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1 Introduction 

“Der Fernerstehende, der nur die Fortschritte der empirischen Metalltechnik vor Augen hat, wird 

vielleicht nach dem Nutzen solcher Arbeit fragen. Wir treiben aber auch in der Wissenschaft eine Politik 

auf weite Sicht, und wir erstreben durch Grundlagenforschung eine umfassende Theorie, weil sie uns 

dem höchsten Ziel aller Wissenschaft näherbringt. Es besteht darin, Neues vorauszusagen. […] Damit 

aber wird alle Grundlagenforschung letzten Endes zur Zweckforschung auf weite Sicht.”[1]  

With this pleading for fundamental research, Eduard Zintl closed his revolutionary work 

“Intermetallische Verbindungen” emphasizing the importance of research based on curiosity 

without forseeable profit for applications. Simultaneously, Zintl proposed the following relationship 

between basic and applied research: In the long term, knowledge generated by fundamental research 

represents the foundation for applied research. Indeed, many phenomena discovered by basic 

research, e.g. X-rays,[2] radioactivity or the giant magnetoresistance effect, are now, after 

commercialization, an inherent part of daily life and of enormous technological importance.[3] Some 

phenomena have even been discovered by pure chance. In 1907, Henry J. Round first described the 

electroluminescence effect with the words: “During an investigation of the unsymmetrical passage of 

current through a contact of carborundum and other substances a curious phenomenon was noted.”[4] 

Now, over a century later,[5] LED based light sources are state of the art and slowly but surely replacing 

incandescent lamps and mercury containing fluorescent lamps.[6] In 2030, approximately 640 TWh, 

which is equivalent to the current total energy consumption of Canada, are going to be saved globally 

by efficient lighting.[6] This energy saving accounts to a prevention of 3.3 gigatonnes of CO2 being 

released, a significant step in the right direction in terms of global climate change.  

One main step in the development for commercialization of LEDs has been the invention of 

phosphor-converted (pc)-LEDs.[7] Here, a primary LED-chip (blue or ultraviolet) is coated with 

phosphors, which absorb and convert the LED light to emit light of a longer wavelength (Stokes 

shift).[8] Many different compound classes such as oxides,[9]
 sulfides, or nitrides have been investigated 

as hosts for activator ions such as Eu2+ or Ce3+ to obtain phosphors with desirable properties.[10] 

Descending from purely academic interest,[11] nitridosilicates turned out to be one of the most 

relevant compound classes for application in pc-LEDs.[10b,12]  

https://dict.leo.org/englisch-deutsch/inquisitiveness


Introduction 
 

 
2 

Various intrinsic advantages, like the good thermal and chemical stability,[13] the rigidity of highly 

condensed covalent anionic Si–N networks as well as the enormous structural variability make 

nitridosilicates a compound class intensively investigated by applied and fundamental researchers.[14] 

While applied research is so far primarily interested in nitridosilicates with luminescent properties, 

fundamental research in nitridosilicate chemistry is facing two targets: 

1. Preparation of nitridosilicates with novel structures  

2. Access to an increased elemental variety 

With numerous nitridosilicates that have been discovered until 2016,[11,13,15] a great deal of knowledge 

about different Si–N networks and thus the enormous structural variability of nitridosilicates has 

been generated. Nevertheless, only 18 different metallic elements have been stabilized in 

nitridosilicates, thereof only 13 elements in compounds not related to simple AB (wurtzite) and AB2 

(fluorite) structure types (Figure 1.1).[11,13,15]  

 
Figure 1.1:  Section of the periodic table with elements marked in green that were observed as 

counter cations in nitridosilicates before this work.[11,13,15] 

This thesis tackles the second challenge of increasing the elemental variety in nitridosilicates with the 

aim of providing a systematic access to yet unprecedented counter cations. Therefore, the latter have 

been chosen from each region of the periodic table of elements, that had so far been inaccessible for 

nitridosilicate chemistry, namely the transition metals, the p-block and the actinides.   
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1.1 Nitridosilicates – The Basics 

Nitridosilicates are composed of anionic Si–N building units and counter cations Mn+. Although, 

formally labeled as Si4+ and N3−, Si–N bonds are predominantly covalent due to a comparatively low 

difference in electronegativities (ΔEN ≈ 1.3).[16] Therefore, the nonmetal-character of Si and its sp3-

hybridization are strengthened resulting in the fundamental building unit of nitridosilicates, namely 

the SiN4 tetrahedron (Figure 1.2).[17] 

 

Figure 1.2:  SiN4 tetrahedron, the fundamental building unit of Si3N4 and nitridosilicates, with 

observed ranges for Si–N bond lengths and N–Si–N-angles.[11,13,15,18]  

When comparing the reported Si–N bond lengths and N–Si–N angles in nitridosilicates with those 

in the parent compound Si3N4,[11,13,15,18] significant deviations are found (Figure 1.2). This can be 

mainly explained by the connectivity of N atoms. In the case of bridging N atoms the distances d(Si–

N) typically grow with an increasing connectivity of the N atoms.[19] In both ambient pressure 

polymorphs α- and β-Si3N4 these atoms are exclusively in threefold coordination by Si, usually 

denominated N[3].[20] However, in nitridosilicates connectivities of terminal N[1], twofold-bridging 

N[2], and N[3] atoms have been observed, as well. Furthermore, even N[4] atoms, which connect four 

SiN4 tetrahedra are possible in nitridosilicate chemistry.[11,13a,15p] Such fourfold bridging N atoms 

exhibit ammonium character and were first identified in BaYbSi4N7, a nitridosilicate disocvered by 

HUPPERTZ et al. in 1996.[13a] 

In general, SiN4 tetrahedra are most frequently connected by common vertices. Edge-sharing 

tetrahedra (first observed in Ba5Si2N6),[13b,15m,15t,15ah] however, frequently occur in nitridosilicate 

chemistry, which is in stark contrast to oxosilicates, where SiO4 tetrahedra exclusively share common 

corners aside from one unconfirmed exception, namely fibrous SiO2.[17,21] The existence of edge-
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sharing SiN4 tetrahedra compared to SiO4 tetrahedra may be explained in two ways, in line with 

PAULING’S RULES.[22] First, a formal N3− has a larger ionic radius than a formal O2−.[23] Thus the 

distance of the two adjacent formal Si4+ is increased. Secondly, the high amount of covalency in Si–

N bonds reduces the effective charge of the adjacent Si4+ in a way that electrostatic repulsion is less 

critical.  

Despite the intrinsic higher stability of Si–O bonds compared to Si–N bonds,[24] nitridosilicates are 

known for their remarkable chemical and thermal stability,[14a] easily withstanding air and moisture, 

especially when κ >1/2. The reason for that is the increased range for the degree of condensation 

(1/4 ≤ κSi–N ≤ 3/4), compared to oxosilicates (1/4 ≤ κSi–O ≤ 1/2), which compensate the weaker Si–N 

interaction. Thus, nitridosilicates are often inert even in hot concentrated acids, alkaline solutions or 

at temperatures up to 1600 °C (in N2).[14a] 

Based on the building principles of SiN4 tetrahedra and the wider range for κ, nitridosilicates exhibit 

a huge theoretical structural variability which even exceeds the one of the naturally occurring 

oxosilicates.[14b] Consequently, many structure types different to those in oxosilicates have already 

been observed in nitridosilicate chemistry at ambient pressure (Figure 1.3).[13,15a,15d,15f,15h-k,15m,15o,15r,15t,15v, 

15x,15y,15aa,15ab,15ae,15ag-aj,15am,25]  

 

1.2 Nitridosilicates – Structure Types 

In principle, two general groups of nitridosilicates may be distinguished. First, there are compounds 

which arise from simple AB and AB2 structures (α-ZnS and CaF2)[26] where all formal cations Mn+ and 

Si4+ are tetrahedrally coordinated by N atoms. These nitridosilicates have been denominated “double 

nitrides”. All known instances (Li5SiN3, MSiN2 with M = Be, Mg, Mn, Zn and MSi2N3 with M = Li, 

Na)[15a-g] had been discovered before 1995, when other M–Si–N compounds have been discovered, 

revealing the great structural variability of nitridosilicates. 

In this second group, which includes the greater part of all known nitridosilicates, solely SiN4 

tetrahedra are observed with counter cations in diverse coordination environments. Among these 

nitridosilicates a wide range for κ has been observed, reaching from the lowest possible value of 1/4 of 

uncondensed SiN4 tetrahedra (CaSiN4)[15aj] up to 2.8/4 (BaSi7N10),[13b] which is close to the maximum 

value as observed in Si3N4. In analogy to classical (oxo)silicates the compounds can be classified as 
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inosilicates (RE5Si3N9,[15y] Eu2SiN3,[15aa] LiCa3Si2N5)[15ah], phyllosilicates (BaSiN2,[15t] Ca7Si4N10)[15v] and 

tectosilicates (remaining ones) including zeolite like structures (Ba2Nd7Si11N23).[15o]  

 

 

Figure 1.3:  Different types of Si–N networks in nitridosilicates (ambient pressure), each displayed by 

its first representative, ordered by increasing degree of condensation κ. [13,15a,15d,15f,15h-

k,15m,15o,15r,15t, 15v,15x,15y,15aa,15ab,15ae,15ag-aj,15am,25]  
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1.3 M2Si5N8 – A Famous Group of Nitridosilicates 

One group of nitridosilicates, that has so far probably drawn the most attention is M2Si5N8 (M = Ca, 

Sr, Ba, Eu).[11,15i,15j] These compounds were discovered in 1995 by SCHLIEPER et al. and in 1997 by 

HUPPERTZ et al., belong to the first nitridosilicates not crystallizing in simple AB or AB2 structure 

types and they have been termed 2-5-8 (or 258) materials. 

Beside of a high pressure polymorph, namely HP-Ca2Si5N8,[27] M2Si5N8 (M = Ca, Sr, Ba, Eu) occurs in 

two ambient pressure polymorphs, a monoclinic structure which is formed by Ca2Si5N8 and an 

orthorhombic one formed with the metals M = Sr, Ba, Eu. As depicted in Figure 1.4, both structures 

are formally based on dreier-ring layers of condensed SiN4 tetrahedra (gray), which are inter-

connected to a three-dimensional network via further tetrahedra (dark gray).  

 

Figure 1.4:  Crystal structures of monoclinic Ca2Si5N8 (left) and orthorhombic M2Si5N8 (M = Sr, Ba, Eu) 

represented by Sr2Si5N8 (right).  

The layer-interconnecting tetrahedra (dark gray) are built up by N[2] atoms (blue) which are 

connected to two Si atoms, thus from a covalent point of view formally carrying one negative charge. 

This assumption is also supported by the cations’ location in close proximity to these N[2] atoms in 

both cases, Ca2Si5N8 as well as orthorhombic M2Si5N8 (M = Sr, Ba, Eu). By different up-down 



Introduction 
 

 
7 

sequences of the tetrahedra-vertices within the dreier-ring layers, the Si–N networks are able to adapt 

to small ions like Ca2+ or large ones like Sr2+, Ba2+ and Eu2+. 

In 1997, HUPPERTZ discovered the luminescence effects of Eu2Si5N8, when illuminated with UV 

light.[19] Subsequent investigations on M2Si5N8 then revealed the extraordinary potential of Eu2+ 

doped compounds as phosphors for pc-LED devices.[28] M2Si5N8:Eu2+ feature desirable properties like 

high chemical and thermal stability due to their rigid Si–N networks, tunable spectral positions of 

the emission bands by substitution of counter cations and a small Stokes shift that stabilizes the 

overall high luminescence efficiency at higher temperatures.[12a] Furthermore, due to the increased 

amount of covalency between N and the activator cation Eu2+ compared to oxides that shifts the 

emission wavelength into the red spectral regions, M2Si5N8:Eu2+ compounds became a success story 

in solid-state lighting.[10b] 

 

1.4 Nitridosilicates – Approaches to Synthesis 

Many different approaches to the synthesis of nitridosilicates have been established since 1953 

exhibiting two main common features.[15a] First, nitridosilicate syntheses typically require high 

reaction temperatures (T >700 °C). Secondly, it is crucial to exclude oxygen due to possible 

substitution N for O within the nitrides and due to the larger reactivity of O2 compared to N2. Four 

main synthesis routes leading to the discovery of novel nitridosilicate structure types are known, 

namely the reaction of binary nitrides according to Lux and Flood, the nitridation of (inter)metallic 

compounds, the reactions in a metallic flux with azides as nitrogen source and the reaction of metals 

and silicon diimied, which are discussed more detailed in the further text. 

Reaction of binary nitrides according to Lux and Flood 

The Lux-Flood concept, initially designed for oxide chemistry, distinguishes between acids (oxygen 

acceptors) and bases (oxygen donors).[29] It can be applied to nitride chemistry analogously.  

w MxNy + z Si3N4 → MwxSi3zN4z+wy      1.1 

Thus, a reaction as given in Equation 1.1 can be described as a formal transfer of N3− from MxNy 

toward Si3N4 building up the anionic covalent Si–N network, whose charge is then balanced by the 

counterions Mn+. For example, the first investigations on nitridosilicates have been performed by 
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reaction of the binary nitrides Li3N and Si3N4, where a formal nitride ion N3− is transferred from Li3N 

onto Si3N4.[15a]
 Such a transfer of nitride typically decreases the degree of condensation κ. 

Nitridation of metallic compounds 

Another early applied synthesis strategy is the reaction of metals or intermetallic phases with nitrogen 

(Equation 1.2). According to this strategy, the nitridosilicate MgSiN2 has been prepared from 

nitridation of the intermetallic phase Mg2Si.[15c] 

MxSiy + z N2 → MxSiyN2z       1.2 

The strategy given in Equation 1.2 especially is suitable for M3+ containing nitridosilicates as a 

possible strategy to avoid formation of thermodynamically stable binary nitrides MN due to the prior 

arrangement of M and Si in intermetallics. Therefore, many rare earth (RE 3+) containing 

nitridosilicates like RESi3N5 (RE = La, Ce, Pr, Nd, Sm) or RE3Si6N11 (RE = Ce, Pr, Nd) are readily 

accessible by this approach.[15h] 

Metallic flux with azide as nitrogen source 

A strategy that typically yields well-formed crystals of nitridometallates in general and nitridosilicates 

in particular is using a metallic flux (Li or Na).[30] Here, Si and an electropositive metal are dissolved 

in the flux as well as in situ formed N2 (corresponding Li or Na azides) in sealed ampoules 

(Equation 1.3).[15m]  

x M + y Si + z (Na/Li)N3 + w Na/Li → MxSiyN3z + (w+z) Na/Li   1.3 

It is expected that oversaturation of soluble nitridic species, which are formed in the metallic flux, 

leads to crystallization at comparatively low temperatures of 700–1000 °C.  

Reactions of metals with SDI 

So far, the most successful strategy in terms of expanding nitridosilicates’ structural variety is the one 

exemplarily shown in Equation 1.4, developed by SCHNICK and coworkers.[15i-k]  

x M + y “Si(NH)2” → MxSiyN2(y−z) + z N2 + y H2     1.4 

From reaction between various metals and silicon diimide with the empirical formula Si(NH)2,[31] a 

precursor for Si3N4 preparation,[32] the nitridosilicates M2Si5N8 (M = Ca, Sr, Ba, Eu),[11,15i,15j] 

Ce3Si6N11,[15k] MYbSi4N7 (M = Sr, Ba),[11,13a,15p] BaSi7N10,[13b] Ba2Nd7Si11N23,[13k] Ba1.5Eu1.5YbSi6N11,[15am] 
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LiSi2N3,[15f,15r] RE5Si3N9 (RE = La, Ce, Pr),[15y,15z] RE7Si6N15 (RE = La, Ce, Pr),[15x] Eu2SiN3 and 

Ca3RE3Si9N17 (RE = Sm, Yb)[15aa,15ai] have been prepared and structurally characterized. 

Other routes 

Many other nitridosilicates like NaSi2N3,[15g] Li4M3Si2N6 (M = Ca, Sr),[15ac,15af] LiCa3Si2N5,[15ac,15ah] 

Li5RE5Si4N12 (RE = La, Ce),[15ad] Li2MSi2N4 (M = Ca, Sr),[15ae] or AE1RESi4N7:Eu2+ (AE = Sr, Ba; RE = Y, 

La, Lu)[15an] have been discovered by combination of the above mentioned synthesis strategies or by 

use of additional starting materials (e.g. halides).  

Further variation of the existing strategies like it has been done for preparation of Li2SiN2 by a 

modified precursor approach using Si(CN2)2 instead of SDI are also promising.[15ab] 

Even ammonolysis of an oxide (MnSiO3) by ammonia has been successfully applied for nitridosilicate 

preparation (MnSiN2).[15e] 

1.5 Elemental Variety – A Substantial Restriction in Nitridosilicate 
Chemistry 

The great advantage of nitridosilicate chemistry, namely its enormous structural variability, is in 

stark contrast to its elemental variety.[11,13,15] Several reasons are responsible for this restriction. 

Among them, three main issues have been identified (Figure 1.5), and are discussed in more detail in 

further course. 

 

 

Figure 1.5:  Section of the periodic table with elements marked in green which were observed as 

counter cations in nitridosilicates before this work. Issues jointly responsible for the non-

existence of corresponding nitridosilicates are marked in blue, red, and orange.[11,13,15] 
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Charge density 

Focusing on the highly electropositive alkali metals (Figure 1.5), it can be seen, that only the small 

ones, namely Li and Na are quite suitable for preparation of nitridosilicates. In case of the alkali 

metals K, Rb and Cs it is likely that the combination of a low charge (+1) with a large ionic radius 

(>1.3 Å)[23] is not sufficient to stabilize anionic charges on nitrogen at the selected reaction 

conditions.[33] This charge density issue has also been proposed as a reason for the non-existence of 

the hypothetical binary nitrides “Sr3N2” and “Ba3N2”.[32]  

Binary nitrides 

The high stability of binary nitrides (NaCl- and wurtzite-type) MN of early transition metals, 

lanthanides and actinides represents a deep thermodynamic sinkhole, which often prevents 

nitridosilicate formation applying the classic synthesis strategies given in chapter 1.3.[34]  

Nobility  

Due to the comparatively (e.g. to oxygen) low oxidative strength of nitrogen, syntheses of 

nitridosilicates require strong electron donors to reduce N or to prevent oxidation of anionic N 

species. This especially applies to late d- or p-block metals. First, the nobilty of these elements can be 

high enough to generally prevent reactions with nitrogen at ambient pressure as is the case with most 

platinoids or elements such as Pb, where reactions with N2 are only observed by supporting electric 

discharges.[35] Second, slightly less noble metals rather form interstitial binary nitrides (e.g. Fe, Mo, 

W),[33d] which decompose into metallic phases and N2 below the temperatures necessary for 

nitridosilicate syntheses.[36] Also less noble metals might rather form nitridometallates where these 

metals are not the counter ions but part of the anionic networks (e.g. Al, Ga).[37] 
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1.6 The Potential of Nitridosilicate Chemistry 

Arranging the metals of the periodic table of elements according to their EN values,[33d,38] as it is done 

in Figure 1.6, it becomes clear that nitridosilicate chemistry exhibits a great potential for exploration 

that so far is completely unexploited due to synthetic inacessibility. 

 

Figure 1.6:  Metals sorted by increasing EN according to Pauling.[37] Elements marked in green have 

been incorporated into nitridosilicates before this thesis. 

As depicted in Figure 1.6, elements that have been incorporated into highly covalent Si–N networks 

(not AB or AB2 types) are limited to the narrow range of EN between 0.9 and 1.2.[37] That means, less 

than 19% of the possible EN range of metals have been accessible before this thesis. This offers a great 

expansion potential on nitridosilicates in case of solving the challenges posed by stable binary nitrides 

(red in Figure 1.6) and comparatively noble metals (yellow in Figure 1.6). 

1.7 The Objective – Expanding Elemental Variety 

The main objective of this thesis has been the access to nitridosilicates with unprecedented 

compositions in order to expand the elemental variety of this compound class. Since prior attempts 

have so far not been successful applying the known synthesis approaches toward nitridosilicates,[39] a 

crucial criterion for achieving this objective has been the development of a novel strategy.  

Despite of different precursors used to prepare nitridosilicates, all synthesis routes known before this 

work are based on a bottom-up approach. Here, the nitridosilicate networks are built up after 

breaking down the starting materials’ structures. Thus, the properties of the selected metals play a 

crucial role prior und during Si–N network formation. In case of the less electronegative metals, 

which had been stabilized in nitridosilicates before, electrons are easily transferred to N and anionic 
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N species are not oxidized by the corresponding cations, therefore enabling the formation of 

nitridosilicates. In contrast, when metals are used which form stable binary nitrides or those that are 

too noble, other thermodynamic sinkholes like MN or intermetallic compounds and N2 become 

favoured, preventing nitridosilicate formation.  

In order to disempower these two issues (stable binary nitrides and nobility of the selected metals), 

one possible strategy for a novel approach was to, at least partially, avoid the reaction step, in which 

Si–N bonds are formed. Based on the assumption that SiN4 tetrahedra should be preformed, 

nitridosilicates have been used as starting materials. 

Inspired by different solid-state compounds like β-alumina, oxoferrates or oxoaluminates where ion 

exchange reactions in salt melts have been successfully performed before,[40] the breakthrough has 

been achieved by a reaction (980 °C) that was designed for prevention of MN (M = Sc) formation, 

between ScCl3, a highly reactive Sc compound, and α-Ca2Si5N8, a nitridosilicate that was thought 

unlikely to offer its N atoms to form ScN, due to its highly condensed Si–N network (κ = 5/8).  

Two key messages were inferred from a PXRD of the product mixture. First, no ScN, but CaCl2 was 

observed and secondly, the diffraction pattern of α-Ca2Si5N8 was still present after the reaction but 

with decreased lattice parameters. EDX measurements then confirmed, that ion exchange has 

occurred between some Ca2+ ions and 0.66 equivalents of Sc3+ (equation 1.1)  

α-Ca2Si5N8 + x ScCl3 → Ca2−1.5xScxSi5N8 + 1.5x CaCl2     1.5 

This possibility to exchange cations in highly condensed nitridosilicates by salt melts in a top-down 

approach was subsequently employed to investigate selected elements that had so far not been 

stabilized in nitridosilicates. This thesis offers first insights into a so far by over 50% increased 

elemental variety in nitridosilicate chemistry applied to the model system M2Si5N8.[41] 
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2 Increased Synthetic Control – Gaining Access to 
Predicted Mg2Si5N8 and β-Ca2Si5N8 

Angew. Chem., Int. Ed. 2017, 56, 4810–4813; Angew. Chem. 2017, 129, 4888–4891.  

Philipp Bielec and Wolfgang Schnick 

 

 

 

Abstract  

Nitridosilicates represent an intriguing class of materials and are typically made up of highly 

condensed tetrahedral network structures. Alkaline‐earth nitridosilicates emerged as unique host 

materials for Eu2+ doped luminophores which found broad application in pc-LEDs. In contrast to 

common strategies of preparing nitridosilicates by bottom‐up syntheses, we have now succeeded to 

post‐synthetically design nitridosilicates by ion exchange in metal halide melts. We describe the 

syntheses of hitherto unknown but predicted alkaline‐earth nitridosilicates, Mg2Si5N8 and 

β-Ca2Si5N8. Both compounds were obtained by ion exchange starting from pre‐synthesized 

nitridosilicates. In situ investigations of the ion‐exchange process show that the Si–N network 

topology remains preserved. Therefore, the reaction offers a significant increase of synthetic control 

with respect to classical bottom‐up syntheses.

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201701361
https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201701361
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2.1 Introduction with Results and Discussion 

Nitridosilicates are being thoroughly exploited for development of novel host compounds for Eu2+ 

doped luminophores to efficiently tune emission characteristics of pc‐LEDs.[1–5] Light‐emitting 

diodes have exceptional energetic efficiencies of more than 50% in contrast to incandescent lamps 

(ca. 5%).[6] For example M2Si5N8:Eu2+ (M = Sr, Ba) shows intense luminescence and is applied in 

commercial LED‐based lighting products.[7–9] To gradually modify and optimize luminescence 

properties in M2Si5N8:Eu2+ (M = Sr, Ba), attempts were undertaken to synthesize solid solution series, 

such as Sr2−xCaxSi5N8:Eu2+.[10] Targeting compounds with x >0.6, side phases were formed instead of 

the desired products as a result of the restricted solubility of Ca2+ in Sr2Si5N8 under the selected 

conditions. The difference in ionic radii of Ca2+ and Sr2+, which is crucial for the formation of the 

different structure types of M2Si5N8,[7,11] also seems to be the reason why solid solutions 

Sr2−xCaxSi5N8:Eu2+ with x >0.6 were not accessible in bottom‐up syntheses. The bottom‐up approach 

is based on building up anionic networks after breaking down the starting materials’ structures in 

high‐temperature reactions. Typical bottom‐up syntheses leading to nitridosilicates are given in 

Equations 2.1–2.3 (T >1000 °C).[11–14] 

2 Ca + 5 “Si(NH)2” → Ca2Si5N8 + 5 H2↑ + N2↑     2.1 

2 “LaSi3” + 5 N2 → 2 LaSi3N5       2.2 

6 SrO + 6 C + 5 Si3N4 + 2 N2 → 3 Sr2Si5N8 + 6 CO↑     2.3 

Besides high‐temperature reactions, approaches with reduced temperature, such as the synthesis of 

Ba5Si2N6 in Na‐flux have been reported as well.[15] Generally, many different starting materials for 

example, metals, binary nitrides, alloys containing Si, amides, imides or even oxides in carbothermic 

reactions have been employed preparing nitridosilicates. 

However, synthesis planning seems to be hardly possible in solid‐state chemistry in general and in 

nitridosilicate synthesis in particular. Choosing a stoichiometry to target a desired sum formula, it is 

possible to try to influence the degree of condensation, but the influence on structural details still 

remains restricted. For example, Ca2Si5N8 and Sr2Si5N8 both contain layers of corner‐sharing SiN4 

tetrahedra building up dreier rings (rings made up of three tetrahedra) with SiN4 tetrahedra 

interconnecting the layers, but within the layers the up/down sequence of the tetrahedra vertices is 

different.[7,11] 
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DFT calculations of a hypothetical Ca2Si5N8 polymorph “o-Ca2Si5N8” in the structure type of Sr2Si5N8 

indicate that this compound would be dynamically instable.[16] In contrast to that, hypothetical 

Mg2Si5N8 (with Ca2Si5N8 structure type)[17] was predicted to be a metastable compound concerning 

the decomposition into MgSiN2 and Si3N4. 

