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ABSTRACT

Imaging of multiple cells has rapidly multiplied the rate of data acquisition as

well as our knowledge of the complex dynamics within the mammalian brain. The

process of data acquisition has been dramatically enhanced with highly a�ordable,

sensitive image sensors enable high-throughput detection of neural activity in intact

animals. Genetically encoded calcium sensors deliver a substantial boost in signal

strength and in combination with equally critical advances in the size, speed, and

sensitivity of image sensors available in scienti�c cameras enables high-throughput

detection of neural activity in behaving animals using traditional wide-�eld �uores-

cence microscopy. However, the tremendous increase in data �ow presents challenges

to processing, analysis, and storage of captured video, and prompts a reexamination

of traditional routines used to process data in neuroscience and now demand im-
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provements in both our hardware and software applications for processing, analyzing,

and storing captured video. This project demonstrates the ease with which a de-

pendable and a�ordable wide-�eld �uorescence imaging system can be assembled and

integrated with behavior control and monitoring system such as found in a typical

neuroscience laboratory.

An Open-source MATLAB toolbox is employed to e�ciently analyze and visual-

ize large imaging data sets in a manner that is both interactive and fully automated.

This software package provides a library of image pre-processing routines optimized

for batch-processing of continuous functional �uorescence video, and additionally au-

tomates a fast unsupervised ROI detection and signal extraction routine. Further,

an extension of this toolbox that uses GPU programming to process streaming video,

enabling the identi�cation, segmentation and extraction of neural activity signals

on-line is described in which speci�c algorithms improve signal speci�city and im-

age quality at the singe cell level in a behaving animal. This project describes the

strategic ingredients for transforming a large bulk �ow of raw continuous video into

proportionally informative images and knowledge.
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Preface

I have structured this document to roughly coincide with a chronological account of

6 years spent in a neuro-oriented biomedical engineering lab. My role in the lab was

centered around exploratory device design and development, mostly targeting appli-

cation in neuroscience research, with intended users being neuroscientist colleagues.

One of the lab's most remarkable assets is the breadth and diversity of its constituents

in terms of their skills and experience, both within and between the engineering/de-

velopment and the science/medical sides of the lab. All e�orts stood to bene�t from

the close proximity to skilled colleagues, most notably for the complementary guide

and provide roles that assisted the development process of new devices and the ex-

periments they were intended for.

My initial experience in optoelectronic device development was as an undergrad

at Columbia University where I was advised by Elizabeth Hillman, and developed a

device that combined thermography and near-infrared spectroscopy in a portable and

inexpensive device intended to provide early detection of adverse neoplastic changes

through at-home daily monitoring, particularly targeting use by patients with high-

risk for breast cancer. I then went to the Das Lab where I developed macroscopic

imaging systems used for intrinsic imaging in the visual cortex of awake primates.

As a MD/PhD student, I attempt to maintain a potential to adapt the end-products

of each development for clinical applicability. The story presented here is rather

unusual in that success precedes failure. The volume of tangible presentable results

is greatest toward the beginning stages of the work described here. This unusual

inversion is what make this story worth hearing, however. Thank you for taking the
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time to read this. I hope that at least the technical information provided herein, if

not the procedural insight, is valuable in your current or future endeavors.
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Chapter 1

Introduction: Background and Literature

Review

1.1 Optical Imaging of Neural Activity

Optical techniques for observing neural activity have recently advanced owing to both

an evolution of digital imaging technology, and the development of engineered pro-

teins that act as �uorescent indicators of neural activity. Image sensors, like those

found in scienti�c-CMOS (sCMOS) cameras are larger, faster, and more sensitive than

prior scienti�c grade cameras. Meanwhile, the latest generation of Genetically En-

coded Calcium Indicators (GECIs), collectively called GCaMP6, report �uctuations

in neural activation with extremely high �delity. This combination of developments

enables neuroscientists to open a wider channel to the brain than previously possible

using conventional epi�uorescence microscopy techniques that enable simultaneous

recording from hundreds to thousands of neurons. Expanding the fraction of the ob-

servable neurons in an interconnected network could improve understanding of neural

coding and provide insight into mechanistic properties of neural disease. Additionally,

feeding a large set of neural response information to a machine learning algorithm

in a neuro-prosthetic application may provide improved predictive performance even

when the exact mechanism of prediction is di�cult to discern. However, several major

challenges currently antagonize the potential bene�ts of these new technologies:

1. The increased size of raw data from a single imaging session can easily over-
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whelm the computational resources typically used to process similar but smaller

sets of data.

2. The accumulation of raw data on disk over multiple imaging sessions quickly

exceeds the data-storage capacity of most lab-scale servers, forcing researchers

to halt data collection to process and delete, potentially creating a �nightmare

scenario�.

3. The experimental design and data analysis procedures familiar to neuroscien-

tists for network activity data for 5 to 10 cells produce highly biased spurious

results in the absence of numerous stimulus-response repetitions, i.e., trials. The

number of repeated trials su�cient to produce an accurate description of the

neural response to any stimulus is on the order of 2N, where N is the number

of neurons being measured.

In the chapters that follow I provide background on the general procedure for

o�ine video processing. I also discuss some of the issues that limit execution of

these procedures on a large data-set, and the variety of approaches that I and others

have attempted to address this issue. I then introduce the streaming approach that is

capable of directly processing video during acquisition and extracting signals, thereby

saving relevant signals only while also discarding or compressing the raw video. This

approach relies on GPU programming and therefore I also provide background on the

application of graphics cards for computationally demanding tasks. Using a graphics

card for programming in the MATLAB environment is also discussed.

Capturing wide-�eld �uorescence images at high spatial and temporal resolution

enables us to measure functional dynamic changes in multiple cells within a large

interconnected network. Extracting a measure for each cell in a way that preserves

spatial and temporal continuity with uniform/unbiased sampling of the observed sig-

nal is achievable but several factors complicate procedures intended to accomplish
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this task. One class of computer-vision procedure commonly applied to this task is

image-segmentation (cell-segmentation in histology applications), a procedure that

attempts to represent distinct objects in an image by association of each image pixel

with one of any number of abstract objects or with the background. A variety of algo-

rithms exist for e�ciently performing this operation on single images. Most methods

can be extended to operate in a 3rd dimension, applied to stacks of image frames to

enable tracking cells at multiple depths, or equivalently over time.

However, motion induced by physiologic changes and animal movement neces-

sitates the correct alignment of all frames in the sequence. Moreover, the massive

�uctuations in signal intensity from individual and spatially overlapping cells often

breeds unstable solutions for alignment that radically complicate cell identi�cation

routines by disrupting temporal continuity. Implementing a reliable procedure for

identifying and tracking the same cells in each frame throughout the sequence thus

becomes non-trivial.

1.2 Procedures for Calcium Imaging

The general goal of processing image data from functional �uorescence imaging experi-

ments is to restructure raw image data in a way that maps pixels in each image frame

to distinct individual cells or subcellular components, called `Regions-Of-Interest'

(ROI). Pixel-intensity values from mapped pixels are often reduced by combination

to single dimensional `trace' time-series. These traces indicate the �uorescence inten-

sity of an individual neuron over time, and the collection approximates the distinct

activity of all individual neurons in the microscope's �eld of view. However, this

task is made di�cult by motion of the brain throughout the experiment and by the

apparent overlap of cells in the single image plane due to limitations of the camera's

2-dimensional perspective. These issues can be partially mitigated with a few image
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pre-processing steps. Most importantly is the alignment of images to correct for mo-

tion. These options are described in the Methods & Approaches section below. Most

software packages speci�cally geared toward functional imaging implement either of

two basic classes of pixel->cell mapping algorithms. One approach is to use image-

segmentation routines for computer vision that seeks to combine adjacent pixels into

distinct spatially segregated regions representing objects in the image.

