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ABSTRACT

Over the last decade, there have been multiple genome-wide association stud-

ies (GWASs) of human extreme longevity (EL). However, only a limited number

of genetic variants have been identified as significant, and only few of these vari-

ants have been replicated in independent studies. There are two possible reasons

for this limitation. First, genetic variants might have a varying effect on EL in dif-

ferent populations, and GWAS applied to a dataset as a whole may not pinpoint

such differences. Second, EL is a very rare trait in a population, and rare and

uncommon variants might be important factors in explaining its heritability but

GWASs have focused on the analyses of variants that are relatively common in the

population. In this dissertation, I present three projects that address these issues.

First, I propose PopCluster: an algorithm that automatically discovers subsets of

individuals in which the genetic effects of a variant are statistically different. Pop-

Cluster provides a simple framework to directly analyze genotype data without

prior knowledge of subjects ethnicities. Second, I investigate ethnic-specific effects

of APOE alleles on EL in Europeans. APOE is a well-studied gene with multiple

effects on aging and longevity. The gene has 3 alleles: e2, e3 and e4, whose fre-
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quencies vary by ethnicity. I identify several ethnically different clusters in which

the effect of the e2 and e4 alleles on EL changes substantially. Furthermore, I in-

vestigate the interaction of APOE alleles with the country of residence. Results of

this analysis suggest possible interaction of this gene with dietary habits or other

environmental factors. For the third project, I perform a GWAS of rare variants

and EL in a case-control dataset with median age of cases 104 years old. I analyze

4.5 million high-imputation quality rare SNPs imputed with HRC panel with mi-

nor allele frequency < 0.05. The analysis replicates all previous genome-wide level

significant SNPs and identifies a few more potential targets. Additionally, I use

serum protein data available for a subset of subjects and find significant pQTLs

which have potential functional role. Based on these analyses, both genetic and

environmental factors appear to be important factors for EL.
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1

CHAPTER 1

Introduction

In a genome-wide association study (GWAS) of human extreme longevity (EL)

with a case-control study design, cases are defined as subjects who have attained

a pre-defined age cutoff and controls are often general population controls. Using

this study design, the genetic effect is the odds ratio (OR) for extreme longevity

estimated typically via a logistic regression model, which compares the carriers

and non-carriers of a specific allele of a SNP. One of the main challenges in the

genetic studies of EL is lack of replication of many of the findings. There are

two possible explanations for this issue. First, genetic variants associated with

EL might be population-specific. Spurious association between phenotype and a

SNP could stem from ethnic-specific differences in allele frequency (Solovieff et al.,

2010). There are several strategies to control for population structure (Price et al.,

2006; Epstein et al., 2007; Kimmel et al., 2007; Wang, 2009). The most commonly

used approach is to adjust regression model by principal components (PCs) calcu-

lated from the genome-wide genotype data (Price et al., 2006). However, simply

adjusting by population structure does not identify important variants specific to

each group defined by different genetic compositions, which are shaped through

complex environmental influences and population dynamics (Giuliani et al., 2018).

A second reason for the lack of replication in genetic studies of EL could be that

most of the focus in the field has been on identifying common variants. EL is a rare

trait in the population; thus, less common variants might be important targets that

would explain the heritability and replicate better.

In this chapter I will first review what extreme longevity is and why studying

it is important. Next, I will outline the goal and projects of this dissertation.
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1.1 HUMAN EXTREME LONGEVITY

Aging and longevity have been popular topics of study because almost all of us

want to know how to live longer, and most importantly - healthier. The research

focus of our group is extreme longevity in humans. In this subsection I will review

what extreme longevity is and why it is important to study it.

Centenarians are known to delay or sometimes completely avoid some age-

related diseases 1 (Andersen et al., 2012). This phenomenon is known as compres-

sion of morbidity and was first proposed by James Fries in 1980 (Fries, 1980). In

short, the theory states that as the limit of life span is approached the proportion

of time we experience morbidity and disability gets smaller.

This hypothesis was subsequently investigated with from centenarians and su-

percentenarians in the New England Centenarian Study (NECS) (Evert et al., 2003).

An initial analysis showed that there are three profiles that centenarians fall into

with respect to the compression of morbidity hypothesis, specifically: survivors,

delayers, and escapers. In addition, the investigators demonstrated that survival

and delay of or escape from morbidity can be gender, environment and health-

choices dependent. Survivors were defined as individuals who were diagnosed

with at least one age-related disease before the age of 80. Delayers were defined

as individuals who were diagnosed with at least one age-related disease between

ages of 80 and 90. Escapers were defined as the “lucky ones” who escaped (were

not diagnosed with) any age-related diseases before 100 years old.

After the NECS collected the largest sample to-date of semi-supercentenarians

(age at death between 105 and 109 years) and supercentenarians (age at death 110

1Some of the age-related diseases: heart disease, diabetes, cancer, skin cancer, osteoporo-
sis, thyroid condition, hypertension, stroke, dementia, chronic obstructive pulmonary disease,
Alzheimer’s, Parkinson’s, etc.
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and older) in the world, Dr. Perls and co-authors observed compression of mor-

bidity among semi-supercentenarians and especially supercentenarians (Andersen

et al., 2012). This result subsequently has been replicated in the Long Life Family

Study (LLFS) (Sebastiani et al., 2013) and the Longevity Genes Project (LGP) (Is-

mail et al., 2016).

Another important aspect of extreme longevity is whether it is a hereditary or

an environmental trait. Investigators from the NECS have put together a large col-

lection of multigeneration pedigrees of centenarians (Sebastiani et al., 2016a) and

were able to demonstrate that exceptional longevity strongly clusters in families.

In addition, centenarians are more genetically homogenous compared to random

population controls (Sebastiani et al., 2016b).

Even though in the last few decades the proportion of centenarians has been

growing, the frequency of supercentenarians has remained the same. This may be

an indication that there are some rare genetic variations that contribute to extreme

longevity. GWASs of EL have shown that individual single nucleotide polymor-

phisms (SNPs) have relatively small effects on exceptional longevity (Sebastiani

et al., 2012). However, when several SNPs are combined into a genetic signature, a

stronger effect is achieved.

Centenarians and supercentenarians are a great, but complex, model for healthy

aging. There is still a lot to learn, and one must take genetics, environment and be-

havioral choices into account. Some interesting observations by Dr. Thomas Perls

in his book “Living to 100: Lessons in Living to your Maximum Potential at any

Age” is that healthy centenarians and supercentenarians manage stress very well

and are usually non-smokers (Thomas T. Perls, 1999).
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1.2 SUMMARY

The overall goal of my dissertation is to discover and analyze ethnic-specific and

rare genetic variants associated with EL. To achieve this goal, I first develop the

PopCluster algorithm that facilitates the discovery of genetic variants with ethnicity-

dependent effects on a phenotype. Second, I investigate varying effects of APOE

alleles on extreme longevity in various ethnicities. Third, I perform a GWAS of

rare variants of extreme longevity.

In the first part of my dissertation, I propose PopCluster: an algorithm to auto-

matically discover subsets of individuals in which the genetic effects of a variant

are statistically different (Gurinovich et al., 2019). Over the last decade, more di-

verse populations have been included in GWAS. If a genetic variant has a varying

effect on a phenotype in different populations, GWAS applied to a dataset as a

whole may not pinpoint such differences. It is especially important to be able to

identify population-specific effects of genetic variants in studies that would even-

tually lead to development of diagnostic tests or drug discovery. PopCluster pro-

vides a simple framework to directly analyze genotype data without prior knowl-

edge of subjects’ ethnicities. PopCluster combines logistic regression modeling,

principal component analysis, hierarchical clustering, and a recursive bottom-up

tree parsing procedure. The evaluation of PopCluster suggests that the algorithm

has a stable low false positive rate (∼4%) and high true positive rate (>80%) in

simulations with large differences in allele frequencies between cases and con-

trols. Application of PopCluster to data from genetic studies of longevity discovers

ethnicity-dependent heterogeneity in the association of rs3764814 (USP42) with the

phenotype. PopCluster was implemented using the R programming language (R

Core Team, 2018), PLINK (Chang et al., 2015; Purcell et al., 2007) and EIGENSOFT
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software (Price et al., 2006), and can be found at the following GitHub repository:

https://github.com/gurinovich/PopCluster with instructions on its installation

and usage.

In the second part of my dissertation, I investigate ethnic-specific effects of

APOE alleles on extreme longevity in Europeans. APOE is a well-studied gene

with multiple effects on aging and longevity. The gene has 3 alleles: e2, e3 and

e4, whose frequencies vary by ethnicity. While the e2 is associated with healthy

aging, the e4 allele has a deleterious effect and its prevalence among people with

EL is low. Using the PopCluster algorithm, I identified several ethnically different

clusters in which the effect of the e2 and e4 alleles on EL changed substantially. For

example, PopCluster discovered a large group of 1309 subjects enriched of South-

ern Italian genetic ancestry with weaker protective effect of e2 and weaker dam-

aging effect of e4 on EL compared to other European ethnicities. Further analysis

of this cluster suggests that the odds for EL in carriers of the e4 allele with South-

ern Italian genetic ancestry differ depending on whether they live in the U.S.A.

or Italy. PopCluster also found clusters enriched of subjects with Danish ancestry

with varying effect of e2 on EL. The country of residence (Denmark or U.S.A.) ap-

pears to change the odds for EL in the e2 carriers. These results suggest possible

interaction of this gene with dietary habits or other environmental factors.

In the third part of my dissertation, I conduct a genome-wide association study

of 4216 individuals including 1317 centenarians from the NECS (median age = 104

years) using >9M genetic variants imputed to the HRC panel of 65,000 haplotypes.

The strong heritability of extreme human longevity supports the hypothesis that

this is a genetically-regulated trait. However, association studies focused on com-

mon genetic variants have discovered a limited number of longevity-associated

https://github.com/gurinovich/PopCluster
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genes. The set for the analysis includes approximately 5M uncommon variants.

The associations are tested using a mixed effect logistic regression model with

genotype-based kinship covariance of the random effects to adjust for cryptic rela-

tions using the package GENESIS. The analysis discovers 61 genome-wide signif-

icant SNPs (p < 5E-08) including fifteen new loci in chromosomes 4, 6, 7, 8, 9, 10,

14 and 15 in addition to the APOE locus. The list includes new protein quantita-

tive trait loci (pQTLs) in serum that suggest new biological mechanism involved

in extreme human longevity.
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CHAPTER 2

PopCluster: an algorithm to identify genetic variants with ethnicity-dependent

effects

2.1 INTRODUCTION

In many genetic association studies, the phenotype is a binary variable indicat-

ing the presence or absence of a trait, and logistic regression is a popular model

used to test the associations between SNPs and the phenotype. The model can be

used to adjust the association between each SNP and the phenotype by various co-

variates, including genome-wide principal components that describe the genetic

architecture of different ethnic groups (Solovieff et al., 2010).

While non-European ethnicities have been under-represented in GWASes, the

number of diverse ethnicities is increasing (Popejoy & Fullerton, 2016; Petrovski

& Goldstein, 2016). Comparison of the ancestry distribution of the GWAS catalog

from 2009 to 2016 shows, for example, that the percentage of subjects of European

and Jewish ancestry has decreased from 96% to 81%, and the number of subjects

of Asian descent has increased from 3% to 14% (Need & Goldstein, 2009; Popejoy

& Fullerton, 2016). Although some other ethnic groups are still highly underrep-

resented, their inclusion continues to increase (Mathew et al., 2017).

Population stratification can challenge genetic association studies when the

magnitude and/or direction of the effects of the allele as well as the allele fre-

quency vary according to ethnicity (Popejoy & Fullerton, 2016; The PLOS Medicine

Editors et al., 2016; Torkamani et al., 2012). For example, the APOE e4 allele, which

is a known risk factor of Alzheimer’s disease, has different allele frequencies and

effects in Europeans, Africans and Hispanics (Corbo & Scacchi, 1999; Liu et al.,
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2013; Hendrie et al., 2014; Campos et al., 2013). Similarly, it has been shown that for

25% of the SNPs associated with body mass index, type 2 diabetes and lipid levels

in Europeans, the strength of association varies substantially in at least one non-

European population (Carlson et al., 2013). Even though a large number of these

SNPs may be in linkage disequilibrium (LD) with causal SNPs, it is important to

investigate whether any of the associations are due to true population differences

rather than differences in LD between populations.

If the association between a SNP and a trait is tested in a group of subjects in

which the genetic effect of the SNP varies with ethnicity, ignoring the interaction

between the genetic effect and the ethnicity may produce either a false positive (FP)

or a false negative (FN) result. For example, if the effects of the SNP are in opposite

directions in some ethnic groups, ignoring these antagonistic effects may result in

a FN result. An alternative and common situation is when the genetic effect is

significant only in a particular genetic background that is over-represented in the

analysis. Ignoring the ethnicity effect may produce a FP association in ethnicities

in which there is no association between the SNP and phenotype.

In this chapter, I introduce PopCluster - an algorithm that finds subpopulations

of study subjects in which the genetic effects of a SNP are different. I thoroughly

evaluate the false and true positive rates of PopCluster using real and simulated

genetic data. I also apply the algorithm to real data from four studies of extreme

longevity and the Health and Retirement Study (HRS) (Sonnega et al., 2014). I con-

clude by reviewing usefulness and limitations of PopCluster, and suggest potential

applications.
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2.2 MATERIALS AND METHODS

2.2.1 Methodology

The algorithm takes the following variables as its input: genome-wide genotype

data for each subject, a list of SNPs of interest to test, phenotype information for

each subject, and a list of covariates to be included in the model, for example sex

and age. PopCluster takes this information to discover ethnic specific effects of the

list of SNPs of interest by performing the following analyses, which are described

in detail in the next sub-sections. First, PopCluster performs PCA of the genome-

wide genotype data and hierarchical clustering of the most informative principal

components to discover a set of nested clusters of genetic ethnicity. Next, genome-

wide principal components are recalculated in each cluster of subjects, followed

by test of the associations between the phenotype and SNPs in each cluster. The

final step of PopCluster is pruning of redundant clusters to generate the final list

of SNPs and clusters with varying genetic effects on the phenotype.

2.2.1.1 Cluster generation

The cluster generation step is depicted in Figure 2.1. First, PopCluster computes

genome-wide principal components using the EIGENSOFT package on the ge-

nome-wide genotype data (Price et al., 2006). Next, hierarchical clustering is per-

formed on subjects using the most informative number of principal components.

Scree plot is a good way to decide on how many principal components to use

(Solovieff et al., 2010). Typically, 6 principal components are sufficient to character-

ize the major European ethnic groups, while up to 20 principal components may be

needed to characterize more heterogeneous ethnic groups. Since the dendrogram
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associated with hierarchical clustering is a binary tree, each node (cluster) has at

most two children nodes, one parent node, and one sibling node, while the ances-

tors of a node are the parent node and the recursive set of parent nodes. Therefore,

a set of nested clusters is generated by sequentially cutting all edges of the den-

drogram that describe the agglomerative clustering procedure. Only the clusters

with more than 100 subjects, and with a sibling node cluster with more than 100

subjects are included in the subsequent analyses. Figure 2.1 contains an example

of a dendrogram showing hierarchical clusters of 500 subjects. Each node in the

dendrogram represents a cluster and the number at each node is the size of the

cluster. Clusters 110, 240, 350, 150, 500 above the red, dashed line have over 100

subjects and have a sibling node with over 100 subjects and are used in the next

step of the algorithm. We chose 100 as the default minimum number of subjects in

a cluster to be taken in the next step of the analysis in order to have an average of

25 observations in a 2 × 2 table for allelic association. This threshold can be easily

set to a different value if needed in the input argument list to PopCluster.