Using explorative strategies we discovered the possibility to exchange cations of highly condensed 

nitridosilicates in metal halide melts maintaining the rigid nitridosilicate precursor networks. 

Applying this strategy to the model system M2Si5N8 the predicted compound Mg2Si5N8 and a 

polymorph of Ca2Si5N8, which is closely related to the calculated “o-Ca2Si5N8”, were synthesized for 

the first time (Equations 2.4–2.5). For easier distinction the novel Ca2Si5N8 polymorph is named 

β-Ca2Si5N8 and Ca2Si5N8 is renamed as α-Ca2Si5N8. 

α-Ca2Si5N8 + 2 MgCl2 → Mg2Si5N8 + 2 CaCl2      2.4 

Sr2Si5N8 + 2 CaCl2 → β-Ca2Si5N8 + 2 SrCl2      2.5 

To ensure complete cation exchange (Figure 2.1) a three equivalent excess MCl2 (M = Mg, Ca) was 

used (details on the reactions given in chapter A.4). For synthesis of β-Ca2Si5N8 a repetition of the 

ion exchange was performed to achieve complete conversion. The colorless solid Mg2Si5N8 as well as 

off‐white β‐Ca2Si5N8 (pictures given in chapter A.9) were analyzed by PXRD. 

As predicted Mg2Si5N8 was refined in the monoclinic space group Cc (no. 9) applying the structure 

model of α-Ca2Si5N8.[11,17] The lattice parameters of Mg2Si5N8 are significantly smaller than those of 

α-Ca2Si5N8 and deviate only slightly from the predicted values (Table 2.1). 

β-Ca2Si5N8 was refined using a modified structure model of Sr2Si5N8 in the monoclinic space group 

P21 (no. 4) which is a maximal translationsgleiche subgroup of Pmn21 (no. 31).[7] The distortion from 

the orthorhombic parental structure to monoclinic β‐Ca2Si5N8 could be one reason why “o‐Ca2Si5N8” 

should be dynamically instable according to DFT calculations.[16] Apart from the symmetry 

reduction, all refined crystallographic data of β-Ca2Si5N8 deviate only slightly from the predicted 

values (Table 2.2, for clarity reasons unique axis c is chosen). 
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Figure 2.1:  Top: Crystal structure of α-Ca2Si5N8 (view along b) and bottom: of Sr2Si5N8 (view along a) 

with exchange of ions leading to Mg2Si5N8 and β-Ca2Si5N8. 

RIETVELD refinements (chapters A.5 and A.7) of PXRD data reveal products of high purity. The 

elemental compositions of both products were analyzed by EDX and ICP‐OES confirming the sum 

formulas Mg2Si5N8 and Ca2Si5N8 (chapters A.10 and A.11). 

Table 2.1:  Crystallographic data of Mg2Si5N8 (RIETVELD refinement),[18] calculated values for predicted 

Mg2Si5N8 (LDA, GGA)[17] and α-Ca2Si5N8.[11] 

  Mg2Si5N8 LDA GGA α-Ca2Si5N8 

Crystal system  monoclinic 

Space group  Cc (no. 9) 

Z  4 

Lattice parameters / Å, ° a 14.0672(2) 14.0615 14.2161 14.347(8) 

 b 5.35002(7) 5.3176 5.2878 5.606(3) 

 c 9.57993(10) 9.4843 9.6122 9.686(7) 

 β 111.0127(7) 111.00 110.97 112.03(8) 

V / Å3  673.04(2) 662.07 687.47 723.0 

ρ / g · cm−3  2.97144(6) 3.02 2.91 3.057 
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Table 2.2:  Crystallographic data of β-Ca2Si5N8 (RIETVELD refinement),[18] calculated values for predicted 

“o-Ca2Si5N8” (LDA, GGA)[16] and Sr2Si5N8.[7] 

  β-Ca2Si5N8 LDA GGA Sr2Si5N8 

Crystal system  monoclinic orthorhombic 

Space group  P21 (no. 4) Pmn21 (no. 31) 

Z  2 2 

Lattice parameters / Å, ° a 5.66713(12) 5.622 5.704 5.712(3) 

 b 9.2818(2) 6.650 6.753 6.817(3) 

 c 6.6889(2) 9.262 9.379 9.336(1) 

 β 90.1164(10) 90 90 90 

V / Å3  351.843(13) 346.26 361.24 363.9(2) 

ρ / g · cm−3  3.13978(12) 3.19 3.06 3.904 

 

Both compounds exhibit the same Si–N network topology as their parental structures, but are 

distorted due to incorporation of smaller cations. Consequently, Si–N distances in Mg2Si5N8(1.60–

1.83 Å) and β-Ca2Si5N8 (1.54–1.95 Å) differ slightly from their parental nitridosilicates (1.64–1.80 Å). 

Figure 2.2 illustrates the distortion for the coordination of Mg2 (Mg2Si5N8). The equivalent cation 

Ca2 in the starting material (α-Ca2Si5N8) is coordinated fivefold by N atoms as a heavily distorted 

singly capped tetrahedron. By exchanging the cations from Ca2+ to Mg2+ their distances to N are 

contracted except for the capping N4 atom.  

 

Figure 2.2:  Coordination environment of Ca2 (left, CN = 5) in α-Ca2Si5N8 and Mg2 (right, CN = 4) in 

Mg2Si5N8. 

This enlargement (>3 Å) ends in a distorted tetrahedral coordination for Mg2. In general, distances 

between Mg2+/Ca2+and N atoms in Mg2Si5N8 (1.9–2.8 Å) and β‐Ca2Si5N8 (2.3–3.2 Å) are consistent 

with other nitride compounds containing Mg2+ or Ca2+ for example, M[Mg3SiN4] (M = Ca, Sr, Eu) or 



Increased Synthetic Control 
 

 
28 

Ca5[Si2N6].[11,16,19,20] Further structural details on Mg2Si5N8 and β-Ca2Si5N8 are given in chapters A.6 

and A.8.[21] 

To illustrate the reaction progress, an in situ investigation of the ion exchange leading to Mg2Si5N8 

was performed by TDPXRD. Diffraction diagrams (Figure 2.3) of the reaction mixture described in 

Equation 2.4 were measured at different temperatures (chapter A.12). Figure 2.3 shows the presence 

of a crystalline nitridosilicate phase at each temperature step throughout the entire reaction. The 

reflections assigned to α‐Ca2Si5N8 shift to higher angles after melting of MgCl2. 

 

Figure 2.3:  In situ TDPXRD. Dark areas symbolize high intensities (Tmax = 900 °C for 0.5 h, heating and 

cooling rate of 5 °C · min−1, 100 °C step size). 

This decrease of lattice parameters is caused by the continuous transformation of α-Ca2Si5N8 into 

Mg2Si5N8 through an intermediate solid solution (Ca2−xMgxSi5N8, 0 ≤ x ≤ 2). Ca2−xMgxSi5N8 

(Figure 2.3) indicates that the structural motifs of the starting material are present throughout the 

entire conversion. Therefore, this reaction is basically different to all other nitridosilicate syntheses. 

Although the reaction temperature is significantly lower than for the bottom‐up synthesis of the 
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starting materials (1600 °C) cation mobility in the pre‐synthesized nitridosilicates seems to be 

sufficiently high at the selected reaction temperatures. Therefore, the conversion can be interpreted 

as ion exchange similar to materials like β‐alumina, where exchange of Na with Ca, Sr, or Ba has been 

reported employing MCl2 (M = Ca, Sr, Ba).[22] A cause of this ion exchange could be the difference in 

ionic radii between Mg2+ and Ca2+. First, Coulomb's law is dependent on the distance between cations 

and anions leading to stronger interactions for smaller cations. Secondly, assumed that cation 

mobility in the nitridosilicate is sufficiently high, entropy driven cation exchange between halide melt 

and nitridosilicate could occur leading to the intermediate solid solution Ca2−xMgxSi5N8. The decrease 

in lattice parameters and distortion of the Si–N networks then reduces the probability of released 

Ca2+ to reenter the nitridosilicate, enriching the nitridosilicate with Mg2+. 

Thermal stability of Mg2Si5N8 and β-Ca2Si5N8 was also investigated under N2 atmosphere up to 

1500 °C indicating that both nitridosilicates are less stable than their parental compounds (0). Under 

these conditions Mg2Si5N8 decomposes into volatile Mg compounds and solid Si3N4 remains in the 

crucible. This is consistent with known behavior of Mg nitrides at such temperatures. At 1500 °C α‐

Ca2Si5N8 was formed from β-Ca2Si5N8 through a reconstructive transformation. “o-Ca2Si5N8” which 

is closely related to β-Ca2Si5N8 has been calculated to be a second high pressure phase besides 

HP-Ca2Si5N8 but higher in enthalpy than HP-Ca2Si5N8.[16] Therefore, the transformation of denser 

β-Ca2Si5N8 (ρ = 3.14 g · cm−3) to less dense α-Ca2Si5N8 (ρ = 3.06 g · cm−3) may be interpreted as 

transformation of a high pressure polymorph into the thermodynamically stable ambient pressure 

phase. 

In conclusion we discovered an unprecedented possibility of post‐synthetic cation exchange in 

nitridosilicates using metal halide melts at comparatively low temperatures. As proof of concept we 

prepared the hitherto inaccessible compounds Mg2Si5N8 (α-Ca2Si5N8 type) and β-Ca2Si5N8 (distorted 

Sr2Si5N8 structure) from α‐Ca2Si5N8 and Sr2Si5N8. Both compounds are not stable at conditions 

commonly used for nitridosilicate syntheses. At such conditions Mg2Si5N8 decomposes and 

β-Ca2Si5N8 undergoes a reconstructive transformation into α-Ca2Si5N8. An in situ investigation of the 

Mg2Si5N8 synthesis by TDPXRD showed continuous transformation of α‐Ca2Si5N8 through an 

intermediate solid solution Ca2−xMgxSi5N8 into Mg2Si5N8 preserving the network topology. 

Maintaining the rigid Si–N substructure significantly increases synthetic control. Planning structures 

by combining known nitridosilicate networks with other metal cations is going to lead to novel 

compounds of elemental compositions, which have not been accessible with classical bottom‐up 
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syntheses so far. This potential of establishing unprecedented nitrides could generate materials with 

intriguing properties. 
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Abstract  

Highly condensed nitridosilicates doped with Eu2+ or Ce3+ play an important role in saving energy by 

converting the blue light of (In,Ga)N‐LEDs. Although nitridosilicates are known for great structural 

variety based on covalent anionic Si–N networks, elemental variety is restricted. Presenting a 

significant extension of the latter, this work describes a general access to open‐shell transition‐metal 

nitridosilicates. As a proof‐of‐principle, the first iron nitridosilicate, namely Fe2Si5N8, was prepared 

by exchanging Ca2+ in α‐Ca2Si5N8 applying a FeCl2 melt (salt metathesis). The title compound was 

analyzed by PXRD, EDX, ICP‐OES, CHNS analysis, TGA/DSC, Mößbauer spectroscopy and 

magnetic susceptibility measurements. Furthermore, the structure of α‐Ca2Si5N8 was determined at 

800 and 900 °C confirming the anionic network of α‐Ca2Si5N8 providing possible migration pathways 

for the ion exchange reaction. 
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3.1 Introduction with Results and Discussion  

In a world of rising demand for high‐tech materials, the availability of elemental resources becomes 

an increasingly critical issue.[1] At this point, development of nitridosilicates, a compound class 

mainly consisting of earth abundant elements Si and N,[2] can contribute to save natural resources. 

Besides the ecologic advantage, highly condensed nitridosilicates possess extraordinary chemical and 

thermal stability owing to rigid polymeric Si–N networks such as the parent compound Si3N4.[3] 

Therefore, these covalent network structures often are excellent host compounds for open‐shell 

activator cations such as Eu2+ and Ce3+, leading to highly efficient luminophores for state‐of‐the‐art 

LED applications.[4–6] 

Cations with unpaired electrons may contribute favorable materials properties such as luminescence 

or magnetism.[7] Thus, opening a general access to transition‐metal nitridosilicates has been a great 

challenge for decades. For example, an early attempt starting from Co metal and SDI yielded 

hexagonal Si3N4 microtubes filled with intermetallic Co/Si compounds. These microtubes grew out 

of metal droplets by a VLS mechanism instead of formation of Co‐nitridosilicates.[8] This example 

illustrates one of the main obstacles of synthetic attempts towards transition‐metal nitridosilicates. 

Under the typical conditions, reduction of the late transition metals and formation of 

thermodynamically more stable metallic compounds prohibits formation of the desired products.[9,10] 

In contrast, early transition metals form highly stable binary compounds MN (M = Sc, Ti, V, Cr) 

with rock‐salt type of structure,[11] preventing the formation of multinary nitridosilicates as well. 

Recently, we developed an ion exchange reaction route (salt metathesis) in metal halide melts for 

syntheses of hitherto inaccessible nitridosilicates (Eqations 3.1–3.2).[12–14] 

α-Ca2Si5N8 + 2 MgCl2 → Mg2Si5N8 + 2 CaCl2    3.1 

Sr2Si5N8 + 2 CaCl2 → β-Ca2Si5N8 + 2 SrCl2     3.2 

The reaction conditions of this ion exchange route are fundamentally different from other 

nitridosilicate syntheses in which the anionic polymeric tetrahedral network is formed in presence 

of the cations to be incorporated.  
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Besides introducing Mg2+ into the nitridosilicate network of α‐Ca2Si5N8 and realizing a novel 

structural variant β‐Ca2Si5N8 resembling Sr2Si5N8, we now succeeded to extend this approach to 

open‐shell transition‐metal nitridosilicates. As proof of concept, the first iron nitridosilicate Fe2Si5N8 

was prepared at 980 °C in sealed quartz ampoules according to Equation 3.3. 

α-Ca2Si5N8 + 2 FeCl2 → Fe2Si5N8 + 2 CaCl2     3.3 

To ensure complete cation exchange (chapter B.6.1), a three equivalent excess of FeCl2 was used. 

Fe2Si5N8 was obtained as a crystallographic phase pure brown solid (chapter B.6.10), stable towards 

air, moisture, and concentrated acids. Detailed information on the RIETVELD refinement and the 

elemental composition, determined by EDX, ICP‐OES, and CHNS analysis, are given 

in chapters B.6.2, B.6.5, B.6.6 and B.6.7.[15] 

 

Figure 3.1:  In situ TDPXRD. Dark colors symbolize high intensities (Tmax = 980 °C for 10 min, heating 

and cooling rate of 5 °C · min−1, 100 °C/80 °C step size). 

 

As for the synthesis of Mg2Si5N8,[14] TDPXRD shows continuous ion exchange between α‐Ca2Si5N8 

and two equivalents of FeCl2, leading to Fe2Si5N8 (Figure 3.1 and chapter B.6.13). 

As mentioned in our previous work,[14] we suspect cation mobility at the reaction temperature in 

α-Ca2Si5N8 to enable ion exchange while the covalent network structure is widened with increasing 
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temperature but structurally preserved. To elucidate the reaction mechanism of the ion exchange, 

HR‐TDPXRD was performed to determine the structure of the starting material α‐Ca2Si5N8 at 800 

(Figure 3.2 and chapter B.4.2) and 900 °C (chapter B.4.3), respectively. As expected, the unit cell of 

α‐Ca2Si5N8 expands (a + 0.1%, b + 0.3%, c + 0.4%) with temperature, preserving the layers of SiN4‐

tetrahedra dreier rings (gray) connected by SiN4‐tetrahedra (purple, yellow). Based on geometrical 

calculations, we identified possible migration pathways for Ca2+ using TOPOS (Figure 3.2 

and chapter B.5).[16] The migration pathways (blue, orange) are running along the planar SiN4 

tetrahedra layers (gray), winding around the layer‐connecting SiN4‐tetrahedra (purple, yellow).[17] 

Based on these geometrical calculations we suggest that ion conductivity of cations such as Mg2+, 

Ca2+, or Fe2+ is the reason for the continuous ion exchange in α‐Ca2Si5N8 at the selected reaction 

temperatures. This mechanism of ion conductivity can also explain why the ion exchange reaction 

for Fe2Si5N8 requires higher temperature (980 °C) for complete Ca2+ exchange than for Mg2Si5N8 

synthesis (850 °C).[14] Owing to the higher EN of Fe compared to Mg, Fe–N bonds are expected to be 

more covalent than those between Mg and N.[18] Since covalent interactions are intrinsically directed 

in space compared to spherical ionic interactions, the energy barrier for movement of Fe2+ in the 

anionic network is assumed to be increased. 

Applying Mößbauer spectroscopy (Figure 3.3), we could confirm high-spin states at Fe2+, as it is 

expected from crystal field theory owing to distorted tetrahedral environments in Fe2Si5N8. Two 

major signals (1 and 2) in Figure 3.3 with a fixed area ratio of 1:1, in line with the crystallographic 

information, show an isomer shift of 0.837(2) and 0.816(2) mm · s−1, respectively, which is in the 

usual range for high-spin Fe2+ ions.[19] The quadrupole splitting of 1.587(6) and 1.952(6) mm · s−1 is 

in good agreement with a non‐cubic site symmetry of the Fe atoms. Both signals show line 

broadening in accordance with other 57Fe Mößbauer spectroscopic measurements, possibly caused 

by disorder owing to statistical distribution of Fe split positions in the sample (chapters B.6.3 and 

B.6.4). Furthermore, two minor signals with area ratios of 5.2(3) and 2.9(4)% belonging to side phases 

were necessary to completely reproduce the recorded spectrum (chapter B.6.11). 



Access to Open-Shell Transition-Metal Nitridosilicates 
 

 
39 

 

Figure 3.2:  Structure of α‐Ca2Si5N8 at 800 °C along c (top), along a (middle), and along b (bottom) with 

planar SiN4‐tetrahedral layers (gray), connecting SiN4‐tetrahedra (purple, yellow) and 

calculated migration pathways (blue, orange) for Ca2+ (green).  
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Figure 3.3:  Experimental (data points) and simulated (continuous lines) 57Fe Mößbauer spectrum of 

Fe2Si5N8 at 78 K. The obtained fitting parameters are listed in Table B.19. 

According to magnetic susceptibility measurements (χ) at an external field of 10 kOe (details given 

in chapter B.6.12), Fe2Si5N8 shows paramagnetism and a presumably antiferromagnetic magnetic 

anomaly (TN = 36.1 K) at low temperatures. By applying ZFC/FC measurements at different external 

fields (Figure 3.4, top) combined with a magnetization isotherm at 10 K (Figure 3.4, middle), we 

could show that this anomaly can be ascribed to an impurity phase. Comparison with literature values 

of Fe2Si2O6 (TN = 43 K)[20] and CaFeSi2O6 (TN = 38 K)[21] combined with Mößbauer spectroscopy 

results (chapter B.6.11) indicate Fe2−xCaxSi2O6 to be the impurity phase. The effective magnetic 

moment of the investigated sample was calculated according to 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 =  √4 ·  𝜒𝜒 ·  𝑇𝑇 and plotted 

versus the temperature in Figure 3.4 (bottom). The effective moment reaches μeff = 3.2(1) μB at 27 °C. 

This is higher compared to the expected 2.83 μB; however, owing to the magnetically active impurity 

phase with a contribution of about 8% (Figure 3.3), it can be confirmed that at least the majority 

phase exhibits Fe atoms in the divalent oxidation state. 

3 Fe2Si5N8 → 6 Fe + 5 Si3N4 + 2 N2↑     3.4 

Finally, thermal stability of Fe2Si5N8 was investigated by TGA/DSC under nitrogen atmosphere 

showing an exothermal process combined with mass loss indicating decomposition at 1097 °C 

(chapter B.6.8). Decomposition products were determined by PXRD of a Fe2Si5N8 sample heated to 

1200 °C in a radio‐frequency furnace pointing to the reaction shown in Equation 3.4 (chapter B.6.9). 

These results are in good agreement with the observed behavior of systems containing transition 

metals, Si and N.[8] 
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Figure 3.4:  Magnetic properties of Fe2Si5N8: Top: temperature dependence of zero‐field‐cooled/ field 

cooled (ZFC/FC) measurements conducted at different applied fields; middle: magneti-

zation isotherm at 10 K; bottom: temperature dependence of the effective magnetic 

moment μeff. 
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In conclusion, we established a general access (so far also successful results with Mn2+ and Co2+) to 

open‐shell transition‐metal nitridosilicates by the exchange of alkaline‐earth with transition‐metal 

cations. As a proof‐of‐concept, the first iron nitridosilicate, namely Fe2Si5N8, was prepared, 

representing a significant extension of elemental variety in nitridosilicates. Occurrence of high-spin 

FeII in paramagnetic Fe2Si5N8 could be confirmed by Mößbauer spectroscopy and magnetic 

susceptibility measurements. Applying HR‐TDPXRD, we elucidated the structure of α‐Ca2Si5N8 at 

800 and 900 °C, enabling the localization of possible migration pathways for cations in the Si–N 

networks. Since κ in nitridosilicates with formula type M2Si5N8 is comparatively high, it can be 

expected that migration pathways can occur in many other nitridosilicates at elevated temperatures. 

Furthermore, incorporating small cations such as Mg2+ into structures, initially built up with larger 

cations like Ca2+ or Sr2+, migration pathways of the final compounds could even occur at 

temperatures close to ambient conditions. 
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Abstract  

Based on the known linking options of their fundamental building unit, i.e. SiN4 tetrahedra, 

nitridosilicates belong to the inorganic compound classes with the greatest structural variability. 

Although facilitating the discovery of novel Si–N networks, this variability represents a challenge 

when targeting non‐stoichometric compounds. Meeting this challenge, we report on a strategy for 

targeted creation of vacancies in highly condensed nitridosilicates by exchanging divalent M2+ by 

trivalent M3+ via the ion exchange approach. As proof of concept, the first Sc and U nitridosilicates 

were prepared from α-Ca2Si5N8 and Sr2Si5N8. PXRD and synchrotron single‐crystal XRD showed 

random vacancy distribution in Sc0.2Ca1.7Si5N8 and partial vacancy ordering in U0.5xSr2−0.75xSi5N8 with 

x ≈ 1.05. The high chemical stability of U nitridosilicates makes them interesting candidates for 

immobilization of actinides. 
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4.1 Introduction with Results and Discussion 

The beneficial effect of vacancies in crystal structures on properties like ion conductivity for both 

cations (e.g. Li+, Na+)[1] and anions (e.g. O2−)[2] is well known. Moreover, vacancies play an important 

role in nuclear fuel materials. The process of fission gas incorporation (e.g. Xe) into vacancies is 

expected to have a positive effect on the fission process by reducing swelling of the materials and 

therefore improving mechanical properties.[3] Nevertheless, high amounts of vacancies may have a 

destabilizing effect on solid-state materials and can only be incorporated into compounds that 

withstand such an effect. 

Highly condensed nitridosilicates with κ ≥ 1/2 are well known for their intrinsic stability.[4] As known 

from the parental compound Si3N4,[5] the stability of these compounds arises from highly covalent 

networks built up from SiN4 tetrahedra. As the Si–N bond energy is almost equal to that of C–C in 

diamond,[6] highly condensed Si–N network structures typically exhibit high mechanical, thermal 

and chemical stability. This enables applications as sheath materials, ball bearings or even as internal 

combustion engine materials such as in pistons or gas turbines.[5b, 7] Despite their stability, highly 

covalent Si–N networks can exhibit great flexibility as well. Preserving the connectivity, 

nitridosilicates like M2Si5N8 (M = Ca, Sr, Ba, Eu)[8] or MSi7N10 (M = Sr, Ba)[9] may incorporate cations 

of different sizes only by distortion of the networks. Moreover, nitridosilicate networks are even 

flexible enough to compensate a change in cation charge. In La3−xCa1.5xSi6N11:Eu2+ (x ≈ 0.77)[10] 

substitution of La3+ by Ca2+ leads to Ca2+ located on former La3+ sites as well as on additional 

interstitial sites to provide electroneutrality. 

In contrast to an exchange of M3+ by M2+, which leads to additional cation sites, we now investigated 

the concept of targeting vacancies in nitridosilicates by substitution of M2+ by M3+. The incorporation 

of two M3+ cations results in three M2+ cations being removed, creating one cation vacancy. In order 

to ensure this process instead of forming stoichiometric compounds containing both M2+ and M3+ or 

multiple phases due to the enormous structural variability of Si–N networks,[11] cations of pre-

synthesized nitridosilicates were exchanged by reaction with metal chlorides.[8d, 12] 

As a proof of concept, we incorporated Sc3+ and U3+, both not yet observed in nitridosilicates, into 

Si–N networks. Applying MCl3 (M = Sc, U)[13] melts, Sc3+ replaced Ca2+ in α-Ca2Si5N8 and Sr2+ was 

exchanged by U3+ in Sr2Si5N8 according to Equation 4.1 (AE = alkaline-earth metal). 

0.2 MCl3 + AE2Si5N8 → 0.3 AECl2 + M0.2AE1.7Si5N8    4.1 
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Detailed information on the reaction conditions and the elemental composition determined by EDX 

and ICP-OES are given in chapters C.3.1, C.3.3, C.3.4, C.5.1 and C.5.3.  

 

Figure 4.1:  Powder X-ray diffractograms (Cu-Kα1) of a) Sc0.2Ca1.7Si5N8 and b) U0.2Sr1.7Si5N8 compared to 

the parental compounds α-Ca2Si5N8 and Sr2Si5N8. 

