horizontal winds (𝑢′) of 1 m/s by vertically 

integrating wind output from CT2017 (Fig. S8). Since CarbonTracker is run at relatively 

coarse resolution, we compare these values against calculations derived from the North 

American Regional Reanalysis (NARR, Mesinger et al., 2006), which provides wind fields at 

0.3 degrees resolution. At the two North American TCCON sites, 𝑢 was the same as that 

estimated from CarbonTracker fields, while 𝑢′ was larger by a factor of two (about 2 m/s), an 

expected result given the higher horizontal resolution of NARR. Nevertheless, when we 

apply this larger 𝑢′ estimate into Equation 11, our scale analysis remains unchanged. We also 

used CT2017 output to calculate a typical summertime Northern Hemisphere midlatitude N-S 

gradient of around 140 ppm degree-1 (Fig. S5). The scaling exercise suggests that the time 

tendency is mostly balanced by the mesoscale anomaly advection term (Term B) rather than 

the turbulent production term (Term C), at least for these time-scales. The small contribution 

of the production term is consistent with the fact that mesoscale variations at TCCON sites 

were not highly correlated with the mean N-S gradient. This analysis can also be applied to 

relate spatial and temporal mesoscale variations in XCO2
or another atmospheric tracer. 
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Based on the scaling arguments above, we rearrange Equation 5 to solve for the expected 

〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 along OCO-2 tracks and neglect the turbulent production term (Equation 12): 

〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 =
𝑎𝑠𝑝𝑎𝑐𝑒

�̅�
(

〈𝑐′〉𝑡𝑖𝑚𝑒

𝜏𝑡𝑖𝑚𝑒
− 〈𝑢′〉 〈

𝜕𝑐

𝜕𝑥
〉) ≈  

𝑎𝑠𝑝𝑎𝑐𝑒

�̅�
(

〈𝑐′〉𝑡𝑖𝑚𝑒

𝜏𝑡𝑖𝑚𝑒
) . (Equation 12) 

We then use Equation 12 to estimate the expected magnitude of 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 for XH2O in Lamont 

in June as approximately 226 ppm which agrees within 10% with the observed explained 

variability of 214 ppm from OCO-2 (Fig. 6b and 8b). We found that if we applied Equation 

12 to compute 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 at each TCCON site and each month, our estimated 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 values 

match observed explained variations from OCO-2 to within 30% (Fig. 8a and 8b). The 

agreement between the observed and estimated 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 of XH2O suggests that the observed 

explained variations of XH2O from OCO-2 are primarily driven by mesoscale atmospheric 

transport (Fig. 5 and 8a,b). These results also validate our choice of a 250 km high-pass filter 

to isolate mesoscale transport and exclude larger-scale synoptic systems. 

We likewise calculated the 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 of XCO2
 in Lamont in June using the estimated total 

column pressure and CO2 vertical profile weighted mean horizontal wind speed (�̅�) m/s and a 

spatial range, 𝑎𝑠𝑝𝑎𝑐𝑒, of 20 km fit from semivariogram analysis (Fig. 7a). Using this 

framework, the calculated spatial mesoscale variability of 0.1 ppm was much smaller than the 

observed 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 (0.6 ppm). The empirical aspace of 20 km for XCO2
 is suspect, since 

mesoscale variations in XH2O from OCO-2 showed an aspace of 70 km in the same month and 

are consistent with the expected length-scale for mesoscale systems. When we instead used 

𝑎𝑠𝑝𝑎𝑐𝑒  of 70 km based on the analysis of XH2O, estimated mesoscale variability increases to 

0.3 ppm (Equation 14). 

〈𝑐′〉𝑠𝑝𝑎𝑐𝑒,𝑋𝐶𝑂2
=

70 km

10
m
s

(
0.4 ppm

3 hours
) ≅ 0.3 ppm (Equation 14) 

We note that an estimate of 0.3 ppm, while more reasonable in magnitude, is still about 40% 

smaller than the observed value of 0.5 ppm for the OCO-2 explained XCO2
 variability. 
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Figure 8. Comparison of calculated and observed 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒. The top row shows (a.) 

Calculated annual cycle in 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 for XH2O using Equation 12, assuming aspace values 

derived from XH2O (Figure 7b) and 〈𝑐′〉𝑡𝑖𝑚𝑒 values from TCCON mesoscale variations (Fig. 