The other common approach is to perform an eigenvalue decomposition on the

covariance matrix from a stack of image frames (also called spectral decomposition, or

Principal Component Analysis, PCA), resulting in an assembly of basis vectors that

de�ne the weighting coe�cients for each pixel. Multiplying the basis-vectors (i.e.,

�components�) with all frames produces a one-dimensional trace for each component.

The linear combination is similar to the weighted image-segmentation method in that

it assigns fractional coe�cients to pixels. However, the procedure for computing the

covariance matrix employed by PCA operates on as many pixels as exist in the image,

multiplying each with every other pixel that creates a problem with NP2 complexity,

where p is the number of pixels in the image. I mention these issues inherent to

PCA not because this project addresses them but because this project was initiated

following substantial di�culty attempting to use PCA-based cell sorting methods

with large data-sets.

1.3 Computer Software Environments for Image Processing

The widespread usage of MATLAB in neuroscience communities lends potential for

greater usability and easier adaptation to software developed in this environment.

While software development environments focused on �ease-of-use� traditionally pre-

sume crippling sacri�ces to computational performance, this assumption is now less

accurate.
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Standard programs include ImageJ, the built-in routines in MATLAB's Image

Processing Toolbox, Sci-Kits Image for Python, and a remarkable diversity of miscel-

laneous applications. MATLAB is a commercial software development platform that

is geared toward fast production and the prototyping of data processing routines in

a high-level programming language. It implements several core libraries (LINPACK,

BLAS, etc.) that make multi-threaded operations on matrix type data highly e�cient.

While MATLAB has traditionally been considered the standard across neuroscience

research labs, it is well recognized that its performance was lackluster for �vectorized�

routines as compared to applications developed using lower-level languages like FOR-

TRAN, C, and C++. Nevertheless, it remained in common use, and recent releases

have added features that can drastically mitigate its poor performance issues, par-

ticularly through the development of a �Just-In-Time� compiler that automatically

optimizes the deployment of computation accelerator resources for standard MAT-

LAB functions. This feature enables code that performs repeated operations using

for-loops or while-loops nearly as fast as equivalent code written in C. Additionally,

code can be compiled into executable format using the MATLAB Compiler toolbox,

or used to generate equivalent C or C++ code using MATLAB Coder.

1.4 Computational Resources for Processing Large Data Sets

Routines for extracting the activity in each cell from a collection of raw imaging

data rely on simultaneous access to many pixels separated over space and time (and

consequently, are separated on a disk). For long recording sessions however, the size

of the collection of stored image data dramatically grows. This substantial increase

in data size easily exceeds the capacity of system memory in the typical workstation

computer available to most researchers. Thus, performing the necessary processing

performance enhancing routines using standard programs is often unfeasible.
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Another popular approach to this challenge is the migration of processing routines

to a cluster-based system. In this way, image data can be distributed across many

interconnected computer nodes capable of performing all locally restricted image pro-

cessing procedures in parallel and then passing data to other nodes in the cluster for

tasks that rely on comparisons made across time. Access to clusters capable of per-

forming in this way has been historically restricted to researchers in universities or

other large organization, and the diversity of cluster types is sizeable, with clusters

often having very particular con�guration requirements for e�ciently implementing

data processing jobs. These issues pose di�culty to the use and shared development

of software libraries for image processing routines, although the growth of �cloud com-

puting� services such as Amazon's EC2 and the Google Compute Engine, as well as

collaborative computing facilities such as the Massachusetts Green High-Performance

Computing Center minimize several of these processing issues. Additionally, e�orts to

produce a standardized interface for accessing and distributing data and for manag-

ing computing resources across diverse computing environments have seen appreciable

success. Apache's release of the open-source cluster computing framework, Hadoop,

and a companion data-processing engine called Spark, have encouraged a massive

growth in collaborative development projects, and consequently increased the avail-

ability of robust shared libraries for data processing in a variety of applications. The

Spark API can be accessed using the open-source programming Python or other lan-

guages including Java, Scala, or R. The Thunder library, a Spark package released

by the Freeman lab and developed in collaboration with a number of other groups

at Janelia Farm and elsewhere is speci�cally geared for image processing of neural

imaging data.

Many applications will �nd that the recent improvements in accessibility and

standardization make cluster computing an attractive and worthwhile option for pro-
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cessing large sets of reusable data. However, this strategy imposes harsh limitations

for a neuroscientist engaged in a project that is continuously generating new data,

as the time required to transfer entire imaging data sets across the internet may be

prohibitive. Unfortunately, storage capacity on the cloud is also quite �nite. The

required capacity to store the accumulated output from continuous high throughput

devices such as image sensors. This rate imbalance is a central motivating issue in

this project and is discussed in detail below.

The generation of sCMOS cameras available at the start of this work capture

full-frame resolution video at either 30 fps or 100 fps depending on the data interface

between camera and computer (USB3.0 or CameraLink). At 16-bits per pixel and

2048x2048 pixels, the maximum data rate for the USB3.0 camera is 240 MB/s. Imag-

ing sessions typically last 30-minutes or less. Pixels are typically binned down 2x2, and

frame rate is often reduced to work within the constraints our laboratory workstations

impose on processing speed and storage. However, the e�ect of doubling resolution

on processing time when using the graphics card is virtually negligible. Identifying

ROIs online and extracting the traces of neural activity allows us to discard acquired

images and instead, only store the relevant pixels for later analysis.

1.4.1 Graphics Processing Units for Video Processing

Graphics Processing Units were traditionally developed for the consumer gaming mar-

ket. They are optimized for the process that involves translating a continuous stream

of information into a two-dimensional image format for transfer to a computer moni-

tor. In the context of gaming, the stream of information received by a GPU describes

the state of objects in a dynamic virtual environment and is typically produced by

a video game engine. These processors are highly optimized for this task. However,

they are equally e�cient at performing the same procedure type in reverse, reducing

a stream of images to structured streams of information about dynamic objects in
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the image. These features render them popular for video processing and computer

vision applications.

All GPU architectures consists of a hierarchy of parallel processing elements.

NVIDIA's CUDA architecture refers to the lowest level processing element as �CUDA

Cores� and the highest level as �Symmetric Multiprocessors.� Typically, data is dis-

tributed across cores and multiprocessors by specifying a layout in C-code using dif-

ferent terminology, �threads� and �blocks.� Blocks are then termed to be organized

in a �grid.� Adapting traditional image processing or computer vision algorithms to

quickly run on a GPU involves e�ciently distributing threads and ideally minimizes

communication between blocks.

MATLAB makes processing data using the GPU seemingly trivial by overloading a

large number of built in functions. Performance varies however. Writing a kernel-type

subfunction is often the fastest way to implement a routine written as if it operates

on single (scalar) element only that can be called on all pixels at once or employs all

pixel-subscripts used by the function to retrieve the pixel value at a given subscript.

The kernel-type function is compiled into a CUDA kernel the �rst time it's called,

then repeated calls directly contact the kernel with minimal overhead. Calls typically

use the arrayfun() function.

Data transfers between system memory and graphics memory is often a major

bottle-neck. Therefore, this operation is best performed only once. However, once

data is available to the GPU, many complex operations can be performed to extract

information from the image without exceeding the processing-time limit imposed by

the frame-rate of the camera sending the images.

In total, this project employs advances in both software and hardware that fa-

cilitate rapid accurate image analysis of living organisms with the ultimate goals of

simplifying the acquisition and analysis of neural activity indicators in both normal
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and pathological states.
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Figure 1·1: Comparison of processor architectures: CPU (left) and GPU (right)
di�er tremendously in the number of ALUs packed on a chip [https://www.
datascience.com/blog/cpu-gpu-machine-learning]
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Chapter 2

Neural Interfaces: Fabrication,

programming, and assembly

This chapter describes several projects that were started early during my graduate

studies. Each project is similar in that they are outside the realm of optical imaging of

neural activity, which is the focus of the rest of this dissertation. Nevertheless, they are

included here because the issues they bring up will later inform the approach I take in

the work described in later chapters. The projects described in the following sections

are also tied together by a common goal: to enable research in the neurosciences with

translation potential for clinical applications.

