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ABSTRACT 

 The rise in large-scale cancer genomics data collection initiatives has paved the 

way for extensive research aimed at understanding the biology of human cancer. While 

the majority of this research is motivated by clinical applications aimed at advancing 

targeted therapy, cancer prevention initiatives are less emphasized.  

 Many cancers are not attributable to known heritable genetic factors, making 

environmental exposure a main suspect in driving cancer risk. A major aspect of cancer 

prevention involves the identification of chemical carcinogens, substances linked to 

increased cancer susceptibility. Traditional methods for chemical carcinogens testing, 

including epidemiological studies and rodent bioassays, are expensive to conduct, not 

scalable to a large number of chemicals, and not capable of detecting specific 

mechanisms of actions of carcinogenicity. Thus, there exists a dire need for improvement 

in data generation and computational method development for chemical carcinogenicity 

testing.  
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 Here, we coin the term "carcinogenome" to denote the complete cancer genomic 

landscape encompassing both its repertoire of environmental chemical exposures, as well 

as its germ-line and somatic mutations and epi-genetic regulators. To study the 

carcinogenome, we analyze both the genomic behavior of real human tumors as well as 

profiles of the exposome, that is, data derived from chemical exposures in human, animal 

or cell line models.  

 My thesis consists of two distinct projects that, through the generation and 

innovative analysis of multi-omics data, aim at advancing our understanding of the 

molecular mechanisms of cancer initiation and progression, and of the role environmental 

exposure plays in these processes. First, I detail our effort at data generation and method 

development for characterizing environmental contributions to carcinogenesis using 

transcriptional profiles of chemical perturbations. Second, I present the tool iEDGE 

(Integration of Epi-DNA and Gene Expression) and its applications to the integrative 

analysis of multi-level cancer genomics data from human primary tumors of multiple 

cancer types.  

These projects collectively further our understanding of the carcinogenome and 

will hopefully foster both cancer prevention, through the identification of environmental 

chemical carcinogens, and cancer therapy, through the discovery of novel cancer gene 

drivers and therapeutic targets.  
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CHAPTER ONE: INTRODUCTION 

1.1 Contributions to cancer susceptibility: environment and genetics 

Despite decreasing rates of overall incidence and mortality from cancer over the last 

two decades, cancer is still a major killer, with a projected 1.7 million new cases and 

600k deaths in 2018 alone (Siegel et al. 2018).  While cancer is considered a genetic 

disease caused by changes to genes leading to uncontrolled cell division and growth, 

genetic changes that confer susceptibility to cancer can not only be hereditary, but also 

acquired during one’s lifetime, due to random errors during cell division or to exposure to 

environmental toxicants. The exact contributions of hereditary vs. non-hereditary factors 

in cancer has long been a subject of debate in cancer research. While exact estimates 

vary, studies have agreed that inherited genetic contributions to cancer are minor (Anand 

et al. 2008, Lichtenstein et al. 2000). DNA replication errors also can cause mutations in 

key genes involved in cancer development and studies have shown a relationship between 

numbers of normal stem cell divisions and cancer incidence (Tomasetti and Vogelstein 

2015; Tomasetti el al. 2017). Aside from hereditary predisposition and random mutations 

during stem cell divisions, environmental factors play a major role in cancer 

development. Lifestyle factors, including diet, alcohol consumption, tobacco smoking, 

exposure to environmental carcinogens, radiations, air pollutants, and harmful food 

contaminants, are important risk factors of non-hereditary cancers (Irigaray et al. 2007). 

If environment carcinogens are identified, limiting exposure can be the key step in 

prevention of cancer.  
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 Identification of chemical carcinogens for tissue-specific cancers have led to 

successful policies aimed at prevention. The most prominent example of preventable 

cancer is lung cancer. Tobacco smoke was identified as the primary cause of lung cancer, 

with male smokers 23 times more likely and female smokers 17 times more likely to 

develop lung cancer compared to nonsmokers (American Lung Association, 2018). 

Among developed countries, the prevalence of smoking and the rate of lung cancer have 

been declining where accelerated tobacco-control programs were in action. In the U.S., 

cigarette smoking adults declined from 20.9 percent in 2005 to 15.1 percent in 2015 

according to the National Health Interview Survey (NHIS). From 1990 to 2016, an 

estimated 1.3 million tobacco-related cancer deaths have been avoided (Centers for 

Disease Control and Prevention, 2016). Other chemical carcinogens have been identified 

through epidemiological studies. One example is the study of the use of asbestos and its 

relation to lung cancer and mesothelioma, which has been documented in over 100 

epidemiological studies, primarily occupational exposure studies (Lemen et al. 1980). 