4b). (b.) Observed annual cycle in 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 for XH2O. Note that this quantity is identical to 

the explained variability of XH2O (Figure 6b). The bottom row shows the same quantities, 

except for XCO2
. (c.) Calculated annual cycle in 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 for XCO2

 using Equation 12, 

assuming aspace values for XCO2
 (Fig. 7a) and 〈𝑐′〉𝑡𝑖𝑚𝑒 values from TCCON (Fig. 4d). (d.) 

Calculated annual cycle in 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒, except we use aspace values from XH2O. (e.) Observed 

annual cycle in 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 for XCO2
 (identical to Fig. 6e). 

 

Together, these relationships suggest first that the temporal and spatial scaling within our 

framework is consistent with mesoscale variations of XH2O quantified using TCCON and 

OCO-2 data. Second, the spatial range (aspace) for XCO2
 variability derived from the 

geostatistical analysis of OCO-2 data is too small to be driven by mesoscale systems. Third, 

the results suggest that the XCO2
 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 value is larger than what is calculated assuming 

mesoscale systems are the only driver of high frequency spatial variability along OCO-2 

tracks. As shown for Lamont, Oklahoma, there is no overlap between the estimated and 
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observed 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 even when accounting for uncertainty in both terms (Fig. 5b). We 

estimated the uncertainty 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 using error propagation of the standard error of each of the 

measured terms in equation 12. Although we only plot the uncertainty on the 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 

calculation for Lamont (Fig. 5), we quantified uncertainty across all TCCON sites presented 

in the paper and this result is robust, meaning that the differences between the calculated 

〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 (Fig. 8c,d) and the observed 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒(Fig. 8e) represent real and significant 

disagreement. Thus, we conclude that some other factor imparts spatially coherent variability 

on OCO-2 XCO2
 that depresses the aspace and augments the 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒. One possibility is 

coherent biases or errors in the OCO-2 XCO2
 retrieval, as discussed more in section 3.3. These 

relationships are true across all TCCON sites (Fig. 8c and 8e), where the observed XCO2
 

〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 was generally larger than what would be expected based on 〈𝑐′〉𝑡𝑖𝑚𝑒 and the 

observed XCO2
 𝑎𝑠𝑝𝑎𝑐𝑒 was small relative to the value calculated from XH2O observations (Fig. 

8a and 8b). We found that XCO2
 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 was more comparable to observed explained 

variations from OCO-2 when we used observed aspace values for XH2O (Fig. 8d and 8e). 

We do not expect that the inflated XCO2
 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 values result from aliasing of synoptic scale 

variability. First, the water vapor analysis confirmed that our 250 km filter properly isolates 

mesoscale atmospheric transport. Second, the explained variability from OCO-2 was not 

correlated with the N-S gradients (Table 2). If our 〈𝑐′〉𝑠𝑝𝑎𝑐𝑒 values reflected synoptic scale 

variability, these quantities should be correlated. 

3.2.2 Unexplained variability 

The unexplained high frequency spatial variability of XH2O was up to 50 ppm (Fig. 5 and 6), 

about 50% larger than the random errors reported by the v8 OCO-2 retrieval algorithm data 

product. These results were consistent with arguments from Connor et al. (2008) that reported 

random errors from the OCO-2 retrieval algorithm represent a lower bound on actual error. 

However, our estimate for unexplained variability along OCO-2 tracks was still less than 

20% of the temporal and spatial mesoscale XH2O variability (Fig. 5 and 6), suggesting that the 

signal-to-noise ratio of XH2O retrievals are large enough to observe mesoscale variations. 

The unexplained spatial variability in XCO2
 was 0.3 to 0.8 ppm, which is the same order of 

magnitude as the spatial and temporal variations that may reflect mesoscale variations and is 

also generally consistent with random errors reported by the v8 OCO-2 retrieval algorithm 
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data product (Fig. 6d). These unexplained variations were consistent with the mean standard 

deviation of the cross-track soundings we averaged into each along-track bin (Section 2.3.2; 

Fig. S9). OCO-2 tracks adjacent to Southern Hemisphere TCCON sites typically had smaller 

unexplained variations (0.3-0.4 ppm), while tracks adjacent to Northern Hemisphere TCCON 

sites had slightly larger unexplained variations (0.5-0.7 ppm). This difference appears to arise 

due to the fact that the Southern Hemisphere and tropical OCO-2 tracks we analyzed 

contained ocean observations, whereas the Northern Hemisphere tracks contained only land 

observations. When we conducted semivariogram analysis around the latitude band between 

40-50 degrees North, the unexplained variations over the ocean were approximately half the 

magnitude observed over land (Fig. 9). Errors associated with retrieving XCO2
 over land, 

where topography and albedo can influence the XCO2
 retrieval, likely increase the 

unexplained variability. The unexplained variations over land did not show dependence on 

nadir versus glint observing mode. We note that the estimates for unexplained variability 

were not sensitive to the cutoff for the high-pass filter and were also robust when we 

explicitly fitted, rather than fixed, the unexplained variance in the spherical semivariogram 

model. 
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Figure 9. Global analysis of along-track high-frequency spatial (a.) unexplained variability, 

(b.) explained variability, and (c.) range of explained variability (aspace) of XCO2
within 10° ×

10° grid cells across a latitudinal band centered at 45°N. In general, grid cells over ocean 

show lower values of explained and unexplained error than those over land. 

