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ABSTRACT 

Nowadays, metamaterials have found their places in different branches of wave physics 

ranging from electromagnetics to acoustic waves. Acoustic metamaterials are sub-

wavelength structures in which their effective acoustic properties are dominated by their 

structural shape rather than their constitutive materials. In recent years, acoustic 

metamaterials have gained increasing interest due to numerous promising applications such 

as sub-wavelength imaging, perfect absorption, acoustic cloaking, etc. The focus of the 

work herein is to leverage acoustic metamaterial/metasurface structures to manipulate the 

acoustic wavefront to pave the road for future applications of the metamaterials. 

In the first part of the work, the metamaterial structure is introduced, which can be 

leveraged for better manipulation of the transmitted wave by modulating both phase and 

amplitude. Initially, a general bound on the transmission phase/amplitude space for the 

case of arbitrary metasurface has been presented and subsequently, the necessary condition 

for the complete modulation of the transmitted wave is investigated. Next, a horn-like space 

coiling metamaterial is introduced, which satisfied the aforementioned condition and 

enabled us to simultaneously modulate both the phase and amplitude of the transmitted 
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wave. Furthermore, our initial efforts toward designing a metamaterial capable of real-time 

phase modulation with relatively constant amplitude will be discussed.  

In the second part of this work, a novel metamaterial-based methodology is 

presented for the design of the air permeable acoustic silencer. In this work, the concept of 

the bilayer-transverse metamaterial is introduced, and its functionality for silencing the 

acoustic wave is demonstrated. Furthermore, it is shown that the methodology presented 

herein essentially does not limit the ratio of the open area, and ultra-open metamaterial 

silencers may be designed. Eventually, based on the presented methodology, the ultra-open 

metamaterial featuring nearly 60% open area is designed, and silencing capacity of about 

94% at the targeted frequency is experimentally realized.  

In the last part of this work, the behavior of a locally resonant class of acoustic 

metamaterial in the non-Rayleigh regime has been explored. Elaborately, it is demonstrated 

that in the case of spherical inclusion in a matrix material, large variation in the effective 

acoustic impedance emerges near the inclusion’s Eigenmode. Eventually, the potential 

application of this novel phenomenon in the non-destructive evaluation (NDE) and 

ultrasound imaging is discussed. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction to Acoustic Metamaterial 

Metamaterials, which are composed of sub-wavelength unit cells, can exhibit extraordinary 

behaviors that are not readily found in nature. The fundamental idea behind the science of 

metamaterials is to conceptually replace the molecules with tailored unit cell structures in 

the order of much less than the wavelength. Subsequently, based on the unit cell’s design, 

the metamaterial structure may exhibit a myriad of behavior which may be characterized 

by its effective properties. The concept of metamaterial was first theoretically proposed by 

Veselago (Veselago, 1968), who proposed that a medium with negative permittivity and 

permeability will possess a negative refractive index. Followed by the Veselago’s 

proposition, Pendry et al. (Pendry et al., 1999) designed a metamaterial unit cell with 

simultaneously negative permeability and permittivity. Nowadays, the achievement of 

negative permeability and permittivity in electromagnetic metamaterials has been widely 

reported, with novel phenomena including negative index materials and cloaking having 

been realized in this area (Smith et al., 2004; Schurig et al., 2006).  

Based on the analogy between the governing equations of acoustic waves and the 

electromagnetic Maxwell equations (Carcione et al., 1995), the effective density and 

compressibility of the medium are seen to be the critical features for acoustic wave 

propagation. With regards to acoustic metamaterials, the design of sub-wavelength unit 

cell structures enables control over the effective density and compressibility in order to 

achieve acoustic wave manipulation such as negative index acoustic metamaterials (Fol et 

al., 2011; Zhai et al., 2013; Xie et al., 2013; Brunet et al., 2015). Recently, acoustic 
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metamaterials have gained increasing interest due to numerous promising applications such 

as sub-wavelength imaging (Moleron et al., 2015; Su et al., 2014), perfect absorption (Fink, 

2014; Mei et al., 2012), acoustic cloaking (Yang et al., 2013; Zingoneanu et al., 2014; Li 

et al, 2015), and acoustic diodes (Liang et al, 2009). 

Among the applications of metamaterial and metasurfaces, there exists a growing 

interest in acoustic wavefront modulation given the numerous promising applications such 

as acoustic communication and biomedical imaging, among others.  The thesis herein aims 

to explore different aspects of metamaterial based acoustic wavefront modulation to pave 

the way for more advanced applications of metamaterial structure for tailoring acoustic 

waves. For this aim, four different aspects of wavefront modulation will be addressed and 

investigated. Considering acoustic wavefront is essentially composed of two main 

components, i.e., phase and amplitude, the next two chapters (chapter 2 and chapter 3) have 

been devoted to addressing the current issues with regards to the phase modulation by first 

introducing full-wavefront modulation in chapter 2 and further investigation on the tunable 

phase modulation in chapter 3. Subsequently, chapter 4 and chapter 5 are dedicated to 

investigating metamaterial-based wavefront manipulation with the focus of amplitude 

modulation.  

 

1.2 Thesis Outline 

Chapter 2 of this thesis seeks to address the complexity associated with the phase-based 

wave modulation and ease the process by introducing the unit cell structure that can be 

utilized for complete wave modulation by simultaneously modulating both phase and 
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amplitude. In the context of complete acoustic wave modulation, in which both phase and 

amplitude are simultaneously modulated, the additional degree of freedom leads to a 

marked simplification of the metasurface design process.  As opposed to complicated 

optimization procedures required with phase-based wavefront modulation, complete 

acoustic wave modulation may leverage the time-reversal technique in which the required 

phase and amplitude map may be readily obtained. Furthermore, by extending the properly 

designed unit cell structure to the 3D domain without additional complexity, acoustic 

metamaterial bricks or holograms may be generated to render 3D acoustic field patterns. 

In Chapter 3 of this thesis, the double decorated membrane will be studied, aiming 

for the realization of metamaterial structure with the capacity of tunable phase modulation. 

To this end, metamaterial and metasurfaces are predominantly designed as a passive 

structure, and tunability is a fundamental challenge not adequately addressed within this 

context. For this aim, double decorated membrane metamaterial structure will be 

investigated in which the coupled resonance of double membrane metamaterial may 

provide a degree of freedom to modulate the transmitted acoustic phase while maintaining 

the amplitude. Eventually, transmission through the double decorated membrane structure 

is experimentally studied, and present challenges and limitations will be discussed. 

Leveraging the double decorated membrane structure presented herein, one may realize 

tunable phase modulation by tailoring the membrane’s Eigenmode. 

In Chapter 4, it is intended to design a metamaterial structure that despite 

containing a large open area, features a negligible acoustic transmission in a specific range 

of the frequency. For this aim, Fano-like interference (Fano, 1961) is utilized to realize the 



4 
		

	

ultra-open metamaterial silencer, which can selectively silence the unwanted acoustic wave 

and simultaneously preserve the efficient ventilation. Furthermore, the performance of the 

proposed metamaterial structure functioning based on Fano-like interference is 

experimentally validated, and it is demonstrated that the openness of the presented 

methodology is essentially not bounded. The methodology presented herein is shown to 

have a harmonic silencing attribute which has made it readily applicable for fan or engine 

noise suppression.  

In Chapter 5 of this thesis, a class of locally resonant acoustic metamaterial has 

been studied. It is shown that in this class of metamaterial, the effective impedance of the 

whole structure exhibits an abrupt variation in the non-Rayleigh regime prior to the 

emergence of attenuation. Next, we have numerically demonstrated how this unnatural 

behavior may be leveraged in non-destructive evaluation by functioning as a contrast agent 

to enhance the reflection amplitude and in biomedical imaging by acting as an anti-

reflection coating to amplify the transmission.  
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CHAPTER 2 SIMULTANEOUS PHASE AND AMPLITUDE MODULATION 

 
Acoustic wavefront modulation is of great interest given the numerous promising 

applications such as acoustic communication and biomedical imaging, among others. 

Traditionally, acoustic wavefront modulation has been realized in the context of phased 

array transducers, which, due to their complexity, are considered expensive in terms of 

both design and implementation aspects. In recent years, following successful 

achievements in electromagnetic wave manipulation using metamaterials and metasurface 

science (Liu et al., 2014; Zhao et al., 2011; Ni et al., 2013; Estakhri et al., 2016) ongoing 

efforts have been made to utilize metasurfaces for acoustic wavefront modulation (Song et 

al., 2016; Zhao et al., 2013; Mei et al., 2014; Xie et al., 2014; Tang et al., 2014; Li et al., 

2014; Li et al., 2015).  

Metasurfaces, engineered surfaces of sub-wavelength thickness, offer a unique 

approach to acoustic manipulation in which the desired wave pattern may be achieved by 

precisely designing the constituent unit cell structures. Among the unit cell structures 

reported to date, space-coiling structures (Tang et al., 2014; Li et al., 2014; Li et al., 2013; 

Li et al., 2012; Sun et al., 2016; Yuan et al., 2015; Li et al., 2014; Li et al., 2013) are 

drawing growing attention due to their incredibly simple structure, ease of fabrication, and 

demonstration of successful wavefront manipulation capacity. In these structures, the 

space-coiling geometry is designed to generate the desired phase shift in the radiated 

acoustic signal while mitigating the impedance mismatch to optimize power transmission 

and amplitude uniformity (Li et al., 2013). Even though low transmission loss in such 

phase-based wavefront modulation yields high conversion efficiency (Wang et al., 2016), 
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the complexity of the design process required to obtain a desired metasurface phase map 

remains a fundamental limitation. Typically, iterative or stochastic algorithms are required 

to derive the ideal phase map, relying on an appropriate initial guess to reach the global 

minimum (Scheuer et al., 2016). Moreover, transitioning from two-dimensional (2D) to 

three-dimensional (3D) phase-based wavefront manipulation approaches radically 

increases the design cost and complexity.   

In the context of complete acoustic wave modulation, in which both phase and 

amplitude are simultaneously modulated, the additional degree of freedom leads to a 

marked simplification of the metasurface design process.  As opposed to complicated 

optimization procedures required with phase-based wavefront modulation, complete 

acoustic wave modulation may leverage the time-reversal technique (Scheuer et al., 2016) 

in which the required phase and amplitude map may be readily obtained. Furthermore, by 

extending the properly designed unit cell structure to the 3D domain without additional 

complexity, acoustic metamaterial bricks or holograms may be generated to render 3D 

acoustic field patterns. 

While prior work has focused primarily on phase engineering, in this chapter, we 

demonstrate the possibility of simultaneous phase and amplitude modulation in a class of 

horn-like space-coiling metasurfaces. Utilizing a gradient in channel spacing of the unit 

cells, full acoustic control over wavefront modulation is realized.  We firstly demonstrate 

that conventional space-coiling metamaterials possess a fundamental limitation in the 

simultaneous modulation of both phase and amplitude of transmitted wave acoustic waves. 

Specifically, the complex transmission through conventional space-coiling structures is 
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shown to be inherently bounded in certain complex regions.  Subsequently, we extend the 

applicability of the presented bound to the general case of the metasurface and infer the 

necessary conditions for the realization of complete acoustic wavefront modulation. 

Ultimately, a modified, horn-like space-coiling metamaterial structure is presented that 

satisfies the necessary conditions for complete acoustic wave modulation. Finally, the 

functionality of the horn-like space-coiling metamaterial structure is theoretically and 

experimentally validated with regards to its capacity for simultaneous phase and amplitude 

modulation. This work seeks to shift the paradigm in acoustic metasurfaces through the 

realization of simultaneous control of phase and amplitude, thereby paving the way for a 

new generation of acoustic devices. 

 

2.1  Phase and Amplitude Modulation in Space-Coiling Metamaterial 

The concept of space-coiling metamaterials was initially proposed by Liang et al. (Liang 

et al., 2012). It was demonstrated that acoustic waves with frequencies above a given cutoff 

value would propagate along an elongated path within an assembly of zigzag channels 

shown in Figure 2.1(a). The elongated path of the acoustic wave leads to the occurrence 

of a phase delay in the transmitted wave and, consequently, a higher refractive index is 

realized. Moreover, phenomena such as negative refractive index (Liang et al., 2013), zero 

indexes (Xie et al., 2013) and Dirac-like dispersion (Frenzel et al., 2013) have also been 

demonstrated using space-coiling structures. Space-coiling metamaterials possess marked 

advantages due to their simple structure and, consequently, ease of design. It has been 

demonstrated that when the channel width (d) is sufficiently small with respect to the 
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(a)                                                      (b) 

wavelength, the relative refractive index of the coiled structure (𝑛':	effective refractive 

index of coiled structure normalized by the original fluid index) can be precisely calculated 

using the path length of the acoustic wave shown in Figure 2.1(a) (Liang et al., 2012). The 

relative refractive index can be expressed as: 

 eff
r
Ln
t

=    (2.1) 

Where t is the overall length of the coiled structure and 𝐿+,, can be estimated as: 

 effL N L≈ ×   (2.2) 
 
Where N denotes the number of coils (for example, N = 7 in the structure depicted in 

Figure 2.1(a) and L is the length of each branch and is approximated as: 

 ( ) ( )2 2L a d d w= − + +   (2.3) 
 

 

 
Figure 2.1: Traditional space-coiling metamaterial unit cell and its equivalent model. (a) Space-coiling 
metamaterial structure with the overall length of (t) and overall width of (a) is depicted here. (d) and 
(w) are channel width and coil’s wall thickness respectively; acoustic wave trajectory is shown as the 
dashed line in which (L) represents the wave trajectory length within each coil. (b) Equivalent model 
of the coil structure featuring a single straight channel filled with a medium of different refractive 
index (𝒏𝐫𝒏𝟎). 
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Given the expression for the relative refractive index of the coil structure, it can be 

represented as an equivalent model of the same dimensions but comprised of a straight 

channel filled with a medium of the refractive index of 𝒏𝐫𝒏𝟎	 shown in Figure 2.1(b) in 

which 𝒏𝟎 represents the refractive index of the original fluid. Please note that from another 

perspective, the space-coiling structure can also be modeled as a single straight channel 

structure similar to Figure 2.1(b) and filled with the original fluid with a refractive index 

of 𝒏𝟎	but with an overall length of	𝑳𝐞𝐟𝐟.  

By employing the equivalent model of the space-coiling structure, one can derive 

the transmission coefficient, denoted as T, for a normally incident plane wave. The 

equivalent model of conventional space-coiling metamaterials is based on the classical 

three medium acoustic transmissions in which the transmission coefficient can be derived 

as: 

 ( ) ( )2 2 2 2
2 3 1 2 1 3 2 3 1 2 1 3

4
1 / / /  e 1 / / /  eik l ik lT
Z Z Z Z Z Z Z Z Z Z Z Z−=

+ + + + − − +
  (2.4) 

 

In the case of the space-coiling metamaterial shown in Figure 2.1(a),
2 r l n t=   

1 1
1 3

cZ Z
a
ρ= =  and 2 2

2
cZ
d

ρ=  . Substituting the above parameters into Equation (2.4) and 

given that all media are composed of the same material, T may be calculated as: 

 
0 r 0 r

4

1  1  e 1  1  eik n t ik n t
T

a d a d
d a d a

−
=
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.5) 

 
where 𝑘4 is the wavenumber associated with the medium inside the zigzag channel, a, d 

and t (shown in Figure 2.1(a)) represent the unit cell width, channel width, and unit cell 
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length, respectively, and 𝑛' is the relative refractive index discussed above. Please note 

that throughout the analytical derivations, the 	e5678 convention has been considered, and 

one may reach the complex conjugate forms of the equations by following the e678 

convention. 

In order to derive the relationship between phase and amplitude of the transmission 

coefficient, the denominator of Equation (2.5) has initially been simplified to the 

trigonometric form, and the transmission amplitude is subsequently determined in terms of 

the transmission phase: 

 
( ) ( ) ( )0 r 0 r

1e
cos / / sin

2

iT T ik n t a d d a k n t

θ= =
− +

  (2.6) 

 

From the above equation, the amplitude and phase can be derived as: 

 

 
( ) ( ) ( )2 20 r

0 r

1 1  1cos 1 / / tan
4

T
k n t a d d a k n t

=
+ +

  (2.7) 

 

 ( )1
0 r

1tan ( tan  )
2
a d k n t
d a

θ − ⎛ ⎞= +⎜ ⎟⎝ ⎠
  (2.8) 

 
From Equation (2.7) and (2.8), one can conclude that: 

 
 

( )
2

2
0 r

1 tan1
cos 1

4
k n t a d

d a

θ= +
⎛ ⎞+⎜ ⎟⎝ ⎠

  (2.9) 

 

Defining 𝑆 = ;
<

=
>
+ >

=
	and employing Equation (2.7, 2.8 and 2.9), the transmission 

amplitude in terms of the transmission phase may be derived as follows: 
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( )

( )

2

2

2

tan
1

1 tan
ST

θ

θ

+
=

+
  (2.10) 

 

Considering that the term S in Equation (2.10) is always greater than unity (𝑆 ≥ 1), the 

amplitude of the transmission coefficient for any transmitted phase (𝜃) is bounded by: 

 ( )cos 1Tθ ≤ ≤   (2.11)  
 
The lower bound occurs when the channel width (d) is significantly smaller than the unit 

cell width (a). To further validate the presence of the aforementioned bound on sound 

transmission through a space-coiled structure, the transmission coefficient has been 

derived analytically using the transfer matrix method (TMM).  The details of the derivation 

using the TMM are discussed in Appendix A. Using the TMM, and by varying the 

geometries of the traditional space-coiling structure, a large set of solutions has been 

investigated, and the resultant transmission phase/amplitudes are depicted in Figure 2.2.   

By comparing the bound (pink region) predicted by Equation (2.11) resulting from 

the equivalent model and the set of results from the TMM-based solution, it can be 

observed that the set of results using the TMM fall within the predicted transmission bound, 

thereby ensuring the validity of the bound represented in Equation (2.11). Given the 

presented transmission bound shown in Figure 2.2, it is apparent that the conventional 

space-coiling structure cannot be used for simultaneous phase and amplitude modulation. 

The bounded nature of the transmission phase and amplitude results in large portions of 

the phase-amplitude diagram being inaccessible and, consequently, simultaneous 

modulation of phase and amplitude is essentially precluded. Of note, however, the 
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conventional space-coiling structure is capable of modulating the amplitude of the 

transmitted acoustic wave in specific instances. By tailoring the unit cell design and 

targeting a transmission phase of either π/2 or - π/2, the complete range of amplitude 

modulation is accessible (0-1). Nevertheless, the capacity for simultaneous and 

independent modulation of phase and amplitude is highly limited in the conventional class 

of space-coiling structures. 

 

 

Figure 2.2. Phase and amplitude of the transmitted wave with conventional space-coiling structure. 
The colored region is the predicted space using the equivalent model. Scatter results shown by red 
dots are derived from the TMM-based approach by varying the geometry of the unit cell. 
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2.2. Generalized Complex Transmission Bound for the Arbitrary 

Metasurface 

 
The transmission bound presented in the previous section has been derived for the space-

coiling metamaterial structure. It is of utmost importance to explore how this bound is 

generalizable for any arbitrary metasurface and is not solely limited to space-coiling 

metamaterial. In this section, we investigate the origin of this transmission bound and 

analyze approaches to overcome this bound in order to yield full wavefront control. 

Considering a general metasurface which is essentially a 2D form of metamaterial, 

with a thickness of Lm, the equivalent acoustic impedance of Zm and wave number of Km 

placed in infinite space with the acoustic impedance of Z, one may derive the following: 

 ( )m m m m
m

1  [ cos( ) i sin   ]ZR T K L K L
Z

− = +   (2.12) 

 m
m m m m1  [ cos( ) i sin( ) ]ZR T K L K L

Z
+ = +   (2.13) 

 
In which R and T denote the reflection and transmission coefficients of the metasurface in 

a 2D space, respectively. Assuming a metasurface with purely real acoustic impedance 

(Zm), the validity of the complex conjugate form of Equation (2.13) is ensured. 

