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Abstract. We begin by giving a criterion for a number field K with 2-class group of rank 2
to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic
number fields Q(

√
d) that have a metacyclic nonabelian Hilbert 2-class field tower.
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1. Introduction

LetK be a number field and CK be the class group of K. The maximal unramified

abelian extension ofK denoted byK(1) is called the Hilbert class field ofK. We recall

that by the Artin reciprocity law we have Gal(K(1)/K) ≃ CK . For a nonnegative

integer n, let K(n) be defined inductively as K(0) = K and K(n+1) = (K(n))(1); then

K ⊂ K(1) ⊂ K(2) ⊂ . . . ⊂ K(n) ⊂ . . .

is called the Hilbert class field tower of K. If n is the minimal integer such that

K(n) = K(n+1), then the tower is called to be finite of length n. If there is no such n,

then the tower is called to be infinite. We denote K(∞) =
⋃

i∈N

K(i). We recall that

K(∞)/K is a Galois extension and the tower of K is finite if and only if K(∞)/K is

of finite degree.

Let p be a prime integer number,K
(1)
p , the maximal unramified abelian p-extension

of K, is called the Hilbert p-class field of K. We recall that by the class field theory

we have Gal(K
(1)
p /K) = CK,p, the p-Sylow subgroup of CK which is called the p-class
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group of K. For a nonnegative integer n let K
(n)
p be defined inductively as K

(0)
p = K

and K
(n+1)
p = (K

(n)
p )

(1)
p ; then

K ⊂ K(1)
p ⊂ K(2)

p ⊂ . . . ⊂ K(n)
p ⊂ . . .

is called the Hilbert p-class field tower of K. If n is the minimal integer such that

K
(n)
p = K

(n+1)
p , then this tower is called to be finite of length n. If there is no such n,

then the tower is called to be infinite. We denote K
(∞)
p =

⋃

i∈N

K
(i)
p . We recall that

K
(∞)
p /K is a Galois extension and the tower of K is finite if and only if K

(∞)
p /K is

of finite degree.

We recall that the 2-rank of CK denoted by rank2(CK) is defined as the dimension

of the F2-vector space CK/C2
K .

It is well known that:

⊲ If rank2(CK) > 6, then K has an infinite Hilbert 2-class field tower.

⊲ If rank2(CK) = 4 or 5, then there is no known real quadratic field with finite

Hilbert 2-class field tower. In these cases, according to Martinet’s conjecture, the

Hilbert 2-class field tower of K is infinite (see [5]).

⊲ If rank2(CK) = 2 or 3, then there are both real quadratic number fields with a finite

Hilbert 2-class field tower and real quadratic number fields with infinite Hilbert

2-class field tower (see the works of Schoof, Martinet, Mouhib ([8] and [7]), . . . ).

⊲ If rank2(CK) = 1, then K has a finite Hilbert 2-class field tower of length 1.

So for the case rank2(CK) = 2 there is no known decision procedure to determine

whether or not the Hilbert 2-class field tower of a given number field K is infi-

nite. In this paper, we give a new family of real quadratic number fields K with

rank2(CK) = 2 and finite Hilbert 2-class field tower. More precisely, we will deter-

mine all real quadratic number fields K that have a metacyclic Hilbert 2-class field

tower.

2. Preliminary results

2.1. The rank of a group. Let G be a group.

⊲ If there exists a finite subset X of G such that G = 〈X〉, then we say that G has
a finite rank defined as

rank(G) = min{|X | : X ⊂ G and G = 〈X〉}.

If no such subset exists, then G is called to be of infinite rank.

⊲ Let G′ = [G,G] be the commutator subgroup of G. The quotient G/G′ is called

the abelianization of G and is denoted by Gab. G/p = Gab/(Gab)p is a vector
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space over Fp = Z/pZ and the integer rankp(G) = dimFp
(G/p) is called the p-rank

of G. We note that:

⊲⊲ if G is abelian, then rankp(G) = dimFp
(G/Gp);

⊲⊲ rankp(G) = rankp(G
ab).

