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Introductory Remarks

Many of the results presented in this thesis have been or will be published in separate
scientific articles. The work on the Tessellation Level Tree in chapter 2 will be published
in Busch and White (2019c) and Busch and White (2019a). The third chapter about
morphology of reionisation is based on a draft (Busch et al., 2019) also waiting to be
published, while the contents of chapter 4 were part of Busch and White (2017).

This thesis is my own work. I chose to use the first person plural pronoun “we” to
conform with the typical writing style in our field.
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Synopsis | Zusammenfassung

This thesis is the result of a PhD project that tried to investigate and find new descriptions
of entities arising in large scale structure based upon their spatial configuration. For this
we analyse N-body simulations of gravitational collapse in a cold dark matter universe with
cosmological constant (ΛCDM) and Monte Carlo ray-tracing radiative transfer (MCRTRT)
simulations of reionisation. We also use an N-body simulations to investigate possible
problems with observational results connected to large scale clustering.

In the first part of this thesis we develop a novel technique to characterise the density
field in cosmological N-body simulations based upon a density estimate and the connectivity
between particles obtained from a Voronoi tessellation of their positions. We use this
estimate to find a hierarchical set of peaks in the Millennium and Millennium II simulations.
This hierarchy completely decomposes the particle load of the simulations into nodes in a
single tree structure we call “Tessellation Level Tree” (TLT).

We investigate the properties of these peaks and concentrate on two novel aspects: the
percolation of the connected set of peaks above densities of a few (6− 7) along the cosmic
web and the very strong assembly bias effect if peaks are split by saddle point density.
This assembly bias effect is the strongest ever obtained from quintiles in a local property
of the dark matter distribution in simulations.

The second part of the thesis investigates the morphology of ionised bubbles in hydrogen
and helium during reionisation. For this we use MCRTRT on regular grids and create
binary representations of the ionisation fields using a threshold. We then apply techniques
of mathematical morphology to extract a hierarchy of bubbles ordered by local diameter.

We show the shift in the global bubble size distribution throughout reionisation and
how the ionised volume is more and more unequally distributed among the bubbles as they
grow and overlap. The overlap also results in a percolation process we identify at z & 8
that increasingly delocalises the reionisation process. Finally, we connect the bubbles to
the properties of the underlying density field. For the first time we show that the largest
bubbles in the post-overlap regime are not densest in the centre are very strongly biased
with respect to the large scale matter distribution. We also quantify how ionisation reaches
the most underdense parts of the universe last, reconfirming the inside-out scenario of
reionisation.

In the final part of the thesis we test the assembly bias and splashback radius mea-
surements claimed by previous publications using clusters obtained with the optical cluster
finder redMaPPer. For this we develop a mock-version of the algorithm that incorporates
the core aspects of the cluster identification and apply it to a semi-analytic galaxy popula-
tion of the Millennium simulation. We show that the claimed concentration differences in
the optically selected clusters are most likely stemming from projection effects that arise
more in overdense regions, leading to a coupling between concentration and large scale
clustering and therefore a false positive assembly bias detection. The claimed splashback
radius identification that is inverse in connection with cluster properties compared to the
results of numerical simulations is shown to be an artifact of the circular mask of the
selection algorithm.
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Diese Arbeit ist das Ergebnis eines Dissertationsprojektes, das versuchte, neue Beschrei-
bungen von Entitäten in großräumigen Strukturen basierend auf ihrer räumlichen Konfig-
uration zu finden und zu untersuchen . Dazu analysieren wir N-Körper-Simulationen des
gravitativen Kollapses in einem Universum gefüllt kalter dunklen Materie mit kosmologis-
cher Konstante (ΛCDM) und Monte-Carlo-Raytracing Strahlungstransfer (MCRTRT) Sim-
ulationen der Reionisation. Wir verwenden auch eine N-Körper-Simulation, um mögliche
Probleme mit Beobachtungsergebnissen im Zusammenhang mit großräumigem Clustering
zu untersuchen.

Im ersten Teil dieser Arbeit entwickeln wir eine neuartige Technik zur Charakter-
isierung des Dichtefeldes in kosmologischen N-Körper-Simulationen, die auf einer Dichteab-
schätzung und der Konnektivität zwischen Teilchen basiert, die aus einer Voronoi-Tessellierung
ihrer Positionen gewonnen wurden. Wir verwenden diese Schätzung, um einen hierarchis-
chen Satz von Dichtespitzen in der Millennium- und Millennium-II-Simulationen zu finden.
Diese Hierarchie zerlegt die Partikelbelastung der Simulationen vollständig in Knoten in
einer einzigen Baumstruktur, die wir ”Tessellation Level Tree” (TLT) nennen.

Wir untersuchen die Eigenschaften dieser Dichtespitzen und konzentrieren uns auf zwei
neuartige Aspekte: die Perkolation des verbundenen Satzes von Dichtespitzen über Dichten
von wenigen (6 − 7) entlang des kosmischen Netzes und den sehr starken Assembly-Bias-
Effekt, wenn Dichtespitzen nach der Sattelpunktdichte getrennt werden. Dieser Assembly-
Bias-Effekt ist der stärkste, der je aus Quintilen in einer lokalen Eigenschaft der Verteilung
der Dunklen Materie in Simulationen erhalten wurde.

Der zweite Teil der Arbeit untersucht die Morphologie ionisierter Blasen in Wasserstoff
und Helium während der Reionisierung. Dazu verwenden wir MCRTRT auf regulären Git-
tern und erstellen binäre Darstellungen der Ionisationsfelder mithilfe eines Schwellenwerts.
Wir wenden dann Techniken der mathematischen Morphologie an, um eine Hierarchie von
Blasen zu extrahieren, die nach lokalem Durchmesser geordnet sind.

Wir zeigen die Verschiebung der globalen Blasengrößenverteilung während der Reion-
isierung und wie das ionisierte Volumen immer ungleichmäßiger unter den Blasen verteilt
ist, wenn sie wachsen und sich überlappen. Die Überschneidung führt auch zu einem Perko-
lationsprozess, den wir bei z & 8 identifizieren, der den Ionisationsprozess zunehmend
delokalisiert. Schließlich verbinden wir die Blasen mit den Eigenschaften des darunter
liegenden Dichtefeldes. Wir zeigen erstmals, dass die größten Blasen nach der Überlap-
pung nicht im Zentrum am dichtesten sind und einen sehr starken Bias in Bezug auf die
großräumige Materieverteilung aufweisen. Wir quantifizieren auch, wie die Reionisierung
zuletzt die am wenigsten dichten Teile des Universums erreicht, und bestätigen damit das
Inside-Out-Szenario der Reionisierung.

Im letzten Teil der Arbeit testen wir die Montage Bias- und Rückfallradiusmessun-
gen, die von früheren Publikationen unter Verwendung von Clustern, die mit dem optis-
chen Clusterfinder redMaPPer erhalten wurden, beansprucht wurden. Dazu entwickeln wir
eine Mock-Version des Algorithmus, der die Kernaspekte der Clusteridentifikation berück-
sichtigt und auf eine semi-analytische Galaxienpopulation der Millennium-Simulation an-
wendet. Wir zeigen, dass die behaupteten Konzentrationsunterschiede in den optisch aus-
gewählten Clustern höchstwahrscheinlich auf Projektionseffekte zurückzuführen sind, die
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eher in überdichten Regionen auftreten, was zu einer Kopplung zwischen Konzentration
und großflächigem Clustering und damit zu einer falsch-positiven Verzerrung der Bau-
gruppe führt. Die beanspruchte Rückfallradius-Identifikation, die im Zusammenhang mit
Cluster-Eigenschaften im Vergleich zu den Ergebnissen numerischer Simulationen invers
ist, erscheint als Artefakt der Kreismaske des Auswahlalgorithmus.
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Ponder knew he should never have let Ridcully look at the invisible writings. Wasn’t it a
basic principle never to let your employer know what it is you actually do all day?
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Chapter 1

Introduction

Our work investigates a number of physical phenomena which we would like to introduce in
the following chapter. They can generally be split into two groups: those directly connected
with the gravitational collapse in the collisionless fluid of dark matter (DM) and the process
of reionisation in the early universe. We finish this chapter with a basic introduction of the
Delaunay and Voronoi tessellations. Each of the main chapters will also contain a more
specialised introduction.

1.1 Results of Gravitational Collapse

Of the four fundamental forces gravity is the most important one for shaping the universe
we observe on large scales today. It is of infinite reach (unlike weak and strong force which
are mediated by massive particles) and its source field is not vanishing on large scales,
in contrast to electromagnetism which is limited by large scale charge neutrality. It sets
the stage on which all processes that light up the universe unfold, from the large scale
distribution of galaxies, over their merging to their internal dynamics. In the context of
this thesis mostly the first of these aspects is of importance as we want to characterise
the large scale density field in relation to its small scale structure. We therefore want to
introduce a few key concepts in the description of the large scale density variations in the
universe in their relation to galaxies and the DM haloes that host them.

1.1.1 Haloes and Galaxies

In the current standard paradigm for cosmological structure formation, the concordance
ΛCDM model, cold dark matter (CDM) dominates the cosmic mass budget and gravity
drives structural evolution from the low-amplitude, Gaussian fluctuation field visible in the
cosmic microwave background radiation to today’s highly structured, nonlinear network,
the cosmic web (Shandarin and Zeldovich, 1989; Bond et al., 1996). At late times this
evolution occurs within a universe where the expansion is being accelerated by dark energy
in the form of an effective cosmological constant, hence the Λ in ΛCDM. The cosmic web is
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built of overdense filaments and sheets which link dense, centrally concentrated structures
called haloes. These form through anisotropic gravitational collapse and are the birth-
places and current hosts of galaxies (White and Rees, 1978). In the inner regions of haloes,
dark matter densities reach values exceeding the mean by many orders of magnitude (e.g.
Pandey et al., 2013).

This hierarchy of structures, subhaloes embedded in larger haloes which are in turn em-
bedded in the cosmic web, is usually investigated with the help of cosmological simulations
(see Bagla, 2005; Trenti and Hut, 2008; Frenk and White, 2012, for reviews). In recent years
such simulations have increasingly included hydrodynamical modelling in order to treat the
evolution of the baryonic components in addition to that of the dark matter (Schaye et al.,
2015; Vogelsberger et al., 2014; Khandai et al., 2015; Dubois et al., 2016; Pillepich et al.,
2018). A wide variety of algorithms have been used to identify galaxies, galaxy clusters
and the cosmic web within such simulations. In particular, since dark matter haloes play
such a central role, a large number of halo-finders have been developed. While all have the
same goal, they differ significantly in approach; the intrinsic complexity of cosmic struc-
ture results in each identifying a halo population with somewhat different characteristics.
For example, two of the oldest and most basic halo-finders are the friends-of-friends (FOF)
(Davis et al., 1985) and spherical overdensity (SO) (Lacey and Cole, 1994) algorithms. The
former often links almost disjoint haloes with low-density bridges which may sometimes
reflect discreteness noise rather the true cosmic web. Such composite“haloes”are much less
prominent in catalogues constructed with the SO algorithm, but these are geometrically
biased by the spherical boundary which it imposes.

Most more modern halo finders explicitly address halo complexity by attempting to
identify all subhaloes within each halo, where a subhalo is defined to contain a single
significant local density peak. Subhaloes may defined in 3D configuration space, as in
algorithms such as subfind (Springel et al., 2001) and adaptahop (Aubert et al., 2004)
and in the Tessellation-Level-Tree (TLT) studied here, or in 6D phase space as in rockstar
(Behroozi et al., 2013). These algorithms are often supplemented by additional criteria such
as requiring subhaloes to be gravitationally self-bound (e.g. Springel et al., 2001; Behroozi
et al., 2013) or temporally persistent (e.g. Han et al., 2012, 2018). A more complete
discussion of these issues and others can be found in Knebe et al. (2013)

1.1.2 Bias

Per unit mass haloes form preferentially in overdense regions. This simple fact is of pro-
found consequence for cosmology, as the distribution of galaxies does not simply correspond
to the distribution of matter in the universe. Why this is the case was first understood by
Kaiser (1984). In our exposition we follow Coles and Lucchin (2002).

We begin with the assumption of a Gaussian random field with variance σ and corre-
lation function ξ(r) and its normalised form w(r) = ξ(r)/σ2. In this field density peaks
collapse under self-gravity if they exceed a critical density of δc ≈ 1.68 (Gunn and Gott,
1972). We can then parametrise the height of a peak as ν = δc/σ.

The probability of finding two collapsed points at a separation of r is given by the
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integral

Q2(r) =

∞∫

δc

∞∫

δc

P2(δ1, δ2, r)dδ1dδ2 (1.1)

of the multivariate Gaussian

P2(ν1, ν2, r) =
1

2π

1√
1− w2(r)

exp

(
−ν

2
1 + ν2

2 − 2w(r)ν1ν2

2[1− w2(r)]

)
. (1.2)

The correlation of these points is then given by

ξνc =
Q2

Q2
1

− 1 (1.3)

with Q1 the probability of finding point above δc.
Evaluation of the integrals above gives us a relation between the correlations of matter

and collapsed peaks in the form of
ξνc = b2ξ. (1.4)

on large scales. Analytic approximations show a general proportionality of the form b ∝ ν.
One example is given by Mo and White (1996):

b(M, z) ≈ 1 +
ν2 − 1

δ
(1.5)

The dependence on ν(M) shows that more massive haloes cluster more strongly than
matter.

This simple bias model has been expanded to include many more effects incorporated
in higher order bias parameters. See Desjacques et al. (2018) for an extensive review.

Throughout this work we adopt a range of 6h−1 Mpc to 20h−1 Mpc to measure bias as
the minimal radius is sufficiently large to be still pretty much linear and the large end
does not take up too much of a box size in the simulations we consider. We also use the
object-matter cross-correlation instead of the object auto-correlation as this gives us many
more pairs and a better correlation function estimate, even for low object numbers and
small radii.

1.1.3 Assembly Bias

Many additional properties of haloes related to their formation history, but unrelated to
halo mass, are known to further separate haloes of equal mass in subsets with differently
strong clustering (Gao et al., 2005; Wechsler et al., 2006; Gao and White, 2007; Faltenbacher
and White, 2010; Lazeyras et al., 2017). This effect is therefore called assembly bias. There
is still no detailed theoretical understanding of its origin, and our inability to measure the
structure of individual dark haloes directly has made it difficult to identify observationally.
Although there is no comprehensive model of assembly bias aspects of the phenomenon
have been explained from the statistics of Gaussian fields (Dalal et al., 2008) or tidal effects
(Hahn et al., 2009).
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1.1.4 The Cosmic Web and Its Definitions

The cosmic web is a space-filling network of gravitationally collapsed regions, most strik-
ingly, in the shape of linear filaments (collapsed in two dimensions) that meet at fully
collapsed nodes and which encompass planar sheets, collapsed in one dimension. These
sheets in turn surround underdense regions from which matter flowed out to undergo said
collapse. While this behaviour was already visible in early work following the seminal
publication of the eponymous approximation by (Zel’dovich, 1970) which itself predicted
sheets (also called “pancakes”). It was not until the works of Shandarin and Zeldovich
(1989) and Bond et al. (1996) that the terminology of a “cosmic web” was coined.

Just as for halo-finders, there is a plethora of algorithms which identify variously defined
versions of the cosmic web (see Libeskind et al. (2018) for a discussion). While the detailed
definitions differ, the primary aim of all of these algorithms is to define a space-filling
filamentary network from the matter density field. In many cases, the classification also
extends to find nodes of the network, as well as walls spanning between filaments, and voids
surrounded by the network. Unlike the TLT we present below, these algorithms typically
use a subsample of the simulation particles and/or a gridded or otherwise smoothed density
field.

Knowledge of the cosmic web and its morphology has two main uses. On small scales it
allows the environment of galaxies to be characterised, and thus furthers our understanding
of the interplay between environment and galaxy formation from both observational (eg.
Kraljic et al., 2018) and theoretical (eg. Borzyszkowski et al., 2017) points of view. On
larger scales quantifying the morphology of the web may give information about cosmo-
logical parameters and the initial conditions for structure formation (see, e.g. Shim et al.,
2014; Lee and Hoyle, 2015; Massara et al., 2015; Kreisch et al., 2018).

1.1.5 Splashback Feature

The splashback feature is produced by the outer caustics defined by material that is just
reaching apocentre after its first passage through the inner cluster. The caustic radius is
sharply defined for spherical infall models (e.g. Fillmore and Goldreich, 1984; Bertschinger,
1985; Lithwick and Dalal, 2011; Adhikari et al., 2014; Shi, 2016) but is significantly blurred,
even in self-similar models, by realistic deviations from spherical symmetry (e.g. Vogels-
berger et al., 2009). In a ΛCDM universe, these outer caustics give rise to a sudden
steepening of the spherically averaged mean density profile before it flattens out at larger
radii due to contributions from neighbouring haloes. This behaviour was studied in some
detail by Diemer and Kravtsov (2014) who showed it to depend on halo mass, redshift and
recent halo growth. Halo growth histories are intimately connected to their concentration,
so Diemer and Kravtsov (2014) also looked for a systematic dependence of splashback sig-
nal on concentration. They found that the steepest slope attained by the mean density
profile should become shallower and the radius at which it is attained should become larger
as halo concentration increases. These results have been further improved upon in Diemer
et al. (2017).
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1.2 Reionisation

In the standard model of cosmology reionisation is a phase change from neutrality to
ionisation in the gas (inter galactic medium, IGM) in the early universe by early sources
of radiation. It is strongly theoretically (Barkana and Loeb, 2001) and observationally
motivated (e.g. by spectra of high redshift quasars (Gunn and Peterson, 1965; Becker
et al., 2001; Fan et al., 2006), although the exact conditions under which this process occurs
are still unknown (Bowman et al., 2018). There are a number of experiments underway
to shed light on this matter, mostly focusing on the 21cm-emission of neutral hydrogen
(see Section 1.2.2.3), from global measurements, over interferometric measurements of the
power spectrum (LOFAR Collaboration, 2013), to those capable of delivering actual images
(Mellema et al., 2013). With the latter it will be possible to recover the spatial distribution
of hydrogen, commonly known as 21cm-tomography (Loeb and Zaldarriaga, 2004). There
are also bounds on the time of reionisation from the constraints on scattering of CMB
photons by free electrons from experiments like WMAP (Komatsu et al., 2009) and Planck
(Planck Collaboration, 2018).

1.2.1 The First Galaxies

The first galaxies form in exceptionally early collapsing dark matter haloes and are the
first places in which gas has a chance to cool and undergo collapse (White and Rees, 1978;
Ciardi and Ferrara, 2005). In the following we will give a short overview of the sources of
the photons responsible for reionisation which all reside within these galaxies.

1.2.1.1 The First Stars

With the exception of some direct-collapse black holes (Pacucci et al., 2016; Wise et al.,
2019) the formation of stars stands at the beginning of every source of radiation conceivably
responsible for reionisation. They are therefore a vital component in our understanding of
this process.

1.2.1.1.1 Population III The very first stellar population in the universe is called
Population III (short Pop III, see Bromm and Larson, 2004 and references therein). While
as of now there is no direct observational evidence beyond reasonable doubt, there is
strong evidence of their existence. These stars would form in early collapsing haloes from
completely pristine gas. As no cooling via metals is possible under these circumstances they
need to be very massive to overcome gas pressure and can therefore only form in exceptional
density peaks. As these peaks are quite rare, the Pop III stars are too rare to have an
appreciable impact on reionisation, despite their extremely high individual luminosity and
hard spectrum. Nevertheless they might play an important role in the formation of early
massive black holes.
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1.2.1.1.2 Population II The second and oldest observed population of stars, Pop II,
forms after the Pop III stars in only slightly metal-enriched gas within the first galaxies and
are hence of rather low metallicity (−3 . [Z/H] < −1). While only the lowest mass stars
of this population survived to today, we can deduce that their high-mass brethren must
have been numerous enough to drive reionisation. These more massive stars have much
higher temperatures and therefore harder spectra. Their lower metallicity even increases
its hardness.

1.2.1.1.3 Binarity Traditional stellar population models of cosmological simulations
assumed single stellar populations (Bruzual and Charlot, 2003). More recent observations
of star forming regions such as 30 Doradus in the Large Magellanic Cloud indicate that a
large fraction of massive stars are actually part of binaries (Sana et al., 2012). This alters
their evolution and vastly increases their output of ionising photons (Ma et al., 2016).
While our simulations in this work are not yet appreciating this fact, new simulations are
underway or even have been run, confirming the strong effect of an increased binarity on
reionisation (e.g. Rosdahl et al., 2018).

1.2.1.1.4 X-Ray Binaries (XRBs) Even when not including the different evolution
of high-mass stars in binaries it is important to take the remnants of such systems into
account as only these branches of stellar evolution emit large amounts of X-rays. In these
systems one star will undergo supernova first and turn into a compact object (neutron star
(NS) or black hole (BH)). During its further evolution the other partner will increase its
radius and at one point fill its own Roche lobe. At this point material from its atmosphere
will rain down on the compact object and form an accretion disk around it. As falling into
a gravitational well of such a compact object is the energetically most efficient process in
existence (∆E/mc2 � 0.01) the accretion disk is heated up to very high temperatures and
emits a blackbody spectrum reaching well into the X-rays. This hard radiation has a very
different effect on Hydrogen in the IGM and therefore reionisation than the UV emitted
by the stellar progenitors (see Section 1.2.2.2).

1.2.1.2 The First Quasars

Stars aren’t the only sources present during reionisation. We have observational evidence of
high redshift quasars in the EoR (Becker et al., 2001; Fan et al., 2006). How these quasars
are formed is still a much debated topic (Smith et al., 2017), as is their role and impact
during reionisation (Madau and Haardt, 2015). In the reionisation simulations that we are
working with (Eide et al., 2018a) they have a negligible effect on HII and HeII abundances
but influence the temperature of the IGM, although possibly not as much as more numerous
hard sources. Their hard spectra make them very important for fully ionising helium (see
chapter 3).
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1.2.2 Hydrogen Reionisation

Hydrogen is the largest contributor to mass and particles in the IGM and at the same time
has a much lower first ionisation energy than the other major constituent, helium. This
means that hydrogen will be ionised first and also leads to an almost completely ionised
IGM on its own. It is therefore not uncommon to see treatments of reionisation neglect
helium completely. For the same reason our analysis in chapter 3 concentrates on the
ionised bubbles in hydrogen.

1.2.2.1 UV Ionisation

The primary process of ionisation of hydrogen in the IGM during reionisation appears to be
UV radiation of massive early stars (Bromm and Larson, 2004; Eide et al., 2018a). These
stars emit large amounts of photons that have very short mean free paths (Rahmati and
Schaye, 2018) and therefore ionise the local IGM around the first galaxies to a very high
degree. At the same time the heating due to UV photons is limited compared to that of
X-rays and they are not able to ionise HeII (see next section).

1.2.2.2 X-Rays

X-rays have a twofold effect on the hydrogen in the IGM. First, they have a much lower
interaction cross section for ionising atoms compared to an UV-photon and therefore have
much longer mean free paths and deposit their energy over a much longer length scale.
Second, they deliver much more energy to an electron if they do interact. This extra energy
is deposited in the surrounding medium via collisions and possibly secondary ionisation
events as a result of these collisions. Hence the IGM can be “pre-heated” ahead of the
ionisation front formed by the UV radiation which changes the 21cm-signal one should
expect (see Section 1.2.2.3). As we will see in chapter 3 we find X-Rays in our models to
be insignificant for hydrogen reionisation and to only have an influence on the appearance
of HeIII.

1.2.2.3 The 21cm Signal

A prime observable to study the state of hydrogen in the early universe is the emission
from the hyperfine-transition in neutral hydrogen, in which the spin of the electron and
the proton in a hydrogen atom are either aligned (↑↑) in a triplet state or anti-parallel (↑↓)
in a singlet state. The difference in energy between these two states is

∆E21cm = E↑↑ − E↑↓ ≈ 5.874 µeV (1.6)

which corresponds to a frequency and wavelength of the emitted photon of

ν21cm ≈ 1.42 GHz λ21cm ≈ 21.11 cm (1.7)

which places it in the range of radio waves.
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Even when one is able to clear the considerable foregrounds at these frequencies (Liu
et al., 2009; Mertens et al., 2018) one is only able to observe a signal from this spin-flip
transition if the spin-temperature of the system is different from the CMB temperature at
the point of emission. Here the spin-temperature is simply a shorthand to characterise the
population difference between the two states.

δTb = 28 mK(1 + δ)xHI

(
1− TCMB

Tspin

)(
Ωbh

2

0.0233

)√
1 + z

10

0.24

Ωm

(
H(z)/(1 + z)

dν‖/dr‖

)
(1.8)

1.2.3 Helium Reionisation and the 4.5cm Signal

1.2.3.1 Helium Reionisation

Helium is the second major constituent of the IGM and also undergoes a reionisation
process. Due to its higher ionisation energies (24.6 eV for HeII and 54.4 eV for HeIII) the
process of full ionisation is much slower, although the intermediate first ionisation closely
follows hydrogen reionisation. Primordial helium contributes roughly 1

7
≈ 14% of electrons

to the IGM.
The very high ionisation energy of HeIII also means that its reionisation can only be

facilitated by hard sources beyond the range of stellar emission such as the accretion disks
around X-ray binaries (see 1.2.1.1) and quasars (see 1.2.1.2). A simple calculation using
Planck’s law of the ratio of the intensities of a black body at the energies of the HII, HeII
and HeIII ionisations reveals that a star has to have a surface temperature of & 3 · 104K
to produce 1 HeI-ionising photon for each HI ionising one, while for HeII ionisation a
temperature of & 9 · 104K is needed. While the former is attained in very high-mass main
sequence stars as present during reionisation, the latter is not. A more thorough analysis
given in Eide et al. (2018a) depicted in their Figure 2 shows that the drop-off is even more
extreme when considering radiative transport in these stars.

The process of helium reionisation could theoretically be observed in radio frequencies
very similar to the 21cm-line of hydrogen as is shown below.

1.2.3.2 The 4.5cm signal

Completely analogous to the 21cm-signal there is a similar hyperfine-split between two
states of singly ionised 3He whose nuclear spin does not vanish in contrast to the much
more abundant 4He. Then the electron spin has can couple to this nuclear spin and form
a singlet or triplet state again. The energy ∆E, frequency ν and wavelength λ of the
transition between these two states are (Weinreich and Hughes, 1954):

∆E ≈ 27.8 µeV λ ≈ 4.45 cm ν ≈ 6.739 GHz (1.9)

Due to the much smaller abundance of 3He (as indicated by the scale of 10−5 in Equa-
tion 1.10) the differential brightness temperature for HeII is four orders of magnitude lower



1.3 Tessellations 9

than that of hydrogen:

δTb,HeII =1.614 µK(1 + δ)xHeII
[3He/H]

10−5
(

1− TCMB

Tspin

)(
Ωbh

2

0.0233

)√
1 + z

10

0.24

Ωm

(
H(z)/(1 + z)

dν‖/dr‖

)
(1.10)

1.3 Tessellations

A tessellation is the complete covering of a space with a set of finite, disjoint subspaces
called tiles or cells. Simple examples are a Cartesian grid or, slightly more involved, a
honeycomb. Both of these tessellations are monohedral, which means that they contain a
single shape of cell that repeats to cover the space; their cells are congruent. This need
not be the case for every tessellation and in the following we will only consider two special
tessellations that are not monohedral: the Delaunay tessellation (or triangulation) and its
dual, the Voronoi tessellation. Both of these tessellations have a long history in Astronomy,
with an example of a Voronoi tessellation given by Descartes in 1644 in a description of
the solar system. Where not indicated otherwise, we base our description of both of these
tessellations below on Okabe et al. (2000), a very comprehensive resource on the topic for
even everything the so-inclined reader might not have wanted to know about them. We
will furthermore restrict ourselves to the simplest case of these tessellations in a Euclidean
space of n dimensions.