In each selected cluster, PopCluster recalculates new principal components us-

ing the EIGENSOFT package (Price et al., 2006) in order to more specifically de-

scribe the genetic structure of the individuals in every new sub-cluster. In our

example in Figure 2.1, PopCluster recalculates the new principal components for

clusters: 500, 150, 350, 110, and 240.

2.2.1.2 Test of the associations between the phenotype and SNPs

Next, PopCluster fits logistic regression models to test the associations between

the phenotype and each SNP in every cluster:
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Figure 2.1: Generation of clusters using genome-wide principal com-
ponents. (top left-to-right arrow): PopCluster calculates principal
components from the genome-wide genotype data using the EIGEN-
SOFT software. (middle top-to-down arrow): Subjects are clustered
based on a set of principal components using the hierarchical cluster-
ing. (bottom left-to-right arrow): PopCluster recalculates principal
components for each selected cluster.
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Figure 2.2: Test of the associations between the phenotype and SNPs
in each cluster. Logistic regression models are fit for each SNP-cluster
combinations, and the respective statistics from the models are saved
for the next step of PopCluster.

log

(
p

1−p

)
= β0 + β1SNP + β2PC1 + ...+ βn+1PCn + βn+2x1 + ...+ βn+m+1xm,

(2.1)

where p is the probability of a subject having the phenotype usually expressed as 0

for its absence and 1 for presence; β0, β1, ..., βn+m+1 are model parameters; and the

variable SNP is typically coded by the number of coded alleles in the genotypes,

i.e. additive genetic model. The model is adjusted by PC1, ..., PCn and additional

covariates x1, ..., xm. The statistics from the logistic regression models, such as

parameter estimates, standard errors and p-values, are saved by PopCluster for

further analysis. The summary of this step is shown in Figure 2.2.
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2.2.1.3 Pruning of redundant clusters

PopCluster was developed to identify SNPs that have varying effects in different

ethnic groups, or sub-populations. Therefore, the core of PopCluster is a recur-

sive algorithm to discover such clusters by comparing the genetic effect of each

SNP in the sub-populations represented by two sibling clusters. PopCluster re-

cursively parses the dendrogram bottom-up for every SNP under investigation by

comparing the genetic effects of each pair of sibling clusters that have no children

(Figure 2.3).

The algorithm first checks the following conditions for each pair of sibling clus-

ters that have no children: (1) each cluster has at least 5 cases and 5 controls; (2)

the minor allele frequency (MAF) of a SNP in each cluster is greater than 0.05; (3)

one or both of the phenotype-SNP associations are statistically significant (p-value

< 0.05). All of these conditions are user defined input parameters. If at least one

of these conditions does not hold, PopCluster removes these sibling nodes from

the list of clusters. Otherwise, PopCluster compares the SNPs’ effects in the two

sub-populations by calculating the statistic:

z =
ˆβ1.1 − ˆβ1.2√
δ21.1 + δ21.2

, (2.2)

where ˆβ1.1 and ˆβ1.2 are SNP effect estimates for two sibling clusters using the lo-

gistic regression model in Equation 2.1, and δ1.1 and δ1.2 are their standard errors.

Under the assumption of at least 100 observations per cluster, the estimates ˆβ1.1

and ˆβ1.2 are approximately normally distributed and independent and therefore

z ∼ N(0, 1) under the null hypothesis of no difference of the genetic effects.

Therefore, if |z| < zα/2, where zα/2 is the (1 − α/2) percentile of the standard
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Are there any leaf nodes that have a common

parent (sibling nodes that are both leaves)?

Yes No

Are the effects of a SNP on phenotype

the same in sibling clusters?

STOP

Report association test results

for the nodes in the tree structure

Yes No

Repeat with updated

tree structure

1

2 33

4

1

2 3

4 5

5

Remove the sibling clusters Remove ancestors of

the sibling clusters

Figure 2.3: A schematic of the recursive pruning of redundant clus-
ters. The dendrogram describing the final cluster in Figure 2.2 is re-
cursively parsed bottom-up to identify clusters in which the genetic
effects are not statistically different. Here, numbers in the dendro-
gram (1, 2, 3, 4, 5) are simply labels to distinguish between different
clusters.
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normal distribution, then we fail to reject the null hypothesis. In this case, ˆβ1.1 is

statistically equivalent to ˆβ1.2, thus implying that the effects of the tested SNP in

the two sibling clusters are equivalent, and PopCluster merges these nodes into

their parent cluster, and removes them from the dendrogram. If |z| ≥ zα/2 then

ˆβ1.1 ̸= ˆβ1.1, and the results from the sibling nodes are included in the list of final

results, and all the ancestors of these nodes are removed from the dendrogram.

The procedure parses the dendrogram until there are no sibling nodes that are

both leaf nodes. The procedure is repeated separately for each SNP, and the output

of PopCluster is a list of clusters for each SNP with all the relevant statistics. These

clusters are non-overlapping, meaning no cluster has subjects that are in another

cluster and each of the subject of the initial dataset is included in one of the clusters.

If no population-specific effects are identified, the algorithm returns the original

top cluster.

Reported SNP-phenotype associations are considered significant if the associa-

tion between a SNP and the phenotype (β1 in the Equation 2.1) in a cluster has a

p-value less than a threshold α:

α =
0.05

M ×N
, (2.3)

where M is the total number of clusters that was reported by PopCluster for the

SNP and N is the number of SNPs tested. By dividing 0.05 by M and N , we adjust

the result for multiple comparisons.

2.2.2 Genotype and phenotype data

We used two different phenotypes and two distinct genome-wide genotype da-

tasets to evaluate our algorithm. The first dataset is compiled from four case-
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control studies of EL: the New England Centenarian Study (NECS) (Sebastiani

& Perls, 2012), the Southern Italian Centenarian Study (SICS) (Malovini et al.,

2011), the Longevity Gene Project (LGP) (Atzmon et al., 2004), and the Long Life

Family Study (LLFS) (Newman et al., 2011) (Table 2.1). LLFS data are available

via the database of Genotypes and Phenotypes (dbGaP) (dbGaP Study Accession:

phs000397.v1.p1). The genotype data for all studies were generated using Illumi-

na SNP arrays (Sebastiani et al., 2012) and imputed to the 1000 Genomes haplo-

types phase I using IMPUTE2 following the standard protocol and quality control

(Howie et al., 2012). All subjects provided informed consent approved by the study

institutional review boards. The combined datasets contain several European eth-

nicities that have been well characterized. See Supplement Figure 1 in (Sebastiani

et al., 2017b) for a characterization of European ethnicities in this data set using

PCA. Cases are defined as individuals who lived past the 1 percentile survival age

from the 1900 birth year cohort based on US Social Security Administration cohort

life tables (Bell & Miller, 2005), i.e. age 96 and greater for males, and 100 years

and greater for females. The details of the genotype data and the phenotype of

EL are presented in (Sebastiani et al., 2017b; Andersen et al., 2012; Sebastiani et al.,

2016a,b, 2017a).

In this dataset we used PopCluster to analyze a list of 371 SNPs that were pre-

viously found to be associated with EL with p-value < 5E-05 (Sebastiani et al.,

2017b). To limit the problem of multiple comparisons, we also used PopCluster to

re-analyze the association between the 11 SNPs in Table 2.2 that have been associ-

ated with EL with genome-wide significance (p-value < 5E-07) in (Sebastiani et al.,

2017b).

In addition, we applied PopCluster to the multi-ethnic HRS (Sonnega et al.,
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Table 2.1: Summary of studies of extreme longevity included in the
analysis.

Study Cases (median age, range) Controls
SICS 174 (100, 96-109) 540
LGP 308 (102, 96-113) 621
LLFS 572 (100, 96-111) 2560
NECS 1084 (103, 96-119) 3102
Total 2138 6823

SICS: South Italian Centenarian Study; LGP: Longevity Genes Project; LLFS: Long Life
Family Study; NECS: New England Centenarian Study; Cases (median age, range):
number of cases with their median age and the range; Controls: number of controls.

Table 2.2: Subset of SNPs associated with EL.

SNP Chr Pos (hg38) Ref/Alt Genes
rs2008465 2 10014127 A/G GRHL1, KLF11

rs28391193 4 110236842 G/A ELOVL6, HSBP1P2
rs72834698 6 26176289 G/A HIST1H2BD, HIST1H2BE
rs3764814 7 6150149 T/C USP42
rs7976168 12 83044780 A/G TMTC2
rs7185374 16 48416457 A/C SIAH1

rs5882 16 44888997 A/G CETP
rs6857 19 44888997 C/T APOE

rs59007384 19 44893408 G/T TOMM40
rs405509 19 44905579 T/G TOMM40, APOE
rs769449 19 44906745 G/A APOE

Chr: chromosome; Pos (hg38): position of a SNP in the Genome Reference Consortium
Human Reference 38; Ref/Alt: reference and alternative alleles; Genes: closest
gene/genes (annotation was done using SnpEff (Cingolani et al., 2012)).
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2014) on the SNPs from Table 2.2 to search for ethnic-specific genetic effects on sur-

viving past age 90. The HRS includes self-identified “White/Caucasian", “Black or

African-American", and a few different groups of “Hispanic" subjects. Controls

were subjects with age at last contact < 81. With this definition of cases and con-

trols, the HRS dataset included 866 cases and 8469 controls. The HRS dataset is

available through the HRS website (http://hrsonline.isr.umich.edu/) and dbGaP

(dbGaP Study Accession: phs000428.v1.p1).

2.2.3 Evaluation

I evaluated PopCluster using a combination of real and simulated datasets. Here I

outline the datasets and metrics used for the evaluation.

2.2.3.1 False positive rate

We used genotype data of SNPs in Table 2.2 from EL studies (Table 2.1) as one of

the input parameters to PopCluster to evaluate its false positive rate (FPR). This

list is a subset of the 371 SNPs described in Section 2.2.2.

In each simulation, we reshuffled the original labels of cases and controls or

randomly generated the case/control labels before applying PopCluster. There-

fore, by design, all significant associations detected are false positives. Specifically,

we used four versions of the original dataset: the original dataset (8961 subjects)

with (1) either the same number of cases and controls as in the original data (2138

cases and 6823 controls), and the case/control labels randomly reshuffled in each

run, or (2) a randomly assigned even number of case and control labels: 4480 cases

and 4481 controls. In addition, from the original dataset of 8961 subjects, related

subjects from the same families were removed by selecting only one case and one

http://hrsonline.isr.umich.edu/
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control for each family resulting in 7689 subjects. This reduced dataset was used

with (3) either the same number of cases and controls as in the original data (1961

cases and 5728 controls), and the case/control labels randomly reshuffled in each

run, or (4) a randomly assigned even number of case and control labels: 3844/3845

cases and controls. In addition to permuting case/control status in the overall

datasets, we also performed two additional simulations in which the permutation

of phenotype labels was done within each cluster in (1) the original dataset (8961

subjects), and (2) the reduced dataset without related individuals (7689 subjects).

We calculated the FPR for a simulation run as

FPR =
FP

FP + TN
=

∑N
i=1

si
ki

N
(2.4)

where FP is the number of False Positives, TN is the number of True Negatives, N

is the number of SNPs provided to the algorithm (11 in the case of our particular

evaluation), si is the number of clusters (subpopulations) that were detected by

PopCluster to have significant associations between a phenotype and an i-th SNP

(FP ), ki is the total number of clusters detected by PopCluster for an i-th SNP

(FP + TN ). Correction for multiple comparisons was incorporated in the FPR

evaluation by dividing the nominal significance level α by the total number of

clusters detected by PopCluster for each SNP (ki in Equation 2.4).

2.2.3.2 True positive rate

To estimate the true positive rate (TPR) of PopCluster, we simulated two scenarios

with (1) a true association only in a selected subpopulation of subjects, and (2) a

true association in the whole dataset. We compared the performances of PopClus-

ter and traditional analysis without clustering in both simulated datasets.
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In the first scenario, we simulated an allele A to be associated with EL in the

selected group of 1905 subjects with 503 cases and 1402 controls characterized by

two first genome-wide principal components calculated with the data of the stud-

ies in Table 2.1: PC1 ≤ −0.005 and PC2 ≤ 0. For the rest of the subjects, the allele

was simulated not to be associated with the phenotype (Figure 2.4). Specifically,

for the subjects with PC1 ≤ −0.005 and PC2 ≤ 0 different allele probabilities were

assigned to cases and controls as

Pr(A | EL) = p1;

Pr(A | EL) = p2,
(2.5)

where p1 is the probability of allele A in cases; p2 is the probability of allele A in

controls. The probabilities of allele dosages 0, 1, 2 were generated assuming Hardy-

Weinberg equilibrium. Various combinations of probabilities p1 and p2 (Equa-

tion 2.5) were tested to evaluate sensitivity and specificity of the algorithm to dif-

ferent risk differences. We chose p1 = {0.05, 0.1, 0.25, 0.5} to cover various sce-

narios with sufficient power with our sample size. For each p1 value, we set the

probability of allele A in controls to be p2 = p1 + g, where g is the difference in the

allele frequency between cases and controls and g = {0.05, 0.075, 0.1, 0.125, 0.15}.

Varying p1 and g resulted in 20 different combinations of probabilities p1 and p2.

For the rest of the subjects (PC1 > −0.005 or (PC1 < −0.005 and PC2 > 0)), the

allele A was simulated to be associated with PC1 and PC2, but not with the phe-

notype by setting

p3 = Pr(A) =
eβ0+β1∗PC1+β2∗PC2

1 + eβ0+β1∗PC1+β2∗PC2
, (2.6)

with β0 = −1, β1 = −75, and β2 = −50 such that probabilities p3 are not too
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Figure 2.4: Scatter plot of the first two principal components with
the selected region for the TPR evaluation. To evaluate the TPR we
simulated an allele A to be associated with a phenotype of interest
but not associated with principal components in a selected ethnic
group: subjects with PC1 ≤ −0.005 and PC2 ≤ 0 (red dots). For
the rest of the subjects (black dots), the allele was simulated to be
significantly associated with PC1 and PC2.

extreme. The probabilities of allele dosages 0, 1, 2 were again calculated assuming

Hardy-Weinberg equilibrium.

Using the simulated allele data, we estimated the rate of PopCluster to discover

the true clusters using the proportion of times the algorithm returned at least one

cluster with more than 80% subjects from the region of association. In these cases,

we evaluated the TPR of PopCluster for each of the simulation sets as

TPR =
TP

TP + FN
, (2.7)

where TP is the number of true associations that PopCluster predicted to be sig-
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nificant (positive). FN is the number of true associations that PopCluster found

to be insignificant (negative). We define an association in a cluster to be true if

more than 80% of subjects in the cluster are from the region of association. An as-

sociation was significant if the p-value was less than a threshold α (Equation 2.3).

We also compared the true effect size β and the estimated parameter value in each

simulated data set to evaluate the precision of PopCluster.

To compare the performance of PopCluster with the traditional analysis, we

also analyzed each simulated dataset using logistic regression adjusted for sex

and the 4 principal components, and we calculated the proportion of associations

found significant for each of the parameters combinations. Note that each signif-

icant association found with the traditional analysis is a true positive association

in the subpopulation in which we simulated a true association, but a false positive

association in the remaining subset.