2.2. Metacyclic group. A group G is called metacyclic if there is a normal

subgroup N of G such that N and G/N are cyclic. We recall that:

(1) if G is metacyclic, then any subgroup H of G is metacyclic;

(2) if G is metacyclic and H is a normal subgroup of G, then G/H is metacyclic.

Let G be a metacyclic group and N a normal cyclic subgroup of G such that G/N

is cyclic. If we denote N = 〈a〉 and G/N = 〈bN〉, then G = 〈a, b〉 and thus, G is
generated by 2 elements.

Proposition 1. Let K be a number field and p a prime integer.

(1) if G = Gal(K(∞)/K) is metacyclic, then K(∞) = K(2);

(2) if Gp = Gal(K
(∞)
p /K) is metacyclic, then K

(∞)
p = K

(2)
p .

P r o o f. (1) We haveK ⊂ K(1) ⊂ K(∞). By definition, K(1) is the largest abelian

extension of K contained in K(∞). We deduce that Gal(K(∞)/K(1)) ∼= G′. Let N

be a normal cyclic subgroup of G such that G/N is cyclic. Since G/N is abelian,

G′ ⊂ N and then G′ is cyclic. We deduce that K(∞)/K(1) is abelian unramified. So

K(∞) ⊂ K(2) and then K(∞) = K(2).

(2) Using the same proof we prove 2. �

Proposition 2. Let K be a number field and p a prime number. If Gp =

Gal(K
(∞)
p /K) is metacyclic nonabelian, then rankp(CK) = 2.

P r o o f. Since Gp is nonabelian, then K
(1)
p 6= K

(2)
p = K

(∞)
p . We have CK,p ≃

Gp/[Gp, Gp], thus CK,p is metacyclic and we have rank(CK,p) 6 2 and so

rank(CK,p) = 1 or 2. If rank(CK,p) = 1, then according to the result of Taussky

(see [9]), K
(2)
p = K

(1)
p , which is impossible. In conclusion, rankp(CK) = 2. �

R em a r k 1. Let K be a quadratic number field.

(1) If G2 = Gal(K
(∞)
2 /K) is metacyclic nonabelian, then K has three quadratic

extensions L1, L2 and L3 contained in K(1).

(2) According to Proposition 2, we will be limited to determine the real quadratic

number fields K = Q(
√
d) with rank2(CK) = 2 that have a metacyclic Hilbert

2-class field tower. To select those with non abelian tower, we can use Theorem 1

or Theorem 2 in [3] depending on whether d is the sum of two squares or not,

respectively.
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Lemma 1. If G is a nonmetacyclic two-generator 2-group, then the number of

two-generator maximal subgroups of G is even.

P r o o f. See [4]. �

Theorem 1. Let K be a number field such that rank2(CK) = 2 and L1, L2

and L3 be the three quadratic extensions of K contained in K(1). Let us denote

G = Gal(K
(∞)
2 /K) and Ci = CLi,2 for i = 1, 2, 3. Then G is metacyclic if and only

if rank(Ci) 6 2 for i = 1, 2, 3.

P r o o f. Suppose that G is metacyclic.

If G is abelian, then it is easy to see that for all i, rank(Ci) 6 rank(G) = 2.

Suppose that G is not abelian. For each i ∈ {1, 2, 3},K(1)
2 /K is abelian unramified,

thus K
(1)
2 /Li is also abelian unramified, hence K

(1)
2 ⊂ L

(1)
i2 . In the same way, we

prove that L
(1)
i2 ⊂ K

(2)
2 and thus

K ⊂ Li ⊂ K
(1)
2 ⊂ L

(1)
i2 ⊂ K

(2)
2 .