Asbestos fiber was commonly used as a manufacturing material, specifically as building 

insulation, due to its heat resistant properties. During the first half of the 20th century, 

evidence linked asbestos exposure among construction and manufacturing workers to 

increased rates of cancers, particularly mesothelioma. These findings encouraged the 

enforcement of policies limiting asbestos exposure in many countries (American Cancer 

Society, 2018). Today, asbestos is banned in more than 55 countries.  

 Despite limited success stories of identification of chemical carcinogens, there is 

increased recognition for the necessity to develop more advanced testing methods of 
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existing but unrecognized environmental carcinogens (Kriebel el al. 2016, Leffall & 

Kripke, 2010). 

1.2 Exposure-based studies 

 Historically, most research aimed at assessing cancer risk and hazard of chemical 

exposures in humans relied on epidemiological studies among cancer clusters. 

Epidemiological studies suffer from inherent shortcomings, such as the reliance on 

observational data and the lack of control for spurious associations due to confounding 

effects, the requirement for long follow-up periods, which is not suitable for evaluation of 

new chemicals on the market, and the high latency periods for certain cancers, making it 

harder to detect associations between exposure and cancer development in limited time 

frames.  

 Starting from the 1970s, following the concern of agricultural products found to 

be carcinogenic in rodents, several U.S. federal agencies began efforts for testing 

chemical carcinogenicity in rodents. These efforts were further refined into the 2-Year 

Rodent Bioassay by the National Toxicology Program (NTP). Since then, over 1500 

chemicals were tested for carcinogenicity in this way (Ward 2007). The use of rodent 

bioassays drew criticisms due to evidence of differences in mechanisms and pathology of 

tumor development following chemical exposures between rodents and humans.  

 Many current carcinogenicity testing efforts are aimed at identifying mechanisms 

of carcinogenesis through the use of high-throughput assays that capture various 

biological endpoints. These include transcriptional profiling in rodents exposed to 

selective sets of known carcinogens and controls (Eichner et al. 2013; Ellinger-
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Ziegelbauer et al. 2008; Fielden et al. 2007; Gusenleitner et al. 2014; Kossler et al. 2015; 

Nie et al. 2006; Uehara et al. 2011). Although these studies are better suited to establish 

mechanistic explanations of chemical-induced carcinogenesis than the two year rodent 

bioassays, questions still remain about the relevance of rodent models for characterizing 

human carcinogenicity.  

 Several initiatives focus on the study of human carcinogenicity using in-vitro 

screens on human cell line models. For instance, the Toxcast project of the 

Environmental Protection Agency (EPA) (Judson et al; Richard et al. 2016), and Tox21 

initiative in partnership with the Food and Drug Administration (FDA) (Schmidt 2009; 

Tice et al. 2013) uses hundreds of reporter assays to characterize adverse effects across 

thousands of in-vitro chemical exposures in human cell lines.  

 In this thesis, I build on concepts from these past studies to explore the novel use 

of high-throughput transcriptomic profiling in human cell lines for predicting and 

characterizing chemical carcinogenicity. This approach makes use of results and methods 

established in past studies to further accelerate and refine the process of carcinogenicity 

testing. For instance, labels from the two-year rodent bioassays are used to label our 

training set of liver carcinogens and non-carcinogens. Results from our study are 

compared with previously published models of carcinogenicity including results from 

Drugmatrix and Toxcast.  

1.3 Cancer genomic profiling of primary tissues 

 One aspect of deconstructing the carcinogenome relies on understanding the 

relationship between chemical exposures and cancer initiation and progression. Another 
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complementary yet critical piece is the understanding of the genomic landscape of human 

cancers, i.e., the landscape of genetic and epigenetic alterations, and concomitant 

transcriptional variation, associated with the disease. In most cancer types, certain 

mutations in a subset of ~140 cancer driving genes can drive tumorigenesis through 

altered signaling in pathways that regulate cellular processes involved in cell fate, cell 

survival and genome maintenance (Vogelstein et al. 2013). Identification of these driver 

genes and the biological contexts in which mutations in these genes confer a cancerous 

state has been made possible by the availability of large-scale genomic data repositories 

such as The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013). TCGA contains more 

than 11,000 human primary tumor samples spanning many cancer types. Each sample is 

profiled on multiple genomic platforms including gene expression microarray, RNA-

sequencing, somatic copy number and mutation profiling, DNA methylation, microRNA 

sequencing, and protein expression profiling. Numerous studies used these data 

repositories for data query and method development for tasks such as patient stratification 

and biomarker or therapeutic target discovery. In this thesis, I leverage this data 

repository for tool development aimed at integration of paired gene-expression and epi-

