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Abstract:  

Far-red solar induced chlorophyll fluorescence (SIF) has been retrieved from multiple 

satellites with nearly continuous global coverage since 1996. Multiple official and research-

grade retrievals provide a means for cross validation across sensors and algorithms, but 

produces substantial variation across products due to differences in instrument 

characteristics and retrieval algorithm. The lack of a consistent, calibrated SIF dataset 

hampers scientific interpretation of planetary photosynthesis. NASA’s OCO-2 offers small 

sampling footprints, high data acquisition, and repeating spatially resolved targets at bio-

climatically diverse locations, providing a unique benchmark for spaceborne sensors 

traceable to ground data. We leverage overlap between the longer running GOME-2 SIF 

time series, and more recent state-of-the-art OCO-2 and TROPOMI data, in a first attempt to 

reconcile inconsistencies in the long-term record. After screening and correcting for key 

instrument differences (time-of-day, wavelength, sun-sensor geometry, cloud effects, 

footprint area), we find that GOME-2 and TROPOMI perform exceedingly well in capturing 

spatial, seasonal, and interannual variability across OCO-2 targets. However, GOME-2 

retrieval methods differ by up to a factor of two in signal-to-noise and magnitude. 

Magnitude differences are largely attributed to retrieval window choice, with wider 

windows producing higher magnitudes. The assumed SIF spectral shape has negligible 

effect. Substantial research is needed to understand remaining sensitivities to atmospheric 

absorption and reflectance. We conclude that OCO-2 and TROPOMI have opened up the 

possibility to produce a multi-decadal SIF record with well characterized uncertainty and 

error quantification for overlapping instruments, enabling back-calibration of previous 

instruments and production of a consistent, research-grade, harmonized time series. 

1. Introduction 

Our ability to measure photosynthesis, one of the most important biological processes on 

Earth, at scales beyond a leaf is extremely limited. Consequently, there is substantial 

uncertainty in predicting the response and feedback of gross primary production (GPP) to 

climate change and, thus, carbon flux monitoring. Global remote sensing of solar induced 

chlorophyll fluorescence (SIF) represents a major breakthrough in alleviating this deficiency. 

SIF originates from the core of photosynthetic machinery, in which a small fraction of light 

absorbed by chlorophyll is re-radiated as fluorescence at longer wavelengths (660-850 nm) 
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and has been widely applied in photosynthesis research using modulated active light 

sources for decades (Baker et al., 2008; Genty et al. 1989; Krause & Weis, 1991; Moya et al. 

2004). SIF, as measured by satellites, places constraints on photosynthetic activity, and has 

potential to offer more mechanistic understanding of ecosystem carbon dynamics (Flexas et 

al. 2002; Christian Frankenberg et al. 2011; Magney et al., 2019a). However, multiple and 

considerable challenges (summarized below) have hindered progress toward this goal.     

The SIF emission spectrum consists of two characteristics peaks in the red near 680 nm and 

far-red near 740 nm (Figure 1). Spaceborne observations of top of canopy (TOC) far-red SIF, 

ranging from 720-780 nm, have become widely available in recent years from instruments 

including the Greenhouse Gases Observing SATellite (GOSAT), Global Ozone Monitoring 

Instrument (GOME) onboard ERS-2 and its successor GOME-2 onboard MetOp-A, MetOp-B, 

and MetOp-C (this study focuses on the first two sensors, denoted GOME2A and GOME2B, 

respectively), SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY 

(SCIAMACHY) onboard ENVISAT, Orbiting Carbon Observatory 2 (OCO-2), and TROPOspheric 

Monitoring Instrument (TROPOMI) (Christian Frankenberg et al. 2011; C Frankenberg, Butz, 

and Toon 2011; Guanter et al. 2012; Joiner et al. 2011, 2012, 2013; Köhler, Guanter, et al. 

2018; Köhler, Guanter, and Joiner 2015). Together, these instruments provide a continuous 

record of SIF extending from 1995 with GOME, through 2012 with SCIAMACHY, and up to 

the present with GOME-2, OCO-2, and TROPOMI (Figure 2). However, none were specifically 

designed for dedicated SIF measurements. Rather, SIF observations were enabled in a 

fortuitous manner as the spectral range covering the Oxygen A band at 760 nm is often used 

in atmospheric remote sensing for cloud detection (Fischer et al. 1991) and to account for 

scattering effects in the atmosphere (Crisp et al. 2004). Their design parameters are thus 

optimized for the observation of atmospheric trace gas constituents rather than the land 

surface, which is why the spatial and temporal sampling are coarser than dedicated 

vegetation remote sensing missions.  

Consequently, for SIF retrievals, mismatches in spectral, temporal, and spatial resolution 

across sensors, differences in retrieval algorithm methods, and sensor degradation create 

significant challenges for robust ground validation, radiance calibration, algorithm 

development and testing, spatial and daily integration, and long-term trend analysis. These 

mismatches can lead to substantial differences in retrieved SIF spatiotemporal variability 
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over a given region without proper cloud screening and corrections applied (e.g., Köhler et 

al., 2018a). Many of the corresponding limitations of these sensors are known and 

acknowledged by dataset developers (e.g., 

https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/README_GOME-F_v26-

v27.pdf GOME-2 FLOURESCENCE README FILE, “should not be used for trend analysis”), but 

often unknown, unaccounted for, or ignored by the user community. There remains 

substantial uncertainty in vegetation and remote sensing communities as to whether TOC 

fluorescence emissions can be accurately estimated from spaceborne passive sensors. As 

such, the full potential of existing SIF records to quantify and understand long term 

photosynthetic change has not yet been fully realized. We outline some of the primary 

spatial, temporal, spectral, algorithmic differences below (we refer the reader to Guanter et 

al. (2015) for more detailed discussions) and discuss several recent experiments, advances 

in retrieval methodology enabled by recently launched sensors, and ground validation 

opportunities that have helped to assuage some of these uncertainties.  

1.1 Spatial Characteristics 

Footprint size has substantial variation between instruments, with area scales differing by a 

factor of 102 to 104 between high and moderate spectral resolution instruments, and by a 

factor 10 between instruments of the same spectral resolution. However, there are 

tradeoffs between spectral resolution, footprint size and spatial sampling. For example, 

wide-swath sensors such as GOME, SCIAMACHY and GOME-2 provide nearly continuous 

spatial mapping, but the effective sampling footprints in the far-red are relatively coarse (40 

x 320 km2, 30  120 km2, and 40  40 km2, respectively) and challenge interpretation under 

mixed vegetation landscapes and atmospheric conditions. To complicate matters further, 

GOME has a small swath mode every 1-2 days per month with 40 x 80 km2 pixels, which 

requires unique interpretation relative to the larger pixels in its nominal swath mode. 

Likewise, GOME2A underwent a change in the swath width on July 15, 2013 which 

permanently reduced its sampling footprint from 40 x 80 km2 at nadir prior to July 15, 2013 

to 40 x 40 km2 afterward (with a smaller swath width), while GOME2B continues to observe 

in the larger swath mode at 40 x 80 km2. We note that the native footprint of SCIAMACHY in 

the O2-A band where far-red SIF is found is actually 30 x 60 km2, but the effective footprint 
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is increased by a factor of 2 (30  120 km2) due to on-board averaging of radiances in the 

O2-A band. 

OCO-2 and GOSAT have small footprints (1.3  2.25 km2 and 10 km in diameter, 

respectively) closer to the scale of flux towers (~1-2 km), but GOSAT’s sparse data 

acquisition and OCO-2’s narrow swath width prevents continuous spatial mapping. 

TROPOMI offers many of the advantages of these sensors, including high observational 

density (4.2M soundings per day), continuous spatial mapping, and spatial resolution (3.5 x 

7 km2 at nadir) converging on that of OCO-2. Figure 3 shows the substantial difference in the 

spatial mapping between wide-swath sensors (GOME, GOME-2, SCIAMACHY, TROPOMI) and 

OCO-2. 

1.2 Temporal Characteristics 

Additional complications arise in that each sensor provides only a single daily overpass 

(wide-swath sensors at higher latitudes are an exception). This prevents accurate estimation 

of daily-averaged SIF because the SIF-yield varies with changing light conditions (e.g., Yang 

et al. 2015, Magney et al., 2019b). Overpass times differ between sensors (morning for 

GOME, GOME-2 & SCIAMACHY; midday for GOSAT, OCO-2, TROPOMI), which further 

confounds sensor inter-comparison and cross-calibration (e.g., Figure 2A), and adds 

uncertainty when analyzing vegetation photosynthetic responses across optical vegetation 

indices due to differences in diurnal stress patterns (Zhang, Xiao, et al. 2018). We also note 

substantial differences in the revisit cycle of instruments, ranging from nearly daily for wide 

swath sensors, up to 5 days for GOSAT, and 16 days for OCO-2. As such, wide swath sensors 

can be inter compared at sub-monthly resolution, but monthly averaging is required for 

comparison to GOSAT and OCO-2 nadir and glint modes.  

1.3 Spectral Characteristics and Retrieval Method 

SIF retrieval methods implemented for satellite instruments have primary utilized in-filling 

of solar Fraunhofer lines since the advent of GOSAT in 2009. However, differences in 

spectral ranges and resolutions between sensors prevents the use of a single retrieval 

algorithm for all sensors. This has led to the development of distinctly different retrieval 

methods. GOSAT and OCO-2 measure isolated solar Fraunhofer lines in narrow spectral 

windows at 757 nm and 771 nm, enabled by the high spectral resolution (< 0.05 nm) in the 
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O2-A band channel (e.g., Frankenberg et al., 2011a).  GOME, GOME-2, SCIAMACHY, and 

TROPOMI measure in wider spectral windows in the far-red but at coarser spectral 

resolution. To get good-quality retrievals with lower spectral resolution, a wider spectral 

fitting window is used that typically encompasses wavelengths closer to the far-red emission 

peak. Atmospheric water vapor may absorb radiation at some of these wavelengths. Use of 

the larger fitting windows therefore typically requires more complicated statistical retrieval 

techniques.  

1.4 Retrieval Method for High Spectral resolution (< 0.2 nm) 

The first SIF retrievals from space were performed independently by Joiner et al. (2011) and 

Frankenberg et al. (2011b) using data from GOSAT. Their retrieval technique uses a very 

small (~2 nm) microwindows centered around 757 or 771nm, covering solar Fraunhofer 

lines with negligible overlapping atmospheric absorption. The use of microwindows for 

disentangling SIF signals from the background is very robust and insensitive to atmospheric 

scattering (Frankenberg et al., 2012), and compares very well against airborne observations 

(Sun et al., 2017; Frankenberg et al., 2018).  

1.5 Retrieval Method for Coarse Spectral resolution (~ 0.5 nm) 

In order to improve on GOSAT coarse spatial coverage and temporal revisit time, methods 

for retrieval of SIF from lower spectral resolution spectrometers were developed. For these 

sensors, wider spectral windows are needed to retrieve SIF with good fidelity that can make 

the retrievals more susceptible to confounding effects from the atmosphere and surface. 

This requires more complicated statistical modeling approaches to separate SIF emissions 

from spectral features related to atmospheric absorption, scattering, and surface 

reflectance. There are two main approaches which are related in the derivation of spectral 

basis functions using singular value decomposition (SVD) and differ primarily in technical 

detail.  

The first approach, developed and refined by Joiner et al. (2013, 2016) has the following 

defining characteristics: (1) a relatively narrow fitting window (734 – 758 nm) that contains 

fairly weak water vapor absorption, (2) a 4th order polynomial to describe surface 

reflectance, and (3) a fixed number of principal components (PCs) to describe atmospheric 

absorption and other instrumental artifacts. This approach adjusts for known biases (e.g., 
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stray light and dark current) identified by Köhler et al. (2015b) using data over oceans where 

SIF is negligible. It has been applied using data from GOME, SCIAMACHY (denoted SCIA-

JJv26) and GOME-2 Met-Op A (GOME2A-JJv28) and Met-Op B (GOME2B-JJv28). 

