
Czechoslovak Mathematical Journal

Zhenghua Xu
Bloch type spaces on the unit ball of a Hilbert space

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 3, 695–711

Persistent URL: http://dml.cz/dmlcz/147786

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147786
http://dml.cz


Czechoslovak Mathematical Journal, 69 (144) (2019), 695–711

BLOCH TYPE SPACES ON THE UNIT BALL

OF A HILBERT SPACE

Zhenghua Xu, Hefei

Received October 26, 2017. Published online November 9, 2018.

Abstract. We initiate the study of Bloch type spaces on the unit ball of a Hilbert space.
As applications, the Hardy-Littlewood theorem in infinite-dimensional Hilbert spaces and
characterizations of some holomorphic function spaces related to the Bloch type space are
presented.
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1. Introduction

The classical Bloch space of holomorphic functions on the unit disk D of the com-

plex plane C was extended to the higher dimension cases. In 1975, Hahn introduced

the notion of Bloch functions on bounded homogeneous domains in Cn using the

terminology from differential geometry [7]. In [19], [20], Timoney studied further

Bloch functions on bounded homogeneous domains in terms of the Bergman met-

ric. In [11], Krantz and Ma considered function theoretic and functional analytic

properties of Bloch functions on a strongly pseudoconvex domain. To have a more

complete insight on the theory of the Bloch space in the finite dimensional space, see

the book by Zhu [25].

Recently, Bloch functions on the unit ball of an infinite-dimensional complex

Hilbert space have been studied by Blasco, Galindo and Miralles [1]. In this ar-

ticle, we will continue the study in [1] and consider Bloch type spaces on the unit

ball of a Hilbert space. Especially, we give four semi-norms of the Bloch type space
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and show their equivalences and present some other equivalent characterizations for

Bloch functions from the geometric perspective which are the infinite-dimensional

generalization of [19], Theorem 3.4.

Let B be the open unit ball of the complex Hilbert space E and let ∂B be the

unit sphere. The class of all holomorphic functions f : B → C is denoted by H(B).

Denote by Aut(B) the group of all biholomorphic mappings of B onto itself. For

0 6 α < ∞, let H∞
α be the space of holomorphic functions f ∈ H(B) satisfying

sup
x∈B

(1− ‖x‖2)α|f(x)| < ∞.

We abbreviate H∞ = H∞
0 for α = 0.

The classical α-Bloch space is the space of holomorphic functions F : D → C

satisfying

‖F‖Bα(D) := sup
z∈D

(1− |z|2)α|F ′(z)| < ∞.

Now we introduce four semi-norms of the Bloch type space for f ∈ H(B).

Denote
‖f‖1,α := sup

x∈B

(1− ‖x‖2)α‖Df(x)‖,

‖f‖2,α := sup
x∈B

(1− ‖x‖2)α|Rf(x)|,

‖f‖3,α := sup
y∈∂B

‖fy‖Bα(D),

where Rf(x) = Df(x)(x), fy(z) = f(zy) for z ∈ D.

The Möbius transforms of B are holomorphic mappings ϕa, a ∈ B, given by

ϕa(x) = (Pa + saQa)(ma(x)),

where sa =
√
1− ‖a‖2, Pa(x) = (〈x, a〉/〈a, a〉)a, Qa = Id − Pa and ma(x) =

(a− x)/(1− 〈x, a〉).
Define

‖f‖4,α := sup
x∈B

(1− ‖x‖2)α−1‖∇̃f(x)‖,

where ∇̃f(x) = Df ◦ ϕx(0) with ϕx ∈ Aut(B).
Note that, by [1], Lemma 3.5

‖∇̃f(x)‖ = sup
w 6=0

(1 − ‖x‖2)|Df(x)(w)|√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

.