1.3.1 Delaunay Tessellation

The Delaunay tessellation (DT) of a point set in a Euclidean n-dimensional space, also
called the generators of the tessellation, is a complete covering of the convex hull of the
generators, or the whole space in the case of periodic boundary conditions as in our ap-
plications, with a set of n-dimensional simplices (a polytope defined as the convex hull of
n+ 1 points). It can be defined by a very simple requirement: the circumsphere of a given
simplex with n+ 1 of the points at its corners must be empty. As it turns out this defines
a unique covering with simplices if the generators are in “general position”, which means
that not more than i+ 1 points lie on a i-simplex embedded in this n-space for 1 ≤ i ≤ n.

An illustration of this procedure and its result is given in Figure 1.1. Here we show all
steps in the procedure in one picture: the black generators define the grey empty circles
with their red centres. The Delaunay simplices indicated by the black lines follow from the
connection of these points.

This tessellation has many applications in data analysis in general and astronomy and
astrophysics in particular as it gives a natural neighbourhood for points. This can be
used to easily interpolate between values only known at certain positions, the most promi-
nent example of which in astronomy is the Delaunay Tessellation Field Estimator (DTFE,
Schaap and van de Weygaert, 2000). The naturality of the neighbourhoods can be better
understood by turning to the Voronoi tessellation in the next section.
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Figure 1.1: Example of a Delaunay tessellation in 2D showing the generators as black
points, the circumcircles in grey, their centers in red and the Delaunay simplices (here
triangles) using black lines.
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1.3.2 Voronoi Tessellation

The n-dimensional Voronoi tessellation (VT) is very closely connected to the Delaunay
tessellation and considered its dual. Instead of segmenting space between the generators
it finds cells around each generator. In its simplest form these cells are defined as all the
volume around a given generator to which it is the closest generator using the Euclidean
norm.

To understand the connection to the Delaunay tessellation we recall the criterion which
dictates that the ball with n + 1 generators on its surface must be empty. Therefore the
center of the ball is equidistant only to these n+ 1 generators. Departure from this point
in any direction brings us closer to at most n and at least 1 of these generators. If we
are equidistant to more than 1 generator we are on the ridge of the distance field (cf.
Section 2.4.3 and 3.3.3). Due to the nature of the Euclidean norm, these ridges must
be free of curvature. We can therefore construct them by first connecting the Delaunay
circumcentres with lines if their accompanying simplices share a face (we stop here in 2D)
as shown in Figure 1.2. In 3D we then find furthermore a planar face delimited by all
of these connections of pairs that share a Delaunay edge. This means that neighbours
connected by edges in the DT are connected via faces in the VT. This also means that the
DT neighbours are those pairs that share faces in the VT, making them natural neighbours
as there is an extended distance ridge between them.

The VT can also be constructed by placing the normal-plane of each Delaunay edge
through its midpoint. The intersections of the half-spaces on either side of these planes
form convex cells around each generator that have a face for each Delaunay edge originating
from it. See Section 2.2.1.1 for a more technical description.

Direct construction of the VT is much more computationally expensive. It is therefore
usually obtained from a DT just as in our case where we use the tessellation engine of
AREPO (Springel, 2010).
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Figure 1.2: Example of a Voronoi tessellation in 2D and its dual Delaunay one. Just as in
Figure 1.1 we show the generators as black points, the Delaunay simplices with black lines,
the Voronoi vertices (which are the Delaunay circumcircle centers in red) and the faces of
the Voronoi cells using red lines.



Chapter 2

The Tessellation Level Tree

This chapter is to appear in the upcoming publication Busch and White (2019c) and Busch
and White (2019a).

2.1 Introduction

The described hierarchy of structures hosted within larger structures as discussed in 1.1 is
usually investigated with the help of cosmological N-body simulations (see Bagla (2005);
Trenti and Hut (2008) for reviews) that increasingly include hydrodynamical modelling
(Schaye et al., 2015; Vogelsberger et al., 2014; Khandai et al., 2015; Pillepich et al., 2018).
Different algorithms are employed to identify galaxies, haloes and the cosmic web within
their outputs.

As the formation of galaxies in haloes is such a central problem to the study of structure
formation with simulations, a large number of halo-finders has been developed. While all
of them have the same goal there are very different approaches, the two most widespread
of which are friends-of-friends (FOF) (Davis et al., 1985) and spherical overdensity (SO)
(Lacey and Cole, 1994) halo finders. While the former suffers from spurious overlinking of
disconnected haloes, the latter is hampered by its assumption of a spherical mass distribu-
tion. Some problems of classical halo finders can be alleviated by considering the binding
state of particles (e.g. in subfind (Springel et al., 2001)) and additionally extending the
analysis to the full 6D phase space (e.g. Behroozi et al., 2013) instead of only the 3 spatial
dimensions. This can be even further refined when taking temporal continuity into account
(Han et al., 2018).

An alternative halo finder is VOBOZ (Neyrinck et al., 2005) which uses a Voronoi
tessellation on the simulation particles to estimate their density. It then identifies density
peaks and binds particles above a density threshold to them in a percolation step. An
equivalent void identification algorithm called ZOBOV (Neyrinck, 2008) has been very
successful and is part of the VIDE (Sutter et al., 2015) void identification toolkit. These
structure finders share some commonalities with the algorithm presented in this work in
that they estimate the density of each particle using a Voronoi tessellation and find clusters
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by percolation on a unstructured grid from the same tessellation.

It is common to all of these halo finders that they only consider the mass distribution
above some density threshold far above the typical density of the cosmic web and therefore
clearly distinguish between haloes and their environment. While this is sufficient to describe
the peaks and by extension even the underlying matter distribution to a certain degree
(Sheth and Tormen, 1999), it is neither able to, nor tries to, capture the morphology of
the transition to the cosmic web or of the web itself (see 1.1.4).

We aim to connect the two regimes of haloes and the cosmic web by tracing the connec-
tivity of the density field from the highest to the lowest densities in N-body simulations. For
this we estimate each particle’s density using its Voronoi cell volume and group particles
to objects by connecting them over shared Voronoi cell faces.

This chapter is organised in two major parts: first we will describe the methodology to
define a tessellation based density field and find a hierarchy of peaks in it, the Tessellation-
Level-Tree (TLT), and then investigate its properties and those of its peaks. The method
and additional methodology is presented in Section 2.2. We then use the TLT to investigate
the percolation behaviour of matter above a density threshold in Section 2.4. Afterwards
we present the abundance of peaks in this field and compare it with that of FOF objects
in Section 2.5. Finally we shortly showcase two applications of the new methodology that
will be further discussed in follow-up papers: the study of the mass-density distribution in
haloes of varying mass in Section 2.6 and the strong assembly bias signal of the immediate
environment of the peaks in Section 2.7.

2.2 Methodology

The methodology developed in this chapter consists of two parts: the construction of the
Tessellation-Level-Tree and the description of its products are described in Section 2.2.1.
This sub-section ends with a quick review of the terminology of objects as used in the
remainder of this chapter. As some of the found peaks are the results of noise connected
with the random sampling of the density field (as can be assumed in an evolved state of
the simulations) we remove them using heuristics obtained from Poisson distributed points
with a procedure described in Section 2.2.2. In Section 2.2.3 we describe how a set of
peaks is used to construct catalogues of objects, some closer, some farther from usual halo
definitions. We compare a catalogue of objects with similar construction to a classical FOF
definition of haloes. Various properties, some of them novel, can be defined and computed
for the objects obtained from the TLT. These are outlined in Section 2.2.4.

2.2.1 The Tessellation-Level-Tree

The aim of the Tessellation-Level-Tree (TLT) is to decompose the matter distribution in
an N-body simulation into a hierarchy of peaks in the density field. A peak is defined as
a local density maximum, the peak particles, and all the particles within the isodensity
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surface corresponding to the highest saddle point between this peak and a higher peak that
do not belong to a sub-peak.

To obtain a density estimate for each particle we use a Voronoi tessellation generated
from the particle positions. The inverse of the volume around the cell of each particle
gives serves as our density estimate. The faces of the cells give us the connectivity on
this unstructured grid. The tessellation is performed by the routines of the AREPO code
(Springel, 2010).

A schematic of the method is presented in Figure 2.1. From the particle positions we
obtain the tessellation structure (Section 2.2.1.1). This structure provides us with a density
estimate for each particle and a neighbourhood in the form of a list of neighbours from
which we construct the hierarchical set of peaks (Section 2.2.1.2).

2.2.1.1 Tessellation

The basis of the proposed analysis technique is the unweighted Voronoi tessellation (VT)
T (see Section 1.3.2) in position space of the simulation particles P whose positions act
as its generators. The cells of the tessellation are the regions in this space to which a
given generator is closest in Euclidean distance. This construction leaves us with cells in
the shape of convex polytopes. As we are using periodic boundary conditions all these
polytopes will be of finite extent.

For this set of polytopes P we find the volumes V and shared faces to define particle
densities

ρi =
mi

V (pi)
, for pi ∈ P (2.1)

and a set of connections E. Particles are connected if their cells share a face.
For the following we impose a strict density ordering on the full particle set of the

simulation. While in practice it is very unlikely to find two particles with exactly the same
attributed volume, due to finite precision the probability is not zero. In case we do find two
particles with same density we rank them randomly among themselves. While we account
for the occurrence of this degeneracy, we do not expect it to appear in any real applications
as the available state space in units of its granularity due to numerical precision is simply
too large, especially when using double precision floating point values.

2.2.1.2 Peak Tree Construction

We traverse the density ranked list of particles in a decreasing fashion from the highest
density particle in the box to construct a set of peaks. This procedure can also be reversed
and started from the least dense particle. Then we would obtain a hierarchy of voids,
similar to ZOBOV (Neyrinck, 2008).

A peak πi = (i, πj, k) is an object with a first particle i, from which it inherits its rank,
a parent peak πj (initially πi itself) and a last particle k (initially i). For each particle we
keep two numbers, the peak πi it belongs to and the next particle ni in this peak. Together
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Figure 2.1: Overview of the pipeline for the TLT.
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with the first and last particle entries of a given peak, the next particle entry allows to
traverse the particles in a peak in the fashion of a singly linked list. One could also keep
the rank of the previous particle in the list to make this a doubly linked list.

We traverse all particles in the simulation once, from highest to lowest rank. For each
particle i we examine the ranks of the neighbours. For each particle one of two cases
applies:

1. If the rank of this particle is higher than these of all its neighbours, we create a new
peak object πi which represents a local maximum and is identified by its first particle
i.

2. Otherwise, there is one or more neighbours with a higher rank. These particles will
have been processed before the current one and will have been assigned to a peak.
We assign the current particle to the highest-ranked of these peaks. We then set
this particle as the next particle in the chain for all higher neighbours which do not
already have this set by another particle. This leaves us then again with two possible
cases:

(a) If all higher ranked neighbours belong to the same peak, we continue with the
next particle.

(b) If the higher neighbours belong to different objects, the current particle repre-
sents a saddle between these peaks. By virtue of the strict ordering there is
always a first saddle that will also be processed first. In that case the peak
with the higher density rank will incorporate the lower peak. Every particle
processed afterwards which is connected to particles identified with either of the
two peaks will be identified with the higher object. The lower peak can now be
considered a sub-peak.

Each of the mentioned peak look-ups for a particle is a recursive operation on the
peaks that follows the chain of parent peak entries until the peak is its own parent peak,
i.e. a currently independent peak. As the process starts percolating, fewer and fewer peaks
remain until finally all peaks are (possibly indirect) child peaks of the global maximum,
the peak particle of the simulation so to speak.

An example of the described hierarchical segmentation for a 1D distribution is given in
Figure 2.2. The accompanying peak tree is given in Figure 2.3.

In addition to the mentioned properties of peaks we can calculate physical properties
on them. The simplest ones are the mass M(πi), volume V (πi) and the resulting mean



18 2. The Tessellation Level Tree

A
B

F

C
G

D E

T1

T2

T3

Figure 2.2: Schematic of the decomposition of a 1-D density distribution with peaks labelled
alphabetically in decreasing peak density order and three thresholds T1 through T3. The
resulting tree structure is shown in Figure 2.3.

density ρ(πi) of the peak πi:

M(πi) =
∑

j∈πi

mj (2.2)

V (πi) =
∑

j∈πi

V (pj) (2.3)

ρ(πi) =
M(πi)

V (πi)
(2.4)

Here the mass and volume of a peak do not include their counterparts in the sub-peaks.
The quantities including the sub-peaks, can be easily found by using the tree structure.
One just adds the mass and volume of all sub-peaks and to that belonging to the peak. This
structure also allows for the very quick calculation of quantities above a given threshold. For
each peak whose range in density brackets the threshold one just adds the contributions of
all sub-peaks that are joined above the threshold and then simply follows the next-particle
chain until the threshold is reached. The above will be used when we present different halo
definitions in 2.2.3.

Summarizing this section, we construct a decomposition of the set of particles in an
N-body simulation into disjoint peaks, each a set of particles. Each peak consist of all
particles that are reached first from a given peak particle, a particle of higher density than
all its neighbours, when traversing the list of particles in descending density order. Each
peak has a range in densities from the density of the respective peak particle down to the
density of the first particle with an ascending path to a higher density peak particle, the
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Figure 2.3: The peak tree of the example in Figure 2.2
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saddle particle. Its density establishes a boundary on the range of densities in the peak
and is therefore called the limiting density ρlim. The peak the saddle particle belongs to
becomes the parent peak of the peak under consideration. The thus created hierarchy can
be used to find many different halo definitions as detailed in 2.2.3.

2.2.2 Persistence and the Choice of the Density Estimator

The discretisation of a smooth density field with particles in the course of an N-body
simulation leads to problems when estimating the density by the spatial distances of neigh-
bouring particles. The particles trace the underlying density distribution only statistically
and are therefore prone to exhibiting local density maxima which are purely results of the
sampling.

In low density, single stream regions we expect the glass-like initial conditions to some-
what reduce this problem as the noise from the glass sampling is sub-Poissonian. Addi-
tionally, the dynamics in single stream regions will not create new peaks.

The problem therefore mostly arises in multi-stream, high density regions. The stream
crossing and increasing importance of force smoothing for small scales transform the sam-
pling of the density field by the particles towards a more Poissonian process. For an upper
limit on the importance of the sampling effects we look at the local density maxima in a
Poisson sampling of the field.

We tested two different estimators for the density at the particle positions, one based
on the Voronoi tessellation (Equation 2.1), the other on its dual the Delaunay tessellation.

The Delaunay estimator as introduced by Schaap and van de Weygaert (2000) is very
similar, but calculates a particle’s volume as a quarter of the sum of the volumes of the
adjacent Delaunay tetrahedra, VD:

ρD =
mP

VD
= mP

(∑

c∈C

1

4
V (c)

)−1

, (2.5)

where C is the set of Delaunay tetrahedra incident on the particle. As each tetrahe-
dron/Delaunay simplex is spanned by 4 particles this distributes the complete volume of
the simulation on the particles.

We define the persistence r of a peak as the ratio between the densities of the highest
and the lowest density particle. We can filter the TLT by a persistence criterion. If a peak
does not pass a persistence threshold rth it is removed from the hierarchy and its particles
are grouped under its parent peak. Under the assumption that the physical peaks in the
distribution are usually of higher persistence than the Poisson noise peaks we can filter the
latter and retain the former.

To estimate the filter needed for a reliable Poisson peak filtering we show the ratio
between the number of peaks above a given persistence threshold and the total number of
peaks found in Figure 2.4. As in this case there should be exactly one particle of maximum
density this directly translates into the false-positive peak identification rate.
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We find that the Delaunay density estimator gives less reliable results in this Poisson
case. For both estimators we find an asymptotically power law-like drop in the probability
P (r′ > r) of a noise peak with persistence r′ exceeding a given persistence value r. While
the probability drops roughly as r−2.2 for the Delaunay estimator its Voronoi counterpart
drops as r−4.6. From the results in Figure 2.4 we adopt a threshold of rth = 10, which
translates into a probability of P (r′ > 10) ∼ 5 · 10−4 of retaining a spurious peak in this
extreme case. We repeat the experiment with varying numbers of particles, but as is to be
expected from the local nature of the density estimation, the results are well converged.

The difference in behaviour can be explained if one takes a look at the distribution of
estimated densities and pairwise density ratios as given in Figure 2.5. Here we plot the
distribution of particle pairs (ρh, ρl) of higher and normalised lower density over p = ρl/ 〈ρ〉
and the pair density ratio q = ρh/ρl. We find that the Delaunay density estimate varies
much more, both among individual particles and between neighbours. For the same number
of points the Delaunay densities vary over 3.5dex while the Voronoi ones have a range of
2dex.

This result might be confusing at a first glance since the relative standard deviation
among the Voronoi cell volumes σ(VV )/ 〈VV 〉 ≈ 0.42 is higher than the expected standard
deviation of the sum of the 27.1± 6.7 independent and identically distributed tetrahedron
volumes that gives the Delaunay density estimate: σ(VD)/ 〈VD〉 ≈ 0.29. The latter number
assumes that the Delaunay tetrahedra incident on a given vertex are independent, which is
clearly not the case. Therefore the relative standard deviation of the Delaunay estimate is
much closer to the value of a single Delaunay tetrahedron σ(VDT )/ 〈VDT 〉 ≈ 0.83, consistent
with our finding of a poorer performance of the Delaunay density estimate.

These results are not in disagreement with previous results using the DTFE as given in
Pandey et al. (2013). There the authors sampled each Delaunay tetrahedron with a test
particle. This increases the number by a factor of (24/35)π2 ≈ 6.77 for the Poisson case
(Okabe et al., 2000, p. 391) and further mediates the values by interpolating between the
Delaunay vertex values.

A problem with this filtering approach is that we will also have a lot of false-negative
events where a legitimate peak in the density field will be filtered out. We further investigate
and quantify this issue in Section 2.5.2 for the simulation data. At this point the only
remedy for this problem is the choice of a moderate persistence filter. We consider our
choice of rth = 10 as an acceptable compromise between false-positive and false-negative
filtering.

2.2.3 Halo Definitions

The TLT allows for at least two definition of haloes, one of which is close to the typical
SUBFIND substructure, while the other comes close to the FOF-definition by combining all
particles of objects connected above a given threshold into one single object. This object
then has a fixed bounding density, which corresponds to the limit of infinite resolution for
FOF objects on the Voronoi density field at linking lengths corresponding to chosen density
threshold. We can include or exclude substructures in the definitions below. If we exclude
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Figure 2.4: Results of an application of the Tessellation-Level-Tree on a Poisson distribution
of particles. We show the probability P (r′ > r) of a given peak to be a false positive
identification after applying a given persistence threshold r. The results are well converged
for varying numbers of particles in a box.
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Figure 2.5: Distribution of the ratio of densities q between neighbouring points as a func-
tion of normalised density p of the lower density point in the pair for the 107 particle
Poisson samples. Blue and red contours show the distribution of the Voronoi and Delau-
nay densities, respectively. The four different line styles signify the contours that enclose
{68.27,95.45,99.73,99.99} per cent of the pairs. The two panels on the x- and y-axis show
the marginalized normalised distribution of the pairs in logarithmic bins. The densities of
the lower density particles in pairs vary much more using the Delaunay estimator than the
Voronoi one as evident in the wider range on the abscissa for all but the highest density
contour. The Delaunay estimator also leads to larger differences between neighbouring
particles and therefore much larger q values. This test on a uniform Poisson-sample shows
that the Voronoi estimator is more robust against this sampling noise.
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them we denote this with a superscript “−” and if we explicitly include them with a “+”.
By default we include substructure.

2.2.3.1 Unthresholded Haloes

Each unthresholded halo (UH) corresponds to a node in the TLT and is therefore the
entirety of particles connected to a local maximum above its limiting density ρlim at the
first saddle point to a higher peak. As the only limitation of the object arises from the
saddle point to the parent peak and no external threshold is imposed, we call these objects
unthresholded.

A given UH+consists of particles that are directly identified with the given peak as they
were reached by it first and of indirect contributions by all the sub-peaks that are grouped
below it. Their masses and volumes are the sums of the masses and volumes of all peaks
in the subtree under the given peak in the peak-tree. The tree in Figure 2.3 contains seven
UHs in both definitions. Each UH+contains all peaks below it in the tree, so G is an UH
of its own (as it is lacking substructure UH+and UH−are identical in this case) but is also
included in the UH+’s C and A. The substructure-less version UH−is just a bare peak as
defined in 2.2.1.2. In Figure 2.2 each single colored area would be one UH−. The set of all
UH−is therefore a unique partition of the simulation particles.

These objects can exist anywhere in the whole density range of the simulation, apart
from certain constraints coming from restrictions on their persistence and effects of the
gravitational softening as discussed in 2.2.2. This means that an UH can be anything from
a substructure in a classical halo, a classical halo itself to even a slightly less underdense
region in a larger more underdense region. They are mainly of interest when looking at
the structure of the segmented density field as a whole.

2.2.3.2 Thresholded Haloes

Thresholded haloes (THs) consist of all particles under a peak above a given threshold
density, i.e. all particles above the threshold that are directly grouped under the peak and
for the TH+case additionally all particles in sub-peaks that are joined above the threshold.
This definition establishes objects as the content of a connected bounding isodensity surface
following the faces of the Voronoi cells in between neighbouring particles on different sides
of the threshold.

As an illustrative example the peak structure in Figure 2.2 would give the thresholded
peak sets (and therefore TH−sets) {A,C,E}, {A,C} and {A} for the thresholds T1, T2

and T3, respectively. If we include the substructures to obtain the TH+definitions the
sets would be {{A,B,D},{C, F},{E}}, {{A,B,D,E},{C,G,G}} and {{A,B,C,D,E,F,G}}. In
each of these cases only the part above threshold would be included for peaks which extend
beyond it.

As the FOF algorithm also tries to find objects with a given bounding density, its
results come close to definition of a TH+for suitable thresholds, but due to the nature of
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the percolation algorithm, no single threshold can be found for a given linking length as
was shown by More et al. (2011) and is described for our case in 2.5.1.1.

The peak mass (Equation 2.2) and volume (Equation 2.3) are replaced with sums that
do not extend over all particles in the peak but only these above ρthresh. The mean density
in Equation 2.4 also uses these modified quantities.

2.2.4 Derivative Quantities

The structure of the peak tree and the knowledge about the density distribution of the
simulation particles allows us to characterise the identified objects in a number of new
ways in addition to more usual quantities such as halo mass. We mention these quantities
in this work as part of the introduction of the Tessellation-Level-Tree but will further flesh
them out and investigate them in a forthcoming publication.

The characterisation of substructure in haloes is a direct product of the TLT as the
substructures are just child peaks. Their distribution and mass fractions can be readily
extracted from the hierarchy of peaks.

Concerning dark matter halo density profiles we can easily distinguish between the mass
in substructures and the main halo (just as, e.g. in Subfind). As an alternative to the
usual approach of expressing density profiles as density as a function of spatial coordinate
ρ(x), we can reformulate the profile as cumulative mass as a function of decreasing density
M(> ρ). This formulation is directly reflecting the high density regions in substructures
which are usually averaged over in radial profiles that use spherical or ellipsoidal shells. No
assumption of any particular shape is made in our mass-density profiles.

We can also find new concentration definitions in accordance with the above approach
to density profiles. These involve the ratio of masses above two different densities. The
higher the share of the mass that resides at the higher density, the more concentrated the
mass distribution. This approach has the advantage that it easily allows for the disentan-
glement of contributions from the main halo and substructure and directly captures the
often implicit assumption of a representation of the density distribution of all matter in
the system by the concentration parameter.

The validity of this assumption can be readily be tested by calculating the parameters
of an NFW profile (Navarro et al., 1995) corresponding to the given mass-density profile.
As the NFW profile has only two free parameters we only need two masses at different
densities to determine it.

We can also characterise the shapes of our peaks at any given density using any of the
shape estimators for haloes (e.g. the reduced tensor of inertia (Allgood et al., 2006)). This
allows us to directly follow the change of shape with changing density.

2.2.4.1 Density Profiles

Traditionally a density profile describes the density of matter in radial or ellipsoidal bins
around a chosen centre of a chosen object, either for all particles or for particles identified as
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not belonging to substructure. This way one records a density profile ρ(x) in the position-
density space, where the position is often just the radial distance. While this approach is
very intuitive and useful for many applications, it also has its shortcomings. One of these
is the smoothing of substructures over the spherical shells they reside in.

While we can still record these ρ(x) profiles for all our objects, we can also record
their mass above all the densities present in them. This gives us profiles of M(ρ) as we
descend through the density ranks. These profiles can be either recorded including the
sub-peaks or without them and either until the limiting density is reached or down to a
certain density threshold or even overdensity threshold. A given density profile and the
mass-density profiles can be directly translated into one another as we show for the NFW
profile in Section 2.2.4.2. We repeat this exercise for a different expression of the NFW
which allows us to obtain the virial mass MV and concentration cV using the ratio of the
masses of an object at any given pair of densities in Section 2.A.

While the particles directly belonging to the peak of interest are always treated the
same and added to the profile as the density descend reaches them, there are two possible
ways of treating sub-peaks if they are to be included in the mass. The first adds their total
mass once their limiting density is reached; we call the result of this a pseudo-radial profile
(PRP) Mpr(ρ) as this resembles the treatment of substructure in the context of a simple
radial density profile. For a peak πi

Mpr,i(ρ) =
∑

j∈Pi(ρ)

mj +
∑

πk∈Cj(ρ)

M(πk) (2.6)

where Pj(ρ) is the set of all particles directly connected to πj at densities above ρ with
mi the mass of particle i. C(j, ρ) is the set of all children of πj with ρlim,j ≥ ρ and the
peak mass M(πk) as defined in (2.2). This definition is equivalent for unthresholded and
thresholded objects. Here and in the following the possible densities are of course limited
by ρ ≥ ρlim,i for unthresholded and ρ ≥ ρth for thresholded objects with threshold ρth.

The second approach includes all particles in sub-peaks directly in the profile of all
levels of parent peaks, so that their M(ρ) profiles always reflect the total mass above a
given density in this object. This is called the total-mass profile (TMP) Mtot(πi, ρ) for peak
πi. It can be expressed as:

Mtot(πi, ρ) =
∑

j∈Pi(ρ)

mj +
∑

πk∈CS,j

∑

l∈Pk(ρ)

ml (2.7)

where the same denominations as in (2.6) apply, with the additionally set CS,j of peaks in
the subtree under πi. In the case of thresholded objects with threshold ρth this definition
has to be altered as only the subtree set CS,j(ρth) of children with ρlim > ρth is included.
This profile is especially of interest for the prediction of the as of yet hypothetical self-
annihilation radiation of dark matter.

