Mathematica Bohemica

Said Essahel; Ahmed Dakkak; Ali Mouhib
Real quadratic number fields with metacyclic Hilbert 2-class field tower

Mathematica Bohemica, Vol. 144 (2019), No. 2, 177-190
Persistent URL: http://dml.cz/dmlcz/147758

Terms of use:

© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

REAL QUADRATIC NUMBER FIELDS WITH METACYCLIC HILBERT 2-CLASS FIELD TOWER

Said Essahel, Ahmed Dakkak, Ali Mouhib, Taza
Received September 7, 2017. Published online August 30, 2018.
Communicated by Simion Breaz

Abstract. We begin by giving a criterion for a number field K with 2 -class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb{Q}(\sqrt{d})$ that have a metacyclic nonabelian Hilbert 2-class field tower.

Keywords: class field tower; class group; real quadratic number field; metacyclic group MSC 2010: 11R11, 11R29, 11R37

1. Introduction

Let K be a number field and C_{K} be the class group of K. The maximal unramified abelian extension of K denoted by $K^{(1)}$ is called the Hilbert class field of K. We recall that by the Artin reciprocity law we have $\operatorname{Gal}\left(K^{(1)} / K\right) \simeq C_{K}$. For a nonnegative integer n, let $K^{(n)}$ be defined inductively as $K^{(0)}=K$ and $K^{(n+1)}=\left(K^{(n)}\right)^{(1)}$; then

$$
K \subset K^{(1)} \subset K^{(2)} \subset \ldots \subset K^{(n)} \subset \ldots
$$

is called the Hilbert class field tower of K. If n is the minimal integer such that $K^{(n)}=K^{(n+1)}$, then the tower is called to be finite of length n. If there is no such n, then the tower is called to be infinite. We denote $K^{(\infty)}=\bigcup_{i \in \mathbb{N}} K^{(i)}$. We recall that $K^{(\infty)} / K$ is a Galois extension and the tower of K is finite if and only if $K^{(\infty)} / K$ is of finite degree.

Let p be a prime integer number, $K_{p}^{(1)}$, the maximal unramified abelian p-extension of K, is called the Hilbert p-class field of K. We recall that by the class field theory we have $\operatorname{Gal}\left(K_{p}^{(1)} / K\right)=C_{K, p}$, the p-Sylow subgroup of C_{K} which is called the p-class
group of K. For a nonnegative integer n let $K_{p}^{(n)}$ be defined inductively as $K_{p}^{(0)}=K$ and $K_{p}^{(n+1)}=\left(K_{p}^{(n)}\right)_{p}^{(1)}$; then

$$
K \subset K_{p}^{(1)} \subset K_{p}^{(2)} \subset \ldots \subset K_{p}^{(n)} \subset \ldots
$$

is called the Hilbert p-class field tower of K. If n is the minimal integer such that $K_{p}^{(n)}=K_{p}^{(n+1)}$, then this tower is called to be finite of length n. If there is no such n, then the tower is called to be infinite. We denote $K_{p}^{(\infty)}=\bigcup_{i \in \mathbb{N}} K_{p}^{(i)}$. We recall that $K_{p}^{(\infty)} / K$ is a Galois extension and the tower of K is finite if and only if $K_{p}^{(\infty)} / K$ is of finite degree.

We recall that the 2-rank of C_{K} denoted by $\operatorname{rank}_{2}\left(C_{K}\right)$ is defined as the dimension of the \mathbb{F}_{2}-vector space C_{K} / C_{K}^{2}.

It is well known that:
\triangleright If $\operatorname{rank}_{2}\left(C_{K}\right) \geqslant 6$, then K has an infinite Hilbert 2-class field tower.
\triangleright If $\operatorname{rank}_{2}\left(C_{K}\right)=4$ or 5 , then there is no known real quadratic field with finite Hilbert 2-class field tower. In these cases, according to Martinet's conjecture, the Hilbert 2-class field tower of K is infinite (see [5]).
\triangleright If $\operatorname{rank}_{2}\left(C_{K}\right)=2$ or 3 , then there are both real quadratic number fields with a finite Hilbert 2-class field tower and real quadratic number fields with infinite Hilbert 2 -class field tower (see the works of Schoof, Martinet, Mouhib ([8] and [7]), ...).
\triangleright If $\operatorname{rank}_{2}\left(C_{K}\right)=1$, then K has a finite Hilbert 2-class field tower of length 1 .
So for the case $\operatorname{rank}_{2}\left(C_{K}\right)=2$ there is no known decision procedure to determine whether or not the Hilbert 2-class field tower of a given number field K is infinite. In this paper, we give a new family of real quadratic number fields K with $\operatorname{rank}_{2}\left(C_{K}\right)=2$ and finite Hilbert 2-class field tower. More precisely, we will determine all real quadratic number fields K that have a metacyclic Hilbert 2-class field tower.

2. Preliminary results

2.1. The rank of a group. Let G be a group.
\triangleright If there exists a finite subset X of G such that $G=\langle X\rangle$, then we say that G has a finite rank defined as

$$
\operatorname{rank}(G)=\min \{|X|: X \subset G \text { and } G=\langle X\rangle\}
$$

If no such subset exists, then G is called to be of infinite rank.
\triangleright Let $G^{\prime}=[G, G]$ be the commutator subgroup of G. The quotient G / G^{\prime} is called the abelianization of G and is denoted by $G^{\mathrm{ab}} . G / p=G^{\mathrm{ab}} /\left(G^{\mathrm{ab}}\right)^{p}$ is a vector
space over $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ and the integer $\operatorname{rank}_{p}(G)=\operatorname{dim}_{\mathbb{F}_{p}}(G / p)$ is called the p-rank of G. We note that:
\bowtie if G is abelian, then $\operatorname{rank}_{p}(G)=\operatorname{dim}_{\mathfrak{F}_{p}}\left(G / G^{p}\right)$;
$\infty \operatorname{rank}_{p}(G)=\operatorname{rank}_{p}\left(G^{\mathrm{ab}}\right)$.
2.2. Metacyclic group. A group G is called metacyclic if there is a normal subgroup N of G such that N and G / N are cyclic. We recall that:
(1) if G is metacyclic, then any subgroup H of G is metacyclic;
(2) if G is metacyclic and H is a normal subgroup of G, then G / H is metacyclic.

