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Numerical simulations have been performed to study the effects of the gravitational 
and the centrifugal potentials on the stability of heated, incompressible Taylor- 
Couette flow. The flow is confined between two differentially heated, concentric cylin­
ders, and the inner cylinder is allowed to rotate. The Navier-Stokes equations and 
the coupled energy equation are solved using a spectral method. To validate the 
code, comparisons are made with existing linear stability analysis and with experi­
ments. The code is used to calculate the local and average heat transfer coefficients 
for a fixed Reynolds number (Re = 100) and a range of Grashof numbers. The 
investigation is primarily restricted to radius ratios 0.5 and 0.7 for fluids with Prandtl 
number of about 0.7. The variation of the local coefficients of heat transfer on the 
cylinder surface is investigated, and maps showing different stable states of the flow 
are presented. Results are also presented in terms of the equivalent conductivity, and 
show that heat transfer decreases with Grashof number in axisymmetric Taylor vortex 
flow regime, and increases with Grashof number after the flow becomes nonaxisymme- 
tric.

IntroductionSince the publication of the classic experimental and analyti­cal paper by Taylor (1923), numerous studies on the transitions in circular Couette flow have been made. The flow undergoes a series of transitions (Coles, 1965; Brandstater and Swinney, 1987) before it becomes fully turbulent at very high rotational rates of the inner cylinder. The flow becomes even more com­plex if either radial heating or superimposed axial flow (Shih and Hunt, 1992) are present or if the cylinders are eccentrically oriented. The effects of a radial temperature gradient on the stability of Taylor-Couette flows has been the subject of consid­erable investigation (Ali and Weidman, 1990; Chen and Kuo, 1990). The primary application of this research is in the cooling of electrical motor shafts and turbine rotors (Lee and Minko- wycz, 1989). Other applications include modeling of atmo­spheric flows (Greenspan, 1968) and techniques of chemical vapor deposition (CVD) used in semiconductor device fabrica­tion (Singer, 1984).In Boiling Water Reactor (BWR) power plants, high speed pumps are used to transport water at high pressure and tempera­ture. Over the past decade, maintenance inspections have re­vealed cracks up to 6 mm deep on both the shafts and the shaft covers of such pumps; these cracks arise after approximately 20,000 to 30,000 hours of operation (Kato et al., 1992; Gopalak- rishnan et al., 1992). In extreme instances, these cracks actually cause pumps to fail. The manufacturers and operators of the pumps have surmised that the cracking is due to thermal loading caused by an unsteady flow. Some preliminary work in this area has shown that these cracks could be initiated by low-frequency, high-amplitude temperature fluctuations. To predict thermal fa- tigue in these pumps, a thermal stress analysis would require information about the frequencies and amplitudes of the thermal environment. A focus of this work is to obtain such frequency and amplitude information for the model.Previous investigations of heated Taylor-Couette flows in­clude theory, experiment, and numerical analysis. There are a number of parameters in this problem; among them are the Reynolds number (Re = ωrib/ν) and the Grashof number (Gr