 

3.3 Spatially correlated variance from the state vector 

Correlations between high frequency along-track spatial variations in XCO2
 and other 

elements of the OCO-2 retrieval state vector likely contributed to the larger than expected 

spatially coherent (explained) variability in OCO-2 XCO2
, compared to mesoscale variations 
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at corresponding TCCON sites (Table 4), and the smaller geostatistical spatial range (aspace) 

for XCO2
 than XH2O. We therefore tested whether the total and high frequency along-track 

spatial variability of XCO2
 were correlated with other elements of the OCO-2 retrieval state 

vector. We selected aerosol optical depth (AOD) and albedo in the O2 and weak and strong 

CO2 absorption bands as variables that were likely to have spatial structures that, if correlated 

with XCO2
, could obscure spatially coherent transport patterns. The correlations between 

elements of the state vector and both the total variations and the high frequency along-track 

spatial variations of XCO2
 were small (R ≤ 0.2; Table 3), but statistically significant. This 

analysis suggests that correlations between XCO2
 and these state vector elements may have 

depressed the apparent aspace  and increased the explained variability along OCO-2 tracks. We 

note that the analysis of albedo and AOD presented here was in no way exhaustive, but 

rather, our results show that these correlations were important contributors to the overall 

variance budget. 

In contrast, high frequency variations in XH2O were generally independent of other state 

vector elements. There were some weak to moderate, statistically significant correlations 

between the unfiltered XH2O data and albedo or AOD (Table 3). These correlations could 

represent real geophysical relationships among XH2O, albedo, and AOD, but could also be 

attributed large-scale, coherent systematic biases in the retrieval of XH2O that can be 

attributed to errors in AOD and albedo. When we high-pass filtered these variables, however, 

the correlations between the high frequency variations of XH2O and albedo were not 

statistically significant, with the exception of AOD. This result suggests that at smaller spatial 

scales (less than 250 km), the variations in XH2O were independent of the state vector 

elements we tested here and therefore the explained variability did not contain the imprint of 

spatially coherent biases
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Table 3. Mean correlation coefficients between OCO-2 trace gases and other elements of the state vector, including aerosol optical depth (AOD), and surface 

albedo in the oxygen-absorbing band (O2A), weakly absorbing CO2 band (WCO2), and strongly absorbing CO2 band (SCO2) retrieved from OCO-2 

observations. Bolded values denote statistically significant non-zero mean correlation coefficients at a 95% confidence interval.  

Location XH2O XCO2
 

Total Variability High Frequency Variability Total Variability High Frequency Variability 
AOD O2A WCO2 SCO2 AOD O2A WCO2 SCO2 AOD O2A WCO2 SCO2 AOD O2A WCO2 SCO2 

Bialystok, 

Poland 
0.24 0.11 0.14 0.13 0.12 0.02 0.05 0.05 0.09 0.15 0.12 0.06 0.08 0.13 0.12 0.05 

Karlsruhe, 

Germany 
0.18 0.07 0.09 0.08 0.12 -0.01 0.01 0.02 0.16 0.12 0.07 0.04 0.11 0.12 0.08 0.03 

Orleans, 

France 
0.13 0.09 0.14 0.16 0.07 0.01 0.06 0.09 0.20 0.17 0.13 0.11 0.17 0.16 0.14 0.09 

Garmisch, 

Germany 
0.17 -0.01 0.10 0.10 0.11 0.01 0.07 0.08 0.13 0.09 0.05 0.02 0.10 0.09 0.06 0.02 

Park Falls, 

WI 
0.14 0.09 0.16 0.13 0.07 0.04 0.10 0.09 0.10 0.11 0.10 0.07 0.08 0.12 0.14 0.09 

Lamont, 

OK 

0.06 0.00 -0.14 -0.14 0.04 0.03 -0.01 0.00 0.14 0.07 0.06 0.04 0.06 0.13 0.16 0.12 