 * * m
m m m m1  [cos( ) i sin( )]ZR T K L K L

Z
+ = −   (2.14)  

 
 
In which the asterisks denote the complex conjugate operator. By multiplying the two sides 

of Equation (2.12) and Equation (2.14) with each other and assuming a passive, lossless 

metasurface ( 𝑅 < + 𝑇 < = 1), the following may be derived: 
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        ( )2* m
m m m m

m

i sin ( )cos Z ZR R T K L K L
Z Z

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
                (2.15) 

Additionally, by subtracting Equation (2.12) from Equation (2.13), it can be concluded 

that: 

 [ ) m
m m

m

2 i  sin ( ]Z ZR T K L
Z Z

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  (2.16) 

 
By substituting Equation (2.16) into the Equation (2.15), one may readily derive the 

following: 

 
( )
m m

cos
cos( )

T
K L
θ

=   (2.17) 

 
 
In which (𝜃) is the transmitted phase. Equation (2.17) demonstrates the general coupling 

between the transmission phase and amplitude from which the aforementioned bound 

shown in Equation (2.11) can be inferred. Notably, this bound exists for any arbitrary, 

passive, lossless metasurface with real acoustic impedance, regardless of the internal 

structure. Please note that for ultrathin metasurfaces (𝐾H𝐿H ≪ 1), cos(𝐾H𝐿H) goes to 

unity and the transmission amplitude will approach	cos(𝜃), similar to its electromagnetic 

counterpart’s reported bound (Monticone et al., 2013).  

The results obtained herein indicate that the key element for realizing full wavefront 

modulation is the presence of the acoustic reactance term in the metasurface acoustic 

impedance. For common acoustical fluids, by omitting the losses, the impedance will be a 

purely real quantity. However, with regards to the metasurfaces composed of acoustical 

lumped elements such as ports, cavities and resonators, the presence of the capacitive 
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behavior, leads to the emergence of the complex impedance. For metasurfaces with 

complex acoustic impedance, Equation (2.14) is no longer valid and may be altered to an 

alternate form from which a similar bound cannot be derived. Hence, in order to realize 

full acoustic control of the transmitted wave, we present a horn-like class of space-coiling 

structures featuring a gradient in channel spacing that possesses complex acoustic 

impedance and investigate its capacity for simultaneous phase and amplitude modulation. 

 
2.3. Horn-like Space-coiling Metamaterial 

To date, space-coiling metamaterial structures have been designed such that the zigzag 

channel width (d) remains constant throughout the length of the unit cell. In the previous 

section, we have demonstrated that this design methodology imposes a limited internal 

bound on acoustic transmission phase and amplitude, regardless of unit cell size or working 

frequency. Herein, a horn-like space-coiling structure is presented in which the gradual 

change in channel width leads to the presence of an imaginary term in the acoustic 

impedance of the metasurface. While the variation in channel width may be realized in 

many distinct forms (linear, periodic, arithmetic, geometric, etc.), this article will focus on 

a unique case of geometric progression of channel width, which resembles a horn-like 

shape. The horn-like structure presented herein shown in Figure 2.3(a), instead of having 

a constant channel width throughout its length, features a change in width at each step 

governed by a constant common ratio (CR), defined as: 

 
1

CR  n

n

d
d −

=   (2.18) 

In which dn and dn-1 are the channel width of nth and n-1th coil respectively.  
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(a)                                                      (b)  

 
Figure 2.3. Horn-like space-coiling metamaterial unit cell and its equivalent model. (a) Horn-like 
space-coiling metamaterial structure composed of 6 coils is shown here in which dn (n=1:6) represents 
the channel width at nth coil, and d7 is the channel width at the output port; channel widths follow the 
geometrical sequence with the common ratio in excess of one (CR >1). (b) Equivalent model of the 
gradient coil structure featuring a horn-shaped channel of length 𝑳𝐞𝐟𝐟 filled with original medium with 
a refractive index of (𝒏𝟎). 

 

By this definition, a structure with CR = 1 simply represents the conventional space-coiling 

metamaterial structure depicted in Figure 2.1(a). However, for structures with CR>1, the 

zigzag channel can be well approximated as an exponential horn (Figure 2.3(b)) with a 

flare constant of:  

                                                        ( )
eff

 ln CRNm
L

=      (2.19) 

Where N is the number of coils, and Leff is the effective length of the zigzag structure.  

 The behavior of horn-like space-coiling metamaterials may be analyzed using the 

TMM approach presented in Appendix A, in which in Equation (A.7), each propagation 

tensor (Ti) will be computed based on the associated coil’s geometry. However, due to the 

complexity of the aforementioned analytical solution, the use of an equivalent model to 

formulate the performance of the structure will be beneficial for markedly simplifying the 
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incorporation of this structure in various applications. In this section, the horn-like space-

coiling structure has been approximated with the equivalent horn and, subsequently, the 

transmission coefficient based on the horn model has been derived. 

The structure of the horn-like space-coiling metamaterial is shown in Figure 2.4(a). 

In this structure, the effective length of the acoustic pathway can be approximated with: 

 eff
1

b N

b
b

L L
=

=

=∑   (2.20) 

Where: 

 ( ) ( )2 2
b b bL a d w d= − + +   (2.21) 

 
In which N is the number of coils (N = 5 in the structure depicted in Figure 2.4a), and w is 

the wall thickness. By calculating 𝑑N and 𝐿N for each coil, the acoustic pathway profile 

through the horn-like space-coiling metamaterial has been illustrated for one arbitrary 

structure (N = 10, w = 0.01m, d1 = 5mm, a = 8.5cm and CR = 1.3), shown in Figure 2.4(b) 

in red.  

 
Figure 2.4. Space-coiling unit cell with a gradual change in channel width as an exponential horn. (a) 
Horn-like space-coiling metamaterial with an effective length of the acoustic pathway shown with 
orange dashed-line. (b) Comparison between the exact profile of the channel and the approximated 
horn model. 
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At each section of the pathway, the profile has a width of 𝑑N and a length of	𝐿N, both of 

which change from one coil of a given unit cell to another. From Figure 2.4(b), it can be 

observed that the approximated horn-like profile, demonstrates a good approximation of 

the exact profile and may serve as the equivalent model of Horn-like space-coiling 

metamaterial. Next, using the equivalent model (Figure 2.3(b)), the acoustic transmission 

coefficient may be analytically derived using Webster’s horn equation for velocity 

potential (Crandall, 1954). 

 
2

2
2 0m k
x x

⎛ ⎞∂ ∂+ + ∅ =⎜ ⎟∂ ∂⎝ ⎠
  (2.22) 

Where ∅ is the velocity potential, m is the flare constant, and k is the wave number. The 

solution of Equation (2.22) has the form of: 

 1 2
1 2e ex xC Cµ µ∅ = +   (2.21) 

 2 2
1 4

2 2
m i k mµ = − + −   (2.22) 

 2 2
2 4

2 2
m i k mµ = − − −   (2.23) 

From the velocity potential obtained in Equation (2.21), one can calculate the pressure and 

velocity as: 

 1 2
1 1 2 2e ex xV C C

x
µ µµ µ∂∅= = +

∂
  (2.24) 

 1 2
1 2e )( ex xP i C C

t
µ µρ ρω∂∅= − = − +

∂
  (2.25) 

Next, the pressure and velocity boundary conditions have been written at x=0 and x= Leff. 
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At   𝒙 = 𝟎: 

 ( )1 2 I Ri C C P Pρω− + = +   (2.26) 

 ( )1 1 2 2 I R
in

   
 
aC C P P
cd

µ µ
ρ

+ = −   (2.27) 

At  	𝒙 = 𝑳𝐞𝐟𝐟 : 

 ( )1 eff 2 eff
1 2 Te eL Li C C Pµ µρω− + =   (2.28) 

 ( )1 eff 2 eff
1 1 2 2 T

out

e e
 

L L aC C P
cd

µ µµ µ
ρ

+ =   (2.29) 

From Equations (2.26) to (2.29), the complex transmission coefficient has been derived. 

 
( ) ( )eff effin in in in in in

out out out out out out

4e
 1  1 e  1  1 e

i

i L i L

T T
d d d d d dk a k k a ki i

d d a d d d a d

θ

γ β γ βγ γ
β β β β β β

+ −

= =
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
− + + − + − + + + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 (2.30) 

 

Where 𝑑QR and 𝑑STU are the channel width at the input and output ports, respectively, a is 

unit cell width (all are shown in Figure 2. 3(a)), k is wave number, and 𝛾 and 𝛽 are defined 

as: 

 
2
mγ =   (2.31) 

 2 21 4
2

k mβ = −   (2.32) 

In order to validate the applicability of the presented equivalent model for the horn-like 
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space-coiling structure, the results from the equivalent model have been compared with 

both a COMSOL numerical model and the exact analytical solution (transfer matrix 

method) presented in Appendix A. The structure considered herein has the following 

parameters: N = 14, w = 1cm, d1 = 3mm, a = 8.5cm and CR = 1.2. The comparisons of the 

equivalent model with both the COMSOL model and the exact solution are shown in Figure 

I.6. From the results shown in Figure 2.5, it can be observed that the numerical results 

obtained from the simulated model in COMSOL Multiphysics are in precise agreement 

with the results of the TMM discussed in Appendix A (labeled herein as the exact model). 

 

 
Figure 2.5. Transmission through horn-like space-coiling metamaterial derived from three different 
approaches. Exact model refers to the TMM presented in Appendix A, and the equivalent model refers 
to the horn-like model discussed here. 

Moreover, the results from the equivalent horn-like model are in good agreement, with 

only small deviations from the exact model and the numerical results. This small 

discrepancy is largely due to the simple approximation of 𝐿+,, and can be improved with 
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the more exacting computation of this parameter. The presented equivalent model 

drastically simplifies the design of the Horn-like space coiling-metamaterial and readily 

provides a good initial estimate of structural performance for further experimental or 

numerical validation. Finally, using the equivalent horn-like model, the transmission bound 

similar to the one derived for conventional space-coiling metamaterials has been derived. 

From Equation (2.30) and given the relation that 𝛾< + 𝛽< = 𝑘<, the transmission 

phase and amplitude can be derived as: 

 
( )

( ) ( )

in
eff

out1

in in
eff eff

out out

 sin
tan

1  cos 1  sin

dak L
d a

d dL L
d d

β
θ

β β γ β

−

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞ ⎛ ⎞
+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  (2.31) 

 

 eff

in
2 22

outin

2 2 2 2 2 2 2in in in in in in
out

out out out out out out
2

2  (1 )tan
4 tan1 tan

(1 ) ( ) ( ) (1 ) ( ) (1 )
2e

1 tan
L

d
dd

d d d d d da a ak d k
d a d a d d a d dT γ

γ θ
γ θθ

θ
−

−
+ − +

+ + + + + +
=

+
  

 (2.32) 

In the case of a structure with close to unity CR and, consequently small flare constant of 

a frequency higher than that of the equivalent horn cut-off frequency, the ratio X
Y
 would be 

small and has been omitted to simplify the equation. Thus, Equation (2.32) yields to: 

 

( )

( )
eff

2

2

2
in

out

tan
12
1 tan

1

Le ST
d
d

γ
θ

θ

− +
=

+⎛ ⎞
+⎜ ⎟

⎝ ⎠

  (2.33) 
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In which S is defined as: 

 

in

out

in

out

1

da
d a

S
d
d

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
⎛ ⎞
+⎜ ⎟

⎝ ⎠

  (2.34) 

By substituting			𝛾	 = 	Z
<
	= 	 [

<\]^^
log	(CR), along with the fact that  >cd

>efg
	= 		 CR5[, the 

transmission amplitude can be written as: 

 

( )

( )

2

2

/2 /2 2

tan
12

CR CR 1 tanN N
ST

θ

θ−

+
=

+ +
  (2.35) 

It can readily be demonstrated that S ≥ 1 & CR (N/2) + CR (-N/2) ≥ 2, therefore, the 

transmission amplitude will be bounded: 

 ( )/2 /2 /2 /2

2 2 cos
CR CR CR CRN N N NT θ− −≥ ≥

+ +
  (2.36) 

 
Based on Equation (2.36), both the upper and lower bounds of the transmission amplitude 

are functions of the common ratio (CR) and the number of coils (N), and increasing these 

two parameters results in lowering both bounds. Thus, in order to validate Equation (2.36) 

and the bounds on the transmission coefficient for the horn-like space-coiling 

metamaterials, a limited range of the number of coils (N = 1-15) for four different values 

of the common ratio (CR = 1.1-1.4) are considered. Additionally, from the TMM-based 

approach, the set of results for different unit cell geometries, in accordance with the 

aforementioned range of N for each value of CR, have been obtained and are shown in 

Figure 2.6. For each structure with a distinct common ratio, the upper bound is constructed 
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with a value of N = 1, with a tiny decrease in the upper bound as a function of CR (≈ 0.98 

for CR = 1 .4, for example). However, the lower bound is related to the highest N (N = 15, 

in this example analysis) and, consequently, the effect of variations in CR is enhanced and 

the lower bound may be significantly decreased (≈ 0.16 for CR = 1.4, for example). Of 

note, there exists a tradeoff between CR and the maximum allowable range of N given the 

fact that channel width at the output port (d out) must remain smaller than the unit cell width 

(a). As illustrated in Figure 2.6, this class of horn-like space-coiling structures enables 

marked expansion of the coverage of the phase-amplitude diagram well beyond the 

inherent limits encountered in conventional space-coiling metamaterials.  

The expansion of the coverage of the phase-amplitude diagram yields the 

realization of full wavefront manipulation through a simultaneous phase and amplitude 

modulation in gradient space-coiling metamaterials. Please note that expanding coverage 

of the phase-amplitude diagram is not the only criteria requisite to realizing full wavefront 

modulation using the proposed structure. Of critical importance is also the fact that, due to 

the classical and simple shape of the horn-like space-coiling metamaterials, the 

presentation of an analytical formulation is enabled, thereby easing the complexity of the 

design process. 
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Figure 2.6. Illustration of the result space for gradient space-coiling metamaterials with varying 
common ratio (CR). The colored region (pink) is the region defined by Equation (2.36), and the dot 
points represent the results from TMM. 
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2.4  Full Wavefront Modulation Using Horn-like Metasurface 

 
Subsequent to demonstrating the capability of Horn-like space-coiling metamaterials to 

expand the accessible transmission phase-amplitude region, metasurfaces comprised of 

these structures have been designed, targeting two distinct functionalities: sound focusing 

and acoustic beam splitting. The metasurfaces thusly designed herein feature 30 horn-like 

space coiling unit cells of identical width (a = λ/6) and length (t = λ/2) but distinct internal 

structures. While constant width and length of the unit cells is not requisite to achieving 

the intended functionalities, these constraints have been implemented to further 

demonstrate the ease of design using this class of horn-like space-coiling metamaterials. 

Please note that the unit cell’s width plays a critical role in conversion efficiency, with 

smaller widths being preferable for optimal performance (Appendix B).  

The internal structure of each unit cell (N, w, din, and CR) has been designed to 

generate the desired phase and amplitude in order to shape the transmitted acoustic 

wavefront. The first step undertaken herein in designing the metasurfaces was to derive the 

required phase and amplitude of the transmitted wave from each unit cell of a particular 

metasurface. To this end, the concept of time-reversal or the phase-conjugation method in 

the frequency domain have been utilized, given the capability for simultaneous phase and 

amplitude modulation. Implementing the aforementioned approaches in designing the 

metasurface allows for a drastic reduction in the computational expense when compared to 

phase-based metasurfaces in which rigorous optimization is required. The desired 

transmission amplitude-phase profile of the metasurface with regards to a given 

functionality may be obtained from both numerical and analytical approaches. Herein, 
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numerical techniques have been utilized for this step, since this approach may readily be 

generalized for any complicated profile, such as 3D acoustic holograms. Following the 

derivation of the requisite phase and amplitude of transmission at each unit cell, the internal 

geometry of the metasurface’s unit cell has been designed analytically using the TMM 

approach and, ultimately, the entire metasurface in both lossy and lossless conditions has 

been simulated to visualize the targeted performance. 

In the case of the focusing of the acoustic wave shown in Figure 2.7(a), the 

metasurface has been designed to focus the sound at a focal point located two wavelengths 

from the metasurface. In order to determine the proper wavefront, a hypothetical monopole 

point source has been considered on the desired focusing spot and the resultant complex 

conjugate pressure has been calculated over the transmission side of the metasurface (right-

hand-side). Next, given the plane wave incident on the left-hand-side of the metasurface, 

the desired transmission coefficient for each unit cell is computed, and the unit cell 

structures have been designed accordingly.  With regards to the acoustic beam splitting 

shown in Figure 2.7(b), two plane waves with angles of π/12 and -π/12 have been assumed 

on the transmission side of the metasurface, and the desired transmission coefficients at 

each unit cell have been calculated. 

The sound focusing results are shown in Figure 2.7(a) in which the transmitted 

wave has been focused at the desired focal spot. As a common aim in focusing applications 

is the confinement of the acoustic wave power, the squared pressure (p2) in Figures 2.7(a) 

and 2.7(c) is depicted and corresponds to the resultant power. By employing the horn-like 

space coiling design, a high degree of focusing has been obtained. 
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Figure 2.7. (a) Acoustic plane wave with an amplitude of 1kPa incident on the left-hand-side of the 
metasurface and the resultant focusing on the right-hand side. (b) Acoustic beam splitter that 
transforms the plane incident wave with the amplitude of 1kPa to two equi-amplitude beams in π/12 
and -π/12 directions. (c) Pressure profile along the cut-line with the length of 5λ extending through the 
focal spot shown in Figure (2.5a). (d) Pressure profile along the cut-line placed at a distance of 5λ from 
the metasurface (2.5b). In Figures (2.5c) and (2.5d), the red line represents the data from the lossless 
simulation while the blue dotted line represents the data with the presence of loss. 

 

In order to quantify the resultant focusing, p2 is probed along the cut-line shown in Figure 

2.7(a) and is depicted in Figure 2.7(c). Notably, the pressure at the focal point is 

approximately 2.5 times the incident pressure, yielding power confinement on the order of 

6. Moreover, the pressure profile depicted in Figure 2.7(c) successfully mimics the form 

of the Hankel function as the monopole source and a pressure power ratio of approximately 
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8 (6.3 peak at the focal region and 0.8 at the nearest peak to focal region) have been 

obtained.  

Finally, the acoustic beam splitting results are shown in Figure 2.7(b) in which the 

normally incident plane wave on the metasurface has been divided into the two equi-

amplitude beams in the desired directions. In order to quantify the results, an absolute 

pressure profile normalized by the incident beam’s amplitude has been probed along the 

cutline and depicted in Figure 2.7(d). It can be observed that the split beams maintain an 

amplitude of approximately 65% of the incident beam and an amplitude resolution of 

approximately 3 (0.65 in the beam regions and 0.2 in the region between the two beams) 

may be achieved with the designed metasurface. 

In order to experimentally validate the proposed design methodology, a 

metasurface featuring the horn-like space coiling metamaterial design has been fabricated 

and tested. To this end, for the sake of simplicity, the reverse form of the sound focusing 

case has been experimentally validated in order to avoid the complexity associated with 

the practical generation of a plane wave in the near-field regime. Given the time-reversible 

nature of the proposed structure, if the point source is placed at a distance of two 

wavelengths from the metasurface, an identical metasurface to that having been designed 

for sound focusing may be employed to convert a cylindrical wave to a plane wave.  