Hence, we have

‖f‖4,α = sup
x∈B

sup
w 6=0

(1− ‖x‖2)α|Df(x)(w)|√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

.
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For α > 0, denote

Bα = {f ∈ H(B) : ‖f‖1,α < ∞},
and

Tα = {f ∈ H(B) : ‖f‖4,α < ∞}.
Equipped with the norm ‖f‖α = |f(0)| + ‖f‖1,α for f ∈ Bα, the Bloch type

space Bα becomes a Banach space as usual. Denote the class of Bloch functions

defined on B by B instead of B1. The little Bloch space will be denoted by B0; it

consists of functions f ∈ B such that

lim
‖x‖→1−

‖∇̃f(x)‖ = 0.

Now our main results can be described as follows.

Theorem 1. Let α > 0 and let B be the open unit ball of the complex Hilbert

space E. If f is a complex-valued holomorphic function on B, then the three semi-

norms ‖f‖1,α, ‖f‖2,α, and ‖f‖3,α are equivalent.

Theorem 2. Let B be the open unit ball of the complex Hilbert space E with

dimE > 2 and let f be a complex-valued holomorphic function on B.

(i) If 0 < α < 1/2, then f ∈ Tα if and only if f is constant.

(ii) If α = 1/2 , then f ∈ T1/2 if and only if |Df(x)(y)| is bounded for all x ∈ B

and y ∈ ∂B with 〈x, y〉 = 0.

(iii) If α > 1/2, then the two seminorms ‖f‖1,α and ‖f‖4,α are equivalent.
Note that the results for α = 1 in Theorems 1 and 2 have been obtained in [1] and

the condition dimE > 2 in Theorem 2 (i) and (ii) cannot be deleted in general.

From Theorem 1 and its proof, the interested reader can give some equivalent

characterizations for the little Bloch type space B0. It is worth mentioning that the

approach for the finite-dimensional case depends usually on the integral represen-

tation for holomorphic functions. However, it may fail for the infinite-dimensional

setting. Hence we need to overcome the restriction of dimension in achieving our

main results.

In this paper, we add some more equivalent characterizations for Bloch functions.

To this end, we now give the definition of a schlicht disk for holomorphic functions

defined in Hilbert spaces as in the case of several complex variables.

Definition 3. Let f be a holomorphic function on a domain Ω in E. For z0 ∈ C,

the disk

D(z0, r) = {z ∈ C : |z − z0| < r}
is called a schlicht disk in the range of f if there exists a holomorphic mapping

g : D → Ω such that f ◦ g(z) = z0 + rz.
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Following the paper [12], a holomorphic function f : B → C is said to be normal if

Mf = sup
{ (1− ‖x‖2)‖Df(x)‖

1 + |f(x)|2 : x ∈ B

}
< ∞.

With these two concepts in hand, our second main result can be established as

follows.

Theorem 4. Let f ∈ H(B). Then the following conditions are equivalent:

(i) f is a Bloch function;

(ii) the radii of schlicht disks in the range of f are bounded above;

(iii) the family

{f ◦ g : g ∈ H(D,B)}

is a family of Bloch functions with uniformly bounded Bloch norm;

(iv) the family
{
f ◦ g − f ◦ g(0) : g ∈ H(D,B)}

is a normal family in the sense of Montel;

(v) the family

Ff := {h = f ◦ φ− f ◦ φ(0) : φ ∈ Aut(B)}

is a family of normal functions such that Mh is uniformly bounded.

Remark 5. The Bloch space on bounded symmetric domains in arbitrary com-

plex Banach spaces was considered in [5]. Although we treat only Bloch functions

defined on the unit ball of a Hilbert space, all results in Theorem 4 can be proved in

the more general setting of bounded symmetric domains.

The remaining part of this paper is organized as follows. Theorems 1, 2 and 4

are proved in Section 2. In Section 3, the Hardy-Littlewood theorem in infinite-

dimensional Hilbert spaces is established as an application of Theorem 1. In addition,

we give some equivalent characterizations for holomorphic function spaces related to

the Bloch type space which are the generalizations of the main results in [4], [23] in

infinite-dimensional Hilbert spaces.
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2. Proof of Theorems 1, 2 and 4

Throughout this paper, denote by C an absolute positive constant and by C(α)

a positive constant depending on α only. They may have different values at different

places.