2.1 Animal Tracking

2.1.1 PD mouse model:

You can induce a quanti�able PD-like state in mice with a unilateral injection of

the neurotoxin 6-hydroxydopamine (6-OHDA) into the striatum, and subsequent ad-

ministration of apomorphine to provoke side-biased motor de�cits [Iancu et al., 2005]

Side-biased �turning� behavior is quanti�ed autonomously on two distinct platforms,

a computer-vision system that allows free movement, and a virtual-reality spherical

treadmill platform that simulates free movement.
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2.1.2 Metrics of Behavior

Two testing platforms are used to assess changes in behavior over time. Behavior is

analyzed and quanti�ed in real-time, and are synchronized with electrophysiology and

made available as stream of events synchronized with imaging and/or electrophysi-

ology. The quanti�cation routine creates a signal that is representative of symptom

severity. For our unilaterally lesioned mouse model of PD the most readily observable

impairment is the inability to walk straight; mice would turn in circles contralateral

to the lesion when given intraperitoneal apomorphine.

2.1.3 Behavior Box

I built an experiment apparatus for mice to enable a study being run by Jia-Min

Zhuo. The goal of the study was to elucidate the role of adult-born neurons on

mouse behavior, speci�cally their performance in discrimination tasks. We called

the apparatus the �Behavior Box� and modeled it after a commercially available but

grossly over-priced box that itself came from other labs (see [McLelland et al., 2015]).

The chamber was constructed with black plastic walls, extruded aluminum fram-

ing, and a perforated metal mesh �oor 1 cm above a plastic waste tray. A 10-inch

infrared touchscreen (ITouch Systems) was mounted over a 10-inch LCD monitor

forming one wall of the chamber. An opaque mask with seven windows was placed

over the screen to limit where the mouse could touch. A water pump with infrared

detector was located at the other end of the chamber to provide reward for the water-

deprived mice in the study. A white LED strip encircled the chamber from the top,

and multiple speakers positioned outside to deliver sound cues. A web camera was

�xed above the chamber to record and monitor mouse activity. My contribution to

this project was the program that facilitated interaction between all the system com-

ponents. This program controlled and recorded experiment progress. I developed the
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Figure 2·1: Behavior-box schematic

program in MATLAB, and the main components of its function are described below.

This system would eventually be used for a study investigating the development of

adult-born neurons in the hippocampus [Zhuo et al., 2016].

2.1.4 IR Touchscreen

The IR touchscreen provided a robust measure of the location of any contact with the

animal's paws or nose. The screen was more reliable than either resistive or capacitive

touchscreens, which are much more common in devices like POS systems and mobile

phones respectively.

The scientists users interact with the device through command-line manipulation

of a �BehaviorBox� object in the MATLAB REPL. This approach provides access to

features for easily customizable control of physical components including the infrared

touchscreen and LCD display along with speakers, water-ports, lights, essentially

anything that can be controlled electronically. The approach also enables suggestions
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and autocomplete options for users new to the environment.

2.1.5 FrameSynx Toolbox

The FrameSynx toolbox for MATLAB was built to synchronize continuous image ac-

quisition with experiments conducted in the neuroscience laboratory setting. While

the experiments are conducted in separate software (and potentially on a di�erent

computer), FrameSynx listens for messages to start/stop the experiment, start a

trial, etc. and responds accordingly by controlling one or multiple cameras and il-

lumination devices, and synchronizing this information with the data acquired. The

major contribution to the �Behavior Box� package, and also to later image processing

packages is the procedure for de�nition and storage and of experimental data �les,

which will be touched on brie�y in chapter 3.

2.2 Using Computer Vision to track Position and Orientation

2.2.1 Mouse in a Bowl

A webcam-based motion tracking box constructed to analyze the movement of our

unilaterally lesioned PD mouse model. Video is recorded at 15 frames per second

and processed on-line or o�-line using a function written in MATLAB. Brie�y, this

function converts each frame to a black and white image (logical matrix), uses mor-

phological �ltering functions to isolate the mouse (remove mouse excrement) and

identify its body (remove the tail), then �nds the center of mass in cartesian co-

ordinates (maximum center of projection on x- and y-axes), and the rostral-caudal

orientation measured in degrees o� the x-axis. Orientation is determined by the index

of maximum of a radon transform of the binary image. Processing is accomplished

at a rate of 15-16 fps, using a single core, or 64 fps using parallel processing on a

quad-core processor with multi-threading enabled. The advantage of this apparatus
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over the virtual-reality system is that it allows free movement of an untrained mouse,

with real-time movement metrics at nearly the same rate as the spherical treadmill.

This apparatus would go on to be used to investigate the oscillatory dynamics of

cholinergig interneurons in the striatum and their association with parkinson's-like

motor de�cits [Kondabolu et al., 2016].

(a) Raw frame of video being

tracked

(b) Area of detected mouse (c) Overlay of 3 consecutive

frames of mouse between each

Figure 2·2: Automated animal Tracking for �Mouse in a bowl� type experiments

(a) (b) (c) (d)

Figure 2·3: Automated animal Tracking for �Mouse in a bowl� type experiments:
(a-d) video overlay showing tracked points

2.2.2 Spherical Treadmill

A virtual reality system was assembled, adopting methods from the Harvey lab lab

[Harvey et al., 2009]. This system allows placement of a head-restrained mouse on

an 8-inch diameter polystyrene foam ball supported by a cushion of compressed air,

surrounded by a toroidal projection screen. Ball rotation is tracked with two optical
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computer mice placed orthogonal to each other. Movement vectors are fed into a

virtual-reality engine that updates the image projected onto a toroidal screen sur-

rounding the ball, simulating movement through any arbitrary virtual world. Move-

ment vectors are recorded as an arbitrarily scaled translation in the mouse-relative X

and Y axes and rotation around the Z axis, at approximately 30 ms intervals. This be-

havioral apparatus has the advantage of allowing trivial measurement of the mouse's

movement ability while the mouse is head-�xed. The disadvantage is the time and

potential confounds involved with training individual mice to use the system.

(a) Mouse running on a

treadmill equipped with vir-

tual reality

(b) Water

port

(c) Trained mouse using the

water delivery system

Figure 2·4: Spherical treadmill system and water deliver mechanism

2.2.3 Headplate Holder

This head-plate holder was designed to provide a rigid connection between the head-

plate - surgically �xed to each mouses cranium - and the optical table the microscope

is built on. It is also designed with considerations for ease of manufacture (no reposi-

tioning of the workpiece required for fabrication with a CNC mill). Most importantly

it is designed to stand up to the rigors of everyday use. This design is extended to

work with advanced head-plate designs in Chapter 4.
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(a) Front (b) Top (c) Bottom

Figure 2·5: Head-plate holder for spherical treadmill

2.2.4 Motion Sensors

Motion sensing was implemented using a linux computer and standard mice at �rst,

and later using precision laser navigation sensors for �gaming� mice and custom

�rmware written to work with any arduino-compatible microcontroller.

2.2.5 Generic USB Computer Mouse with Minimal Linux

Run �mouse_relay.py� on any computer running linux to send xy-data from 2 USB

optical computer mice to another computer over an RS-232 serial-port connection.

The receiving computer (in this implementation) uses MATLAB to read the values

and translate the xy-values from 2 mice on the surface of a sphere into 3 values

corresponding to rotation of that sphere around 3 orthogonal axes (XYZ) with their

origin at the sphere's center.

RECEIVING FUNCTIONS: The MATLAB class that receives the serial input

(xy-values from both mice) is called �VrMovementInterface�

The MATLAB function that translates the double-stream of xy-values from the

sphere's surface into rotation around its center is called �moveBucklin.m� and is lo-

cated in the VIRMEN �movements� folder.