Powder XRD patterns of M0.2AE1.7Si5N8 show that the Si–N networks of the parental compounds are 

preserved during the vacancy incorporation (Figure 4.1). Carefully examining the powder patterns, 

two different types of vacancy distributions are observed. In the diffraction pattern of Sc0.2Ca1.7Si5N8 

(Figure 4.1a, picture in chapter C.3.5), no considerable additional reflections compared to pristine 

α-Ca2Si5N8 (V = 723.0 Å3) were observed. This indicates that the vacancies in this compound are 

statistically distributed over the cation positions. In fact, RIETVELD refinement for Sc0.2Ca1.7Si5N8 

(V = 718.24(2) Å3) confirms less electron density on the former Ca2+ sites (chapter C.3.2) due to 

incorporation of Sc3+,[14] which is isoelectronic to Ca2+.[15] Considering possible approaches toward 
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M2+ ion conductors, targeting such a statistical distribution of vacancies could be a promising 

attempt.[1] In the diffraction pattern of a bulk sample with nominal composition U0.2Sr1.7Si5N8 (picture 

in chapter C.5.5), additional reflections are observed (mainly at low 2θ values, Figure 4.1b). These 

reflections arise from U0.525Sr1.212Si5N8,[16] which exhibits an approximately tripled a lattice parameter 

(a = 17.1295(3) Å) compared to that of Sr2Si5N8 (a = 5.710(2) Å). Due to the reaction conditions, 

U0.525Sr1.212Si5N8 is better described as a member of the solid solution series U0.5xSr2−0.75xSi5N8, x ≈ 1.05. 

According to RIETVELD refinement (Figure 4.2 and chapter C.5.4),[14] the bulk sample with a nominal 

composition of U0.2Sr1.7Si5N8 can approximately be described as a heterogeneous mixture of Sr2Si5N8 

and U0.5xSr2−0.75xSi5N8 (x ≈ 1.05). 

 

Figure 4.2:  RIETVELD refinement (Cu-Kα1) for a bulk sample with the nominal composition U0.2Sr1.7Si5N8 

composed of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) and Sr2Si5N8. 

The crystal structure of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) is shown in Figure 4.3; it exhibits a partially 

ordered distribution of U3+ and vacancies. Along the red arrow, Sr4 (21.2% occupied), two mixed 

Sr/U positions and another Sr4 site break the symmetry of pristine Sr2Si5N8, where only Sr atoms are 

arranged along [100] (blue arrows), resulting in the tripled a lattice parameter. The ordered 

distribution of U3+ and vacancies confirms the enormous flexibility of the [Si5N8]4− network. Derived 

from a position suitable for M2+ cations the CHARDI value of ≈ 2 changed to ≈ 0.4 for the Sr4 site 

due to network distortion, providing a suitable site for vacancies (chapter C.4.3).[17] In case of a 

vacancy on the Sr4 site (Figure 4.3b), Sr2A/U2A and U1A are occupied, compensating the anionic 

charge surrounding the empty Sr4 site. If Sr4 is present, the more distant U1B and Sr2B sites are 

occupied. 
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Figure 4.3:  a) Crystal structures of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) (left) and Sr2Si5N8 (right) along [100] (top) 

and along [010] (bottom); b) Cationic environment of Sr4 (21.2% occupation) in 

U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) including distances M–Sr4 (M = Sr, U). 

The ability of the flexible [Si5N8]4− network to incorporate different cations as well as vacancies 

combined with the intrinsic stability of highly condensed nitridosilicates makes the nominal bulk 

phase U0.2Sr1.7Si5N8 a compound interesting for immobilization of uranium. As the basic requirement 

for such an application, the chemical stability of a powder sample was investigated by treatment with 

HNO3 (69%), KOH (10%) and several times with H2O, each for 24 h at 90 °C (chapter C.5.2). The U 

contents dissolved in this process were determined by ICP-MS. While the corrosive conditions in 

HNO3 and KOH only dissolved around 11.4% and 6.8% of the total U content, less than 0.2% was 

released by the treatments with H2O. In summary, more than 81% of the total U quantity introduced 

as highly reactive UCl3 could be immobilized toward treatments with HNO3, KOH or H2O. 

Since nitridosilicates do not occur in nature, no data on long-term stability are available. However, 

Si3N4 has been found in chondrites containing samples with putatively presolar origin.[18] Obviously, 
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such Si3N4 particles had withstood the ionizing space radiation. Moreover, Si3N4 has been considered 

as diluent for burning of plutonium fuels due to its high durability.[19] Nitridosilicates derive from a 

formal substitution of Si in Si3N4. Therefore, its properties indicate that consideration of highly 

condensed covalent host lattices like [Si5N8]4− or those with even higher condensation degrees could 

be worthwhile in order to develop highly durable nuclear waste forms. The dominant part of bond 

energy in a highly condensed nitridosilicate arises from the covalent Si–N network, resulting in a 

decreased influence of actinide–N interactions on the total energy of the compound. Thus, the loss 

of actinide–N bond energy throughout a radioactive decay would have a minor destabilizing effect 

on the nitridosilicate itself. The ability of Si–N networks to compensate a local change in charge on 

the cation site by network distortion could possibly benefit immobilization of daughter nuclides with 

different charges after radioactive decays. 

In conclusion, we opened up a route for targeting vacancies in nitridosilicate chemistry substituting 

M2+ by M3+ while preserving the Si–N connectivity. As proof of concept, the first scandium and 

uranium nitridosilicates were prepared. In Sc0.2Ca1.7Si5N8, vacancies were found to be statistically 

distributed over the cation positions. In the light of a desired M2+ cation conductivity, such a 

distribution may be beneficial. In contrast, the incorporation of U3+ into Sr2Si5N8 yields 

U0.5xSr2−0.75xSi5N8 (x ≈ 1.05), which exhibits a partially ordered distribution of U3+ and vacancies. In 

fact, the [Si5N8]4− network is distorted in a way that one of the Sr2+ sites of Sr2Si5N8 may contain only 

around 20% cations and almost 80% vacancies. Despite this significant amount of vacancies in the 

nitridosilicate, the stability of a bulk sample containing U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) was still sufficient 

to immobilize more than 80% of U3+ cations even against concentrated mineral acids like HNO3 

(69%) and corrosive bases like KOH (10%). Due to this pronounced chemical stability combined 

with the ability to adapt to vacancies which could possibly be able to incorporate gaseous products 

of the radioactive decay, highly condensed nitridosilicates are interesting candidates for actinide 

immobilization. As a next step, investigations on the radiation stability are needed to check the 

suitability of nitridosilicates for nuclear waste storage.  
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Abstract 

Due to the weak oxidative force of N2, nitrides are only typically formed with the less electronegative 

metals. Meeting this challenge, we here present Pb2Si5N8, the first nitridosilicate containing highly 

electron-affine cations of a metal from the right side of the Zintl border. By using advanced 

synchrotron XRD, the crystal structure was determined from a tiny single crystal of 1 × 3 × 3 μm3 in 

size, revealing a significantly different bonding situation compared to all other nitridosilicates known 

so far. Indeed, DFT calculations confirm distinct amounts of covalency not only between Pb and N 

but also between formal Pb2+ cations. Thus, unprecedented cationic Pb2 dumbbells with a stretching 

vibration at 117 cm−1 were found in Pb2Si5N8, the first representative of a crystallographically 

elucidated lead nitride, stabilized by high amounts of covalency. 
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5.1 Introduction with Results and Discussion 

The element Pb is too noble to be oxidized by N2. Therefore, reactions between N2 and Pb yielding 

products with claimed compositions Pb2N3 and Pb3N4 have only been reported after reactions 

between Pb and N2 supported by electric discharges (600–1500 V).[1] The challenge concerning these 

elements becomes clear when focusing on the single crystallographically characterized binary 

compound in the system Pb/N, namely the primary explosive lead azide Pb(N3)2.[2] Due to the EN of 

Pb,[3] which is comparatively high for a metal, and an electron affinity, which exceeds that of N 

significantly,[4] Pb is an element often found as anionic species in Zintl phases.[5] Therefore, 

interactions between cationic Pb and anionic N species have to withstand the tendency of electron 

transfer from N towards Pb, typically leading to decomposition into thermodynamically favored N2 

and Pb-containing byproducts. Apparently, such N species need to be covalently stabilized like in the 

azide anion of Pb(N3)2. This kind of covalent stabilization can also be realized by C–N bonds as 

known from ferrocyanides,[6] thiocyanates,[7] cyanamides,[8] dicyanamides,[9] tricyanomethanides and 

organo-lead(II) amides.[10] A similar effect is found for compounds where N is bound to the 

trimethylsilyl protecting group (–SiMe3) to form trimethylsilylamides.[11] In order to not only 

stabilize Pb–N interactions but the entire compound itself, an increase of the covalent 

interconnectivity between these Pb–N containing complexes is desirable. Starting from silylamides, 

border cases of such hypothetical infinitely interconnected amides are nitridosilicates. Derived from 

(oxo)silicates by a formal exchange of O by N, nitridosilicates are typically built up from anionic SiN4 

tetrahedral networks and contain cations of the less electronegative metals.[12] In case of a high 

condensation degree (κ ≥ 1/2) these compounds usually exhibit remarkable thermal and chemical 

stability.[13]  

The challenge at this point was to provide suitable reaction conditions for the incorporation of Pb 

cations into anionic Si–N networks, where the latter are typically formed in the presence of the least 

electronegative metals.[12–13,14] Recently, we established an approach towards the preparation of 

hitherto inaccessible nitridosilicates.[15] Instead of attempting to synthesize the nitridosilicate 

network directly in the presence of the desired cation, we devised a two-step process building up the 

tetrahedral network by first exploiting the easily oxidizable character of the alkaline-earth metals. 

Subsequently, the cations were exchanged in a molten salt by those of the desired metal. By applying 

this strategy, we no longer depend on N2 as a metal oxidant but use the oxidative power of halides 
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instead to provide the metal in the desired oxidation state. In this way, the first lead nitridosilicate 

Pb2Si5N8 was prepared according to the metathetic Equation 1 at 920 °C (chapter D.4). 

Sr2Si5N8 + PbCl2 → Pb2Si5N8 + 2 SrCl2     5.1 

After washing in boiling concentrated nitric acid, the title compound was obtained as a brightly 

yellow solid (Figure 5.1, left) with an optical band gap, estimated to 2.6 eV from a UV-Vis reflectance 

spectrum (chapter D.10). The chemical composition of Pb2Si5N8 was confirmed by EDX, ICP-OES 

and combustion analysis (chapters D.7, D.8 and D.9). 

 

Figure 5.1:  Left: Photograph of powderous Pb2Si5N8; right: Brightfield TEM image of the single crystal 

used for single-crystal XRD. 

The title compound crystallizes in a distorted variant of the M2Si5N8 (M = Sr, Ba) structure type,[16] 

made up from vertex-sharing SiN4 tetrahedra.[17] These tetrahedra form corrugated layers consisting 

of highly condensed dreier rings (Figure 5.2a, yellow orange). The layers are interconnected by 

further SiN4 tetrahedra (Figure 5.2a, orange) resulting in a 3D tectosilicate type of structure. Si–N 

distances between 1.703(9) and 1.770(11) Å are in the typical (and relatively narrow) range for 

nitridosilicates.[12a]  

The phase purity of Pb2Si5N8 was confirmed by RIETVELD refinement (Figure 5.2b) applying the 

crystal structure of the particle (Figure 5.1, right) received from single-crystal XRD (detailed 

crystallographic data in chapters D.5 and D.6). In order to minimize absorption effects of the Pb-

containing sample using Cu-Kα1 radiation (λ = 1.5406 Å), 150 equivalents LiH were added to bulk 

Pb2Si5N8 for powder XRD. 

Although Pb2Si5N8 crystallizes isopointal with M2Si5N8 (M = Sr, Ba),[16] clear deviations are found 

between the structures containing alkaline-earth cations and Pb. While Sr–N and Ba–N distances in 

M2Si5N8 can be easily understood by an ionic model with Ba2+ exhibiting a larger ionic radius than 

Sr2+, the situation in Pb2Si5N8 is significantly different. Despite similar ionic radii of Sr2+ and Pb2+ in 
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oxides,[18] Pb–N distances in Pb2Si5N8 show a broad distribution between values that are significantly 

shorter than Sr–N in Sr2Si5N8 and others which are even larger than Ba–N in Ba2Si5N8 (Figure 5.3). 

 

Figure 5.2:  a) Crystal structure of Pb2Si5N8 along [001] (left) and along [100] (right) with SiN4 tetrahedra 

(yellow orange, orange), N atoms (blue) and Pb2 dumbbells (gray); b) RIETVELD refinement 

of a Pb2Si5N8 sample diluted with 150 equivalents LiH measured with Cu-Kα1 radiation 

(λ = 1.5406 Å).  

Such distance distribution (Figure 5.3) and the smaller difference in EN between Pb and N[3] already 

indicate more covalent M–N interactions in Pb2Si5N8 compared to common nitridosilicates. With 

respect to these findings the electronic DOS (Figure 5.4a) and projected crystal orbital Hamilton 

populations (pCOHPs)[19], given in Figure 5.4b, c and d were reconstructed from the ABINIT-derived 

PAW wavefunctions using LOBSTER.[20] Upon doing so, significant covalency in Pb2Si5N8, both for 
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the lower part between −16±2 eV (Si and N mixing in) and the upper part at −6±5 eV (all atoms) was 

observed. 

 

Figure 5.3:  Distribution of the 13 shortest distances M–N in M2Si5N8 (M = Sr, Ba, Pb). 

 

 

Figure 5.4:  a) Total and partial DOS of Pb2Si5N8 as well as projected COHP of b) Si–N, c) Pb–N, and d) 

Pb–Pb interactions as derived from DFT calculations including spin-orbit coupling (SOC). 

The energy axis is shown relative to the Fermi level (εF). 

For quantification of the effective charge reduction by covalency in Pb2Si5N8, Mulliken charges QA 

as defined recently were calculated.[21] These charges arrive at +0.71, +1.73, and −1.18 for Pb, Si, and 

N, respectively, significantly lower than the idealized ionic charges +2, +4, and −3. Likewise, 
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experimental indications for charge reduction at the Pb atoms were also obtained by XPS 

(chapter D.11). As expected, the strongest covalent bond is Si–N with a length of 1.71 Å. This 

interaction has solely bonding contributions in the entire valence band and an impressive integrated 

COHP (ICOHP) value of −7.46 eV. The highly covalent Pb–N bond, starting at 2.36 Å, arrives at an 

ICOHP value of −2.63 eV, which is about ⅓ of the Si–N bond. However, much to our surprise the 

strength of the Pb–Pb bond of 3.19 Å (Figure 5.4d) reaches an ICOHP of −1.25 eV. Such a distance 

and bond strength between two Pb atoms would rather be expected for plumbanes, diplumbenes, 

plumbylenes or Zintl phases than between cationic Pb in a nitridosilicate.[5d,22] 

 

Figure 5.5:  a) Pb environment in Pb2Si5N8; b) Theoretically calculated DPS (black) and experimentally 

determined Raman spectrum (red).  

Indeed, covalently attractive interactions between two formal Pb2+ cations, as found in Pb2Si5N8, 

which result from a 6s2 atomic configuration are unusual (or even unlikely) and require an 

explanation. Nonetheless, it is exactly this spring force leading to a signal in the experimental Raman 

spectrum at 117 cm−1 (Figure 5.5b, chapter D.12) which can be easily assigned to the Pb–Pb 

stretching vibration based on DFT phonon calculations.[23] In contrast to such an unexpected Pb2+–

Pb2+ interaction, [Bi2]4+ dumbbells are well known in literature,[24] but in the latter there is no problem 

in assigning a single bond between Bi2+ cations with a valence configuration of 6s26p1. For [Bi2]4+ 
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dumbbells, stretching vibrations have been found in the range of 102–113 cm−1. Due to the lighter 

mass of a formal [Pb2]4+ dumbbell compared to the Bi case, the stretching vibration of [Pb2]4+ at 

117 cm−1 also fits well to the experimental values in literature.[24a,24d]  

In addition, we note that this intercationic Pb–Pb bonding effect does not go back to spin-orbit 

coupling because it is equally visible by almost the same amount in the non-SOC data. As shown in 

Figure 5.6 (left), such 6s2–6s2 interaction between the Pb2+ are reminiscent of the He–He (1s2–1s2) 

scenario because the bonding 1σg molecular orbital is cancelled by the antibonding 1σu* such that 

there cannot be covalent bonding in He2, at least as long as no electron is promoted into the empty 

6p-centered 2σg molecular orbital like in the singly-bonded He2* Rydberg molecule.  

 

Figure 5.6:  Hückel-type diagram of σ-type molecular-orbital interactions between two adjacent Pb2+ 

as a function of zero (left) and strong (right) mixing between s and p orbitals. 

If, however, the s and p orbitals become energetically comparable, further sp mixing sets in and yields 

another set of molecular orbitals (Figure 5.6, right) with a decisive difference. While the 

1σg/1σu*/2σg/2σu* course stays the same, the bonding characters change from bonding / antibonding 

/ bonding / antibonding (no sp mixing) to strongly bonding / weakly bonding / weakly antibonding 

/ strongly antibonding (strong sp mixing), as also observed in the canonical MOs of the nitrogen 

molecule.[25] A comparable situation is indeed found for the intercationic Pb–Pb interaction, as 

depicted in Figure 5.7, owing to the covalency in Pb2Si5N8. 

Besides the previously shown total projected COHP between the two Pb cations given in Figure 5.7a 

we also present those interactions that arise solely from the s orbitals (Figure 5.7b). The 

bonding/antibonding 1σg/1σu* pair of orbitals is present at −8±2 eV, and they cancel each other like 

in the He2 ground state, as expected. If only p orbitals were involved (Figure 5.7d), bonding states 
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would show up around −5 eV, reminiscent of the 2σg of He2 (Figure 5.6, left). Strong sp mixing, 

however, is at play, as visible from Figure 5.7c. The low-lying 1σg bonding level no longer gets 

cancelled by the higher-lying 1σu* level (because the latter has turned weakly bonding, see Figure 5.6, 

right), and results in a bonding interaction between the Pb2+. Some p‒p bonding (see Figure 5.7d) 

further cancels the weakly antibonding leftover levels around −4±1 eV (see Figure 5.7c), and the 

result is the total interaction given in Figure 5.7a.  

 

Figure 5.7:  Projected COHP of the a) Pb–Pb bond put side by side with those contributions from pure 

b) s–s, c) s–p, and d) p–p interactions. The energy axis is shown relative to the Fermi level 

(εF).  

Interestingly, indications for 6sp mixing in interconnected Pb atoms have also been observed in 

Au2PbP2, a compound with one dimensional Pb(0)-chains.[26] Therefore, the attractive interaction 

within the cationic Pb2 dumbbells in Pb2Si5N8 is strong enough to result in a similar Pb–Pb distance 

between cations (3.19 Å) compared to Pb(0)–Pb(0) in Au2PbP2 (3.20 Å).  

In conclusion, the first lead nitridosilicate Pb2Si5N8 was prepared by ion exchange circumventing 

thermodynamically more stable N2 and elemental Pb. DFT calculations demonstrate that high 

covalency in Pb2Si5N8 causes sp mixing at the Pb atoms resulting in attractive covalent interactions 

between formal Pb2+ ions. These theoretical findings are proven by Raman spectroscopy, in harmony 

with phonon calculations. The title compound, able to easily withstand a treatment in boiling 

concentrated nitric acid and elevated temperatures (decomposition above 1000 °C in N2; details in 

chapter D.14), is the first representative of a crystallographically characterized lead nitride. 
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Therefore, the synthetic approach toward Pb2Si5N8 may serve as a general tool to unite the 

intrinsically reductive chemistry of nitrides with metals exhibiting high electron affinities. 
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6 Summary 

The publications in this cumulative thesis illustrate the progress that was made while pursuing the 

aim of expanding elemental variety in nitridosilicates. “Increased Synthetic Control – Gaining Access 

to Predicted Mg2Si5N8 and β-Ca2Si5N8” describes the synthesis approach that has been developed and 

used in this thesis. Beside of elucidating the reaction mechanism of the ion exchange reaction, 

“Fe2Si5N8: Access to Open-Shell Transition-Metal-Nitridosilicates” primarily deals with the challenges 

nitridosilicate chemists have to face when working with elements of the d-block in the periodic table. 

In “Targeting Vacancies in Nitridosilicates: Aliovalent Substitution of M2+ (M = Ca, Sr) by Sc3+ and 

U3+” we show that the highly covalent nitridosilicate networks [Si5N8]4− reveal impressive flexibility 

beside of their intrinsic chemical, thermal and mechanical stability, making it possible to incorporate 

not only significant amounts of vacancies but also actinide cations into a nitridosilicate for the first 

time. Last but not least, in “Cationic Pb2 Dumbbells Stabilized in the Highly Covalent Lead 

Nitridosilicate Pb2Si5N8” the synthesis approach used in this thesis has proven to be sufficient to 

provide access to the first formal lead nitride, namely Pb2Si5N8, which is also the first nitridosilicate 

with counter ions of a metal of the p-block in the periodic table of elements. 

6.1 Increased Synthetic Control – Gaining Access to Predicted Mg2Si5N8 
and β-Ca2Si5N8 

The first top-down synthesis approach toward preparation of 

nitridosilicates is presented. Cations in M2Si5N8 (M = Ca, Sr) have 

been exchanged applying salt melts MCl2 (M = Mg, Ca) yielding 

predicted Mg2Si5N8 (space group Cc (no. 9), a = 14.0672(2) Å, 

b = 5.35002(7) Å, c = 9.57993(10) Å and β = 111.0127(7)°) and 

β-Ca2Si5N8 (space group P21 (no. 4), a = 5.66713(12) Å, b = 9.2818(2) Å, c = 6.6889(2) Å and 

β = 90.1164(10)°). The reaction progress has been investigated by in situ X-ray methods revealing Si–

N network preservation throughout the entire reaction. Furthermore, a concept for explanation of 

the driving forces is presented, based on a combination of effects by Coulomb’s law and network 

distortion by incorporation of smaller cations. 
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6.2 Fe2Si5N8: Access to Open-Shell Transition-Metal-Nitridosilicates 

The first iron nitridosilicate, namely Fe2Si5N8 (space group 

Cc (no. 9), a = 14.04056(14) Å, b = 5.32626(5) Å, 

c = 9.59064(9) Å and β = 110.7304(6)°) has been prepared 

from a FeCl2 melt and α-Ca2Si5N8. The divalent oxidation 

state of Fe2+ has been proven applying Mößbauer 

spectroscopy. Due to the unpaired d-electrons in Fe2+, magnetic susceptibility measurements reveal 

paramagnetism of the compound with μeff = 3.2(1) μB. Since 2.83 μB indicate a number of two 

unpaired electrons in a distorted tetrahedral environment (spin-only formula), Fe2+ in Fe2Si5N8 can 

be ascribed as low-spin. In addition, the mechanism of the ion exchange reaction has been extensively 

investigated by further in situ and HR-HT X-ray methods. Thus, migration pathways for Ca2+ 

enabling the ion exchange reaction have been identified in α-Ca2Si5N8.  

 

6.3 Targeting Vacancies in Nitridosilicates: Aliovalent Substitution of M2+ 
(M = Ca, Sr) by Sc3+ and U3+  

A strategy for targeted incorporation of vacancies into highly 

condensed nitridosilicate networks by exchange of trivalent by 

divalent cations is presented. As proof of concept the non-

stoichiometric compounds Sc0.2Ca1.7Si5N8 (space group Cc 

(no. 9), a = 14.2891(2) Å, b = 5.59340(8) Å, c = 9.69356(12) Å 

and β = 112.0205(8)°) and U0.5xSr2−0.75xSi5N8 with x ≈ 1.05 (space group Pmn21 (no. 31), 

a = 17.1295(3) Å, b = 6.7890(2) Å, c = 9.3079(2) Å) have been prepared by ion exchange. The 

scandium compound exhibits a statistical distribution of the vacancies which could be beneficial for 

development of next generation ion conductors. In contrast, an ordered distribution of cations and 

vacancies have been found in the uranium nitridosilicate, making this compound a promising 

candidate for nuclear waste storage. 
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6.4 Cationic Pb2 Dumbbells Stabilized in the Highly Covalent Lead 
Nitridosilicate Pb2Si5N8 

The first nitride of the element Pb, namely Pb2Si5N8 (space 

group Pmn21 (no. 31), a = 5.774(1) Å, b = 6.837(1) Å, 

c = 9.350(1) Å), has been discovered by the ion exchange 

approach. In contrast to all other nitridosilicates M–Si–N, 

this compound exhibits highly covalent interactions 

between M = Pb and N. This change in bond character influences the entire structure, resulting in a 

significant and unexpected distortion of the unit cell. This compound also exhibits unprecedented 

cationic Pb2 dumbbells. According to DFT calculations, these dumbbells arise from s–p mixing 

combined with little p–p mixing of formal Pb2+ cations. Additionally the experimental proof of a 

elastic force between the Pb cations have been shown by combination of Raman spectroscopy and 

phononic calculations revealing the Pb–Pb stretching vibration at 117 cm−1. 
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7 Discussion and Outlook 

7.1 Ion Exchange – A Novel Approach Toward Nitridosilicates 

The synthesis approach developed in this thesis, namely the exchange of cations in highly condensed 

nitridosilicates M2Si5N8 as the first top-down approach for this substance class, fundamentally differs 

from conventional preparation methods (bottom-up, chapter 1.3).[1] While those methods are based 

on the principle of building up anionic covalent Si–N networks in presence of suitable cations, here 

pre-synthesized nitridosilicates are used as starting materials according to equations 7.1 and 7.2.[2] 

AE2Si5N8 + 2 MCl2 → M2Si5N8 + 2 AECl2      7.1 

AE2Si5N8 + x MCl3 → AE2−1.5x M xSi5N8 + 1.5x AECl2     7.2 

The ion exchange approach turned out to be a valueable method for exploration of energy landscapes, 

especially concerning metastable compounds.[3] A prime example for this issue is the system 

containing Ca, Si and N in atomic ratio 2:5:8 (Figure 7.1). This ratio can be achieved, for example, 

through either of the three modifications α-, β- and HP-Ca2Si5N8 or through combinations of Ca3N2, 

Si3N4 and CaSiN2 in the respective stoichiometric ratio.[1g,2a,4] 

 
Figure 7.1:  Schematic view on a section of the energy landscape of a system containing Ca, Si and N 

in the ratio 2:5:8 including 2/3 Ca3N2 + 5/3 Si3N4, CaSiN2 + Si3N4 as well as all three 

modifications of Ca2Si5N8 (α-, β- and HP-).
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According to experimental experience, high temperature reactions of the binary nitrides Ca3N2 and 

Si3N4 in the given stoichometry yield α-Ca2Si5N8, since this compound appears to represent an easily 

accessible energetic minimum in contrast to the β-modification.[1g,5] Two reasons mainly responsible 

for the inaccessibility of β-Ca2Si5N8 applying bottom-up reactions have been identified so far. First, 

throughout the Si–N network formation in presence of Ca2+, the energy barrier toward the [Si5N8]4− 

network of β-Ca2Si5N8, which is preferentially built up in the presence of larger ions like Sr2+ or Ba2+, 

is expected to be significantly higher than toward the [Si5N8]4− network of α-Ca2Si5N8. Secondly, the 

absolute energy of β-Ca2Si5N8 is higher than the one of α-Ca2Si5N8 (based on DFT calculations of a 

hypothetical “o-Ca2Si5N8”, which exhibits almost the same structure as β-Ca2Si5N8).[5] This second 

point is also confirmed by the transformation of β-Ca2Si5N8 into the α-modification at T ≥ 1500 °C.[2a] 

The reversion of this transformation has not been observed so far, not even when applying high 

pressure (β-Ca2Si5N8 is 0.08 g · cm−3 denser than α-Ca2Si5N8).[2a] Under high pressure conditions 

α-Ca2Si5N8 undergoes transformation into HP-Ca2Si5N8 and as predicted by DFT calculations at even 

higher pressures the compound decomposes into CaSiN2 and Si3N4.[5,6] Therefore, ion exchange 

between Sr2Si5N8 and CaCl2 so far is the only possible route for a targeted synthesis of β-Ca2Si5N8, 

since it allows the utilization of Sr2+ cation mobility in Sr2Si5N8 at temperatures, which are not 

sufficient to break down the highly covalent Si–N network [Si5N8]4−.[2a] 

Due to the fact that nitridosilicates with unprecedented elemental compositions are most likely 

metastable compared to well known compounds like binary nitrides or intermetallic phases, the ion 

exchange approach, a valuable tool to discover local and hardly accessible minima on various 

energetic landscapes, is predestinated for the exploration of novel elemental compositions M–Si–N. 