The second approach developed by Köhler et al (2015a) as a variant of Joiner et al. (2013) 

combines a 3rd order polynomial in wavelength with atmospheric PCs and a reference SIF 

emission spectrum to model low and high frequency components of the TOA radiance 

spectrum (720–758nm) in a linear way. Consequently, the linear forward model permits a 

backward elimination algorithm, selecting the required model parameters automatically 

with respect to goodness of fit balanced by model complexity. This approach provides a 

solution for an arbitrary selection of a fixed number of model parameters. The backward 

elimination algorithm ensures stable results, regardless of how many atmospheric PCs are 

initially provided to the retrieval. Results suggest (i) using far fewer PCs (8) than GOME2A-

JJv28 and SCIA-JJv26 (12), and (ii) noise is reduced by selecting a subset of initial model 

parameters (overfitting is avoided). This approach as applied to SCIAMACHY and GOME2 is 

denoted SCIA-PKv1 and GOME2A-PKv1, respectively.  

Results obtained with satellite retrievals using the SVD method show good agreement 

across sensors in the seasonal cycle, and only moderate cloud effects on cloud-filtered data 

sets (Frankenberg et al. 2012; Guanter et al. 2015; Köhler et al. 2015a). Results from Köhler 

et al. (2015a) also show that seasonality is maintained in agreement with physical-based 

approaches with respect to GOSAT (Guanter et al. 2012; Kohler et al., 2015b) and OCO-2 

(Köhler et al., 2018). Cloud free scenes should be used as much as possible for cross-sensor 

analyses, especially for sensors with significantly different footprint size. However, even 

after cloud screening, comparison with GOME2A-JJv28 reveal substantial difference in 

absolute values, up to a factor of two as seen in Figure 2A. These absolute differences have 

important consequences for SIF interpretation and assimilation in land surface models 

(Norton et al., 2018) especially those relying on GOME-2 (MacBean et al., 2018).   

For instruments with moderate spectral resolution but high signal-to-noise (SNR), there 

exists a relatively small spectral window in the far red from 745-758 nm (mostly) devoid of 

atmospheric absorption features and high relative SIF for improved accuracy (Guanter et al., 

2015). TROPOMI features the required spectral resolution (~0.5 nm) and high SNR in the 

742-758 retrieval window (2660) to enable accurate SIF retrievals in this window while also 
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achieving higher spatial resolution compared to GOME, SCIAMACHY, and GOME-2 (Köhler et 

al., 2018).  For comparison, SCIAMACHY has SNR up to 3000 and GOME-2 up to 2000, while 

OCO-2 ranges from 200-700 and GOSAT is less than 200 (Frankenberg et al., 2014). Retrieval 

estimates based on an SVD approach similar to Köhler et al. (2015a) show excellent 

agreement with OCO-2 at global scale (Köhler et al., 2018).  

To further demonstrate the validity of the SVD method for TROPOMI, an experiment was 

conducted in which an artificial SIF signal including randomly varying spectral shapes and 

noise was added to a single data of real TROPOMI measurements (Köhler, Frankenberg, et 

al. 2018). The added noise patterns had a predictable effect on the retrieved artificial SIF 

signal (cf. Fig. S5) in that the precision is consistent with the prediction. This demonstrates 

that a significant dynamic range in radiance levels, related to albedo effects such as clouds, 

snow, and vegetation, do not lead to retrieval artifacts in the TROPOMI signal.  

1.6 Spectral Shape 

Another important question regarding SIF retrievals is whether the reference SIF emission 

shape is correlated with other spectral functions used in the retrieval in a way that affects 

the retrieval accuracy and precision leading to location dependent biases. Leaf-level spectral 

measurements show relatively weak variability across species and conditions in the SIF 

emission spectrum near the far red peak (~740 nm), and high variability across the red peak 

(~680 nm) (Magney et al. 2019b). The shorter far-red spectral window used for TROPOMI is 

stable with respect to changes in the shape of the fluorescence emission spectrum, as 

suggested by leaf-level spectral measurements. Leaf level measurements also show a similar 

SIF spectral shape to SCOPE simulations (Van Der Tol et al. 2014) near 740 nm (Figure 1), 

which is encouraging given the use of SCOPE to derive reference SIF shapes for statistical 

modeling approaches. We note that methods that use wider retrievals windows extending 

to 720 nm, such as SCIA-PKv1 and GOME2A-PKv1, may experience increased sensitivity to 

SIF reference spectra as observed and simulated spectral shapes diverge moving closer to 

the red spectral region (Figure 1). 

1.7 Canopy Scattering 

Another factor that should be taken into consideration is the scattering of SIF in the far red 

(Yang and van der Tol 2018). That is, SIF emitted from leaves can be scattered and re-
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absorbed by other leaves, leading to differences between leaf-level SIF and TOC SIF 

observed by the satellite. Although this should have limited effect on individual SIF 

retrievals, this can affect SIF intercomparisons for different spatial resolution at 

heterogeneous landscape due to the different scattering coefficient in the far red.  

1.8 Wavelength 

Existing satellite retrieval methods typically report estimated SIF at a reference wavelength 

of 740 nm for moderate spectral resolutions and at 757 or 771 nm for high spectral 

resolutions. This may confound inter-sensor comparisons such as in Figure 2A. The choice of 

740 nm is used because it is near the peak of the SIF emission feature in the far-red. The 

choice of 757 or 771 nm as a reference wavelength for OCO-2 and GOSAT is driven by (1) 

the ability to perform narrow band retrievals and (2) the lack of larger spectral regions 

capable of performing SIF retrievals. Although the inter-sensor wavelength range is 

relatively small (~30 nm), absolute fluorescence values vary by more than a factor of two in 

this region (Joiner et al. 2013; Köhler, Guanter, et al. 2018; Sun et al. 2018). Reference SIF 

shapes derived from leaf-level studies suggest that far-red fluorescence spectra, and thus 

wavelength conversions, are roughly consistent across species (Magney et al., 2019b). In 

principle, a look up table approach could be used to determine a multiplicative factor to 

convert between different wavelengths evaluated across sensors/retrievals based on a 

reference spectrum derived from an average across multiple plant species.  

1.9 Atmospheric Scattering 

Atmospheric scattering by aerosols and clouds is a well-known source of uncertainty for 

reflectance-based vegetation products. A major appeal of spaceborne SIF is the very low 

sensitivity to scattering (C. Frankenberg, Butz, and Toon 2011). More than 80% of TOC 

emitted SIF reach the sensors for clouds with low to moderate optical thickness (up to 5) 

(Frankenberg et al. 2012). The effect of attenuation under high optical depth was examined 

in more detail using simulation experiments of OCO-2 spectra under realistic conditions, and 

supported empirical evidence that TOA SIF signals are only marginally reduced under 

moderate optical densities and/or low single scattering albedo (Frankenberg et al. 2014). 

Optically thick clouds (up to 10 and above) can severely attenuate the SIF signal. Retrievals 

under these conditions may be filtered out through pre- and post-processor cloud screening 

(O’Dell et al. 2012; Kohler et al., 2018a).  
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1.10 Other sensor characteristics 

A number of other confounding factors exist for individual sensors. Retrieved SIF 

magnitudes are sensitive to absolute radiance (or irradiance) calibration and therefore, SIF 

signals retrieved with a consistent algorithm using GOME and GOME-2 show a bias between 

the two; this is thought to be related to issues with absolution calibration of instruments. 

Instrument degradation over the lifetime of these sensors can also lead to long-term 

decreasing trends in SIF whose spatial pattern is independent from moisture gradients 

(Zhang, Joana Joiner, et al. 2018).  These effects have led data providers to warn against the 

use of GOME, SCIAMACHY, and GOME-2 in particular for long term trend analysis until 

degradation and calibration effects are more accurately accounted for in the SIF retrieval.  

1.11 Illumination Effects 

Another confounding factor for inter-sensor analyses is the response of far-red SIF to 

photosynthetically active radiation (PAR). For example, a comparison between GOME2A-

PKv1 and OCO-2 in the Amazon basin reveals large-scale bimodal distribution of GOME-2 

retrieved SIF, peaking first in February and again in October, while OCO-2 peaks a single 

time in February (Kohler et al., 2018a). However, consistent seasonal cycles were found 

when normalized by illumination conditions and sun-sensor geometry. To optimize the 

probability of multiple sensors observing a similar scene, we must correct for instantaneous 

illumination conditions (time of day, cloud interference, PAR), and directional effects, as 

discussed below. 

To address instantaneous illumination effects, Frankenberg et al. (2011) proposed a 

normalization method which accounts for variations in overpass time, length of day, and 

SZA across time, space, and sensors (discussed in more detail in Kohler et al. (2018b)). This 

normalization is a first-order approximation to the daily SIF average, and provides a 

correction for the overpass time induced variation in clear sky PAR and instantaneous SIF, 

with the following assumptions: (1) diurnal changes in incoming PAR are mostly determined 

by the SZA (e.g., changes in fluorescence yield across different instrument overpass times 

are negligible, and diurnal effects on SIF yield such as heat and water stress are constant 

throughout a particular day), and (2) cloud and atmospheric scattering effects on PAR are 

small after screening for clear sky values;. Normalization by SZA and length of day account 

for variation in the SIF daily average with latitude and season, and has a substantial impact 
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on SIF seasonality especially at high latitudes (Sun et al. 2018). Moreover, Zhang, Xiao, et al. 

(2018) show improved agreement between satellite SIF and daily tower GPP when 

accounting for seasonal and latitudinal variations in PAR as approximated by SZA. Both 

studies support the use of SZA normalization as a first order correction for instantaneous 

illumination. Correction for wavelength and illumination effects using the normalization 

equation above mitigates inter-sensor differences in magnitude across northern 

midlatitudes (Figure 2), specifically bringing OCO-2 into closer agreement with TROPOMI 

and GOME-2. However, differences due to second order environmental and scattering 

effects, and in particular retrieval method (e.g., GOME2A-JJv28 vs GOME2A-PKv1) are 

evident and require deeper investigation with respect to ground-based measurements of 

sub-daily SIF (see below).  

It is also important that cross-sensor analyses and calibration accurately account for sun-

sensor geometry. In particular, radiative hot spots are observed when the sun and sensor 

are aligned along the same axis (e.g., Liu et al. 2016), which can lead to increases in 

retrieved SIF under decreasing illuminations (higher solar and viewing angles), and intensity 

changes of 20% relative to inclined phase angles (Köhler, Frankenberg, et al. 2018).  

Fortunately, most observations are collected between 20 and 60 degrees of solar angle, 

where the intensity change is less severe (~10%). Viewing zenith angle is also quite variable 

across sensors and can also affect the fraction of illuminated leaves and thus emitted SIF 

observed. Multiple studies highlight the importance to take the seasonality of sun-sensor 

geometry into account when analyzing satellite vegetation data and in cross-sensor 

comparisons studies (Hilker et al. 2015; Maeda and Galvão 2015; Morton et al. 2014; 

Verrelst et al. 2008).  

To account for directional effects in comparing GOME2A-PK and OCO-2 in the Amazon, 

Köhler, Guanter, et al. (2018) calculated the phase angle (𝛾) by applying the spherical law of 

cosines 

𝛾 = 𝑎 𝑐𝑜𝑠[cos 𝜃𝑜 cos 𝜃𝑣 + sin 𝜃𝑜 sin 𝜃𝑣 cos(𝜙0 − 𝜙𝑣)] 

This gives the angle between the directions to the sun and detector, as seen from the 

surface, as a function of solar geometry (solar zenith angle (𝜃𝑜) + solar azimuth angle (𝜙0)) 

and viewing geometry (viewing zenith angle (𝜃𝑣) + viewing azimuth angle (𝜙𝑣)). Kohler et al. 

