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Evaluation of noise radiation
mechanisms in a turbulent jet

By T. Colonius1, K. Mohseni1, J. B. Freund2, S. K. Lele, AND P. Moin

Data from the direct numerical simulation (DNS) of a turbulent, compressible
(Mach=1.92) jet has been analyzed to investigate the process of sound generation.
The overall goals are to understand how the different scales of turbulence contribute
to the acoustic field and to understand the role that linear instability waves play
in the noise produced by supersonic turbulent jets. Lighthill’s acoustic analogy was
used to predict the radiated sound from turbulent source terms computed from the
DNS data. Preliminary computations (for the axisymmetric mode of the acoustic
field) show good agreement between the acoustic field determined from DNS and
acoustic analogy. Further work is needed to refine the calculations and investigate
the source terms. Work was also begun to test the validity of linear stability wave
models of sound generation in supersonic jets. An adjoint-based method was de-
veloped to project the DNS data onto the most unstable linear stability mode at
different streamwise positions. This will allow the evolution of the wave and its
radiated acoustic field, determined by solving the linear equations, to be compared
directly with the evolution of the near- and far-field fluctuations in the DNS.

1. Background

Jet noise prediction is a particularly difficult problem because the complexity of
turbulent flow permits only approximate experimental and theoretical description
of the acoustic sources. Meanwhile, aeroacoustic theory requires such a description
as input and attempts to predict jet noise a posteriori via solution of a linear wave
equation for the radiated sound. Despite many years of investigation of acoustic
sources in turbulent flows, fundamental questions persist which cannot be addressed
without access to very detailed measurements of the near field turbulence.

Fortunately, computer power has increased to the point where it is now possible
to simulate low Reynolds number turbulent jets without modeling approximations.
Because this approach provides full knowledge of the jet flow, it permits a detailed
examination of the acoustic sources.

Data from a Direct Numerical Simulation (DNS) of a Mach 1.92 (Freund, Lele &
Moin 1998) jet is used here to investigate several issues related to the mechanisms
of sound generation in turbulent jets:
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• What is the relative contribution of large and small scales to the acoustic sources
terms in turbulent jets?
• What role do linear instability waves play in the noise produced by supersonic

turbulent jets?
In order to investigate the first question, we use the DNS data to compute the

source terms for Lighthill’s acoustic analogy. The solution to the acoustic analogy
with these sources is then found and compared to the directly computed acoustic
field. The results of this calculation are presented in Section 2. Once the efficacy of
the acoustic analogy is established, the turbulent source terms can be investigated to
understand how different scales of motion contribute to the overall acoustic field–
we make some preliminary observations regarding the structure of the source in
Section 2. The relevance of different scales, and how accurately significant scales
may be represented on a hypothetical coarser mesh, has important implications for
subgrid scale modeling in LES applications.

In Section 3, we investigate the radiation of acoustic waves by instability waves
in supersonic jets. While it has been shown (e.g. Tam 1995) that the linear model
correctly predicts certain trends in turbulent mixing noise in supersonic jets, it
relies on an assumed distribution (and amplitude) of turbulence fluctuations at the
nozzle exit, and detailed measurements and comparisons with the theory have not
yet been made. In Section 3 we present a framework that we have developed to test
some of the underlying assumptions of the linear theory and to attempt to validate
its predictions against the directly computed acoustic field.

2. Acoustic analogy
An important issue in using an acoustic analogy to predict jet noise is the degree

to which an acoustic analogy can predict the sound field given an “exact” represen-
tation of the source terms from numerical simulation as input. This depends, on
one hand, to what extent discretization errors may affect the acoustic sources and,
on the other hand, how reliable are the approximations made in separating source
terms from propagation terms in the acoustic analogy. These issues were addressed
in detail for vortex pairing in a two-dimensional mixing layer (Colonius, Lele &
Moin 1997), but it is unclear to what extent the conclusions may be extended to a
fully turbulent flow. To address these issues in the Mach 1.92 turbulent jet, we first
consider the well-known equation of Lighthill (1952):

ρ̈− a2
oρ,jj = Tij,ij , (1)

where,
Tij = ρuiuj + (p− a2

oρ)δij (2)

with viscosity neglected. It is straightforward to compute the right-hand side of the
equation and then solve Eq. (1) for the radiated acoustic field.