As described in chapters 2 and 3, based on TDPXRD measurements the mechanism of the ion 

exchange reaction has been investigated in detail, revealing both, Si–N network preservation and a 

continuous exchange of mobile cations along the solid solution series AE2−xMxSi5N8 (0 ≤ x ≤ 2).[2a,2b] 

Thus, no redox reactions between N and the selected metal occur throughout the reactions.  

Since N atoms in nitridosilicates are inert due to being tightly bound in the highly covalent Si–N 

network, the reaction behavior of different metals towards N does not play a crucial role in the ion 

exchange approach. Consequently, not only thermodynamic sinks like binary nitrides (e.g. ScN or 

UN)[7] can be well avoided by this approach, but it is also not impeded by the low oxidation force of 

N, since no redox reactions between the Si–N network and the cations occur, which could be 

problematic in the case of ions with a comparatively high redox potential, such as Fe2+ and Pb2+.[8] 
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7.2 Expanded Elemental Variety in Nitridosilicate Chemistry by Ion 
Exchange  

Application of the ion exchange approach in the model system M2Si5N8,[1f,1g,9] provided access to a 

new dimension in elemental variety. As described in chapter 1.5, the 13 different metals that had been 

incorporated into non-AB or AB2-type nitridosilicates before this thesis (marked green in Figure 7.2), 

are all highly electropositive and either belong to the alkali, the alkaline earth or the rare earth 

elements.[1f–h,4, 9,10] Being not affected by these limitations, the ion exchange approach has so far been 

successfully applied to seven further metals that could be incorporated as counter ions in 

nitridosilicates (marked orange in Figure 7.2). 

 

Figure 7.2:  Section of the periodic table of elements. Metals marked in green have been incorporated 

into nitridosilicates before this work by bottom-up approaches, metals marked in orange 

by the ion exchange approach in this thesis. 

After development of the ion exchange approach applying a ScCl3 melt on α-Ca2Si5N8, thus avoiding 

the thermodynamically highly stable phase ScN,[7a] the next logical step was to test this reaction type 

on more electronegative metals. Due to its similarity to Ca2+, Sr2+ and Ba2+, which have often been 

incorporated into non-AB or AB2-type nitridosilicates,[1f,1g,4,10e,10f,10h] Mg2+ has been the second cation 

to be used in the ion exchange approach. Avoiding the formation of volatile Mg–N compounds at 

elevated temperatures and dealing with the increased electronegativity of Mg, that often leads to the 

integration of Mg into the anionic network,[11] the reaction of MgCl2 and α-Ca2Si5N8 yielded 

Mg2Si5N8, a compound which had been predicted by DFT calculations but has not been accessible by 

bottom-up reactions.  
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A long sought-after issue and one of the main aims in nitridosilicate research has been a general 

access to open-shell transition metal containing compounds.[12] Before this thesis, the only known 

compounds with d-electrons in the counter cations’ valence shells have been MSiN2 (M = Mn, 

Zn).[10ae,10i] However, these compounds exhibit the AB type wurtzite structure. Furthermore, Mn2+ 

(half full shell 3d5) and Zn2+ (closed 3d10 shell) are known for their similar behavior to the alkaline 

earth cations. Therefore, these compounds can be prepared by classic bottom-up approaches. In 

contrast, with the novel top-down approach, applying salt melts of MnCl2, FeCl2 and CoCl2, the first 

open-shell transition metal nitridosilicates M2Si5N8 (colorful compounds as given in Figure 7.3, 

M = Mn, Fe, Co) could be accessed, finally accomplishing a research objective, which has been set up 

more than two decades ago. Of these, Fe2Si5N8, has been exemplarily investigated by Mößbauer 

spectroscopy and magentic susceptibility measurements, revealling the preservation of the divalent 

oxidation state of Fe2+ as well as magnetic properties introduced by the unpaired electrons in Fe2+.  

 

Figure 7.3:  Optical micrographs of colorful M2Si5N8 compounds containing Mn, Fe, Co, Pb and U. 

Highly condensed nitridosilicates are well known for their intrinsic thermal, chemical and 

mechanical stability.[13] Although they do not occur in nature, these compounds seem to be 

predestined for beeing tested as host materials for immobilization of radioactive nuclides. However, 

due to the highly stable character of binary nitrides MN (M = actinides) comparable to the early 

transition metals,[7b] no actinide nitridosilicates have been prepared before this work. Applying the 

ion exchange reaction, the 5f elements of the periodic table can now be incorporated into anionic Si–

N networks as well. This has been demonstrated exemplarily for the element U. Moreover, since 

trivalent UCl3 was used for U incorporation, the stability of the pre-synthesized [Si5N8]4− network 

against vacancy incorporation could be investigated in detail, as well. While the reaction of 

α-Ca2Si5N8 with ScCl3 yields a statistical distribution of vacancies, the ion exchange between UCl3 

and Sr2Si5N8 revealed an impressive variability of highly covalent Si–N networks. In U0.5xSr2−0.75xSi5N8 

with x ≈ 1.05 (black particles in Figure 7.3), the variability of the [Si5N8]4− network was found to be 

sufficient for compensation of trivalent U3+ on the one hand and 80% vacancies on the other hand 
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located on former Sr2+ sites. Despite this significant amount of vacancies the compound itself reveals 

an impressive stability against treatment in H2O, HNO3 and KOH. 

Last, cations of an element from the right side of the Zintl border,[14] namely Pb2+, have been 

incorporated into M2Si5N8. With its electrode potential of −0.125 V (Pb → Pb2+ + 2e−),[8] this 

element belongs to the most noble ones within the group of elements that exhibit a negative electrode 

potential. This fact, combined with the comparatively high electron affinity and electronegativity of 

Pb, has been the reason, why no Pb-nitride had been crystallographically elucidated before. However, 

due to these properties of Pb, Pb2Si5N8 exhibits a highly covalent bonding situation, not only in case 

of Si–N but also for Pb–N. This highly covalent environment finally also enables the formation of the 

first covalently bound Pb2 cations. 

7.3 Prospects for Si–N Chemistry 

Nitridosilicates 

Considering only the model system M2Si5N8,[1f,1g,9] the elemental variety of nitridosilicates has been 

expanded by over 50% in this thesis. Choosing other MCl2 or MCl3 salts with melting points above 

ca. 700 °C and stable up to 1000 °C, it is likely to further expand the elemental variety while staying 

in the system M2Si5N8. As depicted in chapter 3.1,[2b] the selected and comparatively high reaction 

temperatures for the ion exchange reactions in M2Si5N8 have been necessary in order to open up 

channels in the pre-synthesized nitridosilicates by thermal expansion so that cation mobilty is 

enabled. Assuming that such channels open up in less condensed nitridosilicates (κ ≤ 5/8) at 

significantly lower temperatures, many different metal chlorides with melting points and 

decomposition temperatures below the temperature, at which cation mobility in M2Si5N8 starts to 

occur, may be used for ion exchange reactions as well. Thus, the elemental variety, especially 

concerning more electronegative metals (still a great potential for expansion according to Figure 7.4), 

which often exhibit low melting points for MClx,[7b] could be further expanded. Since, for example 

transition metal chlorides like HfCl4, TaCl5 or WCl6 exhibit high oxidation numbers, nitridosilicates 

with highly charged counter cations like M4+, M5+ or even M6+ might also be accessible. 

Furthermore, incoporation of counter cations Mn+, which are commonly found to be part of anionic 

networks of other metallate structures, could lead to novel classes of mixed nitridometallates where 

both, formal Si4+ and Mn+ build up the anionic networks.  
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Figure 7.4:  Metals sorted by increasing EN according to Pauling. Elements 
marked in green have been incorporated into nitridosilicates before this 
work, elements marked in orange throughout this thesis. 

Silicon nitride 

Assuming that less condensed SiN4 tetrahedra are able to withstand the conditions of ion exchange 

reactions at comparatively low temperatures, even an approach toward the preparation of novel 

networks with the sum formula “Si3N4” might be worth a try. For that, especially low condensed 

nitridosilicates could be used for reactions in liquid silicon halides. 

Ba5Si2N6 + 2.5 SiCl4 → 1.5 Si3N4 + 5 BaCl2      7.3 

According to the hypothetical equation 7.3, it might even be possible to partially design these 

compounds by using starting materials with desired Si–N building units like edge sharing SiN4 

tetrahedra. 

 

M2+ ion conductors 

The observed mobility of small ions like Mg2+, Fe2+ and Ca2+, large ions (Sr2+) or even trivalent ions 

such as Sc3+ and U3+ at elevated temperatures in M2Si5N8 is remarkable, especially against the 

background of the high condensation degree (κ = 5/8) of the latter. Based on these findings it seems 

possible to access solid-state ion conductors for divalent cations like Mg2+. The objective would then 

be to reduce the temperature required for cation mobility. Two strategies seem auspicious to be 

pursued in order to do so. First, large ions like Sr2+ could be exchanged against small ones such as 

Mg2+ in pre-synthesized nitridosilicates. Then, the resulting compound would contain Mg2+ cations 

located in an anionic Si–N network, which has been initially built up around Sr2+ and thus actually 
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being to large for Mg2+. Second, according to chapter 4.1, vacancies could subsequently be introduced 

into M2+ containing nitridosilicates in order to positively influence M2+ mobility even at 

comparatively low temperatures. 

7.4 Prospects for Other Metallate Compound Classes 

The ion exchange reaction is based on the principle that under the selected conditions in salt melts, 

ionic interactions between the counter cations and N in nitridosilicates are broken, while highly 

covalent Si–N bonds are preserved. Transferring this concept toward other metallate compound 

classes one has to consider the degree of covalency within the anionic networks. With decreasing 

degree of covalency, bonds within such networks would be expected to be more easily broken by 

highly ionic salt melts. By arranging network building atoms according to their difference in 

electronegativities,[15] as done in Figure 7.5, the degree of covalency for different compound classes 

like phosphates, borates, silicates, aluminates, berrylates and scandates may be estimated.  

 

Figure 7.5: Various metallate network building atoms arranged by their difference in 

electronegativity.[15] 

According to Figure 7.5, combined with the knowledge that ion exchange applying salt melts is 

possible in Si–N chemistry, nitridophosphates as well as nitridoborates seem to be promising 

candidates for further investigations due to their even higher degree of covalency within anionic 

networks compared to nitridosilicates. Indeed, ion exchange reactions analogously to the reactions 

described in this thesis applying modified reaction conditions have already been observed in 

nitridophosphates by WENDL. Such reactions may become a second pillar of expanding elemental 

variety in nitridophosphates beside of the very successful and closely related high-pressure 

metathesis route (MHalx + LiPN2 → MPxN2x + x LiHal) eastablished by KLOß.[16] 

Considering compound classes like nitridoaluminates or -berrylates,[17] which exhibit less covalent 

interactions within the anionic networks, experiments have to be performed in order to investigate 

their suitability for this synthesis approach.  

In contrast to nitridometallates, where elemental variety is an issue due to the comparatively low 

oxidation force of nitrogen, oxometallate classes may also benefit from the ion exchange approach. 
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For example, the phosphor CaxSr1−xSc2O4:Ce3+ has already been prepared from SrSc2O4:Ce3+ applying 

a CaCl2 melt analogously to the results of this thesis.[18] Since so far it is not clear weather the highly 

ionic [Sc2O4]2− network has been preserved throughout the entire reaction process, ion exchange 

reactions in more ionic metallate compound classes may even provide access to novel network types. 

7.5 Concluding Remark 

From the beginning, crystal structures of nitridosilicates have always been described to be composed 

of anionic Si–N building units on the one hand and counter cations located in between on the other 

hand. In this thesis, this kind of description has been taken literally and finally been confirmed by 

experiments that are able to distinguish between the two parts of these structures. Considering that 

the ion exchange approach was able to expand the elemental variety in nitridosilicate chemistry by 

more than 50% by working with only one model system, namely M2Si5N8, it is hardly possible to 

predict the enormous impact of this synthesis strategy, not only on nitridosilicate but on nitride 

chemistry in general. 
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A Supporting Information – Chapter 2 

A.1 General 

 

Inert conditions 

The weighted samples were prepared in a glove box (MBraun; H2O, O2 <1 ppm) filled with argon. 

The argon, that was used for the Schlenk line was purified over KOH, silica gel, molecular sieve (3 Å) 

and P4O10. Oxygen was removed by a BTS catalyst (170 °C). High vacuum pressures of the Schlenk 

line were measured to be <7 ∙ 10−4 mbar at each work step provided by a rotary vane pump (RZ 8) by 

Vacuubrand. 

 

PXRD 

The samples were measured on a Stoe Stadi P diffractometer (λ = 1.5406 Å, Cu-Kα1, Ge(111)-

monochromator) in a parafocussing Debye-Scherrer geometry using a MYTHEN 1K Si-strip 

detector (Dectris, Baden, Switzerland). RIETVELD refinements were carried out with TOPAS-

Academic Version 4.1.[1,2] Peak shapes were fitted using a fundamental parameter approach and the 

backround using a shifted Chebyshev function.[3,4] 

 

Visualization 

RIETVELD refinements and PXRDs were visualized with Origin 6.1.[5] Crystal structures were 

visualized with Diamond 3k.[6] 

 

TDPXRD 

The sample was measured on a Stoe Fixed Stage diffractometer (λ = 0.7093 Å, Mo-Kα1, Ge(111)-

monochromator) with an IP detector (90°). This diffractometer is equipped with a graphite furnace 

for sample heating.
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SEM and EDX 

SEM and EDX was performed on a Dualbeam Helios Nanolab G3 UC (FEI) microscope with X-Max 

80 SDD detector. 

 

Optical microscopy 

Optical microscopy was performed on a digital microscope “VHX-5000” (Keyence Microscope 

Europe) with the object lens VH-Z20T. 

 

Radio-frequency furnace 

The radio-frequency furnace (TIG/100) by Trumpf Hüttinger is equipped with a pyrometer (METIS 

MI 3 by Sensortherm) and a water cooled reactor allowing work under inert atmosphere. 

 

A.2 Chemicals 

Table A.1:  List of chemicals. 

Substance Information Producer 

Ar(g) 99.999% Air Liquide 

KOH >85% Bernd Kraft 

Silica gel humidity indicator (orange gel) VWR 

Molecular sieve 3 Å Fluka 

P4O10 ≥ 99% Carl Roth 

BTS catalyst operating temperature = 170 °C Merck Millipore 

α-Ca2Si5N8 commercial sample Lumileds Development Center Aachen 

Sr2Si5N8 commercial sample Lumileds Development Center Aachen 

MgCl2 99.99% Alfa Aesar 

CaCl2 99.99% Alfa Aesar 
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A.3 Starting Materials α-Ca2Si5N8 and Sr2Si5N8  

A.3.1. α-Ca2Si5N8 

 

Figure A.1:  RIETVELD refinement of α-Ca2Si5N8. 

RIETVELD refinement of α-Ca2Si5N8 was performed using constraints for the isotropic thermal 

displacement parameters of silicon and nitrogen.[7] 

A.3.2. Sr2Si5N8  

 
Figure A.2:  RIETVELD refinement of Sr2Si5N8. 

RIETVELD refinement of Sr2Si5N8 was performed with fixed isotropic thermal displacement 

parameters (Biso = 0.7) for silicon and nitrogen.[8] 
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Table A.2: Crystallographic information on the starting materials α-Ca2Si5N8 and Sr2Si5N8, standard 

deviations in parentheses. 

Formula α-Ca2Si5N8 Sr2Si5N8 

Formula mass / g ∙ mol−1 301.09 332.64 

Crystal system monoclinic orthorhombic 

Space group Cc (no. 9) Pmn21 (no. 31) 

Lattice parameters / Å, ° 

a = 14.3259(2) 
b = 5.61095(6) 
c = 9.69254(12) 
β = 112.1501(4) 

a = 5.70871(13) 
b = 6.8155(2) 
c = 9.3342(2) 
β = 90 

Cell volume / Å3 721.61(2) 363.17(2) 

Z 4 2 

X-ray density / g ∙ cm−3 3.06180(6) 3.9114(2) 

Linear absorption coefficient / mm−1 21.526 27.113 

Radiation Cu-Kα1 (λ = 1.5406 Å) 

Monochromator Ge(111) 

Diffractometer Stoe StadiP 

Detector MYTHEN 1K 

2θ-range / ° 5.010–100.470 

Temperature / °C 19 

Data points 6364 

Number of observed reflections 376 232 

Number of parameters 78 56 

Constraints 2 0 

Program used TOPAS-Academic 

Structure refinement RIETVELD-Method 

Profile function fundamental parameters model 

Backround function shifted Chebyshev 

Rwp 5.536 8.839 

Rexp 3.374 9.646 

Rp 4.262 6.561 

RBragg 2.643 2.125 

GOF 1.641 0.916 

  



Supporting Information – Increased Synthetic Control 
 

 
97 

Table A.3:  Fractional atomic coordinates, isotropic thermal displacement parameters, and site occupancies for 

starting material α-Ca2Si5N8, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso Occupancy 
Ca1  4a 0.00000  0.7637  0.00000  0.0028(10)  1 

Ca2  4a 0.6114(2)  0.7474(5)  0.2002(3)  0.0252(14)  1 

Si1  4a 0.0566(6)  0.8068(4)  0.3485(8)  0.0068(3)  1 

Si2  4a 0.7594(4)  0.2086(10)  0.3238(6)  0.0068(3)  1 

Si3  4a 0.7511(4)  0.4970(12)  0.0632(7)  0.0068(3)  1 

Si4  4a 0.3656(4)  0.2090(10)  0.3731(6)  0.0068(3)  1 

Si5  4a 0.8532(4)  0.0034(11)  0.1276(7)  0.0068(3)  1 

N1  4a 0.9848(10)  0.635(2)  0.432(2)  0.0045(7)  1 

N2  4a 0.1324(9)  0.021(2)  0.9976(13)  0.0045(7)  1 

N3  4a 0.7959(5)  0.244(2)  0.1678(7)  0.0045(7)  1 

N4  4a 0.8023(7)  0.755(2)  0.1736(8)  0.0045(7)  1 

N5  4a 0.9858(8)  0.008(3)  0.2221(13)  0.0045(7)  1 

N6  4a 0.8343(6)  0.006(1)  0.9365(9)  0.0045(7)  1 

N7  4a 0.6316(10)  0.157(2)  0.277(2)  0.0045(7)  1 

N8  4a 0.7972(6)  0.478(1)  0.4124(9)  0.0045(7)  1 

Table A.4:  Fractional atomic coordinates, isotropic thermal displacement parameters, and site occupancies for 

starting material Sr2Si5N8, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso Occupancy 

Sr1 2a 0 0.86945 0.00000 0.0500(9) 1 

Sr2 2a 0 0.8822(3) 0.3686(2) 0.0129(10) 1 

Si1 4b 0.2516(5) 0.6681(4) 0.6819(13) 0.0089 1 

Si2 2a 0 0.0564(5) 0.679(2) 0.0089 1 

Si3 2a 0 0.4137(14) 0.4634(13) 0.0089 1 

Si4 2a 0 0.407(2) 0.9025(13) 0.0089 1 

N1 2a 0 0.193(3) 0.524(3) 0.0089 1 

N2 4b 0.2429(12) 0.9128(10) 0.674(2) 0.0089 1 

N3 4b 0.252(2) 0.4462(12) 0.0081(13) 0.0089 1 

N4 2a 0 0.585(2) 0.7736(13) 0.0089 1 

N5 2a 0 0.168(3) 0.840(3) 0.0089 1 

N6 2a 0 0.421(2) 0.2725(14) 0.0089 1 
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A.4 Experimental Details on the Ion Exchange Reactions 

Ion exchanges were carried out in fused silica ampoules under argon atmosphere. The nitridosilicate 

and the metal halide were thoroughly mixed in an agar mortar and filled into a dry (high vacuum, 

400 °C) silica ampoule.  

Table A.5:  Weighted samples for the ion exchanges. 

Synthesis of Mg2Si5N8 Synthesis of β-Ca2Si5N8 

α-Ca2Si5N8 MgCl2 Sr2Si5N8 CaCl2 

500 mg 429.4 mg 200 mg 112.4 mg 

1.50 mmol 4.51 mmol 0.47 mmol 1.40 mmol 

    

  Sr2−xCaxSi5N8 CaCl2 

  180.0 mg 140.1 mg 

  0.42 mmol a mmol 
 
a amount of substance was calculated using the sum formula Sr2Si5N8 

 

Table A.6:  Temperature program of the tube furnace for the ion exchanges. 

Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 850 3 275 

2 850 850 3 0 

3 850 500 10 −35 

 

After the reaction the silica ampoules were opened, the product chunks were pound and washed in 

water to remove the metal halides. Mg2Si5N8 was obtained as a colorless solid. β-Ca2Si5N8 was 

obtained as an off-white solid. The color of β-Ca2Si5N8 may be explainable by intrinsic strain, 

crystallographic defects or impurities. 
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A.5 Additional Crystallographic Data for Mg2Si5N8  

 

Figure A.3: RIETVELD refinement of Mg2Si5N8. 

RIETVELD refinement of Mg2Si5N8 was performed with constrained isotropic thermal displacement 

parameters of nitrogen. The unidentified reflections may be related to a minor oxidic impurity. 
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Table A.7:  Crystallographic information on Mg2Si5N8, standard deviations in parentheses. 

Formula Mg2Si5N8 

Formula mass / g ∙ mol−1 301.09 

Crystal system monoclinic 

Space group Cc (no. 9) 

Lattice parameters / Å, ° 

a = 14.0672(2) 
b = 5.35002(7) 
c = 9.57993(10) 
β = 111.0127(7) 

Cell volume / Å3 673.038(15) 

Z 4 

X-ray density / g ∙ cm−3 2.97144(6) 

Linear absorption coefficient / mm−1 11.562 

Radiation Cu-Kα1 (λ = 1.540598 Å) 

Monochromator Ge(111) 

Diffractometer Stoe StadiP 

Detector MYTHEN 1K 

2θ-range / ° 5.000–109.505 

Temperature / °C 20 

Data points 6968 

Number of observed reflections 424 

Number of parameters 83 

Constraints 1 

Program used TOPAS-Academic 

Structure refinement RIETVELD-Method 

Profile function fundamental parameters model 

Backround function shifted Chebyshev 

Rwp 4.756 

Rexp 1.712 

Rp 3.576 

RBragg 1.675 

GOF 2.779 
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Table A.8:  List of interatomic distances / Å and bond angles / ° for Mg2Si5N8, standard deviations in parentheses. 