Let Gi = Gal(K
(2)
2 /Li) and H = Gal(K

(2)
2 /L

(1)
i2 ).

K Li K
(1)
2 L

(1)
i2 K

(2)
2

G

Ci

Gi

Gi is a subgroup of G. So Gi is metacyclic and thus Ci
∼= Gi/H is metacyclic, too.

We deduce that rank(Ci) 6 2.

Suppose that rank(Ci) 6 2 for i = 1, 2, 3.

If there exists i such that rank(Ci) = 1, then according to the result of Taussky

(see [9]), L
(2)
i2 = L

(1)
i2 and then K

(2)
2 = L

(2)
i2 = L

(1)
i2 .

K Li K
(1)
2 L

(1)
i2 = K

(2)
2

G

Ci

We have Ci is cyclic and G/Ci
∼= Z/2Z is cyclic, too. We deduce that G is metacyclic.

Suppose that rank(Ci) = 2 for all i ∈ {1, 2, 3}. Let C be a maximal subgroup
of G. We have [G :C] = 2, so if L is the subfield of K

(∞)
2 /K fixed by C, then L = Li

for some i ∈ {1, 2, 3}. Since L(1)
2 is the maximal abelian extension of L contained

in K
(∞)
2 , then Ci

∼= C/C′ and rank(C) = rank(Ci) = 2. Using Lemma 1 and since

rank(G) = rank(CK) = 2, G is metacyclic. �
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3. Fields Q(
√
d) with d sum of two squares having

a nonabelian metacyclic tower

Lemma 2. Let L = Q(
√
m,

√
δ) be a biquadratic field such that m = 2 or m is

a prime integer ≡ 1 (mod 4) and δ is a square-free positive integer not divisible by

any prime ≡ 3 (mod 4). If r is the number of primes of Q(
√
m) that ramify in L

and H is the 2-class group of L, then we have rank(H) = r − 1 or r − 2 and

(1) if m ≡ 1 (mod 4), then rank(H) = r − 1 if and only if















for all q | δ such that
( q

m

)

= 1 we have
(m

q

)

4
=

( q

m

)

4
,

( 2

m

)

4
= (−1)(m−1)/8 if m ≡ 1 (mod 8) and δ = 2c;

(2) if m = 2, then rank(H) = r−1 if and only if for all q|δ such that q ≡ 1 (mod 8)

we have
(

2
q

)

4
= (−1)(q−1)/8.

P r o o f. See Theorem 2 in [1]. �

Let d be a square-free integer which can be written as the sum of two squares

and K = Q(
√
d). If rank2(CK) = 2, then, by the genus theory, d can be written as

d = p1p2p3, where pi’s are distinct prime integers such that for all i, pi 6≡ 3 (mod 4).

Theorem 2. LetK = Q(
√
p1p2p3), where p1, p2 and p3 are distinct prime integers

such that p1, p2 6≡ 3 (mod 4) and p3 ≡ 1 (mod 4) or p3 = 2. Then the Hilbert 2-class

field tower of K is metacyclic except for the case:

after a permutation of pi we have
(p2
p1

)

=
(p3
p1

)

= 1 and

(p1
p2

)

4
·
(p2
p1

)

4
=

(p1
p3

)

4
·
(p3
p1

)

4
= 1.

P r o o f. Let p1, p2 and p3 be three prime numbers such that p1 ≡ p2 ≡ 1 (mod 4)

and p3 ≡ 1 (mod 4) or p3 = 2. The three unramified quadratic extensions of K =

Q(
√
p1p2p3) are L1 = K(

√
p1) = Q(

√
p1,

√
p2p3), L2 = K(

√
p2) = Q(

√
p2,

√
p1p3)

and L3 = K(
√
p3) = Q(

√
p3,

√
p1p2). We put Ci = CLi,2. From Theorem 1, the

metacyclicity of G = Gal(K
(∞)
2 /K) depends on rank(Ci) for i = 1, 2, 3. Let us

calculate them:

Assume for the moment that p3 ≡ 1 (mod 4). Let us take m = p1, δ = p2p3,

H = C1 and apply Lemma 2: The primes of Q(
√
p1) that ramify in L1 = K(

√
p1)
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are exactly those which are above p2 and p3. The number r of those primes depends

on the two Legendre symbols
(

p2

p1

)

and
(

p3

p1

)

, and we have the following table:

(p2
p1

) (p3
p1

)

r rank(C1)

1 1 4 3 if
(p2
p1

)

4
=

(p1
p2

)

4
and

(p3
p1

)

4
=

(p1
p3

)

4
, 2 if not

1 −1 3 2 if
(p2
p1

)

4
=

(p1
p2

)

4
, 1 if not

−1 1 3 2 if
(p3
p1

)

4
=

(p1
p3

)

4
, 1 if not

−1 −1 2 1

We will have similar tables for C2 and C3.

Now suppose that p3 = 2. We recall that for every prime integer p ≡ 1 (mod 8)

we have
(p

2

)

4
= (−1)(p−1)/8.

So the calculation of rank(Ci) will be done in the same way as in the case p3 ≡ 1

(mod 4).

We deduce, using Theorem 1, that G is metacyclic if and only if the following

condition (C) is not satisfied:

After a permutation of pi’s, we have:
(p2
p1

)

=
(p3
p1

)

= 1 and
(p1
p2

)

4
·
(p2
p1

)

4
=

(p1
p3

)

4
·
(p3
p1

)

4
= 1.(C)

�

4. Fields Q(
√
D) where D is not the sum of two squares having

a non abelian metacyclic tower

Let K = Q(
√
D), where D is a square-free integer which is not the sum of two

squares and DK the discriminant of K. If rank2(CK) = 2, then, by the genus theory,

we will have one of the following cases: D = q1q2q3q4, D = p1p2q1q2, D = q1q2q3,

D = p1p2q1, D = 2q1q2q3, D = 2p1q1q2 or D = 2p1p2q1, where the pi’s are distinct

prime integers ≡ 1 (mod 4) and the qi’s are distinct prime integers ≡ 3 (mod 4).

We will discuss all these cases using the number of negative prime discriminants

dividing DK and we will determine all the fields of the above forms that have a

metacyclic tower.
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4.1. Some lemmas. Let d and m be two positive square-free integers, L =

Q(
√
m,

√
d) be a biquadratic field, r the number of primes of Q(

√
m) that ramify

in L, H the 2-ideal class group of L and

S =
{

q1 odd prime integer : q1 | d and
(m

q1

)

= 1
}

.

In the rest of this paper, we will use these notations for any unramified quadratic

extension of a quadratic field K = Q(
√
D) after writing it in the form Q(

√
m,

√
d).

Lemma 3. Suppose that m = 2 or m is a prime integer ≡ 1 (mod 4). If there is

a prime integer q ≡ 3 (mod 4) that divides d, then rank(H) = r− 2 or r− 3 and we

have:

⊲ If m = 2 or m ≡ 5 (mod 8), then rank(H) = r − 2 ⇔
(

−1
q1

)

= 1 for all q1 ∈ S;

⊲ If m ≡ 1 (mod 8), then rank(H) = r−2 if and only if the following two conditions

are satisfied:

(c1)
(

−1
q1

)

= 1 for all q1 ∈ S.

(c2) d = 2c with
(

−1
c

)

= 1 or d ≡ 1 (mod 4).

P r o o f. See Theorem 1 in [1]. �

Lemma 4. Let q, q′ and q′′ be three prime integers such that q ≡ q′ ≡ q′′ ≡ −1

(mod 4), m ∈ {q, 2q, q′q′′}. Let εm be the fundamental unit of Q(
√
m). Then εm

can be written as εm = amu2, where u ∈ Q(
√
m) and am = 2 if m = q or 2q, and

am = q′ or q′′ if m = q′q′′.