In the second scenario, we simulated an allele A to be associated with EL in the

whole dataset using the probabilities p1 and p2 (Equation 2.5). We conducted this

analysis to compare the TPR of PopCluster and the traditional analysis when there

is no heterogeneity in the association between the SNP and the phenotype in differ-

ent clusters. To evaluate PopCluster’s performance, we calculated the proportion

of times PopCluster returned exactly one top cluster, and how often this cluster

was identified as significant. We calculated the TPR of the traditional analysis as

the proportion of significant associations detected in the simulated datasets.
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2.3 RESULTS

2.3.1 Evaluation results

2.3.1.1 False positive rate

Figure 2.5 summarizes the results of the FPR evaluation. Each simulation was run

1000 times. On average, the estimated FPR in all six different simulations was

∼ 4%. This low FPR shows that the correction for multiple comparisons incorpo-

rated in Equation 2.4 is sufficient to bound the family-wise error rate by the level

of significance used in the algorithm. Additionally, for each of the first four differ-

ent simulation set-ups (when the permutation was done on a whole dataset), we

report the information on how many significant clusters each run returned (Table

2.3). We define significant clusters here as clusters in which the association be-

tween the simulated phenotype and the SNP has a p-value less than 0.05 divided

by the total number of clusters returned. By design, any association returned by

the algorithm is a false positive, because we reshuffle the labels of cases and con-

trols. As expected, the majority of runs returned no significant associations.

I also evaluated the FPR of PopCluster on a homogeneous subset of our data -

LGP (Table 2.1). I did this to verify the FPR when there are no clusters in the study

populations. In 100% of simulations, PopCluster returned one cluster - the whole

LGP dataset - as a final result, and the FPR in this case is equivalent to the FPR

of a traditional analysis that adjust for the population structure. On average, the

estimated FPR in this evaluation was ∼ 5%.
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Figure 2.5: Boxplots of the FPR in six different simulations. Mean
FPR and standard deviations (in parentheses) for each of the simu-
lations are shown on the right of the Figure. “Original data shuf-
fled": original dataset with random reshuffling of cases and controls
in a whole dataset. “Original data even": original dataset with equal
number of cases and controls randomly generated. “No-relatedness
data shuffled": as “original data shuffled" after we removed related
individuals. “No-relatedness data even": as “original data even" af-
ter we removed related individuals. “Original data each cluster":
original dataset with random reshuffling of cases and controls in
each cluster. “No-relatedness data each cluster": as “original data
each cluster" after we removed related individuals.
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Table 2.3: Percentage of simulation runs (FPR) that returned n num-
ber of significant associations (Clusters) (n = {0, 1, 2, 3}).

Clusters Simulation 1 Simulation 2 Simulation 3 Simulation 4
0 83.8 83.2 84.1 83.8
1 15.6 15.8 15.1 15.4
2 0.6 0.3 0.8 0.8
3 – 0.02 – –

Simulation 1: “Original data shuffled" (original dataset with random reshuffling of cases
and controls). Simulation 2: “Original data even" (original dataset with equal number of
cases and controls randomly generated). Simulation 3: “No-relatedness data shuffled" (as
“original data shuffled" after we removed related individuals). Simulation 4:
“No-relatedness data even" (as “original data even" after we removed related
individuals).

2.3.1.2 True positive rate

The boxplots in Figure 2.6 summarize the results of the evaluation of the PopClus-

ter’s TPR for all the combinations of probabilities of allele A in cases and controls

when allele A was simulated to be associated with phenotype only in selected re-

gion (scenario 1). For each combination of parameters, simulations were run 1000

times. The percent of simulation runs that returned at least one cluster with more

than 80% subjects in the region of association was 97.6% (Table 2.4), and the av-

erage number of these "true association" clusters was 2.6 (Table 2.5). The TPR of

PopCluster increases with the increase in difference in allele frequencies between

cases and controls. High TPR values in the simulations with larger differences in

allele frequencies suggest that the algorithm can detect clusters of significant asso-

ciation. Low TPR values for smaller differences in allele frequencies indicate that

the dataset does not have enough power to detect those fine associations. In ad-

dition, we find that the differences between true effect size β and estimated β̂ are

symmetrically distributed around 0 as expected (Figure 2.7). The black circles with
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Figure 2.6: Boxplots of the TPR for various combinations of proba-
bilities of allele A in cases and controls. g is the difference in allele
probabilities between cases and controls. P (A) denotes the proba-
bility of allele A in cases. (A): P (A) = 0.05. (B): P (A) = 0.1. (C):
P (A) = 0.25. (D): P (A) = 0.5. Black circles with white centers repre-
sent how often the traditional analysis finds a general association to
be significant.

white centers on boxplots in Figure 2.6 depict the proportion of general associa-

tions found by the traditional analysis. These proportions are comparable to the

TPR of PopCluster; however they represent only TPR for finding a general associ-

ation, but every TP in this case is a FP for a group of subjects in which allele A was

simulated not to be be associated with a phenotype.

The average TPR of the traditional analysis in datasets simulated to have an

association between allele A and phenotype in the whole dataset (scenario 2) was

100%, meaning all of the runs returned an association as significant. The average

number of times PopCluster returned only one cluster as a result was 30% (Table
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Table 2.4: Percentage of simulation runs (TPR) that returned at least
one cluster with more than 80% subjects in the region simulated to
have an association between allele A and the phenotype (scenario 1).

p1/g 0.05 0.075 0.1 0.125 0.15
0.05 99.4 99.9 100 100 99.9
0.1 95.8 100 99.8 99.9 99.9
0.25 86.5 96.4 99.4 99.7 99.9
0.5 82.4 94 99.5 100 100

p1 is the probability of an allele A in cases in the region where allele A was simulated to
be associated with the phenotype. p2 = p1 + g is the probability of an allele A in controls
in the same region. g is the difference in allele frequencies A between cases and controls
in this region.

Table 2.5: Average number of returned clusters with more than 80%
subjects in the region simulated to have an association between allele
A and the phenotype (scenario 1).

p1/g 0.05 0.075 0.1 0.125 0.15
0.05 2.4 2.7 2.8 3.0 3.2
0.1 2.3 2.6 2.8 2.9 3.0

0.25 2.0 2.4 2.5 2.7 2.8
0.5 1.9 2.2 2.5 2.6 2.8
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Figure 2.7: Boxplots of the differences between true effect β and es-
timated effect β̂ in the clusters where allele A was simulated to be
associated with EL (scenario 1). Each set of boxplots corresponds to
the boxplots in Figure 2.6.
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Table 2.6: Percentage of simulation runs (TPR) of PopCluster that
returned only one top cluster in simulations where the allele is asso-
ciated with phenotype in a whole dataset (scenario 2).

p1/g 0.05 0.075 0.1 0.125 0.15
0.05 39.4 39.5 36.1 39 38
0.1 30.5 31 31.8 29.9 30.3

0.25 26.5 26.5 20.7 25.7 25.7
0.5 27.3 22.6 26.5 22.6 22

Table 2.7: Percentage of simulation runs (TPR) of PopCluster that
returned only one top cluster in simulations where the allele is asso-
ciated with phenotype in a whole dataset with re-shuffled case/con-
trol labels (scenario 2).

p1/g 0.05 0.075 0.1 0.125 0.15
0.05 38.9 41.4 41.9 40.3 39.7
0.1 29.1 28.8 27 25.4 26.2

0.25 25.7 21.9 23.9 23.3 21.6
0.5 25.6 24.2 21.9 21.4 20.3

2.6). Among those single clusters, 100% of them were found to have a signifi-

cant association between the simulated allele and phenotype. We evaluated Pop-

Cluster’s performance in the case of allele-phenotype association simulated in the

whole dataset in three more additional simulation set-ups: (1) re-shuffled case/-

control labels (Table 2.7); (2) balanced number of re-shuffled case/control labels

(Table 2.8); (3) balanced number of re-shuffled case/control labels in each cluster

(Table 2.9).

2.3.2 Application to real data

We used PopCluster to re-analyze the association of the set of 371 SNPs with EL in

the data summarized in Table 2.1. We assessed whether the algorithm could detect

more significant associations than the analysis that adjusts for population struc-

ture, and identify subpopulations in which the associations were not significant.
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Table 2.8: Percentage of simulation runs (TPR) of PopCluster that
returned only one top cluster in simulations where the allele is asso-
ciated with phenotype in a whole dataset with balanced number of
re-shuffled case/control labels (scenario 2).

p1/g 0.05 0.075 0.1 0.125 0.15
0.05 30.3 24.9 26 27 25.5
0.1 22.8 22.5 23.9 22.2 22.6

0.25 24.5 22.9 25.8 21.1 22.2
0.5 22.9 22.8 21.7 20.8 22.5

Table 2.9: Percentage of simulation runs (TPR) of PopCluster that
returned only one top cluster in simulations where the allele is asso-
ciated with phenotype in a whole dataset with balanced number of
re-shuffled case/control labels in each cluster (scenario 2).

p1/g 0.05 0.075 0.1 0.125 0.15
0.05 31.4 25.2 24.5 26 26
0.1 23.9 22.3 23.2 20.4 22.9

0.25 23.9 21.2 21.9 23.2 21.5
0.5 23.7 22.6 23 21.3 20

The analysis identified 14 SNPs in the APOE region that reached genome-wide

level of significance in at least one cluster and although none of these cluster-

specific associations was more significant than the results in the meta-analysis

in (Sebastiani et al., 2017b), the analysis suggests that the effect of APOE on EL

may vary with ethnicity. In addition, PopCluster identified a large cluster of 7401

subjects in which the association between SNP rs2008465 (Table 2.2) and EL was

more significant than in the meta-analysis, and smaller clusters comprising mainly

North East Europeans in which the association between rs2008465 and EL was not

significant. For complete results returned by PopCluster on the analysis of 371

SNPs and EL see Table 2.10 and Figures 2.8-2.17. To interpret ethnic groups from

PCA plots, please refer to Figure 2.18.

Below we present an example of SNP, rs3764814, with ethnic-specific effect on
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Table 2.10: Complete list of clusters detected by PopCluster for 371
SNPs and EL.

https://open.bu.edu/handle/2144/29809

Following the link you will find El-results.csv file with all the results for the analysis of
PopCluster on 371 SNPs and EL. Column Cluster contains labels for the clusters, all of
which are visualized on the PCA plots in Figures 2.8-2.17. Labels reflect cluster sizes, e.g.
cluster labeled 118 has 118 subjects, and sorted by their size. Legend for the table in the
EL-results.csv file: OR: odds ratio for EL in carriers of the allele; P-value: p-value of the
association.

Figure 2.8: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 1.
Subjects are colored red if they belong to (A): cluster 118, (B): clus-
ter 126, (C): cluster 128, (D): cluster 129, (E): cluster 133, (F): cluster
134. Subjects not belonging to respective clusters are colored black in
every plot.

https://open.bu.edu/handle/2144/29809
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Figure 2.9: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 2.
Subjects are colored red if they belong to (A): cluster 141, (B): clus-
ter 148, (C): cluster 153, (D): cluster 160, (E): cluster 170, (F): cluster
176. Subjects not belonging to respective clusters are colored black in
every plot.
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Figure 2.10: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 3.
Subjects are colored red if they belong to (A): cluster 180, (B): clus-
ter 193, (C): cluster 194, (D): cluster 240, (E): cluster 249, (F): cluster
253. Subjects not belonging to respective clusters are colored black in
every plot.
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Figure 2.11: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 4.
Subjects are colored red if they belong to (A): cluster 274, (B): clus-
ter 287, (C): cluster 290, (D): cluster 296, (E): cluster 297, (F): cluster
316. Subjects not belonging to respective clusters are colored black in
every plot.
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Figure 2.12: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 5.
Subjects are colored red if they belong to (A): cluster 330, (B): clus-
ter 348, (C): cluster 380, (D): cluster 388, (E): cluster 396, (F): cluster
413. Subjects not belonging to respective clusters are colored black in
every plot.



36

Figure 2.13: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 6.
Subjects are colored red if they belong to (A): cluster 416, (B): clus-
ter 470, (C): cluster 508, (D): cluster 566, (E): cluster 583, (F): cluster
604. Subjects not belonging to respective clusters are colored black in
every plot.
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Figure 2.14: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 7.
Subjects are colored red if they belong to (A): cluster 606, (B): clus-
ter 611, (C): cluster 721, (D): cluster 805, (E): cluster 818, (F): cluster
828. Subjects not belonging to respective clusters are colored black in
every plot.



38

Figure 2.15: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 8.
Subjects are colored red if they belong to (A): cluster 829, (B): cluster
899, (C): cluster 952, (D): cluster 1005, (E): cluster 1145, (F): cluster
1199. Subjects not belonging to respective clusters are colored black
in every plot.
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Figure 2.16: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 9.
Subjects are colored red if they belong to (A): cluster 1206, (B): cluster
1620, (C): cluster 1765, (D): cluster 1869, (E): cluster 2480, (F): cluster
2971. Subjects not belonging to respective clusters are colored black
in every plot.
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Figure 2.17: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of all subjects in the study of EL - set 10.
Subjects are colored red if they belong to (A): cluster 3776, (B): cluster
4921, (C): cluster 7401, (D): cluster 8355, (E): cluster 8961. Subjects not
belonging to respective clusters are colored black in every plot.



41

Figure 2.18: Scatter plots of PC1-PC2 and PC3-PC4 calculated using
genome-wide genotype data of subjects in the NECS. Subjects are
labeled by ethnicity using the information about mother tongue and
places of birth of subjects and their parents (Sebastiani et al., 2012).

EL in sub-populations of Europeans. It also appears to have an ethnic-specific

effect on surviving past age 90 in the HRS dataset. To account for the varying

sample sizes of clusters, we computed the power to detect significant associations

in clusters using the G*Power software (Faul et al., 2009).

2.3.2.1 rs3764814 and extreme longevity

rs3764814 is a coding SNP in the gene USP42 which is located on chromosome

7. We recently found this SNP to be very strongly associated with EL in Euro-

peans ignoring population specific effects (Sebastiani et al., 2017b). The global

MAF of rs3764814 is 0.28, but it becomes much rarer in Europeans: 0.07. The MAF

of rs3764814 in our dataset is 0.09 and it increases 1.5 times in centenarians as com-

pared to controls: 0.12 in cases and 0.08 in controls. Table 2.11 summarizes the

results of PopCluster analysis for rs3764814 on EL. Figure 2.19 presents a hierar-
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Table 2.11: Complete list of clusters for rs3764814 and EL.

Cluster OR 95% CI P-value MAF Power, %
828 2.24 [1.49, 3.36] 9.87E-05 0.086 100

316 (583) 2.89 [1.61, 5.17] 0.0004 0.085 100
721 1.91 [1.31, 2.79] 0.0007 0.093 100

805 (2971) 2.22 [1.37, 3.60] 0.001 0.088 100
611 2.03 [1.23, 3.35] 0.006 0.075 100

2971 (805) 1.3 [1.07, 1.57] 0.009 0.089 100
1145 1.47 [1.08, 1.99] 0.01 0.105 100
126 3.75 [1.28, 11.00] 0.02 0.075 100
606 1.61 [1.07, 2.42] 0.02 0.094 100
249 1.3 [0.63, 2.71] 0.48 0.064 50

583 (316) 0.85 [0.49, 1.49] 0.57 0.071 47

Cluster: label for the cluster which reflect cluster size, e.g. cluster labeled 583 consists of
583 subjects (If in the final dendrogram structure, a cluster has a sibling, it is reported here
in parentheses.); OR: odds ratio for EL in carriers of the allele; 95% CI: 95% confidence
interval for the OR; P-value: p-value of the association; MAF: minor allele frequency in
the cluster; Power, %: power of detecting a given OR with a given number of subjects.

chical tree of this dataset with the clusters returned for this SNP as highlighted

in yellow. PopCluster identified two clusters (clusters 249 and 583 in Table 2.11

and black dots in Figure 2.20) in which the association of rs3764814 did not reach

statistical significance. Since clusters 249 and 583 are not sibling clusters, we can

only conclude that there is no significant association of rs3764814 and EL in these

two groups. Note that this is different than saying the effects are the same. In

Figure 2.20, the subjects depicted as red dots belong to clusters for which the as-

sociation between SNP rs3764814 and EL is significant or borderline significant.