Let G be a metacyclic group and N a normal cyclic subgroup of G such that G / N is cyclic. If we denote $N=\langle a\rangle$ and $G / N=\langle b N\rangle$, then $G=\langle a, b\rangle$ and thus, G is generated by 2 elements.

Proposition 1. Let K be a number field and p a prime integer.
(1) if $G=\operatorname{Gal}\left(K^{(\infty)} / K\right)$ is metacyclic, then $K^{(\infty)}=K^{(2)}$;
(2) if $G_{p}=\operatorname{Gal}\left(K_{p}^{(\infty)} / K\right)$ is metacyclic, then $K_{p}^{(\infty)}=K_{p}^{(2)}$.

Proof. (1) We have $K \subset K^{(1)} \subset K^{(\infty)}$. By definition, $K^{(1)}$ is the largest abelian extension of K contained in $K^{(\infty)}$. We deduce that $\operatorname{Gal}\left(K^{(\infty)} / K^{(1)}\right) \cong G^{\prime}$. Let N be a normal cyclic subgroup of G such that G / N is cyclic. Since G / N is abelian, $G^{\prime} \subset N$ and then G^{\prime} is cyclic. We deduce that $K^{(\infty)} / K^{(1)}$ is abelian unramified. So $K^{(\infty)} \subset K^{(2)}$ and then $K^{(\infty)}=K^{(2)}$.
(2) Using the same proof we prove 2 .

Proposition 2. Let K be a number field and p a prime number. If $G_{p}=$ $\operatorname{Gal}\left(K_{p}^{(\infty)} / K\right)$ is metacyclic nonabelian, then $\operatorname{rank}_{p}\left(C_{K}\right)=2$.

Proof. Since G_{p} is nonabelian, then $K_{p}^{(1)} \neq K_{p}^{(2)}=K_{p}^{(\infty)}$. We have $C_{K, p} \simeq$ $G_{p} /\left[G_{p}, G_{p}\right]$, thus $C_{K, p}$ is metacyclic and we have $\operatorname{rank}\left(C_{K, p}\right) \leqslant 2$ and so $\operatorname{rank}\left(C_{K, p}\right)=1$ or 2 . If $\operatorname{rank}\left(C_{K, p}\right)=1$, then according to the result of Taussky (see [9]), $K_{p}^{(2)}=K_{p}^{(1)}$, which is impossible. In conclusion, $\operatorname{rank}_{p}\left(C_{K}\right)=2$.

Remark1. Let K be a quadratic number field.
(1) If $G_{2}=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ is metacyclic nonabelian, then K has three quadratic extensions L_{1}, L_{2} and L_{3} contained in $K^{(1)}$.
(2) According to Proposition 2, we will be limited to determine the real quadratic number fields $K=\mathbb{Q}(\sqrt{d})$ with $\operatorname{rank}_{2}\left(C_{K}\right)=2$ that have a metacyclic Hilbert 2-class field tower. To select those with non abelian tower, we can use Theorem 1 or Theorem 2 in [3] depending on whether d is the sum of two squares or not, respectively.

Lemma 1. If G is a nonmetacyclic two-generator 2-group, then the number of two-generator maximal subgroups of G is even.

Proof. See [4].

Theorem 1. Let K be a number field such that $\operatorname{rank}_{2}\left(C_{K}\right)=2$ and L_{1}, L_{2} and L_{3} be the three quadratic extensions of K contained in $K^{(1)}$. Let us denote $G=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ and $C_{i}=C_{L_{i}, 2}$ for $i=1,2,3$. Then G is metacyclic if and only if $\operatorname{rank}\left(C_{i}\right) \leqslant 2$ for $i=1,2,3$.

Proof. Suppose that G is metacyclic.
If G is abelian, then it is easy to see that for all $i, \operatorname{rank}\left(C_{i}\right) \leqslant \operatorname{rank}(G)=2$.
Suppose that G is not abelian. For each $i \in\{1,2,3\}, K_{2}^{(1)} / K$ is abelian unramified, thus $K_{2}^{(1)} / L_{i}$ is also abelian unramified, hence $K_{2}^{(1)} \subset L_{i 2}^{(1)}$. In the same way, we prove that $L_{i 2}^{(1)} \subset K_{2}^{(2)}$ and thus

$$
K \subset L_{i} \subset K_{2}^{(1)} \subset L_{i 2}^{(1)} \subset K_{2}^{(2)} .
$$

Let $G_{i}=\operatorname{Gal}\left(K_{2}^{(2)} / L_{i}\right)$ and $H=\operatorname{Gal}\left(K_{2}^{(2)} / L_{i 2}^{(1)}\right)$.

G_{i} is a subgroup of G. So G_{i} is metacyclic and thus $C_{i} \cong G_{i} / H$ is metacyclic, too. We deduce that $\operatorname{rank}\left(C_{i}\right) \leqslant 2$.

Suppose that $\operatorname{rank}\left(C_{i}\right) \leqslant 2$ for $i=1,2,3$.
If there exists i such that $\operatorname{rank}\left(C_{i}\right)=1$, then according to the result of Taussky $($ see $[9]), L_{i 2}^{(2)}=L_{i 2}^{(1)}$ and then $K_{2}^{(2)}=L_{i 2}^{(2)}=L_{i 2}^{(1)}$.