Darwin, 

Australia 

0.03 -0.32 -0.40 -0.41 0.01 -0.01 0.00 -0.01 0.07 0.01 -0.02 -0.03 0.03 0.06 0.04 0.01 

Reunion 

Island 
0.18 -0.03 -0.13 0.12 0.08 0.03 0.00 0.05 -0.07 0.07 0.04 0.14 -0.09 0.09 0.07 0.18 

Lauder, 

New 

Zealand 

0.14 -0.05 -0.13 0.03 0.08 0.02 -0.03 0.02 0.16 0.02 0.06 0.12 0.02 -0.03 -0.08 -0.04 
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4. Discussion and Conclusions 

We developed a framework that allows us to leverage spatially dense soundings from the 

OCO-2 satellite and temporally dense soundings from TCCON to quantify the variance 

budget for XH2O and XCO2
, with a focus on estimating the imprint of mesoscale transport on 

OCO-2 observations. We first developed a method to separate variations from local diurnal 

surface-atmosphere fluxes, synoptic-scale atmospheric transport, and mesoscale atmospheric 

transport from the overall variability in TCCON observations. We found that variability from 

synoptic-scale transport was, on average, 3 times larger than that attributed to diurnal fluxes 

for XH2O and of 2 times larger magnitude for XCO2
. On average, and mesoscale variations in 

XH2O and XCO2
 were similar in magnitude to the variability from local diurnal fluxes. The 

large contributions of mesoscale and synoptic scale transport in driving tracer variability 

underscores the importance of accounting for uncertainties in atmospheric transport and its 

subgrid-scale impact when using XCO2
 in a carbon flux inference system. 

Second, we used geostatistical analysis to quantify explained (spatially coherent) and 

unexplained (random) variations in XCO2
 and XH2O along OCO-2 tracks. We applied a 250-

km high pass filter that, for XH2O, isolated mesoscale variations that were the primary driver 

of along-track high frequency variability of XH2O from OCO-2. We confirmed that the 

explained variations in XH2O were primarily related to mesoscale transport using the tracer 

transport framework to compare temporal variability to spatial variations. For XH2O, observed 

explained spatial variations of XH2O were consistent with estimated explained variations 

within this framework (Fig. 8a and 8b). 

In contrast, we were not able to fully characterize the variance budget for XCO2
. Within our 

physical framework, the explained variations of XCO2
 observed by OCO-2 (Fig. 8c and 8e) 

were too large to be explained solely by mesoscale atmospheric transport. We note that this 

mismatch was particularly acute when using the geostatistically-estimated aspace from OCO-2 

(around 20 km) for XCO2
, but was also true when we substituted the observed aspace for XH2O 

(Fig. 8d). Together, these suggest another source of spatially coherent variance in OCO-2 

XCO2
 that both shortens the length scale of coherence and contributes additional spatially 

coherent variability. Based on correlation analysis with other elements of the state vector, we 

conclude that high-pass filtered XCO2
 fields from v8 of the OCO-2 Level 2 XCO2

 retrieval 
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impart such structure and may explain part, though perhaps not all, of the mismatch in 

mesoscale time-space XCO2
 variability from TCCON and OCO-2. Correlations among 

elements of the retrieval state vector have also manifested in biases in XCO2
 retrieval output 

from GOSAT data, resulting in uncertainty of the magnitude and sign of posterior regional-

scale flux estimates (Chevallier et al., 2014). 

Our estimates of explained and unexplained variability can be compared against other studies 

that leverage the OCO-2 data set. For instance, Worden et al., (2017) analyzed the 

contribution of natural variations simulated by NASA's high resolution GEOS-5 simulation to 

the OCO-2 error budget. They found that the natural variability of XCO2
 within 100 km 

neighborhoods was only about 0.08 ppm, and that the observed variability from OCO-2 

exceeded this value due to bias from other elements of the OCO-2 v7 retrieval vector. We 

used our framework to estimate the natural (or mesoscale) contribution to variations in XCO2
 

with our space-for-time framework. Based on mesoscale variations at northern hemisphere 

TCCON stations, we expect that the imprint of mesoscale systems along the satellite track 

should be about 0.4 ppm (over 250 km). That our value is larger than the natural variability in 

model output reported by Worden et al. (2017) underscores the utility of our geostatistical 

approach for quantification of the variance budget based on observations themselves, rather 

than model output that may contain its own set of biases. Further, our methodology enables 

us to quantify the random error in the observations (unexplained variability) as well as the 

spatially coherent error (the portion of the explained variability caused by systematic bias in 

the retrieval). 