DNA profiles, such as copy number alterations, for the purpose of predicting cancer 

driver genes.  

 

1.4 Dissertation Aims 

 Cancer continues to be a one of the leading causes of mortality, prompting greater 

need for increased research in both the areas of cancer therapy and prevention. In this 
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thesis, I present a two-sided approach to deconstruct the “carcinogenome”, that is, to the 

genomic characterization of cancer through all stages of cancer initiation and progression.  

We focus on capturing both the impact of environmental exposures and the behaviors of 

germ-line and somatic mutational signatures and epi-genetic regulators. In the following 

chapters, I detail two major aims: 

Aim 1: Towards cancer prevention – Building liver carcinogenicity and genotoxicity 

models from in-vitro high throughput transcriptomic assays 

 Current limitations in carcinogen testing prompted our effort to develop novel 

predictive models of chemical carcinogenicity based on the generation and computational 

modeling of high-throughput transcriptional profiles of human cell lines exposed to 

chemical carcinogens. In Chapter 2, I will describe our experimental and computational 

approach applied to the transcriptional profiling of HEPG2 cells following exposure with 

330 chemicals annotated for rodent liver carcinogenicity.  

 The computational analysis of this experiment utilizes complementary approaches 

to understand the transcriptomic effects of the profiled chemical perturbations in human 

cell lines. I will present my analysis of transcriptional bioactivity of the profiled 

chemicals and highlight the importance of using the transcriptional bioactivity score for 

filtering samples for use in downstream analysis such as classification and pathway 

enrichment. Next, I will describe a predictive model of carcinogenicity and genotoxicity 

built using supervised classification, which accurately classifies chemicals with profiles 

with high transcriptional bioactivity. In addition to classification, I show that pathway 

enrichment analysis reveals gene sets representing known and potentially novel modes of 
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actions of carcinogenicity. I leverage other studies to cross-reference with my findings, 

by comparing the signatures of carcinogenicity I derived to external gene signatures from 

the CMap, Drugmatrix, and Tox21 database, highlighting areas of consistencies and 

offering explanations for discrepancies in results. Finally, I demonstrate the capacity of 

our profiling effort to support the interrogation of particular mechanisms of carcinogenic 

response. Specifically, I investigate AHR receptor-mediated gene expression response in 

our profiles and demonstrate the similarity of AHR mediated response in our profiles to 

AHR active profiles in Tox21.  Lastly, I will conclude by highlighting the importance of 

this study in the context of carcinogen testing and showcase an online portal based on this 

work (https://carcinogenome.org) and offer suggestions for future directions.  

 This chapter also features a complementary analysis method that utilizes gene 

expression profiles from chemical perturbation experiments. The method implements a 

gene regulatory network-based approach for analyzing transcriptional profiles from large 

datasets of chemical perturbations. In particular, correlation networks are derived from 

expression profiles of distinct groups of chemicals and are then compared based on the 

loss or gain of connectivity of the corresponding network modules. This method is 

evaluated in the context of characterizing chemical-induced carcinogenesis but has broad 

applicability such as drug discovery and repositioning.  

Aim 2: Towards cancer therapy – Molecular characterization of the cancer genome 

and epi-genome using integrative analysis 

 This aim is focused on computational method development for integrative 

analysis of multi-level cancer genomics data. In Chapter 3, I will outline the development 

https://carcinogenome.org/
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of the tool iEDGE (Integration of Epi-DNA and Gene Expression) and will demonstrate 

its application to the analysis of copy number and gene expression data in the TCGA.  

 iEDGE is a framework for the analysis of paired sets of genomic data, e.g., copy 

number alternation and gene expression data from a set of matched samples. This tool 

identifies important cis and trans genes of each user-defined (epi-)genetic regulators such 

as Somatic Copy Number Alterations (SCNA). Furthermore, iEDGE ranks cis genes 

based on the number of trans genes it mediates and makes predictions of the most likely 

cis driver genes of each SCNA. I applied iEDGE to the analysis of copy number and gene 

expression in 19 cancer types using data from the TCGA, with a particular focus on 

breast cancer, and successfully demonstrate the ability of iEDGE to predict cis driver 

genes that are significantly enriched for known cancer driver genes from benchmark 

cancer driver databases. Furthermore, iEDGE-predicted driver genes contain several 

putative novel oncogenes and tumor suppressors.  