P r o o f. Let m ∈ {q, 2q, q′q′′} and km = Q(
√
m), and let N be the norm map

of the extension km/Q. Since m is not the sum of two squares, then N(εm) = 1.

By Lemma 2.3 in [6] there exists a positive square free integer bm dividing Dm, the

discriminant of km such that bmεm = α2, where α ∈ km. We note that bm 6= 1

since εm is a fundamental unit of km.

Ifm = q′q′′, then Dm = m and bm = q′, q′′ or q′q′′. If bm = q′q′′, then εm =
(

α√
m

)2

which is impossible since εm is a fundamental unit of km. We conclude that bm = q′

or q′′. If bm = q′, for example, then

εm =
1

q′
α2 = q′

(α

q′

)2

= q′′
( α√

m

)2

.

If m = q, then bm = 2, q or 2q. If bm = q, then εm =
(

α√
m

)2
which is impossible

since εm is a fundamental unit of km. We conclude that bm = 2 or 2q. If bm = 2,

then εm = 2
(

α
2

)2
. If bm = 2q, then εm = 2

(

α
2
√
m

)2
.
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If m = 2q, then bm = 2, q or 2q. If bm = 2q, then εm =
(

α√
m

)2
which is impossible

since εm is a fundamental unit of km. We conclude that bm = 2 or q. If bm = q, then

εm = 2
(

α√
m

)2
. If bm = 2, then εm = 2

(

α
2

)2
. �

Let q, q′, q′′, m, εm and am be as in the above lemma and d a positive square-free

integer. Let L = Q(
√
m,

√
d) and H the 2-ideal class group of L.

We note that we will use these notations in the rest of this paper.

Lemma 5. With the above assumptions and notations, if m = q, 2q or m =

q′q′′ ≡ 5 (mod 8), then rank(H) = r − 1− e, where e = 0, 1 or 2, and we have:

⊲ e = 0 if and only if
(

−1
q1

)

=
(

am

q1

)

= 1 for all q1 ∈ S;

⊲ e = 2 if and only if exists distinct primes q1, q2, q3 ∈ S such that

(−1

q1

)

=
(am
q1

)

= −1 and
(−1

q3

)

6=
(am
q3

)

.

P r o o f. See Theorem 3 in [2]. �

Lemma 6. If m = q′q′′ ≡ 1 (mod 8), then rank(H) = r − 1 − e with e = 0, 1

or 2, and we have:

⊲ e = 0 if and only if
(

−1
q1

)

=
(

am

q1

)

= 1 for all q1 ∈ S and d ≡ 1 (mod 4) or d = 2c

with
(

−1
c

)

=
(

2
q′

)

= 1;

⊲ e = 2 if and only if one of the following conditions is satisfied:

(i) d ≡ −1 (mod 4) and exists q1 ∈ S :
(

−1
q1

)

6=
(

am

q1

)

,

(ii) d ≡ 1 (mod 4) and exists q1, q2, q3 ∈ S such that

(−1

q1

)

=
(am
q2

)

= −1 and
(−1

q3

)

6=
(am
q3

)

,

(iii) d = 2c with
( 2

q′

)

= −
(−1

c

)

= 1

and exists q1 ∈ S such that

(−1

q1

)

6=
(am
q1

)

or
( 2

q′

)

= −
(−1

c

)

= −1

and exists q1 ∈ S such that
(

−1
q1

)

= −1 or
(

2
q′

)

=
(

−1
c

)

= 1 and exists distinct

primes q1, q2, q3 ∈ S such that

(−1

q1

)

=
(am
q2

)

= −1 and
(−1

q3

)

6=
(am
q3

)

.

P r o o f. See Theorem 4 in [2]. �

184



4.2. Case where DK is divisible by at least 3 odd negative prime dis-

criminants.