Distances  Angles 

Mg1–N1 1.957(10) Si3–N2 1.612(12)  Si1–N1–Si4 112.9(7) 

Mg1–N2 2.189(8) Si3–N3 1.726(10)    

Mg1–N6 2.566(10) Si3–N4 1.743(10)  Si1–N2–Si3 123.4(8) 

Mg1–N7 2.649(12) Si3–N8 1.80(2)    

Mg1–N5a 2.708(11)    Si1–N5–Si5 118.6(6) 

Mg1–N5b 2.742(10) Si4–N1 1.653(13)    

  Si4–N8 1.679(13)  Si1–N7–Si2 115.7(6) 

Mg2–N5 1.962(12) Si4–N6 1.786(10)    

Mg2–N2 2.038(12) Si4–N4 1.799(12)  Si2–N3–Si3 113.3(7) 

Mg2–N7 2.146(11)    Si2–N3–Si5 116.8(6) 

Mg2–N1 2.417(13) Si5–N4 1.667(12)  Si3–N3–Si5 129.1(8) 

  Si5–N3 1.713(13)    

Si1–N7 1.68(2) Si5–N5 1.730(12)  Si2–N6–Si4 118.3(6) 

Si1–N2 1.714(10) Si5–N6 1.78(2)  Si2–N6–Si5 115.0(7) 

Si1–N1 1.80(2)    Si4–N6–Si5 114.8(6) 

Si1–N5 1.821(10)      

     Si3–N4–Si4 115.0(6) 

Si2–N8 1.692(10)    Si3–N4–Si5 131.2(7) 

Si2–N3 1.759(15)    Si4–N4–Si5 112.4(5) 

Si2–N6 1.781(10)      

Si2–N7 1.807(14)    Si2–N8–Si3 113.0(7) 

     Si2–N8–Si4 123.0(9) 

     Si3–N8–Si4 119.8(6) 

Table A.9:  Fractional atomic coordinates, isotropic thermal displacement parameters, and site occupancies for 

Mg2Si5N8, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso Occupancy 

Si1 4a 0.0431(6) 0.7728(5)  0.3616(9)  0.0154(9)  1 

Si2 4a 0.7399(5) 0.1918(8)  0.3235(9)  0.0113(12) 1 

Si3 4a 0.7298(6) 0.4971(11) 0.0669(9) 0.0105(12)  1 

Si4 4a 0.3454(5) 0.1814(7)  0.3759(9)  0.0086(12)  1 

Si5 4a 0.8498(6) 0.9972(9) 0.1347(10) 0.0080(11) 1 

Mg1 4a 0.00000  0.76370  0.00000  0.096(3)  1 

Mg2 4a 0.5642(4) 0.7531(7) 0.1680(7) 0.0096(12) 1 

N1 4a 0.9636(8) 0.577(2) 0.4262(15) 0.0094(7) 1 

N2 4a 0.1104(7) 0.0623(13) 1.0195(11) 0.0094(7) 1 

N3 4a 0.7703(7) 0.219(2) 0.1612(10) 0.0094(7) 1 

N4 4a 0.7985(6) 0.742(2) 0.1780(9)  0.0094(7) 1 

N5 4a 0.9796(8) 1.021(2) 0.2311(11) 0.0094(7) 1 

N6 4a 0.8344(8) 0.012(2) 0.9427(12) 0.0094(7) 1 

N7 4a 0.6073(9) 0.110(2) 0.2743(14) 0.0094(7) 1 

N8 4a 0.7619(8) 0.480(2) 0.4019(13) 0.0094(7) 1 
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A.6 Comparison Between Mg2Si5N8 and α-Ca2Si5N8 

 

Figure A.4:  Crystal structures along b (top), coordination spheres of the cations (middle and bottom) 

of Mg2Si5N8 (left) and α-Ca2Si5N8 (right; RIETVELD refinement of the starting material). The 

atoms are displayed with isotropic displacement parameters (90% probability). 

The magnesium cations differ in its atomic displacement parameters (Table A.9) due to the space 

provided by the coordination spheres leading to larger values for Mg1 than for Mg2.  
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A.7 Additional Crystallographic Data for β-Ca2Si5N8  

 

Figure A.5:  RIETVELD refinement of β-Ca2Si5N8. 

RIETVELD refinement of β-Ca2Si5N8 was performed with constrained isotropic thermal displacement 

parameters of nitrogen. One Reflection of the PXRD (Figure A.5) which could not be assigned to 

β-Ca2Si5N8 may refer to a minor impurity. This impurity might explain the off-white color of the 

sample. 
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Table A10:  Crystallographic information on β-Ca2Si5N8, standard deviations in parantheses. 

Formula β-Ca2Si5N8 

Formula mass / g ∙ mol−1 332.64 

Crystal system monoclinic 

Space group P21 (no. 4) 

Lattice parameters / Å, ° 

a = 5.66713(12) 
b = 9.2818(2) 
c = 6.6889(2) 
β = 90.1164(10) 

Cell volume / Å3 351.843(13) 
Z 2 

X-ray density / g ∙ cm−3 3.13978(12) 

Linear absorption coefficient / mm−1 22.075 

Radiation Cu-Kα1 (λ = 1.540598 Å) 

Monochromator Ge(111) 

Diffractometer Stoe StadiP 

Detector MYTHEN 1K 

2θ-range / ° 5.000–110.510  

Temperature / °C 20 

Data points 7035 

Number of observed reflections 486 

Number of parameters 80 

Constraints 1 

Program used TOPAS-Academic 

Structure refinement RIETVELD-Method 

Profile function fundamental parameters model 

Backround function shifted Chebyshev 

Rwp 6.221 

Rexp 2.782 

Rp 4.553 

RBragg 2.499 

GOF 2.237 
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Table A.11:  List of interatomic distances / Å and bond angles / ° for β-Ca2Si5N8, standard deviations in parentheses. 

Distances  Angles 

Ca1–N5 2.495(12) Si12–N22  1.652(14)  Si2–N1–Si3 135.4(10) 

Ca1–N22 2.596(14) Si12–N4  1.69(2)    

Ca1–N1 2.614(14) Si12–N32  1.70(2)  Si11–N21–Si2 121.7(9) 

Ca1–N4 2.803(12) Si12–N6 1.83(2)  Si12–N22–Si2 125.5(8) 

Ca1–N21 2.828(14)      

Ca1–N21 3.021(14) Si2–N5 1.64(2)  Si2–N5–Si4  134.3(9) 

Ca1–N1 3.121(14) Si2–N22 1.708(14)    

  Si2–N21 1.73(2)  Si11–N31–Si3 121.6(11) 

Ca2–N21 2.349(14) Si2–N1 1.75(2)  Si11–N31–Si4 117.2(9) 

Ca2–N1 2.369(15)    Si3–N31–Si4 120.2(11) 

Ca2–N22 2.592(14) Si3–N1 1.558(14)    

Ca2–N5 2.75(2) Si3–N6 1.738(12)  Si12–N32–Si3 117.8(10) 

Ca2–N31 2.99(2) Si3–N31 1.78(2)  Si12–N32–Si4 121.7(10) 

Ca2–N5 3.02(2) Si3–N32 1.84(2)  Si3–N32–Si4 120.5(12) 

       

Si11–N31 1.67(2) Si4–N4 1.570(14)  Si11–N6–Si12 106.4(7) 

Si11–N6 1.70(2) Si4–N32 1.73(2)  Si11–N6–Si3 122.2(11) 

Si11–N21 1.70(2) Si4–N31 1.81(2)  Si12–N6–Si3 114.6(11) 

Si11–N4 1.94(2) Si4–N5 1.818(13)    

     Si11–N4–Si12 102.9(7) 

     Si11–N4–Si4 120.6(12) 

     Si12–N4–Si4 134.5(13) 

     Si2–N1–Si3 135.4(10) 

Table A.12:  Fractional atomic coordinates, isotropic thermal displacement parameters, and site occupancies for 

Mg2Si5N8, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso Occupancy 

Ca1 2a 0.25000 0.00000  0.86945  0.047(2) 1 

Ca2 2a 0.2463(10) 0.3666(4) 0.9061(5) 0.0095(9)  1 

Si11 2a 0.5034(9) 0.6798(11) 0.6682(8) 0.021(2) 1 

Si12 2a 0.0016(8) 0.6827(11) 0.6680(8) 0.014(2) 1 

Si2 2a 0.2516(12) 0.6740(8) 0.0614(5) 0.0137(10) 1 

Si3 2a 0.251(2) 0.4611(8) 0.4110(7) 0.0077(14) 1 

Si4 2a 0.247(2) 0.9044(7) 0.4146(8) 0.0143(14) 1 

N1 2a 0.205(3) 0.514(2) 0.193(2) 0.0175(11) 1 

N21 2a 0.497(3) 0.7135(14) 0.918(2)  0.0175(11) 1 

N22 2a 1.005(2) 0.672(2) 0.915(2) 0.0175(11) 1 

N31 2a 0.510(3) 0.015(2) 0.432(2)  0.0175(11) 1 

N32 2a 1.006(3) 0.017(2)  0.439(2)  0.0175(11) 1 

N4 2a 0.226(4) 0.7836(12) 0.578(2)  0.0175(11) 1 

N5 2a 0.278(3) 0.834(2) 0.162(2) 0.0175(11) 1 

N6 2a 0.264(4) 0.2742(10) 0.422(2) 0.0175(11) 1 
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A.8 Comparison Between β-Ca2Si5N8 and Sr2Si5N8 

 

Figure A.6:  Crystal structures along b (top), coordination spheres of the cations (middle and bottom) 

of Mg2Si5N8 (left) and α-Ca2Si5N8 (right; RIETVELD refinement of the starting material). The 

atoms are displayed with isotropic displacement parameters (90% probability). 

The calcium cations differ in its atomic displacement parameters (Table A.12) due to the space 

provided by the coordination spheres leading to larger values for Ca1 than for Ca2.   
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A.9 Optical Microscopy 

 

Figure A.7:  Optical micrograph of a Mg2Si5N8 powder sample. 

 

 

Figure A.8:  Optical micrograph of a β-Ca2Si5N8 powder sample. 
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A.10 Details on SEM and EDX 

A.10.1. Mg2Si5N8 

 

Figure A.9:  Scanning electron micrograph of a Mg2Si5N8 powder sample. 

Table A.13:  EDX analysis of Mg2Si5N8 powder shown in Figure A.9. 

 Spektrum 1 Spektrum 2 Spektrum 3 Spektrum 4 Spektrum 5 Spektrum 6 

N 51.6 47.9 41.4 45.1 46.5 44.2 

O 1.6 1.9 2.1 3.5 2.0 9.6 

Mg 13.2 14.2 15.8 14.4 14.4 13.1 

Si 33.6 36.1 40.7 36.3 37.1 33.1 

    Al 0.7   

Mg/Si 2/5.1 2/5.1 2/5.2 2/5.1 2/5.2 2/5.1 

 Spektrum 7 Spektrum 8 Spektrum 9 Spektrum 10 Spektrum 11 Theoretical 

N 46.5 47.0 27.2 46.6 1.3 53.33 

O 2.2 6.6 19.6 1.7 38.4 0 

Mg 14.4 13.0 14.7 14.3 39.3 13.33 

Si 36.9 33.4 38.5 37.4 21.0 33.33 

Mg/Si 2/5.1 2/5.1 2/5.2 2/5.2 2/1.1 2/5 

 

The oxygen contents of Spektrum 1–10 are explainable by surface oxidation. Spektrum 11 may refer 

to the minor impurity visible in the PXRD (Figure A.3).  
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A.10.2. β-Ca2Si5N8 

 

Figure A.10:  Scanning electron micrograph of a Mg2Si5N8 powder sample. 

Table A.14:  EDX analysis of β-Ca2Si5N8 powder shown in Figure A.10. 

 Spektrum 12 Spektrum 13 Spektrum 14 Spektrum 15 Spektrum 16 Spektrum 17 

N 50.4 53.5 42.2 56.4 37.8 40.1 

O 1.3 1.8 1.0 2.5 3.9 8.4 

Si 34.6 32.3 40.7 29.6 40.8 36.1 

Ca 13.7 12.4 16.1 11.5 17.4 15.3 

      Na 0.2 

Ca/Si 2/5.1 2/5.2 2/5.1 2/5.1 2/4.7 2/4.7 

 Spektrum 18 Spektrum 19 Spektrum 20 Spektrum 21 Spektrum 22 Theoretical 

N 58.7 53.1 55.7 41.8 63.8 53.33 

O 5.0 2.3 1.7 5.5 3.1 0 

Si 26.0 32.1 30.9 37.3 23.9 33.33 

Ca 10.4 12.5 11.8 15.3 9.2 13.33 

    Cl 0.2   

Ca/Si 2/5 2/5.1 2/5.2 2/4.9 2/5.2 2/5 

 

The oxygen contents of Spektrum 12–22 are explainable by surface oxidation. No impurities 

explaining the off-white color of β-Ca2Si5N8 or the unidentified reflection in Figure A.5 were found 

in EDX.  
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A.11 Details on ICP-OES 

Table A.15:  ICP-OES analysis of Mg2Si5N8 and β-Ca2Si5N8 powder samples. 

Mg2Si5N8  β-Ca2Si5N8 

Mg  173.88 mg ∙ g−1  Ca  213.88 mg ∙ g−1 

Si  519.05 mg ∙ g−1  Si  431.28 mg ∙ g−1 

Ca 4,16 mg ∙ g−1  Sr 0.34 mg ∙ g−1 

Mg/Si 2/5.2  Ca/Si 2/5.7 
 
The experimental values of ICP-OES for Mg2Si5N8 and β-Ca2Si5N8 are in agreement with the 

theoretical composition of the compounds. The divergences in the ratios Mg/Si for Mg2Si5N8 and 

Ca/Si for β-Ca2Si5N8 indicate minor side phases. These impurities could belong to the unidentified 

reflections in Figures A.3 and A.5. In case of β-Ca2Si5N8 the side phase(s) could explain the off-white 

color. 

A.12 Details on TDPXRD 

 

Figure A.11:  In situ investigation on the ion exchange by TDPXRD. 
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Table A.16:  Temperature program for the TDPXRD measurements. 

Step Starting T / °C Target T / °C t / min ΔT / °C ∙ min−1 XRD 

1 400 400 10 0  

2 400 500 20 5  

3 500 500 10 0  

4 500 600 20 5  

5 600 600 10 0  

6 600 700 20 5  

7 700 700 10 0  

8 700 800 20 5  

9 800 800 10 0  

10 800 900 20 5  

11 900 900 10 0  

12 900 900 30 0  

13 900 900 10 0  

14 900 800 20 −5  

15 800 800 10 0  

16 800 700 20 −5  

17 700 700 10 0  

18 700 600 20 −5  

19 600 600 10 0  

20 600 500 20 −5  

21 500 500 10 0  

22 500 400 20 −5  

23 400 400 10 0  

 

A.13 Details on the HT Investigations on Mg2Si5N8 and β-Ca2Si5N8  

Samples of Mg2Si5N8 and β-Ca2Si5N8 were filled into tungsten crucibles. The crucibles were put into 

a radio-frequency furnace under nitrogen atmosphere and the temperature program shown in 

Table A.17 was started. After the treatment colorless solids were obtained and analyzed by PXRD. 

The measurements of the decomposition product Si3N4 as well as the transformation product 

α-Ca2Si5N8 are shown in Figures A.12 and A.13. 

Table A.17:  Temperature program of the radio-frequency furnace for the HT investi-

gations of Mg2Si5N8 and β-Ca2Si5N8. 

Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 1500 5 295 

2 1500 1500 1 0 

3 1500 500 5 −200 
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Figure A.12:  PXRD of the Mg2Si5N8 decomposition product (black) with references for α-Si3N4 (red) 

and β-Si3N4 (green).[9] 

 

 

Figure A.13:  PXRD of β-Ca2Si5N8 transformation product (black) with reference for α-Ca2Si5N8 (red).[7] 
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B Supporting Information – Chapter 3 

B.1 General 

 

Inert conditions 

The weighted samples were prepared in a glove box (MBraun; H2O, O2 <1 ppm) filled with argon. 

The argon, that was used for the Schlenk line was purified over KOH, silica gel, molecular sieve (3 Å) 

and P4O10. Oxygen was removed by a BTS catalyst (170 °C). High vacuum pressures of the Schlenk 

line were measured to be <7 ∙ 10−4 mbar at each work step provided by a rotary vane pump (RZ 8) by 

Vacuubrand. 

 

PXRD 

The samples were measured on a Stoe Stadi P diffractometer (λ = 0.7093 Å, Mo-Kα1 with Ge(111)-

monochromator) in a parafocussing Debye-Scherrer geometry using a MYTHEN 1K Si-strip 

detector (Dectris, Baden, Switzerland). RIETVELD refinements were carried out with TOPAS-

Academic Version 4.1.[1,2] Peak shapes were fitted using a fundamental parameters approach and the 

background using a shifted Chebyshev function.[3,4] 

 

Visualization 

RIETVELD refinements and PXRDs were visualized with Origin 6.1.[5] Crystal structures were 

visualized with Diamond 3k.[6] 

 

TDPXRD 

The reaction mixture was measured on a Stoe Fixed Stage diffractometer (λ = 0.7093 Å, Mo-Kα1, 

Ge(111)-monochromator) with an IP detector (90°). The diffractometer was equipped with a 

graphite furnace for sample heating.  
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HR-TDPXRD 

α-Ca2Si5N8 has been measured on a Stoe StadiP diffractometer equipped with a MYTHEN2 1K 

detector and a graphite furnace for sample heating. 

 

SEM and EDX 

Scanning electron microscopy and EDX was performed on a Dualbeam Helios Nanolab G3 UC (FEI) 

microscope with X-Max 80 SDD detector. 

 

Optical microscopy 

Optical microscopy was performed on a digital microscope “VHX-5000” (Keyence Microscope 

Europe) with the object lens VH-Z20T.  

 

Radio-frequency furnace 

The radio-frequency furnace (TIG/100) by Trumpf Hüttinger is equipped with a pyrometer (METIS 

MI 3 by Sensortherm) and a water cooled reactor allowing work under inert atmosphere. 

 

TGA/DSC 

Measurements have been performed on a NETZSCH STA F3 Jupiter® device for thermal analysis in 

a platinum crucible under nitrogen atmosphere. The device is equipped with a rhodium furnace for 

sample heating. 

 

Mößbauer spectroscopy 

A 57Co/Rh source was used for the Mößbauer spectroscopic experiments, which were conducted in 

transmission geometry. The measurements were conducted in a continuous flow cryostat system 

(Janis Research Co LLC) at 6 K, 78 K, and 20 °C. The temperature was controlled by a resistance 

thermometer (±0.5 °C accuracy). The samples were enclosed in small PVC containers at a thickness 

corresponding to about 20 mg Mößbauer active element per cm2. The spectra were fitted with the 

Normos-90 software package.[7] 
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Magnetic property measurements 

The powdered samples of Fe1.6Ca0.4Si5N8 and Fe2Si5N8 were packed into polyethylene (PE) capsules 

and attached to the sample holder rod of a Vibrating Sample Magnetometer unit (VSM) for 

measuring the magnetization M(T,H) in a Quantum Design PPMS. The samples were investigated 

in the temperature range of 2.5 K until 27 °C with magnetic flux densities up to 80 kOe. 

 

B.2 Chemicals 

Table B.1:  List of chemicals for this work. 

Substance Information Producer 

Ar(g) 99.999% Air Liquide 

KOH >85% Bernd Kraft 

Silica gel humidity indicator (orange gel) VWR 

Molecular sieve 3 Å Fluka 

P4O10 ≥ 99% Carl Roth 

BTS catalyst operating temperature = 170 °C Merck Millipore 

α-Ca2Si5N8 commercial sample Lumileds Development Center Aachen 

FeCl2 99.99% Alfa Aesar 

HCl(aq) 33% Brenntag 
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B.4 Starting Material α-Ca2Si5N8  

B.4.1. α-Ca2Si5N8 at 19 °C 

 

Figure B.1:  RIETVELD refinement of α-Ca2Si5N8 measured at 19 °C.[8] 

RIETVELD refinement of α-Ca2Si5N8 at 19 °C was performed using constraints for the isotropic 

displacement parameters of silicon and nitrogen.[8] 
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Table B:2: Crystallographic information on the starting material α-Ca2Si5N8, 

standard deviations in parentheses. 

Formula α-Ca2Si5N8 

Formula mass / g ∙ mol−1 332.64 

Crystal system monoclinic 

Space group Cc (no. 9) 

Lattice parameters / Å, ° 

a = 14.32800(10) 
b = 5.61165(4) 
c = 9.69406(7) 
β = 112.1484(5) 

Cell volume / Å3 721.925(10) 

Z 4 

X-ray density / g ∙ cm−3 3.06 

Linear absorption coefficient / mm−1 2.4 

2θ-range / ° 2.000–71.285 

Temperature / °C 19(2) 

Data points 4620 

Number of observed reflections 1709 

Number of parameters 82 

Constraints 2  

Rwp 0.0380  

Rexp 0.0298 

Rp 0.0299  

RBragg 0.0167 

GOF 1.275 

 

B.4.2. α-Ca2Si5N8 at 800 °C 

 

Figure B.2:  RIETVELD refinement of α-Ca2Si5N8 measured at 800 °C.[8]  
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Table B.3:  Crystallographic information on the starting material α-Ca2Si5N8 

(commercial) at 800 °, standard deviations in parentheses. 

Formula α-Ca2Si5N8 

Formula mass / g ∙ mol−1 332.64 

Crystal system monoclinic 

Space group Cc (no. 9) 

Lattice parameters / Å, ° 

a = 14.3655(2) 
b = 5.62932(6) 
c = 9.73060(10) 
β = 112.1366(8) 

Cell volume / Å3 728.889(14) 

Z 4 

X-ray density / g ∙ cm−3 3.03 

Linear absorption coefficient / mm−1 2.4 

2θ-range / ° 3.005–69.995 

Temperature / °C 800 

Data points 4467 

Number of observed reflections 1647 

Number of parameters 91 

Constraints 2 

Rwp 0.0452 

Rexp 0.0345 

Rp 0.0342 

RBragg 0.0185 

GOF 1.309 
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Table B.4:  List of interatomic distances / Å and bond angles / ° in α-Ca2Si5N8 at 800 °C, standard deviations in 

parentheses. 

Distances  Angles 

Ca1–N1 2.361(12)  Si2–N6 1.706(10)  Si1–N1–Si4 114.3(8) 

Ca1–N2 2.404(13)  Si2–N7 1.711(14)   Si1–N2–Si3 128.6(10) 

Ca1–N6 2.623(8) Si2–N8 1.774(10)   Si1–N5–Si5 125.3(8) 

Ca1–N5 2.724(14)  Si2–N3 1.798(12)   Si1–N7–Si2 122.9(7) 

Ca1–N7 2.790(12)       

Ca1–N5 2.845(13)  Si3–N2 1.616(14)  Si2–N3–Si3 116.2(6) 

Ca1–N8 3.010(9) Si3–N3 1.732(11)  Si2–N3–Si5 116.1(6) 

  Si3–N4 1.758(11)  Si3–N3–Si5 126.7(6) 

Ca2–N5 2.317(14)  Si3–N8 1.792(13)    

Ca2–N7 2.324(12)     Si2–N6–Si4 125.4(6) 

Ca2–N2 2.468(14)  Si4–N1 1.69(2)   Si2–N6–Si5 118.2(6) 

Ca2–N1 2.628(12)  Si4–N8 1.739(11)   Si4–N6–Si5 114.2(5) 

Ca2–N4 2.838(12)  Si4–N6 1.811(11)     

Ca2–N8 3.099(8) Si4–N4 1.835(10)  Si3–N4–Si4 118.1(5) 

     Si3–N4–Si5 128.1(7) 

Si1–N2 1.725(12) Si5–N3 1.718(12)  Si4–N4–Si5 105.7(5) 

Si1–N5 1.744(12) Si5–N4 1.754(12)    

Si1–N1 1.75(2) Si5–N5 1.755(13)  Si2–N8–Si3 108.0(6) 

Si1–N7 1.78(2) Si5–N6 1.758(13)  Si2–N8–Si4 129.1(7) 

     Si3–N8–Si4 122.8(6) 

Table B.5:  Fractional atomic coordinates, isotropic displacement parameters, and site occupancies in α-Ca2Si5N8 at 

800 °C, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso Occupancy 

Ca1 4a 0   0.7637   0  0.0233(12) 1 

Ca2 4a 0.6126(2) 0.7489(5) 0.2061(3)  0.0339(14) 1 

Si1 4a 0.0572(6) 0.8071(4) 0.3536(9)  0.0099(3) 1 

Si2 4a 0.7598(4) 0.2069(10)  0.3274(7)  0.0099(3) 1 

Si3 4a 0.7538(5) 0.4957(13)  0.0653(8)  0.0099(3) 1 

Si4 4a 0.3656(4) 0.2117(10)  0.3751(7)  0.0099(3) 1 

Si5 4a 0.8548(4) 0.0030(12)  0.1287(8)  0.0099(3) 1 

N1 4a 0.9893(10)  0.643(2)  0.436(2)   0.0119(7) 1 

N2 4a 0.1330(9) 0.024(2)  0.0015(13)  0.0119(7) 1 

N3 4a 0.7976(6) 0.244(2)  0.1722(8)  0.0119(7) 1 

N4 4a 0.8010(8) 0.750(2)  0.1741(9)  0.0119(7) 1 

N5 4a 0.9850(9) 0.020(2)  0.2283(14) 0.0119(7) 1 

N6 4a 0.8339(6) 0.009(2)  0.9387(10)  0.0119(7) 1 

N7 4a 0.6354(9) 0.143(2)  0.283(2)   0.0119(7) 1 

N8 4a 0.8004(6) 0.483(2)  0.4189(10)  0.0119(7) 1 
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B.4.3. α-Ca2Si5N8 at 900 °C 

 

Figure B.3:  RIETVELD refinement of commercial α-Ca2Si5N8 measured at 900 °C.[8] 

RIETVELD refinement of α-Ca2Si5N8 at 900 °C was performed using constraints for the isotropic 

thermal displacement parameters of silicon and nitrogen.[8]  

Table B.6:  Crystallographic information on the starting material α-Ca2Si5N8 

at 900 °C, standard deviations in parentheses. 

Formula α-Ca2Si5N8 

Formula mass / g ∙ mol−1 332.64 

Crystal system monoclinic 

Space group Cc (no. 9) 

Lattice parameters / Å, ° 

a = 14.37019(14) 
b = 5.63218(6) 
c = 9.73567(9) 
β = 112.1369(7) 

Cell volume / Å3 729.877(13) 

Z 4 

X-ray density / g ∙ cm−3 3.03 

Linear absorption coefficient / mm−1 2.3 

2θ-range / ° 3.005–69.995 

Temperature / °C 900 

Data points 4467 

Number of observed reflections 1649 

Number of parameters 97 

Constraints 2 

Rwp 0.0390 

Rexp 0.0267 

Rp 0.0296 

RBragg 0.0187 

GOF 1.461 
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Table B.7:  List of interatomic distances / Å and bond angles / ° in α-Ca2Si5N8 at 900 °C, standard deviations in 

parentheses. 