Our results suggest that our analysis framework yields robust quantification of the influence 

of mesoscale transport for XH2O, despite the fact that local surface processes are likely also to 

impart local variations on this quantity. We acknowledge that our method to subtract local 

influence based on a climatological diurnal signal may result in biases of up to 30% of the 

fraction of variability in TCCON data being attributed to transport (Fig. 2). Ultimately, the 

methodology to account for local signals at TCCON sites would benefit from additional 

information on local fluxes across all sites, either from observations, such as eddy covariance 

fluxes, or from mechanistic coupled atmosphere-land models. Despite this caveat, the 

agreement between TCCON and XH2O variations suggests that the 250 km filter used and the 

assumptions made in this manuscript are sufficient to account for the structure imparted by 

fine spatial scale transport. 
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Although there were complications with XCO2
, our results are promising for the use of 

geostatistical methods for parameterizing errors in inverse modeling frameworks. While we 

had hypothesized that our approach would allow us to separate the influence of mesoscale 

transport on XCO2
, we note that for robust flux inference, proper accounting for spatially 

coherent non-transport structures within the data is also necessary. The approach presented in 

this study can be applied to each subsequent data release, and we anticipate that as the 

retrieval algorithm becomes more mature, the importance of correlated errors will decrease 

and the role of mesoscale transport will be revealed more clearly. Our results highlight the 

importance of continued development of the OCO-2 retrieval algorithm, since correlations 

between XCO2
 and other elements of the state vector may induce bias and spurious spatial 

correlation in XCO2
 that mask the influence of atmospheric transport. 

Our results also highlight the importance of constraining variations of XCO2
 attributed to 

atmospheric transport for improved inferences of carbon fluxes from inversion models. While 

the influence of random errors can be minimized by averaging multiple soundings, transport-

driven processes introduce variability on XCO2
 observations that are both spatially and 

temporally correlated. For example, taking a 10 s average of XCO2
 observations along the 

OCO-2 track (about 70 km), similar to the method presented in Crowell et al. (2019) will 

reduce the unexplained error (Fig. 6d) by 
1

√𝑁
  where N is the number of soundings in the 

averaging bin, because the unexplained errors for each sounding are assumed to be 

independent. In contrast the mean error for a bin decreases only by 
1

√𝑁𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
 for the spatially 

correlated transport variability (Fig. 6e), where Neffective can be approximated as the bin length 

divided by the geostatistical range (or autocorrelation length), which for XCO2
 is roughly 2-3 

and may actually be closer to 1 if the XH2O ranges are used as more appropriate. Since the 

length-scales at which the resolved variability is correlated are comparable to the spatial 

distance encompassed by a 10-s along track average (Figure 7), the mesoscale variance is a 

key element of the signal that will be used in the inversions even when observations are 

aggregated.  Given that the imprint of mesoscale and synoptic scale variance is not spatially 

or temporally uniform, ignoring it in an inverse modeling framework will lead to over 

confidence in some observational aggregates and underconfidence in others, ultimately 

shifting the distribution of fluxes.  This is analogous to conducting a simple linear regression 

in which uniform error bars are assumed instead of assigning realistic errors to individual 
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points; the resulting slope and intercept will differ depending on the method of assigning 

errors. Inversion techniques typically require uncertainty estimates and their correlations on 

the inversion grid-scale, which spans from roughly mesoscale (~100km) to several times 

mesoscale depending on the transport model resolution. The appropriate uncertainty estimate 

will incorporate both instrument and algorithm error and spatially/temporally coherent 

subgrid-scale variability induced by transport and surface flux processes. Based on our 

analysis of both TCCON and OCO-2, the coherent mesoscale variability signal for XCO2
 is 

substantial relative to sounding errors alone and may be larger than transport variability 

estimates produced by most carbon cycle models, which may inadequately resolve mesoscale 

dynamics. Since mesoscale systems may have also been associated with frontal cloud 

coverage, lack of ability to constrain mesoscale variations may have resulted in large 

representation errors in inverse modeling (Corbin et al. 2008). Our results suggested that as a 

first step, we could use the explained variability derived from geostatistical analysis of OCO-

2 data to inflate error estimates within inverse modeling systems. As a next step, we 

recommend the development of coupled high-resolution CO2-weather models that fully 

capture fine-to-large scale spatial and temporal variations in carbon fluxes, as an alternative 

to constrain the imprint of atmospheric transport from XCO2
observations provided by OCO-2, 

OCO-3, and other emerging CO2 monitoring satellites.” 
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