(2018) limited the analysis of Amazon SIF to phase angles common across all seasons (-65 to 
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-40 degree), revealing dynamical change in GOME-2 SIF more directly attributable to 

biophysical processes including changes in PAR during the dry season, and to leaf age and 

structural effects in the wet season (Köhler, Guanter, et al. 2018).  Likewise, Köhler, 

Frankenberg, et al. (2018) analyzed collocated measurements of TROPOMI and OCO-2 at 

global scale by limiting phase angle differences to 20 degrees. Phase angle is strongly 

variable geographically, diurnally, seasonally, and across sensors. As such, the choice of 

phase angle range depends on the application, the most important point being that low 

phase angles are close to the hot-spot and will lead to higher SIF values (on the order of 

20%).  

1.12 Validation for passive SIF Detection 

Recent efforts have more directly addressed SIF detection uncertainty using Kautsky curve 

experiments to observe dark-light transitions. The well-known Kautsky Effect, representing a 

change in fluorescence when vegetation is suddenly exposed to light after a period of dark 

(Kautsky and Hirsch, 1931), has been studied in the lab using pulse amplitude modulation 

(PAM) fluorimetry to modulate photosystem II reaction centers for several decades (Krause 

and Weis 1991), and more recently in the field (Grossmann et al. 2018). The idea is to 

reproduce the rapid change in fluorescence yield upon sudden illumination of dark adapted 

vegetation, related to activation of non-photochemical quenching, thus providing a simple 

test that fluorescence instruments are indeed observing SIF.  

Three experiments with three unique spectrometer systems demonstrate the utility of this 

approach. The first experiment was conducted in a lab using a blue light emitting diode 

(LED) light to illuminate dark adapted plants show the characteristic peak and gradual 

relaxation of fluorescence (Yang et al. 2018). This experiment used the spectral fitting 

method and singular vector decomposition to retrieve SIF in the far-red. A second 

experiment was performed in the field on a banana leaf using Fraunhofer-line based 

retrievals acquired from PhotoSpec and simultaneous PAM measurements of the same leaf 

to show a Kautsky curve response in red and far-red SIF yield (Grossmann et al. 2018). In this 

case, the plant was covered with a black cloth for 20-30 minutes then exposed to ambient 

sunlight (PAR = 1430 umol s-1 m-2). An additional novelty is the use of a built-in telescope 

enabling the spectrometer to point directly at a sample leaf, and subsequently to scan over 

the entire canopy to establish robust leaf- to canopy- scaling relationships. A third 



 

 
© 2019 American Geophysical Union. All rights reserved. 

experiment was also performed in ambient conditions using the Chlorophyll Fluorescence 

Imaging Spectrometer (CFIS). CFIS is an airborne high resolution imaging spectrometer built 

at NASA JPL and designed specifically to retrieve SIF in the wavelength range and at high 

spectral resolution of OCO-2. Stationary acquisitions of covered and uncovered grass targets 

measuring rapid changes and relaxation of fluorescence yields, consistent with the Kautsky 

curve (Frankenberg et al. 2018).  

1.13 Ground Validation 

Efforts to increase consistency across sensors are limited without robust ground validation. 

Airborne acquisitions from CFIS in 2015, 2016, and 2017 in CONUS and in the NASA ABoVE 

domain in 2017 provided important validation opportunities for OCO-2. CFIS measurements 

show strong spatial gradients across diverse agricultural, natural, and urban landscapes 

(Frankenberg et al. 2016, 2018), enabling scaling from canopy scale measurements to 

ecosystem level data from spaceborne instruments. Airborne acquisitions on 13 and 15 

August 2015 show remarkable agreement with OCO-2 during under-flights of OCO-2 orbital 

nadir tracks in the Midwest US, matching both in absolute value and in spatial variability 

(Sun et al. 2017).  

Recent commercially available spectrometers have made it possible to measure SIF directly 

in the field over the canopy and study structural, environmental, and directional controls 

(Cogliati et al. 2015; Daumard et al. 2010; Grossmann et al. 2018; Migliavacca et al. 2017; 

Yang et al. 2015, 2018). The use of field deployable instruments on eddy covariance towers 

has increased rapidly since 2014, providing coverage of multiple vegetation types and 

climate gradients around the world (Magney et al. 2019a; Yang et al. 2018). These data 

enable improved understanding of the relationship between SIF, photosynthesis, absorbed 

sunlight, and environmental effects at leaf to canopy scales.  Novel ground-based 

spectrometer systems such as Fluospec2 (Yang et al., 2018) and Photospec (Grossman et al., 

2018) have made it possible to monitor canopy SIF continuously in the field with high 

precision over multiple years providing opportunities for direct comparison and evaluation 

of satellite data (Grossmann et al. 2018; Yang et al. 2015, 2018; Magney et al., 2019a). 

1.14 Objectives of this study 
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Recent multi-sensor analyses provide increasing support for the dynamical nature of 

retrieved satellite SIF. Kautsky curve experiments in the lab and in the field provide direct 

evidence of our ability to use tower and airborne remote sensing for passive retrieval of SIF. 

The advent of high spectral and spatial resolution sensors such as OCO-2 and TROPOMI, and 

experiments to understand inherent noise and bias patterns in retrieval methods, have 

provided increasing confidence in our ability to use spaceborne remote sensing for passive 

retrieval of SIF. Careful treatment of satellite data for seasonal changes in sun-sensor 

geometry and cloud cover is key to disentangle canopy directional effects and atmospheric 

dilution effects from physiological based controls. However, application of SVD approaches 

for coarse spectral instruments such as GOME-2 and SCIAMACHY produce substantial and 

persistent differences in the absolute value of retrieved SIF, even for the same instrument 

after correcting for wavelength and time of day (Figure 2B). Although the pattern of 

variability is consistent and encouraging, the absolute value difference can limit their use in 

carbon cycle applications.   

For OCO-2, we have validated uncertainty estimates, which compare well with observed 

scatter within the dataset, and provided the first reliable and successful SIF validation 

against CFIS (Sun et al., 2017; Frankenberg et al., 2018). The emergence of multi-year OCO-2 

records that overlap with GOME-2 and TROPOMI, and rapidly expanding tower and airborne 

networks, has enabled new opportunities to validate and optimize spaceborne datasets. In 

the next section, we lay out a strategy to optimize spaceborne SIF datasets for production of 

long-term harmonized SIF time series, anchored by OCO-2 validation and calibration to 

ground measurements. Our strategy focuses on (1) direct OCO-2 SIF validation against 

overlapping ground and airborne data, (2) ensuring sensor consistency through screening 

and correction for illumination and wavelength differences, (3) evaluation of GOME-2 and 

TROPOMI SVD retrievals against OCO-2 target mode observations, which enable improved 

spatial mapping across a limited number of sites, and (4) SVD retrieval sensitivity analysis.  

2. Methods 

2.1 OCO-2 Targets 

Further refinement of SIF retreivals from spaceborne sensors is most likely to be achieved 

through coordinated measurements from spaceborne, airborne, and ground based 

platforms, providing a means to intercalibrate spaceborne retrievals. OCO-2 is currently the 
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only instrument that provides small ground sampling footprints traceable to canopy level 

measurements from spatially continuous airborne acquisitions and temporally continuous 

tower measurements (Verma et al. 2017; Wood et al. 2017). However, the use of ground-

based data to directly validate OCO-2 Nadir and Glint viewing modes, representing the 

primary measurement modes over land, is challenging due to the narrow swath width 

ground tracks, and lack of direct flux tower overpasses.  

OCO-2 Target Mode observations have been collected at discrete locations around the 

world since 2014 (Table 2) with the primary objective to validate column integrated CO2 

retrievals. In Target Mode, OCO-2 views a designated location continuously, in a back-and-

forth repeating manner, as the satellite passes overhead. This provides the capability to 

collect a large number of measurements where ground-based instruments also measure 

CO2 and SIF. Target Mode data thus provide high precision, high data yield (>103 cloud free 

soundings per target), spatial coverage (20 x 20 km2), and seasonal resolution at bio-climatic 

unique locations around the world needed for more direct comparison to ground based SIF 

sensors (Figure 4).  

Here, we use OCO-2 targets in two novel ways. First, we leverage coordinated 

measurements of OCO-2 and PhotoSpec collected at a subalpine needleleaf forest flux 

tower in Niwot Ridge, Colorado (denoted US-NR1) to directly validate OCO-2, thus providing 

evidence that OCO-2 provides a robust platform for measuring seasonal dynamical change 

consistent with ground-based canopy integrated data. Second, we leverage high spatial 

coverage of global and diverse OCO-2 targets to provide an uncertainty assessment of 

TROPOMI. We note that OCO-2 target scanning produces widely varying solar and viewing 

geometries for a given location. As such, we screen OCO-2 targets for high solar and viewing 

zenith angles (SZA < 60,  VZA < 60).  

2.2 OCO-2 Validation 

OCO-2 targets have been collected at NR1 during the transition and growing seasons since 

April 2018, in coordination with CFIS flights in 2016 and ground-based data from Photospec 

since July 2017, to study needleleaf phenology and the timing and magnitude of seasonal 

GPP (Magney et al., 2019a,c). Spectra from CFIS were collected during transient flights from 

California into the Midwest in June 2016.  
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Figure 5 provides an example of the high spatial coverage enabled by OCO-2 targets at NR1. 

Target data were collected as frequently as feasible (allowing for sufficiently low cloud cover 

and proximity of orbits) to resolve transition seasons, with particular emphasis on spring 

green-up and end of the growing season. OCO-2 targets were also collected in Hyytialla, 

Finland in 2018 as part of the Fluorescence Across Space and Time (FAST) campaign, and 

new targets will begin in spring 2019 at the Old Black Spruce (CA-OBS) flux tower site in 

southern Saskatchewan, Canada, which was recently instrumented with PhotoSpec (Figure 

4).  

Ideally, such coordinated measurements provide additional opportunities for spaceborne 

validation and calibration, analysis of spatial gradients and mixed landscapes within a 

satellite pixel, and study of daily integration under different light and environmental 

conditions. In practice, the use of NR1 PhotoSpec data to validate spaceborne sensors is 

extremely challenging due to mixed vegetation and topography. Specifically, elevation 

changes at NR1 are drastic (~1000 m in a few tenths of a degree) and vegetation transitions 

rapidly from tundra to evergreen needleleaf forests. The sub-grid variability within coarse 

spatial footprints of GOME-2 is thus too high to allow for a robust validation study. Future 

measurements at OBS, which sits in a mostly flat landscape dominated by needleleaf 

evergreen forest, will provide more robust assessments of retrieval uncertainty and 

accuracy. In this study, we use NR1 PhotoSpec and CFIS data to assess the accuracy of 

smaller footprints from OCO-2 targets and TROPOMI.  

2.3 OCO-2 Target Assessment of TROPOMI  

Kohler et al. (2018b) demonstrated high fidelity of TROPOMI SIF at global scale with respect 

to OCO-2 nadir data in June 2018.  The authors analyzed points where at least 10 OCO-2 

soundings fell within a TROPOMI footprint. OCO-2 targets provide the benefit of dense 

sampling over a relatively large area (20 km x 20 km) enabling improved signal to noise for 

TROPOMI and OCO-2. We extend the assessment of Kohler et al. (2018b) using OCO-2 

targets to analyze seasonal and spatial variability for the period Mar – Dec, 2018, and to 

assess sensitivity to time of day, wavelength, phase angle, and mixed vegetation. 