If one refrains from including the mass in sub-peaks we obtain the central-peak profile
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(CPP):

Mcent(πi, ρ) =
∑

j∈Pi(ρ)

mj, (2.8)

notation as in (2.6). This is also equivalently defined for thresholded and unthresholded
objects.

Lastly one can also record the mass only in sub-peaks, giving the sub-peak profile (SPP)
Msub(πi, ρ). The SPP is hence simply the difference of TMP and CPP:

Msub(πi, ρ) = Mtot(πi, ρ)−Mcent(πi, ρ) (2.9)

=
∑

πk∈CS,j

∑

l∈Pk(ρ)

ml (2.10)

with the same notation as explained under (2.7).

2.2.4.2 The NFW Mass-Density Profile

For all the different mass definitions from the previous section we can obtain mass-density
profiles. This allows us to compare the mass obtained from these definitions with those of
other halo finders by expressing them in a more traditional and therefore accessible picture.
For this we need to express a given halo profile in the new variables M(> ρ), the mass
M above a given bounding density ρ, instead of ρ(r), the local density at a given radius r
from the centre. We then simply fit the profile to any of the M(ρ) tracks obtained from
the simulations as shown above.

The fitting formula used can be obtained by the lengthy, but elementary, inversion of
the usual NFW-profile (Navarro et al., 1995), preferably executed by a computer algebra
system. This leaves us with the following expressions:

t1 = r3
sρ

2(2ρ+ 27ρ0)

t2 = r6
sρ

4ρ0(4ρ+ 27ρ0)

t3 = (t1 + 3
√

2t2)
1
3

t4 = 2rsρt3

t5 = 2
4
3 r2
sρ

2

t6 = 2
2
3 t23

t7 = 2
1
3ρ

M(ρ, ρ0, rs) =
4

3
πr3

sρ0

(
−(3(t5 − 2t4 + t6))

t5 + t4 + t6

+ 3 ln

(
rs + (t7r

2
s)/t3 + t3/t7
3rs

))
. (2.11)

Here rs is the scale radius, ρ0 the normalisation of the profile and ρ the density coordinate.
For the inversion we have to assume all of the above numbers to be strictly positive reals,
but this does not impose any restrictions.
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2.2.4.3 Substructure Fraction

With the profiles introduced in the previous section we can define a measure of the sub-
structure fraction for all densities at which a given peak exists. The ratio of SPP and TMP
gives simply the substructure fraction fsub above a given density:

fsub(πi, ρ) =
Msub(πi, ρ)

Mtot(πi, ρ)
(2.12)

One has to be careful when comparing this substructure fraction with a traditional defini-
tion which would be better approximated by

f ′sub(πi, ρ) = 1− Mcent(πi, ρ)

Mpr(πi, ρ)
. (2.13)

In this definition the mass of a substructure is counted all at once when it joins the main
object, i.e. when the main object’s density profile has reached the saddle point between
them. If one were to convert densities to radii and compare the substructure fraction
evolution over radii between radial bins and the converted mass-density profiles the result
would closest resemble f ′sub, albeit under the assumption of a vanishing radial extent of the
individual substructures.

The total versions fsub,tot(πi) and f ′sub,tot(πi) of these quantities for the unthresholded
object πi is the value at the its limiting density ρlim,i and thresholded objects at the
threshold density ρth.

2.2.4.4 Concentration Definitions

In a very general sense the concentration of a dark matter halo is the relative amount
of matter residing at high densities. In the model of a monotonic density profile this is
connected to the steepness of said profile.

We can use the mass-density profiles introduced in the previous section to define a
group of closely related concentration measures as mass ratios of which each has a focus
on a slightly different application of concentration. The following section will show how
one can use the mass values at two different densities to obtain an equivalent NFW profile
which gives a classical measure of concentration.

A measure of the total mass above a given density in an object is

ctot(πi, ρ1, ρ2) =
Mtot(πi, ρ1)

Mtot(πi, ρ2)
(2.14)

with ρ1 > ρ2 and Mtot as defined in (2.7). This measure is especially interesting for the
expected signal of DM annihilation as it not only measures the mass in the central high
density region as expected from a monolithic density profile but also in all substructures.

The central concentration

ccent(πi, ρ1, ρ2) =
Mcent(πi, ρ1)

Mcent(πi, ρ2)
(2.15)
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using Mcent from (2.8) only measures the concentration of the density profile of the cen-
tral object under exclusion of all substructure. This characterises the underlying mass
distribution in which the substructures move.

2.2.5 Halo Bias

The bias parameter b is a measure of the relative clustering of two fields. In this work the
two fields are the matter and halo overdensity.

There are multiple possibilities of finding the bias parameter. Instead of comparing the
auto-correlations of the two fields (Gao et al., 2005, c.f.) we use the auto-correlation of
the matter particles and the cross-correlation between the halo positions and the matter
particles (Gao and White, 2007). This has the advantage that the latter uses many orders
of magnitude more pairs than the former technique and makes it therefore feasible to
calculate bias parameters for very small numbers of objects. We are basically only limited
by the sufficient sampling of the environment distribution of the objects of interest instead
of their sufficient sampling in pairwise distance.

Following Gao and White (2007), we find a b that minimises

4∑

i=1

(log ξhm,i − log bξmm,i)
2 (2.16)

in 4 spherical bins with radius 6 < r/
(
h−1 Mpc

)
< 20. We calculate the matter-halo

cross-correlation ξhm and matter auto-correlation ξmm on cubic grids with 5123 cells using
simple nearest grid point deposition. This grid therefore has a cell length of ∆xMSI ≈
0.977h−1 Mpc in the MSI and ∆xMSII ≈ 0.195h−1 Mpc in the MSII. Both, deposition and
cell spacing are sufficient to resolve the scales relevant for our undertaking.

2.3 The Simulations

We calculated the structure of peaks on two different dark matter only cosmological sim-
ulations with the same cosmology: the Millennium and Millennium II simulations. Their
parameters are given in Table 2.1. The latter is a box of 1/125 of the volume of the former
using the same number of particles and hence 125 times better mass resolution.

The combination of both, a larger box with better large-scale statistics and a smaller one
with better mass resolution and accompanying density contrast, allows us in the following
to investigate the properties of resolved peaks at very different scales. At the same time
we can check the convergence between the two simulations in the intermediate regime of
masses and length scales that both boxes are able to represent.

We acknowledge that the cosmology of the simulations is close to but not in agree-
ment with current measurements of the cosmological parameters from the CMB as given
in Planck Collaboration (2018) or from the Dark Energy Survey Data Release 1 (DES Col-
laboration, 2018) (although we also note that the adopted value of h is very close to that
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Table 2.1: Parameters of the simulations used in this work: Millennium I (MSI) and
Millennium II (MSII).

MSI MSII
Ωdm 0.205
Ωb 0.045
ΩΛ 0.75
h 0.73
σ8 0.9
ns 1

Npart 21603

Mpart/
(
h−1 M�

)
8.61 · 108 6.88 · 106

Lbox/
(
h−1 Mpc

)
500 100

ε/
(
h−1 kpc

)
5 1

found by Riess et al. (2018)). Nevertheless, this does not change the qualitative nature
of our findings. We can also still compare the quantitative strength of our assembly bias
signal with previous assembly bias investigations using the Millennium simulations.

2.4 Matter Above a Density Threshold

Using the data structure for the dark matter density field and its connectivity as described
in the previous sections, a first exercise is to investigate the properties of this field as a
whole in an evolved state at z = 0. While others investigated the properties of the one-
point density distribution (Pandey et al., 2013; Stücker et al., 2018) we want to concentrate
on the properties of the content of isodensity surfaces.

The simplest properties of of the particle ensemble above a given threshold ρthresh are
the total masses and volumes of the particles. These quantities develop with a changing
ρthresh as the peaks in the density field merge or split when ρthresh is increasing or decreasing,
respectively. These are given in Figure 2.6 and Figure 2.7. Here we show the fractions of
the total mass

∑
M and the total volume

∑
V of all particles above the threshold, i.e.

the sums of these quantities for all peaks. MMax and VMax are the mass and the volume
of the most massive object at a given threshold. These values are accompanied by the
masses of the second, third, tenth, hundredth and thousandth most massive object at a
given threshold.

2.4.1 Total Mass and Volume

The total mass and volume above ρthresh have a very uniform behaviour over the whole
range of thresholds in both simulations. The total mass is already close to the full mass at
ρthresh = 100 〈ρ〉 although there are slight differences for the values between the simulations.
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In the MSI (
∑
MMSI(100 〈ρ〉) ≈ 0.45,

∑
MMSI(〈ρ〉) ≈ 0.8) there is slightly less mass at a

given threshold than in the MSII (
∑
MMSII(100 〈ρ〉) ≈ 0.55,

∑
MMSII(〈ρ〉) ≈ 0.9). The

total values only change by less than a factor of 2 over two orders of magnitude in ρthresh.
This means that less than half the total mass resides in objects one would commonly call
a halo. This is to be understood as a lower bound as an increase in resolution increases
the mass noticeably. The higher mass fraction at a given density in the higher resolution
MSII is a result of its ability to represent smaller scale density perturbations and to follow
their collapse into objects that would be washed out in the MSI.

The total volume above ρthresh evolves roughly as
∑
V ∝ ρ−1

thresh as is to be expected
from the slow change in

∑
M . The slope of

∑
V is slightly shallower for the MSII. This

is again related to the higher resolution of the MSII. Not only is the mean overdensity
higher, but also there are lower resolved underdensities. Therefore the range over which
the same total volume as in the MSI is attained is wider leading to a shallower slope. In
both simulations we find just below 0.1% of the total volume above 100 〈ρ〉 while ∼ 8% in
the MSI and ∼ 6% in the MSII lie above mean density.

2.4.2 Percolation

While the total quantities
∑
M and

∑
V show a very smooth and steady behaviour in

the covered range, their counterparts Mmax and Vmax for the most massive object do
not. They exhibit three distinctive behavioural regimes connected with two phases and
an intermittent phase change. These phases are sub- and super-critical percolation of the
isodensity surface with the phase change at the percolation density ρperc. This percolation
process is the result of reaching a common isodensity envelope of the cosmic web. One can
therefore say that ρperc is the bounding density of the cosmic web.

We first turn our attention to Figure 2.6 as the larger MSI captures the behaviour in
a more pristine way. In the first phase at densities above ρperc, i.e. before the emergence
of the infinite cluster, the highly ranked peaks grow exponentially in mass with decreasing
ρthresh as surrounding peaks are linked and as is typical for sub-critical percolation. The
merging of two or more very massive systems is visible as sudden jumps in mass. The
exponential growth in mass is even visible for the 1000th most massive object.

The phase transition from sub- to super-critical percolation happens in the range
6 . ρthresh/ 〈ρ〉 . 7 and is visible in both Mmax and Vmax. The mass content of the
largest connected isodensity surface increases from 1% to over 20% of the total mass in the
simulation as the enclosed volume increases by the same factor from less than 0.02% to
0.4% of the box volume. Yet, at this point far less than half of the total mass and volume
above ρthresh is contained in the infinite cluster. As one decreases the threshold more and
more of the occupied volume along with the occupying particles are bound into the cluster
and Mmax and Vmax approach

∑
M and

∑
V , respectively. By the end of the depicted

range at ρthresh = 〈ρ〉 virtually all mass is part of the largest object as almost no inde-
pendent overdensities remain. The volume above ρthresh is not as completely bound in the
infinite cluster, with still a noticeable difference between Vmax and

∑
V at ρthresh = 〈ρ〉.

In the MSII the process of percolation depicted in Figure 2.7 is much less pronounced.
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Up to ρthresh ≈ 8 〈ρ〉 there are two objects of almost equal mass of almost 10% of the total
mass in the simulation. Subsequently there is a jump in mass of the largest object in the
range 7 . ρthresh/ 〈ρ〉 . 8 which nevertheless only increases it by a factor of 3. This is in
stark contrast to the jump of more than an order of magnitude in the MSI. The contrast
is even starker in the Vmax development over a decrease in the threshold: In the MSII this
quantity is increasing much more slowly and less smoothly than in the MSI. We interpret
this as an expression of the limited box size and subsequent insufficient sampling of the
high-mass cut-off of the halo mass function. The few high-mass objects that can be found
in the MSII dominate its mass budget so much that the percolation does not produce such
pronounced mass and volume increases as in the MSI. Just as in the MSI virtually all mass
and close to all volume above ρthresh = 〈ρ〉 is part of the infinite cluster.

Turning to the nth most massive objects as shown in Figure 2.6 and Figure 2.7, we find
that all traced ranks in the MSI and all up to rank 100 in the MSII show the same sub-
critical exponential mass increase as the most massive object discussed before. The third
ranked object in the MSII actually undergoes a mass decrease just above ρthresh = 10 〈ρ〉
when the original object becomes part of the second or first ranked one. This is yet another
effect only visible in the context of the limited box size in the MSII. The larger spread of
masses for the same range of mass ranks has the same origin.

In the super-critical phase all but the most massive object become smaller and smaller
as the previous holder of a given rank larger than 1 are merged with it. We see intermittent
increases in mass for the very highest mass objects as they are growing to encompass part
of their environment just before a link to the infinite cluster is formed.

There is a peculiar difference in the behaviour around the percolation threshold for
different mass ranks. As noted before all ranks undergo a an initially exponential mass
increase with decreasing ρthresh. With increasing rank this growth transforms into a mass
decrease at offsets before the percolation threshold that increase with rank. This leads
to the vanishing of a pronounced peak for the highest depicted mass ranks in Figure 2.7.
From this we can estimate that the actual percolation happens by the merging of 10 to 100
patches per (100h−1 Mpc)3.

2.4.3 The Geometry of the Cosmic Web

In this subsection we illustrate how to measure characteristic scales for the cosmic web,
defined as the percolating structure identified by our TLT. The variation of its mass and
volume fractions with ρthresh have been discussed above. For the MS case which gives the
best statistics, the former increases from 24% to 80% and the latter from 0.4% to 7% as
ρthresh/ 〈ρ〉 drops from 6 to 1 (see Figure 2.6). In Figure 2.8 we show one layer of a 10243

Cartesian grid spanning the full MS volume. We colour black every cell that contains at
least one particle belonging to the percolating object for ρthresh = 5.25 〈ρ〉. (This object
contains mass and volume fractions of 35% and 0.62%, respectively). Clearly, this thin
slice intersects the (single) percolating object many times. Indeed, defining two black cells
in such a slice to be part of the same intersection if they share a face, we find that, on
average, a slice intersects the cosmic web 618 times. Thus the mean distance between
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Figure 2.6: Mass and volume above a given threshold ρthresh in the MSI for all particles
above the threshold (

∑
M and

∑
V ) and those in the most massive object (Mmax and

Vmax). Additionally the masses of the second, third, tenth, hundredth and thousandth
most massive object at a given threshold are shown (as identified by the colourbar). While
the global quantities

∑
M and

∑
V show a very smooth behaviour there is a clear phase

transition connected to a percolation process in the range 6 . ρthresh/ 〈ρ〉 . 7. We identify
the percolation threshold with reaching the density of an isodensity surface enclosing the
cosmic web.
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Figure 2.7: Same quantities as in Figure 2.6 but here for the MSII. The smaller box size
of the MSII leads to a stronger dominance of the mass and volume budget of the largest
objects. This in turn is noticeable as a less smooth and pronounced percolation transition.



2.4 Matter Above a Density Threshold 35

such intersections is 20.1h−1 Mpc. This characterises the spacing between filaments of
the web. Given that on average black cells occupy 1.71% of the slice area, the average
area of an individual intersection is (2.63h−1 Mpc)2. This length scale characterises the
thickness of a filament. Since the web occupies 1.71% of the MS volume, the total length of
filaments within this volume is approximately π/2 0.171 (500h−1 Mpc)3/(2.63h−1 Mpc)2 =
4.85 · 105h−1 Mpc, where the factor of π/2 accounts for the fact that filaments intersect a
slice like that of Figure 2.8 at random angles.

An alternative way to characterise length scales is shown by the coloured field outside
the percolating object in Figure 2.8. This indicates the 3-D distance from each cell to
the nearest cell which is part of the percolating object. This field is called the Euclidean
distance transform (EDT) of the percolating cell set, and is defined by

E(x) = min
w∈W

‖x−w‖ , (2.17)

where W is the set of positions of all cells within the percolating object and ‖ · ‖ denotes
the euclidean norm. The local maxima of this field give the radii of spheres which are
entirely outside the cosmic web but touch it at four points. Thus they are locally the
largest spherical voids within the web. The particular slice shown in Figure 2.8 was chosen
to contain the highest maximum of E(x) (and hence the centre of the largest spherical
void) in the MS volume, for which Rvoid,max ≈ 50.5h−1 Mpc. This radius is consistent with
the previous results of Cautun et al. (2016).

The properties of E(x) can be used in many ways to to quantify the cosmic web. Here,
we restrict ourselves to a simple example and to a test of convergence between our two
simulations. In Figure 2.9 we show how the distribution of E(x) varies with ρthresh/ 〈ρ〉 in
the MS, plotting the 10%, 50% and 90% points of the distribution, as well as its maximum.
At the largest threshold shown, Rvoid,max is already significantly below its maximum possible
value

√
3×250h−1 Mpc = 433h−1 Mpc, showing that the most massive object is much larger

than an individual halo. As ρthresh is lowered Rvoid,max initially decreases slowly, but then
drops precipitously to about 100h−1 Mpc as percolation occurs in two steps over the narrow
range 6.3 < ρthresh/ 〈ρ〉 < 6.8. As ρthresh is reduced further Rvoid,max continues to decrease
steeply, reaching a value of about 20h−1 Mpc for ρthresh/ 〈ρ〉 = 2, the smallest threshold
plotted.

The median and the upper and lower decile points of the distance distribution vary with
ρthresh in a qualitatively similar way to its maximum value, but there are some notable
systematic differences. The jump across the percolation transition varies substantially,
from a factor of 3.5 for Rvoid,max to factors of 6.5, 9.8 and 12.7 for the 90%, 50% and
10% points, respectively. This reflects a broadening of the distance distribution which
continues more slowly as ρthresh decreases further. The 10% and 90% points differ by
factors of 2.8, 10.2, 10.3 and 11.8 for ρthresh/ 〈ρ〉 = 7, 6, 5 and 3, respectively. This change
in shape is a consequence of the change in geometry from a single relatively compact
object for ρthresh/ 〈ρ〉 > 9 to a volume-filling network of filaments for ρthresh/ 〈ρ〉 < 6.
The substantial, quasi-exponential drop (from 12 to 2.3h−1 Mpc) in the median distance
as ρthresh/ 〈ρ〉 decreases from 6 to 2 is due to the growth of low-density filaments which
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Figure 2.8: A slice through the MS showing (in black) the percolating object for ρthresh =
5.25 〈ρ〉, and (in colour) the Euclidean distance transform (EDT) which gives the minimum
3-D distance from each point to the percolating object. This slice was chosen to contain
the global maximum of the EDT, hence the centre of the largest void in the MS for this
value of ρthresh.
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Figure 2.9: Variation of the distance distribution derived from the Euclidean Distance
Transform (EDT) of the space external to the largest connected object in the MS as a
function of the threshold density ρthresh of its bounding surface. The blue curve shows the
maximum value of the EDT (i.e. the radius of the largest spherical void) while orange,
green, and red curves give, respectively, the 90%, the median and the 10% points of the
distance distribution at each value of ρthresh. Percolation is evident in the abrupt jump in
these curves at ρthresh/ 〈ρ〉 ≈ 6.3. The smaller jump at somewhat higher threshold is due
to the merging of two objects of nearly similar size and corresponds to the lowest density
at which the first and second most massive objects in Figure 2.6 are of similar mass.

extend from the higher density web into previously empty regions. Over this range, the
total length of filaments in the MS (estimated as above) increases from 2.63 · 105 h−1 Mpc
to 2.65 ·106 h−1 Mpc. Even for ρthresh/ 〈ρ〉 = 2 the percolating object fills only about 5% of
the total volume, but the remaining 95% of the simulation is much more densely threaded
with filaments than in Figure 2.8.

As seen in Figure 2.6 and Figure 2.7 percolation occurs at a higher density threshold in
the MSII than in the MS, and the curves showing the mass and volume of the percolating
object are both shifted slightly to the right in the MSII case. As a result it is not clear
how best to check for convergence of web properties between the two simulations. In
Figure 2.10 we compare the EDT distance distributions obtained when the thresholds in
the two simulations are matched in such a way that they produce the same mass fraction
in the percolating object. Specifically, we choose thresholds ρthresh/ 〈ρ〉 ≈ {3, 4, 5} and
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Figure 2.10: The EDT distance distribution relative to the percolating object at threshold
densities of ρthresh ≈ {3, 4, 5} 〈ρ〉 and ρthresh ≈ {4, 5, 6} 〈ρ〉 in the MS and the MSII,
respectively. At these thresholds the cosmic web contains mass fractions of {60, 50, 40}%
in both simulations.

{4, 5, 6} in the MS and MSII respectively, which leads to mass fractions of {60%, 50%, 40%}
in the percolating object in both simulations. With this choice, the distance distributions
agree remarkably well (apart from some small-scale discreteness effects in the MS) despite
the difference in mass resolution of a factor of 125 and the change by a factor of two in
the median of the EDT distribution over this range of thresholds. The longer tail to large
distances in the MS for ρthresh/ 〈ρ〉 = 5 is clearly a reflection of its much larger volume;
voids of 100h−1 Mpc diameter would not fit in the MSII simulation box. Most properties
of the cosmic web as characterised by the EDT distance distribution are clearly very well
converged in the Millennium Simulations.

2.5 Abundance of Peaks

The abundance of peaks is a simple quantity that allows us to form an understanding of the
objects that come out of the process of constructing the Tessellation-Level-Tree. We begin
with a comparison of the mass functions of thresholded objects at different thresholds and
compare them with those of FOF-haloes in both simulations. We then further differentiate
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the set of thresholded objects closest to FOF-haloes by their ρlim values to understand in
which local environments they live. We also conduct this investigations for unthresholded
objects. We will give the abundances as number densities in units of h−3 Mpc−3. For the
MSI a single object corresponds to an abundance of n = 8 · 10−9h−3 Mpc−3. For the MSII
the minimum number density is n = 10−6h−3 Mpc−3.

2.5.1 Thresholded Peaks

We begin our discussion of object abundances with thresholded peaks as these are closer
to the usual notion of haloes which allows direct comparison to previous work.

2.5.1.1 Mass Function

We compare the mass function of thresholded peaks to that of FOF haloes with b = 0.2
in Figure 2.11 where we show the ratios of the cumulative mass functions for a range of
threshold densities. We use thresholds from the set ρthresh/ 〈ρ〉 ∈ {60, 80, 100, 125} (more
precisely 10{1.8,1.9,2,2.1}) which are motivated by the analysis in More et al. (2011). There
the authors also predict a number and resolution dependence of the bounding density of
FOF objects which is nicely reproduced.

The ratios exhibit a large spread at large masses that decreases with mass until all
ratios start to coincide as they drop together. This drop is most likely caused by the
persistence filter (see Section 2.2.2). The large spread at large masses is a manifestation
of the exponential cutoff in the mass function which is shifted to larger masses for smaller
thresholds. As the MSI encompasses a larger volume than the MSII the effect is more visible
here. The asymmetry in the deviations above/below the original MF for higher/lower
thresholds is a result of the larger number of smaller objects than can be shifted to larger
masses compared to the number of large objects that can loose sufficient mass by cutting
away their peripheries.

While the halo content of the MSII does not extend to the same high masses as that of
the MSI we still find a good convergence in the ratios up to the point where the decay in
the MSI sets in. Its range 12 ≤ log10 (Mhalo/M�) ≤ 14.5 covers an important observational
range where one finds a large number of groups and clusters. The MSII ratios show a
slower decline as objects of similar mass are better resolved.

We find that ρthresh = 80 to be the best choice for the threshold as it is the on average
closest over the interesting range of well resolved objects.

2.5.1.2 Distribution in M-ρlim-Space

The thresholded objects in the TLT have an additional property to objects identified by
other halo-finders: their limiting density ρlim. As it is a measure of the immediate en-
vironment of the object it is interesting to how objects of a given mass are distributed
over these environments. For this we show the distribution of the thresholded objects at
ρthresh = 80 〈ρ〉 in Figure 2.12. Here we compare the number density of peaks in the MSI
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Figure 2.11: Ratios of the cumulative mass functions of TLT-peaks NTLT (< M) and FOF-
objects NFOF (< M). The black vertical lines indicate the limits of 1000 and 20 particles
in the MSI (solid 20, dotted 1000) and MSII (dashed 20 and dot-dashed 1000).
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Figure 2.12: Abundance of objects of a given mass in the MSI (solid) and MSII (dashed)
in dependence of their ρlim value. There is good agreement among the simulations for well
resolved (Npart > 1000, ∼ 1012h−1 M� for the MSI) objects inside the cosmic web.

and MSII by superimposing their sets of logarithmically spaced contours on a regular grid
in logM -log ρlim-space.

We find the distributions for both simulations to be of qualitatively similar shape with
some important differences in their detailed structure. Both the solid lines of the MSI-
distribution and the dashed ones of the MSII exhibit an almost vertical alignment at ρlim
values greater than 20 〈ρ〉 before showing a bulge to higher masses just below the median
ρlim. Below this bulge the contours slant towards low masses and roughly follow a family
of power laws of slope ∼ 2.5. The median ρlim values at a given mass agree well with each
other and both decrease slightly with mass before going into an up-turn at the resolution
limit (see lines in Figure 2.11).

While both simulations agree well with each other for massive objects at densities at or
above the percolation transition (see Section 2.4.2) they do not agree for small ρlim values.
The contours in the MSII turn to low masses earlier and are in general shallower. This
could either be a consequence of more resolved channels of higher density that connect
these objects to the web or less large voids compared to MSI due to the smaller size of the
MSII. In this case there would less environments available in which objects could develop
sufficiently removed from the web.
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2.5.2 Unthresholded Haloes

Unlike the thresholded peaks from the previous section unthresholded peaks do not have a
direct correspondence in the usual halo picture. We therefore only look at their abundance
in logM -log ρlim-space. We use this distribution to investigate the effect of persistence
filtering by comparing it to the distribution of the unfiltered peak populations in the same
space.

2.5.2.1 Distribution in Mtot-ρlim-Space

To compare the abundance distribution of unthresholded objects in MSI and MSII we
compare the contours of constant abundance in Mtot-ρlim space in Figure 2.13. Just as
in Section 2.5.1 there is a regime of increasing ρlim with mass above ρperc in which the
abundances are converged between MSI and MSII but here we see that indeed extends to
much larger masses. Above this region we find a common deviation of the contours (see
Section 2.5.2.2 for a more detailed discussion). Below ρperc the contours diverge again as
the objects in the MSII do not extend to as low ρlim values as in the MSI at the same mass.

We find similar but slightly lower median ρlim values in the mass bins. The contours
are similar to the thresholded case in the previous section but show a clearer spike to
large masses at ρperc. This is simply a consequence of the additional mass gain between
ρthresh = 80 〈ρ〉 and ρperc by large objects in the cosmic web.