= gβ(T1 — T2)b3/ν2). Typically in an experiment, the Reyn­olds number is increased by increasing the angular velocity of the inner cylinder, and the Grashof number is increased by increasing the temperature difference between the inner and the outer cylinders. As these two parameters are varied, the flow changes from one state to another, and there is a subsequent change in momentum and heat transfer characteristics. There is a need to understand these transitions and document the trans­port properties.Theoretical investigations include stability analyses for these flows. For high Reynolds number, previous work in this area neglected gravity and showed that the Taylor cells are stabilized when T1 > T2 and destabilized when T2 > T1. Roesner (1978) included the effect of gravity through the Boussinesq approxi­mation (Gray and Giorgini, 1976) but only considered axisym­metric disturbances. This work showed that isothermal Taylor cells are stabilized by both negative and positive radial heating, and the stability boundaries revealed perfect symmetry with respect to the direction of radial heating. Ali and Weidman (1990) tested stability with respect to both toroidal and helical disturbances of uniform wavenumber. They found that the num­ber of critical modes increased dramatically for large radius ratio. Chen and Kuo (1990) took into account the effects of both centrifugal and gravitational potential on the axisymmetric stability problem. They concluded that the stability boundary depended on the ratio of the centrifugal and the gravitational potentials, the Prandtl number, and the Grashof number.An experimental study was performed by Kataoka et al. (1977) with the aid of an electrochemical technique under the assumption of analogy between heat and mass transfer. They reported that the regular sinusoidal variation of Sherwood num­ber (Sh) is distorted by an added axial flow and both the mean and the amplitude are greatly reduced. Ball and co-workers (1989) performed a parametric study of the mean heat transfer rates across the annular gap for three different radius ratios. Their results show that the heat transfer can be described by a power-law relationship and correlated as functions of the Reyn­olds number and radius ratio.Numerical simulations for axisymmetric, isothermal Taylor- Couette flow have been performed by Meyer (1967), using a finite difference technique. Moser et al. (1983) used a spectral method for solving the incompressible Navier-Stokes equations between concentric cylinders. In the present study, their method is extended to solve both the heat equation and the equations
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of motion, which are coupled through the centrifugal and gravi­tational potentials. The effects of buoyancy on bifurcation in smal)-to-moderate aspect ratio Taylor-Couette systems have been studied numerically by Ball and Farouk (1987, 1988).When the centrifugal acceleration is of the same order as the acceleration due to gravity, the density variation of the fluid becomes important for instabilities that are primarily centrifu­gal. The effect of this density variation is also accounted for in the centrifugal term. Therefore, the present study examines the interaction of gravity and centrifugal potentials with the radial temperature gradient. The simulations reported here are moti­vated by the need to characterize the thermal environment that is encountered during chaotic and fully turbulent flows.

Fig. 1 Flow geometry and boundary conditions

Fig. 2 Schematic of isothermal Taylor cells

Numerical MethodA sketch of the flow configuration in (r, θ, z) cylindrical coordinates is shown in Fig. 1. The radii of the inner and the

outer cylinders are ri and ro, respectively, and the radius ratio is η. The inner cylinder rotates with a constant angular velocity 
ω about the vertical z-axis, while the outer cylinder is stationary. The two cylinders are at different uniform temperatures. The temperature of the inner cylinder is T1 and that of the outer one is T2. Gravity acts in the negative z-direction. The centrifugal force is parallel to the mean temperature gradient. The tempera­ture difference can be assumed to be sufficiently small such that the density is treated as a constant everywhere in the Na­vier-Stokes equations with the exception of the gravitational (z- momentum equation) and the centrifugal (r-momentum equa­tion) terms, i.e., the Boussinesq approximation is applied. All other fluid properties are assumed to be independent of tempera­ture. The flow is axially periodic (i.e., infinite aspect ratio) and no slip boundary conditions are used at the inner and the outer cylinders. Figure 2 shows schematically the familiar axisymme­tric counter-rotating isothermal Taylor cells. Without heating, the Taylor cells are of uniform size. The axial distance between a pair of Taylor cells is defined as axial wavelength (λ) and b is the gap width. The axial wavelength is normalized by the gap width to define Lz.

Nomenclature

A = acceleration ratio, ω2ri∕g 
b = gap width, (ro - ri) [m]
C = Courant number 

Cb = bulk concentration [mol∕m3]Cw = concentration at the outer cylinder surface [mol∕m3]
c = nondimensional wave speed 
D = mass diffusivity of the fluid [m2∕s]
f = frequency of heat transfer coeffi­cient fluctuation [l∕s]
fc = inner cylinder frequency [1/s]
G = torque [N - m]Gr = Grashof number, gβ(T1 - T2)b3∕ν2
g = acceleration due to gravity [m∕s2] 
h = local heat transfer coefficient, q∕

(Tb- T2) [W∕m2K] 
hθ,z,l = spatially and temporally averagedheat transfer coefficient [W∕m2K] 
Keq = mean equivalent conductivity,ri 1n(1/η)hθ,z,l /k

k = thermal conductivity of the fluid [W∕mK]
Lz = normalized axial wavelength, λ/b

m = local mass transfer coefficient, 
N/(Cb - Cw) [m∕s]

N = mass flux on the outer cylinder [mol∕m2s]Nu = Nusselt number, 2hb/k 
n = number of starts, 2πro tan Ψ∕Lz 
P = nondimensional dynamic pres­surePr = Prandtl number, v/a 
q = heat flux on the outer cylinderRe = Reynolds number, ωrib/v Recrit = critical Reynolds number for theonset of Taylor vortex flow 

r, θ, z = cylindrical coordinates
ri = inner cylinder radius [m] 
ro = outer cylinder radius [m]Sc = Schmidt number, v/D Sh = Sherwood number, 2mb∕D 
T = nondimensional temperature 