For comparison to OCO-2 targets, TROPOMI data is selected for footprint centers falling 

within 0.2° of OCO-2 target centers. We account for differences in atmospheric scattering 

and wavelength using the clear sky flag for OCO-2 and cloud fraction less than 0.1 for 
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TROPOMI, and multiplying the OCO-2 757 nm band by a factor of 1.5 (based on our leaf-

level spectral shape measurements) to match the TROPOMI 740 nm band. Using all OCO-2 

data from 2014-2018 and TROPOMI data from 2018 as a starting point, we then iteratively 

correct for differences in (1) year, using 2018 data only; (2) illumination, by converting 

instantaneous values to daily averages using the length of day and SZA correction (e.g., 

Figure 2); (3) sun-sensor geometry, by limiting phase angle differences to +/- 20 degrees; 

and (4) footprint size and canopy scattering, by analyzing targets with uniform vegetation. 

Uniform vegetation is identified as target locations where greater than 50% of land cover is 

dominated by a single IGBP land cover type.  

2.4 Retrieval Algorithm Testing and SIF Product Intercomparison 

SIF retrieval amplitudes are substantially higher using the SVD method proposed by Kohler 

et al. (2015) than that proposed by Joiner et al. (2016) despite correction for time of day 

(Figure 2B). In addition to multiple technical differences, the difference most likely 

originates from the use of a relatively small fitting window (734 – 758 nm) in the most 

recent Joiner products (GOME-JJv28, SCIA-JJv26, GOME2-JJv28) compared to wider 

windows in the Kohler products (720 – 758 nm, SCIA-PKv1, GOME2-PKv1). Application of the 

Kohler method to TROPOMI provides an interesting sensitivity experiment in that many of 

the technical details are the same, but the use of a smaller window (742 – 758 nm) devoid 

of atmospheric absorption eliminates the use of solar irradiance data as another source of 

uncertainty, and significantly reduces SIF amplitudes while achieving high accuracy with 

respect to OCO-2 (Kohler et al., 2018).  

A few possible explanations for the high bias of wider window lengths in the far-red include: 

(1) the assumed spectral shape of the SIF emission is incorrect (not accounting for 

reabsorption); (2) it is more difficult to fit the background reflectance and produce reliable 

principal components; and (3) the representation of water vapor absorption is inaccurate. In 

general, the wavelengths employed by Joiner have relatively weak water vapor absorption 

and tend to balance magnitude accuracy with reasonable signal-to-noise.  

Comparison of length-of-day and wavelength corrected SIF for GOME2A-PKv1, GOME2A-

JJv28, and TROPOMI reveals a tendency for SIF magnitudes to decrease with smaller fitting 

windows weighted toward longer wavelengths near the far-red peak and in windows with 

less water vapor absorption (Figure 2). Specifically, we find decreasing SIF magnitude during 
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the year 2018 moving to progressively narrow retrieval windows for GOME2A-PKv1 (720 – 

758 nm), GOME2A-JJv28 (734 – 758 nm), and TROPOMI (742 – 758 nm). We further examine 

this sensitivity by applying the Kohler SVD method using narrower fitting windows. In the 

first experiment, GOME2A retrievals are performed using the 734 – 758 nm window to 

mimic the Joiner method. This is denoted as GOME2A-PKexp1. Another experiment is 

performed using the 742 – 758 nm window similar to the TROPOMI retrieval approach 

(Kohler et al., 2018b), denoted GOME2A-PKtrop.  

We also examine sensitivity to SIF reference shapes by substituting simulated estimates 

obtained from the SCOPE model (Van Der Tol et al. 2014; GOME2A-PKv1, GOME2A-PKexp1, 

and GOME2A-PKtrop) with observed shapes obtained from leaf fluorescence spectra 

(Magney et al., 2019b). Leaf level data account for reabsorption by chlorophyll across red 

and into the far red wavelengths, and thus reduced magnitude up to 740 nm compared to 

photosystem level emissions assumed by SCOPE (e.g., see Figure 1). Retrievals performed 

using the 720 – 758 nm window are denoted GOME2A-PKexp2, and using the 734 – 758 nm 

window as GOME2A-PKexp3.  

We analyze GOME-2 retrievals and experiments against vegetation OCO-2 targets from 

2015-2018, and against TROPOMI at global scale in July 2018, focusing on changes in slope, 

correlation, and magnitude. Our primary objectives are to benchmark JOINER and KOHLER 

GOME-2 retrievals against more accurate OCO-2 and TROPOMI datasets, and further 

explore underlying sensitivities of the retrieval.  

3. Calibration Results 

We note three important points about the wavelength and timescale of inter-sensor 

comparisons in the following analysis, (1) all SIF data is reported at 740 nm, with OCO-2 757 

nm band corrected by a factor of 1.5, (2) SIF data is either reported as instantaneous values 

or as daily average, with the latter identified as length-of-day corrected (e.g., Figure 7 C-E), 

(3) No temporal averaging is applied, such that SIF values represent the time or day when 

the measurement was recorded.    

3.1 Time series analysis: OCO-2 Comparison to Ground Data 

PhotoSpec shows distinct seasonal characteristics including rapid spring transition, peak SIF 

early in the growing season, leveling off in the late growing season, and fall transition to 
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dormancy (Magney et al., 2019a; Figure 6). CFIS and OCO-2 values are directly in line with 

PhotoSpec, capturing absolute values and in particular the timing and amplitude of seasonal 

features including the rapid spring transition, relaxation of SIF following the spring peak, and 

rapid fall transition (Figure 6) after careful screening for biome (needleleaf forests) and 

clouds (sunny days only). 

The comparison between OCO-2 and PhotoSpec also demonstrates the importance of 

screening for uniform vegetation, even for mostly homogeneous landscapes. NR1 is 

surrounded by needleleaf conifers within its 1-2 km footprint. Individual OCO-2 soundings 

(~2 km2) are generally free of mixed canopies, but the larger target collection area (400 km2) 

detects emissions from higher altitude tundra and lower latitude deciduous forests 5-10 km 

away from the tower. In general, the target area is dominated by conifers, such that the 

mean signal of all soundings is within 5% of the mean signal from conifers. However, we 

note a significant influence of tundra toward the end of the spring transition, related to 

some combination of snow, bare soil, and relatively small signal emitted from grasses, which 

culminate in a low bias in the mean of OCO-2 soundings. This mixed landscape is likely to 

have an even greater impact on much coarser single sounding footprints from GOME-2, 

challenging the analysis of GOME-2 at NR1.  

3.2 Retrieval Assessment: TROPOMI comparison to OCO-2 targets 

TROPOMI shows high agreement with OCO-2 target data at non-urban land locations 

around the world, particularly at forest sites in northern latitudes (Figure 7). Specifically, 

comparison of overlapping TROPOMI and OCO-2 retrievals shows the increasing agreement 

in slope and correlation with iterative screening and corrections for confounding factors. We 

find high agreement already for instantaneous values overlapping in space and time of year 

but for different years (slope = 0.84 +/- 0.051) and correlation (R2 = 0.69, Figure 7a), with 

substantial improvement in slope for data overlapping in space and time for the same year 

of data (slope = 0.91 +/- 0.045, R2 = 0.91, Figure 7b). Correcting for illumination effects does 

not have much impact due to similarities in overpass time (midday for both, Figure 7c), but 

accounting for similar phase angles (Figure 7d) and locations with uniform vegetation 

(Figure 7e) leads to further improvement, as slope and r2 converge on values of 1. However, 

we note a consistent offset of 0.1 W m-2 sr-1 nm-1 in TROPOMI relative to OCO-2 (negative 

bias) which is independent of SIF magnitude.  
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3.3 Retrieval Assessment: Comparison of GOME-2 SVD methods to OCO-2 targets 

Figure 8 summarizes our assessment of accuracy of original GOME-2 retrievals (GOME2A-

PKv1 and GOME2A-JJv28) against OCO-2 targets over the period 2015-2018. In the first case 

(not shown), the datasets are corrected for differences in overpass time and wavelength. In 

the second case, shown in Figure 8, data is also screened for clouds (effective cloud fraction 

< 0.3 for GOME-2), non-urban locations, and uniform vegetation. The first case already 

produces high agreement between GOME2A-PKv1 and OCO-2, with regression slope close 

to one (0.924 +/- 0.059) and R2 = 0.72. The GOME2A-JJv28 retrieval shows lower slope 

(0.539 +/- 0.69) and R2 = 0.27. Additional screening in the second case produces marginal 

improvement for GOME2A-PKv1, with slope and R2 increasing to 0.953 +/- 0.06 and 0.80, 

respectively, but significant improvement in GOME2A-JJv28, with slope and R2 increasing to 

0.704 +/- 0.087 and 0.46. While long term global comparisons (Figure 2 and 3) indicate a 

high bias in GOME2A-PKv1, the comparison at cloud-free OCO-2 targets with uniform 

vegetation indicates high SNR and accuracy. We note the R2 values do not account for 

retrieval uncertainty, which is much higher for GOME2-JJv28 due to the shorter retrieval 

window, and thus do not reflect differences in retrieval accuracy.   

We also note the SIF variability of shrubs is much more significant in GOME-2 compared to 

OCO-2, while variability of forest and crops is similar in magnitude. This highlights the 

important effect of different sampling strategies on observed SIF variability. Even though 

uncertainties of GOME-2 and OCO-2 SIF for single soundings are very similar, the reason for 

the lower variability in OCO-2 SIF in low SIF landscapes is most likely related to the narrow 

swath of OCO-2 (~10km), which provides more soundings per area and results in a 

substantially reduced standard error (1/sqrt(n)) compared to GOME-2. Therefore, we expect 

a higher spread for GOME-2 in shrub landscapes, and low SIF emission landscapes in 

general, where precision is driven by the retrieval error and number of measurements. It’s 

also worth considering that shrub landscapes are very heterogeneous, such that coarse 

GOME-2 footprints contain signals from other biomes not affecting small OCO-2 footprints 

(Wang et al. 2019).  

3.4 Retrieval Sensitivity Analysis: Comparison of GOME-2 SVD experiments to TROPOMI at 

global scale 
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GOME-2 retrieval sensitivity experiments are performed using instantaneous values at 

global scale for July 2018. Comparisons to TROPOMI are made for vegetated grid boxes, and 

exclude land cover classified as “Urban and Built-Up, “Snow and Ice”, and “Barren or 

Sparsely Vegetated.” We note that instantaneous values are expected to produce 

divergence in slope from the 1:1 relationship due to differences in time of day of GOME-2 

(morning) and TROPOMI (mid-day). We know from diurnally resolved SIF observations 

across multiple ecosystems in North America (e.g., Yang et al., 2015, 2018; Magney et al., 

2019a) that SIF generally increases with light from mid-morning (~9:30 am) to midday (~1:30 

pm) in mid-summer. An optimal regression should thus produce slope less than 1 with high 

correlation and zero y-intercept.  

Figure 9A shows results using the original GOME-2 retrieval (GOME2A-PKv1), representing 

the widest fitting window across all available methods and experiments (720 – 758 nm). The 

wide fitting window leads to reduced noise and high correlation (R2 = 0.77) compared to 

smaller fitting windows (discussed below). This also produces the known high bias in 

absolute values (relative to TROPOMI), as indicated by high y-intercept (0.33), which occurs 

despite the use of morning values.  

Confining the retrieval window to 734-758 nm (Figure 9B) and 742-758 nm (Figure 9C) 

reduces the bias substantially (intercept = 0.12 and 0.06, respectively) but with reduced 

correlation (R2 = 0.74 and 0.65). This is attributed to the use of fewer spectral points in 

narrower fitting windows, thus reducing SNR.  