Distances  Angles 

Ca1–N1 2.319(11)  Si2–N7 1.709(13)   Si1–N1–Si4 114.2(7) 

Ca1–N2 2.387(11)  Si2–N6 1.716(9)  Si1–N2–Si3 127.0(8) 

Ca1–N6 2.620(8) Si2–N8 1.761(9)  Si1–N5–Si5 126.0(7) 

Ca1–N7 2.767(11)  Si2–N3 1.810(10)   Si1–N7–Si2 122.9(7) 

Ca1–N5 2.772(11)       

Ca1–N5 2.794(11)  Si3–N2 1.618(11)   Si2–N3–Si3 116.1(5) 

Ca1–N8 3.011(7) Si3–N3 1.721(9)  Si2–N3–Si5 115.8(5) 

  Si3–N4 1.777(9)  Si3–N3–Si5 127.0(6) 

Ca2–N5 2.331(11)  Si3–N8 1.798(12)     

Ca2–N7 2.356(11)     Si2–N6–Si4 126.2(5) 

Ca2–N2 2.430(11)  Si4–N1 1.693(13)   Si2–N6–Si5 118.3(6) 

Ca2–N1 2.655(11)  Si4–N8 1.713(10)  Si4–N6–Si5 113.1(5) 

Ca2–N4 2.858(10)  Si4–N6 1.841(10)    

Ca2–N8 3.119(7) Si4–N4 1.857(9)  Si3–N4–Si4 115.8(5) 

     Si3–N4–Si5 129.6(6) 

Si1–N5 1.707(10) Si5–N4  1.723(10)  Si4–N4–Si5 107.2(4) 

Si1–N2 1.748(10) Si5–N3  1.724(10)    

Si1–N1 1.76(2) Si5–N6  1.763(11)  Si2–N8–Si3 107.1(5) 

Si1–N7 1.77(2) Si5–N5  1.773(10)  Si2–N8–Si4 128.8(6) 

     Si3–N8–Si4 124.0(5) 

Table B.8:  Fractional atomic coordinates, isotropic displacement parameters, and site occupancies in 

α-Ca2Si5N8 at 900 °C, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso Occupancy 

Ca1 4a 0 0.7637   0   0.0232(10) 1 

Ca2 4a 0.6122(2) 0.7501(5)  0.2061(3) 0.0421(14) 1 

Si1 4a 0.0571(5) 0.8074(4)  0.3533(7)  0.0105(3) 1 

Si2 4a 0.7598(3) 0.2113(10) 0.3310(6)  0.0105(3) 1 

Si3 4a 0.7531(4) 0.4969(11) 0.0678(7)  0.0105(3) 1 

Si4 4a 0.3660(3) 0.2073(9)  0.3783(6)  0.0105(3) 1 

Si5 4a 0.8548(4) 0.0051(10) 0.1319(7)  0.0105(3) 1 

N1 4a 0.9889(9) 0.634(2)  0.4339(13) 0.0121(6) 1 

N2 4a 0.1322(8) 0.025(2) 0.0060(10) 0.0121(6) 1 

N3 4a 0.7978(5) 0.2479(14) 0.1749(7)  0.0121(6) 1 

N4 4a 0.8023(7) 0.7553(14) 0.1755(8)  0.0121(6) 1 

N5 4a 0.9860(7) 0.020(2) 0.2348(11) 0.0121(6) 1 

N6 4a 0.8341(5) 0.0071(13) 0.9416(9)  0.0121(6) 1 

N7 4a 0.6349(8) 0.151(2) 0.2812(14) 0.0121(6) 1 

N8 4a 0.8010(5) 0.4840(13) 0.4221(9)  0.0121(6) 1 
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B.5 Migration Pathways of Ca2+ in α-Ca2Si5N8 at 800 and 900 °C 

Voids in the structure of α-Ca2Si5N8 at 800 °C and 900 °C were calculated with TOPOS employing 

Voronoi-Dirichlet polyhedra.[9] Migration pathways for Ca2+ were calculated based on ionic radii in 

nitrides (r(Ca2+) = 0.96 Å; r(N3−) = 1.42 Å).[10] It was assumed that channels are accessible for Ca2+ if 

the sum of ionic radii of Ca2+ and N3− does not exceed the channel radius more than 15%.  

B.5.1. 800 °C 

 

Figure B.4:  Structure with channels of α-Ca2Si5N8 at 800 °C (left) and channels (right) along c (top), 

along a (middle) and along b (bottom) with planar SiN4 tetrahedral layers (gray), 

connecting SiN4 tetrahedra (violet, yellow) and calculated migration pathways (blue, 

orange) for Ca2+ (green).   
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B.5.2. 900 °C 

 

Figure B.5:  Structure with channels of α-Ca2Si5N8 at 900 °C (left) and channels (right) along c (top), 

along a (middle) and along b (bottom) with planar SiN4 tetrahedral layers (gray), 

connecting SiN4 tetrahedra (violet, yellow) and calculated migration pathways (blue, 

orange) for Ca2+ (green).   
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B.6 Fe2Si5N8 

B.6.1. Experimental Details on the Ion Exchange Reaction 

Ion exchange was carried out in a fused silica ampoule under argon atmosphere. α-Ca2Si5N8 and 

FeCl2 were thoroughly mixed in an agate mortar and filled into a dry (high vacuum, 400 °C) silica 

ampoule.  

Table B.9:  Weighted sample for the ion exchange to Fe2Si5N8. 

 

 

Table B.10:  Temperature program of the tube furnace for the ion exchange leading to Fe2Si5N8. 

Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h–1 

1 25 980 3 318 

2 980 980 3 0 

3 980 500 10 −48 

 

After the reaction, the silica ampoule was opened, the product chunk was ground and washed in 

water to remove the metal halides and subsequently in concentrated hydrochloric acid (33%) to 

remove elemental Fe formed throughout the reaction. Fe2Si5N8 was obtained as a brown solid powder.  

  

α-Ca2Si5N8 FeCl2 

500.0 mg 571.6 mg 

1.5 mmol 4.5 mmol 
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B.6.2. Rietveld Refinement 

RIETVELD Refinement of Fe2Si5N8 was initially performed using the structural model of α-Ca2Si5N8. 

Afterwards Fobs−Fcalc showed significant residual electron density near to the Fe1 and Fe2 positions 

(Figure B.4). Therefore, a second refinement with split positions for Fe1 (Fe12 and Fe22) and Fe2 

(Fe21 and Fe22) was performed.  

 

Figure B.6:  Fobs−Fcalc of the RIETVELD refinements (top: Ca2Si5N8 model; bottom: split positions).  



Supporting Information – Access to Open-Shell-Transition-Metal Nitridosilicates  
 

 
128 

 

Figure B.7:  RIETVELD plots of the refinements for Fe2Si5N8 (top: Ca2Si5N8 model; bottom: split positions) 

As it can already be seen in the difference profiles shown in Figure B.7, refinement applying split 

positions works even better than using the α-Ca2Si5N8 model. Additionally, R values of the 

refinements support the model with split positions (Table B.11). 
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Table B.11:  Crystallographic information on Fe2Si5N8 (Ca2Si5N8 model and with split positions), standard 

deviations in parentheses. 

Formula Fe2Si5N8 (Ca2Si5N8 model) Fe2Si5N8 (split positions) 

Formula mass / g ∙ mol−1 364.23 

Crystal system Monoclinic 

Space group Cc (no. 9) 

Lattice parameters / Å, ° 
 

a = 14.0408(2) a = 14.04056(14) 

b = 5.32635(8) b = 5.32626(5) 

c = 9.5913(2) c = 9.59064(9) 

β = 110.7281(10) β = 110.7304(6) 

Cell volume / Å3 670.86(2) 670.788(12) 

Z 4 

X-ray density / g ∙ cm−3 3.61 3.61 

Linear absorption coefficient / mm−1 5.2 5.2 

2θ-range / ° 2.000–71.330 

Temperature / °C 19 

Data points 4623 

Number of observed reflections 1589 

Number of parameters 78 86 

Constraints 2 6 

Rwp 0.0545 0.0352 

Rexp 0.0150 0.0150 

Rp 0.0412 0.0277 

RBragg 0.0253 0.0128 

GOF 3.642 2.351 

 

Constraints 

RIETVELD refinement of Fe2Si5N8 (Ca2Si5N8 model) was performed with constrained isotropic 

displacement parameters of Si and N.  

RIETVELD refinement of Fe2Si5N8 (split positions) was performed with constrained isotropic 

displacement parameters of silicon and nitrogen. Additionally the isotropic displacement parameters 

of Fe11 & Fe12 as well as Fe21 & Fe22 were constrained. The occupations of Fe11, Fe12, Fe21 and 

Fe22 were refined using the constraints occ(Fe12) = 1 − occ(Fe11) and occ(Fe22) = 1 − occ(Fe21). 
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Table B.12:  List of interatomic distances / Å and bond angles / ° in Fe2Si5N8 (α-Ca2Si5N8 model), standard deviations 

in parentheses. 

Distances  Angles 

Fe1–N1 1.959(12) Si3–N2 1.59(2)  Si1–N1–Si4 110.9(7) 

Fe1–N2 2.101(12) Si3–N4 1.615(12)  Si1–N2–Si3 122.8(8) 

Fe1–N5 2.688(14) Si3–N3 1.779(12)  Si1–N5–Si5 119.6(8) 

Fe1–N7 2.704(13) Si3–N8 1.86(2)  Si1–N7–Si2 117.1(9) 

Fe1–N6 2.710(10)      

Fe1–N5 2.776(13) Si4–N6 1.643(12)  Si2–N3–Si3 109.6(6) 

  Si4–N8 1.651(12)  Si2–N3–Si5 115.9(7) 

Fe2–N5 1.990(14) Si4–N1 1.739(14)  Si3–N3–Si5 131.7(7) 

Fe2–N7 2.027(14) Si4–N4 1.843(12)    

Fe2–N2 2.151(14)    Si2–N6–Si4 123.5(8) 

Fe2–N1 2.368(13) Si5–N3 1.587(13)  Si2–N6–Si5 113.9(7) 

  Si5–N5 1.681(14)  Si4–N6–Si5 113.3(6) 

Si1–N1 1.68(2) Si5–N4 1.740(14)    

Si1–N5 1.781(12) Si5–N6 1.89(2)  Si3–N4–Si4 117.1(6) 

Si1–N7 1.85(2)    Si3–N4–Si5 134.3(7) 

Si1–N2 1.869(12)    Si4–N4–Si5 107.8(6) 

       

Si2–N7 1.69(2)    Si2–N8–Si3 108.8(6) 

Si2–N6 1.719(11)    Si2–N8–Si4 126.8(8) 

Si2–N8 1.721(11)    Si3–N8–Si4 116.3(7) 

Si2–N3 1.852(14)      

 

Table B.13:  Fractional atomic coordinates, isotropic displacement parameters, and site occupancies in Fe2Si5N8 

(α-Ca2Si5N8 model), standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso  Occupancy 

Fe1 4a 0  0.76370  0  0.0654(13) 1 

Fe2 4a 0.5540(2)  0.7686(3)  0.1665(4)  0.0065(6)  1 

Si1 4a 0.0318(4)  0.7684(6)  0.3572(7)  0.0030(4)  1 

Si2 4a 0.7354(4)  0.1811(8)  0.3238(7)  0.0030(4)  1 

Si3 4a 0.7289(4)  0.5061(9)  0.0694(7)  0.0030(4)  1 

Si4 4a 0.3386(4)  0.1868(8)  0.3755(6)  0.0030(4)  1 

Si5 4a 0.8469(5)  0.0082(8)  0.1366(8)  0.0030(4)  1 

N1 4a 0.9628(10) 0.578(2)  0.424(2) 0.0080(10) 1 

N2 4a 0.1093(10) 0.046(2) 0.0241(14) 0.0080(10) 1 

N3 4a 0.7673(7)  0.207(2) 0.1528(11) 0.0080(10) 1 

N4 4a 0.7927(7)  0.733(2)  0.1720(11) 0.0080(10) 1 

N5 4a 0.9736(10) 0.012(2) 0.2277(14) 0.0080(10) 1 

N6 4a 0.8245(8)  0.028(2) 0.9309(14) 0.0080(10) 1 

N7 4a 0.6124(11) 0.092(3) 0.274(2) 0.0080(10) 1 

N8 4a 0.7546(8)  0.483(2) 0.3920(13) 0.0080(10) 1 
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Table B.14:  List of interatomic distances / Å and bond angles / ° in Fe2Si5N8 (split positions), standard deviations in 

parentheses. 

Distances  Angles 

Fe11–Fe12 0.831(4) Si1–N1 1.700(12)   Si1–N1–Si4 112.5(5) 

Fe11–N1 2.098(9) Si1–N2 1.739(8)  Si1–N2–Si3 121.2(6) 

Fe11–N2 2.149(8) Si1–N5 1.814(12)   Si1–N5–Si5 121.0(5) 

Fe11–N7 2.322(8) Si1–N7 1.836(8)  Si1–N7–Si2 115.9(6) 

Fe11–N5 2.429(9)      

Fe11–Fe21 2.749(4) Si2–N6 1.721(8)  Si2–N3–Si3 113.6(5) 

  Si2–N7 1.726(12)   Si2–N3–Si5 115.5(5) 

Fe12–Fe11 0.8310(4) Si2–N8 1.733(8)  Si3–N3–Si5 130.1(5) 

Fe12–N1 1.998(9) Si2–N3 1.775(10)    

Fe12–N2 2.110(9)    Si2–N6–Si4 117.4(5) 

Fe12–N5 2.427(9) Si3–N2 1.650(11)   Si2–N6–Si5 117.4(5) 

Fe12–N6 2.528(9) Si3–N4 1.689(8)  Si4–N6–Si5 114.5(4) 

  Si3–N3 1.722(8)    

Fe21–Fe22 0.35(2)  Si3–N8 1.800(11)   Si3–N4–Si4 116.2(5) 

Fe21–N5 1.964(11)     Si3–N4–Si5 131.5(5) 

Fe21–N7 1.995(10)  Si4–N8 1.684(9)  Si4–N4–Si5 112.0(5) 

Fe21–N2 2.169(12)  Si4–N1 1.724(11)     

Fe21–N1 2.314(10) Si4–N6 1.768(8)  Si2–N8–Si3 112.6(4) 

Fe21–Fe11 2.749(4) Si4–N4 1.775(8)  Si2–N8–Si4 122.3(5) 

     Si3–N8–Si4 119.4(5) 

Fe22–Fe21 0.35(2) Si5–N4 1.681(10)    

Fe22–N7 1.98(2) Si5–N3 1.681(9)    

Fe22–N5 2.04(3) Si5–N5 1.695(9)    

Fe22–N2 2.07(2) Si5–N6 1.788(11)     

Fe22–N1 2.57(2)      

Fe22–Fe11 2.96(2)      
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Table B.15:  Fractional atomic coordinates, isotropic displacement parameters, and site occupancies in Fe2Si5N8 

(split positions), standard deviations in parentheses. 
Atom Wyckoff symbol x y z Uiso  Occupancy 

Fe11 4a 0.01623 0.74735  0.06311 0.0125(6) 0.527(4) 

Fe12 4a 0.9910(3) 0.7817(6)  0.9729(4)  0.0125(6) 0.473(4) 

Fe21 4a 0.5535(6) 0.7741(8)  0.1847(6)  0.0065(5) 0.78(3) 

Fe22 4a 0.078(2)  0.250(3) 0.204(2)  0.0065(5) 0.22(3) 

Si1 4a 0.0396(4) 0.7720(4)  0.3782(6)  0.0043(2) 1 

Si2 4a 0.7382(4) 0.1835(6)  0.3343(5)  0.0043(2) 1 

Si3 4a 0.7300(4) 0.5010(7)  0.0813(6)  0.0043(2) 1 

Si4 4a 0.3412(4) 0.1849(6)  0.3848(5)  0.0043(2) 1 

Si5 4a 0.8476(4) 0.9996(8)  0.1459(6)  0.0043(2) 1 

N1 4a 0.9664(7) 0.588(2)  0.4445(10) 0.0058(6) 1 

N2 4a 0.1071(7) 0.0553(12) 0.0363(9)  0.0058(6) 1 

N3 4a 0.7697(5) 0.2197(14) 0.1717(7)  0.0058(6) 1 

N4 4a 0.7998(5) 0.734(2) 0.1893(7)  0.0058(6) 1 

N5 4a 0.9749(6) 0.012(2)  0.2399(8)  0.0058(6) 1 

N6 4a 0.8290(5) 0.0119(12) 0.9517(9)  0.0058(6) 1 

N7 4a 0.6140(8) 0.087(2)  0.2948(10) 0.0058(6) 1 

N8 4a 0.7577(5) 0.4814(12) 0.4122(9)  0.0058(6) 1 
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B.6.3. Statistical vs. Ordered Distribution of the Iron Split Positions 

Refinement of the split positions Fe11/Fe12 and Fe21/Fe22 was performed based on a statistical 

distribution between the split positions. Assumed that this distribution would not be statistical, 

symmetry reduction or enlargement of the unit cell should be observed.  

 

Symmetry reduction 

 

Figure B.8:  Measured PXRD (black) of Fe2Si5N8 with calculated reflection positions (a = 14.04 Å, 

b = 5.33 Å, c = 9.59 Å, β = 110.73°, λ = 0.7093 Å) for space group Cc (blue) and for 

hypothetical elimination of C-centering and glide reflection along c (red). 

Figure B.8 shows calculated (CMPR)[11] reflection positions (red) where intensity would be expected 

in case of a symmetry reduction due to ordering of the split positions. Based on our measured data 

no reflection could be observed corroborating such a theory. 

 

Cell enlargement 

A bigger unit cell would generate reflections at smaller angles than the original cell. Focusing on 

Figure B.8 no reflection position besides to the positions marked in blue (original cell) can be 

observed. 

 

In conclusion the measured PXRD data indicate that the distribution between the split positions is 

statistical. 
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B.6.4. Structure 

 

Figure B.9:  Crystal structure of Fe2Si5N8 (along b (top), coordination environments of the cations 

(middle and bottom)). The atoms are displayed with isotropic displacement parameters 

(90% probability). 
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B.6.5. Details on SEM and EDX 

 
Figure B.10:  Scanning electron micrograph of a Fe2Si5N8 powder sample. 

Table B.16:  EDX analysis (atomic percent) of Fe2Si5N8 powder shown in Figure B.10. 

 Spektrum 4 Spektrum 5 Spektrum 6 Spektrum 7 Spektrum 8 Spektrum 9 Spektrum 10 

N 54 57 59 57 54 57 49 
O 3 3 8 5 13 3 5 
Si 32 29 24 28 24 29 33 
Ca -- -- -- -- -- -- -- 
Fe 12 11 9 10 9 11 13 
Cl -- <1 <1 <1 <1  -- <1 
Fe/Si 2/5.3 2/5.3 2/5.3 2/5.6 2/5.3 2/5.3 2/5.1 
        

 Spektrum 11 Spektrum 12 Spektrum 13 Spektrum 14 Theoretical Average  

N 53 42 51 45 53.3 53  
O 4 9 5 8 0 6  
Si 31 35 32 33 33.3 30  

Ca -- <1 -- -- 0 0  

Fe 12 14 12 14 13.3 12  

Cl <1 <1 <1 <1 0 <1  

Fe/Si 2/5.2 2/5 2/5.3 2/4.7 2/5 2/5  

 

The values detected for oxygen may refer to one or more side phases originated from surface 

oxidation of the nitridosilicate Fe2Si5N8.   
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B.6.6. Details on ICP-OES 

Table B.17:  ICP-OES analysis of Fe2Si5N8. 

Element Amount / mg ∙ g−1 Atomic% Fe2Si5N8 theoretical atomic%  

Fe  323.0  14.5 13.33 

Ca not detectable 0 0 

Si  395.2 35.2 33.33 

Na 281.8 50.3 53.33 

    

Fe/Si 2/4.9   
   a values for nitrogen were calculated from the difference to 1 g 
 

The experimental values of ICP-OES for Fe2Si5N8 are in good agreement with the theoretical 

composition of the compound.  

 

B.6.7. Details on CHNS Analysis 

Nitrogen content of a Fe2Si5N8 sample was determined to 29.7 mass%. The theoretical value for 

Fe2Si5N8 is 30.7 mass%. The difference may also be explained by oxygen at the surface of the 

nitridosilicate. 
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B.6.8. TGA/DSC Measurement 

 

Figure B.11:  TGA/DSC investigation of Fe2Si5N8. Heating with 10 °C ∙ min−1. 

According to Figure B.11, Fe2Si5N8 decomposes at 1097 °C (exothermic) combined with a mass loss.  
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B.6.9. Decomposition Products 

A sample of Fe2Si5N8 was filled into a tungsten crucible. The crucible was put into a radio-frequency 

furnace under nitrogen atmosphere and the temperature program shown in Table B.18 was started. 

After the treatment a gray, ferromagnetic powder was obtained and analyzed by PXRD. A 

measurement illustrating the decomposition products Si3N4 and Fe is shown in Figure B.12. 

Table B.18:  Temperature program of the radio-frequency furnace for the HT investigation 

on Fe2Si5N8. 
Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 1200 2 588 

2 1200 1200 1 0 

3 1200 500 10 −70 

 

 

Figure B.12:  PXRD of the Fe2Si5N8 decomposition products (black) with references for α-Si3N4 (red), 

β-Si3N4 (green) and Fe (orange).[12,13] 

 

In conclusion TGA/DSC and decomposition products indicate that Fe2Si5N8 decomposes into Fe, 

Si3N4 and N2 according to Equation B.1. 

 

3 Fe2Si5N8 → 6 Fe + 5 Si3N4 + 2 N2↑      B.1 
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B.6.10. Optical Microscopy 

 

Figure B.13:  Picture of a Fe2Si5N8 sample. 
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B.6.11. Mößbauer Spectroscopy 

Table B.19:  Fitting parameters of 151Eu Mößbauer spectroscopic measurements of the Fe2Si5N8 sample at 78 K; 

δ = isomer shift, ΔEQ = electric quadrupole splitting, Γ = experimental line width. Parameters marked 

with an asterisk were kept fixed during the fitting procedure, standard deviations in parentheses. 

Signal δ / mm ∙ s−1 ΔEQ / mm ∙ s−1 Γ / mm ∙ s−1 Ratio 

1 0.837(2) 1.587(6) 0.454(6) 45.9%* 

2 0.816(2) 1.952(5) 0.455(7) 45.9%* 

3 1.31* 3.17* 0.4* 5.2% 

4 −0.18(1) 1.78(3) 0.31(5) 2.9% 

 

The Mößbauer spectra at 78 and 6 K are shown in Figure B.14 along with the transition integral fits 

of the 78 K spectrum.  

 

Figure B.14:  Experimental (data points) and simulated (continuous lines) 57Fe Mößbauer spectra of 

Fe2Si5N8 at 78 K (top) and 6 K (bottom). The obtained fitting parameters are listed in 

Table B.19.  
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The minor signals exhibit area ratio of 5.2(3) and 2.9(4)%. The first one (signal 3) could be well 

reproduced with an isomer shift of δ = 1.31 mm · s−1 and quadrupole splitting of 

ΔEQ = 3.17 mm · s−1, in line with the reported values of Fe2Si2O6 (δ = 1.30 mm · s−1, 

ΔEQ = 3.02 mm · s−1) and CaFeSi2O6 (δ = 1.31 mm · s−1, ΔEQ = 3.17 mm · s−1).[14] The last signal (4) 

shows an isomer shift of −0.18(1) mm · s−1, which is in the typical range for Fe(III) species or Fe(II) 

low spin compounds, for example Na2Fe(CN)5NO.[15,16] Therefore, this signal has to be ascribed to an 

additional impurity phase. 

The 57Fe Mößbauer spectrum recorded at 6 K is shown in Figure B.14 (bottom). The spectrum shows 

an extremely broad signal, which could not be fitted and reproduced by the individual contributions 

of the sample and the observed impurities. Signal broadening can be caused by magnetic ordering 

(hyperfine field splitting), field distributions originating from magnetic inhomogeneities (domains 

with slightly different degrees of magnetic order) or atomic disorder in the crystal structure. Since 

magnetic ordering was only observed for the impurity phases (see magnetism) it is not possible to 

add hyperfine field splitting for signals 3 and 4. 
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B.6.12. Magnetic Measurements 

According to magnetic susceptibility measurements at an external field of 10 kOe, Fe2Si5N8 shows 

paramagnetism and a presumably antiferromagnetic magnetic anomaly at low temperatures. 

Subsequently, ZFC/FC measurements at different external fields (0.2–10 kOe) were conducted 

(Figure 3.4, top). They confirm the anomaly, with antiferromagnetic character in the ZFC and a 

ferromagnetic character in the FC measurements, pointing towards an instable antiferromagnetic 

ground state. As expected, the susceptibility diminishes with increasing field and therefore confirms 

that the observed phase-transition belongs to an impurity phase. The Néel temperature was 

determined to TN = 36.1(5) K from the 200 Oe measurement. The Néel temperature is close to what 

has been observed for Fe2Si2O6 (TN = 43 K)[17] and CaFeSi2O6 (TN = 38 K).[18] Disorder in the observed 

impurity according to Fe2−xCaxSi2O6 can shift the ordering temperature to even lower values 

(chapter B.6.11). A magnetization isotherm, recorded at 10 K (Figure 3.4, middle) and therefore 

below the ordering temperature, confirmed the instable antiferromagnetic ground state along with a 

hysteresis, typically observed for weak permanent magnetic materials. The saturation magnetization 

of μsat = 0.15(1) μB at 80 kOe, however, is significantly lower compared to the expected 2.83 μB for a 

tetrahedrally coordinated high-spin Fe2+ ion (d6, two unpaired electrons). This indicates, that the 

observed magnetic ordering phenomenon has to be attributed to an impurity. 

Similar results were obtained for solid solution Fe1.9Ca0.1Si5N8 (incomplete ion exchange at 850 °C; 

chapter B.7). The Néel temperature of the impurity phase was shifted to TN = 35.7(5) K, therefore 

one can conclude that the impurity is the same in both samples (Fe2Si5N8 and Fe1.9Ca0.1Si5N8) but with 

different values of x in solid solutions Fe2−xCaxSi2O6.  
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B.6.13. Details on TDPXRD 

 

Figure B.15:  In situ investigation on the ion exchange (2 FeCl2 + α-Ca2Si5N8) by TDPXRD. 

Table B.20:  Temperature program for the TDPXRD measurement shown in Figure B.15. 
Step Starting T / °C Target T / °C t / min ΔT / °C ∙ min−1 XRD 

1 500 500 10 0  

2 500 600 20 5  

3 600 600 10 0  

4 600 700 20 5  

5 700 700 10 0  

6 700 800 20 5  

7 800 800 10 0  

8 800 900 20 5  

9 900 900 10 0  

10 900 980 16 5  

11 980 980 10 0  

12 980 900 16 −5  

13 900 900 10 0  

14 900 800 20 −5  

15 800 800 10 0  

16 800 700 20 −5  

17 700 700 10 0  

18 700 600 20 −5  

19 600 600 10 0  

20 600 500 20 −5  

21 500 500 10 0  
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B.7 Fe1.9Ca0.1Si5N8 

B.7.1. Experimental Details on the Ion Exchange Reaction 

Ion exchange was carried out in a fused silica ampoule under argon atmosphere. α-Ca2Si5N8 and 

FeCl2 were thoroughly mixed in an agate mortar and filled into a dry (high vacuum, 400 °C) silica 

ampoule.  