SERIAL FORMAT: XY-Values are transmitted in `packets' using an ascii format-
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ted string terminated by a newline. Each packet contains the Sensor Number (s) that

the reading is coming from, followed by the X-Value (dx), then the Y-Value (dy).

The python code looks like the following:

A single reading is received at the other end of the serial connection looking

something like the following:

s1x34y-3

2.2.6 Navigation Sensor Chip with Arduino

The system was later improved. I wrote an Arduino compatible library that functions

as a driver for for the ADNS performance precision gaming sensor. This driver passes

[dx,dy] measurements from two ADNS-9800 laser mouse sensors (placed 45-degrees

apart on surface of Styrofoam ball). The library has been put to use in multiple sys-

tems and enjoys collaborative development from a small number of other researchers

[Romano et al., 2019]
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(a) mention sensors installed (b) motion sensors

(c) tracking mouse movement

Figure 2·6: Motion sensor installation on a spherical treadmill

2.3 Microscopes

This section describes the background in microscopy in the neurosciences, and also

how it relates to imaging in healthcare and electrophysiology in neuroscience. It will

also describe the basic elements necessary for the construction of a microscope in a

laboratory where calcium imaging in an animal is available. It will also refer to later

sections which cover the design and construction of mechanical elements for animal

handling and optical access (i.e. the headplate and a chronic optical window).

19



2.3.1 Background: Brain Imaging and Microscopy in Neuroscience

Optical imaging has traditionally involved wide-�eld imaging or two photon imaging,

each with their own distinctive advantages and disadvantages. In recent years, two

photon microscopy has been a preeminent choice for imaging in tissue, because of its

high spatial resolution, and tissue penetrating features. Two photon calcium imaging

has been broadly applied to individual cells or subcellular components of neurons

including spines and axons.

Because two photon microscopy uses a scanning mechanism, the signal to noise

ratio is in�uenced by the time spent imaging each point, and the spatial resolution is

determined by the number of points scanned to obtain each image. As a result, the

size of the imaging �eld is inversely correlated with the overall temporal resolution

while maintaining a relatively high signal-to-noise ratio, thus, two photon calcium

imaging is often performed on a small area or on a sparse network of cells, when

dynamic responses with high temporal �delity is necessary.

Wide-�eld imaging has been used in various forms for several decades and was

�rst used to characterize the functional architecture and hemodynamic responses

in brain tissue. However, this technique has seen a renaissance recently due to its

simple instrumentation, relatively inexpensive cost, and the improvements in neural

signal indicators. Optical imaging and two photon microscopy have traditionally been

performed in head-�xed preparations, but recent advances have also made it possible

to perform wide-�eld calcium imaging in freely moving animals, through miniaturized

and wearable microendoscope systems

While wide-�eld imaging lacks the spatial resolution to resolve �ne subcellular

structure or the penetrating properties available with two-photon, it is possible to

obtain clear neurites and somatic features, including spike detection

Because a single photon microscope does not rely on scanning features, it can
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be used to sample a larger �eld of view without sacri�cing sampling rates. Addi-

tionally, recording sessions may be less sensitive to �uorophore bleaching than other

techniques, which makes it possible to perform sustained illumination and subse-

quent imaging for an extended period of time - a desired feature for analyzing neural

networks during some behavior paradigms (e.g., repeated trial learning paradigms).

Thus, wide-�eld imaging o�ers an advantage if the objective is to simultaneously

recording hundreds of neurons in the brain of a living and behaving animal with high

temporal �delity.

2.3.2 Cameras for Wide�eld Microscopy

Traditional wide�eld microscope or macroscope builds incorporate `scienti�c grade'

cameras. Compared to cameras built for other markets � i.e. consumer, industrial,

studio, etc. � these cameras are often well tested and certi�ed to o�er low or well-

characterised noise at moderate speeds, and a linear photo-response pro�le. Unlike

consumer or studio cameras which are invaribaly con�gured for RGB color, they

are preferably con�gured with `monochrome' sensors � essentially identical to the

analagous color sensor, without the bayer �lter. Of much greater importance, one

must consider the unique connectivity and control interface that scienti�c cameras

come with. Standards exist, but are typically unique to this segment of the industry,

with poorly de�ned speci�cations for translation to other electronic communication

and connection interface standards, such as those used in studio and broadcast video,

or those used with consumer cameras. The trait that is the most worthy of consider-

ation, however, is the cost.

The in-vivo instrinsic-signal or �uorescent-dye imaging camera of 1 decade ago

had a 0.5�-1� monochrome CCD sensor with 0.1-1 MegaPixels, a large well-depth,

and moderately low noise at speeds around 30 to 60 fps. Connection was often

LVDS, with custom electrial connectors unique to each camera. A particularly popu-
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lar and long-running model was the Dalsa 1M30, followed by the 1M60 in later years

[Takahashi et al., 2006].

2.3.3 Microscope Construction

(a) Schematic showing relation of microscope

and mouse on spherical treadmill

(b) Setup 1: the LED used for extending to

the left (black covering to block light)

Figure 2·7: Basic con�guration for a wide�eld epi�uorescence microscope for in-
vivo imaging. This �rst con�guration used a phase contrast lens borrowed from an
inverted microscope (not recommended).
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(a) front (b) close up

(c) side

Figure 2·8: Wide�eld �uorescence microscope (Setup 2)
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(a) front (b) close up (c) side

Figure 2·9: Wide�eld �uorescence microscope recon�gured Setup 3. Multiple iter-
ations are shown, with later iterations o�ering improved compatibility with usage of
o�-the-shelf components.
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Chapter 3

Neural Signals: Computational

considerations, interpretation and usage

3.1 Image Processing

The entire procedure for processing images and extracting cell signals can be per-

formed in substantially less time than most commonly available tools using the ap-

proach described in Aim 1, particularly the methods for restricting the spatial extent

of pixel-association operations, and distributing operations across parallel process-

ing cores using a Single Program Multiple Data (SPMD) archetype. However, the

total time still exceeds that of the acquisition session. Ine�ciency arises from the

overhead involved with distributing data and passing information between separate

parallel processes. Graphics cards, however execute in what's called Single Instruc-

tion Multiple Data (SIMD) fashion, to distribute computation across the thousands

of processing cores.

The processing components are implemented using the MATLAB System-Object

framework, which allows for slightly faster performance through internal optimiza-

tions having to do with memory allocation. Most system objects, each representing

one step in the serial processing and signal-extraction procedure, also have compan-

ion functions that implement the computation-heavy components of each algorithm

using a pre-compiled CUDA kernel.
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3.1.1 Benchmarking & General Performance

Built-in MATLAB functions that execute on the GPU can be pro�led with bench-

marking functions like gputimeit(), or with the tic/toc functions. When execution

isn't fast enough, they need to be replaced with custom functions. The custom func-

tions typically achieve the speed up necessary by enabling the operation to carried out

on several frames at once. This reduces the over-head costs imposed for each function

call by spreading it over several frames. This solution is not ideal, as it increases the

latency of solutions, however does not preclude implementation in real-time system

if the procedures are adapted to run on a real-time hybrid system-on-module like

NVIDIA's Tegra X1, which should involve minimal e�ort once a standard set of suc-

cessful procedures is realized. The current implementation tests the processing time

of each stage of the process to ensure that the sum is less than the acquisition time

for each frame dictated by the inverse of the frame-rate (30-50 milliseconds).

3.1.2 Bu�ered Operations

Combining frames for each operation can result in near linear speedup. For example,

for the phase-correlation step required for motion correction, the FFT and IFFT are

called on 16 image-frames at once, and the time take to accomplish is approximately

the same as if the operation were called on 1 frame. This essentially leads to a

16x speedup, though the latency is also increased slightly. The best size to use is

di�cult to pre-determine, and typically must be measured for varying size `chunks'

using the benchmarking functions indicated above. The system objects manage the

details necessary to allow bu�ered chunks of video to be passed to each stage without

introducing artifacts at the temporal edges between chunks.
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3.1.3 User Interface for Parameter Tuning

Some system-objects also incorporate a user interface to aid in parameter selection

for tuning.