We have C_{i} is cyclic and $G / C_{i} \cong \mathbb{Z} / 2 \mathbb{Z}$ is cyclic, too. We deduce that G is metacyclic.
Suppose that $\operatorname{rank}\left(C_{i}\right)=2$ for all $i \in\{1,2,3\}$. Let C be a maximal subgroup of G. We have $[G: C]=2$, so if L is the subfield of $K_{2}^{(\infty)} / K$ fixed by C, then $L=L_{i}$ for some $i \in\{1,2,3\}$. Since $L_{2}^{(1)}$ is the maximal abelian extension of L contained in $K_{2}^{(\infty)}$, then $C_{i} \cong C / C^{\prime}$ and $\operatorname{rank}(C)=\operatorname{rank}\left(C_{i}\right)=2$. Using Lemma 1 and since $\operatorname{rank}(G)=\operatorname{rank}\left(C_{K}\right)=2, G$ is metacyclic.

3. Fields $\mathbb{Q}(\sqrt{d})$ with d sum of Two squares having

Lemma 2. Let $L=\mathbb{Q}(\sqrt{m}, \sqrt{\delta})$ be a biquadratic field such that $m=2$ or m is a prime integer $\equiv 1(\bmod 4)$ and δ is a square-free positive integer not divisible by any prime $\equiv 3(\bmod 4)$. If r is the number of primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L and H is the 2-class group of L, then we have $\operatorname{rank}(H)=r-1$ or $r-2$ and
(1) if $m \equiv 1(\bmod 4)$, then $\operatorname{rank}(H)=r-1$ if and only if

$$
\left\{\begin{array}{l}
\text { for all } q \mid \delta \text { such that }\left(\frac{q}{m}\right)=1 \text { we have }\left(\frac{m}{q}\right)_{4}=\left(\frac{q}{m}\right)_{4}, \\
\left(\frac{2}{m}\right)_{4}=(-1)^{(m-1) / 8} \text { if } m \equiv 1(\bmod 8) \text { and } \delta=2 c
\end{array}\right.
$$

(2) if $m=2$, then $\operatorname{rank}(H)=r-1$ if and only if for all $q \mid \delta$ such that $q \equiv 1(\bmod 8)$ we have $\left(\frac{2}{q}\right)_{4}=(-1)^{(q-1) / 8}$.

Proof. See Theorem 2 in [1].
Let d be a square-free integer which can be written as the sum of two squares and $K=\mathbb{Q}(\sqrt{d})$. If $\operatorname{rank}_{2}\left(C_{K}\right)=2$, then, by the genus theory, d can be written as $d=p_{1} p_{2} p_{3}$, where p_{i} 's are distinct prime integers such that for all $i, p_{i} \not \equiv 3(\bmod 4)$.

Theorem 2. Let $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)$, where p_{1}, p_{2} and p_{3} are distinct prime integers such that $p_{1}, p_{2} \not \equiv 3(\bmod 4)$ and $p_{3} \equiv 1(\bmod 4)$ or $p_{3}=2$. Then the Hilbert 2-class field tower of K is metacyclic except for the case:
after a permutation of p_{i} we have $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=1$ and

$$
\left(\frac{p_{1}}{p_{2}}\right)_{4} \cdot\left(\frac{p_{2}}{p_{1}}\right)_{4}=\left(\frac{p_{1}}{p_{3}}\right)_{4} \cdot\left(\frac{p_{3}}{p_{1}}\right)_{4}=1 .
$$

Proof. Let p_{1}, p_{2} and p_{3} be three prime numbers such that $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $p_{3} \equiv 1(\bmod 4)$ or $p_{3}=2$. The three unramified quadratic extensions of $K=$ $\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)$ are $L_{1}=K\left(\sqrt{p_{1}}\right)=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2} p_{3}}\right), L_{2}=K\left(\sqrt{p_{2}}\right)=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{p_{1} p_{3}}\right)$ and $L_{3}=K\left(\sqrt{p_{3}}\right)=\mathbb{Q}\left(\sqrt{p_{3}}, \sqrt{p_{1} p_{2}}\right)$. We put $C_{i}=C_{L_{i}, 2}$. From Theorem 1, the metacyclicity of $G=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ depends on $\operatorname{rank}\left(C_{i}\right)$ for $i=1,2,3$. Let us calculate them:

Assume for the moment that $p_{3} \equiv 1(\bmod 4)$. Let us take $m=p_{1}, \delta=p_{2} p_{3}$, $H=C_{1}$ and apply Lemma 2: The primes of $\mathbb{Q}\left(\sqrt{p_{1}}\right)$ that ramify in $L_{1}=K\left(\sqrt{p_{1}}\right)$
are exactly those which are above p_{2} and p_{3}. The number r of those primes depends on the two Legendre symbols $\left(\frac{p_{2}}{p_{1}}\right)$ and $\left(\frac{p_{3}}{p_{1}}\right)$, and we have the following table:

$\left(\frac{p_{2}}{p_{1}}\right)$	$\left(\frac{p_{3}}{p_{1}}\right)$	r	$\operatorname{rank}\left(C_{1}\right)$	
1	1	4	3 if $\left(\frac{p_{2}}{p_{1}}\right)_{4}=\left(\frac{p_{1}}{p_{2}}\right)_{4}$ and $\left(\frac{p_{3}}{p_{1}}\right)_{4}=\left(\frac{p_{1}}{p_{3}}\right)_{4}$,	2 if not
1	-1	3	2 if $\left(\frac{p_{2}}{p_{1}}\right)_{4}=\left(\frac{p_{1}}{p_{2}}\right)_{4}$,	1 if not
-1	1	3	2 if $\left(\frac{p_{3}}{p_{1}}\right)_{4}=\left(\frac{p_{1}}{p_{3}}\right)_{4}$,	1 if not
-1	-1	2	1	

We will have similar tables for C_{2} and C_{3}.
Now suppose that $p_{3}=2$. We recall that for every prime integer $p \equiv 1(\bmod 8)$ we have

$$
\left(\frac{p}{2}\right)_{4}=(-1)^{(p-1) / 8} .
$$

So the calculation of $\operatorname{rank}\left(C_{i}\right)$ will be done in the same way as in the case $p_{3} \equiv 1$ $(\bmod 4)$.