The choice of the SIF reference shape has a negligible impact on results. Spectra obtained 

from leaf level data instead of SCOPE has the very minor effect of a decreasing bias and an 

increasing slope. This finding is consistent for both the wide (720 – 758 nm, Figure 9A vs 9D) 

and the shorter (734 – 758 nm, Figure 9B vs 9E) fitting windows. We also find very weak 

biome dependence for Evergreen Broadleaf Forests (EBF), Evergreen Needleleaf Forests 

(ENF), and Crops (see color coding in Figure 9). In general, confining the retrieval window to 

that used by TROPOMI reduces intercept and bias at the cost of SNR.  

4. Ongoing Challenges 

Careful treatment of inter-sensor differences in overpass time, observed wavelength, cloud 

contamination, sun-sensor geometry, and footprint area produces encouraging results for 
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spaceborne SIF. Here, we account for (1) overpass time using the length-of-day and solar 

zenith angle corrections, (2) wavelength using the ratio of wavelength ratios determined 

from leaf level spectral shapes, (3) clouds using observations of cloud optical depth and 

cloud fraction to screen for clear sky conditions, (4) sun-sensor geometry by examining 

similar phase angles (i.e., similar alignment of viewing and solar viewing angles) to ensure 

sensors observed the same (shaded or sunlit) scene, and (5) footprint area by examining 

scenes with uniform vegetation as determined from land cover data.  

After accounting for these effects, we find high agreement of OCO-2 with ground-based 

observations at a subalpine evergreen needleleaf forest, and high agreement of GOME-2 

and TROPOMI with non-urban OCO-2 targets across mostly northern temperate and high 

latitude forests, crops, and shrubs. However, two well established SVD retrieval methods for 

GOME-2 show substantial differences from each other in spatial variability in comparison to 

OCO-2 targets, and pronounced differences in magnitude at global scale compared to 

TROPOMI and OCO-2. The remaining uncertainty due to retrieval method, and other effects 

including radiometric calibration and spatial mismatch, is discussed below. 

4.1 Retrieval Methodology 

Retrieval experiments show high sensitivity to retrieval window and weak sensitivity to the 

reference SIF spectral shape (Figure 9). Specifically, all three experiments with reduced 

retrieval window size (GOME2A-PKexp1, GOME2A-PKexp2, GOME2A-PKtrop) compared to 

GOME2A-PKv1 show reduced magnitude in closer agreement with TROPOMI, but at a 

significant cost of reduced SNR and degradation of regression slope from a value close to 

one (y=0.71x+0.28) to well below the one-to-one line (slope ranging from 0.71 to 0.75). 

Thus, more analysis of the following factors is needed to understand retrieval effects in the 

far-red, including (1) SIF spectral shapes; (2) background reflectance; (3) water vapor 

absorption by partial clouds. Future comparisons to new Photospec observations at the Old 

Black Spruce forest in southern Saskatchewan, Canada, which is characterized by more 

uniform vegetation and landscape features than Niwot Ridge, will facilitate assessment of 

these other effects.  

 

 



 

 
© 2019 American Geophysical Union. All rights reserved. 

4.2 Calibration Drift 

A primary challenge to merging of SIF datasets for analysis of long term variability is the 

presence of calibration drift affecting MetOp-A and MetOp-B GOME-2 sensors as well as 

other sensors. This drift produces a strong and widespread decreasing trend caused by 

instrument degradation 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/README_GOME-F_v26-

v27.pdf GOME-2 FLOURESCENCE README FILE) if not fully accounted for. This is particularly 

troublesome given that GOME-2 provides our longest active record of SIF and provides the 

primary link between older records from SCIAMACHY and newer records from OCO-2 and 

TROPOMI. The use of OCO-2 to anchor the production of a long term calibrated time series 

requires a correction to this calibration drift, focusing on a deeper investigation of raw L1B 

data. Making use of the most recent calibration information provided by the L1B data 

producers will help address issues such as degradation in solar irradiances and non-linear 

trends in normalized radiances that can be deduced for example in ice-radiances.    

Changes in reflectance due to calibration drift may cause corresponding changes in the 

amount of cloudy data that are included in gridded averages, contributing to false trends. 

Accounting for this trend will require more detailed analysis and screening of clouds, 

perhaps using VIIRS and MODIS data together. Joint analysis of MODIS reflectance data can 

also help identify diverging anomalies related to clouds, time of day drift, geometry and 

swath width change (e.g., change in footprint size in GOME2A in July 2013), and other 

confounding factors.  

4.3 South Atlantic Anomaly 

The South Atlantic Anomaly (SAA) exposes orbiting satellites to increased flux of energetic 

particles resulting in increased SIF measurement noise in southeastern portions of South 

America (Kohler et al., 2015; Joiner et al., 2016). The SAA has a substantial effect on GOME-

2 radiances, small but non-negligible impacts on SCIAMACHY, and almost no effect on 

TROPOMI (Kohler et al., 2018). Joiner et al (2016) mitigate, but do not completely eliminate, 

this effect in GOME-2 and SCIAMACHY by performing quality control checks on radiance 

outliers and reconstructed spectra derived from a reduced number of PCs. 

4.4 Zero-level Adjustment 
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Non-linear effects such as dark current, stray light, temperature-related changes in the 

instrument response function, rotational-Raman scattering (effects may be significant at 

large solar and viewing angles) and memory effects produce false in-filling of solar 

Fraunhofer lines which have significant impacts on far-red SIF retrievals and which lead to 

biases on the order of 0.1 mW m-2 sr-1 nm-1 or greater, and which vary with latitude (Kohler 

et al., 2015; Joiner et al., 2012, 2016). These zero-level offsets are present in GOME-2 and 

SCIAMACHY retrievals and are not well captured by principal component analysis technique. 

Joiner et al (2016) developed an empirical correction by constructing a regression model 

from a subset of retrievals over non-emitting ocean and desert surfaces. Zero-level 

adjustments remove a few tenths of a mW m-2 sr-1 nm-1 but do not completely remove 

biases at high radiances levels. Zero-level offsets are also observed in GOSAT and OCO-2 O2-

A bands and are removed by analyzing SIF retrievals over non-emitting surfaces (Antarctica 

for OCO-2 and GOSAT high gain spectra and Sahara for GOSAT medium gain spectra) 

(Christian Frankenberg et al. 2011).   

5. Applications 

Although calibration methods as suggested above are likely to produce more consistent 

time series across sensors, there remains the issue of spatial and temporal data gaps, 

footprint differences, and noise for individual sensors.  This challenges efforts to assess long 

term change, especially at sub-regional scale. Several efforts, discussed in more detail 

below, have been made in recent years to spatially downscale existing satellite SIF to higher 

temporal and spatially continuous resolutions, using either light use efficiency models or 

statistical methods, for more complete end-to-end SIF products, thus directly addressing 

this issue. All recently published methods use ancillary vegetation reflectance data from the 

MODerate-resolution Imaging Spectroradiometer (MODIS) as explanatory variables for SIF 

to predict or extrapolate SIF from either OCO-2 or GOME-2 in unobserved regions, taking 

advantage of empirical evidence that much of the variability in SIF is related to the fraction 

of PAR (fPAR), as well as the stable long record (2000-present) and high spatial resolution 

(~1 km) needed for downscaling and long term prediction.  

For example, Duveiller and Cescatti (2016) use a light use efficiency (LUE) model to 

empirically link GOME-2 SIF with MODIS based Normalized Difference Vegetation Index 

(NDVI) and other MODIS-derived parameters, to predict SIF at 0.05°. This approach is nice in 
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the simplicity of the LUE mechanistic equation, and the strict use of satellite observations of 

vegetation (NDVI) and environmental parameters (land surface temperature and 

evapotranspiration) to drive the model. Another product derived from GOME-2 SIF uses a 

neural network approach with MODIS reflectance to reconstruct GOME-2 SIF from 

independent estimates of PAR (denoted RSIF) every 8 days at 0.5° (Gentine and 

Alemohammad 2018). Both methods show consistency with tower derived GPP data.  

More recently (but in the same calendar year) (Zhang, Joanna Joiner, et al. 2018) produced a 

global spatially contiguous solar-induced fluorescence dataset, denoted CSIF, by training a 

neural network with surface reflectance data from the entire MODIS record (2000-2017) 

and two years of SIF (2015-2016) from OCO-2. The resulting maps are generated every 4 

days at 0.05°, globally, for nearly two decades (2000-2016), providing unprecedented spatial 

and temporal coverage of long term variability. Although this product is trained on only a 

couple years of OCO-2 data, and thus misses out on a more complete range of climate 

states, independent validation against GOME-2 and eddy covariance tower data shows high 

reproducibility of seasonal and spatial information. Yu et al. (2018) produced a similar 

product (global, 16-day, 0.05°) using a neural network trained on OCO-2 SIF data and MODIS 

reflectance, but focusing more on in-filling of OCO-2 gap regions and accurately preserving 

spatiotemporal patterns of the original SIF training dataset. This product is trained with 

MODIS BDRF-corrected 7-band surface reflectance along OCO-2 orbits with spatial 

predictions stratified by biome and time step to optimize spatial variability along bioclimatic 

gradients. These data show high consistency with independent CFIS airborne data.  

6. Discussion 

Coordinated research focused on reconciliation of an already extensive and multi-decadal 

spaceborne SIF record with well characterized uncertainty and error quantification is 

critically needed. Despite substantial publication of individual SIF datasets (Christian 

Frankenberg et al. 2011; Joiner et al. 2013, 2014; Köhler, Frankenberg, et al. 2018; Köhler, 

Guanter, et al. 2018; Köhler et al. 2015), there exists known biases in current SIF products, 

and there has been no concerted effort to compare or cross-calibrate both retrieval 

algorithms and post-processing strategies, such as the choice of reference targets or solar 

spectra. Thus, it is currently difficult to evaluate how inconsistencies across products affect 

scientific interpretation.  
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Recent and ongoing validation against ground and airborne SIF observations suggest that 

OCO-2 provides one of the more robust and practical options to optimize the sampling 

strategies of GOME-2, GOSAT, and TROPOMI, with the ultimate objective to anchor the 

production of a longer and spatially continuous SIF time series traceable to canopy 

measurements. Here, we provide evidence supporting the use of OCO-2 target data as a 

promising benchmark to validate and calibrate diverse satellite sensors, and emphasize that 

careful attention is needed to account for key instrument differences such as time of day, 

wavelength, sun-sensor geometry, cloud effects, and footprint area through screening and 

corrections, and thus optimize consistency across instruments.  

Specifically, we find that GOME-2 and TROPOMI perform exceedingly well in capturing 

spatial, seasonal, and interannual variability across OCO-2 targets, but that GOME-2 

retrieval methods differ from each other in signal-to-noise and magnitude. Magnitude 

differences are attributed in part to the choice of retrieval window, but substantial research 

is needed to understand these sensitivities, and to validate consistency of methods and 

screening criteria, retrieved seasonal amplitudes for spectrally coarse sensors, and provide 

radiometric calibration and bias corrections.  

TROPOMI is providing unprecedented spatial and temporal coverage at high resolution with 

nearly continuous mapping. The high precision and apparent accuracy of OCO-2 and 

TROPOMI retrievals suggests these datasets will provide important benchmarks to help 

reconcile retrieval algorithm differences for moderate spectral resolution products, and 

identify and correct for sensor degradation that is responsible for drift in GOME-2 sensor 

radiance/irradiance records. Moreover, the rapidly expanding network of tower and 

airborne measurements will continue to provide important cal/val opportunities across 

diverse biomes around the world. Consequently, the prospect of leveraging ongoing OCO-2 

and TROPOMI data, to anchor the calibration of overlapping sensors from GOME-2 and 

GOSAT, back-calibration of historical measurements from GOME and SCIAMACHY, and 

production of a long term consistent time series of SIF, is extremely promising. Such a 

coordinated effort will facilitate (1) long term record keeping of plant structural/functional 

change including improved observational constraint for model-data and data-data fusion, 

(2) analysis of climate sensitive regions through improved global coverage, and (3) 

identification of hotspots to focus field campaigns. 
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Efforts are underway to provide existing SIF products with common format, data structure, 

variables, corrections, and screening to correct individual sensors for differences in 

instantaneous illumination, sun-sensor geometry, wavelength, and clouds to ensure 

consistency and facilitate cross-sensor comparisons. These reformatted datasets will 

undergo ongoing updates and continue to be disseminated to the global community via 

public servers (ftp://fluo.gps.caltech.edu). Site extraction tools are also available on GitHub 

and coded for open source software such as R, providing seamless analysis of multiple 

sensors at locations specified by the user and a pathway for users to provide feedback to 

data providers.  