Figure 3·1: Interactive parameter adjustment for homomorphic �lter operation (lo-
cal contrast enhancement)

3.1.4 Image Pre-Processing & Motion Correction

Pre-processing is implemented as with the o�ine procedure, with a few changes.

Images are aligned in chunks, and they are aligned sequentially to two templates.

One template is the most recent stable frame from the preceding chunk. The other is

a recursively temporal-low-pass �ltered image that mitigates slow drifts. Aligning to

the �rst template is usually more stable as the brightness of cells in the recent image

will be more similar to those in the current chunk than will be the brightness of cells

in the slow-moving average.

The displacement of each frame is found to sub-pixel precision, then used with a

custom bicubic resampling kernel that replaces any pixels at the edges with images
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from the moving average.

Figure 3·2: Motion compensated; comparison of uncompensated and compensated
frames overlayed with mean image

3.1.5 Sequential Statistics

A number of statistics for each pixel are updated online and can be used for normal-

ization and segmentation procedures later in the process. These include the minimum

and maximum pixel intensity, and the �rst four central moments, which are easily con-

verted to the mean, variance, skewness, and kurtosis. The formulas for making these

calculations are given below, and are performed in a highly e�cient manner as data

are kept local to each processing core, and repeat computations are minimized. Code

implementing these incremental pixel-wise statistic updates in MATLAB is shown in

below 1.

Furthermore, the value used to update each central moment at each point in time

can be used as a measure of change in the distribution of each pixel caused by the

current pixel intensity, as explained next.
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Figure 3·3: Pixel-wise statistics of 128 frames (min, max, mean, standard deviation,
skewness, kurtosis)

Non-Stationarity & Di�erential Moments

Stationary refers to the property of a signal such that its statistics do not vary over

time, i.e. its distribution is stable. Neural signals tend to speci�cally not have this

property, in contrast to other measurable components such as those contributed by

physiologic noise (heart-rate, respirations, etc.). Thus, by analyzing the evolution of

statistical measures calculated for each pixel as frames are added in sequence gives a

highly sensitive indicator of neural activity. This is done using a routine analogous

to that for updating central moments given above, except the values returned are not

only the updated moment, but also the updating component � essentially the partial

derivative with respect to time. This is illustrated below, including the normalization

functions which convert the partial-moment values to their variance, skewness, and

kurtosis analogues.

These functions run on images representing the image intensity, and also on images

taken from sequential di�erences indicating the temporal derivative of image inten-
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sity. The combination of outputs from these operations indicate both when image

intensities are signi�cantly high relative to past distribution, and also when intensities

are changing signi�cantly faster than learned from their past distribution.

function [fmin,fmax,m1,m2,m3,m4,n] = statUpdateKernel(f,fmin,fmax,m1,m2,m3,m4,n)

% update sample count for this pixel

n = n + 1;

% precompute & cache some values for speed

d = f - m1;

dk = d/n;

dk2 = dk^2;

s = d*dk*(n-1);

% update central moments

m1 = m1 + dk;

m4 = m4 + s*dk2*(n.^2-3*n+3) + 6*dk2*m2 - 4*dk*m3;

m3 = m3 + s*dk*(n-2) - 3*dk*m2;

m2 = m2 + s;

% update min & max

fmin = min(fmin, f);

fmax = max(fmax, f);

end

Listing 1: Incremental update of the pixel statistics (min, max, and �rst 4 central
moments). This function can be called to e�ciently run in parallel across CPU or
GPU cores

This type of function is also easily translated to stencil functions on for computa-

tion on the GPU.

3.1.6 Surface Classi�cation: Peaks, Edges, Curvature

Edge-�nding methods are employed for establishing boundaries between cells, and

�rst and second-order gradients are used to compute local measures of curvature

from an eigenvalue decomposition of the local Hessian matrix. I won't go into detail,

as the utility of these procedure in the most recent implementation has been lost,
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Figure 3·4: Normalized di�erential skewness

but nevertheless, the operation is optimized and ready to be plugged back in when

further development calls for better accuracy informing cell-segmentation, or when a

faster or more accurate motion-correction algorithm is called for.

3.1.7 Online Cell Segmentation & Tracking

Cells are segmented by �rst running sequential statistics on the properties of iden-

ti�able regions on a pixel-wise basis. That is, as regions are identi�ed in a method

similar to that used o�ine in Aim 1, the region-properties are calculated (Centroid,

Bounding-Box, etc.) and statistics for these properties are updated at each pixel cov-

ered by a proposed region. After su�cient evidence has gathered, Seeds are generated

by �nding the local peak of a seed-probability function that optimizes each pixel's

proximity to a region centroid, and distance from any boundary. Regions are grown

from these seed regions, and registered in a hierarchy that allows for co-labeling of

cellular and sub-cellular components. Newly identi�ed regions occur as new seeds,

where as seeds overlapping with old regions are used to identify sub-regions, or to

track regions over time.
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3.1.8 Signal Extraction from Subcellular Compartments

I also have functions for the extraction of normalized Pointwise-Mutual-Information

(nPMI), which can operate on a pixel-to-pixel basis or on a region-to-pixel basis.

This operation accumulates mutually informative changes in all pixels in the maximal

bounding-box (e.g. 64x64 pixels) surrounding each identi�ed regions centroid. The

weights given by this function can take on values between -1 and 1, and can be used to

inform any reduction operations to follow. Additionally, spatial moments can indicate

the subcellular distribution of activity across the identi�ed region. In this context,

the �rst spatial moment M00 indicates the mean signal intensity.

3.1.9 Tone mapping and Filtering

Visualization is greatly aided by continuous normalizing/tonemapping operations that

operate on moving averages of each image stream. By adding operations speci�cally

meant to bring the range and intensity of image frames in the stream to be compatible

with modern displays, the original streams can retain their original values. This

is useful in situations where the absolute pixel value of a particular image stream

actually represents some real-world measure, such as a count, a distance, a probability,

or a length of time. Figure 3·6 shows one such type of measure, normalized in this

case to �ll the range of brightness that �ts on a digital display, and tonemapping

distances on the xy plane (stored as complex pixel values) to colors in a 2-dimensional

cylindrical colorspace.

32



Figure 3·5: Feature generation of single motion-compensated frame using complex-
valued normalized pointwise mutual information of each pixel with its local neighbor-
hood
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Figure 3·6: Feature generation showing complex-valued moving average of distance
of each pixel to bounding box corners (post segmentation)
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Chapter 4

Discussion: the last mile in computing for

clinicians, engineers, and research scientists

This dissertation presents straightforward and reproducible methods for assembling

laboratory equipment that can capture the behavior and neural activity of laboratory

animals as well as the procedures for managing and analyzing the collected data.

In some ways, the recommended procedures deviate from standard practice or the

most obvious approaches. In this section, the newer approaches are compared and

contrasted with current or traditional ones.

The long-term goal is to improve image quality data analysis in a �nite and man-

ageable manner that becomes (perhaps) as elegant, unique, and chaotic as the human

brain itself.

4.1 Primary Goals

The function of the brain is to translate/encode sensory input into neural output,

actuating an e�ect that promotes organism survival or the survival of o�spring. It

achieves this by communicating input through interconnected neurons via converging

and diverging connections that comprise the neural network. One way to study the

brain is by testing and observing the properties of individual neurons and the response

to changing conditions at the direct connections they form with others. Another

approach is to observe a collection of neurons and measure their response to variable

conditions in their external environment either by recording or stimulating variations
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in sensory input or measuring an organism's physical/behavioral response.