In order to prove Theorems 1 and 2, we establish two lemmas.

Lemma 6. Let α > 0 and let f : B → C be a holomorphic function.

(i) If |f(x)| 6 (1− ‖x‖2)−α for all x ∈ B, then

|Df(x)(y)| 6 C(α)(1 − ‖x‖2)−α−1/2

for all x ∈ B and y ∈ ∂B with 〈x, y〉 = 0.

(ii) If |Df(x)(y)| 6 (1 − ‖x‖2)−α for all x ∈ B, y ∈ ∂B with 〈x, y〉 = 0, then

|Rf(x)| 6 C(α)(1 − ‖x‖2)−α−1/2 ∀x ∈ B.

(iii) If |f(x)| 6 (1− ‖x‖2)−α for all x ∈ B, then

|Rf(x)| 6 C(α)(1 − ‖x‖2)−α−1 ∀x ∈ B.

P r o o f. (i) Let x = rx′ ∈ B, y ∈ ∂B be such that x′ ∈ ∂B with 〈x, y〉 = 0.

Let us consider the holomorphic function F : B2 → C given by F (z1, z2) =

f(z1x
′ + z2y), where B2 is the open unit ball of C2. By assumption, we get

|F (z1, z2)| 6 (1− |z1|2 − |z2|2)−α. By [18], Lemma 6.4.6, it holds that

∣∣∣
∂F

∂z2
(r, 0)

∣∣∣ 6 C(α)(1 − r2)−α−1/2,

that is

|Df(x)(y)| 6 C(α)(1 − ‖x‖2)−α−1/2.

(ii) Based on the result for C2 (cf. [21], Lemma 1(a)), we obtain the desired

estimate applying the same method as in (i).

(iii) There is just a corollary from (i) and (ii). �

Lemma 7. Let α > 0 and let f : B → C be a holomorphic function. If

|DRf(x)(y)| 6 (1− ‖x‖2)−α−1/2

for all x ∈ B and y ∈ ∂B with 〈x, y〉 = 0, then

|Df(x)(y)| 6 C(α)(1 − ‖x‖2)−α

for all x ∈ B and y ∈ ∂B with 〈x, y〉 = 0.
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P r o o f. For f ∈ H(B), we rewrite it as
∞∑
n=0

Pn(x), where Pn is an n-homogeneous

polynomial, that is, the restriction to the diagonal of a continuous n-linear form on

the n-fold space E × . . . × E. Then RPn = nPn and DPn is (n − 1)-homogeneous

(n > 1), so that

(DRPn)(tx
′) = n(DPn)(tx

′) = ntn−1(DPn)(x
′),

where x′ ∈ ∂BE , 0 6 t < 1.

Hence, ∫ r

0

(DRPn)(tx
′) dt = rn(DPn)(x

′) = r(DPn)(rx
′),

which leads to

rDf(rx′)(y) =

∫ r

0

(DRf)(tx′)(y) dt.

It follows by assumption that for r ∈ [1/2, 1), y ∈ ∂B with 〈x′, y〉 = 0,

|Df(rx′)(y)| 6 2

∫ r

0

|(DRf)(tx′)(y)| dt 6 2

∫ r

0

(1− t2)−α−1/2 dt,

then

(1− ‖x‖2)α|Df(x)(y)| 6 2

∫ r

0

(1− t)−1/2 dt = 4(1−
√
1− r) < 4

for ‖x‖ ∈ [1/2, 1) and y ∈ ∂B with 〈x, y〉 = 0.

Hence, by the maximum principle for holomorphic functions,

|Df(x)(y)| 6 4
(4
3

)α

for ‖x‖ ∈ [0, 1/2] and y ∈ ∂B with 〈x, y〉 = 0, as desired. �

We now are in a position to prove Theorems 1 and 2.