Theorem 3. The Hilbert 2-class field tower of K is metacyclic for the cases

K = Q(
√
q1q2q3q4), K = Q(

√
q1q2q3) and K = Q(

√
2q1q2q3), where the qi’s are

primes ≡ 3 (mod 4).

P r o o f. We discuss the 3 cases:

Case K = Q(
√
q1q2q3q4): The quadratic extensions of K contained in K(1) are

L1 = K(
√
q1q2) = Q(

√
q1q2,

√
q3q4), L2 = K(

√
q1q3) = Q(

√
q1q3,

√
q2q4) and L3 =

K(
√
q1q4) = Q(

√
q1q4,

√
q2q3). We put Ci = CLi,2.

Let us obtain an upper bound for the value of rank(C1). We put m = q1q2 and

d = q3q4. The primes of Q(
√
m) that ramify in L1 are exactly those which are above

q3 and q4. Their number r is 6 4 and r = 4 if and only if
(

m
q3

)

=
(

m
q4

)

= 1. In this

case S = {q3, q4}.
If r 6 3, then by Lemma 5 in the case m ≡ 5 (mod 8) or Lemma 6 in the case

m ≡ 1 (mod 8), we have rank(C1) = 1.

If r = 4, then the condition to have e = 0 in Lemma 5 and Lemma 6 is not satisfied

since
(

−1
q3

)

= −1 and then rank(C1) 6 2.

In the same way, we have rank(C2), rank(C3) 6 2 and we conclude using Theo-

rem 1.

Case K = Q(
√
q1q2q3): The quadratic extensions of K contained in K(1) are

L1 = K(
√
q1q2) = Q(

√
q3,

√
q1q2), L2 = K(

√
q2q3) = Q(

√
q1,

√
q2q3) and L3 =

K(
√
q3q1) = Q(

√
q2,

√
q3q1)). We put Ci = CLi,2. Let us compute rank(C1). We

put d = q3 and m = q1q2. The only primes of Q(
√
m) that ramify in L1 are those

which are above 2 and q3, so r 6 4 and then rank(C1) = r−1−e 6 4−1−e = 3−e.

In the case m ≡ 5 (mod 8), 2 is inert in Q(
√
m), then r 6 3 and rank(C1) 6 2. If

m ≡ 1 (mod 8), then according to Lemma 6, e 6= 0 and then rank(C1) 6 2. Similarly,

we have rank(Ci) 6 2 for i = 2, 3 and the proof for this case is completed.

Case K = Q(
√
2q1q2q3): The quadratic extensions of K contained in K(1) are

the Li = Q(
√
2qi,

√
qjqk), where i ∈ {1, 2, 3} and {i, j, k} = {1, 2, 3}. Let us put

Ci = CLi,2 for i = 1, 2, 3. To calculate rank(C1), we apply Lemma 5 with m = 2q1
and d = q2q3. The primes of Q(

√
m) that ramify in L1 = Q(

√
m,

√
d) are those

which are above q2 and q3. If
((

m
q2

)

,
(

m
q3

))

6= (1, 1), then their number r is 6 3, and

rank(C1) = r − 1 − e 6 2. If
((

m
q2

)

,
(

m
q3

))

= (1, 1), then r = 4, but by Lemma 5,

e 6= 0 and then rank(C1) = r − 1− e 6 2.

Similarly, we prove that rank(C2) 6 2 and rank(C3) 6 2. We conclude using The-

orem 1. �
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4.3. Case where DK is divisible by exactly 1 odd negative prime dis-

criminant.

Theorem 4. For K = Q(
√
p1p2q1) and K = Q(

√
2p1p2q1) with p1 ≡ p2 ≡

−q1 ≡ 1 (mod 4), the Hilbert 2-class field tower is metacyclic except for the following

two cases:

(i) after permutations of pi’s, we have:
(

2
p1

)

=
(

p2

p1

)

=
(

q1
p1

)

= 1;

(ii)
(

q1
p1

)

=
(

q1
p2

)

=
(

2
p1

)

=
(

2
p2

)

= 1.