Using partially known information on subjects’ ancestry, such as birth places and

native languages of grandparents (Solovieff et al., 2010), we identified the sub-

jects without an association as being enriched of Danish descent (Sebastiani et al.,

2017c).
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Figure 2.19: Full hierarchical tree structure returned for the analysis
of EL dataset before pruning of redundant clusters step. Highlighted
in yellow are the clusters that were identified by PopCluster as hav-
ing ethnic-specific effects of SNP rs3764814 on EL. Numbers inside
the nodes represent the number of subjects in each cluster. Visualiza-
tion was done using Cytoscape (Shannon et al., 2003).
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Figure 2.20: Ethnic groups in which the effect of SNP rs3764814 on
EL did not reach statistical significance. The scatter plots display the
principal components PC1-PC4 calculated using genome-wide geno-
type data of all subjects in the study of EL. Subjects colored in black
belong to (Panel A): cluster 249, (Panel B): cluster 583 as defined in
Table 2.11.
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Table 2.12: Complete list of clusters for rs72834698 returned as an
output from PopCluster run on HRS dataset with phenotype of sur-
viving past age 90.

Cluster OR 95% CI P-value MAF Power, %
8128 (236) 1.26 [1.06, 1.50] 0.008 0.098 100
236 (8128) 0.34 [0.10, 1.16] 0.09 0.083 100

811 0.64 [0.31, 1.28] 0.21 0.075 100
160 1.01 [0.50, 2.01] 0.99 0.181 5

Table 2.13: Complete list of clusters detected by PopCluster for 11
SNPs and HRS.

https://open.bu.edu/handle/2144/29809

Following the link you will find HRS-results.csv file with all the results for the analysis of
PopCluster on 11 SNPs and surviving past age 90. Column Cluster contains labels for the
clusters. Only 3 out of 11 SNPs have significant associations with a phenotype of
surviving past the age of 90: rs72834698, rs5882, and rs405509. Legend for the table in the
HRS-results.csv file: OR: odds ratio for surviving past 90 in carriers of the allele; P-value:
p-value of the association.

2.3.2.2 rs72834698 and survival past age 90

We used PopCluster to analyze the association between SNP rs72834698 and sur-

viving past the age of 90 in the HRS dataset. The analysis identified one large

cluster of 8128 subjects in which this SNP had a significant association with sur-

vival past age 90 (cluster 8128 in Table 2.12 and red dots in Figure 2.22-A). Note

that this association is not significant after correction for multiple testing. Based on

self-reported ethnicity labels provided with HRS dataset, the group of subjects that

is not in this cluster (black dots in Figure 2.22-A) is enriched of “Hispanic, Mex-

ican" subjects. Figure 2.21 presents a hierarchical tree with clusters returned for

rs72834698 in yellow. For more results on this analysis, see Table 2.13 and Figure

2.22.

https://open.bu.edu/handle/2144/29809
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Figure 2.21: Full hierarchical tree structure returned for the analy-
sis of survival past age 90 HRS dataset before pruning of redundant
clusters step. Highlighted in yellow are the clusters that were identi-
fied by PopCluster as having ethnic-specific effects of SNP rs3764814
on surviving past age 90. Numbers inside the nodes represent the
number of subjects in each cluster.
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Figure 2.22: Scatter plots of PC1-PC2 and PC3-PC4 calculated us-
ing genome-wide genotype data of all subjects in the HRS. Subjects
are colored red if they belong to (A): cluster 8128, (B): cluster 236,
(C): cluster 811, (D): cluster 160. Subjects not belonging to respective
clusters are colored black in every plot.

2.4 DISCUSSION

Currently most of the genetics studies are based on data generated in subjects of

specific European ancestry, and sometimes the results of the genetic association

studies do not generalize to other populations (Martin et al., 2017). The issue of un-

derrepresentation of non-European populations in genetic studies is slowly being

addressed (Popejoy & Fullerton, 2016); and it is important to adapt current tech-

niques to account for the different allele frequencies and genetic effects in those

populations. There are methods that have been proposed to account for the het-

erogeneity of variants and phenotype associations in different populations. For

example, the generalized linear mixed model association test (GMMAT) accounts

for population stratification and varying binary phenotype frequencies in different

populations (Chen et al., 2016). The GMMAT corrects p-values and effect estimates

in the genetic association studies in the presence of non-constant mean-variance re-
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lationship for a binary phenotype; however, it does not identify the varying effect

sizes in the populations. Another approach, XP-BLUP, predicts individual genetic

risk scores for heterogeneous subjects by incorporating multi- and trans- ethnic in-

formation in the analysis (Coram et al., 2017). The novelty of PopCluster is to pro-

vide a heuristic search to discover heterogeneous effects when the sub-populations

are unknown.

There are many consequences of not being able to identify the varying genetic

effects in the studies that consist of only or a majority of European samples. This

problem is particularly important in genetic association studies that aim to dis-

cover new drug targets. Currently there are several high-selling medications that

do not help or even hurt the majority of people who take them (Schork, 2015). An-

other area that would benefit the delineation of population specific genetic effects

is genetic risk prediction. When a genetic marker for a trait is identified using pre-

dominantly European populations, using this marker for prediction of disease risk

in non-Europeans may result in a higher false positive diagnostic rate (The PLOS

Medicine Editors et al., 2016; Manrai et al., 2016).

Various factors, such as genetics, diet, lifestyle and endemic infectious diseases,

contribute to varying allele frequencies and genetic effects in different populations

(Petrovski & Goldstein, 2016; Kelly et al., 2017; Rosenberg et al., 2002). In addi-

tion, different genetic markers can be associated with the same disease phenotype

in different populations (Schork, 1997). PopCluster performs the association stud-

ies in populations with varying genetic effects on a phenotype to account for the

diverse ancestry and environmental backgrounds.

PopCluster can also be used as a step before performing meta-analysis when

working with multi and trans-ethnic studies. The algorithm facilitates identifi-
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cation of populations with heterogeneous genetic effects. Subsequently, separate

GWASes can be performed on the detected sub-populations, and the results can be

combined using tools such as transethnic meta-analysis (Morris, 2011).

In the evaluation we tested datasets with a small number of related individ-

uals (∼ 14%) and the algorithm worked well in those cases. However, when the

number of related individuals is large, proper corrections for relatedness are im-

portant. In our implementation of the algorithm, we use the R geeglm function

from the geepack package (Hojsgaard et al., 2006) to fit the regression model. If

the dataset includes related individuals, PopCluster can use a generalized estimat-

ing equation (GEE) to adjust for within-family correlation (Wang et al., 2013). In

our examples we only used a binary phenotype. However, in the implementation

of PopCluster, there is an option to choose the probability distribution of the out-

come in the regression model so the algorithm can be used to analyze continuous

phenotypes.

PopCluster has several limitations that I outline below. One of the limitations

of our algorithm is that even though it finds ethnicity-specific associations that oth-

erwise would have been missed, breaking the dataset into smaller clusters makes

the association testing less powerful. Additionally, if the initial dataset has a small

number of samples that belong to genetically very different group compared to

the rest of the samples, PopCluster might not be able to identify the presence of

ethnicity-dependent effects as it would not process clusters below the root node

of the dendrogram (Figure 2.1). In such situation, I recommend to remove these

distinct samples from the dataset, and re-run PopCluster on the updated set of

samples. In situations when genetic variants do not have heterogeneous associa-

tions with a phenotype in different populations, PopCluster might lead to overfit-
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ting and identify differential associations between clusters. Thus, it is important

to have a replication for all the findings. Another constraint is that PopCluster ac-

cepts the data with quality control performed beforehand. For example, systematic

differences in genotyping of the data could bias the principal component analysis.

In our examples, we performed quality control on genome-wide genotype data so

that highly polymorphic regions and SNPs in high LD are removed, and that the

strand direction is consistent for all the studies, etc. However, some additional

sources of bias may always be possible and it might be useful to verify that the

clusters represent ethnical differences if appropriate label data for some of the sub-

jects are known. In our examples, we verified that the clusters represent European

ethnicities using subjects and their parents places of birth, or mother tongue. This

step is not necessary, but it is an addition to validating the results.

Overall, I am hopeful that the use of the PopCluster’s methodology will con-

tribute to more precise estimate of genetic associations in the presence of pop-

ulation heterogeneity and ultimately better use of genetic findings in precision

medicine.
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CHAPTER 3

Varying effect of APOE alleles on extreme longevity in European ethnicities

3.1 INTRODUCTION

Apolipoprotein E (APOE) is a class of proteins involved in lipid metabolism with

functions determined by alleles of the gene APOE. The gene has 3 alleles e2, e3,

and e4 defined by combinations of genotypes of the SNPs rs7412 and rs429358

(Schachter et al., 1994; Weisgraber et al., 1981). APOE is a well-studied gene with

multiple effects on aging and longevity. The e4 allele is a well-established risk fac-

tor for late onset of Alzheimers disease (Corder et al., 1993; Yip et al., 2005; Liu

et al., 2013). We and others have demonstrated that having an APOE e4 allele has

a deleterious effect on longevity that decreases the odds to reach extreme human

lifespan (Schachter et al., 1994; Sebastiani et al., 2019). The e3 allele is the “neu-

tral allele” in many ethnicities, while e2 is the allele that promotes longevity and

healthy aging (Schachter et al., 1994; Sebastiani et al., 2019; Schupf et al., 2013; Wu

& Zhao, 2016).

The frequency of the APOE alleles varies among human populations (Corbo &

Scacchi, 1999). For example, the most common e3 allele frequency varies from 54%

in African Pygmies to 90% in Southern Italians and Sardinians. The frequency of

the e4 allele varies from 5% in Sardinians to 41% in African Pygmies. It has been re-

ported that the frequency of the e4 allele increases with latitude due to the natural

selection to protect against low-cholesterol levels (Eisenberg et al., 2010). Addition-

ally, the e4 allele is associated with better resistance to adverse non-industrialized

environments, specifically to parasites and infections in children (van Exel et al.,

2017; Trumble et al., 2017).
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Studies have suggested that APOE e4 has different effects on the risk of Alzhei-

mer’s disease in Europeans, African-Americans and Hispanics (Liu et al., 2013;

Hendrie et al., 2014; Campos et al., 2013), while the role of ethnicity on the ef-

fect of APOE e2 on longevity and neuroprotection is unknown. To investigate the

ethnic-specific effect of APOE e2 and e4 on extreme longevity, I used PopCluster

algorithm (described in Chapter 2) to search for ethnically different clusters of Eu-

ropeans in which the effect of APOE e2 and e4 on extreme longevity changes.

3.2 MATERIALS AND METHODS

3.2.1 Study Populations

We used genome-wide genotype data from a consortium of four studies of EL and

healthy aging: the SICS, the LGP, the LLFS, and the NECS (Table 2.1). The SICS

is a study of longevity that focused enrollment of long lived individuals in the

South of Italy (Malovini et al., 2011). The LGP is a study of longevity that enrolled

long lived individuals who were of Ashkenazy Jewish descent, survived to at least

age 95 years old, and were dementia free at the time of enrollment (Barzilai et al.,

2003). Some siblings, offspring and spouses of offspring were also enrolled and

additional unrelated population controls were selected based on lack of familial

longevity. The LLFS is a family-based study of healthy aging and longevity that

recruited approximately 550 families and 5,000 family members selected for famil-

ial longevity (Newman et al., 2011; Ash et al., 2009). Participants were enrolled

at three American field centers (Boston, Pittsburgh and New York), and a Euro-

pean field center in Denmark. The NECS is a study of centenarians, some of the

long-lived siblings, offspring, offspring spouses and additional unrelated controls

selected because their parents died before reaching the median age survival of their
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birth year cohort (Sebastiani & Perls, 2012). The study recruits centenarians world-

wide. All subjects consented and the studies were approved by local Institutional

Review Boards (IRBs).

3.2.2 Genotype Data

Genome-wide genotype data for all studies were generated using Illumina SNP

arrays (Sebastiani et al., 2012) and imputed to the 1000 genomes haplotypes phase

I using IMPUTE2 and standard protocol (Howie et al., 2012). Imputation was pre-

ceded by pre-phasing with SHAPEIT (Delaneau et al., 2012). More details on the

datasets can be found in in (Sebastiani et al., 2017b). APOE alleles were inferred

from SNPs rs7412 and rs429358 that were either genotyped using real time PCR or

imputed using IMPUTE2 (Sebastiani et al., 2019). Cases were defined as individ-

uals who lived past the 1 percentile survival age from the 1900 birth year cohort

based on US Social Security Administration cohort life tables (Bell & Miller, 2005),

i.e. age 96 and greater for males, and 100 years and greater for females. Controls

were defined either as individuals who died before reaching the threshold age, or

as random subjects from the general population. The combined datasets contain

several European ethnicities and information about place of birth and mother/fa-

ther tongue.

3.2.3 Statistical Analysis

I used PopCluster to find ethnic-specific clusters of subjects with varying effect of

APOE e2 and e4 on EL. PopCluster discovers subsets of individuals characterized

by significantly different effects of a genetic variant by, first, clustering subjects

based on principal components of genome-wide genotype data and, then, recur-
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Table 3.1: APOE genotype distribution in the studies of extreme
longevity.

genotypes e2e2 e2e3 e3e3 e3e4 e4e4
No. subjects 56 1362 5901 1497 126

sively comparing the effect of a variant on phenotype between genetically clos-

est clusters (Gurinovich et al., 2019).We used logistic regression adjusted by sex

and four principal components calculated from the genome-wide genotype data

of subjects to estimate cluster-specific associations between APOE alleles and EL.

To adjust p-values for multiple testing we use p < 0.05/(number of clusters re-

turned by the algorithm). Our evaluation showed that this correction maintains a

family-wide error rate < 5%.

To evaluate the effect of APOE e2 and e4 on EL independently of each other, we

conducted two analyses. In one analysis, we removed all carriers of e4, and used

an additive genetic model with e3e3 coded as 0 (5901 subjects), e2e3 as 1 (1362

subjects) and e2e2 as 2 (56 subjects). Similarly, to evaluate the effect of e4 on EL

we removed all carriers of e2, and used an additive genetic model with e3e3 coded

as 0 (5901 subjects), e3e4 as 1 (1497 subjects) and e4e4 as 2 (126 subjects). Total

genotype counts are presented in Table 3.1.

3.3 RESULTS

I analyzed the ethnic-specific association of EL with APOE alleles in 2143 cases of

EL, and 6825 controls summarized in Table 2.1. PopCluster identified 13 ethnic-

specific clusters in which the effect of APOE e2 on EL varied (Table 3.2), but only

2 with a significant, positive effect on EL after correction for multiple compar-

isons (p < 0.05/13 = 0.0038) (first two rows in Table 3.2). Similarly, PopCluster
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identified 12 ethnic-specific clusters in which the effect of APOE e4 on EL varied

(Table 3.3), and in 5 clusters APOE e4 was significantly and negatively associated

with EL after correcting for multiple comparisons (p < 0.05/12 = 0.004) (first five

rows in Table 3.3). Partially known information on subjects’ ancestry, such as birth

places and native languages of grandparents, is available for about 63% of subjects

(27). We labelled each cluster with ethnicity based on the following rules followed

in order: (1) If more than 50% of subjects in a cluster are enriched of a certain

ethnicity, the cluster was labeled by that ethnicity. (2) If there is no known eth-

nicity with more than 50% subjects represented in a cluster, but the scatter plots

of genome-wide principal components (Figures 3.1-3.3) of a cluster are localized,

the best guess was made based on the scatter plots. (3) If neither of two previous

conditions hold, a cluster was labeled as mixed.