P r o o f of Theorem 1. Let x ∈ B be fixed. For any y ∈ ∂B, by the projection

theorem, we can write y = z1x+ z2x1 for some z1, z2 ∈ C, x1 ∈ ∂B with 〈x, x1〉 = 0.

Note that

|z1|2‖x‖2 + |z2|2 = ‖y‖2 = 1.

Hence, for 1/2 6 ‖x‖ < 1, we have

(2.1) |Df(x)(y)| 6 2|Rf(x)|+ |Df(x)(x1)|.

Suppose that ‖f‖2,α = 1, then by Lemma 6 (i) we have

|DRf(x)(x1)| 6 C(α)(1 − ‖x‖2)−α−1/2,
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so by Lemma 7

(2.2) |Df(x)(x1)| 6 C(α)(1 − ‖x‖2)−α.

Hence, by (2.1) and (2.2) for 1/2 6 ‖x‖ < 1,

‖Df(x)‖ = sup
y∈∂B

|Df(x)(y)| 6 (2 + C(α))(1 − ‖x‖2)−α.

By the maximum principle for holomorphic mappings in Banach spaces, we have

‖f‖1,α 6 2 + C(α).

Consequently,

(2.3) ‖f‖1,α 6 C(α)‖f‖2,α.

It is clear that

(2.4) ‖f‖2,α 6 ‖f‖1,α.

Hence the two seminorms ‖·‖1,α and ‖·‖2,α are equivalent by (2.3) and (2.4).
Notice that zf ′

y(z) = Rf(zy) for any holomorphic f defined on B, so we have that

(2.5) ‖f‖2,α 6 ‖f‖3,α.

For 1/2 6 |z| < 1, we have

(1− |z|2)α|f ′
y(z)| 6 2(1− |z|2)α|Rf(zy)|.

Hence

sup
|z|>1/2

(1− |z|2)α|f ′
y(z)| 6 2 sup

‖x‖>1/2

(1− ‖x‖2)α|Rf(x)| 6 2‖f‖2,α.

Combining this with the maximum principle for holomorphic functions, one can show

that

(2.6) ‖f‖3,α 6 2
(4
3

)α
‖f‖2,α.

Hence, by (2.5) and (2.6), the two semi-norms ‖·‖2,α and ‖·‖3,α are equivalent. �
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Remark 8. From the proof of Theorem 1, we see that the semi-norms ‖f‖2,α
and ‖f‖3,α are equivalent for any holomorphic function f defined on the unit ball of
a Banach space.

P r o o f of Theorem 2. (i) Let 0 < α < 1/2 and f ∈ Tα. It holds that

|Df(x)(y)| 6 ‖f‖4,α(1− ‖x‖2)1/2−α

for all x ∈ B and y ∈ ∂B with 〈x, y〉 = 0.

Now let us show first that

(2.7) g(x) := Df(x)(y) ≡ 0, x ∈ B and y ∈ E with 〈x, y〉 = 0.

To this end, for fixed x ∈ ∂B and y ∈ E such that 〈x, y〉 = 0, we consider the slice

function h(z) = g(zx) on D satisfying the relation

lim sup
z→∂D

|h(z)| = 0.

Applying the maximum principle to the holomorphic mapping h, we see that h(z) ≡ 0

on D, so (2.7) follows.

Let x ∈ B be fixed. For every w ∈ ∂B, by the projection theorem, we can write

w = zx+ y with 〈x, y〉 = 0 for some z ∈ C, y ∈ B. Hence, it follows that

(2.8) |z|‖x‖ 6 ‖w‖ = 1.

Now we have, by (2.7),

|Df(x)(w)| 6 |Df(x)(zx)| + |Df(x)(y)| = |z||Rf(x)|.