2.1 The Mach 1.92 turbulent jet and post-processing of DNS database
In this section we briefly discuss some of the issues pertaining to how the DNS

database for the Mach 1.92 turbulent jet was analyzed. DNS of the fully compress-
ible, turbulent round jet were performed by Freund (1998) using a method which
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relies on 6th-order-accurate compact finite difference schemes in the axial and ra-
dial directions, Fourier spectral differentiation in the azimuthal direction, and 4th-
order-accurate explicit Runge-Kutta time advancement. The computational domain
extends to 31 jet radii downstream and 12 radii in the radial direction, and thus
includes the near acoustic field. 640 x 270 x 128 nodes were used in the axial, radial,
and azimuthal directions, respectively. The Reynolds number based on diameter
was 2000, and the temperature ratio Tj/overT∞ was 1.12.

In order to simulate the turbulent jet inflow (thereby eliminating the need to
simulate the nozzle as well as the jet), data from a turbulent streamwise periodic
jet simulation (Freund, Moin & Lele 1997) was fed into the spatial computation.
The simulations used to generate the inflow turbulence had a streamwise period of
21 radii. The amplitudes at the inflow were “jittered” by up to 5% to break any
periodicity of the data.

The full instantaneous flow field was archived at roughly 7000 times (at increments
of 10 computational time steps). For practical reasons, the data was saved on a
mesh which consisted of every other computational node. Even at 1/8 of the full
resolution, this yields a database nearly a quarter of a terabyte in size. A principal
limitation in post-processing is the total amount of data that may be stored on disk
and read into memory.

A large number of terms are involved in computing Lighthill’s source term in
cylindrical coordinates (the transformations are straightforward but tedious, and
will not be reproduced here). Such terms involve second spatial derivatives of the
computational data, and a problem was encountered in computing source terms
smoothly through the coordinate singularity at r = 0. In this report we only
consider predictions for Lighthill’s equation for the axisymmetric (m = 0) mode, for
which there were no accuracy issues near the centerline. However, we have recently
devised a way to compute the sources on an interpolated Cartesian mesh, which
appears to alleviate the centerline difficulty–an example of the source computed in
this way is given in Section 2.3.

2.2 Numerical solution of the wave equation
In order to determine the acoustic field which results from a particular measured

source term, Eq. (1) must be inverted. A variety of methods are available for this
task. From a theoretical point of view, the simplest method would be to convolve the
source with the Green’s function for the three-dimensional wave equation. However,
the resulting integrals depend on the source at retarded times. Given the enormous
amount of data which would have to be sorted and interpolated for every such
combination of source and observer location, this approach was deemed impractical.
Instead we employ the less computationally intensive method of solving the wave
equation directly in the time domain using finite differences. We discretize the
wave equation with the same 6th-order-accurate compact finite difference scheme
used in the jet computations, and integrate forward in time with a 4th order Runge-
Kutta time algorithm. The source is Fourier transformed in the azimuthal direction
since the wave equation is linear and each azimuthal mode may, in turn, be found
independently. The computational grid is chosen to be identical to that on which
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Figure 1. Contours of the instantaneous Tij,ij in the plane θ = 0, π.

the source data was saved except that in the radial direction we interpolate the
source (using a 6th-order-accurate compact interpolation scheme) to a staggered
mesh where accurate differencing through the polar coordinate singularity may be
achieved (Mohseni & Colonius 1997). One-dimensional characteristic boundary
conditions are used together with a buffer region near the computational boundary
where the damping terms are added to the wave equation (Freund 1997).

The source terms at a given instant in time are found by performing a cubic spline
interpolation of the sources saved at discrete intervals in time. In order to avoid
sharp initial transients produced by turning on the source at t = 0, we ramp-up the
forcing over a time period which is long compared to the dominant frequencies in
the acoustic field.

2.3 Results

Figure 1 shows an instantaneous view of the Lighthill source term, Tij,ij , at the
plane θ = 0, π through the jet. It is clear that, instantaneously, small-scales are
dominant contributors to the source. As discussed below, one cannot conclude
that these are also dominant contributors to the acoustic field since the source field
is comprised of fluctuations whose wavenumber/frequency characteristics prohibit
radiation to the far field.