One might presume that the expansion of information provided by measuring ac-

tivity from a larger number of cells in a network would simplify analysis in stimulus-

response type experiments and a�ord insight about underlying functional mecha-

nisms. Unfortunately, the correlation and information theoretic procedures tradition-

ally used to make these associations su�er from a systematic bias that exponentially

grows with the number responses considered for each stimulus (i.e., the number of in-

cluded cells). The trial number necessary to overcome this bias becomes exponentially

large although methods such as shu�ing/resampling tests exist for bias correction.

A systems neuroscience experiment bene�ts from online feedback in one or both

of two ways:

1. It informs the user regarding the current number of trials, i.e., repeated presen-

tations of the stimulus will be su�cient to overcome limited sampling bias in

an experiment attempting to learn the neural response/pattern associated with

a speci�c stimulus. This could be done by testing pattern hypotheses online

against subsets of collected data and then assessing their stability.

2. Online pattern recognition feedback maximizes the information in the response

to a stimulus either by directing modi�cation of the stimulus, or directing mod-

i�cation of the �eld-of-view.

Streaming processing addresses the issues of processing and storing pools of data

from large networks on the scale that is necessary for deep learning type methods to

be e�ective. Additionally, I demonstrate a strategy in the methods section by which

incorporating this online processing stream into stimulus-response-type experiments

could help correct limited sampling bias, enabling neural coding analysis in large

populations of neurons. This approach works when the experimental intention is to

study neural coding in general, for which it's su�cient to have an arbitrary stimulus.
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The earliest version of the software mentioned in Chapter 3 was published in 2016

[Mohammed et al., 2016]. Later versions were modi�ed to image other areas of the

brain [Gritton et al., 2019].

4.2 State of current methods

At the start of the work described here, we found ourselves with technology providing

�neural signals� that vastly exceeded our expectations and the assumptions of the

tools we applied to work with it. In the past, �uctuations in optical imaging data

were dominated by �noise. � The form of noise depended on the process; all types

of imaging, intrinsic signal, �uorescent dye, etc., had relatively small �uctuations

resulting from neural activity. With new engineered molecules, like GCaMP6, and

new images sensors, like those dubbed scienti�c CMOS, these sources of noise were

comparatively small. This improved signal-to-noise ratio opens the door for new

opportunities and facilitates change to traditional analytic routines. The abundance

of signals available from our research animals not only makes old routines ine�cient,

but paradoxically, also insu�cient. Such an abundance of data factors at our �nger

tips requires a level of discipline in study design to make the scienti�c method work

that was previously unnecessary as the di�culty in �nding signals was inherently �self

regulating� and inherently limiting.

4.2.1 Signal and Noise in Neural Imaging Data

Traditional noise in neural signals can be roughly categorized as having origin in phys-

iology or technology. The physiological noise sources include �artifacts� caused by an

animal's breathing, heart beat, or other physical movements in response to the exper-

imentally controlled world around them. Technological noise is usually broken down

into sensor noise sources: read noise and thermal noise, and noise relating to digiti-

zation. A third type of �noise� could arguably be categorized as either, as it lies at
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the interface of technology and biology. For example, the complex interactions of ex-

ogenous calcium-binding proteins like GCaMP with the endogenous calcium handling

proteins of a neuron potentially creates noise at the technology-biology interface. By

strict de�nition, however, only the sensor noise should termed noise, as other sources

are mostly predictable and unpredictable and can be systematically neutralized or

accommodated prior to data analysis. The noise level in the signals gathered by a

combination of GCaMP6 and a sCMOS camera is minuscule relative to the signals

indicating �uctuation in calcium concentration. The problem of visualization of these

signals persists however, as the dynamic range of signal varies tremendously over space

and time, and requires some treatment prior to being displayed on our currently lim-

ited computer monitors. Previously common methods, particularly intrinsic-signal

imaging, provided very small signals that required �averaging over time� before any

speci�c or reproducible response could be ascertained.

4.3 Exponential Expansion in Data Volume

The quality of cheaply available image sensors has risen drastically and are readily

available. A workable interface can be readily established and the stream of infor-

mation they provide once switched on is virtually unlimited. In the stark contrast

however, storage for this never-ending data stream is both �nite in its capacity, and

cumulative in its consumption of available storage devices.

4.3.1 Fields sharing these challenges

Scientists often view themselves as working inside laboratory full of sensors, being

�data-rich� but �space-poor�. For better or worse, scientists are not alone in dealing

with this inherent technological problem. Massive investment has been poured into

managing this issue for commercial purposes, and � perhaps unsettlingly � for gov-

ernmental surveillance purposes. The volume of recordable tra�c bouncing through
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choke points of the internet exceeds the capacity of any government to store for more

than about 24 hours. Likewise, the massive volume of video data acquired by video

surveillance systems in China requires a similar solution to one desired by scientists

and physicians to resolve our data acquisition challenges.

4.3.2 Technological Opportunities to Expect

Current solutions proposed by commercial and governmental giants are not radical.

They include calls for standardization in data format that could enable solutions for

e�cient transmission and storage to be shared by improving common tools. Common

streaming formats allow compression and storage to be abstracted from each appli-

cation. Databases are being developed to take advantage of heterogeneous compu-

tational architectures and distributed storage spaces. Traditional document-based or

relational databases are outperformed by graph-based �triple-store� databases, time-

series databases, and by databases programmed for speci�c architecture, including

GPU-databases. These technological developments are targeted at the bottlenecks

currently restricting access to data. Early results with these approaches suggest an

orders of magnitude improvement in throughput. These tools are being developed

both with and without the contribution of physicians and scientists. It would be

prudent however, to take advantage of new developments by orienting these tools to

the speci�c needs of scientists and clinicians.

4.4 Incomplete synthesis of actionable knowledge

As humans we enjoy dealing in and acting on information with great certainty. We

have phenomenal acuity for predicting the future, far surpassing that of any other

species. Science, the practice of knowing has without question accelerated our individ-

ual and pan-species capability in this regard, and yet, science deals with surprisingly

high levels of uncertainty. One might argue that trading, measuring, and learning
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to a�ect uncertainty is the general bread and butter of science. Another could say

that, while that is true, the standards for what is a reasonable level of uncertainty

are substantially below what they should be.

4.4.1 �Biomimicry� in visual processing

This section describes how computer image and video processing relate to visual

processing in the mammalian brain. The overall goal is to emphasize the advan-

tage and importance of bio-mimetic development. Neuromorphic computing with �on

chip� image processing represents an improvement over traditional batch processing.

Event-based image sensors such as the �arti�cial retina� or DVS attempt to repli-

cate physiologic environments wherein asynchronous event streams are emitted and

available for e�cient processing in constrained environments (i.e., embedded proces-

sors). Convolutional neural-nets and deep learning for speci�c tasks have a nominal

biomimetic basis, however the functional mechanisms that allow them to learn and

adapt to a task are very di�erent from the mechanisms for learning and plasticity

thought to underly functionality in the mammalian brain. Genetic programming ap-

proaches to procedure optimization will hopefully minimize latency while maximizing

sensitivity and accuracy at minimal computational cost, energy expenditure (i.e., with

high metabolic e�ciency) that facilitates visual stream processing amenable to fea-

ture extraction with motion estimation and compensation. The current asymmetry

in the time required for learning/training time to that for inference/computation is

a substantial barrier to adoption of this methods, but is similar to biological scales,

interestingly enough.

Common standards applied across projects with common themes can be facilitated

by employing rigorous adherence to non-proprietary open source conventions that in-

cludes (but is not limited to) optical parts (lens threads), �le formats, widely available

software libraries in standard programming languages, and ease of �le transmission
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that are web-based. We are well advised to borrow from related sectors with bet-

ter developed solutions such as surveillance, media streaming for web/entertainment,

sports, astronomy/telescopes, medical imaging and even automotive applications.