T1 = inner cylinder temperature [K] 
T2 = outer cylinder temperature [K] 
Tb = bulk temperature [K]
To = dimensionless reference tem­perature

ur, uθ, uz = nondimensional velocity component in cylindrical coordinate system
ω = inner cylinder angular ve­locity [l∕s]
p = density of the fluid [kg∕ m3]
v = kinematic viscosity of the fluid [m2∕s]
a = thermal diffusivity of the fluid [m2∕s]
β = thermal expansion coef­ficient of the fluid [1∕K]β* = β(T1 - T2) λ = wavelength of a pair ofvortices [m] 
η = radius ratio, ri∕ro Φ = the angle of inclination ofthe cell from the hori­zontal∆t = nondimensional time step of integration∆r, Δθ, ∆z = grid spacing in the radial, circumferential, and axial directions
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The equations are made dimensionless by scaling lengths with b, time with b/ωri, velocity with ωri, and temperature with (T1 - T2), after subtracting the outer cylinder temperature and dynamic pressure with ω2r2i. The nondimensional equations governing the flow for the nondimensional velocity components (ur, uθ, uz), nondimensional dynamic pressure P and nondimen­sional temperature T (in rotational form) follow.
Continuity.

(1)
Momentum.

(2)

(3)

(4)with (ur, uθ, uz) = (0, 1, 0)at the nondimensional inner radius, η∕(1 - η)and (ur, uθ, uz) = (0, 0, 0)at the nondimensional outer radius, 1∕(1 - η)

Energy.

(5)
with T = 1 at the nondimensional inner radius. η∕(1 - η)and T = 0 at the nondimensional outer radius. 1∕( 1 - η)Geometric parameters include 77 and Lz. Another useful parame­ter is the acceleration ratio, A = ω2ri∕g, which is the ratio of the centrifugal to gravitational accelerations. It can be derived from the independent parameters (A = Re2β*[1/η — 1]/Gr).The three-dimensional incompressible equations of motion, together with the energy equation, are discretized using a Cheb- yshev/Fourier spectral method. Writing the solution Vs and Ts

as a truncated series expansion, using trial functions as basis functions, (6)
(7)

where Kz and Kθ are the wave numbers, and L is the number of modes in the r-direction. The expansion coefficients are given by αjml(t) and γjml(t); ui(r; Kθ, Kz) and τi(r; Kθ, Kz) are the r-trial functions for the velocity and the temperature fields. This method uses spectral expansions that inherently sat­isfy the boundary conditions and Eq. (1 ) (Moser et al., 1983). Fourier series expansions are used in the z-direction and θ- direction, and modified Chebyshev polynomials are used in the r-direction. The equations of motion and the energy equation are coupled, but the method yields banded matrices, which can be efficiently solved at each time step. The viscous term is treated implicitly (Crank-Nicholson), whereas an explicit (Ad- ams-Bashforth) scheme is used for the convective terms. The nonlinear terms act as a forcing term to the implicit part of the calculation and are computed using the pseudospectral (colloca­tion) technique on a grid dense enough to eliminate aliasing by the 3/2 rule (Canuto et al., 1988). The calculations were performed using 32 Fourier modes each in z and θ-directions and Chebyshev polynomials through thirty-first degree in the r-direction. A nondimensional time step (Δt) of 0.05 was used in all the computations, which yielded a maximum Courant number of 0.75, where the Courant number C is defined as
(8)