We deduce, using Theorem 1, that G is metacyclic if and only if the following condition (C) is not satisfied:

After a permutation of p_{i} 's, we have:
(C) $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=1$ and $\left(\frac{p_{1}}{p_{2}}\right)_{4} \cdot\left(\frac{p_{2}}{p_{1}}\right)_{4}=\left(\frac{p_{1}}{p_{3}}\right)_{4} \cdot\left(\frac{p_{3}}{p_{1}}\right)_{4}=1$.
4. Fields $\mathbb{Q}(\sqrt{D})$ where D is not the sum of two squares having A NON ABELIAN METACYCLIC TOWER

Let $K=\mathbb{Q}(\sqrt{D})$, where D is a square-free integer which is not the sum of two squares and D_{K} the discriminant of K. If $\operatorname{rank}_{2}\left(C_{K}\right)=2$, then, by the genus theory, we will have one of the following cases: $D=q_{1} q_{2} q_{3} q_{4}, D=p_{1} p_{2} q_{1} q_{2}, D=q_{1} q_{2} q_{3}$, $D=p_{1} p_{2} q_{1}, D=2 q_{1} q_{2} q_{3}, D=2 p_{1} q_{1} q_{2}$ or $D=2 p_{1} p_{2} q_{1}$, where the p_{i} 's are distinct prime integers $\equiv 1(\bmod 4)$ and the $q_{i} ' s$ are distinct prime integers $\equiv 3(\bmod 4)$.

We will discuss all these cases using the number of negative prime discriminants dividing D_{K} and we will determine all the fields of the above forms that have a metacyclic tower.
4.1. Some lemmas. Let d and m be two positive square-free integers, $L=$ $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ be a biquadratic field, r the number of primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L, H the 2-ideal class group of L and

$$
S=\left\{q_{1} \text { odd prime integer: } q_{1} \mid d \text { and }\left(\frac{m}{q_{1}}\right)=1\right\} .
$$

In the rest of this paper, we will use these notations for any unramified quadratic extension of a quadratic field $K=\mathbb{Q}(\sqrt{D})$ after writing it in the form $\mathbb{Q}(\sqrt{m}, \sqrt{d})$.

Lemma 3. Suppose that $m=2$ or m is a prime integer $\equiv 1(\bmod 4)$. If there is a prime integer $q \equiv 3(\bmod 4)$ that divides d, then $\operatorname{rank}(H)=r-2$ or $r-3$ and we have:
\triangleright If $m=2$ or $m \equiv 5(\bmod 8)$, then $\operatorname{rank}(H)=r-2 \Leftrightarrow\left(\frac{-1}{q_{1}}\right)=1$ for all $q_{1} \in S$;
\triangleright If $m \equiv 1(\bmod 8)$, then $\operatorname{rank}(H)=r-2$ if and only if the following two conditions are satisfied:
(c. $c_{1}\left(\frac{-1}{q_{1}}\right)=1$ for all $q_{1} \in S$.
$\left(c_{2}\right) d=2 c$ with $\left(\frac{-1}{c}\right)=1$ or $d \equiv 1(\bmod 4)$.
Proof. See Theorem 1 in [1].
Lemma 4. Let q, q^{\prime} and $q^{\prime \prime}$ be three prime integers such that $q \equiv q^{\prime} \equiv q^{\prime \prime} \equiv-1$ $(\bmod 4), m \in\left\{q, 2 q, q^{\prime} q^{\prime \prime}\right\}$. Let ε_{m} be the fundamental unit of $\mathbb{Q}(\sqrt{m})$. Then ε_{m} can be written as $\varepsilon_{m}=a_{m} u^{2}$, where $u \in \mathbb{Q}(\sqrt{m})$ and $a_{m}=2$ if $m=q$ or $2 q$, and $a_{m}=q^{\prime}$ or $q^{\prime \prime}$ if $m=q^{\prime} q^{\prime \prime}$.

Proof. Let $m \in\left\{q, 2 q, q^{\prime} q^{\prime \prime}\right\}$ and $k_{m}=\mathbb{Q}(\sqrt{m})$, and let N be the norm map of the extension k_{m} / \mathbb{Q}. Since m is not the sum of two squares, then $N\left(\varepsilon_{m}\right)=1$. By Lemma 2.3 in [6] there exists a positive square free integer b_{m} dividing D_{m}, the discriminant of k_{m} such that $b_{m} \varepsilon_{m}=\alpha^{2}$, where $\alpha \in k_{m}$. We note that $b_{m} \neq 1$ since ε_{m} is a fundamental unit of k_{m}.

If $m=q^{\prime} q^{\prime \prime}$, then $D_{m}=m$ and $b_{m}=q^{\prime}, q^{\prime \prime}$ or $q^{\prime} q^{\prime \prime}$. If $b_{m}=q^{\prime} q^{\prime \prime}$, then $\varepsilon_{m}=\left(\frac{\alpha}{\sqrt{m}}\right)^{2}$ which is impossible since ε_{m} is a fundamental unit of k_{m}. We conclude that $b_{m}=q^{\prime}$ or $q^{\prime \prime}$. If $b_{m}=q^{\prime}$, for example, then

$$
\varepsilon_{m}=\frac{1}{q^{\prime}} \alpha^{2}=q^{\prime}\left(\frac{\alpha}{q^{\prime}}\right)^{2}=q^{\prime \prime}\left(\frac{\alpha}{\sqrt{m}}\right)^{2} .
$$

If $m=q$, then $b_{m}=2, q$ or $2 q$. If $b_{m}=q$, then $\varepsilon_{m}=\left(\frac{\alpha}{\sqrt{m}}\right)^{2}$ which is impossible since ε_{m} is a fundamental unit of k_{m}. We conclude that $b_{m}=2$ or $2 q$. If $b_{m}=2$, then $\varepsilon_{m}=2\left(\frac{\alpha}{2}\right)^{2}$. If $b_{m}=2 q$, then $\varepsilon_{m}=2\left(\frac{\alpha}{2 \sqrt{m}}\right)^{2}$.