Combining this with (2.8), we obtain

‖Df(x)‖ = sup
w∈∂B

|Df(x)(w)| 6 1

‖x‖ |Rf(x)| 6 ‖Df(x)‖,

which forces that Df(x) and x̄ are complex linear.

Note that Df : B → E∗ is holomorphic and thus Df(x) ≡ 0 on B. Hence, f is

constant, as desired.

(ii) Suppose that |Df(x)(y)| 6 C for all x ∈ B and y ∈ ∂B with 〈x, y〉 = 0. Let us

show that f ∈ T1/2.

By Lemma 6 (ii), it follows that

(2.9) |Rf(x)| 6 C(1− ‖x‖2)−1/2 ∀x ∈ B.
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For fixed x ∈ B, every w ∈ E can be decomposed as w = zx+ y with 〈x, y〉 = 0 for

some z ∈ C. Hence

(1− ‖x‖2)‖w‖2 + |〈w, x〉|2 = |z|2‖x‖2 + (1− ‖x‖2)‖y‖2.

It follows that

|Df(x)(w)|
√

1− ‖x‖2√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

6
|z|‖Rf(x)‖

√
1− ‖x‖2√

|z|2‖x‖2 + (1− ‖x‖2)‖y‖2

+
|Df(x)(y)|

√
1− ‖x‖2√

|z|2‖x‖2 + (1− ‖x‖2)‖y‖2

6
1

‖x‖|Rf(x)|
√

1− ‖x‖2 +
∣∣∣Df(x)

( y

‖y‖
)∣∣∣.

Combining this with (2.9), we obtain that, for 1/2 6 ‖x‖ < 1,

(2.10)
|Df(x)(w)|

√
1− ‖x‖2√

(1− ‖x‖2)‖w‖2 + |〈w, x〉|2
6 C.

Furthermore, ‖Df(x)‖ is bounded for ‖x‖ < 1/2 by the maximum principle for

holomorphic mappings. Then

(2.11)
|Df(x)(w)|

√
1− ‖x‖2√

(1− ‖x‖2)‖w‖2 + |〈w, x〉|2
6 ‖Df(x)‖ 6 C.

Hence, by (2.10) and (2.11), f ∈ T1/2.

Conversely, supposing f ∈ T1/2, then for x ∈ B and y ∈ ∂B with 〈x, y〉 = 0 we

have

|Df(x)(y)| = |Df(x)(y)|
√

1− ‖x‖2√
(1− ‖x‖2)‖y‖2 + |〈y, x〉|2

.

Hence, |Df(x)(y)| is bounded.
(iii) Note that Tα ⊆ Bα. It remains to show Bα ⊆ Tα for α > 1/2. Let us show

first that if a holomorphic function F : B2 → C satisfies

‖F‖Bα(B2) = sup
z=(z1,z2)∈B2

(1− |z|2)α‖DF (z)‖ < ∞,

then

(2.12)
∣∣∣
∂F

∂z2
(z1, 0)

∣∣∣(1 − |z1|2)α−1/2 6 C(α)‖F‖Bα(B2) ∀ z1 ∈ D.
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To this end, set s = 1√
3
(1− |z1|2)1/2 for z1 ∈ D. It holds that

∂2F

∂z2∂z1
(z1, 0) =

1

2πi

∫

|w|=s

∂F

∂z1
(z1, w)

dw

w2
,

then

∣∣∣
∂2F

∂z2∂z1
(z1, 0)

∣∣∣ 6
‖F‖Bα(B2)

s(1− |z1|2 − s2)α
=

3α+1/2‖F‖Bα(B2)

2α(1− |z1|2)α+1/2
6

3α+1/2‖F‖Bα(B2)

2α(1− |z1|)α+1/2
.

Combining this with the formula

∂F

∂z2
(z1, 0)−

∂F

∂z2
(0, 0) = z1

∫ 1

0

∂2F

∂z2∂z1
(tz1, 0) dt,

we obtain

∣∣∣
∂F

∂z2
(z1, 0)

∣∣∣ 6
∣∣∣
∂F

∂z2
(0, 0)

∣∣∣+
3α+1/2‖F‖Bα(B2)

2α
(
α− 1

2

)
(
(1− |z1|)−α+1/2 − 1

)
.