7. Conclusions 

SIF has been retrieved from multiple satellites with nearly coninuous global coverage since 

1996, providing an unprecendented record for studying long term photosynthetic change. 

However, no single instrument offers a long term continuous running time series over this 

period, and differences in instrument characteristics and retrieval methodology have 

produces substantial variation across products, thus hindering long term multi-sensor 

analyses. We leverage recently available data from state-of-the-art OCO-2 and TROPOMI 

instruments, and overlap with the spectrally coarse but longer running GOME-2 instrument, 

in a first attempt to reconcile inconsistencies in the long-term record. We emphasize that 

OCO-2 SIF offers a key benchmarking dataset for cross-sensor calibration due to its 

traceability to tower and airborne sensors, as demonstrated in this and previous studies. We 

also stress that careful screening and correction for key instrument differences increases 

consistency and reduces variability across products, and thus is a prerequisite for OCO-2 

based calibration efforts.  

The combination of screening, and focus on spatially resolved OCO-2 targets at locations 

with uniform vegetation, reveals surprising agreement of spatial, seasonal, and interannual 

variability between sensors. Comparison to OCO-2 also helps to address differences in 

signal-to-noise and magnitude resulting from retrieval method, and to understand 

sensitivities to retrieval window, atmospheric absorption and reflectance. Retrieval 

sensitivity experiments here indicate that retrieval window choice largely explains 

magnitude differences between GOME-2 products. We conclude that next generation 

sensors such as OCO-2 and TROPOMI have opened up the possibility to produce a multi-

ftp://fluo.gps.caltech.edu/
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decadal SIF record with well characterized uncertainty and error quantification for 

overlapping instruments, enabling back-calibration of previous instruments and production 

of a longer and spatially continuous time series. 

Acknowledgements 

We thank Dr. Greg Ostermann for setting up OCO-2 target selections. The datasets 

generated and/or analyzed for the current study are available at data repositories hosted at 

the Goddard Space Flight Center (https://avdc.gsfc.nasa.gov/pub/data/satellite/), the 

California Institute for Technology (airborne and satellite data here: 

ftp://fluo.gps.caltech.edu/data/; Photospec data here: 

https://data.caltech.edu/records/1231). A portion of these data were produced by the OCO-

2 project at the Jet Propulsion Laboratory, California Institute of Technology, and obtained 

from the OCO-2 data archive maintained at the NASA Goddard Earth Science Data and 

Information Services Center. A portion of this research was carried out at the Jet Propulsion 

Laboratory, California Institute of Technology, under contract with NASA. Support from the 

Earth Science Division MEaSUREs program is acknowledged. Copyright 2019. All rights 

reserved. 

 

References 

Baker, Neil R. 2008. “Chlorophyll Fluorescence: A Probe of Photosynthesis in Vivo.” Annu. 

Rev. Plant Biol. 59:89–113. 

Cogliati, S., M. Rossini, T. Julitta, M. Meroni, A. Schickling, A. Burkart, F. Pinto, U. Rascher, 

and R. Colombo. 2015. “Continuous and Long-Term Measurements of Reflectance and 

Sun-Induced Chlorophyll Fluorescence by Using Novel Automated Field Spectroscopy 

Systems.” Remote Sensing of Environment 164:270–81. 

Crisp, D., R. .. Atlas, F. M. Breon, L. .. Brown, J. .. Burrows, P. Ciais, B. .. Connor, S. .. Doney, I. 

.. Fung, D. .. Jacob, C. .. Miller, D. O’Brien, S. Pawson, J. .. Randerson, P. Rayner, R. .. 

Salawitch, S. .. Sander, B. Sen, G. .. Stephens, P. .. Tans, G. .. Toon, P. .. Wennberg, S. .. 

Wofsy, Y. .. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, 

and S. Schroll. 2004. “The Orbiting Carbon Observatory (OCO) Mission.” Advances in 

Space Research 34(4):700–709. 

https://avdc.gsfc.nasa.gov/pub/data/satellite/
ftp://fluo.gps.caltech.edu/data/
https://data.caltech.edu/records/1231


 

 
© 2019 American Geophysical Union. All rights reserved. 

Daumard, Fabrice, Sbastien Champagne, Antoine Fournier, Yves Goulas, Abderrahmane 

Ounis, Jean Franois Hanocq, and Ismal Moya. 2010. “A Field Platform for Continuous 

Measurement of Canopy Fluorescence.” IEEE Transactions on Geoscience and Remote 

Sensing 48(9):3358–68. 

Duveiller, Gregory and Alessandro Cescatti. 2016. “Spatially Downscaling Sun-Induced 

Chlorophyll Fluorescence Leads to an Improved Temporal Correlation with Gross 

Primary Productivity.” Remote Sensing of Environment 182:72–89. 

Fischer, J., W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, H. Grassl, and J. Fisher. 1991. 

“Detection of Cloud-Top Height from Backscattered Radiances within the Oxygen A 

Band. Part 2: Measurements.” Journal of Applied Meteorology 30(9):1245–59. 

Flexas, Jaume, José Mariano Escalona, Sebastian Evain, Javier Gulías, Ismaël Moya, Charles 

Barry Osmond, and Hipólito Medrano. 2002. “Steady-State Chlorophyll Fluorescence 

(Fs) Measurements as a Tool to Follow Variations of Net CO2 Assimilation and Stomatal 

Conductance during Water-Stress in C3 Plants.” Physiologia Plantarum 114(2):231–240. 

Frankenberg, C., A. Butz, and G. C. Toon. 2011. “Disentangling Chlorophyll Fluorescence 

from Atmospheric Scattering Effects in O<inf>2</Inf> A-Band Spectra of Reflected Sun-

Light.” Geophysical Research Letters 38(3):1–5. 

Frankenberg, C, A. Butz, and GC Toon. 2011. “Disentangling Chlorophyll Fluorescence from 

Atmospheric Scattering Effects in O2 A‐band Spectra of Reflected Sun‐light.” 

Geophysical Research Letters 38(3). 

Frankenberg, C., C. O’Dell, L. Guanter, and J. McDuffie. 2012. “Remote Sensing of Near-

Infrared Chlorophyll Fluorescence from Space in Scattering Atmospheres: Implications 

for Its Retrieval and Interferences with Atmospheric CO2retrievals.” Atmospheric 

Measurement Techniques 5(8):2081–94. 

Frankenberg, Christian, D. Drewry, Sven Geier, Manish Verma, Peter Lawson, Jochen Stutz, 

and Katja Grossmann. 2016. “Remote Sensing of Solar Induced Chlorophyll 

Fluorescence from Satellites, Airplanes and Ground-Based Stations.” Pp. 1707–10 in 

Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. 

Frankenberg, Christian, Joshua B. Fisher, John Worden, Grayson Badgley, Sassan S. Saatchi, 



 

 
© 2019 American Geophysical Union. All rights reserved. 

Jung‐Eun Lee, Geoffrey C. Toon, André Butz, Martin Jung, and Akihiko Kuze. 2011. 

“New Global Observations of the Terrestrial Carbon Cycle from GOSAT: Patterns of 

Plant Fluorescence with Gross Primary Productivity.” Geophysical Research Letters 

38(17). 

Frankenberg, Christian, Philipp Köhler, Troy S. Magney, Sven Geier, Peter Lawson, Mark 

Schwochert, James McDuffie, Darren T. Drewry, Ryan Pavlick, and Andreas Kuhnert. 

2018. “The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), Mapping Far Red 

Fluorescence from Aircraft.” Remote Sensing of Environment 217(August):523–36. 

Frankenberg, Christian, Chris O’Dell, Joseph Berry, Luis Guanter, Joanna Joiner, Philipp 

Köhler, Randy Pollock, and Thomas E. Taylor. 2014. “Prospects for Chlorophyll 

Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2.” Remote 

Sensing of Environment 147:1–12. 

Gentine, P. and S. H. Alemohammad. 2018. “Reconstructed Solar-Induced Fluorescence: A 

Machine Learning Vegetation Product Based on MODIS Surface Reflectance to 

Reproduce GOME-2 Solar-Induced Fluorescence.” Geophysical Research Letters 

45(7):3136–46. 

Genty, Bernard, Jean-Marie Briantais, and Neil R. Baker. 1989. “The Relationship between 

the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll 

Fluorescence.” Biochimica et Biophysica Acta (BBA) - General Subjects 990(1):87–92. 

Grossmann, Katja, Christian Frankenberg, Troy S. Magney, Stephen C. Hurlock, Ulrike Seibt, 

and Jochen Stutz. 2018. “PhotoSpec: A New Instrument to Measure Spatially 

Distributed Red and Far-Red Solar-Induced Chlorophyll Fluorescence.” Remote Sensing 

of Environment 216(November 2017):311–27. 

Guanter, L., I. Aben, P. Tol, J. M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. 

Frankenberg, and J. Landgraf. 2015. “Potential of the TROPOspheric Monitoring 

Instrument (TROPOMI) Onboard the Sentinel-5 Precursor for the Monitoring of 

Terrestrial Chlorophyll Fluorescence.” Atmospheric Measurement Techniques 

8(3):1337–52. 

Guanter, Luis, Christian Frankenberg, Anu Dudhia, Philip E. Lewis, José Gómez-Dans, Akihiko 

Kuze, Hiroshi Suto, and Roy G. Grainger. 2012. “Retrieval and Global Assessment of 



 

 
© 2019 American Geophysical Union. All rights reserved. 

Terrestrial Chlorophyll Fluorescence from GOSAT Space Measurements.” Remote 

Sensing of Environment 121:236–51. 

Hilker, Thomas, Alexei I. Lyapustin, Forrest G. Hall, Ranga Myneni, Yuri Knyazikhin, Yujie 

Wang, Compton J. Tucker, and Piers J. Sellers. 2015. “On the Measurability of Change in 

Amazon Vegetation from MODIS.” Remote Sensing of Environment 166:233–42. 

Joiner, J., L. Guanter, R. Lindstrot, M. Voigt, a P. Vasilkov, E. M. Middleton, K. F. Huemmrich, 

Y. Yoshida, and C. Frankenberg. 2013. “Global Monitoring of Terrestrial Chlorophyll 

Fluorescence from Moderate Spectral Resolution Near-Infrared Satellite 

Measurements: Methodology, Simulations, and Application to GOME-2.” Atmospheric 

Measurement Techniques Discussions 6(2):3883–3930. 

Joiner, J., Y. Yoshida, A. P. Vasilkov, K. Schaefer, M. Jung, L. Guanter, Y. Zhang, S. Garrity, E. 

M. Middleton, K. F. Huemmrich, L. Gu, and L. Belelli Marchesini. 2014. “The Seasonal 

Cycle of Satellite Chlorophyll Fluorescence Observations and Its Relationship to 

Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange.” Remote Sensing 

of Environment 152:375–91. 

Joiner, J., Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, and E. M. Middleton. 2011. “First 

Observations of Global and Seasonal Terrestrial Chlorophyll Fluorescence from Space.” 