Figures 3.1-A and -B display scatter plots of the first 4 genome-wide principal

components for the 2 clusters in which PopCluster discovered significant effects

of APOE e2. In both clusters, carriers of e2 have increased odds for EL compared

to carriers of e3e3: OR = 2.24, 95% CI: 1.35, 3.73 in the cluster enriched of Danish

ancestry, and OR = 2.12, 95% CI: 1.44, 3.13 the cluster enriched of Ashkenazi Jew-

ish ancestry. The difference of effects between these two clusters however did not

reach statistical significance (p = 0.87). In all other clusters, the genetic association

did not reach statistical significance although several clusters had sample size >

180 that is the minimum size required to have 80% power to detect an odds ratio

of 2, assuming a level of significance of 0.004.

Figures 3.2-D, 3.3-C, and 3.1-E, -A, -B display the scatter plots of the first 4

genome-wide principal components for the 5 clusters in which the association be-

tween APOE e4 and EL is statistically significant, after correction for multiple test-
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Table 3.2: Associations between APOE e2 and EL in ethnic-specific
clusters.

Label
No.

subjects
Enriched
ethnicity OR 95% CI p

Ashkenazi Jews_1
(*) 977

Ashkenazi Jews
(0.64) 2.12 1.44, 3.13 0.0002

Danish_1 (*) 437 Danish(0.93) 2.24 1.35, 3.73 0.002
British_1(**) 452 British (0.10) 1.78 1.08, 2.93 0.02
Polish (**) 150 Polish (0.10) 2.5 0.95, 6.57 0.06

Mixed_1 (**) 974 Danish (0.47) 1.38 0.92, 2.06 0.127
Mixed_2 (**) 828 Germans (0.06) 1.43 0.91, 2.25 0.122

South Italians (*) 1309
South Italians

(0.77) 1.27 0.92, 1.76 0.14
Irish (**) 1141 Irish (0.04) 1.36 0.88, 2.10 0.16

Ashkenazi Jews_2
(*) 235

Ashkenazi Jews
(0.70) 1.52 0.74, 3.14 0.25

British_2 (**) 964 British (0.10) 0.83 0.58, 1.17 0.29
Danish_2 (*) 198 Danish (0.89) 0.71 0.29, 1.73 0.45
Danish_3 (**) 766 Danish (0.26) 1.13 0.75, 1.69 0.56
Russians (**) 757 Russians (0.03) 1.13 0.71, 1.78 0.61

Label: This was inferred by either the enriched ethnicity of subjects (>50% in the cluster)
(*) or based on the PCA plots for this cluster (**) (underscore and number mean that there
are more than 1 distinct cluster that are labeled the same). No. subjects: total number of
subjects in the cluster; Enriched ethnicity: enriched ethnicity with proportion of subjects
with enriched ethnicity from the subjects with known information on their ancestry; OR:
odds ratio for EL comparing carriers of one copy of APOE e2 to e3e3 carriers; p: p-value
(association is significant if p < 0.05/13 = 0.004).
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Table 3.3: Associations between APOE e4 and EL in ethnic-specific
clusters.

Label
No.

subjects
Enriched
ethnicity OR 95% CI p

British_3 (**) 1416 British (0.10) 0.3 0.21, 0.44 4.42E-10
Danish_4 (**) 559 Danish (0.33) 0.44 0.26, 0.72 0.001
Mixed_1 (**) 974 Danish (0.47) 0.49 0.32, 0.78 0.002

Ashkenazi Jews_1
(*) 977

Ashkenazi Jews
(0.64) 0.48 0.30, 0.77 0.003

Danish_5 (*) 635 Danish (0.92) 0.47 0.28, 0.78 0.004
Russians (**) 757 Russians (0.03) 0.51 0.31, 0.83 0.006

Irish (**) 1141 Irish (0.04) 0.56 0.35, 0.91 0.02
Mixed_2 (**) 828 Germans (0.06) 0.57 0.33, 0.99 0.046

Ashkenazi Jews_2
(*) 235

Ashkenazi Jews
(0.70) 0.43 0.18, 1.01 0.05

South Italians (*) 1309
South Italians

(0.77) 0.82 0.56, 1.20 0.31
Polish (**) 150 Polish (0.10) 0.52 0.10, 2.61 0.42

British_4 (**) 207 British (0.06) 1.32 0.54, 3.22 0.54

OR: odds ratio for EL comparing carriers of one copy of APOE e4 to e3e3 carriers; p:
p-value (association is significant if p < 0.05/12 = 0.004).
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Figure 3.1: Scatter plots of principal components PC1-PC2 and PC3-
PC4 from genome-wide genotype data of all subjects in the study of
EL. Subjects are colored red if they belong to (A): cluster with 977
subjects enriched of Ashkenazi Jews; (B): cluster with 437 subjects
enriched of Danish subjects; (C) cluster with 452 subjects enriched
of British subjects; (D) cluster with 150 subjects enriched of Polish
subjects; (E) cluster with 974 subjects of mixed ancestry; (F) cluster
with 828 subjects of mixed ancestry.
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Figure 3.2: Scatter plots of principal components PC1-PC2 and PC3-
PC4 from genome-wide genotype data of all subjects in the study of
EL. Subjects are colored red if they belong to (A): cluster with 1309
subjects enriched of Italians; (B): cluster with 1141 subjects enriched
of Irish subjects; (C) cluster with 235 subjects enriched of Ashkenazi
Jews; (D) cluster with 964 subjects enriched of British subjects; (E)
cluster with 198 subjects enriched of Danish subjects; (F) cluster with
766 subjects enriched of Danish subjects.
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Figure 3.3: Scatter plots of principal components PC1-PC2 and PC3-
PC4 from genome-wide genotype data of all subjects in the study
of EL. Subjects are colored red if they belong to (A): cluster with 757
subjects enriched of Russians; (B): cluster with 1416 subjects enriched
of British subjects; (C) cluster with 559 subjects enriched of Danish
subjects; (D) cluster with 635 subjects enriched of Danish subjects;
(E) cluster with 207 subjects enriched of British subjects.
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ing. In all 5 clusters, the effect of APOE e4 is deleterious on longevity with worst

effect in subjects of British ancestry (OR = 0.3, 95% CI: 0.21, 0.44) and slightly

less severe effect in subjects with North Eastern Europeans ethnicities. None of

the pairwise differences of genetic effects between the 5 clusters was statistically

significant. However, when the effect of the cluster enriched of British ancestry

was compared to the effect of the other 4 clusters combined, the difference was

borderline significant (p = 0.06). In the other clusters, the genetic association did

not reach statistical significance and it is noticeable that in the cluster enriched of

Southern Italians with N = 1309, the effect of e4 on EL was substantially smaller

than in other ethnic groups (OR = 0.82, p = 0.31) (Table 3.3). We present next the

results in two specific European ethnic groups.

3.3.1 Effect of APOE in Italians

The cluster enriched of Southern Italians with N = 1309 includes 77% of subjects

of South Italian ancestry (Tables 3.2, 3.3 and Figure 3.2-A) with 805 subjects from

the SICS (Table 2.1) who live in South Italy, and 504 subjects who live in U.S.A.

since they were enrolled from different studies (Figure 3.4). In this cluster, neither

the effect of APOE e2 nor e4 were statistically significant when the data were an-

alyzed without adjustment to the country of residence (carriers of e2: OR for EL

= 1.27, 95% CI: 0.92, 1.76; carriers of e4: OR for EL = 0.82, 95% CI: 0.56, 1.20). To

investigate the interaction between APOE alleles and country of residence, we an-

alyzed the data in this cluster using a logistic regression model that included the

APOE effect, sex, country of residence indicator variable coded as 0 for subjects

living in U.S.A., and 1 for subjects living in Italy, and the interaction term between

the indicator variable and the genetic effect. We did not adjust for PCs because
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Table 3.4: Gene-environment model parameters (logistic regression)
testing association between APOE e4 and EL in cluster 1309 enriched
of subjects of South Italian descent.

Estimate SE p
(Intercept) β0 = −0.68 0.28 0.02

APOE β1 = −1.25 0.48 0.01
Sex β2 = −0.30 0.16 0.06

ENV β3 = −0.40 0.17 0.02
APOE x ENV β4 = 1.44 0.52 0.01

β0, ..., β4 are model parameters; variable ENV is coded 0 if subjects live in the U.S.A., and
1 if they live in Italy. The model is adjusted by Sex (coded as 1 for males and 0 for
females).

the dataset is genetically homogeneous and we conducted separate analyses for

the effect of APOE e2 and e4. We did not detect a statistical significant interac-

tion between residence and the effect of APOE e2. However, the model with the

APOE e4 allele had a significant interaction between residence and the e4 effect

(Table 3.4). EL was 71% less likely in Italians with one copy of e4 vs e3e3 who

live in U.S.A. (OR = 0.29, 95% CI: 0.11, 0.73). However, there was no significant

association between e4 and EL in Italians who live in Italy (OR = 1.21, 95% CI:

0.79, 1.86), although a sample size of 805 provides more than 75% power to de-

tect an OR > 1.2. In order to remove confounding due to population structure,

we also re-analyzed the data after removing 157 subjects who mostly live in South

Italy, but whose ethnicity is more consistent with Northern Italians based on the

PC1-PC2 plot (Figure 3.4). After removing these subjects, the statistical estimates

were similar with the estimates from the analyses done on the whole cluster 1309.

Specifically, EL was 81% less likely in Italians with one copy of e4 vs e3e3 who live

in U.S.A. (OR = 0.19, 95% CI: 0.04, 0.80), and there was no significant association

between e4 and EL in Italians who live in Italy (OR = 1.21, 95% CI: 0.79, 1.85)
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Figure 3.4: Scatter plots of principal components PC1-PC2 and PC3-
PC4 from genome-wide genotype data of all subjects in the EL study.
Subjects are colored in red if they are in the cluster of 1309 subjects of
Southern Italian descent and live in South Italy. Subjects in blue de-
note individuals in this cluster who live in the U.S.A. On the scatter
plot in the left panel, subjects with PC1 > −0.005 are more consistent
with Northern Italian ethnicity, rather than Southern Italian ethnic-
ity.

3.3.2 Effect of APOE in Danish

There were five distinct clusters enriched of subjects of Danish ancestry found to

have ethnic-specific effects of APOE alleles on EL (Tables 3.2 and 3.3), i.e. clusters

with 437 (Danish_1), 198 (Danish_2) and 766 (Danish_3) subjects for APOE e2, and

clusters with 559 (Danish_4) and 635 (Danish_5) subjects for APOE e4. The LLFS

enrolled participants in both the U.S.A. and Denmark, and therefore we could ex-

amine how country of residence modifies the effects of APOE on EL. Table 3.5 sum-

marizes the distribution of Danish subjects in the 5 clusters by residence (Denmark

or U.S.A.). Interestingly, while e2 was significantly positively associated with EL

in the Danish_1 cluster that includes 72% of Danish living in Denmark (OR = 2.24,

95% CI: 1.35, 3.73), this association in the Danish_3 cluster that includes only 7% of

Danish living in Denmark was not significant (OR = 1.13, 95% CI: 0.75, 1.69), and

the ORs were significantly different (p = 0.04). The OR for EL in carriers of e4 in

the Danish_4 cluster that includes 90% of Danish living in the U.S.A. (OR = 0.44,
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Table 3.5: Distribution of countries where subjects live for clusters
enriched of Danish ethnicity.

Cluster, No. subjects Live in U.S.A. Live in Denmark
Danish_1, 437 28% 72%
Danish_2, 198 40% 60%
Danish_3, 766 93% 7%
Danish_4, 559 90% 10%
Danish_5, 635 29% 71%

Detailed information for each cluster can be found in Tables 3.2 and 3.3. We refer to the
clusters in which large majority (> 65%) of subjects live in U.S.A. or Denmark as clusters
with Danish living in the U.S.A. (clusters Danish_3 and Danish_4) versus Danish living in
Denmark (clusters Danish_1 and Danish_5) respectively.

95% CI: 0.26, 0.72) was slightly smaller than the OR for EL in carriers of e4 in the

Danish_5 cluster that includes only 29% of Danish living in the U.S.A. (OR = 0.47,

95% CI: 0.28, 0.78), and the ORs were not significantly different (p = 0.86).

3.4 DISCUSSION

APOE e2 and e4 alleles are known to have an effect on EL (Schachter et al., 1994; Se-

bastiani et al., 2019; Schupf et al., 2013) but the analyses in this chapter suggest that

the magnitude of these associations is ethnic-specific among Europeans. I used a

novel algorithm to search for clusters of individuals characterized by specific ge-

netic ancestry and varying genetic effects. Our analysis discovered one group of

North-Eastern European ancestry that demonstrated a strong protective effect of

APOE e2 on EL, and 2 groups of North European ancestry with different, dele-

terious effects of APOE e4 on EL. While with larger sample sizes the genetic as-

sociation between APOE e2 and EL could become statistically significant in more

European ethnicities, our analysis suggests that the protective effect of APOE e2

on EL in most European ethnicities is smaller than the effect in Ashkenazi Jewish
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/ Northern European and Danish subjects living in Denmark.

Conomos et al. in (Conomos et al., 2015) have shown that the PCA of genetic

data might capture family relatedness instead of population structure when ap-

plied to the datasets with relatedness. Even though our combined dataset con-

tains 14% related individuals (Table 2.1), the evaluation of PopCluster on this very

dataset had demonstrated that the algorithm worked well (Gurinovich et al., 2019).

I also provided evidence that the genetic effect of APOE alleles changes based

on country of residence in addition to genetic ancestry, suggesting the presence of

environmental risk factors that modify the genetic effects of APOE after controlling

for genetic ancestry. For example, our analysis showed that the deleterious effect

of APOE e4 in subjects with Southern Italian ancestry differs between those living

in the South of Italy or the U.S.A. These results suggest that factors related to living

in the South of Italy may mitigate the deleterious effect of APOE e4. The results

are consistent with previous findings that the Mediterranean diet reduces the risk

of Alzheimers disease (Sindi et al., 2015), and APOE e4 carriers versus non-carriers

might have an exaggerated or different response to nutrition and other factors in

relation to Alzheimers and cognitive function (Kivipelto et al., 2008; Hanson et al.,

2015; Bos et al., 2019). Similarly, my analyses showed that the protective effect of

the e2 allele in subjects with Danish ancestry is stronger in those individuals who

live in Denmark and becomes much weaker in individuals of Danish ancestry who

live in the U.S.A. The overall diet composition (energy/protein/fat/carbohydrate

amounts) in Denmark and the U.S.A. is comparable; however, the distribution of

consumption of saturated and unsaturated fatty acids varies between Denmark

and the U.S.A. diets (Auestad et al., 2015; Harika et al., 2013). Another difference

between the two countries’ diets is Denmark’s higher consumption of dairy prod-
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ucts and fish compared to the U.S.A. (Auestad et al., 2015). These differences are

suggestive of complex gene-environment interaction of APOE and nutrition on EL

that could lead to the development of natural interventions for healthy aging.