4.5 Clinical translation potential

Devices that rely on optogenetics to deliver stimulation to neurons inherently share

the same hurdles to clinical translation. These hurdles include the requirement for

gene-therapy and its associated risks. Several early trials of viral transfection of cells

had adverse e�ects including a greatly increased risk of carcinoma. In these early

studies, the DNA insertion location was uncontrolled leaving important regions of

DNA tumor suppressor genes exposed to damage. New methods that improve the

safety of gene therapy have been developed. Several of the more recent methods

utilize adeno-associated virus (AAV) with greater control regarding the site of DNA

insertion and also cause less DNA damage. These more recent methods suggest the

possibility that with continuing research, methods may be developed without the

inherent potential to stimulate malignancy. Working on a project that requires a

technology that does not as of yet exist represents one of the greatest educational

challenges and bene�ts of this project. That leap of faith into a future that also does

not exist requires us to depend on each other as a team of collaborators in a mutually

interdependent manner. In order to succeed, we must do so together. Without each

other, our therapeutics would never reach their ultimate �target audience�, the patient.

In this scenario, we share both successes and setbacks in the same meaningful way

whether such events occur within our own labs or others located elsewhere.
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4.6 Cranial Window

The two-stage cranial implant device described here was developed to enable reliable,

long-term optical access and intermittent physical access to mouse neocortex. Our

particular application required bilateral cortical windows compatible with wide-�eld

imaging through a �uorescence microscope, and physical access to the underlying tis-

sue for virus-mediated gene delivery and injection of exogenous labeled cells. Optical

access is required as soon as possible post-installation and ideally, is sustainable for

several months thereafter. My current designs are focused on addressing the issue

common to other window designs meant for rodents, that is, progressive degradation

of the optical light-path at the brain-to-window interface caused by highly scattering

tissue growth. The elastomer insert is molded to �t the chamber and craniotomy

site, blocking tissue growth in way that provides a reliable optical interface lasting

up to one year. Additionally, the core design can be rapidly adapted to improve its

performance or interface with diverse applications.

4.6.1 Critical Elements

In assessing the design presented here, we highlight a few critical elements that facili-

tate the maintenance of the long-term optical quality. The Methods section describes

the speci�cs of surgical procedures for head-plate installation and insert attachment.

These procedures were established after testing the variable formulations in protocol.

First, the design of the silicone insert must incorporate a mechanical barrier that

�ts along the edges of the craniotomy. To be e�ective, the barrier must be contin-

uous along the circumference, and extend as far as the inside surface of the skull.

Achieving this tight �t without aggressively impinging on the brain requires some

sort of �ne height adjustment capability. The silicone insert must be attached at

the correct height during the installation procedure, or shortly thereafter. The insert
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must be slightly depressed until full contact is made across the entire window. How-

ever, pressing beyond this distance quickly exerts an untoward increase in intracranial

pressure that promotes both in�ammation and adverse outcomes. A mechanism for

�ne adjustment can be designed into the system and is in fact incorporated into the

installation procedure as is done in the �rst design and demonstrated in the second

design presented here. Of particular note, we found that administration of antibiotic

and anti-in�ammatory drugs in the days surrounding any major surgical procedure

had a substantial impact on the viability of the optical interface. We used both cor-

ticosteroid and non-steroidal anti-in�ammatory drugs. Attempts to exclude either

drug caused poor outcomes for study animals. Lastly, sealing the chamber is abso-

lutely critical for achieving viability of the optical interface as well as the animal's

overall well being. Equally critical to the long-term health of the imaging chamber is

the requirement to establish and maintain an air-tight seal between the chamber and

the outside world. This includes a permanent seal between the chamber and skull

and a reversible seal between the chamber rim and the optical insert. is Although

speci�c to the system design, a permanent seal is absolutely essential to ensure long-

term functionality. In addition to establishing and maintaining an air-tight seal, it

is necessary to eliminate all air pockets within the chamber. Residual air pockets

will be susceptible to bacteria growth and may disrupt normal intracranial and inter-

membrane pressures after installation. We employed sterile agarose �ll to displace all

air within the chamber prior to sealing. Dead space surrounding the silicone insert,

including that temporarily �lled with agarose, will �ll with �uid and eventually be

overtaken by granulation tissue. This preventive process is helpful to the maintenance

of a sterile chamber environment and therefore, care should be taken not to disrupt

it. However, an excess of dead space will delay this process and thus should also be

minimized when adapting the design. Several attempts to test variations from the
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described procedures indicated that all elements mentioned above are equally critical

to achieving a reliable imaging window with sustained optical quality. Implementing

the procedures as described or an e�ective alternative solution should mitigate the

primary obstacle to long-term imaging in mice and other rodents by reducing the need

to pre-terminate imaging experiments due to light-path disruption by tissue ingrowth.

This capability will drastically reduce wasted time and resources for experiments of

any duration and facilitate previously infeasible research that require longer-term

observations including aging or progressive chronic neurological disorders.

4.6.2 Staging Implant Installation & Tissue Access

Con�guring the implant as described to enable a staged installation of multiple parts

enables surgical procedures to be easily spread across multiple days. This capability

o�ers a number of advantages including saving time and resources, particularly during

the prototype stages by allowing time to ensure each implanted animal fully recovers

from the initial procedure and anesthesia. Additionally, the delay between surgeries

allows the initial in�ammation and immune system responses triggered by craniotomy

to resolve before attempting a second intervention in tissue that is sensitive to these

manipulations (e.g., viral or cell injections). Importantly, this system a�ords the

capability to image the �rst tissue intervention from day 0. Similarly, designing a

system installed in multiple stages enables trivial and repeatable tissue access at

later time points by simply reversing the insert attachment procedure. The process

may be comparable to a previously reported method of removing the entire cranial

glass window to access the tissue. With this newer system however, the methods used

to detach and reattach the cranial window are relatively faster, simpler and carry less

risk of tissue damage. Additionally, the described method provide full cranial access

without compromising the image �eld, an advantage not provided by a �xed access

port.
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4.6.3 Design Adaptation

The speci�c designs described in this report work well and have much to o�er. The

potential for fast and unrestricted adaptation is the greatest asset of the underlying

system. Most users will �nd greater utility in adopting components of the design and

fabrication process that can be readily customized to �t their exact needs. The design

can also be rapidly transformed to accommodate various applications or to modify its

performance in response to new technologies and demands. This rapid adaptability

was a primary goal of this project, and informed our design and engineering decisions

throughout development. Anyone with access to common laboratory equipment and

moderate engineering and fabrication skills can produce a system to �t their particu-

lar needs. As an inherent aspect of any design process, the adaptation of the original

design evolved over the course of prototyping and testing. In presenting two designs

in this report, our intention was to demonstrate the technical feasibility of continuous

development of a �future-proof� system. The original system was adapted to accom-

modate the continuous evolution of image sensor technology, particularly the growth

in size and resolution, expanding the �eld of view and allowing simultaneous access to

cellular interactions across multiple brain regions using wide-�eld imaging. We found

that subtle dimensional changes, and the addition of minuscule features exert a large

impact on the success of any design. We also found that adjusting features to address

one aspect of functionality may have unintended e�ects. For example, the inclusion

of a thin skirt extending below the optical insert that was incorporated to protect

against tissue growth within the image �eld also promotes physical conformity of

the brain to the optical window interface over time. This conformity results in a �at

imaging plane that is optimal for wide-�eld imaging and was previously unachievable.
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4.6.4 Rapid fabrication

The rapid iterative process used here was made possible by using a combination of

widely available rapid prototyping procedures, 3D-printing and laser-cutting. Major

progress of manufacturing and its increased versatility, providing better quality, cus-

tomization, lower cost and shorter production time. In an e�ort to compare various

manufacturing technologies, we explored a number of companies and advanced with

3D metal printing. The �nal products provided by at i.materialise achieved our ex-

perimental goals in product design. We also developed parts in collaboration with

other rapid prototyping companies including Shapeways and Sculpteo. In addition:

� Various features and functions of the silicone insert were transformed and ex-

tended to conform to new design requirements, some requiring distinctively

di�erent design approaches

� Versatility of silicone elastomer to cover a spectrum of design strategies to op-

timize its con�guration might be bene�cial

� The design principles that evolved from the initial development are robust and

can be applied to new developments or re�nements while preserving the suc-

cessful qualities of the original implant

� CAD designs of these reported systems are open source accessible and can be

modi�ed and extended by evolving demands and technologies We, the authors,

also call for replication, adaptation, and evaluation (i.e., continued open/shared

development).