To establish convergence, a series of higher resolution simula­tions (643) with a smaller time step were performed. The three components of velocity and the temperature were monitored at the same physical location as for the coarser resolution. The two gave an identical time trace which proved the adequacy of the coarser (323) simulation. Full details of the numerical scheme are given in Kedia (1997).
Results and DiscussionComparison With Linear Stability Theory. The accuracy of the code was checked by comparing it with a linear stability analysis (Chen et al., 1990) for η = 0.9, Lz = 2.007, and Pr = 0.71. Chen and Kuo (1990) investigated the interaction of a radial temperature gradient with both gravity and centrifugal potentials. Their linear stability analysis showed that the critical Reynolds number depended on the ratio of the centrifugal and gravitational potentials, the Prandtl number, and the Grashof number. The results are summarized in Table I. Case (1) and (2) refer to constant density simulations (β* = 0) and case (3) and (4) refer to simulations where density is allowed to depend on temperature. To check for the critical Reynolds number, perturbations are introduced in the simulation. If the perturba­tions decay in time (with the flow returning to the steady base flow), then the flow is stable. Otherwise, the flow is unstable. The error margin for critical Reynolds number (case 1) indi­cates that the disturbances died down for Re = 132.2 and grew into Taylor cells for Re = 132.6. The error margin for wave speed is based on the time step. The critical Reynolds number (Recrit) for the onset of Taylor cells, and the computed wave speed (c) agree very well with the linear stability theory.Comparison With Experiments. The code is also com­pared with experimental results. One of the results from Kataoka et al. (1977) is replotted in Fig. 3 (symbols). In their experi-
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ment, they measured the local coefficient of mass transfer on the outer cylinder. The Schmidt and Grashof numbers are not given in the paper, but are estimated to be of order 105 and 100, respectively (an approximate estimation was made from the range of values of v, CuSO4 molarity and wt% of Glycerin). The figure also shows (solid lines) the numerical results for the local Nusselt numbers obtained for the numerical simulation for the same η and Lz, but for Pr = 0.71. The axial wavelengths imposed in the simulation results shown in Fig. 3 are taken from the experiments of Kataoka et al. For Gr ≈ 100, the effect of natural convection is small, and the flow state remains axisymmetric; hence, in the heat transfer calculations, the Gras­hof number is taken to be zero. The local heat transfer coeffi­cient is based on the temperature difference between the bulk of the fluid and the outer cylinder. The comparison between the mass transfer experiments and the heat transfer calculations show reasonable agreement. Some of the differences may be due to the assumption of Sc and Gr numbers. The simulations show that the adjacent Taylor cells are of equal size for Gr = 0. However, the relative size of Taylor cells varies with the increase in the differential heating of the two concentric cylin­

ders. The slight difference in the relative size of Taylor cells is also seen in Fig. 3 from the experimental values of Kataoka et al. (1977). This difference is probably due to small Grashof number (based on mass transfer) effects. Note that the exponent has a value of 0.375, which was chosen to bring the results closer together. If the exponent is 0.333 (as used in the experi­ments), the values from the simulations were found to be smaller than the experimental values. The simulation can not be run for a very high Pr because the energy equation becomes stiff.The second set of experiments used to validate the code is from the heat transfer experiments of Ball et al. (1989). In this experiment, the walls were maintained at uniform temperatures. The inner cylinder was heated by a cartridge heater and the outer cylinder was cooled by passing an ethylene glycol-water mixture through a flexible plastic hose coiled around it. The mean equivalent conductivity, Keq, is defined as the ratio of the average convective heat transfer coefficient (hθ,z,l) to the heat transfer coefficient for pure conduction. The average convective heat transfer coefficient is based on the temperature difference between the inner and the outer cylinders. In Fig. 4, Keq is plotted versus Re2 for η = 0.565, Lz = 1.991, Gr = 1900, and

Table 1 Comparison with linear stability theory

Fig. 3 Variation of heat (present simulation) and mass transfer (Kataoka 
et al., 1977) on the outer cylinder for η = 0.617

Fig. 4 Variation of heat transfer rate with Re2 for η = 0.565, Lz = 1.991, 
Gr = 1900, and β* = 0.053

Case# Stability Analysis Simulationη = 0.9 of Chen and KuoLz = 2.007 (1990)Pr = 0.71(1)Gr = 200
β* = 0Recrit 132.39 132.4±0.2

C 0.00142 0.00142±0.00001
(2)Gr = -200β* = 0Recrit 132.39 132.4±0.2c -0.00142 —0.00142±0.00001
(3)Gr = 200β* = 0.133Recrit 134.91 134.8±0.2c 0.00130 0.00131±0.00001
(4)Gr = -200β* = -0.138Recrit 129.96 130.0±0.2C -0.00153 -0.00152±0.00001