For high ρlim and small masses of a few particles, the two simulations diverge at ρlim ≈
104.5 〈ρ〉. This causes a noticeable excursion to high ρlim values to the left of the maximum
formed by the previously mentioned turnover in the contours. We will further discuss this
problematic region in the next section.

For the lowest ρlim values we find a flattening in the abundance contours for objects
with less than ∼ 100 particles.

2.5.2.2 Convergence Without Persistence Filter

As the unthresholded haloes represent the direct result of the TLT we can use their distri-
bution to investigate the effect of the persistence filtering as laid out in Section 2.2.2. For
this we compare the distribution after application of a persistence threshold of r ≥ 10 from
the previous section (Figure 2.13) to the abundances of the unfiltered output in Figure 2.14.

We see that there are no differences in the well-resolved medium to low density regime
at higher masses. The contours do not change after application of the filter and hence still
agree well in this regime.

We do find a strong increase in high ρlim objects with small masses. These objects
form a characteristic ’hump’ in the same region where the peculiar concavity with its two
bracketing protrusions exists in Figure 2.13.

This pattern of divergence between the two simulations lets us conclude that although
a simple persistence filter might help with the filtering of spurious peaks, it is not able to
mitigate the problem completely. For the intents and purposes of this work it performs
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Figure 2.13: The distribution of unthresholded objects over mass and limiting density. Due

to volume constraints the MSII is restricted to abundances above 10−6(h−1 Mpc)
−3
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Figure 2.14: The distribution of the unfiltered unthresholded object population over mass
and limiting density. Note the clear “hump” at high densities below ∼ 1000 particles
(1012h−1 M� for the MSI, 1010h−1 M� in the MSII).

reasonably well. As long as we ensure convergence with the well resolved region in the
MSII or we deal with the high mass regime of the MSI we can trust our results.

2.6 Density-Mass Profiles of Peaks

The first application of the Tessellation Level Tree in the characterisation of density peaks
are the mass density profiles we motivated and described in Section 2.2.4.1. We present
them in two different ways, once with and once without substructure, binned by mass M80,
in the left and right panels of Figure 2.15, respectively.

Here we depict the median of the mass M(ρ) in the given mass range as obtained at
a given density. We decided to show the profiles with the mass on the abscissa as it is a
more traditional indicator, used for example in stellar astrophysics. The circles indicate
the median values as obtained from the simulation and the solid lines show the fit using
a reformulation of the NFW profile as a function of mass instead of radius. The bars at
the lowest mass bin indicate the the range of the quartiles around the median. The grey
dotted lines indicate the range of the fitting.

The fitting was restricted to the points where the given median profile had at least
50 particles and to densities outside of the previously established convergence radius of 3
times the softening radius. The lower bound in density is formed by the density threshold.
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We used (2.11) to fit the profiles using the original NFW-parameters ρ0 and rs instead of
the equivalent expression in (2.21) which uses MV and c.

We find that both cases are well fit by NFW-profiles within the fitting range. We
see a systematic departure towards lower densities at small masses (small radii) as the
gravitational softening limits the attainable central densities.

Interestingly for massive objects the profile including substructures is smoother and
better fit by a single NFW profile. The one without substructures indicates a slight deficit
in mass at intermediate densities and an excess at higher densities. This might indicate
that the densest point in a peak does not necessarily lie in the most massive, but most
concentrated substructure.

We will extend the discussion of the internal structure of objects in the TLT in Busch
and White (2019b).
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Figure 2.15: Median density profile as function of mass for peaks binned in M80 as indicated on the colour bar above. The
left panel includes the mass in substructures (TH+) while the right panel only includes mass directly under the peak at a
given threshold density (TH−). We present the median masses at a given density threshold down to a limit of 50 particles.
We limit the fitting of the profiles to mass above the defining threshold of 80 〈ρ〉 and to densities below that given by the
the NFW profile at three softening radii ε = 5h−1 kpc. We mark the densest point still fitted by indicating the range in
between the 25- and 75-percentiles.
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2.7 ρlim-Assembly Bias

The limiting density of peaks is a new local property of dark matter structure. It was
previously shown, that selection on local properties can lead to changes in the global
clustering statistics resulting in assembly bias (see 1.1.3). In the following we test how
ρlim-selected samples might differ in their clustering.

2.7.1 Assembly Bias in ρlim Quintiles

In analogy to the procedure in Gao and White (2007), we split the sample of thresholded
haloes with ρthresh = 80 〈ρ〉 from MSI and MSII binned in 0.5dex in Mtot in quintiles in
ρlim whose boundaries are shown in Figure 2.16. We then calculate the bias value b for
each of these sub-samples as introduced in Section 2.2.5. The results in Figure 2.16 show
a very clear split between the samples that indicate a stronger assembly bias signature
than in any property previously investigated in this way. We additionally present the bias
relation of all objects in a given mass bin in comparison to that of FOF haloes. The two
agree perfectly over 5 orders of magnitude in mass. We only show bins with at least 100
members to reduce the uncertainties in the halo-matter cross correlations.

The differences between the quintiles are so strong that we find the bottom quintile
with masses Mtot ≤ 100.5M∗ ≈ 1013.3h−1 M� that are uncorrelated with the large scale
matter distribution. As we will see in Figure 2.20 in the next section, choosing a lower cut
such as the bottom decile would actually lead to a negative bias, i.e. anti-correlation with
the density field on large scales.

The spread in bias values increases strongly with Mass starting at 10−0.5M∗ while it
stays rather constant below this mass. This is caused mostly by the delayed departure of
the bias of the lowest quintile from its constant value of b ≈ 0 in the low-mass regime at
which it stays up to 101M∗. Above this mass it rises quickly towards the values that the
upper four quintiles already reached after their more steadily rising increase.

To explain this behaviour we have to turn to the more detailed investigation in Fig-
ure 2.20 where we will see the lower end of the distribution of limiting densities rise quickly
with increasing mass. This rise is quicker than the slope of the zero-bias contour owed to
the fact that there are groups but not clusters in large-scale underdense regions, separated
from the cosmic web. For the analysis in Figure 2.16 this means the populations in the
quintiles shift from structures in voids to objects in parts of the web that are connected
via slightly less dense channels.

This behaviour is shown in Figure 2.17 which depicts the four boundaries between the
five quintiles and the median ρlim in the MSI and MSII. We find a constant shift of slightly
less than an order of magnitude in mass between the quantiles in the two simulations. As
most of the quantiles are rather flat they do not shift much in value apart from the lower
ones at high masses and the lowest over the whole mass range where these curves have a
stronger slope.
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Figure 2.16: Bias for the quintiles in ρlim in mass-binned subsamples of thresholded haloes
with ρthresh = 80 〈ρ〉 in the MSI and MSII. The red line gives the bias of the mass-binned
subsamples not split by ρlim in the MSI and the black line that of the central subhalo in
FOF groups binned by FOF group mass. Only bins with at least 100 members are shown.
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2.7.2 Avoidance Between Top and Bottom Quantile

While we established that the top and bottom quintile cluster very differently with respect
to matter, it is still unclear how this actually manifests. We try to understand their
differences first visually using scatter plots of slices and then using radial cross-correlations.

2.7.2.1 Scatter Plots of Slices

For a visual inspection we show slices of the MSI in Figure 2.18 as inspired by Gao et al.
(2005). Each slice is 30h−1 Mpc thick and covers the whole box. All slices in each row
have the same number of points, with the left (black) being a random set of particles as
proxy for the matter distribution, and the middle and right panels showing the positions of
objects with mass 8.61 · 1010 ≤M80/h−1 M� ≤ 1.72 · 1011 (100 to 200 particles) in the top
(red) and bottom (blue) quantiles in ρlim, respectively. The upper row depicts quintiles
and the lower row deciles.

For the top quantiles the visual impression is quite clear: they simply trace the matter
distribution in a more concentrated fashion, hence are more clustered. They avoid under-
densities, which especially in the case of the top decile opens up regions dozens of h−1 Mpc
across without any object in the slice.

The bottom quantiles are more complex and we find clear differences between bottom
quintile and decile. The objects in the bottom quintile (with b ≈ 0) are not evenly dis-
tributed, but still exhibit some clear modulation in density. While in some regions one can
see an avoidance of overdensities in other regions this is less the case. There is also no
visible preference for locations in regions underdense in matter. In contrast, the bottom
decile seems to avoid overdensities in matter. In any case the visual impression is much
harder to interpret for the two bottom quantiles.
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Figure 2.18: Visual impression of the relative clustering of the top and bottom quintiles (upper row) and deciles (lower
row) in ρlim in the MSI in comparison with matter as represented by a random sample of particles with the same size
as the quantiles. The plots show the positions in a projected slice of 30h−1 Mpc thickness along the X-axis. This plot is
a reproduction of Figure 4 in Gao et al. (2005) with our data. We therefore chose the same mass range of 100 to 200
particles, corresponding to 8.61 ·1010 ≤M80/h−1 M� ≤ 1.72 ·1011. It is hard to see by eye whether the samples are avoiding
each other or not. We therefore show their cross-correlations in Figure 2.19
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2.7.2.2 Radial Cross-Correlations

To quantify and reassure ourselves of the results of the visual impression, we plot the radial
cross-correlations ξ between the top and bottom quantiles in the same mass range as in the
previous section with each other and matter in comparison to the matter auto-correlation
in Figure 2.19. Here the grey band denotes the range 6 ≤ Rp/

(
h−1 Mpc

)
≤ 20 of our bias

b calculation.
As expected, in said range we find the top quintile and decile to lie above the matter

auto-correlation and the bottom quintile around zero and the bottom decile slightly below.
More interesting are the results for smaller radii than the lower end of the bias range.

The matter cross-correlations show that the objects with the lowest ρlim live in under-
dense regions, out to ∼ 5h−1 Mpc for the lowest 20% and ∼ 10h−1 Mpc for the lowest 10%.
Their density profiles and as such the cross-correlation within a few hundred h−1 kpc do
not differ.

As the bias of the top quantiles is above unity, their matter cross-correlations also
rise steeply with the matter auto-correlation down to 2h−1 Mpc. At this point the cross-
correlation stabilizes at 20 (top quintile) to 30 (top decile) before it rises at radii below
200h−1 kpc due to the one halo term. Inside that radius the profiles agree with each other
within the uncertainty so that no internal differences of the peaks can be seen here.

We also show the cross correlations between the top and bottom quantiles. Here we
see a very peculiar behaviour. As was to be expected the two extremes in ρlim avoid each
other on large scales. They do so even more than the bottom quintile avoids matter on
large scale below a few h−1 Mpc. However, below 600(500)h−1 kpc the quintiles (deciles)
start to be correlated and their correlation function steeply rises to a maximum in the
range of 300h−1 kpc to 400h−1 kpc before it again seems to decline and we run out of pairs
at 200h−1 kpc.

The avoidance between the samples would have been expected given their large scale
clustering with, or avoidance of matter. Nevertheless, we must not forget the characteristic
of the correlation function as a summary statistic. While not many of the pairs from
opposite quantiles lie close to each other, those that do, do so with much higher frequency
than random chance would dictate. The only conceivable configuration, given the opposite
extremes in ρlim, is the one in which the peak with the high ρlim is grouped under that
with low ρlim. This also explains the large radius at which the quintiles become correlated
as here the density between the peaks can fall off more than for the deciles. So while it
is indeed true that peaks of opposite extreme quantiles do avoid each other, from time to
time they come in close groups. These pairs can also not lie too close to each other as in
these cases the ρlim value would exceed the ρlim < ρthresh = 80 〈ρ〉 criterion.

2.7.3 Bias in Mtot-ρlim-Space

To understand how the selection of objects by ρlim selects on large scale environment we
bin the ρthresh = 80 〈ρ〉 thresholded objects into bins of 0.25dex over wide range in ρlim
and Mtot. We then calculate the bias as in Section 2.2.5 for every bin with more than 100
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Figure 2.19: Cross correlations between the samples shown in Figure 2.18 out to 30h−1 Mpc
(purple and brown dashed lines). Red and blue lines show the cross correlations between
the samples and matter. Bands of colour around the lines depict the uncertainty. The range
over which the bias is measured marked in light grey. Note the change from logarithmic
to linear scale at 1, leading to the visible break in the slopes.
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members. The results are shown in Figure 2.20 for the MSI and in Figure 2.21 for the
MSII. As the former contains sufficient numbers of objects for a clustering analysis up to
high masses we will concentrate on these results. We use the MSII mostly for the study
of convergence for small masses as it is too small to have meaningful numbers of objects
above 1013h−1 M�.

2.7.3.1 ρlim-Assembly Bias in the MSI

We find an unprecedented range in bias values −1 . b . 3.5 in the well covered range
with more than 100 members per bin. In those with at least 10 members the range further
broadens to −2 . b . 5.5. At fixed mass the bias value increases with increasing ρlim from
negative values for all but the most massive objects with Mtot ≥ 1013.5h−1 M� to positive

values. The zero-crossing increases in ρlim in the form of a shallow power-law ∝M
1
6
tot. We

also find a sudden turn in the b = 1 contour for small masses and high densities, the area
previously shown to be strongly afflicted with spurious peak (c.f. Section 2.5.2.2).

At fixed ρlim the magnitude of b increases with Mtot. The sign of the large mass limit
value is dependent on ρlim, especially on the relative position to the percolation threshold
ρperc ≈ 6.3 〈ρ〉 (see Section 2.4.2). Above this value objects are members of the cosmic web
while below they only connect to it at densities where the percolating structure is already
in place. For smaller values the largest objects at these limiting densities first become
increasingly uncorrelated and then start to be anti-correlated with the matter distribution
on large scales.

We can understand this distribution when we consider the constraints placed upon
the peaks by the construction of the peak-hierarchy in connection with the transition
from a local to a global peak-density comparison at ρperc. For a high mass object to be
subordinated at densities above ρperc we need an even higher peak close by which is much
more likely in dense large scale environments. Conversely, a high mass-object can only
evade having a high-density channel to the cosmic web if it is in an underdense large
scale environment. These restrictions are less strict for small mass objects, as their peak
densities will be lower (see 2.6) and therefore the correlation between ρlim and large scale
environment as measured by b is much less pronounced.

2.7.3.2 Connection to the Cosmic Web

Overall the bias contour distribution is fan-shaped with the contours travelling radially
outwards from the high mass tip of the distribution in Mtot-ρlim space. This implies that
there is a bias contour bi which is parallel to the mass axis, or differently put, there exists
a ρlim value for which the bias becomes independent of mass. We approximately identified
these contours on our grid and added them to the regular contour sets in Figure 2.20 and
Figure 2.21. For the MSI we find a bias value of bi,MSI ≈ 0.7 at ρlim,i,MSI ≈ 6.5 and for
the MSII bi,MSII ≈ 0.8 at ρlim,i,MSII ≈ 9. These are the densities of percolation ρperc of the
cosmic web in both simulations as discussed in Section 2.4.2 (c.f. Figure 2.6, Figure 2.7).
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We do not fully understand the reason for the constant bias value at the cosmic web
percolation density and will dedicate further research to this question.

2.7.3.3 Assembly Bias Convergence

To further understand the meaning and robustness of the results discussed in the previous
section we have compare the sets of contours derived from MSI and MSII in Figure 2.22.
Here we underlay the contours in black if they are inside the region with 100 members per
bin. Solid contours come from MSI and dashed from MSII.

The direct comparison shows that just as the abundance of objects of a given mass does
extend to lower ρlim values in the MSI, a given bias contour lies at higher ρlim in the MSII
than in the MSI. Just as the abundance contours converge at higher ρlim above ρperc so do
the bias contours. Despite the more erratic shape of the contours in the MSII compared to
MSI, we do not find any systematic differences for higher ρlim or b values. Only the sudden
upturn in of the b = 1 contour at Mtot = 109.5h−1 M� is clearly only present in MSI. As
mentioned in the previous section this is a sign of the less correlated spurious peaks that
start to dominate in this region.

2.8 Conclusions

We presented a new method called “Tessellation-Level-Tree” (TLT) to decompose the den-
sity field estimated using a Voronoi tessellation of particles in a cosmological N-body sim-
ulation into a hierarchy of density peaks. We define a tree structure on the peaks and
discuss a number of interesting quantities of its constituents. In addition to their mass and
volume as inherited from their particle content these peaks have a novel property called
limiting density ρlim. This is the density at which a peak has a saddle point to a denser
peak. It therefore measures the maximum density in the immediate surroundings of the
peak. To remove unwanted spurious peaks resulting from discreteness noise we apply a
persistence filter of r ≥ 10. While this does not solve the problem entirely it is a first step
on the way to a cleaned peak population.

We additionally introduce the concept of thresholded peaks which are the peaks exceed-
ing a certain density threshold ρthresh and whose properties are that of their mass content
above the threshold.

As first analysis of the generated peak population we looked at the mass of the most
massive object above a density threshold in MSI and MSII and found a percolation tran-
sition at 6 . ρperc/ 〈ρ〉 . 7 in the MSI and 7 . ρperc/ 〈ρ〉 . 8 in the MSII. In the MSII
the percolation is less pronounced as the smaller volume leads to a mass function that is
dominated by a few objects in the exponential cutoff. For both simulations the percolation
transitions sets in at a volume fraction V (ρ ≥ ρperc)/Vtot ≈ 0.01 and a mass fraction of
M(ρ ≥ ρperc)/Mtot & 0.7.

In Section 2.4.3 we found the percolating object to indeed be of filamentary nature. For
a threshold density of ρthresh = 5.25 〈ρ〉 these filaments are usually separated by 20h−1 Mpc
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Figure 2.20: Bias distribution of thresholded haloes (with ρthresh = 80 〈ρ〉) in the MSI.
Each cell in the colourmap represents a sub-sample with a given bias indicated by the
color. The black outline is the boundary of the region where subsamples have at least
100 members, those with less than 100 but at least 10 lie outside it. The bias contours
are evenly spaced with a step of 0.5 as indicated by the ticks in the colourbar. An extra
contour at b = 0.7 was added as this is seems to be roughly the bias value at which bias
becomes mass-independent. The corresponding ρlim level is very close to the percolation
threshold of the cosmic web.
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Figure 2.21: Same as Figure 2.20 but here for the MSII. Note the changed colour scale
due to the reduced bias range. We again find a contour of constant bias at a ρlim value
corresponding to the cosmic web percolation density. Here the constant bias value is slightly
higher at b ≈ 0.8.
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Figure 2.22: Comparison of the bias contours of MSI (solid) and MSII (dashed) as taken
from Figure 2.20 and Figure 2.21. Black outlined contours indicate the range where they
are calculated using subsamples of at least 100 members and otherwise subsamples of at
least 10 members are used.
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but the largest void we find in the MSI has a radius over 50h−1 Mpc, consistent with prior
investigations. We also showed that these numbers are highly dependent on the chosen
threshold. As the threshold is decreased, more branches of the web extend deeper into
what was previously considered to be a void. Despite this, the point of percolation gives
us a clear reference point relative to which one can evaluate these quantities. While on
larger scales there are restrictions due to the limited box size, we can confirm very good
convergence of the distance field on scales out to beyond 10h−1 Mpc between the MSI and
MSII, albeit only when adjusting for the difference in onset of percolation between the two
simulations.

We compared the abundances of thresholded objects in the Millennium and Millennium-
II simulations with that of FOF haloes and found them to be similar but to have certain
peculiar differences in line with previous discussions on FOF haloes. For these and peaks
without a threshold we find that objects at large ρlim values and small masses show signs
of being predominantly spurious.

We also introduced the usage of mass-density profiles as a new tool to investigate the
structure of density peaks and haloes in N-body simulations. These profiles circumvent
some problems of radial density profiles in describing the density structure of haloes by
directly connecting mass and density. By avoiding the spherical or spheroidal averages
needed for the usual radius-density profiles we are able to fully capture the high densities
in sub-haloes.

Using the new limiting density property we investigate the bias for samples of constant
mass split by ρlim to investigate the assembly bias effect in this quantity for objects that
are close to the typical FOF halo definition. We find the strongest assembly bias effect to
date as the bottom quintile in ρlim at a given mass is essentially uncorrelated with mass
below masses of Mhalo = 1013.5h−1 M�. We find that halo with very different ρlim tend
to avoid each other and that a low ρlim locally indicates an avoidance of matter on large
scale. We also show for the first times samples of group-sized dark matter haloes that
avoid matter on large scales, leading to a negative bias. The fact that we can identify a
range of ρlim values at which the bias becomes constant with mass and that this happens
to occur around the point of percolation indicates interesting connections between the two
phenomena which warrants further investigation.

Future work around the TLT will focus on the three applications in this chapter, the
bias of the peaks, their internal density distribution and the percolating isodensity surface.
Regarding the limiting density assembly bias and density structure of peaks it will be
interesting to see how these imprint themselves on the properties of galaxies that reside in
these peaks and how this can help us to further understand the connection between galaxy
and structure formation. The percolating isodensity surface introduces a network that can
be used to locate features in the cosmic density distribution. We hope to achieve this and
also further characterise this network in a future publication.
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2.A Connection to the NFW-Concentration

Another measure of concentration is the well known concentration parameter of the NFW-
profile. The bijective nature of the profile function allows us to invert it and obtain the
function r(ρ, c, RV ). For the following we are interested in a formulation of this radius
which does not depend on the choice of δV or the physical scale of the halo. Due to the
nature of the profile we only need the ratio of the density ρ and the reference overdensity

β =
ρ

δV
(2.18)

which gives us

r (β, c, RV ) =
RV

3c

(
2

1
3 t(β) + 2−

1
3 t(β)−1 − 2

)

=
RV

c
f(β),

(2.19)

with

t(β) = 3

√
β

2β + 3
(√

12β + 81 + 9
) . (2.20)

Using this radius expression we can find the mass inside a bounding density ρb = βδV :

M(ρb, c,MV ) = 4π

r(β,c,RV )∫

0

ρNFW (r)r2dr

=
4π

3
R3
V δV

1 + c

(1 + c) ln (1 + c)− c[
ln

(
RS +RV c

−1f(β)

RS

)
− RS

RS +RV c−1f(β)

]

= MV
1 + c

(1 + c) ln (1 + c)− c[
ln (1 + f(β))− 1

1 + f(β)

]

= MV g(β, c),

(2.21)

where we used the relation c = RS/RV for the NFW concentration parameter and

MV =
4π

3
R3
V δV (2.22)

for the characteristic mass MV . The system of reference is set by a choice of δV , frequent
choices are δ200c and δ200m, 200 times the critical and mean density, respectively.
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To be able to translate the values found by the mass ratios to concentrations in the
NFW framework we only need to take the ratio of the masses for two bounding densities
with a given η:

ca =
M(ηρ, c,MV )

M(ρ, c,MV )
=
g(ηβδV , c)

g(βδV , c)
(2.23)

Using the relation (2.23) we can now connect a given mass ratio ca at a bounding density
ratio η as discussed in 2.2.4.4 to a NFW-concentration. This is shown in Figure 2.23 for
different values of η. We find that different choices of η give different locations of the region
of steepest ascent for ca. Depending on the objects of interest certain η values should give
more precise connections. In the case of unthresholded haloes we want to compare their
concentrations defined in relation to a common overdensity, despite them existing over very
different mass ranges. By fitting such an NFW-profile in density/mass-space, we can find
an equivalent concentration value for each object at a given density.
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Figure 2.23: The relation between the NFW-concentration c and the mass ratio bounded
by two isodensity surfaces with a density ratio η.



Chapter 3

Morphology of Reionisation

This work will be published in the upcoming paper Busch et al. (2019).

3.1 Introduction

As mentioned in Section 1.2 it is as of yet unclear to what degree different types of sources,
early stars, stellar remnants, or even quasars (Madau and Haardt, 2015), are responsible for
the emission of ionising radiation. One therefore tests the predictions of various models of
sources and cosmology and compares different observables from mock and real observations
as they become available from ever improving instruments.

As the process of reionisation is highly non-linear and inhomogeneous, it is usually
investigated with semi-analytic (Mesinger et al., 2011; Xu et al., 2017; Greig and Mesinger,
2018) or fully numerical simulations (Ciardi et al., 2003, 2012; Kakiichi et al., 2017a; Eide
et al., 2018a), sometimes even coupled to hydrodynamics (Gnedin, 2014; Ocvirk et al., 2016;
Pawlik et al., 2017; Rosdahl et al., 2018). While semi-analytic methods have to compromise
on accuracy, they are fast enough for parameter space explorations that are very expensive
using full radiative transfer simulations and prohibitive in the case of coupled simulations.

The characterisation of the morphology of reionisation has been developed along with
the increasing capabilities to simulate the process. Sometimes this morphology traced the
21cm signal (Wang et al., 2015) and sometimes ionisation fractions directly (Friedrich et al.,
2011). An early method that still sees considerable use today is based upon Minkowski
functionals (Gleser et al., 2006; Kapahtia et al., 2018; Chen et al., 2018; Bag et al., 2018).
While these are mathematically very well developed, they have the disadvantage of being
integral quantities of a given surface and are therefore inherently non-local. While this
does not pose a problem in the case of isolated, monolithic bubbles, it does very much so
once percolation sets in. There are a number of previous approaches to separate connected
ionised regions into separate bubbles to carry the notion of bubbles over to the overlap
phase (Lin et al., 2016a).

A problem from an observational point of view is the presence of noise that can hamper
morphology detection (Kakiichi et al., 2017b). One possible way is smoothing the image
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another the introduction of super-pixels (Giri et al., 2018). We neglect a special treatment
of this problem for now, but prefer super-pixels for a real mock observation application.

In the following we will introduce our new methodology for describing the morphology
of ionised regions, both locally and globally, which extends granulometry as introduced
by Kakiichi et al. (2017b) in Section 3.3. We then quickly give a short overview of the
background of the different simulations first presented in (Eide et al., 2018a) in Section 3.2.
The results of our analysis are split in three sections: global properties of the bubble
population (Section 3.4), the percolation transition (Section 3.5) and finally the connection
to the density fields in Section 3.6.

3.2 The Simulations

The simulations of reionisation used for this investigations are the product of a radia-
tive transfer post-processing first presented in Eide et al. (2018a, hereafter E18) of the
MassiveBlack-II cosmological hydrodynamics-simulation (Khandai et al., 2015, MBII) us-
ing the Monte-Carlo ray tracing code CRASH (Ciardi et al., 2002; Maselli et al., 2003;
Graziani et al., 2013)

3.2.1 Cosmological Simulation

The MBII simulates a (100h−1 cMpc)3 periodic volume with a WMAP7 cosmology and
samples the matter and gas distribution with 17923 particles each. The gas and dark
matter particles have a mass of mgas = 2.2·106h−1 M� and mDM = 1.1·107h−1 M� while the
Plummer-equivalent softening length is ε = 1.85h−1 ckpc. The simulation was performed
using the unpublished code P-GADGET based upon GADGET2 (Springel, 2005). This
code uses smoothed particle hydrodynamics to follow the gas dynamics and implements a
number of feedback mechanisms.

The halo identification uses the standard SUBFIND algorithm by Springel et al.
(2001). While in the original analysis of the MBII the authors defined a galaxy as a bound
group of at least 64 stellar particles within a subhalo, E18a dropped this requirement and
instead model each stellar particle individually as described in Section 3.2.2.