The acoustic metasurface was fabricated with a commercial 3D printer (Dimension 

SST 1200es) from Acrylonitrile-Butadiene-Styrene (ABS) plastic with a resolution of 

0.2mm. The experimental setup is shown in Figure 2.8 and is composed of two thick 

plywood sheets of dimensions 250cm x 250cm x 2.5cm placed in parallel with a spacing 
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of 2cm to create a 2D domain. Domain boundaries were confined with an absorbing foam 

5cm in thickness to mitigate the back reflection with optimal performance at 1KHz. In 

order to realize an acoustic point source within this domain, a loudspeaker was coupled to 

a narrow tube outlet to generate a localized point source. In order to ultimately map the 

acoustic field, a measurement region defined with an appropriate offset from boundaries 

(~40cm) meshed with 190 equally spaced probing points with center-to-center spacing of 

9cm. The experimental procedure was designed to be performed at a frequency of 1KHz, 

and associated dimensions and spacing have been realized accordingly. To map the field 

within the measurement region, two initially calibrated microphones (Audix TM1) have 

been used in which one microphone is fixed throughout the entire mapping procedure and 

the second microphone moved to sample all probing points. At each probing location, the  

 
Figure 2.8. Experimental setup employed to map the resultant acoustic field in the specified region on 
the transmission side of the metasurface. 
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complex transfer function between the two microphone signals was calculated and 

averaged over ten readouts. Finally, spline interpolation was utilized to visualize the 

resultant acoustic field in the finer mesh. Figure 2.9(a) demonstrates the simulated 

resultant pressure profile in which the cylindrical wavefront originating from the monopole 

source has been reformed to yield a laterally confined plane waveform on the transmission 

side of the metasurface In order to visualize the experimental wave pattern, the resultant 

pressures on the transmission side of the metasurface shown in Figure 2.9(a), have been 

measured both with and without the presence of the metasurface and results are shown in 

Figures 2.9(b) and 2.9(c). In Figure 2.9(b), the normalized pressure in the absence of the 

metasurface is shown in which the acoustic wavefront represents a diverging cylindrical 

waveform.  

 

Figure 2.9. Numerical and experimental results of the reverse form of focusing in which a monopole 
point source is placed two wavelengths away from the metasurface, and a laterally confined plane wave 
is created on the transmission side. (a) Simulation results showing the cylindrical to plane wave 
conversion. Rectangular dotted region depicts the location in which the experimental acoustic wave 
pattern was mapped. (b) Measured normalized acoustic field in the absence of the metasurface. (c) 
Measured normalized acoustic field in the presence of the metasurface. 
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Please note that although the experimental domain is bounded with absorbing foam to 

mitigate reflection, the impedance mismatch at the domain boundary resulted in a minor 

and localized deviation of the pressure from the ideal form. Figure 2.9(c) demonstrates the 

resultant pressure field on the transmission side of the fabricated metasurface. The 

experimentally derived and normalized pressure field in the presence of the metasurface 

clearly demonstrates a laterally confined plane wavefront which is in  good agreement with 

the pattern expected from the numerical solution, shown in Figure 2.9(a). 

Acoustic wave focusing, cylindrical-to-plane wave conversion, and beam splitting 

represent simple examples of acoustic wavefront manipulation analyzed herein in order to 

demonstrate the capability of gradient space-coiling metamaterials. Beyond acoustic 

wavefront manipulation, including the realization of more complicated acoustic patterns, 

metasurfaces may also be employed to mitigate the effects of aberrant layers by aberration 

correction. In all these cases, the precise design of the metasurface is simplified by the 

capacity for modulating both phase and amplitude. Moreover, the added degree of freedom 

to modulate the amplitude, in addition to phase, offers opportunities for performance that 

surpasses the capabilities of phase-based approaches (Appendix C). 

The work presented in this chapter is founded on the basis of a well-known acoustic 

metamaterial structure, namely, space-coiling metamaterials and introduces a class of horn-

like space-coiling metamaterials which provides sufficient degrees of freedom for full 

acoustic wave control. Moreover, the limitations of conventional space-coiling 

metamaterials for simultaneous phase and amplitude modulation were investigated, 

demonstrating that transmission through conventional space-coiling structures possesses a 
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topological-like bound, which is independent of frequency or unit cell dimension. 

Moreover, we have demonstrated that this bound applies to any passive, lossless 

metasurface with real acoustic impedance and highlighted the importance of the reactance 

term for full wavefront modulation. Next, a horn-like space-coiling structure capable of 

phase-amplitude modulation beyond conventional space-coiling structure limits is 

proposed and analyzed. Finally, metasurfaces featuring the proposed structures have been 

designed and simulated with the aims of sound focusing and acoustic beam splitting, while 

cylindrical to plane wave conversion has been experimentally validated (Details of the unit 

cells geometry have been listed in Appendix D). Horn-like space-coiling metamaterials 

offer a new methodology in metasurface design, in which phase and amplitude of the 

transmitted wave can simultaneously be modulated and tuned, yielding the capacity for 

complete wavefront shaping for a myriad of applications.  
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CHAPTER 3 DOUBLE DECORATED MEMBRANE METAMATERIAL: 

INITIAL EFFORT FOR REAL-TIME PHASE MODULATION 

One of the fundamental challenges in the practical implementation of acoustic 

metamaterials science is the issue of tunability. To date, proposed acoustic metamaterial 

structures and devices suffer from narrow-band working frequencies and are typically 

passive structures. For example, with regard to phase modulation using metasurfaces, the 

tunability and capability of real-time phase modulation are critical in numerous 

applications ranging from biomedical ultrasound to acoustic communication. This chapter 

represents an initial step toward realizing acoustic metamaterials with the potential capacity 

of real-time phase modulation. Elaborately, herein, we have both numerically and 

experimentally investigated the possibility of phase modulation with minimal amplitude 

variation using a membrane-based class of acoustic metamaterials.  

3.1 Transmission in Single and Double Decorated Membrane:  

Numerical Study 

 In the terminology of acoustic metamaterials, a decorated membrane refers to the 

combination of rigid mass with relatively small dimensions with respect to the overall size, 

which is attached to a membrane surface. Recently, implementations and applications of 

decorated membranes have gained growing interest, primarily in the context of perfect 

absorbers. Large transmission losses of a very low-frequency sound incident on a decorated 

membrane have previously been reported (Yang et al., 2015; Naify et al., 2010; Zhang et 

al., 2012). More recently, the application of a decorated membrane with the aim of phase 

modulation of the transmitted acoustic wave has been reported (Chen et al., 2014; 



34 
	

	

Langfeldt et al., 2016). In an effort to realize real-time tuning of the membrane-based 

metamaterial, Xiao et al, demonstrated that by placing a fishnet electrode in the vicinity of 

the decorated membrane and by applying a DC voltage to the electrode, the phase of the 

acoustic transmission wave may be modulated in real-time, yielding a tunable acoustic 

phase modulator (Xiao et al., 2015). The phase shift of the acoustic wave occurs due to the 

vibro-acoustic coupling of the membrane and incident sound field in which a phase shift 

of approximately 180 degrees occurs near the first Eigenfrequency of the membrane. The 

subsequent application of a DC voltage creates an anti-restoring force that decreases the 

Eigenfrequency of the membrane and consequently yields a tunable structure for phase 

modulation. For validation of this concept, we developed a FEM model of the decorated 

membrane in the waveguide coupled with the electrostatic field. The phase and amplitude 

spectra of the transmitted wave associated with different applied voltages are shown in 

Figure 3.1.  

 

Figure 3.1. Complex transmission through the single decorated membrane. (a) Transmission 
amplitude for different values of the applied voltage. (b) Transmission phase for different values of 
the applied voltage. 
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As is shown in Figure 3.1(a), by increasing the DC voltage, the Eigen frequency of the 

membrane shifts towards lower values, and the peak of the transmission coefficient shifts 

leftwards towards lower frequencies. Similarly, the phase of the transmitted wave shifts 

leftwards with an increase in the DC voltage, illustrated in Figure 3.1(b). The shift of the 

phase of the transmitted wave enables control over the acoustic phase by varying the 

magnitude of the DC voltage. For example, based on the results obtained, increasing the 

voltage from 0 volts to approximately 350 volts yields a change in the phase of the 

transmitted wave from -20 to 80 degrees at a frequency of 143 Hz. Despite the fact that 

tunable phase modulation can be realized with this structure, the associated amplitude 

changes impose an inherent limitation in the intended application of the proposed structure 

as a metamaterial in which each unit cell mimics a discrete element of a phased array 

transducer. The ultimate aim of this part of this dissertation is to investigate the possibility 

of tuning the phase of the transmitted wave independent of the variation in amplitude by 

employing the decorated membrane metamaterial. 

In an effort to achieve acoustic control, a structure composed of two decorated 

membranes in series in the waveguide has been designed. In this proposed unit cell 

structure, two decorated membranes are located in parallel to each other and separated by 

a precise, requisite distance. Each decorated membrane is modeled in the vicinity of a 

fishnet electrode, enabling the introduction of a desired distinct voltage for each membrane. 

Preliminary analyses of the capability of this structure to decouple phase and amplitude 

have been undertaken. The unit cell composed of two decorated membranes is found to 

exhibit two resonances, the first resonance occurring when the two membranes are moving 
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in phase during which the trapped region between the two membranes will undergo a 

simple displacement (Figure 3.2(a)). The second resonance occurs when the two 

membranes are out-of-phase, during which the trapped region will be under compression 

and expansion (Figure 3.2(b)). It is expected that the first resonance would be dominated 

by the mechanical characteristics of the membrane, such as the membrane equivalent 

spring constant, while the second resonance would be more affected by the geometric 

characteristics of the trapped region, such as the spacing length between the two decorated 

membranes. This concept has been numerically investigated by varying the spacing 

between the membranes in the unit cell and analyzing the transmission amplitude and 

phase, the results of which are shown in Figure 3.2. The phase and amplitude of the 

transmitted wave are depicted for three different non-dimensional parameters of L/D in 

which L denotes the spacing length between two membranes and D stands for the diameters 

of the membranes. Figure 3.2(a) demonstrates the fact that by changing the spacing length 

between the two membranes, the first resonance frequency remains constant. In fact, even 

in the case of large variations of 1 to 10 in L/D parameters, the first resonance frequency 

remains unchanged.  

In contrast, however, by increasing the spacing between the two membranes, the 

second resonance associated with out of phase membrane vibration shifts towards lower 

frequencies. By tuning the membranes properties and spacing between them, the out-of-

phase resonance may emerge in the vicinity of the in-phase resonance, thereby creating a 

broadband transmission peak instead of the single peak obtained previously. In addition, 

with regards to phase, 180-degree phase shift associated with the in-phase resonance is 
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obtained followed by secondary 180-degree phase shift corresponding to the out-of-phase 

resonance (Figure 3.2(b)). Please note that the sudden change in phase is related to the 

nature of the argument function defined in COMSOL as ranging from -180 to 180 degrees 

and in reality the phase shift is continuous. 

 

Figure 3.2. Complex transmission through the double decorated membrane. (a) Transmission 
amplitude for the different spacing of the membranes and occurrence of in-phase and out-of-phase 
resonances. (b) Transmission phase for the different spacing of the membranes and occurrence of Pi 
phase shift for both in-phase and out-of-phase resonances. (c) Transmission amplitude for merged 
resonances in the optimized double decorated membrane. (d) Transmission phase for merged 
resonances in optimized double decorated membrane structure. 

 

The preliminary results obtained herein are promising due to the possibility that by tailoring 

the membrane’s properties and spacing between them, the second resonance may be 
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coupled with the first resonance, thereby resulting in a broadband transmission peak. For 

initial validation of this concept, a unit cell composed of two decorated membranes has 

been modeled numerically. It should be noted that despite the fact that the applied DC 

voltage to each membrane may ultimately be adjusted individually, for the analysis 

performed herein, an identical voltage was applied at both membranes for purposes of the 

initial validation of this design. Two membrane models have been constructed with 

membrane and waveguide diameters of 20 mm and a 250 mm spacing distance between 

membranes. Amplitude and phase of the transmitted wave were recorded at varying 

frequencies as a function of applied DC voltage, illustrated in Figure 3.2(b) &(c). The 

results demonstrate that at a constant frequency of approximately 187 Hz for values of the 

applied voltage ranging from 0 to 350 volts, the transmission coefficient ranges between 

0.85 and 0.95, while in the case of a single decorated structure, the transmission coefficient 

ranges from 0.60 to 0.95. With regards to the transmission phase, our preliminary efforts 

have realized an amplification of the potential phase change due to the second resonance. 

Therefore, at a frequency of 187 Hz, a phase change from -25 degrees to 155 degrees has 

been obtained.  

The realization of the phase shift approximating 180 degrees with only 10% change 

in the transmission coefficient strongly supports the potential of this approach towards the 

ultimate goal of a complete decoupling of phase and amplitude. Notably, in the numerical 

results obtained herein, due to the complex and multiphysics nature of this phenomena, to 

simplify the modeling step, thermal and viscous losses have been ignored.  
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3.2 Transmission in the single and double decorated membrane:  

Experimental study 

Next, in order to investigate the effect of loss and validate the possibility of decoupled 

phase modulation using a double membrane metamaterial, the transmission has been 

measured experimentally for both single and double decorated membrane structure. 

 

Figure 3.3. Experimental apparatus. (a) Impedance tube setup. (b) single decorate membrane. (c) 
double membrane with no attached mass. 

The experimental apparatus is shown in Figure 3.3. To measure the complex transmission 

through the decorated membrane, an impedance tube setup featuring a steel pipe with a 

diameter of 2.5cm shown in Figure 3.3(a) is employed. The diameter of the impedance 

tube waveguide is selected considering the reliable range of frequency for measurement 

and based on the expected resonance frequency range of the membranes. The membrane is 

composed of a silicon rubber sheet under tension with the thickness of 0.3mm and the 

magnets with the diameter of 3mm and thickness of 1mm and weight of 40mg is leveraged 

to act as an attached mass on the membrane. Single membrane and double membrane 

configurations are shown in Figure 3.3(b) & (c), respectively.  



40 
	

	

Initially, using the impedance tube setup, the complex transmission through the 

single decorated membrane has been measured. In this experiment, in order to evaluate the 

concept of the coupling the resonances discussed before, instead of applying voltage to 

tune the membrane’s Eigenfrequency, the attached mass has been altered to realize 

resonance shift. Notably, multiple strategies may be pursued to manipulate the vibrational 

and resonance identity of the membrane which may analytically be modeled in one 

dimension as a form of the beam (Mehrvarz et al., 2018; Khodaei et al., 2018; Ardekany et 

al., 2018; Mehrvarz et al., 2019). Shown in Figure 3.4, the transmission amplitude and 

phase for three different configurations of the single decorated membranes with the 

resonances of 115Hz, 112Hz, and 107 Hz are demonstrated. From Figure 3.4(a), it may be 

observed that the acoustic transmission trough decorated membrane is generally small 

except in the vicinity of the resonance, where the transmission amplitude has been 

increased in a narrow band of the frequency.  

 

Figure 3.4. Experimentally obtained complex transmission for single decorated membrane. (a) 
Transmission amplitude for three different masses attached on the membrane. (b) Transmission phase 
for three different masses attached on the membrane.  
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Moreover, and expectedly, the transmission phase (Figure 3.4(b)) undergo a nearly Pi 

phase shift due to the resonance. Notably, due to the thermal and viscous boundry layer 

loses both the peak of transmission and range of phase shift is smaller than the theoretically 

expected values.  

Following experimentally measuring the complex transmission through the single 

decorated membrane, the transmission through the proposed double decorated membrane 

structure is measured. In this experiment, the membrane’s properties, i.e., attached masses 

along with the spacing between membranes have been tuned to merge the in-phase and 

out-of-phase resonances. The complex transmission results through a double membrane 

structure are shown in Figure 3.5 for three different combinations of the masses and the 

spacing of 3cm. M1 and M2 denote the attached mass condition on the first and second 

membranes respectively represented based on the multiplication of m as the mass of each 

magnet (= 40 mg.). From Figure 3.5(a) and Figure 3.5(b), it may be observed that in the 

first case when M1= 2m and M2=0, the in-phase and out-of-phase resonances are not 

merged. The transmission amplitude in this condition only possesses one peak and 

transmission phase has only varied by approximately Pi. In the other two cases, where 

M1=2m and M2=2m or 3m, the in-phase and out-of-phase resonances have emerged in 

close vicinity of each other. In these cases, the transmission amplitude possesses two peaks, 

and the transmission phase has varied over a range of about 2Pi.  

Despite the successful demonstration of coupling between in-phase and out-of-

phase resonances, strong damping has been observed in the out-of-phase resonances. The 

strong damping observed herein may be associated with three different sources of acoustic 
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energy losses. Commonly, the acoustic loss occurs near the boundaries of the media with 

the waveguide/membrane in the form of thermal and viscous losses (Pierce, 1989). These 

two sources of losses may be quantified with the viscous and thermal boundary layer 

thickness, which are approximated to be in the order of sub-millimeters in the experimental 

condition herein. Thereby, it is unlikely that the observed dampening is associated with 

thermos-viscous losses. The third potential source of energy loss, which is relevant in this 

particular experiment is the escape of the entrapped air. The out-of-phase resonances of the 

membranes essentially rely on the compression and expansion of the air isolated between 

the membranes. In this condition, the entrapped air exhibits a breathing mode generating 

pressure fluctuation in this region. For imperfect air-sealed condition, the pressure 

fluctuation in this region will be strongly mitigated due to the air transport and the breathing 

mode will be damped.  

 

Figure 3.5. Complex transmission through the double decorated membrane. (a) Transmission 
amplitude for three different combinations of masses attached on the membranes. (b) Transmission 
phase for three different combinations of masses attached on the membrane.  
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To assess the contribution of different loss mechanisms discussed herein, two further 

experiments have been conducted. In the first experiment, the region between two 

membranes has been filled with Xenon for which the thermal and viscous losses are about 

half of those air. In the second experiment, instead of the silicon rubber sheet, Mylar rubber 

is leveraged, which is significantly less permeable. Notably, the potential air transport in 

the experimental apparatus may occur through both membrane and membrane/spacer 

attaching point. 

 

Figure 3.6. Experimental result for double decorated membrane when M1 and M2 are both equal to 
2m and with the spacing of 3cm between membranes. (a) Transmission through Xenon filled double 
membrane. (b) Transmission through double Mylar membrane. (c) Transmission, Reflection, and 
Absorption in double Mylar membrane. (d) Coupled transmission in double Mylar membrane.  



44 
	

	

Considering that the practical realization of an air-tight setup is not trivial, the experiment 

leveraging a Mylar membrane has been conducted herein solely to identify and validate the 

source of losses in the observed results. The results are shown in Figure 3.6. Transmission 

through Xenon filled double membrane is shown in Figure 3.6 (a). Expectedly, given the 

fact that thermal and viscous boundary layer thicknesses are minimal (dominated by 

thermal loss; Xenon: about 0.1 mm and Air: about 0.2mm) compare to the length scale in 

the experiment (2.5cm), the resulted transmission is found to be very similar to the air-

filled case. On the other hand, from the results obtained in case of double Mylar membrane 

shown in Figure 3.6(b), a marked enhancement in the transmission amplitude of out-

phase-resonance may be observed. The transmission amplitude at out-phase-resonance has 

been approximately doubled in case of Mylar membrane with respect to the silicon rubber 

membrane.  