The APOE protein is essential for healthy cholesterol metabolism and central

nervous system cholesterol transport. Total APOE levels in plasma in very old in-

dividuals were found to be associated with lower total cholesterol and LDL choles-

terol levels, which in turn were associated with the APOE e2 allele (Muenchhoff

et al., 2017). The APOE e4 allele has been associated with abnormal lipid metabo-

lism in cerebrospinal fluid, and reduced capacity to deliver neuronal cholesterol

(Liu et al., 2013). Detrimental effects of APOE e4 may be alleviated through diet

interventions (Ordovas, 2002), specifically Mediterranean diet (increased omega-3

fatty acids) (Bos et al., 2019; Grimm et al., 2017). Additionally, APOE e4 carri-

ers may be more sensitive to cholesterol and saturated fatty acids (Carvalho-Wells

et al., 2012). APOE e2 carriers with metabolic syndrome might benefit from diet

interventions as well (Fallaize et al., 2017). Overall, these results are consistent

with the hypothesis of an interaction between APOE and nutrition that differs by

European ethnicity.
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CHAPTER 4

GWAS of rare variants and extreme longevity

4.1 INTRODUCTION

The strong heritability of EL supports the hypothesis that this is a genetically-

regulated trait. Several GWASes have identified common genetic variants that

are associated with EL (Sebastiani et al., 2017b; Broer & van Duijn, 2015; Stallard

et al., 2018). However, there are only a few significant hits that have been repli-

cated in multiple studies, e.g. SNPs of APOE gene (Sebastiani et al., 2017b; Pilling

et al., 2017). We and others hypothesize that due to the rarity of the EL phenotype,

less common or rare variants could be important in deciphering the heritability of

EL (Broer & van Duijn, 2015). In this chapter I will describe a new study that I

conducted to discover uncommon SNPs that are associated with EL.

I conduct a GWAS of EL in a case-control dataset of 4216 individuals, including

1317 individuals who survived past the 1% age of survival of birth and sex spe-

cific cohorts and 2899 controls defined as people who did not, with median age at

death or last contact of 104 years. The dataset consists of subjects from the NECS

and Illumina controls. All of the subjects genotype data were imputed with the

Haplotype Reference Consortium (HRC) panel of 65,000 haplotypes using Michi-

gan Imputation server which resulted in about 9 million high-imputation quality

SNPs including about 4.5 million rare and uncommon SNPs (MAF < 0.05). The as-

sociations are tested using a mixed effect logistic regression model with genotype-

based kinship covariance of the random effects to adjust for cryptic relations using

the package GENESIS. The analysis discovers 61 genome-wide significant SNPs (p

< 5E-08) including fifteen new loci in chromosomes 4, 6, 7, 8, 9, 10, 14 and 15 in
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addition to the APOE locus. Additionally, I use serum protein data available for a

subset of subjects and find significant protein quantitative trait loci (pQTLs) which

suggest new biological mechanism involved in extreme human longevity.

4.2 MATERIALS AND METHODS

4.2.1 Study populations

4.2.1.1 New England Centenarian Study

The New England Centenarian Study (NECS) is a study of centenarians, their long-

lived siblings, offspring, and additional unrelated controls selected because their

parents died before reaching the median age survival of their birth year cohort (Se-

bastiani & Perls, 2012). The study began by recruiting centenarians in the Boston

metropolitan area in 1994 and expanded in the late 1990s to include North Amer-

ica and English speaking countries. The age of participants is carefully validated

(Young et al., 2011), and participants are followed-up annually. Genome-wide

genotype data of 2105 samples were previously generated using Illumina SNP ar-

rays (Sebastiani et al., 2012). Recently additional 370 DNA samples with 284 cen-

tenarians were genotyped using Illumina Global Screening Array. The combined

2475 NECS subjects were imputed to the HRC panel (version r1.1 2016) of 64,940

haplotypes with 39,635,008 sites using the Michigan Imputation Server (Das et al.,

2016). Eagle2 (Loh et al., 2016) and European population were selected for phasing

and quality control respectively. All subjects provided informed consent approved

by the Boston University Medical Campus IRB.
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4.2.1.2 Illumina controls

To increase statistical power, we added controls selected from the Illumina repo-

sitory. This repository includes approximately 6000 samples of various races and

ethnicities used as controls of a variety of GWASs. The data can be accessed using

the protocol available from here: http://www.illumina.com/documents/icontrol-

db/document_purpose.pdf. We used this set of controls as referent population in

the study of longevity since we expect that only a small portion of them would

become centenarians. By pooling controls from different studies we also expect

no bias (e.g. controls with no cardiovascular disease, or controls with no cancer).

Genome-wide genotype data were generated with a variety of Illumina SNP ar-

rays and data were cleaned carefully in (Sebastiani et al., 2012). We selected 3613

subjects to genetically match the European ethnicity of subjects from the NECS us-

ing genome-wide PCs. Genotype data were imputed to the HRC panel using the

Michigan Imputation Server as in the NECS.

4.2.2 GWAS dataset

4.2.2.1 Selection of subjects

NECS and Illumina imputed datasets were aggregated for pair-wise genome-wide

identity-by-descent (IBD) estimation and PCA. For these analyses, we first ex-

cluded the SNPs in high-linkage regions, such as Major Histocompatibility Com-

plex region on chromosome 6 and region of inversion polymorphism on chromo-

some 8. Additionally, ambiguous SNPs (AT, TA, GC, CG) and variants that are

larger than a single variation were removed. Next, we pruned the genotype data

to only keep independent SNPs. All these and following analyses (unless men-

tioned otherwise) were done using PLINK (Purcell et al., 2007; Chang et al., 2015)
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Figure 4.1: Scatter plots of principal components PC1-PC2 and PC3-
PC4 from genome-wide genotype data of 6,088 genotyped and im-
puted subjects from the NECS and Illumina control repository. Sub-
jects are colored in red if we identified them as Europeans through
removal of a tail on PC1-PC2 plot and re-calculation of PCs.

and scripts implemented in the R programming language (R Core Team, 2018).

IBD analysis was conducted to detect samples contamination, swaps, duplications,

and to validate known family relation. In addition, IBD analysis was used in the

PCA estimation. PCA was performed using the EIGENSOFT software (Price et al.,

2006). Genome-wide principal components calculated using genotype data of all

6,088 subjects are presented in Figure 4.1. The ethnicity labels come from the ex-

perimental cut-off and re-calculation of principal components to distinguish Eu-

ropean subjects from others. Since the majority of subjects in our dataset are of

European descent, we continued the analyses using only European subjects. Re-

calculated PCs for the European subjects are presented in Figure 4.2. The final

dataset consisted of 4,216 subjects of European descent with 1,317 cases with me-

dian age = 104 and standard deviation = 3.7. EL was defined as survival past the 1

percentile age based on a birth cohort: 96 for 1900 birth cohort, 97 - for 1910, 98 -

for 1920 for males; 100 - for females for all birth cohorts.
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Figure 4.2: Scatter plots of re-calculated principal components PC1-
PC2 and PC3-PC4 from genome-wide genotype data of European
subjects in NECS and Illumina control repository (depicted as red
dots in Figure 4.1).

4.2.2.2 Selection of SNPs

To select a set of SNPs to analyze, we first removed duplicate, monomorphic and

ambiguous SNPs (AT, TA, GC, CG). Next, we identified SNPs that are of high-

imputation quality (Rsq > 0.7) and are present in both NECS and Illumina geno-

type datasets, which resulted in 9,039,731 SNPs. Out of these SNPs, 4,593,958 have

MAF < 0.05, and 2,915,050 have MAF < 0.01.

4.2.3 Protein data

A custom-designed aptamer profiling platform was used at SomaLogic Inc. (Boul-

der, US) to measure protein levels, as previously described (Davies et al., 2012;

Emilsson et al., 2018; Hathout et al., 2015). Serum samples were selected from

227 participants (79 centenarians, 83 centenarians’ offspring, and 65 controls) who

were alive at least one year after the blood draw and were free of major aging-

related diseases at least one year from the time of the blood draw. The 227 serum

samples from the NECS biorepository were assayed with 5,034 SOMAmers. The
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Table 4.1: Subjects with SOMAscan protein data.

Centenarians Offspring Controls
Numbers 77 82 62

Mean age at serum yrs (sd) 105.7 (3.7) 71.0 (9.1) 70.6 (5.2)
Mean age at last contact 107.5 80.2 78.7
% alive (as of Dec. 2017) 31% 84% 84%

% Female 66% 66% 55%

Mean age at serum yrs (sd): mean age at serum draw in years with standard deviation;
mean age at last contact: mean age at death for deceased subjects and age at last follow
up for those who are still alive (based on 2017 follow up).

samples were randomized into analytic batches of 84 samples or less and the plates

were assayed as a set, to avoid biases from technical procedures and sample pro-

cessing. The SOMAscan results passed a quality control assessment for median

intra- and inter-assay variability similar to variability previously reported in the

SOMAscan assays (Candia et al., 2017). Genome-wide genotype data are available

for the 221 subjects (77 centenarians, 82 offspring, and 62 controls) with the protein

data (Table 4.1).

4.2.4 Statistical analysis

4.2.4.1 GENESIS

First, we used the GENESIS R package version 2.12.2 (Conomos et al., 2019) to

perform the GWAS of EL. GENESIS contains functions for analyzing genetic data

from samples with population structure and/or relatedness. The VCF files ob-

tained from the imputation step were processed and converted to the genomic

data structure (GDS) files which are accepted by GENESIS. GENESIS was used to

calculate kinship estimates using the KING algorithm (Manichaikul et al., 2010)

and PCs based on a pruned independent set of SNPs. Kinship estimates were re-
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Figure 4.3: GENESIS GWAS flow chart. Modified by Zeyuan Song
from (Conomos et al., 2019).

computed after adjusting for ancestry (PC1 and PC2). The general workflow of

GWAS as done with GENESIS is depicted in Figure 4.3. We fit a logistic mixed

effect model with genotype-based kinship to test SNP-phenotype associations:

log

(
p(EL)

1−p(EL)

)
= β0+β1SNP+β2PC1+β3PC2+β4PC3+β5PC4+β6Sex+β7Kinship,

(4.1)

where p(EL) is the probability of a subject having the phenotype of EL expressed

as 0 for its absence and 1 for presence; β0, ..., β7 are model parameters; and the

variable SNP is the number of coded alleles in the genotypes, i.e. additive genetic

model. The model is adjusted by PC1, ..., PC4, calculated using the independent

set of SNPs, and additional covariates, such as Sex and kinship estimate (Kinship).
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4.2.4.2 Bayesian logistic regression

Because GENESIS uses large sample approximation to compute p-values, we im-

plemented a step-2 Bayesian procedure to validate the significant associations.

Bayesian logistic regression model was adjusted for sex and four genome-wide

PCs, and random effects to model the within family correlation. The model was

implemented using the rjags R package (Plummer, 2018) which is an interface to

the JAGS MCMC library.

4.2.4.3 pQTL analysis

The expression data of 4,785 proteins were log-transformed, and for each pro-

tein, values that differed from the protein’s mean by more than three standard

deviations were removed. The following linear regression model was fit for each

protein-SNP combination:

Protein = β0 + β1SNP + β2Gender + β3Age.serum, (4.2)

where Protein is the log-transformed value of the amount of protein; β0, ..., β3 are

model parameters; and the variable SNP is the number of coded alleles in the

genotypes, i.e. additive genetic model. The model is adjusted by Gender and

Age.serum (age at blood draw). We selected significant protein-SNP pairs using

a false discovery rate (FDR) < 0.05 as level of significance to correct for multiple

testing.
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Table 4.2: Genome-wide significant loci as returned by GENESIS.

SNP Chr Ref/Alt CA (CAF) Score Score.pval Genes
rs429358 19 T/C C (0.11) -11 3E-28 APOE

rs796804885 7 T/G G (0.63) 8 4E-15
EVX1,

HIBADH
rs10457056 6 C/T T (0.01) 8 4E-14 EPM2A
rs9671417 14 A/G G (0.01) 7 1E-11 FSCB
rs6977506 7 A/G G (0.1) 7 6E-11 DOCK4
rs7182629 15 A/C C (0.01) 6 8E-10 ZNF609

rs10973748 9 G/T T (0.04) 6 3E-09
SHB,

ALDH1B1

rs1987475 7 G/A A (0.67) -6 3E-09
TRY2P,

MTRNR2L6

Chr: chromosome; Ref/Alt: reference and alternative alleles; CA (CAF): coded allele with
coded allele frequency; Score: the chi-squared score test statistic; Score.pval: the p-value
based on the score test statistic; Genes: closest gene/genes (annotation was done using
ANNOVAR (Hakonarson et al., 2010)).

4.3 RESULTS

4.3.1 GENESIS

The GWAS implemented with GENESIS identified 426 SNPs with p-value < 1E-05,

and 35 SNPs with genome-wide level of significance (p-value < 1E-08). The QQ-

plot and Manhattan plot of results are presented in Figures 4.4 and 4.5 respectively.

There are eight visible genome-wide significant loci on the Manhattan plot, and the

top significant SNPs from these loci are presented in Table 4.2.

4.3.2 Bayesian logistic regression

To validate the results, we fit a Bayesian logistic regression model as described in

Section 4.2.4.2 to the top 426 SNPs identified by GENESIS. The results are compa-

rable with GENESIS, except for three SNPs with very small coded allele counts.

GENESIS found those SNPs to be significantly associated with EL; however, the
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Figure 4.4: QQ plot of the GWAS of EL as implemented by GENESIS.
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Figure 4.5: Manhattan plot of the GWAS of EL as implemented by
GENESIS.

Bayesian analysis did not identify them as very significant as it could not be in-

ferred from such small allele counts (Table 4.3). There are 61 SNPs that were found

to have a genome-wide level significant association with EL by Bayesian logistic

regression, with sixteen distinct loci. The top significant SNPs from those loci are

presented in Table 4.4. All of the SNPs (except for rs429358 SNP of APOE gene) are

novel genome-wide level significant targets of EL. Next, I will refer to alleles that

have a protective effect on EL (OR > 1) and become more common in centenari-

ans (CAF in cases > CAF in controls) as longevity alleles. Out of 16 loci, there are

five rare (CAF in controls < 0.05) longevity alleles: two SNPs on chromosome 6:

rs10457056 (EPM2A) and rs12524467 (LY6G6D), one on chromosome 9: rs10973748

(SHB, ALDH1B1), one on chromosome 14: rs9671417 (FSCB), and one on chromo-

some 15: rs7182629 (ZNF609). Additionally, there are four uncommon (0.05 < CAF

in controls < 0.1) longevity alleles: rs13129138 (SLC2A9, WDR1) on chromosome 4,

rs1042151 (HLA-DPB1) on chromosome 6, rs6977506 (DOCK4) on chromosome 7,

and rs72771826 (LINC00707, SFMBT2) on chromosome 10.

Out of sixteen genome-wide level significant loci (Table 4.4), five SNPs are sig-
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Table 4.3: SNPs for which GWAS results generated by GENESIS are
not reliable.

SNP Chr Ref/Alt
CA

(cases/controls)
p-value

(GENESIS))
p-value

(Bayesian)
rs60969364 9 T/C C (0.002/0) 3E-06 0.06

rs186886142 9 G/A A (0.002/0) 3E-06 0.06
rs527967377 3 G/A A (0.003/0) 3E-07 0.003

CA (cases/controls): coded allele with its frequency in cases and controls.

Table 4.4: Genome-wide significant loci as identified by Bayesian
analysis.