Biogeosciences 8(3):637–51. 

Joiner, Joanna, Yasuko Yoshida, AP Vasilkov, EM Middleton, PKE Campbell, and A. Kuze. 

2012. “Filling-in of near-Infrared Solar Lines by Terrestrial Fluorescence and Other 

Geophysical Effects: Simulations and Space-Based Observations from SCIAMACHY and 

GOSAT.” Atmospheric Measurement Techniques 5(4):809–29. 

Köhler, P., L. Guanter, and J. Joiner. 2015. “A Linear Method for the Retrieval of Sun-Induced 

Chlorophyll Fluorescence from GOME-2 and SCIAMACHY Data.” Atmospheric 

Measurement Techniques 8(6):2589–2608. 

Köhler, Philipp, Christian Frankenberg, Troy S. Magney, Luis Guanter, Joanna Joiner, and 

Jochen Landgraf. 2018. “Global Retrievals of Solar-Induced Chlorophyll Fluorescence 

With TROPOMI: First Results and Intersensor Comparison to OCO-2.” Geophysical 

Research Letters 45(19):10,456-10,463. 



 

 
© 2019 American Geophysical Union. All rights reserved. 

Köhler, Philipp, Luis Guanter, Hideki Kobayashi, Sophia Walther, and Wei Yang. 2018. 

“Assessing the Potential of Sun-Induced Fluorescence and the Canopy Scattering 

Coefficient to Track Large-Scale Vegetation Dynamics in Amazon Forests.” Remote 

Sensing of Environment 204(September 2017):769–85. 

Krause, GH and E1 Weis. 1991. “Chlorophyll Fluorescence and Photosynthesis: The Basics.” 

Annual Review of Plant Biology 42(1):313–49. 

Liu, Liangyun, Xinjie Liu, Zhihui Wang, and Bing Zhang. 2016. “Measurement and Analysis of 

Bidirectional SIF Emissions in Wheat Canopies.” IEEE Transactions on Geoscience and 

Remote Sensing 54(5):2640–51. 

Maeda, Eduardo Eiji and Lênio Soares Galvão. 2015. “Sun-Sensor Geometry Effects on 

Vegetation Index Anomalies in the Amazon Rainforest.” GIScience & Remote Sensing 

52(3):332–43. 

Magney, Troy S., Christian Frankenberg, Joshua B. Fisher, Ying Sun, Gretchen B. North, 

Thomas S. Davis, Ari Kornfeld, and Katharina Siebke. 2017. “Connecting Active to 

Passive Fluorescence with Photosynthesis: A Method for Evaluating Remote Sensing 

Measurements of Chl Fluorescence.” New Phytologist 215(4):1594–1608. 

Magney, Troy S, David R. Bowling, Barry Logan, Katja Grossmann, Jochen Stutz, and Peter 

Blanken, et al.. 2019a. “Mechanistic Evidence for Tracking the Seasonality of 

Photosynthesis with Solar-Induced Fluorescence.” Proceedings of the National 

Academy of Sciences, 116, 24, 11640-11645. 

Magney, Troy S., Christian Frankenberg, Philipp Kӧhler, Gretchen North, Thomas S. Davis, 

Christian Dold, Debsunder Dutta, Joshua B. Fisher, Katja Grossmann, Alexis Harrington, 

Jerry Hatfield, Jochen Stutz, Ying Sun, and Albert Porcar‐Castell. 2019b. “Disentangling 

Changes in the Spectral Shape of Chlorophyll Fluorescence: Implications for Remote 

Sensing of Photosynthesis.” Journal of Geophysical Research: Biogeosciences 

2019JG005029. 

Magney, T. 2019c. Canopy and needle scale fluorescence data from Niwot Ridge, Colorado 

2017-2018 (Version 0.1) [Data set]. CaltechDATA. https://doi.org/10.22002/d1.1231 

Migliavacca, Mirco, Oscar Perez-Priego, Micol Rossini, Tarek S. El-Madany, Gerardo Moreno, 

https://doi.org/10.22002/d1.1231


 

 
© 2019 American Geophysical Union. All rights reserved. 

Christiaan van der Tol, Uwe Rascher, Anna Berninger, Verena Bessenbacher, Andreas 

Burkart, and others. 2017. “Plant Functional Traits and Canopy Structure Control the 

Relationship between Photosynthetic CO 2 Uptake and Far-Red Sun-Induced 

Fluorescence in a Mediterranean Grassland under Different Nutrient Availability.” New 

Phytologist 214(3):1078–91. 

Morton, Douglas C., Jyoteshwar Nagol, Claudia C. Carabajal, Jacqueline Rosette, Michael 

Palace, Bruce D. Cook, Eric F. Vermote, David J. Harding, and Peter R. J. North. 2014. 

“Amazon Forests Maintain Consistent Canopy Structure and Greenness during the Dry 

Season.” Nature 506(7487):221–24. 

Moya, I., L. Camenen, S. Evain, Y. Goulas, ZG Cerovic, G. Latouche, J. Flexas, and A. Ounis. 

2004. “A New Instrument for Passive Remote Sensing: 1. Measurements of Sunlight-

Induced Chlorophyll Fluorescence.” Remote Sensing of Environment 91(2):186–97. 

O’Dell, C. W., B. Connor, H. Bösch, D. O’Brien, C. Frankenberg, R. Castano, M. Christi, D. 

Eldering, B. Fisher, M. Gunson, J. McDuffie, C. E. Miller, V. Natraj, F. Oyafuso, I. 

Polonsky, M. Smyth, T. Taylor, G. C. Toon, P. O. Wennberg, and D. Wunch. 2012. “The 

ACOS CO2retrieval Algorithm-Part 1: Description and Validation against Synthetic 

Observations.” Atmospheric Measurement Techniques 5(1):99–121. 

Sun, Y., C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. 

Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Köhler, B. Evans, and K. 

Yuen. 2017. “OCO-2 Advances Photosynthesis Observation from Space via Solar-

Induced Chlorophyll Fluorescence.” Science 358(6360). 

Sun, Ying, Christian Frankenberg, Martin Jung, Joanna Joiner, Luis Guanter, Philipp Köhler, 

and Troy Magney. 2018. “Overview of Solar-Induced Chlorophyll Fluorescence (SIF) 

from the Orbiting Carbon Observatory-2: Retrieval, Cross-Mission Comparison, and 

Global Monitoring for GPP.” Remote Sensing of Environment 209(February):808–23. 

Van Der Tol, C., J. A. Berry, P. K. E. Campbell, and U. Rascher. 2014. “Models of Fluorescence 

and Photosynthesis for Interpreting Measurements of Solar-Induced Chlorophyll 

Fluorescence.” Journal of Geophysical Research: Biogeosciences 119(12):2312–27. 

Verma, Manish, David Schimel, Bradley Evans, Christian Frankenberg, Jason Beringer, Darren 

T. Drewry, Troy Magney, Ian Marang, Lindsay Hutley, Caitlin Moore, and Annmarie 



 

 
© 2019 American Geophysical Union. All rights reserved. 

Eldering. 2017. “Effect of Environmental Conditions on the Relationship between Solar-

Induced Fluorescence and Gross Primary Productivity at an OzFlux Grassland Site.” 

Journal of Geophysical Research: Biogeosciences 122(3):716–33. 

Verrelst, J., M. E. Schaepman, B. Koetz, and M. Kneubühler. 2008. “Angular Sensitivity 

Analysis of Vegetation Indices Derived from CHRIS/PROBA Data.” Remote Sensing of 

Environment 112(5):2341–53. 

Wang, Cong, Jason Beringer, Lindsay B. Hutley, James Cleverly, Jing Li, Qinhuo Liu, and Ying 

Sun. 2019. “Phenology Dynamics of Dryland Ecosystems Along North Australian 

Tropical Transect Revealed by Satellite Solar‐Induced Chlorophyll Fluorescence.” 

Geophysical Research Letters 5294–5302. 

Wood, Jeffrey D., Timothy J. Griffis, John M. Baker, Christian Frankenberg, Manish Verma, 

and Karen Yuen. 2017. “Multiscale Analyses of Solar-Induced Florescence and Gross 

Primary Production.” Geophysical Research Letters 44(1):533–41. 

Yang, Peiqi and Christiaan van der Tol. 2018. “Linking Canopy Scattering of Far-Red Sun-

Induced Chlorophyll Fluorescence with Reflectance.” Remote Sensing of Environment 

209(March):456–67. 

Yang, Xi, Hanyu Shi, Atticus Stovall, Kaiyu Guan, Guofang Miao, Yongguang Zhang, Yao 

Zhang, Xiangming Xiao, Youngryel Ryu, and Jung Eun Lee. 2018. “FluoSpec 2—an 

Automated Field Spectroscopy System to Monitor Canopy Solar-Induced 

Fluorescence.” Sensors (Switzerland) 18(7). 

Yang, Xi, Jianwu Tang, John F. Mustard, Jung-eun Lee, and Micol Rossini. 2015. “Geophysical 

Research Letter Supplementary Information for ‘ Solar-Induced Chlorophyll 

Fluorescence Correlates with Canopy Photosynthesis on Diurnal and Seasonal Scales in 

a Temperate Deciduous Forest .’” Geophysical Research Letters 42:2977–87. 

Yu, L., J. Wen, C. Y. Chang, C. Frankenberg, and Y. Sun. 2018. “High Resolution Global 

Contiguous Solar&#x2010;Induced Chlorophyll Fluorescence (SIF) of Orbiting Carbon 

Observatory&#x2010;2 (OCO&#x2010;2).” Geophysical Research Letters 2. 

Zhang, Yao, Joana Joiner, Pierre Gentine, and Sha Zhou. 2018. “Reduced Solar-Induced 

Chlorophyll Fluorescence from GOME-2 during Amazon Drought Caused by Dataset 



 

 
© 2019 American Geophysical Union. All rights reserved. 

Artifacts.” Global Change Biology (March):2229–30. 

Zhang, Yao, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine. 

2018. “A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using 

Neural Networks.” Biogeosciences 15(19):5779–5800. 

Zhang, Yao, Xiangming Xiao, Yongguang Zhang, Sebastian Wolf, Sha Zhou, Joanna Joiner, 

Luis Guanter, Manish Verma, Ying Sun, Xi Yang, Eugénie Paul-Limoges, Christopher M. 

Gough, Georg Wohlfahrt, Beniamino Gioli, Christiaan van der Tol, Nouvellon Yann, 

Magnus Lund, and Agnès de Grandcourt. 2018. “On the Relationship between Sub-

Daily Instantaneous and Daily Total Gross Primary Production: Implications for 

Interpreting Satellite-Based SIF Retrievals.” Remote Sensing of Environment 

205(December 2017):276–89. 

 

  



 

 
© 2019 American Geophysical Union. All rights reserved. 

Table 1. Network of ground-based towers with SIF instrumentation. 

Site Name Instrument Target Location GeoLocation Time 

Period 

Plant 

Functional 

Type 

Niwot 

Ridge: NR1 
PhotoSpec

1
 OCO-2: 

2018 - 

present 

Colorado, US 40.0329°N, 

105.5464°W 

Mar 17 – 

Present 

Evergreen 

Needleleaf 

Univ. 