From the results obtained herein, one may infer that the dampening mechanism 

observed for the out-of-phase resonance is strongly dominated by the presence of air 

transport. In Figure 3.6 (c), the absorption coefficient of the double Mylar membrane is 

shown from which sudden enhancement of the absorption due to the discussed loss 

mechanism is observed near the out-of-phase resonance. Moreover, with an effort to better 

seal the Mylar membrane/spacer and adjusting the membrane’s properties, two resonances 

have been successfully overlapped, and the resulting complex transmission is shown in 

Figure 3.6 (d). It may be observed that, unlike single decorated membrane metamaterial, 

a broad pass-band (179-222 Hz) is obtained in which the amplitude variation remains small 

(0.4-0.54) despite the large phase change in this region. 
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From the presented numerical and experimental study, it may be concluded that by 

leveraging the double decorated membrane structure and by tuning the membrane’s 

properties and spacing between them, in-phase and out-of-phase resonances may be 

coupled to provide a sufficient degree of freedom to modulate transmission phase with 

minimal amplitude variation. Moreover, it is validated experimentally that the achievement 

of such broadband region with a high level of transmission, relies strongly on the 

realization of an air-sealed double membrane structure. With the air-sealed double 

decorated membrane, one may couple the two resonances and subsequently realize a 

tunable metamaterial in which by adjusting the membrane’s resonance frequency, 

transmission phase may be modulated in a broad range with the minimal amplitude 

variation.  
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CHAPTER 4   ULTRA-OPEN ACOUSTIC METAMATERIAL SILENCER 

 
Airborne sound attenuation has conventionally been realized through the application of 

acoustic barriers, by either reflecting or absorbing incident acoustic energy. While 

wideband attenuation may be obtained, attenuation in the low-frequency regime (<500Hz) 

using such approaches is challenging and necessitates increased acoustic barrier layer 

thickness. Furthermore and importantly, such methods of sound attenuation eliminate the 

passage of air, precluding their functionality for applications in which ventilation is 

required. The need for sound attenuation, while preserving ventilation such as required in 

the application to mitigating fan noise, has inspired a range of efforts, often within the 

context of duct acoustics (Selamet et al., 1999; Huang et al., 2006; Wang et al., 2008; Lee 

et al., 2012; Sellen et al., 2006). Among prior efforts, Herschel-Quincke (HQ) waveguides 

(Stewart, 1928) are notable as narrowband sound attenuation may be achieved with 

minimal reduction in the duct air-flow area. Despite the performance of these classical 

methods for simultaneous sound attenuation and ventilation, their inherent in-duct nature, 

along with their large physical footprint, have limited their versatility and degree of 

implementation. 

More recently, with ongoing advances in metamaterial science, new possibilities 

for manipulating acoustic energy have emerged. Metamaterials are composed of sub-

wavelength structures in which their effective acoustic properties are dominated by their 

structural shape rather than their constitutive materials. Utilizing sub-wavelength 

metamaterial structures, phenomena such as wavefront modulation (Xie et al., 2014; 

Ghaffarivardavagh et al., 2018; Li et al., 2014), sub-diffraction imaging (Zhu et al., 2010; 
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Lu et al., 2012), and acoustic cloaking (Chen et al., 2007; Cummer et al., 2008), among 

others, have been demonstrated. To date, several acoustic metamaterial-based structures 

have been proposed to address the challenge of sound attenuation while simultaneously 

preserving air passage (Jung et al., 2018; Shen et al., 2018; Wu et al., 2018; Kim et al., 

2014; Ma et al., 2013; Chen et al., 2015; García-Chocano et al., 2012). Despite the fact that 

the reported structures possess a sufficient degree of transmission loss in their designed 

frequency ranges, the amount of open area of the structures has been sacrificed in order to 

obtain the desired acoustic performance. Therefore, the ventilation areas of the reported 

structures are limited to small fractions of the overall area, which, while suitable for air 

permeability, are problematic in applications of forced ventilation, such as in the case of 

cooling fans. Recently, Li et al. (Li et al., 2018), proposed a metamaterial structure 

composed of side resonator with the micro-perforated plates that can absorb the acoustic 

wave at certain frequencies, while maintaining efficient ventilation. A primary focus of 

ongoing efforts in this area has been the broadening of the attenuation frequency band, 

which is substantial in applications of ambient noise reduction, but not requisite in the case 

of industrial noise such as machinery or fans, which is harmonic in nature. For instance, in 

the case of fan noise, the radiated sound is mainly composed of the tonal sound 

corresponding to the blade-passing frequency (BPF) and its higher harmonic modes 

(Lauchle et al., 1997; Niu et al., 2012). Similarly, in case of machinery noise, such as 

engine noise, the radiated sound is mainly composed of higher order harmonics based on 

the cylinder firing rate (CFR) or the engine firing rate (EFR) (Alfredson et al., 1970). 

In this Chapter, we present a design methodology based on Fano-like interference 
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for selective attenuation of the transmitted acoustic wave by means of reflection. The 

method reported herein enables the design of ultra-open metamaterials (UOM) composed 

of sub-wavelength unit cell structures featuring a predominately open area that provide 

appropriate functionality when both sound attenuation and highly efficient ventilation are 

required. Moreover, the presented structures are capable of attenuating the acoustic wave 

at the targeted frequency as well as its higher harmonics and are therefore readily applicable 

to attenuate machinery or fan noise. Through the realization of high-performance sound 

attenuation, while retaining airflow, the design methodology enabling UOMs may serve as 

the foundation of a new generation of acoustic silencing technologies. 

 

4.1  Fano-like Interference in Transverse Bilayer Metamaterial 

 
Fano was the first to have derived a theory underpinning the asymmetric scattering peaks 

of electrons during his studies of autoionizing resonance (Fano, 1961). The origin of the 

asymmetric scattering profile was explained as a result of the interference between the 

discrete resonant and continuum states. Recently, given the analogies between the physics 

of phonon and electron scattering (Fellay et al., 1997), the asymmetric scattering of the 

elastic wave in sonic and Phononic crystals based on Fano-like interference has been 

demonstrated (Goffaux et al., 2002; Sainidou et al., 2006). This asymmetric transmission 

profile is due to the fact that the portion of the elastic wave traveling through the resonating 

element interferes with the portion of the elastic wave traveling through the non-resonating 

pathway. The asymmetric transmission profile possesses a dip region due to destructive 

interference resulting in attenuation of the transmitted wave. This property of attenuation 
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of the acoustic wave due to Fano-like interference has the potential for applications in 

acoustic filtering and silencing devices and represents the foundations of the ultra-open 

metamaterial (UOM) reported herein. 

Initially, it is analytically demonstrated that such an asymmetric transmission 

profile based on a Fano-like interference is present in the case of a transverse bilayer 

metamaterial shown in Figure 4.1. Subsequently, the applicability of the presented 

metamaterial structure, providing both analytical and experimental validation of a novel 

acoustic silencing technology is demonstrated. 

 

 

Figure 4.1.  Transverse bilayer metamaterial in which the two colored regions possess distinct acoustic 
properties and are placed transversely with respect to the wave propagation direction 

Firstly, we consider the case of an acoustic plane wave incident on a transverse bilayer 

metamaterial with distinct acoustic properties, as shown in Figure 4.1. It is assumed herein 

that the metamaterial has an axisymmetric configuration with respect to the x-axis with a 

thickness of t  in which region 1 (
1<r r ) is composed of a material with an acoustic 



50 
	

	

impedance of 
1Z  and refractive index of 

1n  and region 2 ( 
1 2< <r r r ) is composed of a 

material with an acoustic impedance of 
2Z  and refractive index of 

2n . Note that the 

axisymmetric configuration is selected solely for the purpose of simplification and other 

configurations may be considered without a loss of generality. Notably, it is assumed herein 

that two regions are separated with the acoustically rigid spacer at (
1=r r ) of negligible 

thickness that eliminates the cross-coupling between them. Furthermore, the entire 

structure is assumed to be confined within a rigid, circular waveguide filled with a medium 

with the sound speed of 
0c  and density of 

0ρ  for the purposes of deriving the acoustic 

transmittance. 

In the proposed metamaterial, given its inherent transverse nature, both pressure 

and velocity field at the boundaries of the metamaterial will be a function of r. Hence, as 

the first step to derive the transmittance, the following definitions of acoustic pressure and 

velocity field at the interfaces (x = 0  and x = t) are employed to relieve the transverse 

variation of the pressure and velocity fields (r-dependancy). 

 1
1 2 =00

1

2( = 0) = ( , )
r

x
P x p r x rdr

r
π

π ∫  (4.1) 

 2
2 2 2 =0

12 1

2( = 0) = ( , )
( )

r

xr
P x p r x rdr

r r
π

π − ∫  (4.2) 

 1
1 2 =0

1

2( = ) = ( , )
r

x t
P x t p r x rdr

r
π

π ∫  (4.3) 

 2
2 2 2 =

12 1

2( = ) = ( , )
( )

r

x tr
P x t p r x rdr

r r
π

π − ∫  (4.4) 
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 1
1 =00
( = 0) = 2 ( , )

r

x
U x u r x rdrπ ∫  (4.5) 

 2
2 =0

1
( = 0) = 2 ( , )

r

xr
U x u r x rdrπ ∫  (4.6) 

 1
1 =0
( = ) = 2 ( , )

r

x t
U x t u r x rdrπ ∫  (4.7) 

 2
2 =

1
( = ) = 2 ( , )

r

x tr
U x t u r x rdrπ ∫  (4.8) 

In which p and u are acoustic pressure and the velocity field, respectively. 1&2P  and 1&2U  

are averaged pressure and volume velocity at the region 1 and region 2 interfaces with the 

medium inside the waveguide. 

Next, considering that the regions are separated with a hard boundary, the 

propagation of the acoustic wave within each region may be considered independently. 

Consequently, the transfer matrices relating the output pressure and velocity to the input 

conditions for regions 1 and 2 may be written in a decoupled fashion. Considering the case 

of plane wave propagation, the transfer matrices of these regions may be derived as 

follows: Acoustic pressure and velocity in these regions following the i tω−  convention 

may be written as:  

 0 0
1 2( ) = ik n x ik n xm m

mP x Ae A e−+  (4.9) 

 
0 0

1 2( ) =
ik n x ik n xm m

m
m m

Ae A eU x
Z Z

−

−  (4.10) 

 In which 
0k  is the wave number associated with the medium within the duct, defined as 

0 0= /k cω  , 
mn  and 

mZ  are the effective refractive index and the effective acoustic 
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impedance of the region m, respectively, and t  is the thickness of the metamaterial shown 

in Figure 4.1. 
1A  and 

2A  are constant coefficients associated with the outgoing and 

incoming wave, respectively.  Employing Equations (4.9) and (4.10), the averaged pressure 

and volume velocity at = 0x  and =x t  may be derived as:  

 1 2( = 0) =mP x A A+  (4.11) 

 1 2( = 0) =m
m m

A AU x
Z Z

−  (4.12) 

 0 0
1 2( = ) = ik n t ik n tm m

mP x t Ae A e−+  (4.13) 

 
0 0

1 2( = ) =
ik n t ik n tm m

m
m m

Ae A eU x t
Z Z

−

−  (4.14) 

 By first deriving 
1A  and 

2A  in terms of the ( = 0)mP x  and ( = 0)mU x  using the Equations 

(4.11) and (4.12) and then substituting them into the Equations (4.13) and (4.14), one may 

find the transfer matrices for regions 1 and 2 ( =1,2m ) as:  

 

 
( ) ( )

( ) ( )
0 1 1 0 1

1 1

0 1 0 11 1
1

cos sin
( = 0) ( = )

=
sin cos( = 0) ( = )

k n t iZ k n t
P x P x t

i k n t k n tU x U x tZ

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (4.15) 

 
( ) ( )

( ) ( )
0 2 2 0 2

2 2

0 2 0 22 2
1

cos sin
( = 0) ( = )

=
sin cos( = 0) ( = )

k n t iZ k n t
P x P x t

i k n t k n tU x U x tZ

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (4.16) 

To this end, the relation between the input pressure and velocity to the output condition 

within each region of the metamaterial has been derived in terms of the transfer matrices. 
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The next step in deriving the transmittance (defined as the ratio of transmitted power to the 

incidence power) is to investigate the interaction between the acoustic wave inside the duct 

and the transverse bilayer metamaterial’s interfaces at = 0x  and =x t . In order to 

investigate this interaction, a Green’s function method is utilized herein, which describes 

the response of the system to a point source. Utilizing Green’s function and given the fact 

that any source distribution may be written as an integral of the point sources, one may 

readily derive the resultant acoustic field. 

Green’s function 0 0( , ; , )G r x r x  within a semi-infinite circular duct terminating at 

= 0x  may be derived as the solution of the Helmholtz equation (Feng et al., 2013): 

 2 2 0 0
0 0 0 0 0

( ) ( )( , ; , ) ( , ; , )
2

r r x xG r x r x k G r x r x
r

δ δ
π

− −∇ + = −  (4.17) 

 Where δ  represents the Dirac delta function. From the solution of the Equation (4.17), 

Green’s function with respect to the incident and transmitted side of the metamaterial can 

be obtained as (Li et al., 2014):   

= 2 2 2 2
0 0 0 0 0

1 0 0 2 2 2
=0 2 0

( ) ( )0 : ( , ; , ) = ( )
2

n
i k k x x i k k x xn n n n

n n

r rx G r x r x e e
i r k k
ϕ ϕ
π

∞
− − − +≤ +

− −
∑  (4.18)  

= 2 2 2 2 20 0 0 0 0
2 0 0 2 2 2

=0 2 0

( ) ( ): ( , ; , ) = ( )
2

n
i k k x x i k k x x tn n n n

n n

r rx t G r x r x e e
i r k k
ϕ ϕ
π

∞
− − − + −≥ +

− −
∑  (4.19) 

When 
2r  and t  are duct radius and metamaterial’s thickness, respectively, as shown in 

Figure 4.1, and the eigenmode is defined as 
0 0 2( ) = ( ) / ( )n n nr J k r J k rϕ  with the 

wavenumber 
nk  as the solution of 

2( ) = 0nJ k r′  where J  represents the Bessel function. 

Utilizing Kirchhoff–Helmholtz integral, the pressure field on the left side of the 

metamaterial ( 0x ≤ ) may be written as (Feng et al., 2013) :  
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0 0

1 20 0 0 0
1 0 0 0 0 1 0 0 0 00 10 0=0 =00 0

( , ) =

( , ) ( , )2 ( , ; , ) 2 ( , ; , )

ik x ik x

r r

r
x x

p r x e e

p r x p r xG r x r x r dr G r x r x r dr
x x

π π

−+

∂ ∂+ +
∂ ∂∫ ∫  (4.20) 

By applying the conservation of the momentum, one may write:  

 0 0
0

0 =00

( , )( ,0) =
x

p r xi u r
x

ωρ ∂−
∂

 (4.21) 

By firstly rewriting the pressure gradient term in Equation (4.20) using Equation (4.21), 

and subsequently employing Equations (4.5) and (4.6), one may derive:  

 

1 21 2
0 1 0 0 0 0 1 0 0 02 2 20 11 2 1

( ,0) = 2

( = 0) ( = 0)2 ( ,0; ,0) 2 ( ,0; ,0)
( )

r r

r

p r

U x U xi G r r r dr i G r r r dr
r r r

π ωρ π ωρ
π π

+ +
−∫ ∫  (4.22) 

By substituting the ( ,0)p r  found from Equation (4.22) into Equations (4.1) and (4.2), one 

may readily derive that:  

 

1

1 1 1 20 1 0 2
1 0 0 0 1 0 0 04 2 2 20 0 0 11 1 2 1

( = 0) = 2

4 ( = 0) 4 ( = 0)( ,0; ,0) ( ,0; ,0)
( )

r r r r

r

P x

i U x i U xG r r r dr rdr G r r r dr rdr
r r r r

ρ ω ρ ω+ +
−∫ ∫ ∫ ∫  (4.23) 

2

2 1 2 20 1 0 2
1 0 0 0 1 0 0 02 2 2 2 2 201 1 11 2 1 2 1

( = 0) = 2

4 ( = 0) 4 ( = 0)( ,0; ,0) ( ,0; ,0)
( ) ( )

r r r r

r r r

P x

i U x i U xG r r r dr rdr G r r r dr rdr
r r r r r
ρ ω ρ ω+ +

− −∫ ∫ ∫ ∫  (4.24) 
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Similarly, when x t≥ , following the same procedure and employing the Green’s function 

2 0 0( , ; , )G r x r x , the pressure may be derived as:  

 

1

1 1 1 20 1 0 2
2 0 0 0 2 0 0 04 2 2 20 0 0 11 1 2 1

( = ) =

4 ( = ) 4 ( = )( , ; , ) ( , ; , )
( )

r r r r

r

P x t

i U x t i U x tG r t r t r dr rdr G r t r t r dr rdr
r r r r

ρ ω ρ ω− −
−∫ ∫ ∫ ∫  (4.25) 

2

2 1 2 20 1 0 2
2 0 0 0 2 0 0 02 2 2 2 2 201 1 11 2 1 2 1

( = ) =

4 ( = ) 4 ( = )( , ; , ) ( , ; , )
( ) ( )

r r r r

r r r

P x t

i U x t i U x tG r t r t r dr rdr G r t r t r dr rdr
r r r r r
ρ ω ρ ω− −

− −∫ ∫ ∫ ∫  (4.26) 

The resultant Equations (4.23, 4.24, 4.25, and 4.26), in addition to the tensor Equations 

(4.15) and (4.16), provide a solvable system of 8 equations from which averaged pressure 

and velocity terms defined in equations (4.1) to (4.8), as 8 variables, may readily be 

calculated. Please note that in the calculation of the numerical integrals present in 

Equations (4.23) to (4.26), a sufficient number of the summation (n in equations (4.18) and 

(4.19)) needs to be considered in order to yield accurate results. Herein, a sufficient number 

of summations has been considered to ensure that the relative difference between the 

resultant partial summation and the exact summation value does not exceed 1%.  

Followed by the derivation of the averaged pressure and velocity discussed herein, 

the overall pressure and velocity field on the two sides of the transverse bilayer 

metamaterial may be written as:  

 2 2 2
1 1 2 1 22

2

1( = 0) = [ ( = 0) ( ) ( = 0)]P x r P x r r P x
r

π π
π

+ −  (4.27) 
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 2 2 2
1 1 2 1 22

2

1( = ) = [ ( = ) ( ) ( = )]P x t r P x t r r P x t
r

π π
π

+ −  (4.28) 

 1 22
2

1( = 0) = [ ( = 0) ( = 0)]u x U x U x
rπ

+  (4.29) 

 1 22
2

1( = ) = [ ( = ) ( = )]u x t U x t U x t
rπ

+  (4.30) 

Eventually, utilizing Equations (4.27) to (4.30), the transfer matrix corresponding to the 

transverse bilayer metamaterial may be constructed as follows:  

 11 12

21 22

( = 0) ( = )
=

( = 0) ( = )
M MP x P x t
M Mu x u x t
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 (4.31) 

From which the transmittance may be readily calculated as:  

 
2

11 12 0 0 21 0 0 22

2=
/

T
M M c M c Mρ ρ+ + +

 (4.32) 

Using this approach, the transmittance from the bilayer metamaterial for different values 

of refractive index and acoustic impedance is derived and shown in Figure 4.2(a) and 

Figure 4.2(b). In Figure 4. 2(a), it is considered that 
2 1/ =10n n  and the transmittance is 

depicted as a function of the non-dimensional quantity 
2 /n t λ ( λ  denotes the 

wavelength) for four different values of the impedance ratio. In Figure 4. 2(b), the 

impedance ratio has been kept constant 
2 1( / =10)Z Z  , and the transmittance is depicted 

for three different values of the refractive index ratio. Notably, the background medium 

within the waveguide is considered to be air, and it is assumed that the medium in region 

1 is identical to the background medium. Hence, the acoustic impedance of region 1 may 
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be derived as 2
1 0 0 1= /Z c rρ π  , and the refractive index (

1n ) is equal to unity. From the 

resulted transmittance curve, it may be observed that for different values of 
2Z  and 

2n , 

given the differing acoustic properties of regions 1 and 2, an asymmetric transmission 

profile is obtained in which destructive interference may result in zero transmittance due 

to Fano-like interference. The destructive interference emerges where 
2 = / 2n t λ , which is 

the resonating state of region 2. Given the contrast in refractive indices of the two regions, 

region 1 remains in a continuum state and, consequently, a Fano-like interference occurs. 