Nevertheless, it is interesting to see how accurately the acoustic field predicted
from the full instantaneous source agrees with the directly computed field. The
source field was computed (for the m = 0 mode only) for 500 of the archived DNS
fields and input into the wave equation solver. For the axisymmetric mode in the
acoustic field, the instantaneous prediction at the final time is compared in Fig. 2
with the directly computed acoustic field. The quantitative agreement is quite
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Figure 2. Contours of the instantaneous dilatation for the m = 0 mode, directly
computed via (a) DNS and (b) by the solution of Lighthill’s equation. Contour levels
(both figures), 15 contours between -0.02 to 0.02, negative contours are dashed.

good, with the Lighthill solution accurately reproducing the major features of the
acoustic field such as the strong Mach wave radiation at angles between 45 and 55
degrees from the jet axis. Further work is needed to compute the solution for other
azimuthal modes.

Once the acoustic analogy has been validated in this way, we may proceed to
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analyze the sources to understand and, ultimately, model in a simple way the physics
of sound generation by the flow. An important first step in this process is to
(approximately) decompose the source term into its radiating and non-radiation
components. As noted above, small scales dominate the instantaneous value of
the source; however, physical space and real time are not the most natural space
in which to examine the acoustic sources. This is because a large portion of the
source is composed of wavenumber/frequency combinations which are not able to
radiate to the acoustic field. It can be shown that only those wavenumber/frequency
combinations whose phase speed is supersonic with respect to any ambient flow may
radiate to the far field (Crighton 1975).

An exact decomposition into wavenumber/frequency space requires strict peri-
odicity (or infinite extent) of the source. For spatially evolving flows on a finite
computational domain, this condition is not met, and further information regard-
ing the decay of the acoustic sources downstream of the computational boundary
must be supplied in order to accurately transform the source in the axial direction.
This can be done in a semi-analytical way if the acoustic source is simple enough
(e.g. Colonius et al. 1997, Mitchell, Lele & Moin 1995, Wang, Lele & Moin 1996).
It is likely, however, that such methods will fail for a fully turbulent source, and thus
we seek an alternative. We anticipate using approximate band-pass filters which
can be constructed in real space (e.g. Lele 1992) for non-periodic data.

3. Linear stability theory

For jets with sufficiently high Mach number (essentially with a convective Mach
number greater than 1), it is know that linear instability waves directly radiate
sound to the far field (e.g. Tam & Burton 1984). This observation gives rise to an
alternative to the acoustic analogy approach in this case. The near field and far field
are constructed simultaneously as a solution to linear equations, and the flow acts,
in essence, as an amplifier of some prescribed disturbances, with the amplification
and eventual decay giving rise to the production of acoustic waves.

Such linear modeling has been shown to produce trends in the radiated sound
pressure level similar to noise measurements at various frequencies and at angles
where the acoustic field is thought to be dominated by contributions from the large
scale structures (Tam 1995). However, the model cannot, without further ad-hoc
assumptions, predict the amplitude of the acoustic radiation (devoid of any measure-
ments of the turbulence incident from the nozzle), and a detailed computational or
experimental verification of the linear modeling has not previously been attempted.

In application of the linear model, the mean jet flow (from experiment or RANS
modeling) is assumed known, and initial amplitude for the eigenfunctions (at a
particular frequency) are specified according to an assumed frequency spectrum.
Typically only the most unstable mode is considered. The evolution of the mode
in the slightly non-parallel mean flow is then found by marching downstream at a
particular frequency. Unstable modes eventually stabilize and decay as the mean
flow spreads. The envelope function, which describes the growth, saturation, and
decay of the mode, can then be used to compute the radiated acoustic field using
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the method of matched asymptotic expansions. For details, the reader is referred
to Tam & Burton (1984).

We believe that the DNS data for the Mach 1.92 jet will be useful in testing the
validity of the linear theory. We present here a framework that we developed to
compare the linear stability predictions with the (nonlinear) DNS solution. Though
straightforward, the calculations are laborious and have not yet been completed.
We hope to give the results in a future publication.

At streamwise locations throughout the jet, we transform the DNS data into fre-
quency space and wavenumber space in the azimuthal direction. These fluctuations
are then the initial condition for the instability wave calculation. To determine the
initial amplitude of the most unstable wave, we observe that an arbitrary fluctua-
tion field can be completely decomposed into a discrete set of unstable waves plus
a continuous spectrum of stable modes of the linearized equations (e.g. Drazin &
Reid 1981). Furthermore, if the adjoint eigenfunctions corresponding to the most
unstable mode can be computed, the amplitude of the most unstable mode can be
found without computing the entire continuous spectrum of stable modes.