Michigan: 

UMB 

PhotoSpec
1
 OCO-3: 

2019 

Michigan, US 45.5598°N, 

84.7138°W 

Jun 18 - 

Present 

Deciduous 

Broadleaf 

Coles Field: 

ICC 

PhotoSpec
1
 N/A Iowa, US 42.4865°N, 

93.5264°W 

2017 Corn 

Brooks 

Field: ISB 
PhotoSpec

1
 N/A Iowa, US 41.9745°N, 

93.6937°W 

2017 Soybean 

Old Black 

Spruce: OBS 
PhotoSpec

1
 OCO-2: 

2019 

Canada 53.9872°N, 

105.1178°W 

Sep 18 - 

Present 

Evergreen 

Needleleaf 

La Selva: 

LSE 

PhotoSpec
1
 N/A Costa Rica 10.4233°N, 

84.0211°W 

Jan 17 – 

May 18 

Tropical 

Harvard: 

HRV 

FluoSpec
2,3

 OCO-3: 

2019 

Massachusetts, 

US 

42.5378°N, 

72.1715°W 

Mar 13 – 

present 

Deciduous 

Broadleaf 

Howland: 

HO1 

FluoSpec2
2
 OCO-3: 

Future 

Maine, US 45.2041°N, 

68.7402°W 

Jun 16 – 

2018 

Temperate 

Evergreen 

Forest 

UIUC 

Energy 

Farm: UIUC 

FluoSpec2
2,3

 OCO-3: 

2019 

Illinois, US 40.0658°N, 

88.2084°W 

Aug 16 – 

Present 

Corn, Soybean 

Pace: UVA FluoSpec2
2
 OCO-3: 

2019 

Virginia, US 37.9229°N, 

78.2739°W 

Mar 17 – 

Present 

Deciduous 

Broadleaf 

Toolik: ICT FluoSpec2
2
 N/A Alaska, US 68.6068°N, 

149.2958°W 

Jun 17 - 

Present 

Shrub (Tussock 

Tundra) 

Pinyon 

Juniper: 

MPJ 

FluoSpec2
2
 OCO-3: 

2019 

New Mexico, 

US 

35.4385°N, 

106.2377°W 

Mar 18 - 

Present 

Shrub (Pinyon-

Juniper) 

Santa Rita 

Grass: SRG 
FluoSpec2

2,5
 OCO-3: 

2019 

Arizona, US 31.7894°N, 

110.8277°W 

Apr 

2019 - 

Present 

Grassland 

Santa Rita 

Mesquite: 

SRM 

FluoSpec2
2,5

 OCO-3: 

2019 

Arizona, US 31.8214°N, 

110.8661°W 

Apr 

2019 - 

Present 

Mesquite 

Savanna 

Santa Rita 

Creosote: 

SRC 

FluoSpec2
2,5

 OCO-3: 

2019 

Arizona, US 31.9083°N, 

110.8395°W 

Apr 

2019 - 

Present 

Ponderosa 

Mead 1: 

CSP1 

FluoSpec2
4
 OCO-3: 

2019 

Nebraska, US 41.1651°N, 

96.4766°W 

2017 - 

Present 

Crop 

(maize/soybean) 

Mead 2: 

CSP2 

FluoSpec2
4
 OCO-3: 

2019 

Nebraska, US 41.1649°N, 

96.4701°W 

2018 - 

Present 

Crop 

(maize/soybean) 
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Mead 3: 

CSP3 

FLoX
 6
 OCO-3: 

2019 

Nebraska, US 41.1797°N, 

96.4397°W 

2018 - 

Present 

Crop 

(maize/soybean) 

Cornell 

Musgrave: 

COR 

Sun
 7

 OCO-3: 

2019 

New York, US  42.7228°N, 

76.6628°W 

2018 - 

Present 

Crop (corn) 

KAEFS: 

OKO 

FluoSpec2
 8
 OCO-3: 

2019 

Oklahoma, US 34.9846°N, 

97.5223°W 

2018 - 

Present 

Grass (prairie; 

C3/C4) 

Ozark: 

MZO 

FAME
9
 OCO-3: 

2019 

Missouri, US 38.7441°N, 

92.2000°W 

2018 - 

Present 

Deciduous 

Broadleaf 

Hyytiala: 

HYY 

Castell
 10

 OCO-2: 

2017 

Finland 61.8474°N, 

24.2948°E 

2016 - 

Present 

Evergreen 

Needleleaf 

Cherwon: 

CRK 

Ryu
 11

 OCO-3: 

2019 

South Korea 38.2013°N, 

127.2506°E 

2016 - 

Present 

Crop (rice 

paddy) 

Taehwa Mt: 

TNM 

Ryu
 11

 OCO-3: 

2019 

South Korea 37.3049°N, 

127.3177°E 

2018 - 

Present 

Evergreen 

Needleaf 

Jurong: JRO FluoSpec2
12

 OCO-3: 

2019 

China 31.8068°N, 

119.2173°E 

2017 - 

Present 

Crop (paddy 

rice) 

CN-SHQ FluoSpec2
12

 OCO-3: 

2019 

China 34.5203°N, 

115.5894°E 

2017 - 

Present 

Crop (Wheat / 

Maize) 

Manaus: 

ATTO 

Rotaprism
 

13
 

OCO-3: 

2019 

Brazil 2.1459°S, 

59.0056°W 

Future Tropical 

 
 
Email contacts for different instruments and sites as follows:  
1jochen@atmos.ucla.edu, 1useibt@ucla.edu, 1tmagney@Caltech.edu,  2xiyang@virginia.edu, 
3jtang@mbl.edu, 4kaiyug@illinois.edu, 5wksmith@email.arizona.edu, 6asuyker1@unl.edu, 
6jgamon@gmail.com, 7ys776@cornell.edu, 8xiangming.xiao@ou.edu, 
9woodjd@missouri.edu, 9lianhong-gu@ornl.gov, 10joan.porcar@helsinki.fi, 
11ryuyr77@gmail.com, 12yongguangzh@gmail.com, 13jberry@carnegiescience.edu, 
13saleska@email.arizona.edu  
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Table 2. List of OCO-2 target locations since 2014. * refers to locations with ground based 
SIF, + refers to discontinued targets, and # refers to a new site in May 2019.  

Site Name Location GeoLocation Number 

of Targets 

Plant Functional Type 

Eureka Canada 80.0533°N, 

86.4165°W 

4 Frozen 

Sodankyla Finland 67.36798°N, 

26.633°E 

17 Shrub / Grass 

Fairbanks Alaska, US 64.8560°N, 

147.8346°W 

16 Evergreen Needleleaf 

Hyytiala*+ Finland 61.8462°N, 

24.2958°E 

5 Evergreen Needleleaf 

Old Black 

Spruce*# 

Saskatchewan, 

Canada 

53.9872, 

105.1178°W 

1 Evergreen Needleleaf 

Bialystok+ Poland 53.217°N, 

23.0126°E 

10 Crop / Mixed Forest 

Karlsruhe Germany 49.100°N, 8.4380°E 11 Mixed Forest 

Orleans France 47.965°N, 2.1125°E 16 Urban/Crop 

Park Falls Wisconsin, US 45.9448°N, 

90.2725°W 

27 Mixed Forest 

Niwot Ridge* Colorado, US 40.0329°N, 

105.5464°W 

8 Evergreen Needleleaf 

Lamont Oklahoma, US 36.6039°N, 

97.4856°W 

43 Grassland 

Tsukuba Japan 36.0513°N, 

140.1215°E 

20 Urban 

Dryden California, US 34.958°N, 

117.882°W 

19 Desert 

Caltech California, US 34.125°N, 118.05°W 33 Urban / Mediterranean 

Izana Tenerife 28.297°N, 

16.5180°W 

10 Open Shrub 

Manaus+ Manaus, Brazil 3.2133°S, 

60.5983°W 

4 Evergreen Broadleaf 

ASC Ascension Island 7.9696°S, 

14.3937°W 

14 Open Shrub 

Darwin Australia 12.375°S, 

130.9167°E 

24 Evergreen Broadleaf 
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Reunion Reunion Island 20.901°S, 55.485°E 23 Urban / Evergreen Broadleaf 

Wollongong Australia 34.4061°S, 

150.8793°E 

27 Urban / Evergreen Broadleaf 

Lauder New Zealand 45.039°S, 169.682°E 26 Crop 
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Figure 1. Simulated and observed SIF spectral shape and satellite retrieval windows. The 
SCOPE spectral shape (solid) occurs at the photosystem level and does not account for 
reabsorption by chlorophyll (raw emission). Observed spectral shapes obtained from leaf 
fluorescence spectra account for reabsorption by chlorophyll and thus reduced magnitude 
compared to SCOPE. Horizontal lines and diamonds represent the wavelength region where 
satellite retrievals are performed. Individual sensors are color coded, and retrieval 
algorithms indicated by solid or dashed lines.         
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Figure 2. Time series of instantaneous (top) and corrected (length-of-day and wavelength, 
bottom) SIF for all sensors averaged from 30-60N over the period 1995-2018. Color coding 
and line style are consistent with Figure 1.  
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Figure 3. Monthly mean maps of length-of-day corrected SIF for all satellite sensors 
averaged for July (left) and December (right). This shows differences between sensors in 
spatial coverage, spatial resolution, and magnitude.  
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Figure 4. Map of tower network for ground based SIF instrumentation and OCO-2 target 
locations. Table 1 provides more detail on site level SIF data.  
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Figure 5. Map of SIF from OCO-2 targets (July 2018, background) and CFIS flights (June 2016, 
foreground) over Niwot Ridge flux tower. The marker labeled ‘NR1’ denotes the Niwot Ridge 
flux tower where Photospec has been installed since August 2016. The blue rectangle 
represents a 4 km x 4 km box of mostly uniform evergreen needleleaf vegetation. 10-12 
OCO-2 pixels fit within this box. OCO-2 and CFIS are length-of-day corrected at 740 nm and 
plotted on the same colorbar.  
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Figure 6. Seasonal time series of midday SIF remote sensing data from spaceborne (OCO-2), 
airborne (CFIS), and ground (PhotoSpec) platforms at Niwot Ridge, Colorado, corresponding 
to footprints shown in Figure 5. OCO-2 data, shown in diamonds, is distributed by 
vegetation type in (A), and by distance from tower in (B). All data is collected during midday 
(12-2 pm local) and corrected to 740 nm. Substantial variability is seen in both cases, with 
Evergreen Needleleaf and distance of +/- 2 km from tower providing the best agreement 
with Photospec.   
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Figure 7. Regression of overlapping SIF retrievals from TROPOMI and OCO-2 at non-urban 
target locations around the world (see Figure 4). Subpanels represent different levels of 
screening and corrections for illumination and wavelength, with midday data reported on 
the top row (A-B) and length-of-day corrected data on the bottom row: (A) all uncorrected 
data, (B) uncorrected data for 2018 only, (C) length-of-day corrected data for 2018, (D) same 
as (C) but for phase angle differences limited to 20 degrees, and (E) same as (D) but for 
targets with uniform vegetation (single IGBP land cover > 50% of total OCO-2 target area). 
Northern Forest combines Evergreen Needleleaf and Mixed Forest. All data is screened for 
clouds (clear days for OCO-2 and cld fraction < 0.1 for TROPOMI). Note the change in scale 
between midday and length-of-day corrected data in the top row and bottom row.  
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Figure 8. Analysis of daily, length-of-day corrected GOME-2 retrievals against OCO-2 targets 
over the period 2015-2018. Datasets are screen for clouds and normalized for wavelength 
(740 nm). We consider only non-urban locations with uniform vegetation.  
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Figure 9. GOME-2 SIF retrieval sensitivity experiments. This shows the regression of global, 
vegetated, instantaneous retrieval values in July 2018 for GOME-2 (y-axis) and TROPOMI (x-
axis). The top row shows GOME-2 retrievals using SIF reference shapes obtained from 
SCOPE simulations using varying retrieval windows including (A) 720 – 758 nm for PKv1, (B) 
734 – 758 nm for PKexp1, and (C) 742 – 758 nm for PKtrop. Experiments in the bottom row 
(E and F, PKexp2 and PKexp3) use the same retrieval windows as the top row (A and B) but 
with SIF reference shapes obtained from the average of leaf level observations across 
multiple species (Magney et al., 2019b). 

 

 