For the results in this work we exclusively use grids of NC = 2563 cells and therefore
a comoving side length of lC = 0.391h−1 cMpc. For this the gas and star particles of the
MBII are deposited on the grid. Cells with at least one stellar particle represent sources
from which photon packets will be emitted. As the number of relatively very faint sources
increases rapidly beyond z = 10 we use a spatial clustering approach to group sources
in a flux conserving manner. This is described in detail in (Eide et al., 2018b, hereafter
E19). While the parent-simulation has periodic boundary conditions our simulations do
not due to technical difficulties connected to X-ray radiative transfer as the large number
of crossings of X-ray photons exceeds runtime requirements.
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Table 3.1: The source scenarios and their labels.

Lable Source types
Stars Stars only
SBH Stars and super-massive black holes

SXRB Stars and X-ray binaries
SISM Stars and thermal interstellar medium emission
SXBI All sources

3.2.2 Source Scenarios

The five different source scenarios as listed in Table 3.1 were first presented in E18a. They
are based on stellar, X-ray binary (XRB), hot interstellar medium (ISM) and nuclear black
hole emission (BH), and combinations of these. We use this opportunity to quickly remind
the reader of their key aspects and refer to E18a for further details. In the analysis in
Section 3.4 and onward we will denote the scenarios with the labels as given in Table 3.1.
For a visual comparison of the average spectral energy density (SED) contributions of the
different source types we refer the reader to Figure 2 in E18a.

The basic source of ionising photons in all simulations are stars. Each stellar particle
from the parent simulation is emitting a single stellar population SED without binary stars
according to its age and metallicity. All these SEDs are averaged over the whole simulation
at a given snapshot to obtain a mean SED. This mean SED is then applied to all source
cells and rescaled by the luminosity in a given cell. This procedure is also followed for
the other emission of essentially stellar origin (XRBs, ISM). The stellar emission is the
dominating component in the global mean galactic SED at energies up to the ionisation
energy of HeII (54.4 eV).

The hot ISM in galaxies is emitting thermal X-rays via bremsstrahlung. This is mod-
elled assuming a 106K ISM and a constant SED up to 240 eV and a cubic power law decline
thereafter. This shape and the model luminosity make the ISM the dominant radiation
source in the range from the HeII ionisation energy at 54.4 eV up to 600 eV.

The luminosity of the XRB population is modelled via a metallicity and star formation
rate dependent high-mass XRB sub-population and a time and mass dependent low-mass
XRB sub-population. Their SED dominates the galactic emission above 600 eV.

The given ranges of dominance of the different source types are based upon their relative
contributions in the case of a combination of all types. As the stellar emission plummets
rapidly at energies above 54.4 eV the more energetic sources are always dominant above
100 eV, the ISM immediately above HeII ionisation.

As SMBHs are rare, they will not be found in all source cells and one cannot find
a combined mean SED that could be redistributed to all sources as for the other source
types. Therefore their emission is treated separately. While the mean SED of the SMBHs is
formally dominant over the whole energy range used in theses simulations, they are globally
sub-dominant due to their mentioned sparsity. Nevertheless they are locally dominating
the radiation field, especially at energies beyond the ionisation threshold of HeII (54.4 eV).
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3.3 Methodology

The aim of this investigation is the characterisation of the morphology of ionised bubbles
in the five presented source scenarios. For this we first need a definition of a bubble and
furthermore a framework to describe its shape in a quantitative manner. We express the
bubbles as objects in sets of binary fields (Section 3.3.1) derived from the ionisation fields,
and describe their outer and inner structure with the opening field (Section 3.3.2) and the
euclidean distance transform (Section 3.3.3). We also present a tree structure to describe
the morphology of single bubbles, and use this to describe the growth and merging process
of the bubbles as they progress to fill the volume.

3.3.1 Binary Fields

At the core of all tools used in the following to characterise the ionised bubbles and other
fields in the EoR lies the binary field (BF). The BF is the result of a classification of volume
as either filled (1) or empty (0).

We obtain these classifications by testing a binary choice on another field. In the
following this will be mostly the comparison of the fraction xI(r) of the ion species I, a
field of real values, with a threshold tI:

XI(r) =

{
1 if xI(r) ≥ tI,

0 if xI(r) < tI.
(3.1)

The choice of filled and empty is decided such that the ionised volume around the sources is
filled and its complement is empty. In the following, for the sake of clarity, we will refer to
filled/empty cells if they lie above or below the ionisation threshold. It is intuitively clear
that for a given field XI different choices of threshold can result in very different binary
fields.

The discretisation of a continuous field on only two values comes with a dramatic loss
of information in most instances. In cases where the field is almost binary to begin with,
such as the ionisation fractions in many circumstances, this merely removes ambiguity.
For fields with a large range of values one would need to take sufficiently close thresholds
sampling the whole range of values to grasp the possibly changing morphology in different
regimes.

3.3.2 Opening Field

Now that we established and motivated the choice of a binary field as a useful abstrac-
tion we need a way to morphologically classify this field. As regions in the binary field
are featureless within their boundaries the only difference between regions is their size
and the shape of their surfaces. A simple measure for the size of a region is its diame-
ter. Unfortunately the value of the diameter will heavily depend on the choice of the axis
along which this diameter is measured. To solve this problem we use a set of overlapping
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Figure 3.1: Two-dimensional toy examples of an opened binary image (first column) to-
gether with the connected opening field (second column), Euclidean distance transform
(third column) and centrality (fourth column) for filtrations with opening radii of 0.5, 3.5
and 5.5 cells (rows from top to bottom). The red region in the upper left corner in the pan-
els of the leftmost column depicts these structuring elements. In the three right columns
grey covers the undefined background regions. The colourbar gives both the maximum
opening radius for the opening field and the Euclidean distance. The centrality values vary
linearly from 1 (yellow) in the most central regions to 0 (blue) at the very edge.
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spheres of varying diameter to simultaneously measure diameters in all directions via the
morphological opening of the binary regions as described in Section 3.3.2.1. To speed up
this costly process we employ a technique based on fast Fourier transforms laid out in Sec-
tion 3.A before connecting this approach to the previously used technique of granulometry
in Section 3.3.2.2.

3.3.2.1 Opening Classification

The morphological opening can be intuitively understood as the filling of a volume V ⊆ Xd

with overlapping replications of a certain shape, the structuring element S ⊆ Xd. While
the replications can overlap with each other they must never overlap the boundary. Here
X are usually either the reals R or, as is the case for our simulation grids, the integers Z.

More formally, the morphological opening V ◦S is the result of a successive morphologi-
cal erosion and dilation of V with S. The morphological erosion (written as 	) is the set of
all possible centres x ∈ Xd of translated replications of S, here given as Sx = {s+x|s ∈ S},
that are fully contained within V :

V 	 S = {x ∈ Xd|Sx ⊆ V }. (3.2)

For the present application this translates into a removal of a layer of width r around every
surface pixel when we erode a given BF with a sphere of this radius.

The morphological dilation (written as ⊕) is closely related to the erosion (see also
Section 3.A) and is the union of all Sx that are translated within V :

V ⊕ S =
⋃

x∈V

Sx. (3.3)

For symmetric S as used in our methodology, concatenation of the two operations leads to
a filtered version V ′ of V that is the union of all translations of S that are fully contained
within V :

V ′ = (V 	 S)⊕ S =
⋃
{Sx|Sx ⊆ V }. (3.4)

For an alternative description based on Minkowski addition and subtraction see Kakiichi
et al. (2017b).

We will exclusively use spheres (or rather their cell-approximations) of increasing radius
Rsph as structuring elements to filter the binary field. These spheres are members of a set
of binary fields defined by the inequality

‖x‖ ≤ r, for r ∈ N0, (3.5)

where x is the position vector to the centre of a cell. This implies that the smallest
sphere is a single pixel around the origin, the second one is an n-dimensional cross and so
forth. While the discretisation errors are substantial for small r they decrease quickly as
r increases. To convert r-values into proper spherical radii we use the total volume in a
cell-sphere and calculate the radius of equivalent volume Rsph.
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Our opening process leaves us with regions that could be filled with overlapping spheres
of a given radius. Due to the choice of spheres as structuring elements we know that regions
obtained in that manner have at least the same diameter in any given direction. This also
explains our choice of spheres, as any other shape would have some kind of preferred
direction. The opening of a binary image in two dimensions is exemplified in the first
column of Figure 3.1. The top panel shows the original image (or equivalently opened with
a single pixel disc) while the lower two images have been morphologically opened with
subsequently larger pixelated discs.

While in Kakiichi et al. (2017b) the result of the opening operations was only saved in
order to track the global volume change of the filled regions, here we are also interested
in recording where exactly volume is lost in the opening hierarchy. We call the successive
openings a hierarchy, as the openings with larger Rsph are always contained within those
of smaller Rsph. We can exploit this fact and save only the largest opening radius at which
a given cell is retained after performing the opening operation with a sphere of this radius.
We name the result of this operation the opening field (OF). An example of this is given in
the second column of Figure 3.1, where the colour signifies the OF value in a given pixel.
As the opening radius increases from top to bottom we see how regions with smaller OF
values get removed while those with larger values stay unchanged.

In the simplest case of isolated spheres of varying dimensions, the OF just contains these
exact same spheres labelled with their diameter. In a more realistic scenario there will be
regions within a given bubble that are removed at earlier stages of the opening hierarchy
than others. Locating and measuring these areas helps to understand the ionisation process
on the boundaries of ionised regions and the merging of bubbles.

While we concentrate on the ionised component of the universe it is also of interest to
measure the sizes of its complement. We can do this in an exactly symmetric way and
simply apply the above methodology to the negation of the initial binary field. We can
also save this in the same opening field just using a negative sign for the opening field of
the complement.

3.3.2.2 Granulometry

Granulometry measures the global volume distribution in regions of a binary field with
a given diameter. For this it uses successive openings with spheres as described in the
previous section, and records the volume loss after each step. Kakiichi et al. (2017b)
introduced this technique to the field of EoR studies in their investigation of the expected
21-cm spot size.

The central quantity in granulometry is the pattern spectrum

F (< R) = 1− V (B ◦ SR)

V (B)
, (3.6)

where B is the binary image, V is the volume function and SR the sphere of radius R. In
the pattern spectrum we record the fraction of the volume that lies in regions of radius
smaller than the opening radius and which are therefore lost during the opening procedure.
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F (< R) is thus the cumulative probability distribution of residing in a region of radius
smaller than R. Therefore the volume weighted probability distribution of being in a region
with opening radius R and local diameter 2R is then

pV (R) =
dF

dR
. (3.7)

We present our granulometric results in 3.4.2.

3.3.3 Euclidean Distance Transform

In addition to the opening field from the previous section we also use the Euclidean distance
transform (EDT) to characterize our binary field. This transform of a BF assigns every
filled cell (as defined in eq. 3.1) the minimal Euclidean distance d to an empty cell. In the
context discussed here, the EDT thus measures the distance from the first layer of cells
that are outside (hence we will also refer to it as surface distance) of the ionised regions as
we have defined them. The result of this operation for our example images can be seen in
the third column of Figure 3.1.

As (filled) spheres in Euclidean space are sets of points with an upper limit on the
euclidean distance from their centre, the EDT can also be seen as the distribution of
centres of maximally large spheres contained fully within the filled volume. This highlights
the tight connection to the opening field with spherical structuring elements, to which it
forms a kind of dual field. The same is true for our pixelated spheres.

In fact if both fields are needed for a given binary image B it is usually faster to compute
the EDT E and then perform a morphological dilation with spheres of a given radius after
applying that radius as a threshold on E. In the special case of spherical structure elements
S the opening field O can then be found as

O =
∑

j

B ◦ Sj =
∑

j

|E > Rj| ⊕ Sj, (3.8)

where Sj is the structure element of radius Rj and |E > Rj| is the binary field of regions
in E that have a value higher than Rj.

The EDT field has many uses, but here its relation to the OF gives us a measure of
centrality in highly irregular objects as discussed in Section 3.3.4. We will also see at which
value this field percolates at different times (see Section 3.5.2).

Just as for the opening field before we also calculate the EDT of the negation of the
binary image to characterise the space between the ionised regions. Just as for the OF we
can save this additional EDT with a negative sign in the same field as the original positive
one.
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3.3.4 Centrality

A very helpful derived quantity using both the OF and the EDT is centrality C(x), which
is defined as the ratio of EDT E(x) and OF O(x):

C(x) =
E(x)

O(x)
. (3.9)

A two-dimensional example can be found in the rightmost column of Figure 3.1.
As the OF measures the local diameter of the bubble and the EDT the separation from

the surface, this ratio gives a dimensionless measure of how locally central a point is, i.e.
how much of the locally maximally attainable separation from the surface is realised in
this point. This measure helps us to localise features in a dimensionless manner in bubbles
and to further separate overlapping bubbles. Regions with C = 1 will be identified with
the centres of bubbles while on the surface C vanishes.

3.3.5 The Minimal Bubble Structure (MBS)

To represent the binary field and its accompanying opening field only a few of the structure
element replications are covering cells that are not contained at a larger opening scale.
These form a minimal structure that resembles a skeletonisation as their centres lie on the
local medial axis (but which is not fully traced due to finite resolution). As an example we
show an this structure in Figure 3.3 for the binary field in Figure 3.1.

This structure extends our description from knowing the region in which a given volume
element is located to the centres of the regions. This way we expose the underlying structure
that generates the shape of the given bubble. For this structure naturally only these
spherical centres are important that are imprinted on the surface shape.

We use the MBS to find the correlation between the bubble centres and the density
field in Section 3.6.

To construct the MBS we find all cells of opening level O that lie closest to a cell at
position x for which bE(x)c = O, where b·c is the function. If the number Nc(x) of these
cells is at least one we know that this is the centre of an essential structure element, i.e.
an element that is the largest possible one describing a region within the bubble.

We furthermore calculate a weighting factor wc of

wc(x) =
Nc(x)

Vsph(bE(x)c) . (3.10)

Here Vsph is the volume of the spherical opening element of the appropriate radius. Cells
that do not host a centre of an essential bubble have a weight of 0 while all centres will
have a weight in the range 0 < wc ≤ 1.

This algorithm is illustrated in Figure 3.2: The large bubble A has two sub-bubbles of
same size, C and B. The centre of C receives a much smaller weight than the centre of B
as C lies mostly within the larger bubble A. B has a sub-bubble itself, here denoted D, but
as the larger bubble receives all the volume covered by B and D. The single bubble F is of
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Figure 3.2: Schematic of the basis of the weighting applied to the minimal bubble structure.
The weight of a bubble centre (represented by the dots) is calculated as the ratio of the
volume of a sphere of the given radius (solid and dashed circles) to the part where it is
the centre of the largest bubble in a given point (shaded region). The shaded areas here
represent regions of a given opening radius.

the same size as D but as a single bubble without overlap with a larger bubble receives the
same unit weight as A.

The above procedure has been implemented in two ways. Either one uses a combination
of dilation and erosion operations on thresholded versions of the opening and EDT fields.
This can become quite costly, so we will mainly use a second alternative in which we
construct a kd-tree on the (necessarily smaller) set of candidate centres (i.e where bE(x)c =
O). We then query the kd-tree for the closest of these position for each cell of opening
level O. This leaves us with a complete distribution of all cells with O on centres from the
candidate set. In the case that two candidate centres are the same distance from a cell the
tie will be broken in a random fashion. We then simply count the occurrences of the centre
at x to determine the number Nc(x) and the corresponding wc(x).

After repeating the above process for all possible values of O we are left with a field of
weights wc that is only non-zero in the locations of structure element centres necessary for
a reconstruction of the shape of the bubble.
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As an example of the MBS we give the result of applying the above technique to the
example from Figure 3.1 and show the radii and weights of the found centres in the top
and middle panel of Figure 3.3, respectively. The distribution of centres and radii reveals
a network not unlike a skeleton obtained from a medial axis transform. We find a very
large number of centres, most of which have rather small weights. Due to the discreteness
of the grid all one-cell structures have a weight of one and we find many centres of small
structures with only a few cells radius that have high weights. This is caused by their
ability to resolve small scale surface structures that cannot be covered by larger spheres.

To illustrate that the distribution of the important structure centres is rather simple
we show the distribution of radii of centres which have at least a weight of wc ≥ 0.1 in
the bottom panel of Figure 3.3. There is a dramatic reduction in the number of centres.
Small bubbles still show the signs of discreteness effects while the centres of large bubbles
are often represented by clusters of central pixels with the same radius. This is the result
of a combination of slightly elongated shapes of the regions. All these central pixels lie
closest to a certain sector of the spheres centred on them and obtain their weight from this
sector. Later on we will use these centres to cross-correlate bubbles with other fields (such
as density, see Section 3.6) where the weights will represent the uncertainty in establishing
a bubble centre.

3.4 Opening Analysis of Ionisation Fields

To learn more about the morphology of the ionisation fields during reionisation we produce
binary images using a threshold 0.99 ≤ xi at redshifts z ∈ {10, 9, 8, 7.5, 7, 6.5} and analyse
them with the techniques as described in Section 3.3. All of these analyses are in one way
or the other connected with the opening field, therefore we will summarise them under the
term opening analysis.

The analysis of the bubble diameters for helium is more complex than for hydrogen
as the appearance of a non-negligible HeIII fraction in the centre of ionised regions leads
to central holes in the HeII distribution. One would therefore use the combined HeII and
HeIII fraction xHe(II+III) = 1−xHeI to find the morphology. Incidentally this is virtually the
same as the morphology for HII for the chosen threshold in all our scenarios at all redshifts.
In the following we therefore give neither the results for HeII alone nor for He(II + III).

3.4.1 Total Ionised Volume

To understand the following results we first need to know how much volume is ionised
according to our classification. We give the share of the total volume that passes the
threshold xi > 0.99 in Figure 3.4.

The HeII volume closely follows the HII one and at all times the cells where xHe(II+III)

(or 1 − xHeI) lies above the threshold outnumber those where this is true for xHeII. This
means there is a non-negligible number of cells with sufficient xHeIII at all redshifts. In
the regime interesting for percolation studies, i.e. 0.1 . V (xi > 0.99)/Vtot . 0.8, the
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Figure 3.3: Minimal bubble structure (MBS) for the two-dimensional example field as given
in Figure 3.1. The black contour shows the boundary between the two levels of the binary
image. Top Panel: The radii of the ionised and neutral regions centred on a given centre.
Middle Panel: The weights of the centres as calculated with the technique shown in
Figure 3.2. Bottom Panel: The radii from the top panel filtered so that only those with
a weight of wc ≥ 0.1 are retained.
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Figure 3.4: Volume fraction of cells with xi > 0.99 for our redshift sample. The increased
ionisation of HeII in the scenarios including ISM (and to a lesser degree BH emission) leads
to a decrease in V (xHeII > 0.99). This is driven by rather low xHeIII values as can be seen
in the inset. We also see that only the BH scenarios are able to produce larger numbers of
cells with xHeIII > 0.99. This decreases xHeII at these redshifts but not 1− xHeI.

HeII ionisation is so widespread that the HeIII component close to the sources does not
have a strong impact anymore and HII, HeII and He(II + III) coincide. This only changes
below z = 7 as the increasing ISM emission and BH population start to produce noticeable
amounts of HeIII that decrease the number of cells with xHeII > 0.99.

Cells start passing the xHeIII > 0.99 threshold only at z = 7.5 if BHs are included
or z = 7 in cases without them. The inset plot in Figure 3.4 shows that BHs are a
necessity for a noticeable HeIII production. This might also have considerable impact on
the observability of the hyperfine structure transition of HeII (see Section 1.2.3) as nuclear
BHs will create cavities in the emitting component by further ionisation. While the ISM
emission is not capable of lifting xHeIII above the threshold in many cells it is nevertheless
able to reduce the number of cells passing the xHeII thresholds as discussed in the previous
paragraph.
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3.4.2 Global Ionisation Bubble Statistics

To investigate the typical bubble diameters which globally characterise the ionised regions
we present the results of a granulometric analysis (see Section 3.3.2.2) for the five reionisa-
tion scenarios in HII and HeIII with the set of binary images described in the introduction
to this section.

3.4.2.1 HII and He(II + III)

In Figure 3.5 we show the results of the granulometric analysis in terms of the volume
weighted probability distribution of being in a region with opening radius Rsph. The most
striking feature of the size distribution is the almost complete independence from the chosen
source scenario. While we see minute differences for the largest radii at a given redshift, it
is nonetheless clear that not just the global value, but also the spatial distribution of high
xHII values is completely set by stellar sources. Quantitatively we find a strong increase
in the typical bubble radius from less than 1h−1 cMpc at z = 10 to about 20h−1 cMpc at
z = 7. At the end of reionisation at z = 6.5 almost all cells are ionised and therefore most
volume resides at the largest possible opening radius of 50h−1 cMpc in the simulation box.

We interpret this as a signature of the increasing overlap of bubbles into a single huge
ionised envelope as we will discuss in 3.5

3.4.2.2 HeIII

As is to be expected, the HeIII bubble radii as depicted in Figure 3.6 are much smaller
and are generally dominated by the one-cell-regions. There are indeed no cells passing
the threshold at z > 7. As discussed in Section 3.4.1 we find a crucial dependence on
BH-sources in the formation of HeIII, as the galactic emission (Stars, ISM, XRBs) is not
able to carve out bubbles with diameters larger than one cell (Rsph . 24h−1 ckpc). The
rare, hard and powerful BH sources, on the other hand, are able to form bubbles with local
diameters of up to Rsph ≈ 1h−1 Mpc. Interestingly we find a decrease in the typical bubble
radius at z = 6.5 compared to z = 7. This is the effect of an increasing number of BHs
that increases the total volume above threshold, but at the same time reduces the average
bubble size.

3.4.3 Bubble Numbers

Now that we know how much volume is bound at a given opening level we would further-
more like to understand in how many connected regions this volume resides, i.e. how many
bubbles, NB, are present. We define two cells to be connected if they share a face, i.e.
we use a 6-connectivity on the cubic lattice. As explained in the previous section we only
show the results for HII and HeIII in Figure 3.7.

The bubble number distributions in HII at z > 7 follow a truncated power law as is
to be expected from the luminosity distribution in a cosmological context. At early times
(z = 10) the truncation shifts to larger radii with the inclusion of more energetic sources in
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Figure 3.5: Volume weighted probability distribution of being in a fully ionised (i.e. with
ionisation fraction > 0.99) region with opening radius Rsph. Line style refers to different
source types, while color to redshift. We can see a clear shift of the volume weighted
HII-region radius from less than Rsph . 1h−1 cMpc at z = 7 to Rsph ≈ 20h−1 cMpc at
z = 7.



78 3. Morphology of Reionisation

Figure 3.6: Same as Figure 3.5 but for HeIII. The volume weighted probability distribu-
tion of HeIII-region radii exhibits clear features of relatively large regions BH radiation.
Although ISM-emission also has the
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the X-ray enabled scenarios. These slight shifts are the results of a single bubble that exists
at a radius of 1.9h−1 Mpc (and also 2.4h−1 Mpc for SXBI) around the most luminous source
at this redshift. The single bubble is also responsible for the small changes in Figure 3.5.
This effect of cosmic variance vanishes as ionisation proceeds. At z = 8 we find a smoother
behaviour at the large end of the distribution, as the population of grown bubbles is now on
average much better resolved. We note that the maximum number of independent bubbles

is in place between z = 9 and z = 8 at NB & 2 · 104 in our
(
100h−1 cMpc

)3
box.

The z = 7 distribution does not exhibit the truncation at large radii, but instead
extends all the way down to NB = 1 in a now broken power law. There are also in total less
independent bubbles than at previous times. This is an expression of the increasing overlap
of bubbles in which smaller ones lose their independence and form superbubbles. The large
numbers of bubbles existent at small opening radii are still shaped by the luminosity
function, but at the large end we find the shallower number function of the superbubbles.
It is also in this regime that we not only see a decrease with increasing radius, but also a
momentary increase in NB as regions of larger diameter may not be connected by smaller
diameter connections anymore and are thus counted as disconnected regions.

This process continues at z = 6.5 where only a handful of bubbles with Rsph < 5h−1 Mpc
are still independent and almost all ionised volume resides in one large connected compo-
nent at all scales.

For HeIII the situation is again very simple. Just as in the volume and granulometry,
almost exclusively BHs are contributing to full HeII ionisation. Therefore, only in scenar-
ios involving them do we find higher numbers of HeIII-regions starting at z = 7.5, to a
noticeable extent from z = 7 onwards. The scenarios without them only have less than 20
and less than 100 single cell bubbles at redshifts 7.5 and 8, respectively. The bubbles in the
BH-scenarios are more numerous and also more extended. We find the first 800h−1 ckpc
bubbles at z = 7 at which point there are already over 250 bubbles. At z = 8 we already
have over 3,000 bubbles.

3.4.4 (In-)Equality of the Bubble Volumes

Above we established the volume in bubbles above a given diameter and the number of
these bubbles. However it is still unclear how to connect these two quantities, i.e. how
the volume is distributed among the connected regions. To quantify this we employ the
Gini coefficient of volume, GV , which is a volume weighted measure of inequality in bubble
volume as defined by

GV =
2
∑n

i=1 ivi
n
∑n

i = 1vi
− n+ 1

n
, (3.11)

where vi is the volume of the i-th of n bubbles. It is 0 for an absolutely equal distribution,
i.e. the volume is distributed among bubbles of the same size, and 1 for an absolutely
unequal distribution. The results are shown for HII in Figure 3.8.

At early times we find a decreasing inequality with increasing opening radius. This
means that large bubbles are more similar in volume to each other than those obtained
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Figure 3.7: Number function of distinct bubbles above a given opening radius throughout
reionisation. On the left for a threshold of xHII ≥ 0.99 and xHeIII ≥ 0.99 on the right. While
the hydrogen bubble sizes at early times seem to follow the halo mass function before the
number of bubbles decreases and a single large bubble appears. For HeIII there are barely
any bubbles which all appear late and stay very small on the scale of the grid resolution.

with a smaller opening radius. This is a result of the fact that as we decrease the opening
radius more bubbles come into the comparison and the large bubbles of comparable size
now contain much of the total volume compared to a large number of newly included small
ones.

In the range 8 ≥ z ≥ 7 we observe an upturn in GV for large radii as some large
superbubble complexes start to dominate the volume budget at very large opening radii.
As reionisation comes to an end below z = 7 we find a very unequal volume distribution
at all radii. At this point almost all volume is concentrated in a single structure and thus
there is no well-defined inequality in the volumes anymore.

We omit the analysis for HeIII as this ionisation state is not abundant enough in the
epoch we consider.

3.5 Percolation Analysis

As the ionisation bubbles grow they start to overlap and form larger structures. The sub-
sequent merging of these larger structures leads to the formation of a connected structure
spanning the whole box and thus forming an infinite cluster. The formation of this object
is mathematically speaking a percolation process.