4.6.5 Future improvements

The current project primarily explores the ability to mold precise and complex fea-

tures using silicone elastomer to discover con�gurations to improve image perfor-
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mance using encapsulated electrodes and optical guides. These approaches replace

combination optical + integrated electrode window and do not require optogenetics

stimulation. More signi�cantly, the encapsulation of carbon, metal colloidal particles

or quantum dots into polymer hydrogel networks imparts exclusive thermal, sonic,

optical, electrical or magnetic properties. Speci�cally, the polymer interface may pro-

vides a means for directly penetrating neurons to gain electrophysiological recording

or facilitate drug infusions, allowing recording and/or manipulation during imaging

session. In the near future, improvements in window thickness and chromatic aber-

ration will enhance both wider-�eld and 2-photon imaging, a process that will be

enhanced by improved and lenses and embedded, integrated electronic components,

such as LEDs for illumination or stimulation, or sensors. These embedded devices

will facilitate positioning, especially in combination with kinematic head-plates that

allow for repeatable head positioning and newer fabrication materials.
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Appendix A

Published Abstracts

An integrative approach for analyzing hundreds of neurons in

task performing mice using wide-�eld calcium imaging

Advances in neurotechnology have been integral to the investigation of neural circuit

function in systems neuroscience. Recent improvements in high performance �uores-

cent sensors and scienti�c CMOS cameras enables optical imaging of neural networks

at a much larger scale. While exciting technical advances demonstrate the potential of

this technique, further improvement in data acquisition and analysis, especially those

that allow e�ective processing of increasingly larger datasets, would greatly promote

the application of optical imaging in systems neuroscience. Here we demonstrate the

ability of wide-�eld imaging to capture the concurrent dynamic activity from hun-

dreds to thousands of neurons over millimeters of brain tissue in behaving mice. This

system allows the visualization of morphological details at a higher spatial resolution

than has been previously achieved using similar functional imaging modalities. To an-

alyze the expansive data sets, we developed software to facilitate rapid downstream

data processing. Using this system, we show that a large fraction of anatomically

distinct hippocampal neurons respond to discrete environmental stimuli associated

with classical conditioning, and that the observed temporal dynamics of transient

calcium signals are su�cient for exploring certain spatiotemporal features of large

neural networks.

Published 2016 [Mohammed et al., 2016]



Striatal cholinergic interneurons generate beta and gamma os-

cillations in the corticostriatal circuit and produce motor de�cits

Cortico-basal ganglia-thalamic (CBT) neural circuits are critical modulators of cog-

nitive and motor function. When compromised, these circuits contribute to neuro-

logical and psychiatric disorders, such as Parkinson's disease (PD). In PD, motor

de�cits correlate with the emergence of exaggerated beta frequency (15�30 Hz) os-

cillations throughout the CBT network. However, little is known about how speci�c

cell types within individual CBT brain regions support the generation, propagation,

and interaction of oscillatory dynamics throughout the CBT circuit or how speci�c

oscillatory dynamics are related to motor function. Here, we investigated the role of

striatal cholinergic interneurons (SChIs) in generating beta and gamma oscillations

in cortical-striatal circuits and in in�uencing movement behavior. We found that se-

lective stimulation of SChIs via optogenetics in normal mice robustly and reversibly

ampli�ed beta and gamma oscillations that are supported by distinct mechanisms

within striatal-cortical circuits. Whereas beta oscillations are supported robustly

in the striatum and all layers of primary motor cortex (M1) through a muscarinic-

receptor mediated mechanism, gamma oscillations are largely restricted to the stria-

tum and the deeper layers of M1. Finally, SChI activation led to parkinsonian-like

motor de�cits in otherwise normal mice. These results highlight the important role of

striatal cholinergic interneurons in supporting oscillations in the CBT network that

are closely related to movement and parkinsonian motor symptoms.

Published 2016 [Kondabolu et al., 2016]
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Young adult born neurons enhance hippocampal dependent

performance via in�uences on bilateral networks

Adult neurogenesis supports performance in many hippocampal dependent tasks.

Considering the small number of adult-born neurons generated at any given time, it

is surprising that this sparse population of cells can substantially in�uence behavior.

Recent studies have demonstrated that heightened excitability and plasticity may

be critical for the contribution of young adult-born cells for certain tasks. What is

not well understood is how these unique biophysical and synaptic properties may

translate to networks that support behavioral function. Here we employed a location

discrimination task in mice while using optogenetics to transiently silence adult-born

neurons at di�erent ages. We discovered that adult-born neurons promote location

discrimination during early stages of development but only if they undergo maturation

during task acquisition. Silencing of young adult-born neurons also produced changes

extending to the contralateral hippocampus, detectable by both electrophysiology and

fMRI measurements, suggesting young neurons may modulate location discrimination

through in�uences on bilateral hippocampal networks.

Published 2016 [Zhuo et al., 2016]
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A Teensy microcontroller-based interface for optical imaging

camera control during behavioral experiments

Background

Systems neuroscience experiments often require the integration of precisely timed

data acquisition and behavioral monitoring. While specialized commercial systems

have been designed to meet various needs of data acquisition and device control, they

often fail to o�er �exibility to interface with new instruments and variable behavioral

experimental designs.

New method

We developed a Teensy 3.2 microcontroller-based interface that is easily programmable,

and o�ers high-speed, precisely timed behavioral data acquisition and digital and ana-

log outputs for controlling sCMOS cameras and other devices.

Results

We demonstrate the �exibility and the temporal precision of the Teensy interface in

two experimental settings. In one example, we used the Teensy interface to record

an animal's directional movement on a spherical treadmill, while delivering repeated

digital pulses that can be used to control image acquisition from a sCMOS camera. In

another example, we used the Teensy interface to deliver an auditory stimulus and a

gentle eye pu� at precise times in a trace conditioning eye blink behavioral paradigm,

while delivering repeated digital pulses to trigger camera image acquisition.

Comparison with existing methods

This interface allows high-speed and temporally precise digital data acquisition and

device control during diverse behavioral experiments.
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Conclusion

The Teensy interface, consisting of a Teensy 3.2 and custom software functions, pro-

vides a temporally precise, low-cost, and �exible platform to integrate sCMOS camera

control into behavioral experiments.

Published 2019 [Romano et al., 2019]
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Unique contributions of parvalbumin and cholinergic interneu-

rons in organizing striatal networks during movement

Striatal parvalbumin (PV) and cholinergic interneurons (CHIs) are poised to play

major roles in behavior by coordinating the networks of medium spiny cells that re-

lay motor output. However, the small numbers and scattered distribution of these

cells have hindered direct assessment of their contribution to activity in networks of

medium spiny neurons (MSNs) during behavior. Here, we build on recent improve-

ments in single-cell calcium imaging combined with optogenetics to test the capacity

of PVs and CHIs to a�ect MSN activity and behavior in mice engaged in voluntary

locomotion. We �nd that PVs and CHIs have unique e�ects on MSN activity and dis-

sociable roles in supporting movement. PV cells facilitate movement by re�ning the

activation of MSN networks responsible for movement execution. CHIs, in contrast,

synchronize activity within MSN networks to signal the end of a movement bout.

These results provide new insights into the striatal network activity that supports

movement.

Published 2019 [Gritton et al., 2019]
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