Hence, for α > 1/2,

(1− |z1|)α−1/2
∣∣∣
∂F

∂z2
(z1, 0)

∣∣∣ 6
(
1 +

3α+1/2

2α
(
α− 1

2

)
)
‖F‖Bα(B2),

and (2.12) follows. Based on this result and applying the method used in Lemma 6 (i),

we can easily obtain that, for f ∈ Bα,

(1− ‖x‖2)α−1/2|Df(x)(y)| 6 C(α)‖f‖1,α

for x ∈ B and y ∈ ∂B with 〈x, y〉 = 0.

Notice that for any w = zx + y ∈ E with z ∈ C, x ∈ B and y ∈ E such that

〈x, y〉 = 0,

|Df(x)(w)|(1 − ‖x‖2)α√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

6 ‖Df(x)‖(1−‖x‖2)α+
∣∣∣D(x)

( y

‖y‖
)∣∣∣(1−‖x‖2)α−1/2,

which shows Bα ⊆ Tα for α > 1/2, as desired. �

P r o o f of Theorem 4. (i)⇒(ii) Suppose that f is a Bloch function on B. Let

D(z0, r) be a schlicht disk in the range of f . Then there exists a holomorphic function

g : D → B such that

f ◦ g(z) = z0 + rz.
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Applying the Schwarz lemma for holomorphic functions (cf. [6], page 287), we have

(1− ‖g(0)‖2)‖Dg(0)‖2 + |〈g(0), Dg(0)〉|2
(1− ‖g(0)‖2)2 6 1.

Let g(0) = x and Dg(0) = w. Then

r = |Df(x)(w)| 6 |Df(x)(w)|(1 − ‖x‖2)√
(1− ‖x‖2)‖w‖2 + |〈w, x〉|2

6 ‖∇̃f(x)‖,

which shows that the radii of the schlicht disks in the range of f are bounded above

by Qf := sup
x∈B

‖∇̃f(x)‖.
(ii)⇒(i) Suppose the radii of the schlicht disks in the range of f are bounded above

by R. For any fixed y ∈ ∂B, define g : D → B by g(z) = zy. Fix x ∈ B. By Bloch’s

theorem, the holomorphic function f ◦ϕx ◦ g has a schlicht disk in its range of radius

B|(f ◦ ϕx ◦ g)′(0)| = B|Df ◦ ϕx(0)(y)|,

where B denotes Bloch’s constant.

Therefore, by assumption, it follows that

|Df ◦ ϕx(0)(y)| 6
R

B

for all x ∈ B and y ∈ ∂B, thus f is a Bloch function, as desired.

(ii)⇔(iii) In the proofs above, we have

R 6 Qf 6
R

B
.

Note that the schlicht disks in the range of f are exactly those disks which are schlicht

disks in the range of f ◦ g for some g ∈ H(D,B). The desired result follows.

(iii)⇔(iv) Following the same arguments as in (6)⇔(7) in [19], Theorem 3.4, one
can prove our result and we omit its details here.

(v)⇒(i) Note that any h ∈ Ff satisfies h(0) = 0. By hypothesis, we have that

{‖Df ◦ φ(0)‖ : φ ∈ Aut(B)} = {‖Dh(0)‖ : h ∈ Ff

}

is bounded, as claimed.

(i)⇒(v) The inequality

‖Df ◦ φ(x)‖ = ‖Df ◦ φ ◦ ϕx(0)(Dϕx(0))
−1‖ 6

Qf

1− ‖x‖2 ,

implies that the family Ff is a family of normal functions such that Mh is uniformly

bounded above by Qf . Now the proof is complete. �
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3. Applications

Hardy and Littlewood [8] gave a characterization of the holomorphic Lipschitz

space Λα(D) of order α ∈ (0, 1] on the unit open disk D of C, which states that

a holomorphic function f on D satisfies

sup
z,w∈D

z 6=w

|f(z)− f(w)|
|z − w|α < ∞

if and only if

(3.1) sup
z∈D

(1− |z|2)1−α|f ′(z)| < ∞.