SNP Ref/Alt
CA

(cases/controls) OR P-value Genes

rs796804885 (7) T/G G (0.69/0.6) 1.53 0
EVX1,

HIBADH
rs429358 (19) T/C C (0.05/0.14) 0.32 0 APOE
rs10457056 (6) C/T T (0.02/0.004) 7.59 8E-15 EPM2A
rs6977506 (7) A/G G (0.14/0.08) 1.72 7E-12 DOCK4

rs10973748 (9) G/T T (0.06/0.03) 2.21 7E-12
SHB,

ALDH1B1
rs7182629 (15) A/C C (0.02/0.003) 6.26 1E-10 ZNF609

rs2855963 (7) G/A A (0.63/0.7) 0.73 4E-10
TRY2P,

MTRNR2L6
rs1042151 (6) A/G G (0.1/0.06) 1.66 1E-09 HLA-DPB1
rs9671417 (14) A/G G (0.02/0.001) 13.89 2E-09 FSCB

rs72771826 (10) G/A A (0.15/0.1) 1.55 2E-09
LINC00707,

SFMBT2
rs6460902 (7) G/A A (0.48/0.41) 1.3 2E-09 TMEM106B
rs12524467 (6) G/A A (0.04/0.02) 2.27 2E-09 LY6G6D

rs13129138 (4) C/A A (0.13/0.09) 1.58 3E-09
SLC2A9,
WDR1

rs7838131 (8) G/A A (0.62/0.57) 1.3 4E-09 GATA4

rs2008074 (9) A/C C (0.18/0.14) 1.44 5E-09
LINC01503,
LINC00963

rs1537374 (9) A/G G (0.48/0.56) 0.77 7E-09 CDKN2B-AS1

SNP: SNP id with its chromosome in parentheses; Ref/Alt: reference and alternative
alleles; OR: odds ratio for EL in carriers of the allele; P-value: p-value of the association;
Genes: closest gene/genes (annotation was done using ANNOVAR (Hakonarson et al.,
2010)).
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nificant eQTLs (obtained from the GTEx Portal on 03/04/2019). SNP rs2855963

(chr 7) is a significant cis-eQTL for TRBV7-4 gene in whole blood. SNP rs1042151

(chr 6) is a significant cis-eQTL for HLA-DPA1, HLA-DPB2, HLA-DRB5, NOTCH4,

RPL32P1 genes in multiple tissues. SNP rs6460902 (chr 7) is a significant cis-eQTL

for TMEM106B gene in multiple tissues. SNP rs12524467 (chr 6) is a significant

cis-eQTL for C4A, LTA, LY6G5B, LY6G5C, SKIV2L, TNXA genes, and trans-eQTL

for Y_RNA gene (chr 20) in multiple tissues. SNP rs7838131 (chr 8) is a signifi-

cant cis-eQTL for AF131215, AF131216, BLK, C8orf49, CTSB, DEFB134, ENPP7P12,

FAM167A, FAM66A, FAM90A25P, FDFT1, NEIL2, RP11-148O21, RP11-351I21, RP11-

481A20, and TDH genes in multiple tissues.

4.3.3 Replication

This new GWAS replicated SNPs on or near APOE gene which is a widely studied

and replicated gene in multiple other studies of longevity and ageing, including

ours (Sebastiani et al., 2017b; Pilling et al., 2017). I discuss this gene in great detail

in Chapter 3 of this dissertation. Additionally, this new GWAS of EL replicated

all, except for one, significant SNPs from our previous GWAS of EL (Sebastiani

et al., 2017b). However, some of the genome-wide level significant SNPs from the

previous GWAS did not reach genome-wide level of signficance in the new GWAS.

The SNP rs7185374 on chromosome 16 that did not replicate was not in the tested

dataset, and was probably dropped due to law imputation quality score or during

other quality control steps.

We found SNP rs1537374 (CDKN2B-AS1) on chromosome 9 to have negative

association with EL (OR = 0.77) (Table 4.4), which replicates the results of one of

the previous analyses from our group (Sebastiani et al., 2012). This SNP was also
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implicated in the variation of lifespan from a recent large study of 1 million parent

lifespans (Timmers et al., 2019). Additionally, it has previously been found to be

significantly associated with various cardiometabolic traits, such as ankle brachial

index (Murabito et al., 2012), abdominal aortic aneurysm (Jones et al., 2017), and

myocardial infarction (the CARDIoGRAMplusC4D Consortium, 2015).

We found SNP rs915179 (LMNA) on chromosome 1 (Ref/Alt = A/G with CAF

(G) = 0.42) to have positive (OR = 1.28) significant (but not genome-wide level

significant) association with EL (p-value = 1E-06), which replicates the results of

two other analyses from our and other groups (Sebastiani et al., 2012; Conneely

et al., 2012). This SNP was also found in the LongevityMap database (Budovsky

et al., 2013) as being significantly associated with longevity.

4.3.4 pQTL analysis

I combined normalized 4785 protein and top 426 SNPs data for the 221 subjects

described in Table 4.1. First, I removed SNPs with zero variance and SNPs with

MAF < 0.025 for the subjects with non-missing protein data. Next, I fit linear mod-

els described by Equation 4.2 for each of the remaining protein-SNP pairs. After

protein-SNP pairs were sorted by smallest to largest p-values, SNPs within 10,000

bps of the most significant SNP-protein association, were removed for each SNP-

protein pair. After these QC steps, 366,260 protein-SNP pairs were left for further

analysis and interpretation. This number (N = 366, 260) was used as a number of

tests for multiple comparison correction.

I find 42 protein-SNP pairs with a significant association at 5% FDR. 29 of these

associations are with SNPs from the APOE region. Previously in a separate anal-

ysis (Sebastiani et al., SUBMITTED), we correlated APOE genotypes with the pro-
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tein data using the same dataset as for this analysis. We discovered a signature

of 16 proteins that are associated with APOE genotypes (Table 4.5), which is al-

most an identical set of proteins discovered here through individual pQTLs of

SNPs on chromosome 19. This protein signature is also consistent with the results

from (Emilsson et al., 2018). Here I show the correlation results between APOE

genotypes and the proteins. The 16 proteins that passed the significance threshold

include 9 overexpressed in carriers of the e2 allele (Figure 4.6-A), and 7 overex-

pressed in carriers of the e4 allele (Figure 4.6-B). Besides APOE and APOB, the

other proteins have not previously been reported as directly associated with the

APOE genotypes. The pattern of APOB expression by APOE genotype is consis-

tent with results published in (Muenchhoff et al., 2017) and (Soares et al., 2012),

and the rare e2e2 genotype was associated with the lowest APOB level. The level

of the APOE probe included in this list is lowest in carriers of e2 and increases in

carriers of e3 and e4. Interestingly, the effect of the e2 allele on most proteins was

additive in the log-scale, as shown by the almost linear change of log-expression

for ordered genotypes in Figures 4.6-A and -B. The genetic effect was recessive on

APOB, and dominant on BIRC2. The 16 proteins have a variety of functions in-

cluding regulation of cell proliferation, cell surface receptor, protein binding, and

immune system. We annotated the proteins’ functions using the human protein

atlas (https://www.proteinatlas.org/) (Uhlén et al., 2015), Entrez (Maglott et al.,

2005), Ensembl (Frankish et al., 2017), and DAVID (Sherman et al., 2008; Huang

et al., 2009) (annotations retrieved on 09/2018). Below is a summary of each pro-

tein’s functions:

• BIRC2 (11q22.2 - Baculoviral IAP Repeat Containing 2): This protein is a

member of a family of proteins that inhibits apoptosis by binding to tumor

https://www.proteinatlas.org/
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necrosis factor receptor-associated factors TRAF1 and TRAF2, probably by

interfering with activation of ICE-like proteases. This encoded protein in-

hibits apoptosis induced by serum deprivation and menadione, a potent in-

ducer of free radicals.

• CEP57 (11q21 - Centrosomal Protein 57): This is a cytoplasmic protein called

Translokin. This protein localizes to the centrosome and has a function in

microtubular stabilization. The N-terminal half of this protein is required for

its centrosome localization and for its multimerization, and the C-terminal

half is required for nucleating, bundling and anchoring microtubules to the

centrosomes. This protein specifically interacts with fibroblast growth factor

2 (FGF2), sorting nexin 6, Ran-binding protein M and the kinesins KIF3A and

KIF3B, and thus mediates the nuclear translocation and mitogenic activity of

the FGF2. It also interacts with cyclin D1 and controls nucleocytoplasmic

distribution of the cyclin D1 in quiescent cells. This protein is crucial for

maintaining correct chromosomal number during cell division.

• S100A13 (1q21.3 - S100 Calcium Binding Protein A13): This protein is a mem-

ber of the S100 family of proteins containing 2 EF-hand calcium-binding

motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a

wide range of cells, and involved in the regulation of a number of cellular

processes such as cell cycle progression and differentiation. This protein is

widely expressed in various types of tissues with a high expression level in

thyroid gland. In smooth muscle cells, this protein co-expresses with other

family members in the nucleus and in stress fibers, suggesting diverse func-

tions in signal transduction.
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• LRRN1 (3p26.2 - Leucine Rich Repeat Neuronal 1): No summary was avail-

able for this protein.

• VPS29 (12q24.11 - Vacuolar Protein Sorting-Associated Protein 29): This pro-

tein is a component of a large multimeric complex, termed the retromer com-

plex, which is involved in retrograde transport of proteins from endosomes

to the trans-Golgi network. This VPS protein may be involved in the forma-

tion of the inner shell of the retromer coat for retrograde vesicles leaving the

prevacuolar compartment.

• PSME1 (14q12 - Proteasome Activator Subunit 1): The 26S proteasome is a

multicatalytic proteinase complex with a highly ordered structure composed

of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4

rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits

and 2 rings are composed of 7 beta subunits. The 19S regulator is composed

of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and

a lid, which contains up to 10 non-ATPase subunits. Proteasomes are dis-

tributed throughout eukaryotic cells at a high concentration and cleave pep-

tides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway.

An essential function of a modified proteasome, the immunoproteasome, is

the processing of class I MHC peptides. The immunoproteasome contains an

alternate regulator, referred to as the 11S regulator or PA28, that replaces the

19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator

have been identified. This gene encodes the alpha subunit of the 11S regula-

tor, one of the two 11S subunits that is induced by gamma-interferon. Three

alpha and three beta subunits combine to form a heterohexameric ring.
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• APOE (19q13.32 - Apolipoprotein E): This protein is a major apoprotein of the

chylomicron. It binds to a specific liver and peripheral cell receptor, and is es-

sential for the normal catabolism of triglyceride-rich lipoprotein constituents.

• TBCA (5q14.1 - Tubulin Folding Cofactor A): This protein is one of four pro-

teins (cofactors A, D, E, and C) involved in the pathway leading to correctly

folded beta-tubulin from folding intermediates. Cofactors A and D are be-

lieved to play a role in capturing and stabilizing beta-tubulin intermediates in

a quasi-native confirmation. Cofactor E binds to the cofactor D/beta-tubulin

complex; interaction with cofactor C then causes the release of beta-tubulin

polypeptides that are committed to the native state.

• UBA2 (19q13.11 - Ubiquitin Like Modifier Activating Enzyme 2): Post-trans-

lational modification of proteins by the addition of the small protein SUMO

(Small Ubiquitin-like Modifier), or sumoylation, regulates protein structure

and intracellular localization. SAE1 (SUMO1 Activating Enzyme Subunit 1)

and UBA2 form a heterodimer that functions as a SUMO-activating enzyme

for the sumoylation of proteins.

• C5orf38 (5p15.33 - Chromosome 5 Open Reading Frame 38): No summary

was available for this protein.

• CTF1 (16p11.2 - Cardiotrophin 1): This protein is a secreted cytokine that

induces cardiac myocyte hypertrophy in vitro. It has been shown to bind

and activate the ILST/gp130 receoptor.

• KMT2C (7q36.1 - Lysine Methyltransferase 2C): This protein is a nuclear pro-

tein with an AT hook DNA-binding domain, a DHHC-type zinc finger, six

PHD-type zinc fingers, a SET domain, a post-SET domain and a RING-type
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zinc finger. This protein is a member of the ASC-2/NCOA6 complex (AS-

COM), which possesses histone methylation activity and is involved in tran-

scriptional coactivation.

• KIN (10p14 - Kin17 DNA and RNA Binding Protein): This protein is a nu-

clear protein that forms intranuclear foci during proliferation and is redis-

tributed in the nucleoplasm during the cell cycle. Short-wave ultraviolet light

provokes the relocalization of the protein, suggesting its participation in the

cellular response to DNA damage.

• APOB (2p24.1 - Apolipoprotein B): This protein is the main apolipoprotein

of chylomicrons and low density lipoproteins. It occurs in plasma as two

main isoforms, apoB-48 and apoB-100: the former is synthesized exclusively

in the gut and the latter in the liver. The intestinal and the hepatic forms of

apoB are encoded by a single gene from a single, very long mRNA. The two

isoforms share a common N-terminal sequence. The shorter apoB-48 pro-

tein is produced after RNA editing of the apoB-100 transcript at residue 2180

(CAA->UAA), resulting in the creation of a stop codon, and early translation

termination.

• CRYZL1 (21q22.11 - Crystallin Zeta Like 1): This protein has sequence sim-

ilarity to zeta crystallin, also known as quinone oxidoreductase. This zeta

crystallin-like protein also contains an NAD(P)H binding site.

• CKAP2 (13q14.3 - Cytoskeleton Associated Protein 2): This is a cytoskeleton-

associated protein that stabalizes microtubules and plays a role in the regula-

tion of cell division. The protein is itself regulated through phosphorylation

at multiple serine and threonine residues.
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Table 4.5: Signature of 16 biomarkers associated with APOE geno-
types.

Uniprot geneID e2e2 e2e3 e2e4 e3e4 p
Q13490 BIRC2 5.87 3.23 3.67 0.90 1.55E-61
Q86XR8 CEP57 1.62 1.23 1.22 1.01 1.96E-28
Q99584 S100A13 0.51 0.78 0.47 0.67 2.69E-23

Q6UXK5 LRRN1 0.89 0.96 1.17 1.40 1.17E-19
Q9UBQ0 VPS29 1.55 1.18 1.26 0.98 2.84E-19
Q06323 PSME1 1.51 1.27 1.22 0.99 5.23E-19
P02649 APOE 0.86 0.77 1.15 1.16 9.19E-11
O75347 TBCA 1.08 1.02 0.88 0.83 1.60E-10

Q9UBT2 UBA2 1.77 1.13 1.31 0.98 5.44E-10
Q86SI9 C5orf38 0.73 0.84 0.88 1.29 7.68E-10
Q16619 CTF1 0.94 0.95 1.20 1.11 9.63E-09

Q8NEZ4 KMT2C 1.33 1.11 1.06 0.99 2.15E-08
O60870 KIN 1.23 1.08 1.22 1.02 3.10E-07
P04114 APOB 0.50 0.86 0.97 1.07 3.36E-06
O95825 CRYZL1 0.89 0.88 0.70 1.11 7.07E-06

Q8WWK9 CKAP2 1.33 1.12 1.08 0.96 8.12E-06

Columns e2e2, e2e3, e2e4, e3e4 report fold change of protein level relative to e3e3. P is
p-value from F-test after adjusting for sex, age at blood draw, and length of sample
storage.



87

Figure 4.6: Distribution of protein intensity in log scale by APOE
genotypes. (A) Boxplot of 9 proteins that increase expression in car-
riers of the e2. (B) Boxplot of 7 proteins that increase expression in
carriers of the e4.
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The rest of the significant pQTLs at 5% FDR are the SNPs not on chromosome

19 (Table 4.6), with 9 distinct protein-SNP pairs (Table 4.7 and Figure 4.7):

• SNP rs11757313 is trans-pQTL for C7orf73 protein: SNP rs11757313 is lo-

cated on chromosome 6 and is a rare SNP (CAF (C) in controls = 0.005) that

becomes more common in centenarians (CAF in cases = 0.018) with a strong

protective effect on EL (OR = 3.78, p.value = 7.68E-08). SNP rs11757313 is

a trans-pQTL of C7orf73 (7q33) which is a short transmembrane mitochon-

drial protein 1. Having the C allele of rs11757313 is associated with increased

levels of protein C7orf73 (Figure 4.7-A). According to the Human Protein At-

las (Uhlen et al., 2017), C7orf73 is a favorable prognostic marker for ovarian

cancer, meaning higher levels of C7orf73 are associated with higher survival

from the ovarian cancer.