If $m=2 q$, then $b_{m}=2, q$ or $2 q$. If $b_{m}=2 q$, then $\varepsilon_{m}=\left(\frac{\alpha}{\sqrt{m}}\right)^{2}$ which is impossible since ε_{m} is a fundamental unit of k_{m}. We conclude that $b_{m}=2$ or q. If $b_{m}=q$, then $\varepsilon_{m}=2\left(\frac{\alpha}{\sqrt{m}}\right)^{2}$. If $b_{m}=2$, then $\varepsilon_{m}=2\left(\frac{\alpha}{2}\right)^{2}$.

Let $q, q^{\prime}, q^{\prime \prime}, m, \varepsilon_{m}$ and a_{m} be as in the above lemma and d a positive square-free integer. Let $L=\mathbb{Q}(\sqrt{m}, \sqrt{d})$ and H the 2-ideal class group of L.

We note that we will use these notations in the rest of this paper.
Lemma 5. With the above assumptions and notations, if $m=q, 2 q$ or $m=$ $q^{\prime} q^{\prime \prime} \equiv 5(\bmod 8)$, then $\operatorname{rank}(H)=r-1-e$, where $e=0,1$ or 2 , and we have:
$\triangleright e=0$ if and only if $\left(\frac{-1}{q_{1}}\right)=\left(\frac{a_{m}}{q_{1}}\right)=1$ for all $q_{1} \in S$;
$\triangleright e=2$ if and only if exists distinct primes $q_{1}, q_{2}, q_{3} \in S$ such that

$$
\left(\frac{-1}{q_{1}}\right)=\left(\frac{a_{m}}{q_{1}}\right)=-1 \quad \text { and } \quad\left(\frac{-1}{q_{3}}\right) \neq\left(\frac{a_{m}}{q_{3}}\right) .
$$

Proof. See Theorem 3 in [2].
Lemma 6. If $m=q^{\prime} q^{\prime \prime} \equiv 1(\bmod 8)$, then $\operatorname{rank}(H)=r-1-e$ with $e=0,1$ or 2 , and we have:
$\triangleright e=0$ if and only if $\left(\frac{-1}{q_{1}}\right)=\left(\frac{a_{m}}{q_{1}}\right)=1$ for all $q_{1} \in S$ and $d \equiv 1(\bmod 4)$ or $d=2 c$ with $\left(\frac{-1}{c}\right)=\left(\frac{2}{q^{\prime}}\right)=1$;
$\triangleright e=2$ if and only if one of the following conditions is satisfied:
(i) $d \equiv-1(\bmod 4)$ and exists $q_{1} \in S:\left(\frac{-1}{q_{1}}\right) \neq\left(\frac{a_{m}}{q_{1}}\right)$,
(ii) $d \equiv 1(\bmod 4)$ and exists $q_{1}, q_{2}, q_{3} \in S$ such that

$$
\left(\frac{-1}{q_{1}}\right)=\left(\frac{a_{m}}{q_{2}}\right)=-1 \quad \text { and } \quad\left(\frac{-1}{q_{3}}\right) \neq\left(\frac{a_{m}}{q_{3}}\right)
$$

(iii) $d=2 c$ with

$$
\left(\frac{2}{q^{\prime}}\right)=-\left(\frac{-1}{c}\right)=1
$$

and exists $q_{1} \in S$ such that

$$
\left(\frac{-1}{q_{1}}\right) \neq\left(\frac{a_{m}}{q_{1}}\right) \quad \text { or } \quad\left(\frac{2}{q^{\prime}}\right)=-\left(\frac{-1}{c}\right)=-1
$$

and exists $q_{1} \in S$ such that $\left(\frac{-1}{q_{1}}\right)=-1$ or $\left(\frac{2}{q^{\prime}}\right)=\left(\frac{-1}{c}\right)=1$ and exists distinct primes $q_{1}, q_{2}, q_{3} \in S$ such that

$$
\left(\frac{-1}{q_{1}}\right)=\left(\frac{a_{m}}{q_{2}}\right)=-1 \quad \text { and } \quad\left(\frac{-1}{q_{3}}\right) \neq\left(\frac{a_{m}}{q_{3}}\right) .
$$

Proof. See Theorem 4 in [2].

4.2. Case where D_{K} is divisible by at least 3 odd negative prime discriminants.

Theorem 3. The Hilbert 2-class field tower of K is metacyclic for the cases $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2} q_{3} q_{4}}\right), K=\mathbb{Q}\left(\sqrt{q_{1} q_{2} q_{3}}\right)$ and $K=\mathbb{Q}\left(\sqrt{2 q_{1} q_{2} q_{3}}\right)$, where the q_{i} 's are primes $\equiv 3(\bmod 4)$.

Proof. We discuss the 3 cases:
Case $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2} q_{3} q_{4}}\right)$: The quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=K\left(\sqrt{q_{1} q_{2}}\right)=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{q_{3} q_{4}}\right), L_{2}=K\left(\sqrt{q_{1} q_{3}}\right)=\mathbb{Q}\left(\sqrt{q_{1} q_{3}}, \sqrt{q_{2} q_{4}}\right)$ and $L_{3}=$ $K\left(\sqrt{q_{1} q_{4}}\right)=\mathbb{Q}\left(\sqrt{q_{1} q_{4}}, \sqrt{q_{2} q_{3}}\right)$. We put $C_{i}=C_{L_{i}, 2}$.