In [10], Krantz extended this result to harmonic functions. See also the version

of the Hardy-Littlewood theorem for quaternionic slice regular functions [17]. As an

application of Theorem 1, we first establish the Hardy-Littlewood theorem in the

infinite-dimensional Hilbert space.

Denote

Lipα :=

{
f ∈ H(B) : sup

x,y∈B

x 6=y

|f(x)− f(y)|
‖x− y‖α < ∞

}
.

Theorem 9. Let α ∈ (0, 1]. Then Lipα = B1−α.

P r o o f. Taking the same arguments as in [18], Lemma 6.4.8, one can show easily

the inclusion B1−α ⊆ Lipα.

Conversely, let f ∈ Lipα and x ∈ ∂B. Let us consider the holomorphic function

F : D → C given by F (z) = f(zx), which is in Λα(D). By the classical Hardy-

Littlewood theorem, we have

sup
z∈D

(1− |z|2)1−α|F ′(z)| < ∞,

which implies that

sup
x∈B

(1 − ‖x‖2)1−α|Rf(x)| < ∞.

From Theorem 1, it follows that f ∈ B1−α. �

Holland and Walsh [9] further considered the Hardy-Littlewood theorem in the

limit case α = 0 for holomorphic Bloch spaces and proved that a holomorphic func-

tion f on D satisfies

sup
z∈D

(1− |z|2)|f ′(z)| < ∞
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if and only if

(3.2) sup
z,w∈D

z 6=w

√
(1− |z|2)(1− |w|2)

∣∣∣
f(z)− f(w)

z − w

∣∣∣ < ∞.

The extensions to higher dimensions of the Holland-Walsh result as in (3.2) were

obtained in [14], [16] for holomorphic functions in the unit ball of Cn. Later, Pavlović

found that the Holland-Walsh result holds even for an arbitrary C1-function defined

on the unit ball of Rn, see [15].

In [23] Zhao gave a characterization of holomorphic Bloch type spaces on the unit

ball of Cn.

Theorem 10. Let 0 < α 6 2. Let λ be any real number satisfying the following

conditions:

(i) 0 6 λ 6 α if 0 < α < 1;

(ii) 0 < λ < 1 if α = 1;

(iii) α− 1 6 λ 6 1 if 1 < α 6 2.

Then a holomorphic function f on the open unit ball Bn of Cn is such that

sup
z∈Bn

(1 − |z|2)α|∇f(z)| < ∞

if and only if

sup
z,w∈Bn

z 6=w

(1− |z|2)λ(1 − |w|2)α−λ |f(z)− f(w)|
|z − w| < ∞.

For more relative equivalent characterizations of Bloch type functions in the finite-

dimensional Euclidean space, we refer to [2], [3], [13], [22] and references therein.

In [23], Zhao also offered some examples to show that the conditions on α and λ in

Theorem 10 cannot be improved. In fact, Theorem 10 does hold for α = λ = 0 and

holds for any C1-function defined on the unit ball of any infinite dimensional Hilbert

space. Recently, Dai and Wang in [4] revealed the reason in the theory why some

equivalent characterizations of the Bloch type space require extra conditions for α.

In the present paper, we will show the main results in [4] still hold for holomorphic

functions defined in any infinite-dimensional Hilbert space.

Denote

Sα,λ :=

{
f ∈ H(B) : sup

x,y∈B

x 6=y

(1− ‖x‖2)λ(1− ‖y‖2)α−λ |f(x)− f(y)|
‖x− y‖ < ∞

}
.
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Theorem 11.