P r o o f. We discuss the 2 cases:

Case K = Q(
√
p1p2q1): The quadratic extensions ofK contained in K

(1) are L1 =

K(
√
p1) = Q(

√
p1,

√
p2q1), L2 = K(

√
p2) = Q(

√
p2,

√
p1q1) and L3 = K(

√
p1p2) =

K(
√
q1) = Q(

√
q1,

√
p1p2). We put Ci = CLi,2.

To compute the rank of C1, let us apply Lemma 3 with m = p1 and d = p2q1.

The primes of Q(
√
m) that ramify in L1 are those which are above 2, p2 and q1. We

have the following table:

( 2

p1

) (p2
p1

) ( q1
p1

)

r rank(C1)

1 1 1 6 3
1 1 −1 5 2
1 −1 1 5 2
1 −1 −1 4 1

−1 1 1 5 2
−1 1 −1 4 2
−1 −1 1 4 1
−1 −1 −1 3 1

Similarly, we calculate rank(C2).

To calculate the rank of C3, let us apply Lemma 5 with m = q1 and d = p1p2.

Note that in this case am = 2. The primes of Q(
√
m) that ramify in L3 are those

which are above p1 and p2. We have the following table:

( q1
p1

) ( q1
p2

)

r rank(C3)

1 1 4 3 if
( 2

p1

)

=
( 2

p2

)

= 1, 2 if not

1 −1 3 2 if
( 2

p1

)

= 1, 1 if not

−1 1 3 2 if
( 2

p2

)

= 1, 1 if not

−1 −1 2 1
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We conclude using Theorem 1 and the above tables.

Case K = Q(
√
2p1p2q1): the quadratic extensions of K contained in K(1) are

L1 = Q(
√
p1,

√
2p2q1), L2 = Q(

√
p2,

√
2p1q1) and L3 = Q(

√
2q1,

√
p1p2).

To calculate rank(C1) we take m = p1 and d = 2p2q1 and apply Lemma 3. We

have the following table:

( 2

p1

) (p2
p1

) ( q1
p1

)

r rank(C1)

1 1 1 6 3
1 1 −1 5 2
1 −1 1 5 2
1 −1 −1 4 1

−1 1 1 5 2
−1 1 −1 4 2
−1 −1 1 4 1
−1 −1 −1 3 1

We would have a similar table for rank(C2).

To calculate rank(C3) we put m = 2q1 and d = p1p2 and we apply Lemma 5. We

have the following table:

(2q1
p1

) (2q1
p2

)

r rank(C3)

1 1 4 3 if
( 2

p1

)

=
( 2

p2

)

= 1, 2 if not

1 −1 3 2 if
( 2

p1

)

= 1, 1 if not

−1 1 3 2 if
( 2

p2

)

= 1, 1 if not

−1 −1 2 1

We conclude by using Theorem 1. �

4.4. Case where DK is divisible by exactly 2 odd negative prime dis-

criminants.

Theorem 5. Let K = Q(
√
p1p2q1q2) with p1 ≡ p2 ≡ 1 (mod 4) and q1 ≡ q2 ≡ 3

(mod 4). Then the Hilbert 2-class field tower of K is metacyclic except for the

following two cases:

(i) After a permutation of pi’s, we have
(

p2

p1

)

=
(

q1
p1

)

=
(

q2
p1

)

= 1;

(ii)
(

q1
p1

)

=
(

q2
p1

)

=
(

q1
p2

)

=
(

q2
p2

)

= 1.
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P r o o f. The quadratic extensions of K contained in K(1) are L1 = K(
√
p1) =

Q(
√
p
1
,
√
p2q1q2), L2 = K(

√
p2) = Q(

√
p
2
,
√
p1q1q2) and L3 = K(

√
p1p2) =

Q(
√
p1p2,

√
q1q2). We put Ci = CLi,2.