During this state, the portion of the acoustic wave traveling through region 2 interacts with 

resonance-induced localized modes in this region, resulting in an out-of-phase condition 

after traveling through region 2. 

 
Figure 4.2. Analytical results. (a) Acoustic transmittance through the transverse bilayer metamaterial 
for different values of acoustic impedance contrast when the refractive indices ratio is kept constant. 
Notably, for the cases with a finite ratio between the impedance of the regions (shown with the blue 
line, orange dashed line, and the yellow dotted line), Fano-like interference results in destructive 
interference. However, in the case of infinite contrast between the regions impedance, representing 
orifice-like behavior, the destructive interference is suppressed (purple dotted-dashed line). (b) 
Acoustic transmittance through the bilayer metamaterial for different ratios of the refractive indices 
when the acoustic impedance is kept constant. 
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The portion of the incident acoustic wave traveling through region 1 will pass the 

metamaterial with negligible phase shift and, consequently, a resultant destructive 

interference occurs on the transmission side of the metamaterial. By comparing the 

transmittance for different values of the impedance ratio, it may be inferred that by 

increasing the contrast between the acoustic impedances of the two regions, the quality 

factor (Q-factor) of the attenuation performance is increased. This attribute provides a 

degree of freedom through which, by adjusting the impedance contrast, the proper filtration 

bandwidth may be realized. Notably, when the acoustic impedance ratio yields a very large 

number 
2 1( / = )Z Z ∞ , the filtration performance is suppressed, given its marked 

narrowband character, and an orifice-like behavior is realized. However, an orifice 

structure with a similar open area geometry results in a relatively poor sound filtration 

performance, leading to only minor degrees of attenuation of the transmitted acoustic wave. 

Figure 4. 2(b), demonstrates the effect of refractive index contrast between the two media 

on transmittance and illustrates that high degrees of filtration is obtained when 
2 = / 2n t λ . 

Thusly, by adjusting the refractive indices in the proposed structure, high-performance 

sound attenuation may be realized at any desired frequency. 

           Of note, the destructive interference initially occurs at 
2 = / 2n t λ , which is the first 

resonance mode of region 2, but will also occur at higher resonance modes when 

2 = / 2n t Nλ  for integers of N shown in Figure 4. 3(a). To this end, the silencing behavior 

of the transverse bilayer metamaterial has been investigated for the case of a normally 

incident acoustic plane wave. However, given the subwavelength nature of the proposed 

metamaterial structure, it is expected that silencing will also be present in the case of 
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oblique incidence. To validate this expectation, the full-wave simulation was utilized, and 

the transmittance through the transverse bilayer metamaterial in the case of oblique 

incidence with different incident angles was derived and shown in Figure 4. 3(b). It can 

be observed that the silencing functionality of the proposed metamaterial structure is 

present even for very large angles of incidence. 

The methodology presented herein and based on a Fano-like interference in a 

bilayer metamaterial structure offers a design platform to selectively silence the unwanted 

sound. Using this design, by tuning the acoustic impedance and refractive index contrast 

between the two regions of the metamaterial, the desired acoustic filtration performance 

may be achieved. In the following sections, this concept is utilized to design a metamaterial 

structure that features a large open area for air transport, while also selectively silencing 

the unwanted sound. 
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Figure 4.3. (a)Acoustic transmittance from transverse bilayer metamaterial structure with different 
refractive index ratios and a constant impedance ratio of 10. The silencing functionality initially 
emerges when n2t is equal to half wavelength but is also present in higher order harmonics when it 
approximates integer multiplication of half wavelength. (b) Acoustic transmittance through transverse 
bilayer metamaterial in case of oblique incidence with different incident angles. 
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4.2  Ultra-Open Metamaterial for Selective Sound Silencing 

In this section, an ultra-open metamaterial (UOM) structure based on the concept of the 

bilayer metamaterial is designed and its performance in sound silencing experimentally 

validated. The UOM structure is shown in Figure 4. 4(a), the effective acoustic model of 

which may be simplified to the form of the transverse bilayer metamaterial structure. The 

center portion of the designed structure (
1<r r ) is completely open area which yields a 

high degree of air transport. This region corresponds to region 1 in the bilayer metamaterial 

structure, and its characteristic acoustic impedance may be derived as 2
0 0 1/c rρ π  , where 

0ρ  and 
0c  are the density and sound speed of the background medium, respectively. 

Notably, the acoustic refractive index of this region is equal to unity. As discussed above, 

in order to obtain the desired silencing functionality, a contrast in the acoustic properties 

of the two regions is essential. The difference in acoustic properties of the two regions may 

provide the resonating state condition in region 2 while region 1 remains in the continuum 

state. Therefore, in order to realize the contrast in the acoustic properties of the two regions, 

the concept of a helical metamaterial structure is utilized. Helical metamaterials are 

founded on the basis of space-coiling metamaterials in which the acoustic wave pathway 

represents the form of a helix. In these structures, by tailoring the geometrical parameters, 

the desired effective refractive index and effective acoustic impedance may be obtained, 

and their application in wavefront manipulation has been demonstrated (Zhu et al., 2016; 

Esfahlani et al., 2017).  
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Figure 4.4. (a) UOM structure is shown in which the open region at the center (r < r1) corresponds to 
region 1 in the transverse bilayer metamaterial and the outer region, featuring six channels coiled in 
the form of helix (r1 < r < r2), corresponds to region 2. (b) Internal structure of the UOM is shown with 
an acoustic wave traveling through the channels and essentially following the helical pathway with a 
helix angle of φ . 

 

          In the helical metamaterial regime ( 
1 2< <r r r  ), which corresponds to region 2 in 

the transverse bilayer metamaterial, six air channels are coiled in the form of a helix in 

which the extended path length of the acoustic wave provides a large effective refractive 

index in this region. Moreover, the small cross-sectional area of the helix channels in 

comparison to the waveguide yields a large acoustic impedance in this region. The internal 

features of the UOM are shown in Figure 4. 4(b) in which the red arrow illustrates the 

pathway through the helical channels.  

The acoustic impedance of the helical region may be approximated as 

0 0 2 1/ ( )c t r rρ −  in which t, 
1r  and 

2r  are structure thickness, inner radius, and outer 

radius, respectively, and which are shown in Figure 4.4(a). The contrast or ratio between 

the acoustic impedances of the two regions may be expressed as:  

 2
2 1 1 2 1/ = / ( )Z Z r t r rπ −  (4.33) 
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 Considering the effective path length of the acoustic wave traveling through the helical 

channels, the effective refractive index of the helical region may be approximated as:  

 
2 =1/ sin( )n φ  (4.34) 

Where φ  denotes the helix angle shown in Figure 4.4(b). From Equation (4.33) and 

Equation (4.34), it can be inferred that by adjusting the helix angle (φ ), the desired 

refractive index, and the values of the t , 1r  and 2r  parameters, the desired impedance ratio 

may be realized. Noteworthy, the presented design offers several highly valuable degrees 

of freedom to optimize device performance and tailor applicability. The refractive index, 

as it is expressed in Equation (4.34), depends solely on the helix angle, which may be 

independently tailored without any effect on other design parameters. In addition, the 

acoustic impedance ratio derived in Equation (4.33) is a function of three geometrical 

parameters for which there exist infinite sets of values leading to any desired relative 

impedance value. Therefore, based on design preference, such as a preference for thinning 

the structure (small value of t) or increasing the open area of the structure (increasing 1 2/r r

), an optimal metamaterial unit cell structure may be readily designed. 

Finally, in order to experimentally validate the performance of the UOM structure, 

a UOM has been designed with the aim of silencing sound with a frequency near 460 Hz 

and, therefore, was fabricated with dimensions of = 5.2t cm ,
1 = 5.1r cm , 

2 = 7r cm  and 

= 8.2degφ . The UOM was fabricated using a commercial 3D printer (Dimension SST 

1200es) from ABS plastic with a resolution of 0.2 mm. Next, the fabricated UOM was 

post-processed using a two-part epoxy resin (BJB Enterprise TC-1614 A/B) that sealed the 
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internal, porous nature of the 3D printed UOM, thereby providing improved mechanical 

properties. Please note that the overall size of the fabricated UOM herein is deep 

subwavelength in nature and, for instance, the UOM’s thickness approximates 0.07λ  

while λ  at 460 Hz approximates 74.5 cm. Employing Equation (4.33) and (4.34), the 

UOM may be simply modeled as a transverse bilayer metamaterial with an acoustic 

impedance ratio of 
2 1/ = 7.5Z Z  and refractive index ratio of 

2 1/ = 7n n  , approximated 

based on the fabricated UOM dimensions.  

Please note that the assumption with regards to the presence of an acoustically rigid 

spacer utilized in the analysis of the case of transverse bilayer metamaterial is also relevant 

for the proposed UOM silencer. The two regions of the fabricated UOM structure are 

separated with an acrylonitrile butadiene styrene (ABS) plastic layer of 6mm that results 

in approximately 29 dB transmission loss at 450 Hz for the wave traveling from the open 

region of the UOM to the helical metamaterial region and vice versa. Based on this large 

transmission loss expected from this layer, the interface between the two regions may be 

reasonably approximated as a rigid spacer layer such as was assumed in the transverse 

bilayer metamaterial structure. Consequently, the equivalent model of the presented UOM 

structure may be simplified to the form of the transverse bilayer metamaterial discussed in 

the previous section. 

The fabricated UOM structure was experimentally tested using an air-filled 

impedance tube, with the transmittance derived in the frequency range of 300-600Hz. The 

impedance tube setup was designed and fabricated in accordance with the ASTM E 2611-

09 standard. The setup featured a speaker enclosed in a soundproof box that predominately 
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guided the acoustic wave towards the impedance tube and eliminated the effect of back 

reflections from the experimental environment. The impedance tube was composed of two 

schedule-40 PVC tubes with nominal diameters of 15.24 cm and a length of 1.5m that were 

placed on either side of the UOM structure. In order to obtain the transmittance through 

the UOM, the transfer matrix of the UOM was retrieved for two different types of 

terminations, and by sweeping the loudspeaker’s input frequency, the transmittance was 

obtained across the frequency range of 300Hz-600Hz. Noteworthy, experimental 

transmittance herein has been obtained by employing the two-load method in which open-

end and semi-anechoic terminations were utilized. The detail of derivation using the 

impedance tube is discussed in Appendix E. 

           The experimental result is shown in Figure 4.5 in which the transmittance (leftward 

y-axis) is shown with a dotted line with a triangular marker and its representation in sound 

transmission loss (STL) defined as −10 log 𝜏  (where 𝜏	is transmittance) is shown with 

the dashed line. Additionally, based on the transverse bilayer metamaterial model and using 

the effective acoustic properties estimated for the fabricated UOM, transmittance has been 

derived analytically and is also shown in Figure 4.5 (solid line). As demonstrated in Figure 

4.5, the experimentally measured transmittance through the UOM structure exhibits an 

asymmetric profile possessing a dip region where destructive interference due to Fano-like 

interference has silenced the transmitted wave. Notably, the experimental results obtained 

herein are in agreement with the predicted analytical solution and, consequently, the 

applicability of the analytical model for the design of this class of metamaterial structures 

is validated.  
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Based on the obtained experimental results, the transmitted acoustic energy is decreased to 

approximately 6% at the peak frequency, indicating that approximately 94% of the acoustic 

wave energy is blocked using the proposed structure. Moreover, there exists a high degree 

of agreement between the peak filtration frequency band when comparing the analytical 

and experimental results and the fact that that the experimentally obtained peak frequency 

is in close proximity to the regime where 
2 = / 2n t λ  is confirmed. Due to limitations in the 

fabrication precision of the metamaterial structure, the targeted frequency in the UOM 

design step has been selected to approximate 460Hz, though device performance may 

readily be realized at lower frequencies by decreasing the helix angle. 

 
Figure 4.5. Acoustic transmittance resulting from the impedance tube experiment is shown with the 
dotted-line with a triangular marker demonstrating that near 460 Hz, the transmittance is reduced to 
the minimum value of approximately 0.06. Sound transmission loss (STL) for the wave passing through 
the UOM is also shown with the dashed line corresponding the rightward y-axis. The solid line 
represents the predicted behavior using Green’s function method by modeling the UOM structure as 
a transverse bilayer metamaterial. 
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In order to visualize the silencing performance of the UOM structure and gain a deeper 

insight into its performance, the sound transmission through the UOM is modeled 

numerically using COMSOL finite element software. Given the complexity associated 

with the helical shape of the UOM’s channel, the acoustic transmission has been modeled 

in three dimensional (3D) space but a cut-plane is used to demonstrate the resultant acoustic 

pressure and acoustic velocity fields in two dimensions (2D), shown in Figure 4.6(a) and 

Figure 4.6(b). The background color represents the absolute value of the pressure field 

normalized by the amplitude of the incident wave, and the white lines reflect the stream 

and orientation of the local acoustic velocity field. Demonstrated in Figure 4.6(a) is a plane 

wave with a frequency of 400 Hz incident on the metamaterial from the left side, as shown 

with black arrows. In accordance with the analytically and experimentally expected 

behavior of the UOM structure, in the frequency regime of 400 Hz, high-pressure 

transmission results.  

          At this state, given the fact that the helical portion of the UOM structure possesses a 

markedly larger acoustic impedance in comparison with the open portion in the center, the 

incident wave will predominately travel through the central, open portion of the UOM. 

This behavior may be visually confirmed with the local velocity field stream shown in 

Figure 4.6(a), where both preceding and beyond the UOM structure, the velocity field 

exhibits minimal disturbance save for the change in cross-sectional area. In Figure 4.6(b), 

a similar case of a plane wave incident from the left side is demonstrated, but with a 

frequency of 460 Hz. Based on the theoretical and experimental results obtained above, it 

is expected that at this frequency, the wave transmitted through the helical portion of the 
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UOM will become out of phase with the transmitted wave traveling through the central, 

open portion of the metamaterial. The results obtained herein confirm this expectation, 

demonstrating that the destructive interference on the transmission side (right side) of the 

UOM has resulted in effectively eliminating wave transmission.  

 

Figure 4.6. (a) The absolute pressure value normalized by the incident wave magnitude resulting from 
a plane wave with a frequency of 400 Hz and an incident on the UOM from the left-hand side is shown 
using a color map. The local velocity stream is shown with the white lines. At this frequency, the 
transmission coefficient is about 0.85, hence, approximately 72% of the acoustic wave energy is 
transmitted. (b) The pressure and velocity profile are depicted with an incident plane wave of the same 
amplitude but a frequency of 460 Hz. At this frequency, due to Fano-like interference, the transmitted 
wave has a markedly decreased amplitude, and the wave has been silenced. In this case, the phase 
difference between the transmitted waves from the two regions of the metamaterial has resulted in a 
curvature of the wave velocity field and has diminished the far-field radiation. (c) Acoustic 
transmittance through UOM structures with different degrees of structure openness. Transmittance 
has been analytically derived using Green’s function method. Notably, UOM structures considered 
herein feature identical refractive index ratios in their transverse bilayer metamaterial model but have 
different impedance ratios. 

 

           Notably, the out of phase transmission through the two regions of the UOM may be 

further validated using the velocity profile shown in Figure 4.6(b) with white lines. It may 

be readily observed that the local acoustic velocities of the transmitted wave from the two 

regions of the UOM are in out-phase-condition, resulting in marked curvature of the 
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velocity stream and diminished far-field radiation. It should be mentioned that with the 

presence of the destructive interference due to Fano-like interference, the metamaterial 

structure mimics the case of pressure-release termination in which near-zero effective 

acoustic impedance results in a predominant reflection of the incident wave with Pi phase 

shift. 

           The UOM structure experimentally validated herein features a nearly 60% open 

area, which yields the capacity for both efficient ventilation in combination with high-

performance selective sound silencing. Importantly, the presented methodology based on 

the transverse bilayer metamaterial concept and employed to design the UOM structure 

does not impose any inherent limitation on the area fraction of the central, open region. As 

shown in Figure 4.2 (a), with an increase in the ratio between the acoustic impedance of 

two regions, silencing functionality will be achieved, although in a narrower band of 

frequency. Considering the fact that openness percentage, may be very well correlated with 

the acoustic impedance ratio, it is expected that even with very high openness percentage, 

silencing can be realized within the scope of the presented methodology. This assumption 

has been validated by analytically retrieving the acoustic transmittance through the UOM 

structure with different openness values, shown in Figure 4.6(c). It may be observed that 

even for UOM structures with a very high percentage of open area (approaching a nearly 

complete open area where openness approximates 1), the silencing functionality remains 

present with a resulting decrease in the silenced frequency bandwidth. 

Notably, in the present work, the structural elements of the proposed UOM have 

been considered acoustically rigid in both analytical and numerical approaches. The 



70 
	

	

rigidity assumption employed herein is supported by the fact that the ABS layers of the 

fabricated UOM structures result in a transmission loss in the targeted frequency range of 

a magnitude such that these layers may be safely considered as rigid. However, when 

targeting the silencing the very low frequency or when the UOM is employed as a building 

block of a larger element, such as a silencer wall, the incident acoustic wave may couple 

with the structural Eignemodes and different trend of behavior may be obtained. Therefore, 

in this cases, the acoustic-structure interaction needs to be considered and may not simply 

be omitted.  

In this Chapter of the thesis, a metamaterial-based design methodology for air-

permeable sound silencing is introduced. Firstly, inspired by the Fano-like interference 

phenomena, a transverse bilayer metamaterial concept is proposed from which destructive 

interference may be employed for acoustic silencing. Next, a UOM structure was designed 

accordingly and experimentally validated. The designed metamaterial possesses two 

distinguishable regions, the central, open portion, and the peripheral, helical portion, with 

a contrast in their acoustic properties. The central, open portion of the metamaterial 

provides a large degree of open area for air transport. Importantly, the design of the 

proposed metamaterial is inherently flexible, as discussed above. Therefore, based on the 

required degree of ventilation for a particular application, the open, central of the UOM 

metamaterial may readily be expanded to meet any ventilation requirement while 

maintaining acoustic wave silencing functionality. 

           The metamaterial-based methodology for the design of an air-permeable acoustic 

silencer presented herein provides an effective and versatile tool for the design of next-
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generation acoustic silencing devices. Utilizing this method, sub-wavelength and 

lightweight structures featuring high degrees of open area may be designed to silence 

specific frequency bands of unwanted sound, along with their higher modes. 
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CHAPTER 5   LOCALLY RESONANT ACOUSTIC METAMATERIAL: 

PROPOSED APPLICATIONS IN NDE AND MEDICAL ULTRASOUND 

For a wave of any kind traveling from one medium to another, the differences in the 

properties of the media determine whether the wave is reflected or transmitted. In the case 

of acoustic waves, the wave behavior at the interface between two media is dominated by 

the characteristic acoustic impedance. The characteristic acoustic impedance (Z) as an 

inherent property of the material, is defined as 𝑍 = 	𝜌𝑐 for an acoustical fluid and is solely 

a function of sound speed and density. When there exists a significant acoustic impedance 

mismatch between two media, the acoustic wave will be dominantly reflected at the 

interface, and when there exists an unremarkable mismatch, the dominant transmission will 

occur. Therefore, for instance, when designing a barrier to block the airborne sound, it is 

critical to design the barrier out of material with sufficiently distinct acoustic impedance 

with respect to air’s impedance to effectively mitigate the transmission. 