This approach may be unfamiliar to some readers, so we briefly discuss the deriva-
tion of the equations. We have a (locally) parallel base flow with streamwise veloc-
ity, ū(r), density ρ̄(r), and pressure p̄ =constant. Let φ(x, r, θ, t) = {u, v, w, p}T be
the velocity components (streamwise, radial, and azimuthal) and pressure, and let
φ̃(x, r, θ, t) be the solution to the adjoint equations. Then, substituting φ(x, r, θ, t) =
φ(r)ei(αx+nθ−ωt) into the Euler equations linearized about the base flow, we obtain:

i(αū− ω)ρ̄u+ ρ̄
∂ū

∂r
v + iαp = 0

i(αū− ω)ρ̄v +
∂p

∂r
= 0

i(αū− ω)ρ̄w +
in

r
p = 0

i(αū− ω)
p

γp̄
+ iαu+

1
r

∂(rv)
∂r

+
in

r
w = 0.

(3)

The corresponding adjoint equations may be found in a straightforward way:

i(α̃ū− ω̃)ρ̄ũ+ iα̃p̃ = 0

i(α̃ū− ω̃)ρ̄ṽ + ρ̄
∂ū

∂r
ũ+

∂p̃

∂r
= 0

i(α̃ū− ω̃)ρ̄w̃ +
iñ

r
p̃ = 0

i(α̃ū− ω̃)
p̃

γp̄
+ iα̃ũ− 1

r

∂(rṽ)
∂r

+
iñ

r
w̃ = 0.

(4)

where φ̃(x, r, θ, t) = φ̃(r)e−i(α̃x+ñθ−ω̃t).
One can easily check that the following Lagrange identity is satisfied

i(ω̃−ω)Z(r)−i(α̃−α){ũZ(r)+pũ+ p̃u}−i(ñ−n)
1
r

(pw̃+ p̃w) = −1
r

∂

∂r
(r(ṽp−vp̃)),

(5)
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where Z(r) = ρ̄(uũ+ vṽ + ww̃) + pp̃
γp̄ .

For the spatially evolving instability waves we have ω̃ = ω and n = ñ. Therefore
if φi and φ̃j are the eigenfunctions to the flow equations (3) and the adjoint equa-
tions (4) corresponding to the eigenvalues αi and αj, we have the biorthogonality
relation

[φαi , φ̃αj ] = 0 if i 6= j (6)

where

[φ, φ̃] =
∫ ∞

0

(ūZ(r) + pũ+ up̃)rdr. (7)

Let us denote the DNS data (transformed into frequency and azimuthal wave
space at a particular streamwise location) by φDNS . Then we expand φDNS in
terms of the eigenfunctions:

φDNS(r) =
N∑
j=1

cjφj(r) + Integral over continuous spectrum (8)

where N is the number of discrete spatial modes. Now multiply both sides of
Eq. (8) by the adjoint eigenfunction φ̃αi , and, using the biorthogonality relation
(6), we obtain

ci =
[φDNS , φ̃αi ]
[φαi , φ̃αi ]

(9)

Of particular interest will be the evolution of the most unstable wave as a function
of streamwise location in the jet, and the acoustic field predicted from the (matched
asymptotic expansion of the) linear equations, as compared to the acoustic field from
the DNS.

4. Closing remarks

We have analyzed data from the DNS of a turbulent Mach=1.92 jet to address
several issues related to noise generation mechanisms. As a first step towards under-
standing the turbulent sources of sound, we have computed the full Lighthill source
terms and found solutions of the wave equation with these sources. We have found
a good agreement for the m = 0 mode, paving the way for a detailed analysis of
the sources to determine how various scales in the near field turbulence contribute
to the radiated acoustic field.

For supersonic jets, we have also developed a framework to test the validity of
the well-known linear stability wave model (e.g. Tam 1995) of sound generation by
the large-scale turbulence. By using the adjoint to the linear stability equations, we
are able to compute the projection of the DNS data onto the most unstable mode
at different streamwise positions. The amplitude of the stability wave thus set, we
may proceed to compute the evolution of the wave and its radiated acoustic field by
solving the linear equations and compare the resulting acoustic field with the DNS.
We hope to present the results of the analysis in a future publication.
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