We will investigate the percolation from two slightly different angles. First, we answer
the question what size of bubbles form the percolating structure. In the second subsection
we will investigate what diameter the overlaps have, or less formally, what size of sphere
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Figure 3.8: Volume Gini coefficient of the HII-bubbles in dependence of opening radius
Rsph. A value of 0 marks absolute equality and 1 absolute inequality. If only one object is
present the coefficient is not defined.
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Figure 3.9: Percolation of reionisation with a threshold of xHII = 0.99 from two different
perspectives. The opening field percolation measures which is the largest radius of bubbles
which still form a percolating network. The EDT percolation tells us which distance to the
surface will not be undershot. One can also understand this as the size of ball that can be
freely moved through the percolating network.

can be pushed through a subset of the network that still percolates.
In the following we will adopt the same definition as above (Section 3.4) and see two

cells as connected if they share a face.
We note that we are aware of the percolation results of Furlanetto and Oh (2016) which

qualitatively agree but quantitatively differ somewhat from ours. It is hard to compare the
results due to the very different approaches and resolutions used.

3.5.1 Percolation as a Function of Opening Radius

The percolation radius of the opening field as shown in Figure 3.9 describes at up to which
radius the bubbles (here xHII ≥ 0.99) percolate. If we restrict ourselves to regions larger
than the indicated radius the connections are severed and no percolation occurs. The
results in Figure 3.9 are obtained from the stellar sources only simulation but hold for HII
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in all scenarios. As HeII follows HII in general there is no appreciable difference either.
We see that percolation sets in at 〈xHII〉 . 0.25 at z & 8. As we mentioned in the previ-

ous sections on the size and number distributions of bubbles this coincides with a number of
drastic changes indicative of percolation. Examples include the growing inequality among
the largest radius bubbles and the peaking of the number of bubbles.

The percolation radius grows exponentially with global volume ionisation fraction before
it approaches the box-size as a stand in for infinity, as the whole volume becomes ionised
and the restricting neutral patches recede and make room for an overlap of the largest
bubbles.

3.5.2 EDT Percolation

In Figure 3.9 we also show a curve labelled “EDT”. It shows in a similar fashion as the OF
curve up to which radius the a thresholded version of the EDT field percolates. Just as the
centrality value (see Section 3.3.4) has an upper bound of 1 because the OF in a particular
spot will always be at least as high as the EDT value, so will the EDT percolation curve
never exceed its OF counterpart.

3.6 Connecting Matter Density and Bubbles

While we formed an understanding of the population statistics of the ionised bubbles, we
have so far neglected their connection to the universe in which they are formed. In this
section we will therefore determine how bubbles are connected to the cosmic density field.

As the ionising radiation that creates bubbles originates in galaxies that form in matter
overdensities, it is natural to assume that their centres lie on these same densities. Here
we will investigate how much truth there is to this assumption. For this we will first take
a look at the cross-correlation between the bubble centre distribution and the density field
for some representative cases. We will then calculate the bias of the bubbles throughout the
history of reionisation. Finally we invert the question and investigate the morphological
history of patches of a certain density.

3.6.1 Cross-Correlation Between Bubble Centres and Matter Den-
sity

To understand what large scale density environments bubbles of different radius inhabit at
different times we discuss the evolution of the cross-correlation, ξbm, between the bubble
centres and the matter density. Here a bubble centre is a centre of the minimal bubble
covering as presented in Section 3.3.5. The bubble centres are weighted in the correlation
using the weights as described in the same section.

In the left panel of Figure 3.10 we show the correlations of bubble centres with the
density field for various bubble radii and redshifts. At all times we find that the centres
of bubbles with radii up to ∼ 7h−1 Mpc exhibit a correlation with the density field which



84 3. Morphology of Reionisation

increases with the bubble radius. This is a consequence of the need for a higher luminosity
to produce larger bubbles that can only be satisfied in denser regions. This trend is
reversed once larger bubbles appear, for which the central density drops below that of
smaller bubbles, suggesting that an increasing number of these bubbles is not centred on a
density peak but rather surrounding a group of sources. In most cases we also observe a rise
in the cross-correlation up to a few h−1 Mpc, where the density peaks hosting the sources
that formed the superbubble reside. Even in the case of these superbubbles large bubbles
are more likely to be found in overdense regions. Therefore we find their cross-correlations
exceeding these of smaller superbubbles at radial separations larger than ∼ 10h−1 Mpc.

The very smallest scale matter-bubble cross-correlation values drop steadily with in-
creasing redshift, not only at a given bubble radius, but even for the currently largest
populated bubble radius bin. This could come about via two different routes. Either we
see the formation of bubbles around haloes in lower density local environments that are
only possible at later times due to the diluted IGM and the increased ionising output
of these haloes, or large bubbles increasingly form relatively small scale features on their
surface in an increasingly structured IGM that inhibits uniform growth.

3.6.2 Bias of Bubble Centres

An important summary statistic of the cross-correlations between bubble centres and mat-
ter density field is the linear bias factor b = ξbm/ξmm of the bubbles, where ξmm is the
matter auto-correlation and ξbm is the bubble-matter cross-correlation as presented in the
previous section. The bias of bubbles has previously been considered in the literature (e.g.
in Meerburg et al., 2013), although only as a simple transformation from the bias of the
sources, neglecting overlap and the detailed structure of the IGM and bubbles. We are
unaware of any previous measurement in simulations.

We evaluate b (following Gao and White, 2007) in four logarithmic radial bins from
6h−1 Mpc to 20h−1 Mpc and find their best common value via least squares. We only show
the bias for bins that include at least 100 points for the cross-correlation.

The distribution in Figure 3.11 shows that the bubbles are extremely biased tracers of
the density field. In general, bubbles of all sizes appear first in overdense regions, and hence
are highly biased. They subsequently grow and merge until a particular size of bubble can
only be found in large scale underdense regions, becoming negatively biased. Here they are
out of reach of the radiation from early forming galaxies, while they are ionised by galaxies
forming at later times in these dynamically younger patches of the universe.

More specifically, during the initial phases of the reionisation process, small bubbles
(with radii smaller than ∼ 5h−1 Mpc) appear that can essentially be associated with single
haloes and have a relatively mild positive bias just as the sources that power them. As
reionisation proceeds, these bubbles are the first to enter the anti-biased regime at z ∼ 8,
reaching values below −15 in an almost completely reionised universe. This is a conse-
quence of the progressive merging of bubbles, that only leaves small bubbles in the most
isolated regions of the universe. Larger bubbles, instead, reach much higher bias values,
also exceeding 30 during the intermediate stages of reionisation. These stand at the be-
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Figure 3.10: Cross-correlation ξbm between the matter density and the centres of ionised
bubbles (left panels) and of neutral regions (right) at z = 10 (upper panels), 8 (middle)
and 7 (lower). The bins of bubble radius is given by the color bar to the right. The
vertical dashed lines of different colors indicate the radius of the bubble in relation to the
correlation function.
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Figure 3.11: Bias of bubble centres, b, as a function of bubble radius and redshift. The
largest bubbles at a given time are always the most strongly biased ones. In the later stages
of reionisation we see a transition from uniformly positively bias to completely negative
bias. This is the result of the overlapping process that only allows smaller bubbles with a
sufficient separation to neighbouring bubbles.

ginning of the percolation process that first connects the high-density regions in an ionised
network before filling in the underdense regions in between.

While we recognize that a simulation of 100h−1 Mpc side length is not an ideal testbed
for this kind of studies we can nonetheless obtain first results in this setting. We plan to
extend these investigations on larger boxes in the future.

3.6.3 Density Distribution Within Bubbles of Varying Size

In this section we want to complete our discussion of the relationship between bubbles and
the density field by looking at the one-point statistics in bubbles. First we will investigate
the density distribution within bubbles of a given size and then in which bubbles cells of a
given density reside.

In Figure 3.12 we show the density distribution in ionised bubbles (red) and neutral
regions (blue) of a given opening radius in comparison to the global density distribution
(black). For this we bin the cells in the simulation in logarithmic density bins with Nbin

cells in them and normalise that number to Ntot, the total number of cells with the given
opening radius as indicated by the segments in the colour bar. We show the results at the
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same three redshifts that were used for the cross-correlations in the section above. Note
that negative radii refer to distances into the neutral (xHII < 0.99) regions.

During the early stage of reionisation we find ionised bubbles and small neutral regions
to be clearly overdense, while the larger neutral regions are mildly underdense. In fact,
the smallest neutral regions at z = 10 are more overdense than the ionised volume. As
the reionisation process proceeds and ionised bubbles become bigger this picture persists,
but the ionised regions become less overdense, while the larger neutral regions become
more underdense. Finally, towards the end of reionisation at z = 7, most of the volume is
ionised and therefore the ionised and global density distribution coincide, while the (small)
persisting neutral regions are all underdense. At all times the peak of the global and neutral
or ionised density distributions are never separated by more than one FWHM.

The most remarkable finding from Figure 3.12 is that while the neutral regions of
varying size show a clear order in their density distributions, the density distributions of
the ionised bubbles of various sizes is very similar. This is insofar remarkable as the cross-
correlations between bubble centres and density field in Figure 3.10 show clear differences
even within the bubble radii.

3.6.4 Opening Radius Distribution of Cells of a Given Density

We now want to take the opposite perspective and investigate the opening radius distribu-
tion of cells of a given density. For this we plot the distribution of cells within 0.25dex bins
in density as a function of the opening radius O (or bubble radius in the case of the ionised
component) in Figure 3.13. As before, the black line signifies the marginal distribution over
all densities and thus its crossing of the zero opening radius denotes the global fraction of
neutral cells.

The three panels nicely illustrate the initial ionisation in the most overdense regions
of the universe. This transitions into a bi-partition of neutral underdense and ionised
overdense regions when 80% of the volume of the universe is neutral at z = 8 (note the
zero-crossing of the black line in Figure 3.13). At this redshift, every cell denser than a few
times the mean is completely ionised, while more than 90% of the underdense cells are still
neutral. At z = 7 roughly 70% of the volume is ionised and at this point the underdense
regions have also mostly followed and are less than 50% neutral.

The slope of the cumulative distribution shows the value of the differential distribution
function in a given range. From the slope we learn that at z = 10 almost all the under-
dense volume resides in neutral regions with an opening radius between 5h−1 cMpc and
10h−1 cMpc. The most overdense cells are usually ionised but exclusively reside in bubbles
of less than 2h−1 cMpc radius. Only ∼ 15% of them are neutral and they heavily favour
the smallest possible neutral regions. The less dense a cell is the more likely it resides in
larger neutral patches and the less likely it will be in small neutral regions. This results in
the prominent flattening just left of the O = 0 vertical.

At z = 8 this flattening has almost disappeared for overdense cells but it is still very
clear for underdense cells and therefore the total distribution of cells. At this time the
neutral regions have shrunk and now usually measure 3h−1 cMpc to 7h−1 cMpc. The most
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Figure 3.12: Density distribution in ionised bubbles (red lines) and neutral regions (blue)
of various opening radius at z = 10 (upper panel), z = 8 (middle) and z = 7 (bottom).
Nbin is the number of cells in the given logarithmic density bin and Ntot the total number
of cells in the colour-indicated radius bin. The global density distribution is given in black.
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overdense cells are now almost completely ionised and the regions they reside in have
expanded to roughly 4h−1 cMpc. Indeed we find a few percent of the cells in the higher
overdensity bins in bubbles up to 8h−1 cMpc radius.

In the bottom panel depicting the distributions at z = 7 we find that the underdense
cells are still residing in 2h−1 cMpc to 7h−1 cMpc cells in 25 to 50% of cases, increasing with
underdensity. They still do not inhabit small neutral regions. Even the least overdense cells
are at least 73% ionised. The bubble sizes have increased dramatically and in fact more
than half of the cells with more than 5 times the mean density reside in bubbles of more
than 10h−1 cMpc radius. Underdense ionised cells on the other hand preferentially occupy
smaller bubbles. There is a curious flattening just above 10h−1 cMpc and a subsequent
steepening beyond 13h−1 cMpc. This is a sign of the increased importance of superbubbles
and and the slight deficit in bubbles of just smaller radius than them (see Section 3.4.2.1).

These distributions show a clear “inside-out” progress of reionisation in which regions
in the universe are generally ionised in order of decreasing density. The fact that neutral
overdense cells are in narrower regions than their underdense counterparts supports this, as
they show the residual neutral patches in the denser regions of the IGM are tightly wedged
in between ionised regions.

3.7 Conclusions

We used a binary representation of the ionisation fraction fields of hydrogen and helium
obtained by thresholding to investigate the morphology of the ionised bubbles. For this
we transformed the binary images with the Euclidean distance transform and the mor-
phological opening transform with a series of spherical structure elements of increasing
radius. The combination of these two transforms allows us to deconstruct the bubbles into
a minimal set of overlapping, maximally large spherical regions we call the minimal bubble
structure. Measuring the volume of the regions, density distributions and their connectiv-
ity at different radius thresholds allows us to understand more about the bubble sizes and
arrangements. Furthermore we can use the centers of the bubbles to find cross correlations
with the density field to estimate typical density profiles and bias values of bubbles.

A very general finding of the present study is that in the chosen model, there are no
morphological indicators of the hydrogen reionisation ionisation fraction that let us reliably
distinguish between the different considered scenarios. This might change when looking at
the 21cm-images obtained from the different scenarios as the harder radiation can change
the thermal state of the neutral IGM between bubbles.

We find no difference in either totally ionised volume or number of bubbles between
the different scenarios apart from an increase in HeIII-regions at late times in scenarios
including hard sources. However, these regions are still so small that we cannot say much
about their morphology given our resolution.

For most of the time range, 6.5 ≤ z ≤ 10, considered here the volume fraction of totally
ionised cells increases exponentially with decreasing redshift with a slight flattening when
approaching unity between z = 7 and z = 6. At the same time we find that the connected
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Figure 3.13: Cumulative opening radius distribution of cells of a given density as a function
of bubble radius (with negative radii for neutral regions) at z=10 (upper panel), 8 (middle)
and 7 (lower). The overdense (underdense) regions are represented by red (blue) lines. The
black line shows the distribution marginalised over all densities. This means that its zero-
crossing gives us the volume share in cells below the ionisation threshold xHII = 0.99.
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ionised regions shift in their size distribution from a few cells and typical radii below
1h−1 cMpc to a few h−1 cMpc just before percolation sets during the height of reionisation
(7 ≤ z ≤ 8) where most of the volume of the universe gets ionised. At the end of this
process the volume is dominated by ionised regions with tens of h−1 cMpc radius. It is also
at this point that the first resolved HeIII-regions appear in the presence of thermal ISM
emission and AGNs, although they do not outgrow 1h−1 cMpc.

The volume in bubbles of different scales is distributed over a varying number of bubbles.
Their size function changes from a shape reminiscent of the mass function of haloes that
form them (a power-law with exponential cut-off at the upper end) at early times to a
single connected region on the largest scales and just a few disconnected smaller regions,
well after percolation. In the investigated time range HeIII stays in the first stage as the
bubbles are still very much connected with the local drivers.

As one can already suspect from the number functions, the volume is distributed in
a with time increasingly uneven fashion among the ionised regions. Quantifying this un-
eveness using the Gini-coefficient, we find that large bubbles tend to be of more similar
volume than those found with smaller opening radii. This changes for the very largest
bubble radii around the time of percolation as a dominating connected region appears,
even for the largest bubble radii. Nevertheless, there are still separated large regions that
lead to a Gini coefficient below unity. As the percolation radius progresses it asymptot-
ically approaches this value. For regions below these extreme values, who’s numbers are
apparently dictated by occurrence of the driving haloes, we still find an increasingly uneven
volume distribution with decreasing bubble radius. At the very end of reionisation, when
only a few neutral islands are left, we find that GV ≈ 1 for all radii.

To find the time of the percolation process resulting from ionisation bubble overlap and
the scales of the resulting object, we search for connected regions above a given radius. We
find that percolation first occurs in our simulations at z = 8/〈xHII〉 & 0.2. The percolating
object rapidly expands its radius so that just after z = 7.5 at 〈xHII〉 = 0.5 we already find a
percolating object that allows a ball of 2h−1 cMpc to pass through it. Knowing the timing
of the percolation process allows us to interpret the findings above.

Turning to the connection between bubbles and the cosmic density field, we show that
the cross-correlations between the centres of ionised bubbles and neutral regions can be
surprisingly counter-intuitive. At early times (z = 10) we find that the smallest neutral
regions are actually in more overdense regions than their ionised counterparts. This can be
explained by the fact that in order to restrict a neutral region to such a small size we need
a number of ionised regions restricting it, which only happens in very special overdense
regions. Larger neutral regions tend to be centred on underdensities of likewise increasing
radius. As the neutral regions shrink with time, so does their central density decrease. In
parallel there is an increase in central overdensity for ionised regions as they grow, while
for a given size this quantity decreases. This regularity is broken during the late stages of
reionisation around z = 7 as we find a few more peculiarities. Not only can small ionised
regions only be found in large-scale underdense regions, but there is also a decrease in
density towards the center of the largest ionised bubbles. We interpret this as the result of
the merger of formerly separated smaller bubbles centred on high overdensities that then
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appear in the outskirts of the superbubbles, while smaller bubbles can only evade merging
if they are far enough removed from the bulk of the ionised volume.

Using these bubble-matter cross correlation functions we also, for the first time to our
knowledge but certainly using our bubble size estimate, calculate linear bias values for
the bubble centers. We find the largest bubbles at a given time to be extremely biased
with respect to matter with values of 10 . b . 35. This is a result of the exceptional
circumstances that are required to form these largest ionised regions. Only multiple regions
of strong sources whose bubbles merge are able to produce the largest bubbles first. This
is supported by the fact that the maximum bias value at a given time increases towards
the point of percolation and subsequently decreases again, when the effect of radiation
is increasingly unlocalised due to the dramatically increased mean free path. Just as we
already saw in the correlation functions for the central values, we also find on large scales
that small bubbles are avoiding matter, which leads to negative bias values. It is only in
very underdense regions that they are not merged into large bubble complexes.

In a more detailed look at the density distribution within ionised bubbles of varying
radius throughout reionisation we find that ionised bubbles start off much denser than
the average volume subsequently approach the global density distribution. However, we
find that the density distribution is independent of the size of the ionised bubble. The
opposite is the case for neutral regions. Here we find that small neutral regions below
R ≈ 5h−1 cMpc are very dense, initially even denser (at the grid scale) than ionised regions
in the case of the smallest radius bin. They decrease in density with time but nevertheless
retain their relative position to the ionised regions. The shrinking large neutral regions
stay similar in their density distribution throughout reionisation.

To investigate the question of an “inside-out” or “outside-in” reionisation we compare
the distribution over opening radii for cells of various density. Here we find that the most
overdense cells almost immediately ionised by z = 10 while the deepest voids are still
largely neutral at a stage when the universe as a whole is 70% ionised. This means that
we agree with the common picture of an inside-out reionisation that first ionises overdense
regions and then spreads into the voids.
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3.A Implementation of Morphological Operations with

the Fast Fourier Transform

The scale and resolution of our simulations dictates the use of rather large structuring
elements. A simple direct-comparison approach for the morphological erosion and dilation
operations scales as O(N ·M), where N is the number of simulation cells and M the number
of cells in the structuring elements. M scales as R3

sph with the spherical opening radius Rsph

and therefore becomes large very quickly. To speed up the operation, we reimplement the
opening procedure and use a fast Fourier transform based approach following Kosheleva
et al. (1997), which therefore has a scaling of O(N logN). This approach uses two facts:

1. Morphological dilation ⊕ can be implemented as a convolution operation between
the structuring element S and the BF X, which in turn can be implemented by a
multiplication in Fourier space.

2. The erosion of a BF is just the negation of the dilation of the negation of the same
BF: X 	 S = ¬(¬X ⊕ S).

As we only implement a new dilation operation, the opening now becomes

X ◦ S = (¬(¬X ⊕ S))⊕ S. (3.12)

While the new approach slows the calculation for small structuring elements by orders of
magnitude, it also decreases the run time by similar factors for large structuring elements.
While we solely rely on the Fourier approach, a scenario with many openings using small
structure elements would warrant either an adaptive choice of the dilation procedure or
complete return to the direct approach.

We point the reader to Section 3.3.3 for an approach to calculating the opening field in
an even more time-saving manner if the Euclidean distance transform as described in the
referred to section is also to be calculated.
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Chapter 4

Assembly Bias and Splashback in
Optically Selected Galaxy Clusters

The contents of this chapter were published as Busch and White (2017).

4.1 Introduction

Until recently, attempts to detect an observational signal of assembly bias (see Section 1.1.3)
were inconclusive (e.g Yang et al., 2006; Tinker et al., 2012; Wang et al., 2013; Hearin et al.,
2014) and controversial (e.g. Lin et al., 2016b). A strong indication of assembly bias as
a function of halo concentration was identified by Miyatake et al. (2016) in their study
of weak gravitational lensing by a large sample of clusters identified in the SDSS/DR-8
photometric data. Their result was confirmed at much higher signal-to-noise by More et al.
(2016), who cross-correlated this same cluster sample with individual SDSS galaxies. In
both studies, the mean projected distance of individual cluster members from cluster centre
was adopted as a measure of concentration and used to split the sample into equal high-
and low-concentration subsamples. Differences at large radius in the mean projected mass
and galaxy number density profiles of these two subsamples then provided the evidence for
surprisingly strong assembly bias, blo/bhi ∼ 1.5.

More et al. also used their stacked galaxy number density profiles to search for splash-
back signals. From Diemer and Kravtsov (2014) we expect an increase in the splashback
radius with an increase of the concentration (see Section 1.1.5). When More et al. (2016)
examined the profiles of their low- and high-concentration subsamples, however, they found
the opposite ordering both in the minimum slope value and in the radius where it is at-
tained. In addition, these radii were smaller than they expected given their estimates of
cluster mass, particularly for the high-concentration subsample. Assuming that cluster
galaxies trace the dark matter density profile of their host halo at these outer radii this is
in conflict with the simulation results.

The cluster sample analysed by Miyatake et al. (2016) and More et al. (2016) was
based on application of the redMaPPer algorithm (Rykoff et al., 2014) to the SDSS/DR8
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photometric galaxy catalogues. As its name implies, this cluster finder uses only the non-
star-forming ’red’ galaxies in the catalogue. Clusters are assumed to be centred on their
brightest red galaxy, and every red galaxy is assigned a probability of belonging to any
particular cluster which depends on its projected distance and maximal possible redshift
offset (based on the SDSS photometry) from the cluster central galaxy. This necessarily
introduces a non-negligible uncertainty in the true redshift spread among cluster members.
The effect of this uncertainty on cluster properties is one of the main focuses of this chapter.
Another important element of redMaPPer is the introduction of an outer cluster radius that
increases slowly with the number of cluster members and is used by the algorithm to define
the cluster richness and to limit the projected region over which membership probabilities
are non-zero. As we shall show below, this radius, in part because of its important role
in the definition of cluster concentration used by Miyatake et al. (2016) and More et al.
(2016), has a significant influence on the apparent assembly bias and splashback signals
identified by these authors.

This chapter is organized in seven sections. Following this introduction, Section 4.2
describes the publicly available simulation data we use, the simplified versions of the
redMaPPer and concentration estimation procedures that we apply to them, and the global
properties of the resulting cluster samples. Section 4.3 begins by demonstrating that our
simulated cluster samples reproduce quite well the projected mean mass and galaxy num-
ber density profiles obtained by Miyatake et al. (2016) and More et al. (2016), including
the strong apparent assembly bias signal and the surprising concentration-dependence of
the apparent splashback signal. We then investigate how this apparent success is affected
by the maximum offset in depth allowed for potential cluster members, our simplified rep-
resentation of the effect of photometric redshift uncertainties. In Section 4.4, we study
how well the assembly bias and splashback features measured in projection correspond
to their analogues inferred from the full three-dimensional mass and galaxy distributions.
Section 4.5 then looks in more detail at our stacked profiles to clarify the distribution in
depth of the galaxies which give rise to the differences in mean projected galaxy number
profile between low- and high-concentration clusters, while Section 4.6 examines how pro-
file shapes are influenced by the radius used by redMaPPer as the effective limit of clusters.
Finally, Section 4.7 gives our principal conclusions.

While we were completing the analysis for this chapter, Zu et al. (2017) published
a preprint in which they repeat the lensing analysis of Miyatake et al. (2016) but with
the cluster sample split according to a modified definition of concentration which, as they
demonstrate, is significantly less sensitive to projection effects. With this new definition,
low- and high-concentration clusters show no detectable large-scale assembly bias. Zu
et al. (2017) conclude, as we do below, that the strong signal in the original analysis is
a result of projection effects. Our own analysis (in Section 4.5) shows explicitly how this
contamination of the low-concentration clusters is distributed in depth and explains why
it produces an apparently constant assembly bias signal at large projected separations.
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4.2 Methodology

Our goal in this chapter is to see whether the assembly bias and splashback signals detected
by Miyatake et al. (2016) and More et al. (2016) are consistent with current models for
galaxy formation in a ΛCDM universe. In particular, we would like to understand the origin
of the strong observed dependence of bias on cluster concentration, of the unexpectedly
small scale of the detected splashback signal, and of the fact that this signal varies between
high and low concentration clusters in the opposite sense to that expected both in strength
and in radius. For this purpose, we need a realistic simulation of the formation and
evolution of the galaxy population throughout a sufficiently large volume for our analogue
of redMaPPer to identify a large sample of rich galaxy clusters.

4.2.1 Data

4.2.1.1 Dark matter distribution

Our analysis is based on the Millennium Simulation described in Springel et al. (2005).
This followed structure development within a periodic box of side 500h−1 Mpc assuming a
flat ΛCDM cosmology with parameters from the first-year WMAP results. Although these
parameters are not consistent with more recent data, the offsets are relatively small and
are actually helpful for this work since they enhance the abundance of rich clusters in the
mass range of interest. The dynamical N-body simulation followed the collisionless dark
matter only, representing it with 21603 ∼ 1010 particles of individual mass 8.6×108h−1M�
and gravitational softening length 5h−1 kpc.

Haloes and their self-bound subhaloes were identified in 64 stored outputs of this sim-
ulation using the subfind algorithm (Springel et al., 2001), and these were linked across
time to build subhalo trees which record the assembly history of every z = 0 halo and its
subhaloes. These trees are the basis for simulation (in post-processing) of the formation
and evolution of the galaxy population. Galaxies are assumed to form as gas cools, con-
denses and turns into stars at the centre of every dark matter halo and are carried along
as halos grow by accretion and merging. Both the subhalo merger trees and the specific
galaxy formation simulation used in this work (and discussed next) are publicly available
in the Millennium Database1 (Lemson and the Virgo Consortium, 2006).

4.2.1.2 The galaxies

The particular galaxy population used in this work was created using the semianalytic
model described in detail in Guo et al. (2011). These authors implemented their model
simultaneously on the Millennium Simulation and on the 125 times higher resolution but
smaller volume Millennium-II Simulation (Boylan-Kolchin et al., 2009). This allowed them
to tune its parameters in order to reproduce the z = 0 galaxy population over a very wide
mass range. In this work we will only need to consider relatively bright galaxies, well above

1http://www.mpa-garching.mpg.de/Millennium/

http://www.mpa-garching.mpg.de/Millennium/
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the limit to which results for the two simulations converge. As a result we will only use
data from the larger volume simulation. We will analyse the simulation data from a single
snapshot at z = 0.24. This is the mean redshift of the clusters in the SDSS sample we
compare with and is the closest snapshot to its median redshift of 0.25.