Moreover, ultrasound Non-Destructive evaluation (NDE) to locate the 

discontinuity within the material is only effective when the impedance of the inclusion is 

sufficiently distinct from the host material. Otherwise, for a discontinuity with 

unremarkable impedance mismatch, NDE performance is precluded given the reflection as 

a core element of NDE will be negligible. This fundamental aspect of wave behavior has 

set forth numerous limitation. For instance, in the case of medical ultrasound, currently, 

ultrasound-based imaging and treatment through the skull are significantly limited due to 

the large reflection of the ultrasound wave from the skull layer. Similarly, in the case of 

NDE, there exists a significant challenge for cement health monitoring in a borehole 
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environment due to the unremarkable impedance mismatch between borehole fluid and 

cement. This issue has essentially precluded the functionality of the detection methods such 

as pulse-echo in a downhole environment, especially in the case of low-density cement.  

The Chapter herein seeks to propose a potential metamaterial-based solution to 

address the issue discussed here. Particularly, in this Chapter, it is proposed to leverage a 

locally resonant class of acoustic metamaterials (LRAM) in order to address those issue. 

In the class of LRAM, despite the conventional acoustic material in which impedance is 

relatively constant and determined by constitutive material properties, significant variation 

in the effective impedance emerges by approaching to the resonance state. The variation in 

the acoustic impedance may be very well correlated with the Fano-like interference 

phenomena in which the interaction between continuum and resonating states may lead to 

the large shift in the effective impedance of the medium (Ghaffarivardavagh et al., 2019). 

In this chapter, initially, the origin of the resonance induced impedance variation in the 

class of LRAM is analytically demonstrated. Subsequently, the potential implementation 

of the LRAM in two different applications is proposed. 

5.1 Resonant Induced Impedance Variation in LRAM 

Locally resonant acoustic metamaterial refers to the class of acoustic material in which the 

resonating element is integrated within a non-resonating host medium. The concept of 

locally resonant acoustic metamaterials (LRAM) has been the subject of growing scientific 

and technological interest in recent years due to their potential applications as low-

frequency noise insulators (Mei et al., 2013), refractive lenses (He et al., 2008), and 

acoustic interferometers (Cervera et al., 2002). These composite materials exhibit spectral 
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gaps in a frequency range two orders of magnitude lower than those resulting from the 

Bragg scattering mechanism. The most common form of an LRAM is a composite material 

featuring resonating inclusions, such as spheres or bubbles, embedded within a continuum 

matrix material. The spherical inclusions in this type of metamaterial may have the simple 

form of single layer/material (Figure 5.1(a)) or possess more complicated shape such as 

the bilayer sphere or multilayer spheres (Figure 5.1(b)).  

 
 

Figure 5.1. Locally resonant acoustic metamaterial with hard inclusion in a soft matrix. (a). single 
layer spherical inclusion. (b) Bilayer spherical inclusion 

 
The effective acoustic properties of locally resonant acoustic metamaterial, in the low-

frequency or so-called Rayleigh regime, may be very well approximated by volume 

averaging the acoustic properties of the soft and hard elements comprising the composite. 

However, for the frequencies near the resonance frequencies of the inclusions, the effective 

acoustic properties of the entire composite exhibits strong nonlinear behavior. Similar 

behavior may be found in the bubbly liquid in outside of the Wood’s limit. The effective 

properties of the LRAM in the non-Rayleigh regime, such as the proximity of the 

inclusion’s resonance, may be analytically studied in the framework of multiple scattering 

theory. Notably, for the simple shape of the scatters such as sphere or cylinder, the closed 

form equations may be obtained. Moreover, by neglecting the shear wave propagation in 
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the continuum matrix material, the equations may be significantly simplified by omitting 

the shear wave coupling at the interface of matrix/inclusion.  

As a preliminary example, in order to investigate the acoustic behavior of LRAM 

in the non-Rayleigh regime, a simple case of metamaterial configuration is considered and 

studied. The metamaterial assumed herein, features single layer spherical inclusion with 

the radius of 1mm and density of 1500kg/m3, with the longitudinal and shear sound speed 

of 3000m/s and 1000m/s respectively. The matrix material is considered herein with the 

density of 2400 kg/m3 and with the sound speed of 4500m/s. It can be noted that, the matrix 

material is assumed to be an acoustical fluid which does not support the propagation of the 

shear wave. Finally, the volume ratio of the spherical inclusion in the continuum matrix is 

considered 8% and based on the work by Aristegui (Aristegui et al., 2006), the effective 

acoustic properties of the considered metamaterial, as an example of LRAM have been 

derived and shown in Figure 5.2. 

From the results shown in Figure 5.2, it may be inferred that the overall acoustic 

properties of LRAM have mostly yielded to the weighted average (mixture law) of the 

inclusion and matrix acoustic properties (shown with dashed lines) except in the vicinity 

of two frequencies labeled by f0 and f1. The parameters shown in Figure 5.2 are normalized 

with the associated values of the matrix material, and consequently, given the low volume 

ratio of the inclusions, it approximates the unity. From Figure 5.2(a), it may be observed 

that the effective stiffness of the considered LRAM is very close to the stiffness of the 

matrix material except near f0.  
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Figure 5.2. Effective acoustic properties of LRAM in the non-Rayleigh regime. (a) Normalized effective 
stiffness. (b)Normalized effective density. (c) Effective refractive index. (d)Normalized effective 
acoustic impedance. Normalized quantities have been normalized by the value of the matrix medium. 
f0 denotes the first resonance mode of the inclusion (monopole), and f1 is the second mode of the 
resonance of the inclusion (dipole). 

 

In the vicinity of the f0 which corresponds to the monopole resonance of the spherical 

inclusions (Breathing mode), the real part of stiffness first reduced to the value of zero and 

subsequently increased to about four times (4x) of the matrix material’s stiffness. 

Moreover, near the f0 resonance, large imaginary component has emerged in the effective 
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stiffness of LRAM. Similarly, in case of the effective density shown in Figure 5.2 (b), its 

magnitude approximates the value of the matrix material except in the vicinity of the f1 

which is associated with the dipole resonance of the spherical inclusions.  

The sudden change in the effective density and effective stiffness of the LRAM will 

yield to the variation in the effective acoustic impedance and wavenumber, as shown in 

Figure 5.2 (c) and (d). The effective impedance of LRAM will approximate the effective 

impedance of the matrix material except in the vicinity of both monopole and dipole 

resonances in which its real part is found to vary between near zero magnitudes to about 

three times of the value of the matrix material in the LRAM configuration considered 

herein. Additionally, the imaginary part of the effective impedance (reactance) contains a 

spike in these regions, which corresponds to the phase shift in this material. This sudden 

variation of the impedance in the class of LRAM represents the foundation of the idea 

proposed in this chapter, and the potential application of such abnormal behavior will be 

discussed herein.  

Prior to the discussion regards to utilization of this sudden impedance variation, it 

is critically important to consider the dispersive behavior of the LRAM in the vicinity of 

the resonances. From Figure 5.2(d) it may be observed that the effective wavenumber of 

LRAM, possesses a large imaginary component in the vicinity of the resonances that may 

lead to a significant attenuation in the propagating wave. In order to precisely investigate 

the disperse behavior of any particular LRAM, one needs to study its behavior 

comprehensively without imposing any simplifying assumptions. Thereby, the single unit 

cell of LRAM using COMSOL Multiphysics software is modeled, and its effective acoustic 
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impedance and wavenumber are retrieved and shown in Figure 5.3 without omitting the 

shear wave coupling between the inclusion and matrix interfaces.  

For our primary application, we considered LRAM featuring bilayer spherical 

particles with a hard-core (Steel: Young’s Modulus= 117 GPa, Shear Modulus= 45 GPa 

and density of 9000kg/m3) with the outer radius of 0.5mm and soft-shell (Silicon Rubber: 

Young’s Modulus=20 MPa, Shear Modulus = 7 GPa and density of 1300kg/m3) with the 

outer radius of 1mm. Moreover, it is considered herein that the bilayer spherical inclusions 

are embedded in the matrix material (Cement: Young’s Modulus=30 MPa, Shear Modulus 

= 13 GPa and density of 2400kg/m3) with the volume ratio of 4%. It should be noted that, 

bilayer configuration of the spherical inclusion is considered herein given the fact that in 

the case of single layer spheres, considering the limitation in the available material’s 

properties, the radius of the spherical particle remains as the single design factor to tune 

the resonance of the sphere within the desired frequency range.  

 

Figure 5.3. Retrieved effective impedance and wavenumber of the unit cell of LRAM. (a) Effective 
wave number with the unit cell of LRAM shown here. (b) Effective impedance of the LRAM. 
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Furthermore, increasing the size of the sphere may indeed alter the static mechanical 

properties of the matrix material such as mechanical stiffness. In contrast, bi-layer 

configuration (hard-core, Soft-shell) confers added degrees of freedom, enabling us to tune 

its resonance frequencies independent of the sphere’s radius, and subsequently realize the 

least change in the static properties of the matrix material.  

The effective impedance and wavenumber of the LRAM are shown in Figure 5.3. 

From the effective wavenumber shown in Figure 5.3(a), it may be observed that from 32 

KHz to the peak of wavenumber (approximately at 32.1 KHz), the imaginary part of the 

wavenumber remains negligible. Furthermore, in the narrow range of the frequency (32.1 

KHz to 32.6 KHz), the LRAM shows a dispersive behavior with the purely imaginary 

wavenumber. Eventually, after this band (+32.6 KHz), the imaginary part of the 

wavenumber is diminished, and the attenuation will be negligible. Therefore, one may infer 

that outside of the dispersive band (32.1KHz-32.6 KHz), the variation in the effective 

impedance in the range of (32KHz to 33 KHz) that spans from the value of near-zero to 

about 6 times of the matrix material’s impedance, may be leveraged and utilized with 

minimal attenuation in the propagating wave.  

Up to now, it is demonstrated that in the class of LRAM, such as the composite of 

spherical inclusions dispersed in the matrix material, there exists a large variation in the 

effective acoustic impedance, near the resonance of the inclusions. It is further discussed 

that this large impedance variation, emerges in the vicinity of both monopole and dipole 

resonances of the inclusion. Eventually, it is clarified that despite the dispersive behavior 

of the LRAM in the proximity of the resonances, effective impedance variation emerges 
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prior to the initiation of dispersive behavior in the medium. Next, two distinct cases will 

be discussed herein where this abnormal behavior in the class of LRAM may be leveraged. 

 
 

5.2 LRAM as a contrast agent 

 
Wellbore damage commonly results from poorly placed cement, and consequently, it is of 

utmost importance to monitor and image the cement condition in the downhole 

environment. The properly cemented well with defect-less cement ensures the hydraulic 

isolation between the reservoirs layers and shallow aquifers, which can guarantee 

production efficiency as well as safety. For cementing quality control, it is necessary to 

image the structures outside the casing, especially the interfaces between cement and fluid 

channel as well as between cement and formation.  

The ultrasonic-based imaging approaches are mainly based on the acoustic 

impedance contrast between borehole fluid and the material behind the casing. The acoustic 

impedance contrast in the interface between two media will generate the reflected pulse, 

which can be detected by the transducer for the imaging purpose. Thereby, when there is 

not a significant contrast between two mediums, the received signal for imaging will be 

very weak and consequently imaging in a downhole environment very challenging. To 

date, an acoustic-based approach for wellbore cement’s defect detection has suffered from 

unremarkable acoustic impedance contrast between cement and borehole fluid (Wang et 

al., 2016). This insignificant acoustic impedance contrast between cement and borehole 

fluid is more problematic in the case of low-density cement, which has drastically limited 

the defect detection capacity. Given the fact the acoustic impedance essentially 
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corresponds to the mechanical properties of the material, cement in here, altering the 

impedance of cement while maintaining its mechanical properties is challenging. Herein, 

it is intended to demonstrate how the concept of impedance variation in the class of LRAM 

may be leveraged to address this issue.  

Let us consider the case when bilayer spherical inclusions are mixed with the 

cement in its production stage with 4% volume ratio. This case is identical to the case 

considered and analyzed before, and its effective impedance is shown in Figure 5.3 (b). 

From Figure 5.3 (b) it may be readily observed that by addition of the bilayer spheres with 

only 4% volume ratio, the effective impedance of the whole mixture may reach to about 

6x of its static value in near the resonance. Consequently, by sweeping the signal in an only 

a narrow range of the frequency (32-33 KHz), the variation in the effective impedance may 

provide the sufficient degree of impedance mismatch required for NDE process.  

 

Figure 5.4. Effective impedance variation (real-part) of the cement/sphere composite with different 
volume ratios of the spherical inclusions. 
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Notably, the resonance frequency of the single spherical particles is the dominant factor in 

overall impedance variation, and the change in the spatial volume ratio has a minimal effect 

on the overall behavior. Shown in Figure 5.4, with alteration in the volume ratio of the 

spheres from 4% to 2%, the general trend of the impedance variation remains relatively 

unchanged save for a minor drop in the peak value. In order to validate the proposed 

concept, herein, a simplified case of ultrasound-based cement bond logging (shown in 

Figure 5.5) is modeled in which reflected ultrasound wave might be utilized to evaluate 

the bond between cement and the casing. The harmonic acoustic wave is generated from 

the left-hand side of the casing and reflection coefficient has been probed for different cases 

both with and without the presence of defect layer between cement and casing and the 

effect of the spherical inclusion has been studied.  

 

 
 

Figure 5.5. Illustration of the numerical model to investigate the functionality of the bilayer spherical 
inclusions as a contrast agent for cement bond logging. 

 

The resulted complex reflection is shown in Figure 5.6. In case of pure cement shown in 

Figure 5.6 (a) & (b), for the three cases of no defect, defect with the 500um thickness and 

1mm defect, there exists a small variation in reflection amplitude and negligible change in 
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Figure 5.6. Complex reflection in ultrasound-based cement bond logging. (a) & (b) cement. (c) & (d) 
Cement with bilayer spherical inclusion. (e) Signal variation ratio. 
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the reflection phase. Moreover, the reflection amplitude is relatively high, which 

corresponds to the reflection of the wave from the water/casing interface. By the addition 

of the spherical particles in the cement and as an LRAM, shown in Figure 5.6 (c) & (d), 

for the three cases of the defect condition, there exist a substantial alteration in the trend of 

both reflection amplitude and reflection phase. The percentage variation of the reflection 

amplitude with the presence of the defect with respect to the no defect condition is 

summarized in Figure 5.6 (e). 

From Figure 5.6 (e), it may be inferred that in the case of 500um thickness defect, 

the reflection amplitude changes less than 10 % in case of pure cement and about 50% in 

case of cement/particles respect to the reflection amplitude of the no-defect case. Similarly, 

for 1mm defect layer, the reflection amplitude change is about 20% in pure cement and 

may reach about 80% in cement/particle composite. 

The results obtained herein demonstrates that the addition of the spherical inclusion 

in the cement, even in a low volume ratio, may significantly enhance the detection capacity 

by functioning as a contrast agent. In this approach by designing the tuned spherical 

resonator and integrating it with the cement, and sweeping the ultrasound signal, a 

sufficient degree of impedance mismatch may be obtained for successful NDE. 

Implementation of this concept may open up new possibilities in NDE in the downhole 

environment. 

In Figure 5.6 (c), one may correctly point out that there exists an unexpected region 

where the reflection is near zero despite the presence of the casing and cement layer. This 

interesting phenomenon and its origin is the subject of the next section of this chapter and 
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will be discussed here in more detail. 

 

5.3 LRAM as an Anti-Reflection Layer 

 
Ultrasound represents a powerful tool in the armamentarium of modern healthcare that is 

widely applied across a spectrum of disease. Ultrasound is safe, lacking the ionizing 

radiation of CT or the need for the high-field magnetic environment of MRI, relatively 

inexpensive, an utmost consideration in healthcare, and both portable and highly flexible, 

allowing for its use in a variety of settings, both within and beyond the hospital. In addition 

to imaging, ultrasound is a burgeoning therapeutic modality as high-intensity focused 

ultrasound represents a rapidly evolving ablative therapy enabling the non-invasive 

treatment of a wide variety of conditions ranging from oncological to neurological and 

beyond. Furthermore, with the capacity to reversibly excite and inhibit neural activity, low-

intensity focused ultrasound, in its application to noninvasive neuromodulation, is 

garnering tremendous interest given is potential in neuroscience research and clinical 

neurological therapeutics. 

However, one of the fundamental and outstanding shortcomings of ultrasound is 

the limitation imposed by transmission through underlying layers of bone, which results in 

undesirable changes in the acoustic signal amplitude or phase. Specifically, underlying 

bone results in reflection, refraction, and attenuation of the ultrasound beam, thereby 

resulting in a marked loss of signal amplitude. Furthermore, the presence of underlying 

layers of bone results in phase aberrations in the propagation of the ultrasound beam due 

to variations in speed as a function of the path through the bone. Ultimately, the presence 
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of underlying layers of bone precludes, for example, ultrasound imaging of the brain due 

to the bony calvarium, increases the challenges of transthoracic imaging of the heart due 

to the overlying bony sternum and ribs, and imposes limitations on transcranial focused 

ultrasound. Of the aforementioned effects due to the underlying bone, reflection represents 

a predominant component limiting transmission through a bone (Fry et al., 1978; Pinton et 

al., 2012; Gerstenmayer et al., 2018).  

Throughout the last century, there has been an ongoing effort to reduce reflection 

through the application of anti-reflective coatings (ARCs) on reflective surfaces. The 

development of ARCs began with Rayleigh in 1879 (Rayleigh L., 1897) when he proposed 

that the reflectivity from the outer surface of an object could be reduced on the condition 

that the transition of the refractive indices between the object and its surrounding medium 

is small. Following this proposal by Rayleigh, various methods and strategies have been 

developed in order to lessen optical reflection, including single-, double- or multi-layer 

ARCs or structuring/patterning of the surface, among others (Rahman et al., 2015; Xi et 

al., 2007). Among the most well-known optical AR coatings are the quarter-wavelength 

coating in which zero-reflection and full transmission occur when the refractive index of 

the AR is equal to the geometrical mean of the substrate and ‘environmental’ medium 

refractive indices. 

In the case of acoustic waves, the wave behavior at the interface between two media 

is dominated by the characteristic acoustic impedance, which is related to a medium’s 

density and speed of sound. Analogous to the media’s refractive indices in the case of 

optical waves, the impedance mismatch between two domains determines the degrees of 
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acoustic reflection or transmission at their interface. The use of single or multilayer 

structures as ARCs has also been investigated in the case of acoustic waves (Martin BG., 

1992; Cheng et al., 1991; Kushibiki et al., 1981), however, due to the larger wavelengths 

of acoustic wave and the need for ARCs with comparable thickness, these conventional 

approaches tend to be impractical and, therefore, the history of acoustic ARCs is not as rich 

as their optical counterparts. 

Recently, acoustic metamaterial structures have been proposed to function as 

antireflection coatings. Bok et al. proposed a deep subwavelength metamaterial composed 

of a decorated membrane coupled to a cavity from which acoustic wave transmission from 

water-to-air can be increased by up to 2 orders of magnitude by mitigating reflection (Bok 

et al., 2018). Furthermore, and more relevant to the aims herein, Shen et al. recently 

proposed their concept of an acoustic metamaterial-based complementary layer designed 

to cancel the effect of an underlying aberrant layer (Shen et al., 2014). 

Despite the potential significance of the ultrasound-based applications of acoustic 

antireflection coating technology, there exists a fundamental shortcoming of the concepts 

presented to date that precludes their practical functionality to these applications. That 

shortcoming is the fact that the ARCs proposed to date, whether more conventional in 

nature or metamaterial-based, are designed to mitigate reflection from an object of uniform 

thickness and specific material properties. Consequently, any variation in the thickness or 

material inhomogeneity within the layer from which reflection is to be mitigated 

significantly affects the ARC’s performance. This drawback is significantly problematic in 

the proposed application of ultrasound in the setting of underlying layers of bone given the 
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lack of uniformity in both thickness and material properties of bone (calvarium, for 

example, in the case of transcranial ultrasound). 