β* = 0.053. The normalized wavelength of approximately 1.991 is the critical wavelength corresponding to the critical Reynolds number for a radius ratio of 0.565, as given by the linear stability analysis. It is assumed that the axial wavelength remains fairly constant in the range of Reynolds number studied here, and this critical wavelength is chosen as the axial period of the flow. The result shows a power law behavior, which has a lower coefficient and a higher exponent than the result presented by Ball et al. This discrepancy arises because of the variation of axial wavelength with axial distance resulting from the thermal conditions at the ends of the experimental apparatus. The simpli­fying assumption of no axial temperature gradient could be another source of discrepancy between the experiment and the numerics. The simulations also show that for Gr = 1900, as the Reynolds number is varied, the relative size of the adjacent counter-rotating Taylor cells change. This agrees qualitatively with the flow visualization studies of Ball et al. (1989).Figure 5 shows that the heat transfer results are very sensitive to the imposed axial wavelength. Plotted is the variation of the calculated Keq with Lz. The same average heat transfer coeffi­cient can be achieved by two different wavelengths, one below the isothermal critical value (Lz = 1.988), and the other above it. A similar result was shown by Meyer (1967) in numerical calculations of torque. The author concluded that the experimen­tally observed torque is somewhat lower than the numerical torque; it is speculated that the same is true for the heat transfer as well.
Flow States for Varying Gr. Apart from calculating the local and the average heat transfer coefficients, it is important to know how the flow evolves from one state to another as Gr is varied. Figure 6 presents a map of different stable states in the flow for a fixed Reynolds number and different Gr. The circular Couette flow was the base flow, and the steady-state conduction field was the base temperature field. A random dis­turbance of magnitude one percent of the velocity of the inner cylinder was introduced to the laminar state (circular Couette flow) and allowed to grow into Taylor vortices. Reynolds num­ber was slowly increased (in steps of 5) to achieve the desired Reynolds number. The result with the lower Reynolds number was used as initial condition for the next higher Reynolds num­ber. Once the desired Reynolds number was reached, another random disturbance of magnitude one percent of the tempera­ture difference between the two cylinders was imposed on the temperature initial condition in order to trigger transitions. For low |Gr|, axisymmetric Taylor Vortex Flow (TVF) is the stable state. Outside this range, n = 1 stripes are formed. Figure 7 shows a schematic of spiral flows for n = 1 and n = 2. These spirals move an axial distance of nLz for one rotation around the inner cylinder. The flow becomes aperiodic for higher Gr.

Similar stripes were also seen in the flow visualization experi­ments of Snyder and Karlsson (1964) and Ball et al. (1989). Stripes of larger inclination angle, up to n = 6, were observed by Snyder and co-workers for higher heating in a small annulus 
(η = 0.957). Higher spiral modes are formed for narrower gaps (Ali et al., 1990).Increasing Gr decreases the heat transfer coefficient (Keq) within the axisymmetric TVF regime. The increase in the axial velocity as a result of increasing Gr not only delays the onset of Taylor vortices but also causes a damping effect on the heat transfer. A similar effect of decreasing of the average Sherwood number by an added axial flow was also observed by Kataoka et al. The mean equivalent conductivity, Keq, increases signifi­cantly with the formation of n = 1 spiral flow, and it continues to increase with Gr until the flow becomes aperiodic with a subsequent decrease in Keq near Gr = ±2400. The map is nearly symmetric about the Gr = 0 axis.A similar map is shown for η = 0.7 in Fig. 8. Again, axisym­metric Taylor vortex flow is seen for low ∣Gr∣, but the n = 1 spiral flow is formed for a broader negative range of Gr and for a narrower positive Gr. The n = 2 spiral flow is formed for higher negative Gr, and is not formed for positive Gr. The flow becomes aperiodic outside this range. The heat transfer has similar effects as for η = 0.5 (Fig. 6) in the TVF regime. However, instead of Keq increasing monotonically in the n = 1 spiral flow regime, it attains a maximum for both positive and

Fig. 5 Variation of mean equivalent conductivity with Lz for η = 0.5, Re 
= 100, Gr = 1700, and β* = 0.0128

Fig. 6 Map showing different stable states present in the flow for η = 
0.5, Lz = 1.988, Re = 100, Pr = 0.7, and A = 0.1285