Let us obtain an upper bound for the value of $\operatorname{rank}\left(C_{1}\right)$. We put $m=q_{1} q_{2}$ and $d=q_{3} q_{4}$. The primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L_{1} are exactly those which are above q_{3} and q_{4}. Their number r is $\leqslant 4$ and $r=4$ if and only if $\left(\frac{m}{q_{3}}\right)=\left(\frac{m}{q_{4}}\right)=1$. In this case $S=\left\{q_{3}, q_{4}\right\}$.

If $r \leqslant 3$, then by Lemma 5 in the case $m \equiv 5(\bmod 8)$ or Lemma 6 in the case $m \equiv 1(\bmod 8)$, we have $\operatorname{rank}\left(C_{1}\right)=1$.

If $r=4$, then the condition to have $e=0$ in Lemma 5 and Lemma 6 is not satisfied since $\left(\frac{-1}{q_{3}}\right)=-1$ and then $\operatorname{rank}\left(C_{1}\right) \leqslant 2$.

In the same way, we have $\operatorname{rank}\left(C_{2}\right), \operatorname{rank}\left(C_{3}\right) \leqslant 2$ and we conclude using Theorem 1.

Case $K=\mathbb{Q}\left(\sqrt{q_{1} q_{2} q_{3}}\right)$: The quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=K\left(\sqrt{q_{1} q_{2}}\right)=\mathbb{Q}\left(\sqrt{q_{3}}, \sqrt{q_{1} q_{2}}\right), L_{2}=K\left(\sqrt{q_{2} q_{3}}\right)=\mathbb{Q}\left(\sqrt{q_{1}}, \sqrt{q_{2} q_{3}}\right)$ and $L_{3}=$ $\left.K\left(\sqrt{q_{3} q_{1}}\right)=\mathbb{Q}\left(\sqrt{q_{2}}, \sqrt{q_{3} q_{1}}\right)\right)$. We put $C_{i}=C_{L_{i}, 2}$. Let us compute $\operatorname{rank}\left(C_{1}\right)$. We put $d=q_{3}$ and $m=q_{1} q_{2}$. The only primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L_{1} are those which are above 2 and q_{3}, so $r \leqslant 4$ and then $\operatorname{rank}\left(C_{1}\right)=r-1-e \leqslant 4-1-e=3-e$.

In the case $m \equiv 5(\bmod 8), 2$ is inert in $\mathbb{Q}(\sqrt{m})$, then $r \leqslant 3$ and $\operatorname{rank}\left(C_{1}\right) \leqslant 2$. If $m \equiv 1(\bmod 8)$, then according to Lemma $6, e \neq 0$ and then $\operatorname{rank}\left(C_{1}\right) \leqslant 2$. Similarly, we have $\operatorname{rank}\left(C_{i}\right) \leqslant 2$ for $i=2,3$ and the proof for this case is completed.

Case $K=\mathbb{Q}\left(\sqrt{2 q_{1} q_{2} q_{3}}\right)$: The quadratic extensions of K contained in $K^{(1)}$ are the $L_{i}=\mathbb{Q}\left(\sqrt{2 q_{i}}, \sqrt{q_{j} q_{k}}\right)$, where $i \in\{1,2,3\}$ and $\{i, j, k\}=\{1,2,3\}$. Let us put $C_{i}=C_{L_{i}, 2}$ for $i=1,2,3$. To calculate $\operatorname{rank}\left(C_{1}\right)$, we apply Lemma 5 with $m=2 q_{1}$ and $d=q_{2} q_{3}$. The primes of $\mathbb{Q}(\sqrt{m})$ that ramify in $L_{1}=\mathbb{Q}(\sqrt{m}, \sqrt{d})$ are those which are above q_{2} and q_{3}. If $\left(\left(\frac{m}{q_{2}}\right),\left(\frac{m}{q_{3}}\right)\right) \neq(1,1)$, then their number r is $\leqslant 3$, and $\operatorname{rank}\left(C_{1}\right)=r-1-e \leqslant 2$. If $\left(\left(\frac{m}{q_{2}}\right),\left(\frac{m}{q_{3}}\right)\right)=(1,1)$, then $r=4$, but by Lemma 5 , $e \neq 0$ and then $\operatorname{rank}\left(C_{1}\right)=r-1-e \leqslant 2$.

Similarly, we prove that $\operatorname{rank}\left(C_{2}\right) \leqslant 2$ and $\operatorname{rank}\left(C_{3}\right) \leqslant 2$. We conclude using Theorem 1 .

4.3. Case where D_{K} is divisible by exactly 1 odd negative prime discriminant.

Theorem 4. For $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2} q_{1}}\right)$ and $K=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q_{1}}\right)$ with $p_{1} \equiv p_{2} \equiv$ $-q_{1} \equiv 1(\bmod 4)$, the Hilbert 2-class field tower is metacyclic except for the following two cases:
(i) after permutations of p_{i} 's, we have: $\left(\frac{2}{p_{1}}\right)=\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{1}}\right)=1$;
(ii) $\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=1$.

Proof. We discuss the 2 cases:
Case $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2} q_{1}}\right)$: The quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=$ $K\left(\sqrt{p_{1}}\right)=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2} q_{1}}\right), L_{2}=K\left(\sqrt{p_{2}}\right)=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{p_{1} q_{1}}\right)$ and $L_{3}=K\left(\sqrt{p_{1} p_{2}}\right)=$ $K\left(\sqrt{q_{1}}\right)=\mathbb{Q}\left(\sqrt{q_{1}}, \sqrt{p_{1} p_{2}}\right)$. We put $C_{i}=C_{L_{i}, 2}$.