In order to illustrate the necessary conditions for realizing a functional ARC, one 

may consider the simple case of a single-layer coating applied to an underlying aberrating 

layer (Figure 5.7). An ideal ARC design will result in the significantly enhanced 

transmission of an acoustic wave through the skull, which would not be the case in the 

absence of the ARC, given the large impedance mismatch between water (or soft tissue) 

and skull. By initially deriving the transfer matrix for both the ARC and the underlying 

skull and assuming the propagation of the plane wave, one may derive the necessary 

condition for zero reflection and enhanced transmission as follows: 

 

Figure 5.7. Application of the acoustic antireflection coating (ARC) on the skull 
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When the transmission amplitude may be derived as: 
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Where 1t  and 2t  are the thickness of the ARC and skull layer shown in Figure 5.7. 1k  is 

the wavenumber in ARC and 2k  is the wavenumber associated with the skull layer. 1Z , 

2Z  and wZ  denotes the characteristic acoustic impedance of ARC, skull, and water, 

respectively.  

From the Equation above, one may readily infer that for given values of layer 

thickness and certain material properties, by optimizing the nonlinear Equation, the proper 

values of 1Z  and 1t  may be found in which amplitude ofψ approximates 2, consequently, 

zero reflection and significantly enhanced transmission may be achieved. However, as 

discussed above, in order to ensure the practical implementation of an acoustic ARC design 

methodology, it is of utmost importance to maintain ARC performance under variations in 

the aberrating layer’s (bone in this example) thickness and material properties. Herein, in 

order to address this fundamental challenge, we propose to develop a nonlinear acoustic 

metamaterial coating (nAMC). 

The underlying concept enabling the nAMC design entails the consideration of the 

reverse of the design path. That is, as opposed to directly deriving the appropriate value of 

the ARC’s impedance ( 1Z  ) from the Equation above, a coating layer featuring a large 

range in effective acoustic impedance ( 1Z  ) with variations in frequency will be developed.  

Considering the layer of nAMC composed of the matrix material with embedded spherical 

resonators, it has been shown before that for such LRAM, there exists a large impedance 

variation in the vicinity of the spherical inclusion resonances. Furthermore, as it is shown 
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in Figure 5.2(a), the effective stiffness remains unchanged in the vicinity of the dipole 

resonance (f1). Consequently, one may derive that: 

 
1 1k Z

M
ω=   (5.3) 

 
Where M is the stiffness of the matrix material. The presence of such a linear relationship 

between effective impedance and effective wavenumber may be further seen in Figure 

5.3. Employing equation (5.3), equation (5.1) may be written in the form of: 

 

2 1
1 1 2 2 1 1 2 2

1 2

1 2
1 1 2 2 1 1 2 2

1 2

2cos( )cos( ) ( )sin( )sin( )

( )sin( )cos( ) ( )cos( )sin( )w w

w w

Z ZZ t k t Z t k t
M Z Z M

Z ZZ Zj Z t k t Z t k t
Z Z M Z Z M

ω ωψ

ω ω

= − + +

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦

  (5.4) 

 

As mentioned before, the condition for the full transmission may be achieved when the 

function ψ reaches its global minimum, and its amplitude at the global minimum 

approximates 2. For a given layer of skull with arbitrary thickness and impedance, from 

equation (5.4) one may conclude that for the designed layer of nAMC with the thickness 

of 1t  and stiffness of M, by sweeping the signal in the narrow range of the frequency 

(assuming constant ω), the only remained variable is 1Z  , and it is very likely that the 

equation (5.5) will be satisfied once the value of 1Z  varies from the zero to the substantial 

value.  

 
1

0
Z
ψ∂ =

∂
  (5.5) 
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The large variation in 1Z may likely satisfy the equation (5.5) in multiple values, and 

consequently, the local minimum and maximum of the transmission will emerge in the 

narrow band of the frequency regardless of the impedance and thickness of the aberrant 

layer. Such behavior may be very well observed in Figure 5.6 (c) in which both full 

reflection and negligible reflection have emerged in the narrow range of the frequency. 

This methodology for the design of the nAMC leveraging the concept of LRAM will enable 

one to realize enhanced transmission from the reflective layer without constraining the 

impedance and thickness of the reflective layer to some exact values. In fact, with properly 

designed nAMC one may obtain the large transmission through the layer of bone even in 

case of variation in thickness and effective impedance of bony layer. 

Notably, considering that within the context of the presented methodology for the 

design of nAMC, the local minimum and maximum of the ψ  will emerge in the narrow 

range of the frequency, the values of the nAMC thickness ( 1t ) and stiffness (M) need to be 

optimized based on the expected value and variation in the aberrant layer’s thickness and 

impedances. Otherwise, on the local minimums of ψ , its amplitude will not approximate 

the value of 2, and consequently, only the incremental improvement in the transmission 

may be achieved rather than the full transmission. Shown in Figure 5.8, the layer of non-

optimized nAMC has been employed to increase the transmission through the skull. It may 

be observed by leveraging the nAMC, the transmission through the layer of the skull has 

increased from less than 0.1 to about 0.27.   
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Figure 5.8. Application of the nAMC to realize enhanced transmission through the skull. 

 

The three-time increase (3x) in the transmitted signal to the brain and consequently, 3x 

increase in the reflected signal from the brain, results in about 9x enhancement in the signal 

utilized for brain imaging. Notably, with the optimization of the nAMC properties, one 

may achieve markedly better results that may potentially enable the practical realization of 

the ultrasound brain imaging.   
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CHAPTER 6 CONCLUSION  

 
Metamaterial and metasurfaces represent potential tools for modulation of the acoustic 

wave. Leveraging these novel structures and methodology, one may address the 

longstanding acoustical challenges present today. In this dissertation, several aspects of 

metamaterial-based acoustic wave manipulation have been studied.  

In the dissertation herein, initially, the horn-like space coiling metamaterial has 

been introduced that enabled us to simultaneously modulate transmission phase and 

amplitude. The addition of amplitude modulation to phase modulation may lead to marked 

simplification of the wavefront modulation leveraging phase-conjugate method. Moreover, 

the added degree of freedom will enhance the capacity to precisely shape the wavefront 

(Ghaffarivardavagh et al., 2018).  

Furthermore, the concept of the double decorated membrane is introduced, which 

represent a promising pathway for real-time modulation of the transmission phase with 

minimal amplitude variation. In this thesis, in addition to the numerical validation of the 

theory, the double decorated membrane structure has been initially tested experimentally, 

and the challenges with regard to its practical realization are discussed (Ghaffarivardavagh 

et al., 2017). Notably, in Appendix E, the novel experimental method, namely Ultimate 

Wave Decomposition (UWD) is presented for measuring the precise transmission and 

reflection through material/metamaterial (Ghaffarivardavagh et al., 2019). In these two 

chapters of this dissertation, drawbacks associated with current metasurface-based 

wavefront modulation are addressed by firstly, the addition of amplitude modulation to the 
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phase modulation and secondly, proposing the pathway toward real-time phase 

modulation. 

In chapter 4 and 5 of this dissertation, the metamaterial-based approaches have been 

pursued to alter the transmission/reflection amplitude profile. Elaborately, the concept of 

ultra-open metamaterial silencer has been introduced in which leveraging Fano-like 

interference, the silencing functionality has been realized while marinating efficient 

ventilation. The concept proposed herein may be readily applied to several distinct 

applications ranging from noise reduction in Fan and HVAC to cavity noise suppression in 

the automobile industry (Ghaffarivardavagh et al., 2019). Eventually, in chapter 5 of this 

dissertation, the abnormal behavior in a locally resonant class of acoustic metamaterial has 

been elaborated, and its potentiation application in two distinct cases have been proposed. 

This dissertation is devoted to better leverage and utilize the metasurface and 

metamaterials science to bridge the gap for real-world implementation of these novel 

structures.  
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APPENDIX 

A.  Transfer Matrix Method (TMM) to Derive the Complex Transmission 

In this section, the transmission through the space-coiling structure has been derived 

analytically, considering the complex internal geometry (Figure A. 1(a)). To this end, the 

transfer matrix method has been utilized to extract the governing relationship and correlate 

input pressure and velocity to the output condition. Considering a single coil of a unit cell 

(Figure A. 1(b)) of the space-coiling metamaterial, one may derive the propagation tensor 

that relates the output condition to the input condition, which can be written in the form of: 

 [ ]2 1
1

2 1

 
P P

M
U U
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (A.1) 

 

Eventually, total transmission through the space-coiling structure (Figure I.1a) may be 

derived as below: 

 [ ] [ ][ ]out in
2 1

out in

.N

P P
M M M

U U
⎡ ⎤ ⎡ ⎤

= …⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

  (A.2) 

 
Please note that for conventional space-coiling metamaterials in which the channel width 

is uniform throughout the unit cell, all propagation tensors (Ms) would be identical, and 

this would represent a unique case. However, in the case of the gradient space-coiling 

metamaterials introduced in Chapter 2, the use of the transfer matrix method remains 

applicable, though due to the change in geometry from the coil to coil, the propagation 

tensor would not necessarily remain identical. 

In order to determine the propagation tensor in a single coil, the region has been divided 

into the three sections shown in Figure A. 1(b).  
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Figure A.1. Illustration of the internal structure of space–coiling unit cell. (a) Space-coiling structure 
associated propagation tensor for each section. (b) Single coil structure, which has been divided into 
three sections: section A is the input port, section B is the main channel, and section C is the output 
port. 

Pressure and velocity in each region can be written using modal superposition in the 

rectangular waveguide, however, since regions A and C have relatively small dimensions 

when compared to the wavelength, only the principal mode is considered herein for these 

two regions. Pressure and velocity in these regions are as follow: 

 

( ) ( )

( ) ( )

1 2

1 2

e e
A :  1          e e

ik y wiky

ik y wiky

P y A A

U y A A
cρ

− −

− −

⎧ = +
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   (A. 3a, A. 3b) 
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  (A. 4a, A. 4b) 
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  (A. 5a, A. 5b) 

 
In which wave number is defined as 𝑘 = 7

m
 and the nth eigenmode and wavenumber in 

region B can be derived as  𝑎o =
op
=
		, 		𝑘o = 𝑘< − 𝑎o<  . The geometrical parameters a, w 

and d1 are shown in Figure A. 1(b). Given the above equations, one may conclude that the 

problem of deriving Equation (A.1) for a single coil can be reduced to deriving the 

relationship between the coefficient of A and C in which A1 and C1 are forward traveling 

wave coefficients and A2 and C2 are backward traveling wave coefficients as follows: 

 

 [ ]1 1
1

2 2

 
C A

T
C A
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (A.6) 

 
 
Consequently, the relation between input and output condition for the whole structure may 

be derived as below. 

 [ ] [ ][ ]1 1
2 1

2 2

.N

K A
T T T

K A
⎡ ⎤ ⎡ ⎤

= …⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (A.7) 

 

In which the forward traveling wave coefficient K1 and the backward traveling wave 

coefficient K2 corresponding to the output port of the final coil shown in Figure A. 1(a). 

Next, pressure and velocity boundary conditions at y = w and y = d1+w have been 

applied. 

 



98 
	

	

At: 𝒚 = 𝒘	, 		𝒂 − 𝒅𝟏 ≤ 𝒙 ≤ 𝒂	 

 ( )  1
1 2 1 2

0

e cos e nik dikw
n n n

n

A A a x B B
∞

=
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At: 𝒚 = 𝒘 + 𝒅𝟏	, 		𝟎 ≤ 𝒙 ≤ 𝒅𝟐  
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In order to ensure that Equations (A.8) to (A.11) are a solvable set of equations to relate 

the coefficients in Region A (A1 and A2) and Region C (C1 and C2), one needs to relieve 

the x-dependency, along with deriving the nth mode’s coefficient in Region B. Thus, the 

problem has been simplified by first multiplying the velocity boundary conditions 

(Equation (A.9) and Equations (A.11)) by the factor of cos 𝑎Z𝑥 	 and taking the 

normalized line integral with respect to x from both sides of Equations (A.8) to (A.11). 

Given the orthogonally of the trigonometric functions, the summation terms in the right-

hand-side of Equation (A.9) and Equation (A.11) will vanish, save for the case when m = 

n. Eventually, the simplified form of the boundary conditions yields the following: 

At: 𝒚 = 𝒘 
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At: 𝒚 = 𝒘 + 𝒅𝟏	  
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In which Neumann Factor, 𝜖o ,is defined as 𝜖o = 2 for 𝑛 ≠ 0 and has the value of 𝜖o = 1 

if	𝑛 = 0. 

Using Equation (A.13) and Equation (A.15), 𝐵;o	&	𝐵<o	can be derived in terms of 

A’s and C’s coefficients and, consequently, by substituting in Equation (A.12) and 

Equation (A.14), the relationship between A’s and C’s coefficients are thusly determined: 
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In which	𝛾;,	𝛾<,	𝛾�and 	𝛾� are derived as follows: 
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In Equations A.21 to A.2 4, 𝜑o;			and 𝜑o<			are defined as follows: 
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Employing Equations (A.16) to (A.26), the propagation tensor for a single coil of a unit 

cell (Equation A.6) can be calculated. By taking into account the effects of all coils in the 

space-coiling metamaterial, the propagation tensor correlating the last output port (output 

of the entire unit cell) to the coefficients of the first input port (input of the entire unit cell) 

can be derived using Equation (A.7). Finally, employing the resultant propagation tensor 

of the space-coiling structure, the transmission coefficient may be calculated as follow.  

Pressure and velocity boundary condition at y = 0 (Figure A.2): 

 
I R 1 2e

ikwP P A A+ = +   (A.27) 

 in
I R 1 2( e )ikwdP P A A

a
− = −   (A.28) 

 
Pressure and velocity boundary condition at y = t:  

 
T 1 2eikwP K K= +   (A.29) 

 out
T 1 2( e )ikwdP K K

a
= −   (A.30) 

 
Additionally, using the propagation tensor derived for the space-coiling structure, K’s 

coefficient can be defined in terms of A’s coefficients. 

 1 11 12 1
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Using Equations (A.27) to (A.31), the complex transmission (𝑇 = ��

��
) and reflection (𝑅 =

��
��

) coefficient are determined. 
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Figure A.2. Transmission and Reflection from Space-coiling metamaterial 
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In which ƞ is defined as: 
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In order to validate the analytical solution, the solution result has been compared with a 

numerical model of a single unit cell constructed using COMSOL Multiphysics software. 

The unit cell modeled herein, with background medium of air, features a channel width of 

d = 2cm and is composed of 20 coils (N = 20) with overall dimensions of 55 x 8.5 cm. 
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Figure A.3. Comparison between analytical and numerical transmission and reflection. (a) 
Transmission and reflection amplitude. (b) Transmission and reflection phase. The analytical-labeled 
legend refers to the results of the TMM methods and Numerical-labeled legends corresponds to the 
results obtained with simulation (COMSOL)  
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By sweeping the frequency, the resultant transmission and reflection amplitude and phase 

have been obtained using both numerical (COMSOL), and analytical models (TMM) 

discussed herein, with the results shown in Figure A.3. The results achieved using both 

the numerical and analytical approaches are in a high degree of agreement, thereby 

validating the applicability of the presented model for studying the space-coiling 

metamaterial behavior. 
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B. Effect of Unit cells’ width on modulation efficiency  

While phase-based wavefront modulation relies on an optimization procedure to tune the 

transmitted phase in each unit cell, full wave modulation (phase-amplitude) benefits from 

the use of the phase-conjugation method to tune the phase and amplitude of transmission 

at each unit cell. In full wave modulation, the complex transmission is obtained by 

discretizing the conjugated wave profile along the metasurface based on the width and the 

number of present unit cells. Consequently, for a given length of the metasurface, the unit 

cell’s width is a critical design parameter, which can directly affect the conversion output. 

Smaller unit cell’s widths provide a finer discretization and, consequently, near-ideal 

wavefront shaping capability. As an example, the sound focusing case discussed in this 

work has been considered, and the focusing performance for different values of unit cell 

width have been analyzed to yield insight into the effect of this key parameter. The sound 

focusing profile is shown in Figure B.1 for four different values of unit cell width ranging 

from λ to λ/6 which clearly demonstrates that the unit cell’s width plays a critical role in 

successful full wave modulation. 

 

Figure B.1. Sound focusing lateral profile for unit cells of different widths. 
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C. Phase Modulation versus Phase/Amplitude modulation 

While phase modulation represents a highly effective method for wavefront shaping, the 

additional degree of freedom afforded by full wave modulation (phase-amplitude) may 

yield improved performance and capability. As an illustrative example, in the case of 

acoustic beam splitting into π/12 and - π/12 directions, both phase modulation and phase-

amplitude modulation have been considered. In both cases, a metasurface with a length of 

5λ and composed of 30 unit cells has been assumed (vertical black line on the left side of 

Figures C.1 (a) and C.1 (b). In the case of phase modulation, given the desired directions 

of the split beams, the ideal phase at each unit cell has been obtained using the generalized 

Snell’s law. Considering unity transmission amplitude along with the transmission phase 

found from the generalized Snell’s law at each unit cell, the resulting waveform, 

representing the ideal case for phase modulation only, is shown in Figure C.1 (a). For 

comparison, a similar metasurface has been considered for phase-amplitude modulation, 

in which using the phase-conjugation method, the ideal transmission phase and amplitude 

at each unit cell have been assigned with the resulting wavefront shown in Figure C.1 (b). 