Let us apply Lemma 3 with m = p1, d = p2q1q2 and H = C1: The primes

of Q(
√
p1) that ramify in L1 = K(

√
p1) are exactly those which are above p2, q1

and q2. Their number r depends on
(

p1

p2

)

,
(

p1

q1

)

and
(

p1

q2

)

. Since d ≡ 1 (mod 4), the

study of the cases m ≡ 1 (mod 8) and m ≡ 5 (mod 8) is the same and so we have

the following table:

(p2
p1

) ( q1
p1

) ( q2
p1

)

r rank(C1)

1 1 1 6 3

1 1 −1 5 2

1 −1 1 5 2

1 −1 −1 4 2

−1 1 1 5 2

−1 1 −1 4 1

−1 −1 1 4 1

−1 −1 −1 3 1

We would have a similar table for rank(C2).

To calculate rank(C3) we take m = q1q2, am = q1 and d = p1p2. The primes of

Q(
√
m) that ramify in L3 are exactly those which are above p1 and p2. Depending

on whether m ≡ 5 (mod 8) or m ≡ 1 (mod 8), we apply Lemma 5 or Lemma 6,

respectively. In the two cases we have the following table:

(m

p1

) (m

p2

)

r rank(C3)

1 1 4 3 if
( q1
p1

)

=
( q1
p2

)

= 1, 2 if not

1 −1 3 2 if
( q1
p1

)

= 1, 1 if not

−1 −1 2 1

We conclude using Theorem 1 and the two last tables above. �

Theorem 6. Let K = Q(
√
2p1q1q2) with p1 ≡ −q2 ≡ −q3 ≡ 1 (mod 4). The

Hilbert 2-class field tower of K is metacyclic except for the following cases:

(a)
(

2
p1

)

=
(

q1
p1

)

=
(

q2
p1

)

= 1,

(b)
(

2
p1

)

=
(

2
q1

)

=
(

2
q2

)

= 1,

(c)
(

2
q1

)

=
(

2
q2

)

=
(

p1

q1

)

=
(

p1

q2

)

= 1.
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P r o o f. The quadratic extensions of K contained in K(1) are L1 = Q(
√
p1,√

2q1q2), L2 = Q(
√
2,
√
p1q1q2) and L3 = Q(

√
q1q2,

√
2p1). Let us put Ci = CLi,2

for i = 1, 2, 3.

To compute rank(C1) we apply Lemma 3 with m = p1 and d = 2q1q2, and we

have the following table:

( 2

p1

) ( q1
p1

) ( q2
p1

)

r rank(C1)

1 1 1 6 3

1 1 −1 5 2

1 −1 1 5 2

1 −1 −1 4 2

−1 1 1 5 2

−1 1 −1 4 1

−1 −1 1 4 1

−1 −1 −1 3 1

To compute rank(C2) we apply Lemma 3 with m = 2 and d = p1q1q2 and we have

the following table:

( 2

p1

) ( 2

q1

) ( 2

q2

)

r rank(C2)

1 1 1 6 3

1 1 −1 5 2

1 −1 1 5 2

1 −1 −1 4 2

−1 1 1 5 2

−1 1 −1 4 1

−1 −1 1 4 1

−1 −1 −1 3 1

To compute rank(C3) we take m = q1q2, am = q1 and d = 2p1 and apply Lemma 5

or Lemma 6 depending on whether m ≡ 1 or 5 (mod 8), respectively, and we have

the following table:

( 2

q1q2

) ( p1
q1q2

)

r rank(C3)

1 1 4 3 if
(p1
q1

)

=
( 2

q1

)

= 1 2 if not

1 −1 3 6 2
−1 1 3 6 2
−1 −1 2 1
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We conclude by Theorem 1. �
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