Finally, I will demonstrate the performance of the mediation test used in iEDGE 

using simulated datasets.   
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CHAPTER TWO: Towards Cancer Prevention – Characterization of 

transcriptomic profiles from chemical perturbations 

 

2.1 Building liver carcinogenicity and genotoxicity models from in-vitro high-

throughput transcriptomic assays 

2.1.1 Introduction 

 Despite significant investments into cancer research over the last decades, 

approximately 1.7 million new cancer cases and 600,000 cancers deaths were estimated 

in the U.S. in 2017 alone (American Cancer Society 2017). Of these, 90-95% are not 

attributable to known heritable genetic factors, thus making environmental exposures a 

major suspect in driving cancer (Anand et al. 2008), notwithstanding recent studies 

pointing to the rate of cell replications as an important determinant of cancer 

development among different tissue types (Tomasetti and Vogelstein 2015; Tomasetti et 

al. 2017). Most research aimed at assessing cancer hazard from chemical exposure has 

primarily relied on epidemiological studies of past human exposures to suspected 

carcinogens in cancer clusters, and on carcinogen screening based on the 2-year rodent-

based bioassay. Epidemiological studies rely on observational data, and as such they have 

limited ability to rule out the possibility of spurious associations due to confounding 

effects. They also require that exposure to a suspected carcinogen is documentable. Even 

when the nature of the chemical exposure and the exposure dose is known, 

epidemiological studies require long follow-up periods, hence are not appropriate for the 

evaluation of new chemicals on the market. Similarly, the 2-year rodent bioassay, the 
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gold standard for carcinogen testing, is time-consuming and requires up to $4 million and 

more than 800 animals per compound. As a result, less than 2% of the ~85,000 chemicals 

registered in the TSCA Chemical Substance Inventory have been tested by this approach 

(Bucher and Portier 2004; Gold et al. 2005; Huff et al. 2008).  

 High-throughput transcriptional profiles from short-term chemical exposures have 

proven useful for predicting long-term carcinogenicity and for capturing multiple 

biological MoAs of long-term carcinogenicity. Many studies have explored the use of 

high-throughput transcriptional profiling in rodent models (Eichner et al. 2013; Ellinger-

Ziegelbauer et al. 2008; Fielden et al. 2007; Gusenleitner et al. 2014; Kossler et al. 2015; 

Nie et al. 2006; Uehara et al. 2011). However, questions remain about the relevance of 

rodent models for characterizing human carcinogenicity, and most importantly, they are 

still excessively time-consuming and expensive for large-scale testing. In-vitro-based 

screens would help address the time and cost constraints of carcinogen testing through 

automated high-throughput plating, exposure treatment, and assaying. EPA’s Toxcast 

(Judson et al. 2010; Richard et al. 2016) and Tox21 initiatives (Schmidt 2009; Tice et al. 

2013) have used various reporter assays to characterize adverse effects across thousands 

of in-vitro chemical exposures. However, while these efforts use high-throughput 

techniques with carefully selected gene, pathway and adverse-response-centric endpoints, 

the number of assays and the diversity of endpoints are limited. For instance, ToxCast 

used 624 in-vitro endpoints mapped to 315 genes in Phase I (Judson et al. 2010) and an 

additional ~200 new endpoints in Phase II (Richard et al. 2016). Studies utilizing this 

data for the assessment of chemical carcinogenicity have emphasized the need to expand 
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the assay set to better characterize diverse MoAs of certain carcinogens (Kleinstreuer et 

al. 2013). mRNA profiling, by assaying the entire transcriptome, or a large portion of it, 

represents a promising solution to this need by providing an agnostic view of which 

genes and pathways are relevant to chemical-induced carcinogenesis.  