For all galaxies, the simulated galaxy catalogue provides positions, velocities and a range
of intrinsic properties, including estimated magnitudes in the SDSS photometric bands.
We restrict ourselves to galaxies with i-band absolute magnitude, Mi < −19.43 + 5 log10 h,
which, for our adopted value h = 0.7, gives Mi < −20.20. The chosen magnitude limit is
very close to the one corresponding to the redMaPPer luminosity limit of 0.2L∗ at z = 0.24,
i.e. Mi = −20.25 (see Rykoff et al., 2012). This selection criterion leaves us with 2,239,661
galaxies and matches that adopted by More et al. (2016) for their SDSS galaxies in order
to achieve volume completeness over the redshift range, 0.1 ≤ z ≤ 0.33.

The next step in mimicking redMaPPer procedures is to define a class of passive or
‘red’ galaxies. For simplicity, we require the specific star formation rate (SSFR) of model
galaxies to lie below 1.5× 10−11 h yr−1. This avoids using model colour directly which
would introduce a dependence on the (uncertain) modelling of dust effects. However, the
two methods produce very similar results in practice, so the choice has has no significant
effect on our analysis. 897,604 galaxies qualify as red by our criterion.

4.2.2 Cluster Identification and Classification

Given the galaxy data described above, we wish to identify clusters using a simplified
version of the scheme applied to the SDSS photometric data to generate the catalogue
analysed by Miyatake et al. (2016) and More et al. (2016). We project the simulated
galaxy and mass distributions along each of the three principal axes of the Millennium
simulation to obtain three ‘sky’ images, for each of which depth information is available
for the galaxies either in real space or in redshift space. In the latter case, the line-of-
sight peculiar velocities of galaxies are added to their Hubble velocities to produce redshift
space distortions (RSD). These are important when considering how the use of photometric
redshifts affects the assignment of galaxies to clusters (see 4.2.2.1). The following describes
our cluster identification scheme and explains how we split the clusters into equal high-
and low-concentration subsamples.

4.2.2.1 Cluster identification algorithm

Our cluster identification algorithm, inspired by redMaPPer, finds clusters in the projected
distribution of red galaxies. Every red galaxy in each of our three projections is considered
as the potential centre of a cluster. The algorithm grows clusters by adding new red galaxies
(defined as in 4.2.1.2) in order of increasing projected separation until the richness λ and
the cluster radius Rc reach the largest values satisfying the relation given by Rykoff et al.
(2014),

Rc(λ) = 1.0

(
λ

100

)0.2

h−1 Mpc (4.1)
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Table 4.1: The size of simulated cluster samples for different maximal depth offsets, ∆zm.

Sample Name
∆zm No. Members

h−1 Mpc
CS60 60 9196
CS120 120 9213
CS250 250 8930

in physical (rather than comoving) units. Initialising with λ = 1 and Rc(1),

1. we consider as possible members the Ng red galaxies which lie within Rc and have a
(redshift space) depth offset below ∆zm ,

2. we calculate N̄ , the expected number of uncorrelated (’background’) galaxies within
Rc and ∆zm,

3. we update λ = Ng − N̄ and Rc(λ),

4. we check whether the current central galaxy still has a higher stellar mass than any
other cluster member, otherwise we delete it as a potential central and move to the
next one,

5. we start the next iteration at (i) if λ has increased, otherwise we stop.

This process usually converges quickly and only in a few cases is it unsuccessful in
finding a cluster. Note that we choose to require that the central galaxy should be the one
with the highest stellar mass. Only in ∼ 5 per cent of the cases is it not simultaneously
the brightest in the i-band, and we have checked that choosing to require instead that it
should the most luminous has a negligible effect on our results. In the following we will
only consider clusters with 20 ≤ λ ≤ 100, again in accordance with More et al. (2016).

We will consider three different values for the maximal redshift-space offset allowed
for cluster members, ∆zm = 60h−1 Mpc, 120h−1 Mpc and 250h−1 Mpc; the largest of these
is equivalent to projecting through the full Millennium Simulation. For comparison, the
1σ uncertainty in the photometric redshift of a single SDSS red galaxy is estimated by
Rykoff et al. (2014) to be about 90h−1 Mpc at the median redshift of the observed cluster
sample. The total number of clusters found (summed over the three projections) is given
in Table 4.1.

These numbers are similar to the number of clusters (8,648) in the observed sample we
are comparing with. This is a coincidence since the volume of the Millennium Simulation
is only about a tenth of that in the SDSS footprint over the redshift range 0.1 ≤ z ≤ 0.33,
but the abundance of rich clusters is enhanced by a factor of about three in the simulation
because it assumes σ8 = 0.9, significantly above current estimates2.

2We checked the impact of changing the cosmology on our results using the public semianalytic catalogue
of Henriques et al. (2015) which is implemented on a version of the Millennium Simulation rescaled to the
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Table 4.2: The fractional overlap between different cluster samples.

Base sample
Comparison sample

CS60 CS120 CS250
CS60 1.0 0.876 0.736

CS120 0.874 1.0 0.783
CS250 0.758 0.808 1.0

There is, of course, a very substantial overlap between these three cluster samples,
but it is not perfect. In Table 4.2 we give the fraction of clusters in a given sample that
share their central galaxy (in the same projection) with a cluster in a comparison sample
and pass the richness filter in both. We see that most clusters are indeed duplicated.
Those that are not, fail because in one of the two samples either a more massive potential
member is included or the richness falls outside the allowed range. Such differences are
a first indication of sensitivity to projection effects, an issue that is discussed further in
subsection 4.2.2.3.

Notice that the algorithm described above allows a given galaxy to be considered a
member of more than one cluster. Although the majority of our simulated clusters do not
have such overlaps, they are not negligible; the fraction of clusters which share at least
one galaxy with another cluster in the same projection is 18.8, 21.8 and 26.7 per cent for
CS60, CS120 and CS250, respectively. The average number of galaxies in these overlaps
is ∼ 14, which should be compared with the mean number of galaxies per cluster which is
37 to 46. In order to check the importance of the overlaps, we have repeated our analysis
using only the ∼ 80–75 per cent of clusters which have no overlap. These are clearly a
biased subset with respect to their surroundings, and as a result the stacked profiles change
noticeably. However, the conclusions we draw below are not significantly affected, and for
the rest of this chapter we show only results based on the full cluster samples, noting that
the redMaPPer algorithm also allows a given red galaxy to be considered part of more than
one cluster, albeit by assigning probabilities to each potential membership based on the
galaxy’s photometric redshift, its projected separation from each cluster centre, and the
richness of the clusters. The consistent use of such probabilities is the principal difference
between the actual redMaPPer algorithm and the simplified version we use here.

4.2.2.2 Cluster concentrations

At the core of the following analysis is the separation of each cluster sample into two equal
subsamples with identical richness distributions, but disjoint distributions of concentration
cgal as introduced by Miyatake et al. (2016). This concentration is based on the mean
projected distance from cluster centre of red galaxy members, cgal = Rc/〈Rmem〉 where in

Planck 2013 cosmology (Planck Collaboration, 2014). We find far fewer clusters: 2407, 2244 and 2307 for
the equivalents of CS250, CS120, and CS60, respectively. This corresponds to 83.1%, 77.5% and 79.6%
of the expected number of clusters in three times the (rescaled) volume of the simulation. We decided to
stay with the original cosmology since the larger number of clusters provides much better statistics.
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our case

〈Rmem〉 =
1

Nmem

Nmem∑

i

Rmem,i. (4.2)

We classify a particular cluster as high or low concentration, depending on whether cgal

lies above or below the median for all clusters of the same richness. For richness values
with fewer than 200 clusters in a given sample, we bin together neighbouring richness bins
to exceed this number before determining the median. For the observed clusters Miyatake
et al. (2016) binned clusters by both richness and redshift before determining the median,
but redshift binning is not necessary for the simulated samples since they are all taken
from the same simulation output.

4.2.2.3 The cluster-halo correspondence

It is not straightforward to connect a galaxy cluster defined in projection with a specific
three-dimensional cluster, in our case a specific subfind halo. The idealised model of
a spherically symmetric cluster centred on its most massive galaxy and containing all
the cluster members identified in projection corresponds poorly to most of the clusters
identified either in the simulation or, most likely, in the SDSS. In almost all cases, the
galaxies identified as members in 2D reside in multiple 3D objects distributed along the
line-of-sight. This makes the cross-identification between 2D and 3D ambiguous.

Here we consider two possibilities for defining the 3D counterpart of each 2D cluster:
the dark matter halo that hosts the central galaxy and the one that hosts the largest
number of member galaxies. The former definition follows the logic of the cluster centring,
while the latter ensures that the richness of the 3D counterpart corresponds most closely
to that of the 2D system. It is interesting to see how often these definitions coincide, i.e.,
how often the central galaxy is actually part of the dominant galaxy aggregation along the
line-of-sight. We give in Table 4.3 the fraction of clusters in each of our three samples for
which both methods lead to the same FoF halo. These numbers show that that the two
definitions are generally in good agreement, and that this is better for smaller maximal
depth offsets and for more concentrated clusters. These trends reflect the projection effects
discussed in detail in Section 4.5.

It is also interesting to see how many of the potential cluster members identified in 2D
are, in fact, part of the same 3D object. For each of our clusters we find the maximal
fraction of its members contained in a single 3D FoF halo. The third column of Table 4.3
then gives the average of these fractions. This can be compared with the average fraction
of its members contained in the FoF halo of its central galaxy (fourth column) and with
the average expected as a result of our background correction, 〈λ/Ng〉, given in the last
column.

The values for 〈Fbiggest〉, 〈Fcentral〉 and 〈λ/Ng〉 in Table 4.3 show that we consistently
find more ’foreign’ galaxies in our clusters than we would expect from contamination by
a uniform background. The more concentrated clusters have contamination ratios close
to, yet still a few percent below the expected ones. The low-concentration clusters have
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Table 4.3: The fraction of clusters where the central galaxy resides in the FoF halo con-
tributing the largest number of potential 2D members; the mean fraction of such members
in this halo; the mean fraction of such members in the FoF halo of the central galaxy; the
mean membership fraction predicted by ’standard’ background subtraction.

Subs. Sample Fcentred 〈Fbiggest〉 〈Fcentral〉 〈λ/Ng〉

All
CS60 0.93 0.826 0.803 0.922

CS120 0.903 0.755 0.726 0.856
CS250 0.848 0.635 0.595 0.743

high
cgal

CS60 0.983 0.880 0.874 0.922
CS120 0.973 0.819 0.812 0.855
CS250 0.948 0.709 0.697 0.742

low
cgal

CS60 0.876 0.772 0.732 0.923
CS120 0.833 0.69 0.64 0.857
CS250 0.749 0.561 0.494 0.744

contamination fractions more than twice the expected values. We therefore conclude that
the identified clusters are biased towards arrangements of multiple objects along the LoS,
especially in the low cgal case. Again, this is very much in line with our discussion on the
preferential selection of aligned systems in Section 4.5.

4.3 Results In Projection

We are now in a position to investigate whether the assembly bias and splashback features
identified in SDSS data by Miyatake et al. (2016) and More et al. (2016) are reproduced
when our simplified version of the redMaPPer algorithm is applied to the public Millennium
Simulation data . We begin by comparing the observed mean galaxy and mass profiles to
directly analogous profiles for CS250, finding that both the surprisingly strong assembly
bias and the unexpected properties of the apparent splashback signal are reproduced well.
Most differences can be ascribed to the finite size of the simulation or to the simplifications
of our cluster identification scheme. We then use our three cluster catalogues to investigate
the dependence of these successes on ∆zm, the maximal depth offset allowed for potential
cluster members, finding that the assembly bias signal is sensitive to this parameter but
the splashback features are not. Finally we look in more detail at the radial dependence
of the ratio of the profiles of low- and high-concentration clusters. Later sections employ
the full 3D information available for the simulation to explore the origin of the observed
features, and vary our cluster identification scheme to demonstrate how its imprint on the
measured profiles can confuse identification of the splashback signal.
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4.3.1 Comparison of profiles for SDSS and CS250

We collect the main profile results for the CS250 sample in Figures 4.1 to 4.3. Here and
in the following, unless noted otherwise, the solid line represents the median value from
10000 bootstrap resamplings of the relevant cluster sample. The shaded regions denote the
68 per cent (darker) and 95 per cent (lighter) confidence intervals around this median.

We calculate the mean galaxy surface number density profile for each cluster sample as

∆Σg(R) = Σg(R)− Σ̄g (4.3)

where we use all galaxies brighter thanMi = −19.43+5 log10 h, not just the red ones, and we
impose no maximal depth offset from the cluster. Σg(R) is then the mean over all clusters
of the surface number density of such galaxies in an annular bin at projected distance R
from the central galaxy, and Σ̄g is the mean surface density over the full projected area of
the simulation.

Figure 4.1 shows that CS250 reproduces the findings of More et al. (2016) remarkably
well. The deviation at large scales (> 20h−1 Mpc) is expected and reflects a lack of large-
scale power in the Millennium Simulation due to its finite size. The offset between the high-
and low-concentration subsamples at R > 3h−1 Mpc shows that the simulation reproduces
the strong assembly bias seen in the SDSS data. On small scales (< 300h−1 kpc) the
number density profile is slightly too steep for the high-concentration clusters, but shows
otherwise very good agreement, while there is an offset of 0.1 dex for the low-concentration
subsample inside 400h−1 kpc. The most notable differences are on intermediate scales,
especially in the range 1h−1 Mpc ≤ R ≤ 3h−1 Mpc for the low-concentration case. For
high-concentration clusters the agreement in this range is excellent and extends out to well
beyond 10h−1 Mpc. This is the radial range where splashback features are expected, but is
also comparable to the radius, Rc, used operationally to define clusters. These differences
are highlighted in the radial variations of the profile slope, which we look at next.

In Figure 4.2 we plot the logarithmic derivative d log ∆Σg/d logR over a restricted radial
range for these same two CS250 subsamples, comparing with the same quantity for SDSS
clusters as plotted by More et al. (2016). The simulated curves appear noisier than those
observed This is at least in part because of the more direct derivative estimator used here.
Nevertheless, we reproduce the main features highlighted by More et al. (2016), who iden-
tified the position of the minimum of these curves (i.e. the steepest profile slope) as their
estimate of the splashback radius. The minima occur at similar radii in the observed and
simulated data which, as More et al. (2016) pointed out, are smaller than expected given
lensing estimates of cluster mass. Further the minimum is deeper for the high concentration
sample and occurs at smaller radius, whereas the opposite is expected from earlier work
on the dependence of splashback radius on halo accretion history (and hence concentra-
tion, see Diemer and Kravtsov (2014)). In addition, there are clear differences between the
observed and simulated curves. In particular, the profiles of simulated low-concentration
clusters are clearly shallower than observed in the range 200h−1 kpc < R < 1.5h−1 Mpc.

We discuss these features in more detail in Section 4.6, showing them to result from the
superposition of effects induced by the cluster selection algorithms on the true splashback



104 4. Assembly Bias and Splashback in Optically Selected Galaxy Clusters

10−1 100 101

R
[
h−1Mpc

]
10−2

10−1

100

101

102

∆
Σ
g

[ h
2
M

p
c−

2
]

Millennium

high cgal

low cgal

More et al.

high cgal

low cgal

Figure 4.1: Mean surface number density profiles ∆Σg for galaxies with Mi < −20.20
surrounding clusters in the low- and high-concentration subsamples of CS250 are compared
with observational results from More et al. (2016).
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Figure 4.2: The logarithmic derivatives of the ∆Σg profiles for CS250 shown in Figure 4.1
are compared with those plotted for their SDSS clusters by More et al. (2016).

signal.

Mean mass density profiles can be computed much more straightforwardly for our sim-
ulated cluster samples than is possible observationally, where such profiles are obtained
from the correlated orientation of background galaxies induced by gravitational lensing.
In order to compare with the lensing results in Miyatake et al. (2016), we bin up the pro-
jected mass distribution of the simulation around cluster central galaxies in exact analogy
to the above procedure for creating galaxy number density profiles, and we manipulate the
resulting profiles to obtain the directly observable quantity,

∆Σm(< R) = Σm(< R)− Σm(R). (4.4)

Here, Σm(R) is the surface mass density profile analogous to ∆Σg(R) above, while Σm(< R)
is the mean of this quantity over projected radii interior to R. Note that despite the
similarity in notation (which we have inherited from earlier work) ∆Σm(< R) is not directly
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analogous to ∆Σg(R) and will differ from it in shape even if the projected mass and galaxy
number density profiles parallel each other exactly.

In Figure 4.3 we compare ∆Σm(< R) obtained in this way for the high- and low-
concentration subsamples of CS250 to the profiles inferred by Miyatake et al. from their
SDSS lensing data. Whereas the observational data show at most small differences between
the high- and low-concentration subsamples for R < 10h−1 Mpc, our simulated profiles dif-
fer significantly in a way which is related to the differences seen in Figure 4.1. Indeed,
we have plotted the surface mass density profiles Σm(R) directly, and find they are very
similar in shape and relative amplitude to the simulated galaxy surface density profiles of
Figure 4.1. We note that the disagreement between simulation and observation is limited
to low-concentration clusters – agreement is very good for the high-concentration systems
on all scales below about 15h−1 Mpc. We have found no explanation for this discrepancy.
The uncertainties on the ∆Σm(< R) inferred from lensing data are much larger than the
purely statistical uncertainty in the simulation results, but below 1h−1 Mpc the simulation
results for low-concentration clusters lie systematically below the observations, while be-
yond 3h−1 Mpc they tend to lie above them. (Note that the coloured bands in Figure 4.3
show the estimated 1σ uncertainties in the observations.) This disagreement is in line with
the stronger differences between the projected galaxy profiles for the low-concentration
subsample. Our findings for the differences in the inner part are close to the findings of
Dvornik et al. (2017) who recently investigated the mass profiles of galaxy groups. These
less massive objects were identified with a different group finder (based on the FoF algo-
rithm), but the same cgal projected concentration measure was used to divide the sample.
While they found a similar split at small scales in the lensing profiles, they did not see a
significant signal of assembly bias on large scales. This is expected around the masses of
groups when splitting by concentration.

Miyatake et al. (2016) inferred almost equal mean total masses, M200m ∼ 2×1014h−1M�,
for high- low-concentration clusters from their measured ∆Σm(< R) profiles. Processed
in the same way, our simulated profile for high-concentration clusters would give a very
similar answer, whereas that for low-concentration clusters would give a lower value by a
few tens of percent. (For M200m = 2×1014h−1M�, R200m = 1.5h−1 Mpc, in the middle of the
range where simulated and observed ∆Σm(< R) agree best.) Thus the overall mass-scale
of the clusters identified in the Guo et al. (2011) galaxy catalogues by our redMaPPer-like
algorithm is close to that of the SDSS clusters studied by Miyatake et al. (2016) and More
et al. (2016).

4.3.2 The influence of cluster selection depth

The simulation results shown in the last section all referred to CS250 for which any red
galaxy projected within Rc is considered a potential cluster member, regardless of its
distance in depth (“redshift”) from the central galaxy. As noted previously, Rykoff et al.
(2014) estimate the 1σ uncertainty in the photometric redshift of an individual red SDSS
member galaxy to increase with distance and to be 90h−1 Mpc at z = 0.25, the median
redshift of the SDSS cluster sample. Thus many of the observed clusters may be better
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Figure 4.3: The mean lensing observable ∆Σmfor high- and low-concentration clusters in
the CS250 sample is compared to observational results for SDSS clusters from Miyatake
et al. (2016).
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localised in depth than in the CS250 catalogue. In this section we compare galaxy and mass
profiles among our three simulated cluster catalogues, CS250, CS120 and CS60, for which
the depth selection parameter ∆zm = 250, 120 and 60h−1 Mpc, respectively. This allows
us to assess how strongly the effective selection depth of clusters affects their apparent
splashback and assembly bias signals. We find that effects are small on the former, but
can be substantial on the latter.

Figure 4.4 shows the overall shape of the projected galaxy number density profiles to
be very similar in the three cluster catalogues. The high concentration profiles differ from
each other by at most 10 per cent within Rc and remain within the same bound out to
∼ 20h−1 Mpc. Beyond this point the uncertainties increase drastically and the ratios of
the profiles with smaller ∆zm quickly depart from unity but stay within a less than the
68-percentile of the bootstrap distribution of it. The variation is somewhat smaller for
low-concentration clusters and is also below 10 per cent within Rc, but also below 25 per
cent all the way out ∼ 30h−1 Mpc. Beyond Rc the profile amplitude of low-concentration
clusters decreases with decreasing ∆zm at all separations where it is reliably determined.

This level of agreement is such that all three catalogues agree almost equally well
with observation. In the profiles themselves, systematic differences only start to become
noticeable outside Rc and the largest effect is the shift in the large-scale amplitude of the
profile for the low-concentration clusters, which, as we will see below (in Section 4.3.3) is
enough to affect the apparent level of assembly bias significantly. At the intermediate radii
relevant for splashback detection, the profile shapes are sufficiently similar that curves like
those of Figure 4.2 show almost no dependence on ∆zm.

The ∆Σmprofiles (shown in Figure 4.5) also vary only slightly as a function of effective
cluster depth, ∆zm, with shifts of similar amplitude to those seen in the projected galaxy
number density profiles. For high-concentration clusters these are even smaller than for
the previous case, while for low-concentration clusters they are larger within Rc and have
the effect of increasingly smoothing the sudden changes in slope seen in the CS250 profile
as ∆zm decreases. For both cases the amplitude of the profiles on large scales is decreased
for smaller ∆zm, though by less than 25 per cent out to ∼ 50h−1 Mpc.

4.3.3 Profile ratios and assembly bias

By taking the ratio of the profiles discussed in the previous section we can obtain a measure
of the relative bias of high- and low-concentration clusters at fixed cluster richness, hence
of assembly bias. In Figure 4.6 we show this ratio for the ∆Σg profiles as a function of
projected separation for our three catalogues of simulated clusters. In order to measure
the large-scale bias, More et al. (2016) only plotted this ratio at R ≥ 3h−1 Mpc (the orange
points with error bars in Figure 4.6). However, since they give the individual profiles for
high- and low-concentration clusters, it is straightforward to reconstruct the observed ratio
on smaller scale. We show this as a dashed orange line in Figure 4.6.

The observed and the simulated ratios show similar behaviour which separates into three
distinct radial regimes. At R ≥ 3h−1 Mpc, the relative bias varies little and the observed
value of 1.48±0.07 matches very well that for CS250 outside of R = 8h−1 Mpc. CS120 gives
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a somewhat smaller value fitting the observations well between 3 and 10h−1 Mpc, while at
larger R it is still within about 1σ. CS60 has even weaker relative bias barely within
1σ. Both these signals appear to decline with increasing R. The behaviour at smaller
scales differs markedly on either side of a sharp peak which, for the simulated clusters,
occurs almost exactly at 〈Rc〉 ∼ 1h−1 Mpc, coinciding with that for the observed clusters.
At smaller R, the ratio of the profiles increases smoothly and strongly with R, reflecting
the requirement that the two cluster subsamples have similar richness but systematically
different values of 〈Rmem〉. This also enforces a ratio substantially above unity at R = Rc.
At intermediate radii, Rc < R < 3h−1 Mpc, the ratio has to decline from the high value at
the peak to the more modest value characteristic of the large-scale assembly bias. In all
three samples there is a noticeable change in slope just outside 2h−1 Mpc which appears to
reflect true splashback effects (see Section 4.4.2).

These properties demonstrate that the operational definition of clusters has a substan-
tial effect on the ratio of the profiles out to at least 3h−1 Mpc. These effects must therefore
be present also in the individual profiles, and hence must affect their use for identifying
splashback features. In addition, the variation of the ratios at large R among our three
cluster catalogues shows that the apparent assembly bias signal is significantly affected by
projection effects.

The ratio of the ∆Σmprofiles for the high- and low concentration subsamples of each of
our three simulated cluster catalogues are shown in Figure 4.7 in exactly analogous format
to Figure 4.6. They are compared to observational results taken directly from Miyatake
et al. (2016). The difference in shape between the simulation curves in Figures 4.7 and 4.6
is due primarily to the conversion of Σm(R) to ∆Σm(< R). A ratio plot constructed using
Σm(R) directly is quite similar to Figure 4.6, although the peak at 〈Rc〉 is less sharply
defined. The behaviour of the observational points in Figure 4.7 is quite erratic and looks
rather implausible when compared with the smooth variation predicted by the simulation.
Over the ranges 3h−1 Mpc < R < 14h−1 Mpc and R > 15h−1 Mpc the predicted assembly
bias signal is almost constant, but over the first range it is much larger than and apparently
inconsistent with that observed, whereas over the second it is smaller than and again
apparently inconsistent with that observed. It is our impression that the uncertainties of
these observational points are too large for secure interpretation to be possible.

The differences in large-scale assembly bias between our three simulated cluster cat-
alogues are similar to those seen for the cluster number density profiles of Figure 4.6,
although pushed out to systematically larger radii. Again this is a consequence of the
conversion from Σm(R) to ∆Σm(< R). On small scales the simulation curves lie well below
the observational points. This is a restatement of the fact that the simulated profiles in
Figure 4.3 differ much more at these radii than the observed profiles.

4.4 The 3D Perspective

Miyatake et al. (2016) and More et al. (2016) interpret their SDSS results under the implicit
assumption that the features seen in the stacked 2D profiles correspond to similar features in
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Figure 4.6: The ratio of the projected galaxy number density profiles of the low cgal and
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directly from More et al. (2016), while the continuation of these data to smaller scales (the
dashed orange line) was calculated from the individual profiles in their paper. The dotted
vertical line indicates 〈Rc〉 for the simulated clusters. The horizontal orange band is the
observed assembly bias signal quoted by More et al. (2016) with its 68 and 95 per cent
confidence ranges.
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the ’true’ 3D profiles. In our simulations, it is possible to test the extent to which this is the
case, so in this section we compute stacked 3D profiles of mass density and of galaxy number
density around the central galaxies of our three cluster catalogues, splitting them into high-
and low-concentration subsamples as before using the 2D values of cgal = Rc(λ)/〈Rmem〉.
This allows us to make plots directly analogous to those discussed above, and so to check
the 2D – 3D correspondence. In this section all profiles are calculated in true position
space rather than in redshift space. Note that we here use a standard definition of the
spherically averaged mass density profile rather than some 3D analogue of ∆Σm. Note
also that since each central galaxy can appear in one to three different projections, we give
it the corresponding weight when constructing the 3D profiles in order to keep as close a
correspondence as possible to the 2D results discussed previously.

4.4.1 Splashback Radius

As was the case in 2D, we find that plots of the 3D profile slope, analogous to those of
Figure 4.2, are very similar for our three cluster catalogues. In Figures 4.8 and 4.9 we
therefore show results for CS250 only. Since recent theoretical work on splashback proper-
ties has concentrated on cluster mass profiles (e.g. Diemer and Kravtsov, 2014, hereafter
DK14), we start with a discussion of Figure 4.8 which shows logarithmic slope (referred to
as γ below) as a function of 3D radius r .