Table B.21:  Weighted sample for the ion exchange to Fe2Si5N8. 

 

 

Table B.22:  Temperature program of the tube furnace for the ion exchange leading to Fe2Si5N8. 

Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 850 3 275 

2 850 850 3 0 

3 850 500 10 −35 

 

After the reaction, the silica ampoule was opened, the product chunk was pound and washed in water 

to remove the metal halides and subsequently in concentrated nitric acid (65%) to remove elemental 

Fe formed throughout the reaction. Fe1.9Ca0.1Si5N8 was obtained as a brown solid.  

 

B.7.2. Details on ICP-OES 

Table B.23:  ICP-OES analysis of Fe1.9Ca0.1Si5N8. 

Element Amount / mg ∙ g−1 Atomic % Fe1.9Ca0.1Si5N8 theoretical atomic %  

Fe  284.4  12.4 12.67 

Ca 15.0 0.9 0.67 

Si  401.1 34.7 33.33 

Na 299.5 52.0 53.33 

    

Fe+Ca/Si 2/5.2   
   a values for nitrogen were calculated from the difference to 1 g 
  

α-Ca2Si5N8 FeCl2 

300.0 mg 457.3 mg 

0.9 mmol 3.6 mmol 
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B.7.3. Details on SEM and EDX 

 

Figure B.16:  Scanning electron micrograph of a Fe1.9Ca0.1Si5N8 powder sample. 

Table B.24:  EDX analysis (atomic percent) of Fe1.9Ca0.1Si5N8 powder shown in Figure B.16. 

 Spektrum 1 Spektrum 2 Spektrum 3 Spektrum 4 Spektrum 5 Spektrum 6 

N 44 50 53 55 58 51 

O 3 4 3 3 6 4 

Si 38 33 32 30 25 32 

Ca 1 1 1 <1 1 1 

Fe 14 13 12 11 9 11 

Cl -- -- -- <1 --  -- 

(Fe+Ca)/Si 2/5.1 2/4.7 2/4.9 2/5.3 2/5 2/5.3 

       

 Spektrum 7 Spektrum 8 Spektrum 9 Spektrum 10 Spektrum 11 Average 

N 53 52 55 57 28 52.8 

O 2 3 3 4 2 3.5 

Si 32 33 30 28 47 31.3 

Ca 1 1 1 1 1 1 

Fe 12 12 11 10 22 11.5 

Cl -- -- -- -- -- <1 

(Fe+Ca)/Si 2/4.9 2/5.1 2/5 2/5.1 2/4.1 2/5 

 

The values detected for Spektrum 11 may refer to one or more side phases.  
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B.7.4. Comparison Between PXRDs of Fe2Si5N8 and Fe1.9Ca0.1Si5N8 

 

Figure B.17:  Comparison of PXRDs of Fe2Si5N8 (black) and Fe1.9Ca0.1Si5N8 (red) with reflection 

positions. As expected a full exchange of Ca2+ by Fe2+ leads to smaller lattice parameters 

and therefore a shift of reflection positions to larger angles, compared to partial 

exchange. 

 

B.7.5. Optical Microscopy 

 

Figure B.18:  Picture of a Fe1.9Ca0.1Si5N8 sample.  
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C Supporting Information – Chapter 4 

C.1 General 

 

Inert conditions 

All work, except for the washing steps, was carried out excluding humidity and air in an atmosphere 

of dried and purified argon (99.999% Westfalen AG or, Air Liquide) using high-vacuum glass lines 

(<1·10−3 mbar) or a glovebox (MBraun). Glass vessels used for reactions up to 450 °C were made of 

borosilicate glass. For reactions at temperatures higher than 450 °C. silica glass ampoules were used. 

All vessel materials were flame-dried under vacuum before use. 

 

PXRD 

Data were measured on Stoe Stadi P diffractometers (λ = 0.7093 Å, Mo-Kα1 or λ = 1.5406 Å, Cu-Kα1, 

both with Ge(111)-monochromator) in parafocussing modified Debye-Scherrer geometry using 

MYTHEN 1K Si-strip detectors (Dectris, Baden, Switzerland). RIETVELD refinements were carried 

out with TOPAS-Academic Version 4.1.[1,2] Peak shapes were fitted using a fundamental parameters 

approach and the background using a shifted Chebyshev function.[3,4] 

 

Visualization 

RIETVELD refinements and powder patterns were visualized with Origin 6.1.[5] Crystal structures were 

visualized with VESTA 3.[6] 

 

SEM and EDX 

Scanning electron microscopy and EDX was performed on a Dualbeam Helios Nanolab G3 UC (FEI) 

microscope with X-Max 80 SDD detector. At each measuring spot, an area measurement was 

performed in order to receive information about the average compositions of M0.2AE1.7Si5N8 samples.  
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TEM 

For sample preparation, part of a bulk sample with the nominal composition U0.2Sr1.7Si5N8 were 

ground in absolute ethanol and drop‐cast on copper grids covered with continuous carbon film 

(Plano GmbH, Germany). The grids were mounted on a double‐tilt holder and transferred into a FEI 

Tecnai G20 with thermal emitter (LaB6) operating at 200 keV. Selected area diffraction (SAED) 

patterns and bright-field images were recorded using a TVIPS camera (TemCam F216, Tietz) with a 

resolution of 2048 × 2048 pixels. EDX spectra were recorded using an Apollo XLT (EDAX) detector. 

Suitable crystals for single crystal structure determination were found by means of SAED patterns 

and EDX. For later positioning of these crystals in the synchrotron beam, maps of the grids were 

recorded. 

For STEM-HAADF, crystals of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) were ground in absolute ethanol and 

drop-cast on copper grids covered with holey carbon film (Plano GmbH, Germany). The grids were 

mounted on a double‐tilt holder and transferred into a Cs DCOR probe-corrected Titan Themis 300 

(FEI, USA) TEM equipped with X‐FEG, post‐column filter (Enfinium ER‐799), US1000XP/FT 

camera system (Gatan, Germany) and a windowless, 4‐quadrant Super‐X EDX detector. TEM images 

were recorded using a 4k × 4k FEI Ceta CMOS camera. The microscope was operated at 300 kV 

accelerating voltage for SAED and STEM‐HAADF (convergence angle of 16.6 mrad, 50 µm aperture, 

detector inner half angle 63 mrad for 100 mm camera length). For evaluation of the TEM data, the 

following software was used: Digital Micrograph (Fourier filtering of STEM images), 

ProcessDiffraction7 (geometric calculations for SAED), JEMS (SAED simulations), ES Vision (EDX 

spectra) and quantitative STEM-HAADF simulations. 

 

Single-crystal XRD 

A single crystal of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) was centered optically and by fluorescence scans in the 

synchrotron beam of the beamline ID11, ESRF, Grenoble, on a Symétrie Hexapods Nanopos device 

(λ = 0.309 Å). Data were collected with a Frelon CCD detector. Intensities were integrated with 

CrysAlisPro (Agilent Technologies)[7] and semi-empirical absorption correction was performed with 

SADABS.[8] A correction for incomplete absorption of high-energy radiation in the phosphor of the 

CCD detector was applied.[9] The structure was solved and refined with SHELX-97.[10]  
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Optical microscopy 

Optical microscopy was performed on a digital microscope “VHX-5000” (Keyence Microscope 

Europe) with the object lens VH-Z20T.  

 

C.2 Chemicals 

Table C.1:  List of chemicals for this work. 

Substance Information Producer 

Ar(g) 99.999% Air Liquide 

KOH >85% Bernd Kraft 

Silica gel humidity indicator (orange gel) VWR 

Molecular sieve 3 Å Fluka 

P4O10 ≥ 99% Carl Roth 

BTS catalyst operating temperature = 170 °C Merck Millipore 

α-Ca2Si5N8 commercial sample Lumileds Development Center Aachen 

HNO3(aq) 69% Brenntag 

Substance Information  

Sr2Si5N8 prepared from SrH2 and Si3N4 in N2 according to P. J. SCHMIDT et al.[11] 

ScCl3 prepared from Sc and HCl(g) according to L. F. DRUDING et al.[12] 

UCl3 prepared from UCl4 and Si according to S. S. RUDEL et al.[13] 
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C.3 Sc0.2Ca1.7Si5N8  

C.3.1. Experimental Details on the Ion Exchange Reaction 

Sc0.2Ca1.7Si5N8 was prepared by ion exchange between α-Ca2Si5N8 and ScCl3 in a sealed tantalum 

ampoule.[12, 14] 

Table C.2:  Weighted sample for the ion exchange toward Sc0.2Ca1.7Si5N8. 

 

 

Table C.3:  Temperature program of the tube furnace for the ion exchange leading to Sc0.2Ca1.7Si5N8. 

Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 980 3 318 

2 980 980 3 0 

3 980 500 10 −48 

 

The product mixture was subsequently washed in water to remove CaCl2 formed during the reaction.  

 

C.3.2. Rietveld Refinement 

 

Figure C.1:  RIETVELD refinement of Sc0.2Ca1.7Si5N8 (Mo-Kα1). 

α-Ca2Si5N8 ScCl3 

219.8 mg 20 mg 

0.7 mmol 0.1 mmol 
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In order to approximately take into account a certain range of homogeneity in terms of 

ScxCa2−1.5xSi5N8 with different x, anisotropic peak broadening was modelled by the LeBail-Jouanneaux 

algorithm.[15] 

 

Constraints 

RIETVELD refinement of Sc0.2Ca1.7Si5N8 was performed with common isotropic displacement 

parameters of Si and N, respectively.  

Due to the mixed sites Ca1/Sc1 and Ca2/Sc2, isotropic displacement parameters and the coordinates 

(x, y, z) were set equal. 

Since Sc and Ca cannot be differentiated by conventional X-ray data due to their similar electron 

count, both cation sites were refined as uniformly occupied by Ca, Sc and vacancies using the 

equations: occ(Ca1) + occ(Sc1) + 0.5 occ(Sc1) = 1 

occ(Ca2) + occ(Sc2) + 0.5 occ(Sc2) = 1 

Table C.4: Crystallographic information on Sc0.2Ca1.7Si5N8, standard deviations in parentheses. 
Formula Sc0.2Ca1.7Si5N8 

Formula mass / g ∙ mol−1 329.60 

Crystal system monoclinic 

Space group Cc (no. 9) 

Lattice parameters / Å, ° 
 

a = 14.2891(2) 
b = 5.59340(8) 
c = 9.69356(12) 
β = 112.0205(8) 

Cell volume / Å3 718.24(2) 

Z 4 

X-ray density / g ∙ cm−3 3.05 

Linear absorption coefficient / mm−1 2.346 

Radiation Synchrotron, λ = 0.309 Å 

2θ-range / ° 2.000–71.330 

Temperature / °C 25(2) 

Data points 4623 

Number of observed reflections 1703 

Number of parameters 117, thereof 35 background 

Le Bail Jouanneaux parameters 12 of total 117 parameters 

Constraints 12 

Rwp 0.0465 

Rp 0.0355 

RBragg 0.0192 

Rexp 0.0327 

GOF 1.421 
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Table C.5:  List of interatomic distances / Å and bond angles / ° in Sc0.2Ca1.7Si5N8, standard deviations in parentheses. 

Distances  Angles 

Ca1/Sc1–N1 2.235(12) Si2–N6 1.73(10)  Si1–N1–Si4 111.5(9) 

Ca1/Sc1–N2 2.385(13) Si2–N8 1.747(11)  Si1–N2–Si3 129.7(8) 

Ca1/Sc1–N7 2.636(12) Si2–N7 1.76(2)  Si1–N5–Si5 124.2(8) 

Ca1/Sc1–N5 2.648(13) Si2–N3 1.778(12)  Si1–N7–Si2 125.1(10) 

Ca1/Sc1–N6 2.672(9)      

Ca1/Sc1–N5 2.920(12) Si3–N2 1.589(14)  Si2–N3–Si3 116.4(5) 

Ca1/Sc1–N8 3.059(10) Si3–N3 1.726(11)  Si2–N3–Si5 117.1(6) 

  Si3–N4 1.782(11)  Si3–N3–Si5 125.7(6) 

Ca2/Sc2–N5 2.285(14) Si3–N8 1.791(14)    

Ca2/Sc2–N7 2.404(12)    Si3–N4–Si4 115.6(5) 

Ca2/Sc2–N2 2.420(14) Si4–N8 1.680(12)  Si3–N4–Si5 128.7(6) 

Ca2/Sc2–N1 2.657(12) Si4–N1 1.69(2)  Si4–N4–Si5 108.7(5) 

Ca2/Sc2–N4 2.853(11) Si4–N6 1.815(11)    

Ca2/Sc2–N8 3.071(9)  Si4–N4 1.855(10)  Si2–N6–Si4 126.8(5) 

     Si2–N6–Si5 117.5(6) 

Si1–N7 1.70(2) Si5–N3 1.719(12)  Si4–N6–Si5 113.9(6) 

Si1–N2 1.742(12) Si5–N4 1.721(12)    

Si1–N5 1.748(12) Si5–N5 1.739(13)  Si2–N8–Si3 107.8(6) 

Si1–N1 1.78(2)  Si5–N6 1.742(12)  Si2–N8–Si4 128.7(6) 

     Si3–N8–Si4 123.5(7) 

Table C.6:  Fractional atomic coordinates, isotropic displacement parameters and site occupancies in 

Sc0.2Ca1.7Si5N8, standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso  Occupancy 

Sc1 4a 0.00000 0.7618(10)  0.00000  0.0144(14)  0.08(6) 

Sc2 4a 0.6076(2)  0.7464(12)  0.1953(3)  0.018(2)  0.12(6) 

Ca1 4a 0.00000 0.7618(10)  0.00000  0.0144(14)  0.887(7) 

Ca2 4a 0.6076(2)  0.7464(12)  0.1953(3)  0.018(2)  0.813(7) 

Si1 4a 0.0513(6)  0.8032(5)  0.3445(9)  0.0045(3)  1 

Si2 4a 0.7561(5)  0.2102(11)  0.3207(7)  0.0045(3)  1 

Si3 4a 0.7484(5)  0.4954(13)  0.0573(7)  0.0045(3)  1 

Si4 4a 0.3617(4)  0.2025(10)  0.3700(7)  0.0045(3)  1 

Si5 4a 0.8512(5)  0.0047(12)  0.1208(7)  0.0045(3)  1 

N1  4a 0.9839(10) 0.619(2)  0.4255(14)  0.0020(7)  1 

N2  4a 0.1292(9)  0.027(2)  0.9941(13)  0.0020(7)  1 

N3  4a 0.7925(6)  0.244(2)  0.1654(8)  0.0020(7)  1 

N4  4a 0.7992(7)  0.754(2)  0.1669(9)  0.0020(7)  1 

N5  4a 0.9811(9)  1.019(2)  0.2174(12)  0.0020(7)  1 

N6  4a 0.8296(6)  0.0136(14)  0.9317(10)  0.0020(7)  1 

N7  4a 0.6263(10) 0.158(2)  0.271(2)  0.0020(7)  1 

N8  4a 0.7946(7)  0.485(2)  0.4096(10)  0.0020(7)  1 
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C.3.3. Details on SEM and EDX 

Table C.7:  EDX analysis (atomic percent) of a Sc0.2Ca1.7Si5N8 sample, standard deviations in parentheses. 

 Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 Spot 6 Spot 7 Spot 8 

N 58 53 54 57 57 59 58 57 

Si 30 33 34 30 31 30 30 31 

Ca 10 12 12 11 10 10 10 11 

Sc 1 1 1 1 1 1 1 1 

(Ca+Sc)/Si 1.8/5 2/5 1.9/5 2/5 1.8/5 1.8/5 1.8/5 1.9/5 

 Spot 9 Spot 10 Calculated for Sc0.2Ca1.7Si5N8 Average 

N 53 51 53.7 56(3) 

Si 34 36 33.6 32(2) 

Ca 13 12 11.5 11(1) 

Sc 1 2 1.3 1(0) 

(Ca+Sc)/Si 2.1/5 1.9/5.3 1.9/5 1.9/5 

 

Experimental determined EDX values fit well to the composition Sc0.2Ca1.7Si5N8. 

 

C.3.4. Details on ICP-OES 

Table C.8:  ICP-OES analysis of Sc0.2Ca1.7Si5N8. 
Element Amount / mg ∙ g−1 Atomic % Atomic % calculated for Sc0.2Ca1.7Si5N8  
Sc  22.4  1.1 1.3 
Ca 222.7 12.6 11.5 
Si  440.9 35.5 33.6 
Na 314 50.8 53.7 
    
(Ca+Sc)/Si 1.9/5   

a values for nitrogen were calculated from the difference to 1 g 
 

The experimental values of ICP-OES are in good agreement with the composition of Sc0.2Ca1.7Si5N8.  
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C.3.5. Optical Microscopy 

 

Figure C.2:  Image of a Sc0.2Ca1.7Si5N8 (gray) sample on a filter paper (white).  
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C.4 U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) 

C.4.1. TEM 

 

Figure C.3:  Top: Crystal of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) used for collection of synchrotron data; bottom: 

SAED pattern along [101] and simulation based on the refined structure model. 

 

 

Figure C.4:  STEM-HAADF image of an U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) particle and simulation (inset) along 

[101] showing the triplication of the a lattice parameter due to partial ordering of U atoms.  
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C.4.2. Single crystal XRD 

Table C.9:  Crystallographic information on U0.5xSr2−0.75xSi5N8 (x ≈ 1.05), standard deviations 

in parentheses. 

Formula U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) 

Formula mass / g · mol−1 483.64 

Crystal system orthorhombic 

Space group Pmn21 (no. 31) 

Cell parameters / Å 
a = 17.1295(3) 
b = 6.7890(2) 
c = 9.3079(2) 

Cell volume / Å3 1082.44(4) 

Z 6 

F(000) 1322.1 

Calculated density ρ / g · cm−3 4.452 

Absorption coefficient µ /mm−1 3.295 

Radiation Synchrotron, λ = 0.309 Å 

Temperature / °C 25(2) 

θ -range / deg. 1.819 ≤ θ  ≤ 14.193 

Total no. of reflections 5984 

Independent reflections 3475 

Absorption correction  semi-empirical 

Rint, Rσ 0.082, 0.134 

Refined parameters 108 

Constraints 8 

Restraints 7 

Goodness of fit 1.013 

R1 (all data), R1 [F2 > 2σ(F2)] 0.099, 0.087 

wR2 (all data), wR2 [F2 > 2σ(F2)] 0.241, 0.224 

∆ρmax, ∆ρmin / e ⋅ Å−3 7.202, −6.008 
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Constraints and Restraints 

Refinement of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) was performed with common isotropic displacement 

parameters for… 

… the mixed site Sr3/U3, 

… the mixed site Sr2A/U2A, 

… the two sites U1A and U1B due the short interatomic distance, 

… N atoms linked to two Si atoms, 

… N atoms linked to three Si atoms, 

… all Si atoms. 

 

Refinement of U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) was performed with shared x,y,z coordinates for… 

… the mixed site Sr3/U3, 

… the mixed site Sr2A/U2A. 

 

Charge neutrality constraint: ∑(cation charges) = ∑(anion charges) 

 

Sums of site occupation for sites… 

…U1A and U1B, 

…Sr2A, U2A and Sr2B, 

…Sr3 and U3 were each constrained to 1 after refinement pointed towards values close to 1. 

 

In case of distances shorter as commonly found between cation positions the sum of their 

occupations were also fixed to 1. This was done for U1A and Sr4 as well as for Sr2A/U2A and Sr4.  
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Table C.10:  Fractional atomic coordinates, isotropic displacement parameters and site occupancies in 

U0.5xSr2−0.75xSi5N8 (x ≈ 1.05), standard deviations in parentheses. 

Atom Wyckoff symbol x y z Uiso / Ueq Occupancy 

U1A 2a 1/2  0.0927(9) 0.3295(4) 0.0115(5) 0.7882(3) 

U1B 2a 1/2 0.110(4) 0.308(3) 0.0115(5) 0.2118(3) 

Sr2A 4b 0.63932(12) 0.9236(3) 0.7676(3) 0.0142(4) 0.6195(3) 

U2A 4b 0.63932(12) 0.9236(3) 0.7676(3) 0.0142(4) 0.1687(3) 

Sr2B 4b 0.6687(11) 0.908(3) 0.803(3) 0.041(5) 0.2118(3) 

Sr3 4b 0.67045(9) 0.8812(3) 0.1484(3) 0.0155(4) 0.8805(3) 

U3 4b 0.67045(9) 0.8812(3) 0.1484(3) 0.0155(4) 0.1195(3) 

Sr4 2a 1/2 0.116(4) 0.660(4) 0.041(5) 0.2118(3) 

Si11 4b 0.5832(3) 0.3442(9) 0.9649(7) 0.0040(4) 1 

Si12 4b 0.7513(3) 0.6826(9) 0.4596(7) 0.0040(4) 1 

Si13 4b 0.4167(3) 0.6683(9) 0.4675(7) 0.0040(4) 1 

Si21 2a 1/2 0.9621(13) 0.9851(9) 0.0040(4) 1 

Si22 4b 0.8333(3) 0.9286(9) 0.9640(7) 0.0040(4) 1 

Si31 2a 1/2 0.5965(12) 0.1887(10) 0.0040(4) 1 

Si32 4b 0.6691(3) 0.4339(9) 0.6833(7) 0.0040(4) 1 

Si41 2a 1/2 0.6014(12) 0.7504(10) 0.0040(4) 1 

Si42 4b 0.6629(3) 0.4074(9) 0.2426(7) 0.0040(4) 1 

N11 2a 1/2 0.838(4) 0.155(3) 0.0111(12) 1 

N12 4b 0.1807(10) 0.788(3) 0.112(2) 0.0111(12) 1 

N21 4b 0.5839(10) 0.098(3) 0.992(2) 0.0111(12) 1 

N22 4b 0.7491(10) 0.930(3) 0.438(2) 0.0111(12) 1 

N23 4b 0.4154(10) 0.915(3) 0.482(2) 0.0111(12) 1 

N31 4b 0.5839(9) 0.573(3) 0.640(2) 0.0070(12) 1 

N32 4b 0.7499(9) 0.405(3) 0.140(2) 0.0070(12) 1 

N33 4b 0.5851(8) 0.474(3) 0.131(2) 0.0070(12) 1 

N41 4b 0.3329(9) 0.584(3) 0.377(2) 0.0070(12) 1 

N42 2a 1/2 0.416(4) 0.872(3) 0.0070(12) 1 

N51 4b 0.6374(8) 0.185(3) 0.309(2) 0.0111(12) 1 

N52 2a 1/2 0.815(4) 0.840(3) 0.0111(12) 1 

N61 4b 0.8330(9) 0.578(3) 0.378(2) 0.0070(12) 1 

N62 2a 1/2 0.576(4) 0.382(3) 0.0070(12) 1 

Table C.11:  Anisotropic displacement parameters for U0.5xSr2−0.75xSi5N8 (x ≈ 1.05), least-squares standard deviations 

in parentheses. 

Atom U11/ Å2 U22 / Å2 U33 / Å2 U23 / Å2 U13 / Å2 U12 / Å2 

U1A  0.0125(4) 0.0070(13) 0.015(2)  0.0041(8)  0   0 

U1B  0.0125(4) 0.0070(13) 0.015(2)  0.0041(8)  0   0 

Sr2A 0.0167(8) 0.0099(9)  0.0159(10) −0.0008(6) 0.0031(7) −0.0050(5) 

U2A  0.0167(8) 0.0099(9)  0.0159(10) −0.0008(6) 0.0031(7) −0.0050(5) 

Sr3  0.0169(6) 0.0114(8)  0.0183(9)  0.0044(6)  0.0004(6) 0.0015(5) 

U3   0.0169(6) 0.0114(8)  0.0183(9)  0.0044(6)  0.0004(6) 0.0015(5)  
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C.4.3. CHARDI Calculations 

Vesta 3 was used to calculate CHARDI values according to the theory of HOPPE et al.[6, 16] The results 

are shown in Table C.12 for the cation positions in U0.5xSr2−0.75xSi5N8 (x ≈ 1.05). 

Table C.12: CHARDI values calculated for the cation sites in U0.5xSr2−0.75xSi5N8 

(x ≈ 1.05), where Q is the charge received by the cation and q is the 

formal charge depending on the occupancy. 

Cation site Q  q  

U1A 2.332 2.365 

U1B 0.622 0.635 

Sr2A/U2A 1.682 1.745 

Sr2B 0.397 0.424 

Sr3/U3 2.025 2.120 

Sr4 0.418 0.424 
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C.5 Bulk Sample with the Average Composition U0.2Sr1.7Si5N8 

C.5.1. Experimental Details on the Ion Exchange Reaction 

U0.2Sr1.7Si5N8 was prepared by ion exchange between Sr2Si5N8 (186.3 mg) and UCl3 (30 mg) in a sealed 

tantalum ampoule.[14,17]  

Table C.13:  Weighted sample for the ion exchange toward U0.2Sr1.7Si5N8. 

 

 

Table C.14:  Temperature program of the tube furnace for the ion exchange leading to U0.2Sr1.7Si5N8. 

Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 980 3 275 

2 980 980 3 0 

3 980 500 10 −35 

 

After the reaction, the tantalum ampoule was opened, the product mixture was washed in water at 

25 °C and afterwards treated with H2O, HNO3 and KOH in several step given in Table C.15. 

 

C.5.2. Treatment of U0.2Sr1.7Si5N8 in Different Agents and ICP-MS 

Table C.15:  Treatment of U0.2Sr1.7Si5N8 with dissolved U-content according to ICP-MS. 