To compute the rank of C_{1}, let us apply Lemma 3 with $m=p_{1}$ and $d=p_{2} q_{1}$. The primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L_{1} are those which are above $2, p_{2}$ and q_{1}. We have the following table:

$\left(\frac{2}{p_{1}}\right)$	$\left(\frac{p_{2}}{p_{1}}\right)$	$\left(\frac{q_{1}}{p_{1}}\right)$	r	$\operatorname{rank}\left(C_{1}\right)$
1	1	1	6	3
1	1	-1	5	2
1	-1	1	5	2
1	-1	-1	4	1
-1	1	1	5	2
-1	1	-1	4	2
-1	-1	1	4	1
-1	-1	-1	3	1

Similarly, we calculate $\operatorname{rank}\left(C_{2}\right)$.
To calculate the rank of C_{3}, let us apply Lemma 5 with $m=q_{1}$ and $d=p_{1} p_{2}$. Note that in this case $a_{m}=2$. The primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L_{3} are those which are above p_{1} and p_{2}. We have the following table:

$\left(\frac{q_{1}}{p_{1}}\right)$	$\left(\frac{q_{1}}{p_{2}}\right)$	r	$\operatorname{rank}\left(C_{3}\right)$	
1	1	4	3 if $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=1$,	2 if not
1	-1	3	2 if $\left(\frac{2}{p_{1}}\right)=1$,	1 if not
-1	1	3	2 if $\left(\frac{2}{p_{2}}\right)=1$,	1 if not
-1	-1	2	1	

We conclude using Theorem 1 and the above tables.
Case $K=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2} q_{1}}\right)$: the quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2} q_{1}}\right), L_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1} q_{1}}\right)$ and $L_{3}=\mathbb{Q}\left(\sqrt{2 q_{1}}, \sqrt{p_{1} p_{2}}\right)$.

To calculate $\operatorname{rank}\left(C_{1}\right)$ we take $m=p_{1}$ and $d=2 p_{2} q_{1}$ and apply Lemma 3. We have the following table:

$\left(\frac{2}{p_{1}}\right)$	$\left(\frac{p_{2}}{p_{1}}\right)$	$\left(\frac{q_{1}}{p_{1}}\right)$	r	$\operatorname{rank}\left(C_{1}\right)$
1	1	1	6	3
1	1	-1	5	2
1	-1	1	5	2
1	-1	-1	4	1
-1	1	1	5	2
-1	1	-1	4	2
-1	-1	1	4	1
-1	-1	-1	3	1

We would have a similar table for $\operatorname{rank}\left(C_{2}\right)$.
To calculate $\operatorname{rank}\left(C_{3}\right)$ we put $m=2 q_{1}$ and $d=p_{1} p_{2}$ and we apply Lemma 5 . We have the following table:

$\left(\frac{2 q_{1}}{p_{1}}\right)$	$\left(\frac{2 q_{1}}{p_{2}}\right)$	r	$\operatorname{rank}\left(C_{3}\right)$	
1	1	4	3 if $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=1$,	2 if not
1	-1	3	2 if $\left(\frac{2}{p_{1}}\right)=1$,	1 if not
-1	1	3	2 if $\left(\frac{2}{p_{2}}\right)=1$,	1 if not
-1	-1	2	1	

We conclude by using Theorem 1 .
4.4. Case where D_{K} is divisible by exactly 2 odd negative prime discriminants.

Theorem 5. Let $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2} q_{1} q_{2}}\right)$ with $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $q_{1} \equiv q_{2} \equiv 3$ $(\bmod 4)$. Then the Hilbert 2-class field tower of K is metacyclic except for the following two cases:
(i) After a permutation of p_{i} 's, we have $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{2}}{p_{1}}\right)=1$;
(ii) $\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{2}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=\left(\frac{q_{2}}{p_{2}}\right)=1$.

Proof. The quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=K\left(\sqrt{p_{1}}\right)=$ $\mathbb{Q}\left(\sqrt{p}, \sqrt{p_{2} q_{1} q_{2}}\right), L_{2}=K\left(\sqrt{p_{2}}\right)=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{p_{1} q_{1} q_{2}}\right)$ and $L_{3}=K\left(\sqrt{p_{1} p_{2}}\right)=$ $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{q_{1} q_{2}}\right)$. We put $C_{i}=C_{L_{i}, 2}$.

Let us apply Lemma 3 with $m=p_{1}, d=p_{2} q_{1} q_{2}$ and $H=C_{1}$: The primes of $\mathbb{Q}\left(\sqrt{p_{1}}\right)$ that ramify in $L_{1}=K\left(\sqrt{p_{1}}\right)$ are exactly those which are above p_{2}, q_{1} and q_{2}. Their number r depends on $\left(\frac{p_{1}}{p_{2}}\right),\left(\frac{p_{1}}{q_{1}}\right)$ and $\left(\frac{p_{1}}{q_{2}}\right)$. Since $d \equiv 1(\bmod 4)$, the study of the cases $m \equiv 1(\bmod 8)$ and $m \equiv 5(\bmod 8)$ is the same and so we have the following table:

$\left(\frac{p_{2}}{p_{1}}\right)$	$\left(\frac{q_{1}}{p_{1}}\right)$	$\left(\frac{q_{2}}{p_{1}}\right)$	r	$\operatorname{rank}\left(C_{1}\right)$
1	1	1	6	3
1	1	-1	5	2
1	-1	1	5	2
1	-1	-1	4	2
-1	1	1	5	2
-1	1	-1	4	1
-1	-1	1	4	1
-1	-1	-1	3	1

We would have a similar table for $\operatorname{rank}\left(C_{2}\right)$.
To calculate $\operatorname{rank}\left(C_{3}\right)$ we take $m=q_{1} q_{2}, a_{m}=q_{1}$ and $d=p_{1} p_{2}$. The primes of $\mathbb{Q}(\sqrt{m})$ that ramify in L_{3} are exactly those which are above p_{1} and p_{2}. Depending on whether $m \equiv 5(\bmod 8)$ or $m \equiv 1(\bmod 8)$, we apply Lemma 5 or Lemma 6 , respectively. In the two cases we have the following table:

$\left(\frac{m}{p_{1}}\right)$	$\left(\frac{m}{p_{2}}\right)$	r	$\operatorname{rank}\left(C_{3}\right)$	
1	1	4	3 if $\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=1$,	2 if not
1	-1	3	2 if $\left(\frac{q_{1}}{p_{1}}\right)=1$,	1 if not
-1	-1	2	1	

We conclude using Theorem 1 and the two last tables above.
Theorem 6. Let $K=\mathbb{Q}\left(\sqrt{2 p_{1} q_{1} q_{2}}\right)$ with $p_{1} \equiv-q_{2} \equiv-q_{3} \equiv 1(\bmod 4)$. The Hilbert 2-class field tower of K is metacyclic except for the following cases:
(a) $\left(\frac{2}{p_{1}}\right)=\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{2}}{p_{1}}\right)=1$,
(b) $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{q_{1}}\right)=\left(\frac{2}{q_{2}}\right)=1$,
(c) $\left(\frac{2}{q_{1}}\right)=\left(\frac{2}{q_{2}}\right)=\left(\frac{p_{1}}{q_{1}}\right)=\left(\frac{p_{1}}{q_{2}}\right)=1$.

Proof. The quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=\mathbb{Q}\left(\sqrt{p_{1}}\right.$, $\left.\sqrt{2 q_{1} q_{2}}\right), L_{2}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} q_{1} q_{2}}\right)$ and $L_{3}=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}, \sqrt{2 p_{1}}\right)$. Let us put $C_{i}=C_{L_{i}, 2}$ for $i=1,2,3$.

To compute $\operatorname{rank}\left(C_{1}\right)$ we apply Lemma 3 with $m=p_{1}$ and $d=2 q_{1} q_{2}$, and we have the following table:

$\left(\frac{2}{p_{1}}\right)$	$\left(\frac{q_{1}}{p_{1}}\right)$	$\left(\frac{q_{2}}{p_{1}}\right)$	r	$\operatorname{rank}\left(C_{1}\right)$
1	1	1	6	3
1	1	-1	5	2
1	-1	1	5	2
1	-1	-1	4	2
-1	1	1	5	2
-1	1	-1	4	1
-1	-1	1	4	1
-1	-1	-1	3	1

To compute $\operatorname{rank}\left(C_{2}\right)$ we apply Lemma 3 with $m=2$ and $d=p_{1} q_{1} q_{2}$ and we have the following table:

$\left(\frac{2}{p_{1}}\right)$	$\left(\frac{2}{q_{1}}\right)$	$\left(\frac{2}{q_{2}}\right)$	r	$\operatorname{rank}\left(C_{2}\right)$
1	1	1	6	3
1	1	-1	5	2
1	-1	1	5	2
1	-1	-1	4	2
-1	1	1	5	2
-1	1	-1	4	1
-1	-1	1	4	1
-1	-1	-1	3	1

To compute $\operatorname{rank}\left(C_{3}\right)$ we take $m=q_{1} q_{2}, a_{m}=q_{1}$ and $d=2 p_{1}$ and apply Lemma 5 or Lemma 6 depending on whether $m \equiv 1 \operatorname{or} 5(\bmod 8)$, respectively, and we have the following table:

$\left(\frac{2}{q_{1} q_{2}}\right)$	$\left(\frac{p_{1}}{q_{1} q_{2}}\right)$	r	$\operatorname{rank}\left(C_{3}\right)$	
1	1	4	3 if $\left(\frac{p_{1}}{q_{1}}\right)=\left(\frac{2}{q_{1}}\right)=1 \quad 2$ if not	
1	-1	3	$\leqslant 2$	
-1	1	3	$\leqslant 2$	
-1	-1	2	1	

We conclude by Theorem 1 .

References

[1] A. Azizi, A. Mouhib: On the rank of the 2 -class group of $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ where $m=2$ or a prime $p \equiv 1(\bmod 4)$. Trans. Am. Math. Soc. 353 (2001), 2741-2752. (In French.)
zbl MR doi
[2] A. Azizi, A. Mouhib: Capitulation of the 2-ideal classes of biquadratic fields whose class field differs from the Hilbert class field. Pac. J. Math. 218 (2005), 17-36. (In French.)
[3] E. Benjamin, F. Lemmermeyer, C.Snyder: Real quadratic fields with abelian 2-class field tower. J. Number Theory 73 (1998), 182-194.
[4] Y. Berkovich, Z. Janko: On subgroups of finite p-group. Isr. J. Math. 171 (2009), 29-49.
zbl MR doi
[5] J. Martinet: Tours de corps de classes et estimations de discriminants. Invent. Math. 44 (1978), 65-73. (In French.)
[6] A. Mouhib: On the parity of the class number of multiquadratic number fields. J. Number Theory 129 (2009), 1205-1211.
zbl MR doi
[7] A. Mouhib: On 2-class field towers of some real quadratic number fields with 2-class groups of rank 3. Ill. J. Math. 57 (2013), 1009-1018.
[8] A. Mouhib: A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower. Ramanujan J. 40 (2016), 405-412.
[9] O. Taussky: A remark on the class field tower. J. London Math. Soc. 12 (1937), 82-85. Zbl MR doi
Authors' address: Said Essahel, Ahmed Dakkak, Ali Mouhib, Sidi Mohammed Ben Abdellah University, Sciences and Engineering Laboratory, Polydisciplinary Faculty of Taza, Taza-Gare PB 1223, Taza, Morocco, e-mail: essahel69@yahoo.fr, dakkakahmed@ hotmail.com, mouhibali@yahoo.fr.