These slope profiles show relatively smooth behaviour with well-defined minima at
r ∼ 1.8h−1 Mpc. The mean M200m values in the two sub-samples correspond to R200m ∼
1.45h−1 Mpc and R200m ∼ 1.37h−1 Mpc, so these minima occur at 1.2R200m and 1.3R200m

for the high- and low-concentration samples, respectively. These values are very close to
the expected values given in More et al. (2015) for the expected mass accretion rates at
the given masses and redshift. The slopes at minimum are significantly shallower for our
stacks (γ ∼ −2.8) than DK14 found for halos of similar mass (γ ∼ −3.5). As shown in the
Appendix, this is because such profiles depend both on the definition of the sample to be
stacked and on the details of stack construction. In particular, DK14 scale each individual
profile to its own R200m and then take the median density at each r/R200m, whereas we take
the mean density at each radius directly. The DK14 procedure typically produces deeper
and sharper minima, hence better defined splashback radii which occur at slightly smaller
radii, but it is not easily implemented on observed samples. For example, the redMaPPer
samples are defined to have similar (and known) values of Rc but their individual values
of R200m are unknown. In addition, weak lensing reconstructions of the mass distribution
naturally produce mean rather than median mass profiles.

The two slope profiles of Figure 4.8 differ significantly in shape. In the inner regions
(r < Rc) this reflects the fact that the two samples are separated by galaxy concentration (in
practice, by 〈Rmem〉/Rc) so that, by definition, the low-concentration clusters have shallower
2D galaxy density profiles within Rc than the high-concentration clusters. Figure 4.9 shows
that this requirement carries over to the 3D galaxy profiles, and it is still very visible in
Figure 4.8. Similar effects are seen in Figure 14 of DK14 where they split their halo
sample by 3D mass concentration. However, our results do not agree with the trend
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Figure 4.8: Logarithmic derivative profiles of the 3D mass overdensity around the central
galaxies of the high- and low-concentration subsamples of CS250. Vertical lines mark the
R200m values for the two samples calculated directly from their stacked mass profiles.

they find for more concentrated clusters to have a shallower minimum slope and a larger
splashback radius. We have checked that if we follow their scaling and median stacking
procedures, our high-concentration clusters still have a steeper minimum slope and the
same splashback radius as our low-concentration clusters. The discrepancy must reflect
the difference between selecting halos by 3D mass and mass concentration and selecting
clusters by 2D richness and galaxy concentration.

The shapes of the 3D slope profiles for the mass (Figure 4.8) and for the galaxies
(Figure 4.9) are very similar, in particular, beyond the splashback minimum. At smaller
radii the features induced by cluster selection are stronger in the galaxy profile, with a
secondary minimum just inside 〈Rc〉 which is just visible as a slight inflection in the mass
profile. Overall, however, the features in the galaxy profile are much less dramatic than in
its 2D analogue, Figure 4.2. This just reflects the fact that clusters were selected and their
concentrations estimated using the 2D data
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4.4.2 Large-scale environment

We now look at the ratios of stacked 3D mass overdensity profiles for our low- and high-
concentration clusters, and at the corresponding ratios of their galaxy number overdensity
profiles. These are directly analogous to the ratios of 2D galaxy number overdensity profiles
shown in Figure 4.6. As in that figure, we here compare results for the three samples, CS60,
CS120 and CS250. Ratios as a function of r are shown for mass overdensities in Figure 4.10
and for galaxy number overdensities in Figure 4.11. The shapes of the curves and their
relative positions for the three samples are very similar in these two figures.

In the inner regions, r < Rc, all curves are rapidly and smoothly rising, showing that
the difference in 2D galaxy profiles resulting from our classification by concentration carries
over to the 3D galaxy and mass profiles. In this regime and in both plots the ratio for
CS60 is slightly larger than that for CS120 and significantly larger than that for CS250.
This behaviour mirrors that of the ratio of the fractions of 2D potential members which
are part of the central galaxy’s FoF group (see Table 4.3). Interestingly, this ranking of
amplitudes for the three samples persists to much larger scales and is opposite to that
seen in 2D (Figure 4.6). Clearly, with increasing ∆zm, projection effects contribute more
strongly to low- than to high-concentration clusters not only at R ∼ Rc but also at much
larger projected separation.

In the range Rc < r < 5h−1 Mpc, all curves continue to rise to a sharp peak before
dropping again to a value which remains approximately constant over the interval 5h−1 Mpc
< r < 30h−1 Mpc. The peak corresponds to the crossing of the derivative curves for the
low- and high-concentration subsamples in Figures 4.8 and 4.9. It thus reflects differences
in the way the splashback feature merges into larger scale structure in the two cases. As
noted above, it appears to be visible as a sharp change in slope in the profiles of Figure 4.6
(see also Figure 4.15 below). Between Rc and the peak, effects from sample definition
clearly modulate galaxy overdensity profile ratios more strongly than mass overdensity
profile ratios but the difference is quite small.

The constant profile ratios seen over the range 5h−1 Mpc < r < 30h−1 Mpc are a direct
measurement of the 3D assembly bias for cluster samples split by 2D concentration. These
values are significantly smaller than the 2D values inferred from Figure 4.6. In addition,
they rank in the opposite sense with ∆zm, they are consistent between Figures 4.8 and 4.9,
and they are similar to the values expected from previous work on assembly bias for cluster
mass haloes split by concentration (e.g. More et al., 2016). As we will see in the next
section, a clue to the origin of this difference between the 2D and 3D estimates of assembly
bias comes from the largest r bins in these figures where, although noisy, the ratios of the
profiles rise to large values.

4.5 Projection contamination

In the preceding sections we found a number of differences in the apparent splashback and
assembly bias signals between the 2D and the 3D profiles of our simulated galaxy clusters.
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These differences are present both in the mass and in the galaxy number density profiles,
and they affect the low- and high-concentration subsamples to differing degrees. In this
section we focus specifically on galaxy number density profiles, compiling them in the two
dimensions of projected separation and line-of-sight depth so that we can compare results
for the two subsamples and isolate the distribution in depth of the galaxies which give rise
to the difference in projected profiles.

Let R, as above, denote projected separation, and q > 0 denote line-of-sight separation,
measured either in configuration space (q = |d|) or in redshift space (q = |π|). We define
a set of cells of constant width in lnR and ln q and compile galaxy counts in these cells
around the central galaxies of the low- and high-concentration subsamples of each of our
cluster samples, Nlo(R, q) and Nhi(R, q) respectively.

In Figures 4.12 and 4.13 we show the quantity

β(R, q) =
Nlo(R, q)−Nhi(R, q)∑

q[Nlo(R, q) +Nhi(R, q)−NcngalV (R, q)]
, (4.5)

for the real-space and redshift space cases respectively. In this equation, Nc is the total
number of clusters in the sample, ngal is the mean space density of galaxies, and V (R, q) is
the volume of the cell at (R, q). Thus 2

∑
q β(R, q) = blo(R)− bhi(R), where the assembly

bias factors blo and bhi are the ratios of the stacked 2D galaxy number overdensity profiles
of the low- and high-concentration subsamples to that of the cluster sample as a whole.
The distribution of β over q at fixed R thus indicates the distribution in depth of the
difference in galaxy counts which gives rise to the apparent 2D assembly bias signal.

In the inner regions (R < 400h−1 kpc) the projected profile of high cgal clusters lies
above that of low cgal clusters for all three samples (see Figure 4.6). Figure 4.12 shows
that, as expected, the additional galaxies which produce this excess lie in the inner regions
of the clusters, with a median depth offset from the central galaxy of 150h−1 kpc or less. In
redshift space, the random motions within clusters move this excess out to |π| ∼ 700 km s−1,
as shown in Figure 4.13.

Beyond R = 400h−1 kpc the behaviour switches and the projected profile of low cgal
clusters lies above that of high cgal clusters (again see Figure 4.6). The galaxies which
produce this excess lie in two different ranges of depth whose relative contribution varies
both with R and with ∆zm. At R < 2h−1 Mpc, a ’local’ component centred near R ∼
|d| ∼ 〈Rc〉 contributes most of the excess low cgal counts in CS60, about half of them in
CS120, and a minority of them in CS250, producing much of the pronounced peak seen
at these R in the profile ratios of Figure 4.6. A second component, distributed relatively
uniformly over ±∆zm, the full allowed depth for potential cluster members, contributes
excess counts to the low cgal cluster profiles at all R > Rc and is responsible for most of
the large-scale assembly bias. It also dominates the excess counts near 〈Rc〉 in CS250. The
systematic change in the relative weight of these two components with increasing R results
in a shift in the median depth offset of the excess counts, indicated by the black solid lines
in Figures 4.12 and 4.13. The increasing strength of the second component from CS60 to
CS120 to CS250 is the cause of the increase in 2D assembly bias with ∆zm. Figure 4.13
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shows that redshift space distortions significantly smear out these two components and
make them more difficult to distinguish.

These results explain why strong assembly bias is seen in 2D for CS250 and CS120
(see Figure 4.6) but only a much weaker signal is seen in 3D (Figure 4.11). Many of the
low-concentration clusters in these samples have significant foreground/background groups
projected on their outer regions. These groups are distributed over the full depth ±∆zm,
and are visible in Figures 4.12 and 4.13 as an excess in bins at large q and R ∼ Rc. Galaxies
correlated with these foreground/background groups then produce excess galaxy counts at
similar q for all R values shown in the plot. Since the fall-off in these counts with R at the q
of the background group is similar to that of galaxy counts at relatively small q correlated
with the primary cluster, the induced apparent assembly bias is almost independent of R.
The rise in 3D assembly bias seen at the largest r in Figure 4.11 is a result of beginning
to pick up this additional correlated component in the counts around low-concentration
clusters.

The strength of this effect clearly depends on the sensitivity of the cluster identification
algorithm to projection effects at R ∼ Rc. This in turn depends both on the effective
∆zm and on the weight assigned to potential members near the cluster edge. Hence, the
apparent bias may differ between the real redMaPPer sample and our simulated samples.
Nevertheless, the strong similarity seen in previous sections between the behaviour of our
CS250 and CS120 samples and the SDSS sample analysed by More et al. (2016) and
Miyatake et al. (2016) suggests that the assembly bias signal they found has a similar origin
to that in the simulation. In the next section we will explore further the dependence of
apparent splashback features on cluster definition and argue that the unexpected properties
of the features detected by More et al. (2016) are a result of confusion with features imposed
by the cluster selection procedure.

4.6 Cluster definition affects profile shape

We have argued above that the details of our redMaPPer-like algorithm leave an imprint
on the stacked profiles of our simulated clusters. Although this is most evident in the
strong peak at Rc in the profile ratios of Figure 4.6 and in the steep gradient interior to
this radius induced by our separation of the two subsamples by concentration, cgal, it is
also visible in the crossing at Rc of the individual gradient profiles of Figure 4.2 and in
their minima close to and on opposite sides of this radius. In this section we investigate
these effects further by varying the value of Rc used to define clusters. Specifically, we set

Rc = 1.0η

(
λ

λn(η)

)0.2

h−1 Mpc (4.6)

and we change η.
The variable normalisation λn (η) in Equation 4.6 accounts for the fact that a given

cluster will contain more galaxies within a larger projected radius. In the following we will
consider η = 2/3, 1 (the value used in all earlier sections) and 3/2. Based on the mean
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Figure 4.12: The quantity β(R, q) of Equation 4.5 for the case q = |d|. This shows the
distribution over depth q of the fractional difference between the projected galaxy count
profiles of the low cgal and high cgal subsets of each of our three simulated cluster samples.
The black curves give the median offset in depth of the excess counts as a function of R.
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Figure 4.13: Identical to Figure 4.12 except for the redshift space case, q = |π|.
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galaxy number overdensity stacks of Section 4.3.3, we take λn
(
η = 2

3

)
= 74, λn(1) = 100,

as before, and λn
(
η = 3

2

)
= 130. For each choice of η we repeat the cluster selection and

concentration calculation procedures of Sections 4.2.2.1 and 4.2.2.2. Since changing Rc

changes the richness value λ assigned to each cluster, we shift the richness range defining
our samples (20 ≤ λ ≤ 100 for η = 1) so that the total numbers of simulated clusters
above the upper and lower limits remain unchanged. In the following we show results for
∆zm = 250h−1 Mpc only, since the two other cases behave very similarly.

Figure 4.14 repeats the observational and CS250 results from Figure 4.6 and compares
them with predictions for η = 2/3 and 3/2. The peak of the profile ratio increases strongly
with η and shifts to match 〈Rc〉 in all three cases. Interestingly, the profile ratio for
η = 2/3 peaks at a value of 1.8 at a radius where it is 0.8 for η = 3/2, and the ratio
is unity for η = 2/3 at a radius where it is only 0.6 for η = 3/2. Thus, changing the
limiting radius defining a cluster sample not only affects its stacked profiles in their outer
parts, but also close to the centre. Beyond Rc, the secondary feature noted in Section 4.3.3
and apparently associated with true splashback effects is clearest for η = 2/3 and is very
weak for η = 3/2. At large R, the strength of assembly bias increases noticeably with
η. The stronger peak, the weaker splashback signal and the stronger large-scale assembly
bias found with increasing η are all consistent with the expectation that projection effects
should increase in importance when clusters are identified within larger radii, hence at
lower projected overdensities. Also as expected, overall the SDSS results of More et al.
(2016) behave most similarly to the η = 1 curves in Figure 4.14. Nevertheless the large
scale ratios agree equally well with the ones using η = 3/2.

As shown in Figure 4.15, the logarithmic derivative of ∆Σg shows a strong and complex
response to η. The middle panel here is essentially a repeat of Figure 4.2, while the upper
and lower panels show similar plots for η = 2/3 and η = 3/2 respectively. A striking feature
of these plots is that the slope profiles for the two subsamples always cross around R = 〈Rc〉
and at a value of about -1.4. The crossing ’coincidence’ is mathematically equivalent to
the fact that all the profile ratios have a maximum at R ∼ Rc in Figure 4.14, which itself is
easily understood as a consequence our creating subsamples with identical distributions of
λ but disjoint distributions of cgal, thus forcing the profile ratio to increase over the range
0 < R < 〈Rc〉. The uniform slope value at curve crossing reflects the fact that this value
equals the slope for the sample as a whole, which is quite slowly varying and close to -1.4
at these projected radii.

Within the crossing point, the slope for low-concentration clusters rises rapidly to a
maximum of about γ = −0.5 at R ∼ 〈Rc〉, while the slope for the high-concentration
clusters drops to a minimum at approximately the same radius but with a value which
decreases strongly with increasing η. This behaviour is clearly a consequence of our defi-
nition of cgal and our separation of clusters into subsamples according its value. On larger
scale, the slope profiles appear independent of η when R exceeds twice the largest value of
〈Rc〉 for the samples being compared. However, the curves for high- and low-concentration
clusters differ both from each other and from those of More et al. (2016) in this regime. In
the intermediate range, 〈Rc〉 < R < 2〈Rc〉, the shape of the curves is set by the need to
interpolate between these two different behaviours, causing a minimum at or just outside
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Figure 4.14: The ratio of the projected galaxy number density profiles of the low cgal
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〈Rc〉 and a maximum at slightly larger radius in the low- and high-concentration cases
respectively.

In none of these panels are the simulated curves a good fit to the observed ones. The
results for high cgal clusters match quite well for η = 3/2, but the best fit for the low cgal
clusters is for η = 1, and even here the overall depth and the general shape of the features
differ significantly. Given the strong sensitivity to the cluster identification algorithm
and to the splitting by cgal, it is likely that these discrepancies reflect detailed differences
between the real redMaPPer and concentration definition procedures and the simplified
versions used here. It is clear that it will be very difficult to infer reliable information
about splashback signals from data of this kind without a complete understanding of these
effects.

4.7 Conclusions

In their analysis of a volume-limited sample of 8648 clusters selected by applying the
redMaPPer algorithm to the SDSS/DR8 photometric data, More et al. (2016) detected
strong assembly bias as a function of cluster concentration on projected scales 5h−1 Mpc <
R < 30h−1 Mpc, and substantial variations in the slope of cluster projected galaxy number
density profiles in the range 500h−1 kpc < R < 5h−1 Mpc which they attributed to splash-
back effects. The assembly bias signal had previously been seen at lower signal-to-noise by
Miyatake et al. (2016) in gravitational lensing data for the same cluster sample. By using
a simplified version of the redMaPPer scheme on three orthogonal projections of publicly
available galaxy catalogues from the Millennium Simulation, we have been able to identify
up to 9196 clusters of similar richness, which we classify by concentration in a similar way
to the SDSS studies. This allows us to carry out analyses directly analogous to those of
More et al. (2016) and Miyatake et al. (2016) and to compare with results obtained from
the full 3D information available for the simulation. This gives considerable insight into
the features seen in the SDSS analysis.

The mean projected profiles of mass and galaxy number density which we find for the
simulation are very similar to those found observationally, both for the cluster sample as a
whole and for its low- and high-concentration subsamples. The apparent assembly bias on
large scales agrees well with that observed, as does the shape of the ratio of the low- and
high-concentration profiles which rises with decreasing projected radius R to a peak at the
mean value of Rc, the limiting radius used to define clusters, before dropping precipitously
to smaller scales. The variation with R of the logarithmic slope of the mean galaxy number
density profiles shows a more complex structure than in SDSS, but reproduces the main
features pointed out by More et al. (2016): the main minimum (the point where the profile is
steepest) occurs at smaller radius than expected from the splashback studies of Diemer and
Kravtsov (2014) and in addition the minima for the low- and high-concentration subsamples
rank oppositely to the splashback expectation both in depth and in radius.

The observed large-scale assembly bias is best reproduced when all red galaxies pro-
jected onto a cluster (hence within ±250h−1 Mpc in depth) are considered as potential
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members. The signal is slightly weaker if the maximal allowed depth offset is reduced to
120h−1 Mpc and significantly weaker if it is reduced to 60h−1 Mpc. Such changes have neg-
ligible effect on the logarithmic slope profiles of stacked galaxy counts. Hence projection
over relatively large depths appear to be a significant factor in apparent assembly bias but
not in apparent splashback features.

The above results, derived by stacking simulated clusters in projection, can be compared
to results obtained from a directly analogous analysis of the full 3D data. This shows some
striking differences. The 3D assembly bias for separations between 3 and 30h−1 Mpc is
considerably smaller than that seen in 2D (b ∼ 1.15 rather than b ∼ 1.5) and varies in
the opposite way with the maximum depth offset allowed for cluster members. The peak
in the ratio of the galaxy number density profiles for low- and high-concentration clusters
occurs at a substantially larger radius in 3D than in 2D (r ∼ 2.5h−1 Mpc rather than
R ∼ 800h−1 kpc). The logarithmic derivatives of the 3D mass and galaxy overdensity
profiles vary more smoothly than in 2D, and show a single minimum which is at larger
radius than in 2D and at the same position for the low- and high-concentration clusters.
The ranking of the minima in depth remains opposite to that expected from splashback
theory. (See the Appendix for a discussion of how cluster selection, scaling and stacking
procedures can affect apparent splashback features).

The effects of projection and cluster definition on stacked cluster profiles can be clarified
by examining them in the two-dimensional space of projected separation and line-of-sight
depth. This allows identification of the depth ranges which give rise to the difference in
projected counts around low- and high-concentration clusters. As expected, the galaxy
excess at small projected radius which produces the high central surface density of high-
concentration clusters is made up of objects which are close to the cluster centre also in
3D. In redshift space, these excess counts appear at offsets ∼ 800 km s−1, in the wings of
the cluster velocity dispersion. At projected radii 500h−1 kpc < R < 2h−1 Mpc, much of
the projected count excess around low-concentration clusters comes from galaxies offset in
depth by ∼ 1h−1 Mpc, apparently indicating that low-concentration clusters live in richer
environments than their high-concentration analogues. At larger projected separation, the
galaxies responsible for the strong assembly bias signal are distributed almost uniformly
over the full depth accessible to potential cluster members, showing that they are correlated
with background groups preferentially projected onto the low-concentration clusters, rather
than with the clusters themselves. The overall effect of projection on 2D assembly bias
clearly depends strongly both on the details of cluster and concentration definition and on
the accuracy of the available photometric redshifts.

At projected radii 500h−1 kpc < R < 3h−1 Mpc where splashback effects are expected to
be present, distant foreground and background galaxies contribute negligibly to projected
cluster profiles. These are, however, strongly affected by the specific algorithms used
to identify clusters and to classify them according to concentration. We demonstrate this
explicitly by changing the limiting radiusRc within which red galaxies are counted as cluster
members. Even though we take care to adjust parameters so that the abundance and typical
mass of clusters are matched for different choices of limiting radius, we find that this radius
is strongly imprinted on the mean projected profiles of the resulting samples. The effects
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are dramatic, both on the ratio of the profiles for low- and high-concentration clusters and
on the shape of the logarithmic derivative profiles for the individual subsamples. It will be
difficult to obtain reliable information about splashback without detailed understanding of
such effects for the particular algorithms used to select an observed cluster sample.

4.A The effect of stacking procedures on apparent

splashback signal

In Section 4.4.1 we noted that logarithmic derivative curves for the stacked 3D mass profiles
of our clusters (Figure 4.8) differ in shape, particularly in the depth of the minimum, from
those shown for objects of similar mass by Diemer and Kravtsov (2014) (DK14). A general
difference in behaviour between mean and median of profile stacks was already mentioned
in DK14. Here we investigate how the shapes of such profiles depend on the definition of
the sample to be stacked and on the scaling and stacking procedures adopted.

In Figure 4.16, the purple curve is taken directly from DK14 where it is the one labelled
z = 0.25 in the upper central panel of their Figure 4. It corresponds to haloes in a relatively
narrow range of M200m, selected at a redshift and with a mean mass which are close to
those of the cluster sample analysed in this chapter. DK14 scaled the 3D mass profile of
each cluster to its individual R200m and then constructed the stack by taking the median
value of density at each r/R200m. The logarithmic derivative of the resulting profile is the
quantity plotted. Note that it differs from the quantity plotted in Figure 4.8 in that DK14
did not subtract the mean background density from their stack. This has a significant
effect beyond a few Mpc.

The light blue curve in Figure 4.16 corresponds to our full sample CS250, stacked in
the same way as in Section 4.4.1, i.e. we constructed a spherically averaged mass profile
around the central galaxy of each cluster, we averaged these profiles directly to obtain the
stack, we scaled the result by the 〈R200m〉 of the stack, and we then plotted its derivative.
The curve effectively corresponds to an average of the two curves shown in Figure 4.8,
except for differences at large r/R200m due to the inclusion of the cosmic mean density. Its
minimum value is about -2.7, just above the average of the values for the two curves in
Figure 4.8 and considerably above the value found by DK14.

The orange curve in Figure 4.16 shows what happens if we scale the profile of each
cluster in radius by its individual value of R200m before stacking. This changes the shape
of the curve, lowering its minimum slightly and moving it to slightly smaller radii. Not
surprisingly, scaling before stacking results in a sharper transition between the one-halo
and two-halo parts of the stacked profile.

If we stack these same scaled profiles by constructing their median at each r/R200m,
rather than their mean, we obtain the green curve. The minimum is now significantly
deeper, although still not as deep as that found by DK14. The shape of the curve outside
the minimum agrees very well with their results.

Finally, if we select halos directly from the Millennium Simulation with a narrow range
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of M200m at z = 0.24, and we make a median stack after scaling each profile to its individual
R200m value, then we should be reproducing the halo selection and stacking procedures of
DK14 almost exactly. The result is shown as a red curve in Figure 4.16. It now differs only
slightly from the purple curve.

We suspect that these small residual discrepancies reflect differences in the effective
smoothing associated with halo profile construction and differentiation. Overall, the results
described here indicate that curves of this type are sensitive to how the halos are scaled
and whether a mean or median stack is constructed. The minimum logarithmic slope is
particularly sensitive to these factors, and changes in shape can also shift the position of
the minimum by 10 or 20 per cent. We note that for individual observed clusters the
value of R200m is unknown, the full 3D information is not available, and the selection and
definition effects on 2D profiles which we discuss in the main body of the chapter are large
compared to the effects described here.
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Chapter 5

Conclusions

This thesis is, just as my time as a PhD student was, filled with a wide range of topics
and it is therefore not easy to give a single overarching conclusion. Still, we can identify a
few common themes that connect them: size estimation of surfaces, their percolation, and
bias.

We obtained quite remarkable results regarding the percolation transition in the cosmic
density field. Not only were we able to find the percolation transition at 6 to 7 times the
mean density but also connect this to clustering properties of the density peaks that live
in the percolating web.

Apart from the peculiarity of the bias of haloes attached to the cosmic web we also
uncovered a complex landscape of bias values for haloes in mass-ρlim space. Separating
haloes by ρlim does not only give us populations of group-sized haloes that are avoiding
matter on large scales, but also the strongest known assembly bias effect when looking at
quintiles in the properties.

While percolation has previously been discussed for the overlap-phase of reionisation,
we could add a new perspective to it by connecting it to the local size of bubbles. More
importantly we proposed a novel way of measuring this local size and showed how it evolved
with progressing reionisation. We also used it connect it to the clustering of bubbles for
which we gave a first measurement of bias in simulations using this new measure. This
way we could also show how the onset of the formation of superbubbles from overlapping
bubbles reflects on the density distribution within them and their larger environment.

In the preceding chapter we saw how difficult it can be to observe assembly bias and the
splashback radius (another example of a percolating surface in the universe, see Stücker
et al. (2018)). This shows that a lot of work will have to be invested to improve the means
to detect the effects we discussed in this thesis.

The Road Forward

The next goal in our endeavour of quantifying morphology and connecting it to processes
in the cosmos is a convergence of the techniques and approaches presented in this work.
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We would like to find a description of an object delimited by a surface that represents
its full morphology, with which we mean topology and sizes. The medial axis transform
(MAT) (Blum, 1967) is a tool to achieve this description.

It transforms a given (d − 1)-dimensional closed surface embedded in a d-dimensional
Euclidean space into its (d − 1)-dimensional skelteon. If this skeleton is decorated with a
radius at every point, the surface can be reconstructed by taking the union of balls of said
radius each anchored at its corresponding point. Thus it is a homeomorphic representation
of reduced complexity.

We can treat the MAT just as the MBS from Section 3.3.5 with the additional knowledge
of the connectivity between the centres. Thus, we obtain an object that also directly
contains the topology of the described surface. While the MAT itself is very complex,
maybe too complex for direct meaningful analysis, it is very easy to simplify as at its core
it is just a graph representing the sphere centres and their connections and in its most
stripped down form it only retains branching points in loops to encode the bare topology
of the described surface. We believe such a description of morphology would be universally
useful and applicable in astrophysical problems.

Apart from extending the methodology we would also apply the presented methodology
to more phenomena. Just as there is a hierarchy of peaks, there is a hierarchy of voids.
The tools developed in chapter 2 can equivalently applied to their study. The same is true
for our investigations of reionisation which so far have been restricted to the ionisation
fraction. These will be extended to the 21cm lines under the effects of observations with
current and future instruments.

It is hard enough to find a splashback surface in simulations (Mansfield et al., 2017;
Diemer, 2017) but by following the dark matter sheet we can investigate the morphology
of caustics in the universe and hopefully understand more about the connection between
their shape and the underlying processes such as galaxy formation. In general we will try
to connect the galaxy population to the morphology of the structure that hosts them. This
might allow us to find better observables telling us about the cosmic web and its collapse.
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