Comparing the results shown here, it may be readily observed that a markedly improved 

pressure uniformity is achieved using phase-amplitude modulation when compared to 

phase modulation. Using phase-amplitude modulation, a clear pressure resolution between 

the acoustic beams may be achieved, while such a clear pressure resolution has not been 

obtained with phase modulation. 
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Figure C.1. Acoustic beam splitting. (a) Phase modulation. (b) Phase-amplitude modulation. 
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D.  Unit cell’s geometry and predicted complex transmission 

Table D.1. Geometrical features and associated transmission in metasurface unit cells 

 
Unit 
cell 

 
Metasurface 

function      

 
Geometrical parameters 

Resultant transmission coefficient 
T-Reversal Numerical Analytical 

N W 
(λ) 

d1 
(λ) CR Amp Phase 

(degree) Amp Phase 
(degree) Amp Phase 

(degree) 

 
1 

Focusing 2 0.124 0.064 1 0.72 107 0.68 108 0.75 114 
Beam-splitter 10 0.026 0.009 1.25 0.37 -116 0.36 -115 0.39 -115 

 
2 

Focusing 5 0.028 0.041 1.25 0.72 60 0.77 61 0.76 60 
Beam-splitter 16 0.013 0.004 1.18 0.32 -124 0.31 -124 0.34 -124 

 
3 

Focusing 6 0.022 0.034 1.23 0.73 12 0.75 12 0.77 12 
Beam-splitter 9 0.038 0.003 1.48 0.31 -145 0.31 -146 0.34 -148 

 
4 

Focusing 13 0.004 0.025 1.05 0.79 -31 0.8 -30 0.82 -34 
Beam-splitter 9 0.035 0.004 1.43 0.39 -168 0.38 -166 0.41 -171 

 
5 

Focusing 8 0.004 0.058 1 0.79 -68 0.72 -65 0.72 -74 
Beam-splitter 16 0.010 0.007 1.15 0.54 -178 0.58 -178 0.59 179 

 
6 

Focusing 9 0.003 0.050 1.01 0.71 -108 0.72 -108 0.71 -116 
Beam-splitter 10 0.016 0.017 1.18 0.70 180 0.71 -178 0.74 177 

 
7 

Focusing 9 0.013 0.020 1.16 0.73 -153 0.72 -157 0.71 -156 
Beam-splitter 10 0.015 0.023 1.13 0.81 -179 0.82 -175 0.84 177 

 
8 

Focusing 9 0.015 0.026 1.1 0.87 173 0.86 169 0.89 180 
Beam-splitter 10 0.015 0.023 1.13 0.83 -177 0.82 -175 0.84 177 

 
9 

Focusing 2 0.103 0.086 1.2 0.91 149 0.93 150 0.96 153 
Beam-splitter 10 0.016 0.017 1.18 0.73 -176 0.71 -176 0.74 179 

 
10 

Focusing 3 0.064 0.064 1.25 0.83 124 0.86 124 0.89 126 
Beam-splitter 16 0.010 0.006 1.18 0.52  180 0.50  180 0.51 180 

 
11 

 

Focusing 4 0.042 0.051 1.24 0.78 94 0.8 92 0.81 92 

Beam-splitter 16 0.010 0.004 1.23 0.27 156 0.34 156 0.35 161 

 
12 

Focusing 5 0.023 0.058 1.1 0.85 68 0.87 69 0.84 67 
Beam-splitter 14 0.013 0.007 1.18 0.28 77 0.28 78 0.28 81 

 
13 

Focusing 6 0.007 0.073 1.01 0.92 56 0.95 56 0.91 49 
Beam-splitter 14 0.006 0.020 1.08 0.57 52 0.60 50 0.62 52 

 
14 

Focusing 6 0.009 0.067 1.04 0.92 52 0.94 53 0.91 48 
Beam-splitter 8 0.012 0.058 1.00 0.83 47 0.79 46 0.84 47 

 
15 

Focusing 5 0.028 0.067 1 0.9 51 0.93 50 0.86 54 
Beam-splitter 2 0.001 0.117 1.40 0.97 45 1.00 48 1.00 49 
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E.  Impedance Tube for Measuring Transmittance 

Impedance Tube method represents one of the most classical methods to retrieve the 

acoustic properties of the different materials. In this method, the sample of the material is 

confined within an impedance tube containing the acoustic source on one end and arbitrary 

termination on another end. Subsequently, by probing the acoustic pressure in different 

locations of the impedance tube (both before and after the sample under test), acoustic 

properties may be retrieved by calculating the transmission and reflection of the sample. 

 Throughout the history, several approaches and methodology have been proposed 

to precisely calculate the transmission and reflection coefficient of the sample from which 

the equivalent acoustic properties of the sample such as Impedance and refractive index 

may be derived. Generally, the proposed method of measuring reflection and transmission 

using impedance tube can be divided into two main approaches, transfer matrix method 

(TM) and wave decomposition method (WD).  

In the TM method, the sample material under test is considered as a transfer layer 

for which the transfer matrix relating the input pressure and velocity to the output pressure 

velocity may be obtained. Employing the resulted transfer matrix, which is independent of 

the tube termination condition, the transmission and reflection coefficient may be derived. 

The most notable TM method is the work by Bolton (Song et al., 2000; Olivieri et al., 2006) 

in which firstly, at 2000, the one-load method (One type of termination) for a symmetrical 

sample and later at 2006, the two-load method for asymmetric material were introduced. 

The TM methods proposed by Bolton, which were later adopted as ASTM standards, have 

shown to yield to the accurate and precise reflection and transmission coefficient results. 



110 
	

	

In the WD Methods, the efforts have been made to decompose the wave field 

(incoming and outgoing wave) both on upstream (Loudspeaker-sample) and downstream 

(sample-termination) of the impedance tube. Subsequently, the transmission and reflection 

coefficient of the sample may be obtained by the ratio of the transmitted and reflected wave 

to the incident wave, respectively. In 1977, Seybert (Seybert et al., 1977), proposed a 

method in which two microphones on the upstream and one microphone on the downstream 

were flush-mounted and the tube was terminated by the anechoic termination. Based on 

this configuration, he proposed a formulation to decompose the incident and reflected wave 

on the upstream using two microphones and derived the transmitted wave using the third 

microphone on the downstream. Despite the simplicity of the proposed WD method by 

Seybert, the challenge associated with the realization of the ideal anechoic termination, 

specifically in the low-frequency regime, has made this method not practical. To overcome 

this limitation, Chung and Blaser (Chung et al., 1980), proposed the implementation of two 

microphone one the downstream tube to incorporate the reflection of the wave from the 

non-ideal anechoic termination. However, in their proposed method, the effect of the 

multiple reflections in the impedance tube was neglected and subsequently failed to obtain 

the accurate values of the transmission and reflection coefficients. In 2011, Ho (Ho et al., 

2005), proposed an improved WD method based on the four-microphone configuration that 

incorporates the effect of multi-reflection in both upstream and downstream tube. In the 

method proposed by Ho, two main assumptions have been taken in deriving the 

formulation; first, although the effect of multi-reflection has been considered in the 

downstream tube, anechoic/semi-anechoic termination was considered in the impedance 
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tube setup. This assumption has yielded to the small value of reflection from the 

termination in downstream and consequently has made the coupling between downstream 

and upstream tube negligible. Hence, the multi-reflection in the method proposed by Ho 

has been considered in upstream and downstream independent and isolated. Second, Ho 

only assumed the symmetrical sample in which the reflection coefficients of two sides of 

the sample were identical. Recently, Followed and based on the Ho’s work, Salissou and 

Panneton (Salissou et al., 2009), present the general WD method arguing that even in the 

case of symmetrical sample, the reflection from two sides of the sample are not identical 

given the effect of the backed tube on the overall reflection. Subsequently, they present the 

two-load modification of Ho’s method without limiting the method to the symmetrical 

sample.  

The method presented by the Salissou may be criticized in its logic from two 

aspects. First, as correctly explained by Salissou, the reflection of each side of the sample 

is not only related to the sample. For instance, for the reflection coefficient considered from 

the sample’s surface in the upstream side, the configuration of the downstream tube will 

also influence this reflection coefficient. Consequently, this method essentially fails to 

derive the reflection coefficient of the sample that only reflects the sample’s acoustic 

property. Noteworthy, this issue is linked with consideration of the multi-reflection in 

upstream and downstream decoupled from each other. Moreover, due to implementation 

of two type of load, and consequently deviation from semi-anechoic termination condition 

in Ho’s configuration, the logic of the Ho’s method to neglect the higher order cross-

coupling between upstream and downstream tube is no longer valid and needs to be 



112 
	

	

incorporated. In fact, in Salissou’s method, the accuracy of the resulted transmission and 

reflection coefficient highly depends on the pair of the terminations used for the 

experiment. From this brief overview of the proposed impedance tube-based setup, it may 

be inferred that for not fully anechoic termination and not perfectly symmetrical sample, 

the only method that yields to the accurate transmission and reflection are TM-based 

method proposed by Bolton. For the general and practical cases, there is no accurate WD-

based method that yields comparable precision of the TM method.  

Herein, we have presented an Ultimate Wave Decomposition (UWD) method that 

regardless of the termination type, provides the same level of precision in the resulted 

transmission and reflection coefficient as Bolton’s method for both symmetric and 

asymmetric sample. In UWD method, multi-reflection and infinite order of the cross-

coupling between upstream and downstream tube are considered from which, first, the 

reflection coefficient solely associated with the sample under test and secondly, an accurate 

result regardless of the termination type may be obtained. The detail of the derivation and 

formulation of the UWD method will be discussed here.  

 

Figure E.1. Impedance tube setup with 4-microphones configuration 
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Let us initially derive the acoustic waves propagating in the positive x-direction in the 

upstream tube (Figure E.1). Assuming the load speaker is generating the signal with the 

amplitude of A, the wave field in the upstream propagating in the positive x-direction 

may be written as: 

Zero-order wave: 

 0P A=   (E.1) 

1st-order wave: 

 2
1 1 2

0
( )

n
n

s s b b
n

P Ar r At r r r r
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=

= + ∑   (E.2) 

In which r1, r2, rs, rb, and t are reflection coefficient of the sample in the upstream, reflection 

coefficient of the sample in the downstream, reflection from the speaker, reflection from 

the end termination and transmission coefficient of the sample, respectively. Knowing that 

rs, rb are both smaller than the unity, equation (E.2) may be simplified to: 
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Similarly, 2nd-order wave may be obtained as: 
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Subsequently, the nth-order wave field may be written as: 
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The total wave in upstream tube propagating in the positive x-direction may be obtained 

as: 

 2
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Following the same approach, the wave field in the upstream propagating in the negative 

x-direction may be derived as: 

Zero-order wave: 
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1st-order wave: 
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And the nth-order wavefield may be written as: 
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Eventually, the total wave in upstream tube propagating in the negative x-direction may 

be obtained as: 
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Consequently, the total acoustic field in the upstream tube following j tω  convention 

resulted as: 
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Following the same approaches, the total wave field in the downstream may be derived 

as: 
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  (E.12) 

 
 

Reflection and Transmission in symmetrical Material 

In this section, the material under the test is considered symmetric. In other word, r1 and r2 

are identical. From the formulation discussed here and utilizing Transfer function 

approaches between the microphones, one may precisely calculate the reflection and 

transmission regardless of the termination type. The transfer function between two 

microphones is defined as the ratio between their readout in the frequency domain and has 

been commonly employed before in the impedance tube setup. Herein, we have utilized 

the combination of H12, H32, and H43 transfer functions which are defined as: 

 .1 .3 .4
12 32 43

.2 .2 .3

; ;Mic Mic Mic
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From H43, it may be inferred that: 
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Moreover, from H12 and H32, it can be concluding that: 
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From equations (E.16) and (E.17), the only two unknowns, i.e., r and t may be derived as: 
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Where: 
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Notably, due to the symmetrical assumption for the material under test, r1 and r2 are 

simply represented as r in the above equations. 

Reflection and Transmission in asymmetrical Material 

In the asymmetrical materials, with an added unknown due to the difference in reflection 

coefficient of the sample from each side, two different type of terminations may be utilized 

to provide a sufficient number of the equations to calculate the unknowns. This approach 

has been commonly utilized before and referred to as the two-load method. Using the two-

load method and based on the UWD method discussed herein, transmission and reflection 

coefficients may be derived as below. Noteworthy, the star superscript denotes the 

parameters associated with the second type of termination. Similar to symmetrical material 

from 
43H  and 

43 *H , one may infer that: 
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The transmission coefficient is resulted as: 
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Where: 
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In which m and m* may be derived using equation (E.20) with H12 and H12* are being 

used respectively for m and m*. Eventually, reflection coefficients may be derived as: 
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From the methodology discussed herein, i. e., UWD method one may easily calculate the 

precise reflection and transmission coefficient regardless of the termination type used in 

the impedance tube setup. The symmetrical sample with just single termination and 

asymmetrical sample with two types of termination may be fully characterized in the 

presented methodology. Next, the performance of UWD method for both symmetrical and 

asymmetrical sample has been experimentally validated and compared with the available 

approaches. 

Experimental Validation for Symmetrical Sample using one-load Method 

 
In order to experimentally validate the performance of the UWD to characterize the 

symmetrical material, impedance tube setup has been implemented to measure the transfer 

functions. The symmetrical sample assumed herein is an orifice fabricated out of 3.2mm 

thickness aluminum sheet with the outer diameter of the 15cm and inner diameter of 2cm.  
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The fabricated orifice has been placed inside the impedance tube, and transfer functions 

H12, H32, and H43 have been measured in the range of 950Hz–1250 Hz. In this 

experiment, three different types of termination have been employed to investigate the 

effect of termination on the resulted transmission and reflection. The open-end termination 

refers to the case when the end of the impedance tube has been left open. For rigid 

termination, the impedance tube is terminated with a 3.2mm thickness aluminum sheet that 

has been used to mimics the rigid end. The semi-anechoic termination considered herein is 

the 5cm thickness absorbing foam backed by the aluminum sheet, and the results for each 

termination are shown in Figure E.2, E.3, and E.4. In these figures, results based on our 

method, i.e., UWD are shown with a solid red line. Results using the modified wave 

decomposition method (MWD) based on Ho’s work (Ho et al., 2005) are shown with a 

black dotted line. Moreover, the results based on the Transfer Matrix approach based on 

Bolton’s methods (Olivieri et al., 2006) are shown with a black dashed line. 

From the results shown in Figure E.2 to E.4, it may be observed that transmission 

amplitude may be precisely obtained using UWD and TM method regardless of the 

termination type. However, transmission amplitude derived using Ho’s method 

demonstrates instability and multiple deviations from the exact results. This variation is 

found more significant in the case of rigid termination and slightly improved in the case of 

semi-anechoic termination. Similarly, the transmission phase may be precisely calculated 

using the UWD and TM method but not with the MWD approach. In fact, we believe that 

the MWD method based on Ho’s work may possess a typo in the published work, which 

has led to this large discrepancy. 
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Figure E.2. Transmission and reflection amplitude and phase for the case of open termination. Results 
based on our method, i.e., UWD are shown with a solid red line. Results using the modified wave 
decomposition method (MWD) based on Ho’s work (Ho et al., 2005) are shown with a black dotted 
line. Moreover, the results based on the Transfer Matrix approach based on Bolton’s methods (Olivieri 
et al., 2006) are shown with a black dashed line. (a) Transmission amplitude. (b) Transmission phase. 
(c) Reflection amplitude. (d) Reflection phase. 
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Figure E.3. Transmission and reflection amplitude and phase for the case of rigid termination. Results 
based on our method, i.e., UWD are shown with a solid red line. Results using the modified wave 
decomposition method (MWD) based on Ho’s work (Ho et al., 2005) are shown with a black dotted 
line. Moreover, the results based on the Transfer Matrix approach based on Bolton’s methods (Olivieri 
et al., 2006) are shown with a black dashed line. (a) Transmission amplitude. (b) Transmission phase. 
(c) Reflection amplitude. (d) Reflection phase. 
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Figure E.4. Transmission and reflection amplitude and phase for the case of semi-anechoic 
termination. Results based on our method, i.e., UWD are shown with a solid red line. Results using the 
modified wave decomposition method (MWD) based on Ho’s work (Ho et al., 2005) are shown with a 
black dotted line. Moreover, the results based on the Transfer Matrix approach based on Bolton’s 
methods (Olivieri et al., 2006) are shown with a black dashed line. (a) Transmission amplitude. (b) 
Transmission phase. (c) Reflection amplitude. (d) Reflection phase. 

 

In the case of reflection coefficients, as discussed before, in the MWD method, the 

reflection coefficient may be affected by the backed tubing, and consequently, the resulted 

reflection is not physically meaningful. However, employing both UWD and TM method, 

reflection amplitude, and phase may be precisely obtained regardless of the termination 

type. Noteworthy, there exist a minor difference between the reflection phase derived using 
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UWD and TM method. This difference has resulted from the assigned value for the air 

density in the TM method. The value of the air density in the TM method is considered 

1.18 (kg/m3) that corresponds to the air density at room temperature (25-degrees C). With 

the change in the temperature, the air density may slightly change, and the UWD method 

that does not need the value of air density may provide a more accurate result.  From the 

results shown here, it may be observed that both UWD and TM method provides reliable 

methodologies to accurately retrieve the complex transmission and reflection for 

symmetrical material using one-load impedance tube setup. Moreover, it is pointed out 

herein that given the fact that the UWD method, known air density value is not required, it 

may lead to the more accurate results by the elimination of this potential source of error. 

Notably, the method presented by Salissou and Panneton (Salissou et al., 2009), based on 

the Ho’s work, requires two-load even for a case of symmetrical sample and consequently 

has not been discussed here. 

Experimental Validation for Asymmetrical Sample using two-load Method 

 
In order to experimentally validate the performance of UWD for the case of asymmetrical 

material, the combination of the orifice and macro-perforated plates (MPP) has been tested 

in the impedance tube setup. The asymmetrical sample herein is composed of the orifice 

placed in the vicinity of MPP with the 2cm spacing between them. The orifice is composed 

of the aluminum sheet with the thickness of the 3.2 mm with the outer diameter of the 15 

cm and inner diameter of 2 cm. The MPP is fabricated out of the aluminum sheet with a 

thickness of 3.2 mm containing holes with the diameter of 2mm, and the overall area 
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porosity of the MPP is 0.02. Due to the significant difference in the acoustic behavior of 

orifice and the proposed MPP, the proposed configuration herein, i.e. (orifice/gap/MPP) 

represents a highly asymmetric acoustical material. 

 The fabricated asymmetrical sample has been tested using impedance tube setup, 

and the associated transfer functions (H12, H32, H43) have been measured between 950-1250 

Hz. In this experiment, given the non-symmetrical nature of the sample under test, two 

different types of termination (i.e., two-load method) are required. Therefore, in order to 

characterize the material and investigate the effect of the termination, experiments have 

been performed using all three different types of the termination discussed before (open, 

rigid, and semi-anechoic). Subsequently, employing the results obtained associated with 

any pair of the three termination type, the transmission and reflections may be calculated. 

Shown in Figure E.5, transmission, and reflections phase and amplitude have been 

derived using open termination and rigid termination cases using three different methods. 

UWD, the method presented herein is shown with a solid red line. Generalized wave 

decomposition (GWD), based on the work by Salissou and Panneton (Salissou et al., 2009), 

is shown with a black dotted line and the TM method based on Bolton’s work (Olivieri et 

al., 2006) is shown with a black dashed line. Noteworthy Ho’s method is only limited to 

the symmetrical material, and it is not discussed here.  
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Figure E.5. Transmission and reflection for asymmetrical material. (a) Transmission amplitude. (b) 
Transmission phase. (c) Reflection (r1) amplitude. (d) Reflection (r1) phase. (e) Reflection (r2) 
amplitude. (f) Reflection (r2) phase. 
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From the result obtained herein and shown in Figure E.5, it may be inferred that all three 

methods investigated herein, i.e., UWD, GWD, and TM methods are capable of precisely 

retrieving the transmission phase and amplitude. With regards to the reflection coefficients, 

UWD and TM methods both yield precise results with only minimal difference in their 

resulted phase, which was pointed out to be associated with the uncertainty in the value of 

the air density required for TM method and has been discussed before. Furthermore, it may 

be concluded that the reflection coefficients obtained by the GWD method lack the 

precision of the UWD and TM method. For reflection coefficient (r1) given the fact that 

two different types of terminations are utilized, the effect of downstream tubing on the 

calculated reflection by the GWD method is mitigated but yet possesses a random deviation 

from the accurate value. In the case of r2, the resulted reflection amplitude is shown to be 

slightly drifted from the accurate value, but the reflection phase possesses a significant 

difference with the expected result. The deviation in amplitude and phase of r1 and r2 

calculated using GWD method is believed to be present due to neglecting the cross-

coupling between upstream and downstream tube in the methodology proposed by Salissou 

and Panneton (Salissou et al., 2009). From the results shown in Figure E.5, it may be 

concluded that the in the case of the asymmetrical sample, and employing two types of 

termination, both UWD and TM methods may be leveraged to retrieve the precise value of 

reflection and transmission. However, the GWD method is found applicable only to 

retrieve the transmission but not reflection.  

The results discussed herein and shown in Figure E.5, are derived using open-end 

and rigid-end terminations. In order to investigate the dependency of these methodologies 
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on the termination type, the maximum variation in transmission and reflection’s phase and 

amplitude have been calculated when different pair of termination is utilized. The results 

are shown in Figure E.6 for three different methods. 

 

Figure E.6. Maximum variation in the calculated amplitude and phase when a different pair of 
termination is employed. (a) Amplitude variation. (b) Phase variation. 

 

From Figure E.6, it may be observed that regardless of the set of terminations used for the 

two-load method, UWD and TM methods both offer the same level of precision in the 

resulted transmission and reflection phase and amplitude. GWD method is a reliable 

method for measuring the transmission, but the resulted reflection is more termination 

dependent and inaccurate.  
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