(i) Let α, λ be any real numbers satisfying the following conditions:

(a) 0 < λ < α− 1 if 1 < α 6 2;

(b) 0 < λ 6 α/2 if α > 2.

Then Sα,λ = Bλ+1.

(ii) Let α, λ be any real numbers satisfying the following conditions:

(a) 1 < λ < α if 1 < α 6 2;

(b) α/2 < λ 6 α if α > 2.

Then Sα,λ = Bα−λ+1.

(iii) Let α > 1. Then Sα,λ = H∞ for λ = 0 or λ = α.

Due to Theorems 10 and 11, the space Sα,λ is described completely for all cases

0 6 λ 6 α.

In order to prove Theorem 11, we first generalize a result in [24] by Theorem 1 as

follows.

Lemma 12. Let α > 1. Then Bα = H∞
α−1.

P r o o f. Let x ∈ ∂B and f ∈ H∞
α−1 with ‖f‖H∞

α−1
= 1. Let us consider the holo-

morphic function F : D → C given by F (z) = f(zx). Then (1 − |z|2)α−1|F (z)| 6 1.

By [24], Proposition 7, there exists a constant C > 0 such that

(1 − |z|2)α|F ′(z)| 6 C ∀ z ∈ D,

that is

(1 − |z|2)α|Df(zx)(x)| 6 C ∀ z ∈ D,

which implies

(1− ‖y‖2)α|Rf(y)| 6 C ∀ y ∈ B.

By virtue of Theorem 1, if follows that f ∈ Bα.

Conversely, let f ∈ Bα, then we have F ∈ Bα, which is also in H∞
α−1 by [24],

Proposition 7 again. Consequently, we have f ∈ H∞
α−1. �

P r o o f of Theorem 11. (i) Let f ∈ Bλ+1. For x, y ∈ B, we choose a path

γ(t) = tx+ (1− t)y, t ∈ [0, 1] connecting x and y. Then it follows that

|f(x) − f(y)| =
∣∣∣∣
∫ 1

0

d

dt
f(γ(t)) dt

∣∣∣∣ =
∣∣∣∣
∫ 1

0

Df(γ(t))(x− y) dt

∣∣∣∣

6

∫ 1

0

|Df(γ(t))(x − y)| dt 6
∫ 1

0

‖Df(γ(t))‖‖x− y‖ dt
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6 C‖x− y‖
∫ 1

0

1

(1− ‖γ(t)‖2)λ+1
dt

6 C‖x− y‖
∫ 1

0

1

(1− t‖x‖ − (1− t)‖y‖)λ+1
dt.

From the proof of [4], Theorem 3.1, we have

∫ 1

0

1

(1− t‖x‖ − (1 − t)‖y‖)λ+1
dt 6

C

(1− ‖x‖2)λ(1− ‖y‖2)α−λ
.

Hence,

|f(x)− f(y)| 6 C‖x− y‖
(1− ‖x‖2)λ(1− ‖y‖2)α−λ

,

which shows that f ∈ Sα,λ.

Conversely, the method in [4], Theorem 3.1 can be applied word by word to prove

the inclusion Sα,λ ⊆ Bλ+1 by Lemma 12.

(ii) It follows by using (i). It is easy to check (iii) if we can prove that

(3.3) |f(x)− f(a)| 6 2
‖x− a‖
1− ‖x‖ ∀x, a ∈ B,

for holomorphic functions f ∈ H∞ with ‖f‖H∞ = 1.

Let us show inequality (3.3). From the Schwarz lemma for holomorphic functions,

we have

|f(x)− f(0)| 6 2‖x‖ ∀x ∈ B.

Applying this inequality to the holomorphic function f ◦ ϕa, we conclude that

|f(x)− f(a)| 6 2‖ϕa(x)‖ 6 2
‖a− x‖

|1− 〈x, a〉| 6 2
‖x− a‖
1− ‖x‖ ∀x, a ∈ B,

as desired. �
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