Step Reagent Volume / mL Duration / h Temperature / °C c(U) Percentage of total U 

1 H2O 15 24 25 70.8 μg/L 0.005% 

2 H2O 15 24 90 684 μg/L 0.049% 

3 HNO3 15 24 90 156.8 mg/L 11.343% 

4 H2O 15 24 90 718 μg/L 0.051% 

5 KOH 15 24 90 93.8 mg/L 6.786% 

6 H2O 15 24 90 1.2 mg/L 0.0868% 

  

Sr2Si5N8 UCl3 

186.3 mg 30 mg 

0.4 mmol 0.1 mmol 
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C.5.3. Details on SEM and EDX 

Table C.16:  EDX analysis (atomic percent) of an U0.2Sr1.7Si5N8 powder sample, standard deviations in 

parentheses. 
 Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 Spot 6 Spot 7 Spot 8 

N 54 55 60 53 61 58 51 57 

Si 34 33 30 37 30 31 36 32 

Sr 12 11 10 3 8 11 12 11 

U 0 1 0 7 2 0 1 0 

(Sr+U)/Si 1.8/5 1.8/5 1.7/5 1.4/5 1.7/5 1.8/5 1.8/5 1.7/5 

 Spot 9 Spot 10 Calculated for U0.2Sr1.7Si5N8 Average 

N 53 65 53.7 57(4) 

Si 35 26 33.6 32(3) 

Sr 12 9 11.5 10(3) 

U 0 0 1.3 1(2) 

(Sr+U)/Si 1.7/5 1.7/5 1.9/5 1.7/5 

 

The values fit well to the overall composition of the sample. Furthermore EDX analyses confirm that 

U0.2Sr1.7Si5N8 is composed of a phase similar to Sr2Si5N8 containing small amounts of U and a second 

phase that contains high amounts of U. 
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C.5.4. PXRD 

Table C.17:  Crystallographic information on the RIETVELD refinement of U0.2Sr1.7Si5N8 as mixture of Sr2Si5N8 and 

U0.5xSr2−0.75xSi5N8 (x ≈ 1.05), standard deviations in parentheses. 
Formula Sr2Si5N8 U0.5xSr2−0.75xSi5N8 (x ≈ 1.05) 

Formula mass / g ∙ mol−1 427.72 483.64 

Crystal system orthorhombic 

Space group Pmn21 (no. 31) 

Lattice parameters / Å, ° 
 

a = 5.70962(4) 
b = 6.81736(5) 
c = 9.33401(7) 

a = 17.1251(10) 
b = 6.7838(2) 
c = 9.3063(4) 

Cell volume / Å3 363.322(5) 1081.15(8) 

Z 2 6 

X-ray density / g ∙ cm−3 3.90974(5) 4.4578(4) 

Linear absorption coefficient / mm−1 27.194 55.638 

2θ-range / ° 5.000–119.500 

Radiation Cu-Kα1 (λ = 1.5406 Å) 

Temperature / °C 25(2) 

Data points 7638 

Number of observed reflections 322 899 

Number of parameters 42 

Rwp 0.0663 

Rp 0.0488 

RBragg 0.0276 

Rexp 0.0392 

GOF 1.691 
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C.5.5. Optical Microscopy 

 

Figure C.5:  Image of an U0.2Sr1.7Si5N8 sample composed of two phases (U-poor and U-rich). 
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D Supporting Information – Chapter 5 

D.1 General 

 

Combustion analysis (CHNS) 

The N content of Pb2Si5N8 was determined by burning a sample in oxygen atmosphere using a Vario 

Micro Cube device from Elementar.  

 

ICP-OES 

Elemental composition (Si and Pb) of Pb2Si5N8 was determined by ICP-OES on a Varian CCD 

Simultaneous ICP AES Vista-RL device equipped with an autosampler SPS5. 

 

SEM 

Pb2Si5N8 crystal sizes and shapes were investigated with a Dualbeam Helios Nanolab G3 UC scanning 

electron microscope (FEI) equipped with a X-Max 80 SDD EDX detector (Oxford Instruments) for 

EDX. The sample was coated (BAL-TEC MED 020, BalTec AG) with carbon to reduce electrical 

charging due to the non-conducting character of the sample. 

 

Raman spectroscopy 

of Pb2Si5N8 was performed on a confocal Raman microscope (LabRSM HG UV/Vis, Horiba Jobin 

Ivon GmbH, combined with an Olympus BX 41 microscope) with a He-Ne laser with a 1 mm focus 

and a CCD detector.  

 

XPS 

XPS was performed using non-monochromated Mg-Kα radiation (Al-filter) of a VSW TA10 X-ray 

source and a VSW HA100 hemispherical analyzer. Peak shifts due to charging of the sample were 

corrected by setting the C 1s peak to 284.8 eV, corresponding to adventitious carbon.[1] Spectra were 

acquired after cleaning of a Pb2Si5N8 sample by Ar+ sputtering (1 kV; ∼7 μA). Prolonged Ar+ 
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii ii
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sputtering did not lead to a significant change in Pb/PbOx ratio of the sample composition. The 

recorded peaks were fitted with a Doniach-Sunjic line shape convoluted with a Gaussian and linear 

background subtraction.[2]  

 

UV-Vis spectroscopy 

Spectra were recorded on a Jasco V-650 UV-Vis spectrophotometer, equipped with a deuterium and 

a halogen lamp (Czerny-Turner monochromator with 1200 lines/mm concave grating, 

photomultiplier tub detector). Diffuse reflectance spectra were measured in the range of 200–800 nm 

(step size 1 nm). 

 

TEM 

For sample preparation, crystals of Pb2Si5N8 were ground in absolute ethanol and drop cast on copper 

finder grids covered with a continuous carbon film (Plano GmbH, Germany). The latter were 

mounted on a double-tilt holder and transferred into a FEI Tecnai G20 with thermal emitter (LaB6) 

operating at 200 keV. SAED patterns and bright-field images were recorded using a TVIPS camera 

(TemCam F216, Germany) with a resolution of 2048 × 2048 pixels. EDX spectra were recorded using 

an Apollo XLT (EDAX) detector. The suitable crystal for single crystal structure determination was 

found by means of SAED patterns and EDX.  

 

Single-crystal XRD 

XRD data of a Pb2Si5N8 crystal, which was recovered by optical centering and fluorescence scans, 

were collected on the beamline ID11, ESRF, Grenoble, on a Symétrie Hexapods Nanopos device 

(λ = 0.309 Å). Integration was done with CrysAlisPro (Agilent Technologies)[3] and multi-scan 

absorption correction with SADABS[4] as well as a correction for incomplete absorption of high-

energy radiation in the phosphor of the CCD detector was applied.[5] The structure was solved and 

refined with SHELX-97.[6]  
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PXRD 

PXRD measurements were performed in cylindrical glass capillaries with a diameter of 0.3 (Sr2Si5N8) 

or 0.5 mm (Pb2Si5N8, diluted with 150 equivalents LiH) on a Stoe Stadi P diffractometer 

(λ = 1.5406 Å, Cu-Kα1, Ge(111) monochromator) in parafocussing Debye-Scherrer geometry using 

a MYTHEN 1K Si strip detector (Dectris, Baden, Switzerland). Data points were collected with 0.015° 

steps in the range of 5.000° ≤ 2θ ≤ 119.555°. RIETVELD refinements were performed using TOPAS-

Academic Version 4.1.[7] Peak shapes were fitted by a fundamental parameters approach and the 

background by a shifted Chebyshev function.[8] Preferred crystal orientation was refined with 

spherical harmonics of fourth order. Absorption effects were corrected by a cylindrical absorption 

correction considering the capillary diameter and linear absorption coefficients of the phases. 

 

DFT-calculations 

To model both phononic and electronic properties most effectively, DFT calculations followed two 

different strategies. We first utilized VASP[9] based on the projector augmented wave method[10] and 

plane-wave basis sets with a kinetic energy up to 500 eV. Exchange and correlation were described 

by the GGA parametrized by PBE but adding the D3 correction by Grimme to better approximate 

van-der-Waals-like interactions affecting vibrations. [11–12] The Brillouin zone was sampled on a 

Monkhorst-Pack mesh of 8 × 7 × 5 points in reciprocal space.[13] The electronic (atomic) structure 

was optimized until the difference between two iterative steps was below 10−9 eV (10−7 eV) per 

simulation cell. Phonon properties were computed using Phonopy based on a 2 × 2 × 1 supercell and 

forces calculated with VASP on a 4 × 3 × 5 Monkhorst-Pack mesh.[14] For DPS the vibrational 

Brillouin zone was sampled on a 35 × 29 × 21 Monkhorst-Pack mesh, and the vibrational states were 

accounted within 1 cm−1 steps. The DPS can be directly compared to infrared or Raman spectra in 

terms of the wavenumbers.[15] To analyse the vibrational modes, we also calculated their eigenvectors 

and visualized them with wxDragon.[16] Second, the electronic-structure calculations targeted at 

bonding properties also employed GGA-PBE[11] and the PAW method[10] but were carried out using 

ABINIT.[17] To anticipate effects of relativity and spin-orbit coupling due to the heavy element Pb, 

both SOC and non-SOC calculations were performed. Since all PAW potentials for ABINIT have 

been generated using the scalar-relativistic approximation,[18] all the relativistic effects within this 

approximation were also naturally included in the calculations. To achieve convergence, the k-point 

mesh of size 7 × 5 × 3 was set up based on the Monkhorst-Pack scheme,[13] whereas the cutoff energy 
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of 680 eV was used to control the number of plane waves. All crystallographic data were taken from 

the experimental results because DFT structure optimizations resulted in virtually unchanged lattice 

parameters and symmetry (Table D.14). Therefore, we only present results as obtained using 

experimental crystallographic data. To understand chemical bonding as well as to calculate Mulliken 

charges in Pb2Si5N8 we further processed the electronic-structure data using the LOBSTER 

package,[19] a tool to reconstruct electronic structures through projection of PAW-based 

wavefunctions onto atomic-like basis sets. In order to show the difference between non-SOC and 

SOC calculations, a new LOBSTER routine capable of processing SOC data was developed. For the 

projection, we employed the local basis functions as given by pbeVaspFit2015[19b] including 6s and 6p 

for Pb, 3s and 3p for Si, and 2s and 2p for N. 

 

DTA/TGA investigation 

A sample of Pb2Si5N8 located in a corundum crucible was heated to 1300 °C in N2 with a rate of 

15 °C/min in a STA 449 F5 Jupiter device (Netzsch) equipped with a type W thermal element. 

 

Visualization 

RIETVELD refinements were visualized with Origin 6.1.[20] Crystal structures were visualized with 

Diamond 3k.[21]  
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D.2 Chemicals 

Table D.1:  List of chemicals for this work. 

Substance Information Producer 
Ar(g) 99.999% Air Liquide 

KOH >85% Bernd Kraft 

Silica gel humidity indicator (orange gel) VWR 

Molecular sieve 3 Å Fluka 

P4O10 ≥ 99% Carl Roth 

Ti (sponge) operating temperature = 730 °C Alfa Aesar 

Si3N4 amorphous  Ube Industries, Ltd. 

SrH2 99.5% Materion 

PbCl2 98% Sigma Aldrich  

HNO3 65% Brenntag 

LiH phase pure by PXRD  

 

 

D.3 Starting Material Sr2Si5N8 

The starting material Sr2Si5N8 was prepared by the hydride route.[22] SrH2 and Si3N4 (Table D.2) were 

mixed in an agate mortar, filled into a tungsten crucible and transferred into the reactor of a radio-

frequency furnace (Trumpf Hüttinger, Germany) purged by N2. The reaction was performed in N2 

atmosphere applying the temperature program shown in Table D.3. Sr2Si5N8 was obtained as a phase 

pure colorless solid. 

Table D.2:  Weighted sample for the preparation of Sr2Si5N8. 

 

 

Table D.3:  Temperature program of the radio-frequency furnace for the preparation of Sr2Si5N8. 
Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 

1 25 1600 3 525 
2 1600 1600 3 0 
3 1600 500 5 −211 

 

SrH2 Si3N4 

300 mg 391.2 mg 

3.3 mmol 2.8 mmol 
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Figure D.1:  RIETVELD refinement of Sr2Si5N8 measured with Cu-Kα1 radiation (λ = 1.5406 Å).[23]  

Table D.4: Crystallographic information on the starting material Sr2Si5N8, least squares 

standard deviations in parentheses. 

Formula Sr2Si5N8 

Formula mass / g ∙ mol−1 427.72 

Crystal system Orthorhombic 

Space group Pmn21 (no. 31) 

Lattice parameters / Å, ° 
a = 5.71006(4) 
b = 6.81914(5) 
c = 9.33599(6) 

Cell volume / Å3 363.522(4) 

Z 2 

X-ray density / g ∙ cm−3 3.908 

Linear absorption coefficient / mm−1 27.1798(3) 

2θ-range / ° 5.000–119.550 

Temperature / °C 25(2) 

Data points 7638 

Number of observed reflections 322 

Number of parameters 33, thereof 12 for background 

Rwp 0.0399 

Rexp 0.0202 

Rp 0.0301 

RBragg 0.0158 

GOF 1.976 
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D.4 Experimental Details on the Ion Exchange Reaction 

Ion exchange was carried out in a fused silica ampoule under argon atmosphere. Sr2Si5N8 and PbCl2 

were thoroughly mixed in an agate mortar and filled into a dry (high vacuum, 400 °C) silica ampoule.  

Table D.5:  Weighted sample for the ion exchange toward Pb2Si5N8. 

 

 

Table D.6:  Temperature program of the tube furnace for the ion exchange leading to Pb2Si5N8. 
Step Starting T / °C Target T / °C t / h ΔT / °C ∙ h−1 
1 25 920 3 298 
2 920 920 3 0 
3 920 500 10 −42 

 

D.5 Additional Crystallographic Data on Pb2Si5N8  

Table D.7:  Crystallographic data for Pb2Si5N8, least-squares standard 

deviations in parentheses. 
Formula Pb2Si5N8 

Formula mass / g · mol−1 666.90 
Crystal system orthorhombic 

Space group Pmn21 (no. 31) 

Z 2 

F(000) 580 

Cell parameters / Å 
a = 5.774(1) 
b = 6.837(1) 
c = 9.350(1) 

Cell volume / Å3 369.11(9) 

Calculated density ρ / g · cm−3 6.001 

Abs. coefficient µ /mm−1 5.362 

Radiation Synchrotron, λ = 0.309 Å 

Temperature / °C 25(2) 

θ range / deg. 1.604 ≤ θ  ≤ 13.120 

Total no. of reflections 6540 

Independent reflections 1268 

Rint, Rσ 0.051, 0.049 

Refined parameters 60 
 Goodness of fit 1.058 

R1 (all data), R1 [F2 > 2σ(F2)] 0.023, 0.023 

wR2 (all data), wR2 [F2 > 2σ(F2)] 0.055, 0.055 

∆ρmax, ∆ρmin / e ⋅ Å−3 1.433, −2.439 

  

Sr2Si5N8 PbCl2 

256.3 mg 500 mg 

0.6 mmol 1.8 mmol 
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Table D.8:  List of interatomic distances (Å) in Pb2Si5N8, least-squares standard deviations in parentheses. 

Distances 

Pb1–N5 2.362(10) Pb2–Pb1 3.1902(5) Si2–N5 1.726(10) 

Pb1–N2 2.453(7) Pb2–N3 3.311(6) Si2–N2 1.732(6) 

Pb1–N1 2.977(2) Pb2–N2 3.328(9) Si2–N1 1.736(10) 

Pb1–Pb2 3.1902(5) Pb2–Pb1 3.4175(5)   

Pb1–N4 3.293(9)   Si3–N1 1.704(10) 

Pb1–Pb2 3.4175(5) Si1–N2 1.714(5) Si3–N3 1.765(8) 

  Si1–N4 1.738(5) Si3–N6 1.770(12) 

Pb2–N1 2.397(9) Si1–N6 1.741(6)   

Pb2–N2 2.496(7) Si1–N3 1.750(6) Si4–N5 1.705(10) 

Pb2–N5 2.970(2)   Si4–N4 1.736(10) 

    Si4–N3 1.755(8) 

Table D.9:  List of bond angles (°) in Pb2Si5N8, least squares standard deviations in parentheses. 

Angles 

Si3–N1–Si2 142.9(6) Si2–N2–Pb2 101.6(3)  Si1–N4–Si1 113.0(5) 

Si3–N1–Pb2 118.1(4) Pb1–N2–Pb2 80.3(2)    

Si2–N1–Pb2 99.0(4)    Si4–N5–Si2 138.2(6) 

  Si1–N3–Si4 117.2(4)  Si4–N5–Pb1 118.0(5) 

Si1–N2–Si2 126.7(4) Si1–N3–Si3 115.4(4)  Si2–N5–Pb1 103.9(4) 

Si1–N2–Pb1 120.8(4) Si4–N3–Si3 127.4(4)    

Si1–N2–Pb2 114.3(4)    Si1–N6–Si1 111.3(5) 

Si2–N2–Pb1 102.5(3) Si4–N4–Si1 123.4(3)  Si1–N6–Si3 119.5(3) 

Table D.10:  Fractional atomic coordinates, isotropic displacement parameters, and site occupancies in Pb2Si5N8, 

least-squares standard deviations in parentheses. 

Atom Wyckoff site x y z Uiso, Ueq / Å2 Occupancy 

Pb1 2a 0 0.08528(5) 0.99944(3) 0.01059(14) 1 

Pb2 2a 0 0.07056(5) 0.65841(3) 0.01135(14) 1 

Si1 4a 0.7490(3) 0.3451(3) 0.3291(3) 0.0048(3) 1 

Si2 2a 0 0.9476(4) 0.3313(6) 0.0051(4) 1 

Si3 2a 0 0.5755(4) 0.5495(6) 0.0057(7) 1 

Si4 2a 0 0.5942(4) 0.1061(5) 0.0042(7) 1 

N1  2a 0 0.8096(12) 0.4872(10) 0.009(2) 1 

N2  4a 0.7559(11) 0.0947(7) 0.3365(10) 0.0072(9) 1 

N3  4a 0.7535(14) 0.5525(8) 0.0006(6) 0.0072(12) 1 

N4  2a 0 0.4283(11) 0.2466(11) 0.007(2) 1 

N5  2a 0 0.8286(13) 0.1686(10) 0.011(2) 1 

N6  2a 0 0.5816(12) 0.7388(11) 0.004(2) 1 
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Table D.11: Anisotropic displacement parameters for Pb2Si5N8, least-squares standard deviations in parentheses. 

Atom U11/ Å2 U22 / Å2 U33 / Å2 U23 / Å2 U13 / Å2 U12 / Å2 

Pb1 0.0102(3) 0.0098(2) 0.0117(2) −0.00027(12) 0  0 

Pb2 0.0110(3)  0.0113() 0.0118(2)  −0.00031(13) 0  0 

Si1 0.0028(7)  0.0050(7)  0.0066(5)  0.0002(7)  −0.0003(8)  0.0004(5) 

Si2 0.0023(11)  0.0053(9)  0.0076(9)  0.0010(12)  0  0 

Si3 0.003(2)  0.0056(13)  0.0088(14) 0.0009(7)  0  0 

Si4 0.003(2)  0.0052(11)  0.0042(13) 0.0013(9)  0  0 

 

D.6 Rietveld Refinement of Pb2Si5N8 

A sample of Pb2Si5N8 was rarefied with 150 equivalents of LiH to circumvent strong absorption effects 

using Cu-Kα1 radiation. The RIETVELD refinement has been performed using the single crystal 

structure of Pb2Si5N8 only refining the lattice parameters. 

Table D.12:  Crystallographic information (PXRD) on Pb2Si5N8, least squares 

standard deviations in parentheses. 

Formula Pb2Si5N8 

Formula mass / g ∙ mol−1 666.88 

Crystal system orthorhombic 

Space group Pmn21 (no. 31) 

Lattice parameters / Å, ° 
a = 5.77174(5) 
b = 6.83689(6) 
c = 9.35102(8) 

Cell volume / Å3 368.998(6) 

Z 2 

Radiation 1.5406 Å 

Radiation source Cu-Kα1 

X-ray density / g ∙ cm−3 6.00212(9) 

Linear absorption coefficient / mm−1 93.2598(13) 

2θ-range / ° 5.000–119.555 

Temperature / °C 25(2) 

Data points 7638 

Number of observed reflections 328 

Number of parameters, 44, thereof 16 background 

Rwp 0.0918 

Rexp 0.0940 

Rp 0.0693 

RBragg 0.0213 

GOF 0.976 
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D.7 Details on SEM and EDX 

 
Figure D.2: Scanning electron micrographs of a Pb2Si5N8 powder sample. 

Table D.13:  EDX analysis (atomic percent of Pb and Si) of Pb2Si5N8 powder shown in Figure D.2. 

 Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 5 Spectrum 6 Spectrum 7 

Si 29 30 28 34 27 32 29 

Pb 12 13 10 13 11 11 12 

Pb/Si 2/4.8 2/4.6 2/5.6 2/5.2 2/4.9 2/5.8 2/4.8 

        

 Spectrum 8 Spectrum 9 Spectrum 
 

Spectrum 
 

Theoretical Average 

Si 32 32 32 25 33 30 

Pb 14 12 13 10 13 12 

Pb/Si 2/4.6 2/5.3 2/4.9 2/5 2/5 2/5 

 

The analysis of Pb and Si by EDX fits well to the theoretical composition “Pb2Si5N8”.  
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D.8 Details on ICP-OES 

Table D.14:  ICP-OES analysis of Pb2Si5N8. 

Element Amount / mg ∙ g−1 Atomic % Atomic % calculated for Pb2Si5N8 

Pb 621.5  13.4 13.3 

Sr not detectable 0.0 0.0 

Si  211.7 33.6 33.3 

Na 166.8 53.0 53.3 
  a values for nitrogen were calculated from the difference to 1 g 
 

The experimental values of ICP-OES for Pb2Si5N8 are in good agreement with the assumed 

composition of the compound.  

 

D.9 Details on CHNS Analysis 

Nitrogen content was determined to 17.2(3) mass%. The result matches the theoretical value for 

Pb2Si5N8 of 16.8 mass%.  
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D.10 Details on UV-Vis 

The measured reflectance (R) spectrum was converted to a pseudoabsorption spectrum applying the 

Kubelka-Munk function F(R) = (1−R)2/2R.[24] Concerning uncertainties, the choice of the Kubelka-

Munk exponent 1/n (n = ½ for direct or n = 2 for indirect band gap) has no significant influence due 

to similar values for the resulting band gap (Figure D.3). 

 

 Figure D.3:  Tauc plots (n = ½, left; n = 2, right) for Pb2Si5N8. 
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D.11 XPS 

 
Figure D.4:  X-ray photoelectron spectra of a Pb2Si5N8 sample. 

On the one hand, lead species are observed at binding energies that are attributed to lead oxides in 

the literature.[25] This observation can be attributed to possible amorphous Pb/Si/N phases on the 

sputtered surface. On the other hand, the analysis of the Pb 4f7/2 signal clearly shows the presence of 

a second Pb component at lower binding energies. The signal at around 137.0 eV, which is attributed 

to elemental Pb in literature, thus hints at the presence of a more covalently bound Pb species as 

indicated by the reduced charge for Pb(II).[26] The data were validated by the Si 2p and N 1s signals 

showing excellent agreement with literature values for silicon nitride at 101.7 and 397.1 eV, 

respectively.[27]   
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D.12 Raman vs. DPS 

 

Figure D.5:  Raman spectrum of a Pb2Si5N8 sample (red) compared to calculated DPS states (black). 

Figure D.5 depicts the calculated DPS compared to the experimentally determined Raman spectrum. 

The DPS does not show any imaginary phonon modes which would indicate dynamical instability. 

Therefore, the crystal structure is at least a local minimum on the potential energy surface. The 

signals of the Raman spectrum can all be found in the DPS. The Raman modes therefore can be 

assigned by the analysis of the eigenvectors of the theoretical DPS. The intensities cannot be 

compared directly, since the DPS is a picture of the number of states accessible in a given frequency 

range over the whole Brillouin zone. The experimental Raman intensity depends on other factors. 

  



Supporting Information – Cationic Pb2 Dumbbells 
 

 
185 

At wavenumbers of ca. 117 cm−1, a stretching vibration of the Pb atoms is clearly visible. The crystal 

structure together with the respective eigenvectors is shown in Figure D.6. 

 

Figure D.6:  Crystal structure of Pb2Si5N8 together with the eigenvectors (red arrows) of the 14th 

vibrational mode (ν = 117 cm−1) at the gamma point; gray: Pb, black: Si, blue: N. 
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D.13 DFT 

Table D.15:  Crystallographic data from the experiment and optimization calculations without and with spin-orbit 

coupling (SOC), standard deviations in parentheses. 

Parameter / Å Experimental  Opt. non-SOC Opt. SOC 

a 5.774(1) 5.808 5.810 

b 6.837(1) 6.900 6.905 

c 9.350(1) 9.431 9.430 

first-nearest Pb–Pb 3.190(1) 3.241 3.232 

second-nearest Pb–Pb 3.4175(5) 3.457 3.451 

first-nearest Pb–Si  3.172(6) 3.197 3.197 

second-nearest Pb–Si  3.243(5) 3.276 3.276 

first-nearest Pb–N  2.362(9) 2.434 2.434 

second-nearest Pb–N 2.397(9) 2.459 2.459 

 

Table D.16:  Total energy (measured relative to the non-SOC total energy), band gap, 

and integrated COHP (ICOHP) of the 1.71 Å Si–N bond, the 2.36 Å Pb–N 

bond, and the 3.19 Å Pb–Pb bond for the non-SOC and SOC calculations. 

Quantity Non-SOC SOC 

ΔE / eV 0 −0.903 

band gap / eV 1.7 1.5 

ICOHP(Si–N) / eV −7.68 −7.61 

ICOHP(Pb–N) / eV −2.62 −2.63 

ICOHP(Pb–Pb) / eV −1.26 −1.25 

 

 

Figure D.7:  Electronic band structure without a) and b) with spin-orbit coupling for Pb2Si5N8, both 

calculated using the experimental crystallographic data. The energy axis is shown relative 

to the Fermi level (εF). The effects of spin-orbit splitting (right) are hardly visible within the 

valence region but become slightly more prominent in the conduction bands.  
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D.14 DTA/TGA Investigation of Pb2Si5N8 

 

Figure D.8:  DTA/TGA investigation (15 °C · min−1) of a Pb2Si5N8 sample (N2 atmosphere) showing a 

mass loss of about 40% at temperatures greater than 1000 °C. 
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