Fig. 7 Schematic of spiral flows
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negative Grashof numbers. A significant increase in Keq is ob­served with the formation of n = 2 spiral flow, and Keq increases with further increase in Gr in this regime of flow. This map is not symmetrical about the Gr = 0 axis. The asymmetry grows with the increase in the value of A. The onset of spirals correlate with both |Gr/Re2| and A. For higher A, the spirals start at lower |Gr/Re2|.The choice of Lz to determine the flow states (Figs. 6 and 8) was based on previously published linear stability analyses (DiPrima and Swinney, 1981). At the outset, it was unclear whether the flow states (n = 1 spiral, n = 2 spiral, or aperiodic) would be sensitive to the imposed axial wavelength, Lz. How­ever, numerical experiments showed that the flow states were invariant as Lz was varied by as much as 50 percent, despite
the fact that Keq varied by as much as 6 percent ( see Fig. 5). The results presented here are all based on the critical wavelength for Lz.The variation of heat transfer as a function of z and θ is shown in Fig. 9 (Gr = -1700, n = 2 spiral flow) and Fig. 11 (Gr = -2100, aperiodic flow). For Gr = —1700 the variation is sinusoidal in both z and θ. For Gr = -2100, the Nusselt number varies with z and θ in a more complicated way. The radial velocity contours corresponding to Figs. 9 and 11 are plotted in Figs. 10 and 12, respectively. For Gr = -1700 the two stripes are clearly evident, while for Gr = -2100 the flow is wavy and there is no single dominant frequency.Finally, the frequencies and the amplitudes of local fluctua­tions of heat transfer coefficient (A) present in the flow are shown in Fig. 13. The frequency is normalized by the rotation frequency of the inner cylinder and the amplitude is normalized by the spatially and temporally averaged heat transfer coeffi­cient. The figure shows that f∕fc ≃ 0.35 for n = 1 and the amplitude of local fluctuations of heat transfer is about 95 per-

Fig. 8 Map showing different stable states present in the flow for η = 
0.7, Lz = 2.001, Re = 100, Pr = 0.7, and A = 0.67

Fig. 9 Variation of heat transfer on the outer cylinder for η = 0.7, Lz = 
2.001, Re = 100, Pr = 0.7, and Gr = -1700

Fig. 10 Radial velocity contours at the mid radial section of the two 
cylinders for η = 0.7, Lz = 2.001, Re = 100, Pr = 0.7, and Gr = -1700

Fig. 11 Variation of heat transfer on the outer cylinder for η = 0.7, Lz = 
2.001, Re = 100, Pr = 0.7, and Gr = -2100

Fig. 12 Radial velocity contours at the mid-radial section of the two 
cylinders for η = 0.7, Lz = 2.001, Re = 100, Pr = 0.7, and Gr = -2100

70 / Vol. 120, FEBRUARY 1998 Transactions of the ASME



cent of hθ,z,l. The above information of the frequency and the amplitude of local fluctuations of heat transfer is required as boundary conditions for thermal stress analysis of the shaft and cover of BWR pumps. With the assumption that the frequency fluctuation is about 10 to 100 percent of rotating speeds, the predictive models (Gopalakrishnan et al., 1992) revealed crack depths which were comparable to field observations for the shaft and cover.
ConclusionHeat transfer in an incompressible, three-dimensional Taylor- Couette flow with a rotating inner cylinder has been numerically investigated to study the interaction of gravity and centrifugal potentials with the radial temperature gradient. Calculation of critical Reynolds number and wave speed obtained from these simulations agree well with linear stability theory. For a certain range of Gr, the spatial variation of heat transfer on the inner and the outer cylinder is sinusoidal, and the magnitude of the Nusselt number increases with Reynolds number. The space and time averaged heat transfer from the inner to the outer cylinder is reported and is found to be sensitive to the imposed axial wavelength. The average heat transfer decreases with in­creased heating in the axisymmetric TVF regime. The equiva­lent conductivity increases significantly with the formation of higher order spirals. When the centrifugal acceleration becomes of the same order of magnitude as the acceleration due to gravity (A ≃ 1), higher mode spirals are formed when the outer cylin­der is heated. Hence, the thermal environment present in the flow may be the cause for thermal stress fatigue in primary- loop recirculation pumps in BWR power plants. The results also show that when the flow is within the spiral flow regime (with either n = 1 or n = 2), the heat flux to the surface of the shaft is periodic with a period that is at frequencies of approximately 35 percent (n = 1) and 74 percent (n = 2) of

the rotational frequency of the shaft. The local variation of the heat flux to the surface may be as much as 95 percent of the average.
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