• SNP rs114202986 is cis-pQTL for MICA protein: SNP rs114202986 is located

on chromosome 6 and is a rare SNP (CAF (C) in controls = 0.04) that becomes

more common in centenarians (CAF in cases = 0.08) with a protective effect

on EL (OR = 1.67, p.value = 1.19E-06). SNP rs114202986 is a cis-pQTL of

MICA (6p21.33). Having the C allele of rs114202986 is associated with de-

creased levels of protein MICA (Figure 4.7-B). This SNP is also significant

eQTL of MICA, HCG27, HLA-B, HLA-C, POU5F1, PSORS1C3, Y_RNA genes

in multiple tissues (obtained from the GTEx Portal on 02/27/2019). Having

the C allele of rs114202986 is associated with increased levels of gene MICA.

Lower levels of MICA protein are associated with higher survival from the

cervical cancer (Uhlen et al., 2017). MICA is the highly polymorphic ma-

jor histocompatability complex class I chain-related protein A. This protein

product is expressed on the cell surface, although unlike canonical class I
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molecules it does not seem to associate with beta-2-microglobulin. It is a lig-

and for the NKG2-D type II integral membrane protein receptor. The protein

functions as a stress-induced antigen that is broadly recognized by intestinal

epithelial gamma delta T cells (provided by RefSeq, Jan 2014).

• SNP rs10457056 is cis-pQTL for GLP1R protein and trans-pQTL for SEMA4B

protein: SNP rs10457056 is located on chromosome 6 and is a rare SNP (CAF

(T) in controls = 0.004) that becomes more common in centenarians (CAF

in cases = 0.024) with strong protective effect on EL (OR = 7.59, p.value =

8.22E-15). SNP rs10457056 is cis-pQTL of GLP1R (6p21.2). Having the T al-

lele of rs10457056 is associated with decreased levels of the protein GLP1R

(Figure 4.7-D). The GLP1R is a 7-transmembrane protein that functions as

a receptor for glucagon-like peptide 1 (GLP-1) hormone, which stimulates

glucose-induced insulin secretion. This receptor, which functions at the cell

surface, becomes internalized in response to GLP-1 and GLP-1 analogs, and

it plays an important role in the signaling cascades leading to insulin secre-

tion. It also displays neuroprotective effects in animal models. The protein is

an important drug target for the treatment of type 2 diabetes and stroke (pro-

vided by RefSeq, Apr 2016). Additionally, SNP rs10457056 is trans-pQTL of

SEMA4B (15q26.1). Having the T allele of rs10457056 is associated with in-

creased levels of protein SEMA4B (Figure 4.7-C); however, only 1 subject in

the dataset has TT genotype with relatively low level of SEMA4B. Lower lev-

els of SEMA4B protein are associated with higher survival from renal and

lung cancers (Uhlen et al., 2017). Among SEMA4B’s related pathways are

apoptotic pathways in synovial fibroblasts and GPCR pathway. It inhibits

axonal extension by providing local signals to specify territories inaccessible
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for growing axons.

• SNP rs73210911 is trans-pQTL for HCAR2 protein: SNP rs73210911 is lo-

cated on chromosome 7 and is an uncommon SNP (CAF (A) in controls =

0.09) that becomes more common in centenarians (CAF in cases = 0.13) with

a protective effect on EL (OR = 1.61, p.value = 9.67E-10). SNP rs73210911 is a

trans-pQTL of HCAR2 (12q24.31). Having the A allele of rs73210911 is asso-

ciated with increased levels of the protein HCAR2 (Figure 4.7-E). The HCAR2

protein acts as a high affinity receptor for both nicotinic acid (also known as

niacin) and (D)-beta-hydroxybutyrate and mediates increased adiponectin

secretion and decreased lipolysis through G(i)-protein-mediated inhibition

of adenylyl cyclase. This pharmacological effect requires nicotinic acid doses

that are much higher than those provided by a normal diet. HCAR2 Mediates

nicotinic acid-induced apoptosis in mature neutrophils. Receptor activation

by nicotinic acid results in reduced cAMP levels which may affect activity of

cAMP-dependent protein kinase A and phosphorylation of target proteins,

leading to neutrophil apoptosis. HCAR2 is an FDA approved drug target for

Acipimox (trade name Olbetam in Europe). Acipimox is a niacin derivative

used as a lipid-lowering agent. It reduces triglyceride levels and increases

HDL cholesterol.

• SNP rs2734161 is trans-pQTL for GLTP protein: SNP rs2734161 is located

on chromosome 7 and is a common SNP (CAF (C) in controls = 0.3) that be-

comes more common in centenarians (CAF in cases = 0.37) with a protective

effect on EL (OR = 1.37, p.value = 2.39E-07). SNP rs2734161 is a trans-pQTL

of GLTP (12q24.11). Having the C allele of rs2734161 is associated with in-

creased levels of protein GLTP (Figure 4.7-F). Higher levels of GLTP protein
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are associated with higher survival from thyroid and cervical cancers, and

lower survival from the liver cancer (Uhlen et al., 2017). The GLTP protein

is similar to bovine and porcine proteins which accelerate transfer of cer-

tain glycosphingolipids and glyceroglycolipids between membranes. It is

thought to be a cytoplasmic protein (provided by RefSeq, Jul 2008). SNP

rs2734161 is also significant eQTL of TRBV7-4 gene in whole blood with the

T allele being associated with increased levels of the gene levels (obtained

from the GTEx Portal on 02/27/2019).

• SNP rs35776335 is trans-pQTL for ACVRL1 protein: SNP rs35776335 is lo-

cated on chromosome 8 and is an uncommon SNP (CAF (T) in controls =

0.18) that becomes less common in centenarians (CAF in cases = 0.15) with a

negative effect on EL (OR = 0.71, p.value = 4.30E-07). The SNP rs35776335 is

trans-pQTL of ACVRL1 (12q13.13). Having the T allele of rs35776335 is as-

sociated with increased levels of protein ACVRL1 (Figure 4.7-G). ACVRL1,

sometimes termed ALK1, shares similar domain structures with other closely

related ALK or activin receptor-like kinase proteins that form a subfamily

of receptor serine/threonine kinases. Mutations in this gene are associated

with hemorrhagic telangiectasia type 2, also known as Rendu-Osler-Weber

syndrome 2 (provided by RefSeq, Jul 2008). SNP rs35776335 is also signif-

icant eQTL for AF131215, CTSB, FAM66A, FAM85A, FDFT1, NEIL2, RP11-

148O21, and RP11-351I21 in multiple tissues (obtained from the GTEx Portal

on 02/27/2019).

• SNP rs10973751 is cis-pQTL for TOR4A protein: SNP rs10973751 is located

on chromosome 9 and is a rare SNP (CAF (C) in controls = 0.01) that becomes

more common in centenarians (CAF in cases = 0.03) with a protective ef-
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fect on EL (OR = 2.37, p.value = 2.07E-06). SNP rs10973751 is a cis-pQTL

of TOR4A (9q34.3). Having the C allele of rs10973751 is associated with

increased levels of protein TOR4A (Figure 4.7-H). Higher levels of TOR4A

protein are associated with lower survival from liver and colorectal cancers

(Uhlen et al., 2017). TOR4A is related to the pathway of response to elevated

platelet cytosolic Ca2+.

• SNP rs72485059 is trans-pQTL for ARPP21 protein: SNP rs72485059 is lo-

cated on chromosome 10 and is an uncommon SNP (CAF (T) in controls =

0.14) that becomes more common in centenarians (CAF in cases = 0.17) with

a protective effect on EL (OR = 1.42, p.value = 1.09E-07). SNP rs72485059 is

a trans-pQTL of ARPP21 (3p22.3). Having the T allele of rs72485059 is as-

sociated with increased levels of protein ARPP21 (Figure 4.7-I). ARPP21 is

a cAMP-regulated phosphoprotein which is enriched in the caudate nucleus

and cerebellar cortex. A similar protein in mouse may be involved in regu-

lating the effects of dopamine in the basal ganglia (provided by RefSeq, Jun

2012).

4.4 DISCUSSION

We performed a GWAS of EL using a large set of high-quality imputed variants.

The analysis discovered 61 genome-wide significant SNPs (p< 5E-08) including

fifteen new loci in chromosomes 4, 6, 7, 8, 9, 10, 14 and 15 in addition to the APOE

locus. From these novel significant results, there were nine rare (CAF in controls <

0.05) and uncommon (0.05 < CAF in controls < 0.1) variants with protective effect

on EL (OR > 1): rs13129138 (chr 4), rs10457056 (chr 6), rs12524467 (chr 6), rs1042151
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Table 4.6: Description of SNPs not on chromosome 19 which were
identified as significant pQTLs.

SNP
CA

(cases/controls) OR P-value Genes
rs11757313 (6) C (0.018/0.005) 3.78 7.68E-08 NRSN1
rs114202986 (6) C (0.08/0.04) 1.67 1.19E-06 MICA
rs10457056 (6) T (0.024/0.004) 7.59 8.22E-15 EPM2A
rs73210911 (7) A (0.13/0.09) 1.61 9.67E-10 DOCK4

rs2734161 (7) C (0.37/0.3) 1.37 2.39E-07
TRY2P,

MTRNR2L6

rs35776335 (8) T (0.15/0.18) 0.71 4.30E-07
CTSB,

DEFB136

rs10973751 (9) C (0.03/0.01) 2.37 .07E-06
SHB,

ALDH1B1
rs72485059 (10) T (0.17/0.14) 1.42 1.09E-07 N/A

SNP: SNP id with its chromosome in parentheses; OR: odds ratio for EL in carriers of the
allele (from the Bayesian logistic regression); P-value: p-value of the association between
SNP and EL; Genes: closest gene/genes (annotation was done using ANNOVAR
(Hakonarson et al., 2010)).

Figure 4.7: Boxplots of distribution of protein intensity in log scale
by significant pQTLs that are not on chromosome 19.
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Table 4.7: Protein-SNP pQTLs for SNPs not on chromosome 19.

pQTL
Protein
(Chr) SNP (Chr)

CA
(CAF)

Estimate
(SE) P

trans-
C7orf73

(7)
rs11757313

(6)
C

(0.03)
0.17

(0.03) 3E-06

cis-
MICA

(6)
rs114202986

(6)
C

(0.08)
-0.43
(0.09) 8E-07

cis-
GLP1R

(6)
rs10457056

(6)
T

(0.03)
-0.11
(0.02) 3E-06

trans-
SEMA4B

(15)
rs10457056

(6)
T

(0.03)
0.23

(0.05) 7E-07

trans-
HCAR2

(12)
rs73210911

(7)
A

(0.12)
0.12

(0.02) 29E-07

trans-
GLTP
(12)

rs2734161
(7)

C
(0.33)

-0.05
(0.01) 1E-06

trans-
ACVRL1

(12)
rs35776335

(8)
T

(0.18)
0.08

(0.02) 5E-06

cis-
TOR4A

(9)
rs10973751

(9)
C

(0.03)
0.14

(0.03) 5E-06

trans-
ARPP21

(3)
rs72485059

(10)
T

(0.19)
0.05

(0.01) 5E-06

pQTL: whether the SNP is associated with levels of a protein on the same chromosome
(-cis), or different one (-trans); Protein (Chr): protein with its chromosome; SNP (Chr) :
SNP with its chromosome; CA (CAF): coded allele with coded allele frequency; Estimate
(SE): estimate represents log of fold change of protein level depending on SNPs genotype
(standard error of the estimate); P: p-value of the association
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(chr 6), rs6977506 (chr 7), rs10973748 (chr 9), rs72771826 (chr 10), rs9671417 (chr 14),

rs7182629 (chr 15).

Additionally, we discovered a signature in serum of 16 proteins that are as-

sociated with different APOE genotypes. We also identified nine new significant

pQTLs in serum for SNPs not near the APOE locus (including four rare and three

uncommon pQTLs) that suggest new biological mechanisms involved in extreme

human longevity.

Our GWAS replicated most of the hits from our previous GWAS of EL (Sebas-

tiani et al., 2017b). In addition, SNP rs1537374 (chr 9) from our results has also been

recently identified to have an association with a lifespan (Timmers et al., 2019) and

various cardiometabolic traits (Murabito et al., 2012; Jones et al., 2017; the CARDIo-

GRAMplusC4D Consortium, 2015). Furthermore, SNP rs915179 (chr 1) from our

results has also been previously identified as associated with longevity (Conneely

et al., 2012; Budovsky et al., 2013).
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CHAPTER 5

Conclusions

Over the last decade, several studies have provided evidence that many centenari-

ans delay or escape aging-related diseases, such as cardiovascular and Alzheimers

diseases, and that more than 90% of people living to 100 are functionally indepen-

dent at the mean age of 93 years and thus markedly delay disability (Hitt et al.,

1999; Terry et al., 2008). Many who live to 105 years and older, thus truly ap-

proaching the limit of human lifespan, also compress the age of onset of these

diseases and disability towards the end of their very long lives (Andersen et al.,

2012). We and other have hypothesized that centenarians posses protective ge-

netic and molecular profiles that can be leveraged to promote healthy aging and

develop novel therapeutics for aging-related disease. Over the last decade, there

have been multiple GWASs of EL. However, they have produced limited findings,

despite the strong heritability of this trait. There are two possible reasons for this

limitation. First, genetic variants might have a varying effect on EL in different

populations, and GWAS applied to a dataset as a whole may not pinpoint such

differences. Second, most of the published genetic association studies of extreme

human longevity have searched for common variants, but the findings published

so far point to rare variants, or rare recessive genotypes that are associated with

living to extreme old age, such as the APOE e2 allele. In this dissertation, I tried

to address these issues through three projects. Below I will summarize each of the

projects and discuss their potential expansion and future directions.

First, I developed PopCluster algorithm that identifies if a genetic variant of

interest has statistically different effect on a phenotype in different ethnic clusters.

PopCluster could be extended in a few different ways. For example, I applied hi-
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erarchical clustering to identify different populations because of its deterministic

nature; however, other clustering approaches could be used in a similar manner

on a set of principal components inferred from the genome-wide genetics data

(Solovieff et al., 2010). The current implementation of PopCluster is not designed

to analyze genome-wide genotype data and can be used to re-analyze the asso-

ciations between the SNPs that reach a certain level of significance in a standard

genome-wide association study. For future work, the implementation of PopClus-

ter could be optimized to handle larger genome-wide genotype datasets.

For the second project, I investigated ethnic-specific effects of APOE alleles on

EL, along with the country of residence of subjects. The analyses suggest possible

interaction of the APOE gene with the environment. Future investigations into

diet and APOE genotype interaction might point at viable nutrition interventions

to reduce the deleterious effect of APOE e4 allele. Additionally, accounting for

ethnic-specific differences in the drug development process would contribute to

higher drug efficacy for more populations (Schork, 2015).

For the last project, I conducted GWAS of rare and uncommon variants of EL.

I found five rare and four uncommon SNPs that are significantly associated with

EL. Additionally, we discovered sixteen proteins associated with APOE genotypes

and nine pQTLs of non-APOE SNPs. Preliminary pQTL results suggest they can

help to understand the biological mechanism that links genotype to phenotype

and to identify targets that can be manipulated. In the future, we plan to verify

our top hits using whole-genome sequencing data from our lab and collaborators’.

Specifically, we plan to impute genotype data from other studies (LLFS, SICS and

LGP), and to conduct a mega-analysis focused on rare variants. There have been

limited effort in generating whole-genome sequences of centenarian genomes, and
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an important step to discover genetic variants of extreme human longevity will be

to conduct whole-genome sequence studies of centenarians and family members.
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