 Given the technological advances in gene expression profiling and the 

development of cost-effective sequencing platforms, opportunities arise for their use in 

large-scale toxicological screenings. One such solution is the Luminex-1000 (L1000) 

platform (Peck et al. 2006), a low-cost, high-throughput bead-based platform that 

measures the expression of ~1000 landmark genes and infers the remaining genes in the 

transcriptome by imputation. This platform was used in the creation of the Connectivity 

Map (CMap) (Subramanian et al. 2017), which now includes 1.3 million perturbation 

profiles of drugs and small molecules and has been instrumental in the discovery of small 

molecule MoAs. Due to its cost-effectiveness and appropriateness for large-scale 

perturbation screening, we adopted it for the profiling of chemical carcinogens. 

 We applied the L1000 platform to study the effects of chemical perturbations of 

previously validated rat liver carcinogens and non-carcinogens in HEPG2 cell lines. The 

central hypothesis underlying our study design was that the long-term carcinogenicity of 

chemicals can be accurately predicted from gene expression profiles of short-term in vitro 

models. Our approach used machine-learning techniques to build predictive models of the 

long-term carcinogenicity of chemicals based on L1000-derived gene expression profiles 

of human cell lines exposed to the studied chemicals. Furthermore, we annotated the in-

vitro-derived gene signatures by performing pathway enrichment of carcinogens vs. non-
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carcinogens, to identify MoAs associated with chemical-induced carcinogenesis. 

Signatures derived from this study were also compared to external gene signatures and 

chemical annotations from knowledge bases such as Drugmatrix, CMap, and Tox21, to 

verify the consistency of results and expand the interpretation of findings. An overview 

of our experimental design and analysis aims is presented in Figure S2.1.1. 

2.1.2 Methods 

Chemical selection and annotation 

 In the chemical selection process, we prioritized chemicals with long-term rodent 

liver carcinogenicity annotation for inclusion in this experiment. Long-term 

carcinogenicity annotations were derived from the Carcinogenic Potency Database 

(CPDB) (Fitzpatrick 2008). Additional chemicals without carcinogenicity annotation 

were included on the basis of interest to the Superfund Research Program (environmental 

toxicants) presence in controversial commercial products (included for predictive 

purposes) and evidence of binding to the aryl hydrocarbon receptor (AhR), as the AhR is 

an important mediator of xenobiotics, including carcinogens. A complete list of 

chemicals and their annotations is provided in Table S1. For CPDB annotations, the final 

carcinogenicity labels denote "+" if carcinogenic in rat liver (female or male) or "-" if 

non-carcinogenic in both rat and mouse (in female and male) across all tested organs in 

the CPDB. Genotoxicity labels denote "+" if mutagenic or weakly mutagenic in the 

Salmonella assay, and "-" otherwise. In total, 330 unique chemicals were used in the 

analysis including 128 carcinogens, 168 non-carcinogens, 100 genotoxicants, and 161 

non-genotoxicants.  
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Chemical procurement and data generation 

 Chemicals were procured from the Tox21 library of the National Toxicology 

Program (NTP) when available, or from Sigma-Aldrich otherwise. Compound purity and 

identity were confirmed by UPLC-MS (Waters, Milford, MA). Purity was measured by 

UV absorbance at 210 nm or by Evaporative Light Scattering (ELSD). Identity was 

determined on a SQ mass spectrometer by positive and/or negative electrospray 

ionization.  

 Detailed cell culture, plating, treatment and lysis protocols are described in 

https://assets.clue.io/resources/sop-cell.pdf (Subramanian et al. 2017). Briefly, HepG2 

(human hepatocellular carcinoma cell line; ATCC HB-8065) was used with medium 

RPMI1640 (Mediatech 10040CV) supplemented with 10% v/v fetal bovine serum 

(Sigman F4135), 1x penicillin-streptomycin-glutamine (Invitrogen 10378-016), and 

incubated at humidified 5% CO2 atmosphere at 37°C. Cell cultures were plated with 

4,000 cells (45ul of growth medium) per well on 384-well plates (Corning 3707) and 

incubated for 24 hours before treatment. Cells were treated with 5uL of 1:100 diluted 

1000x stock compound plates to final volume of 50 μL and incubated for 24 hours before 

lysis.  

 Each chemical perturbation was administered at 6 doses in triplicate wells per 

dose and chemical combination, starting from 40µM maximum dose (40mM stock 

diluted 1:1000) for NTP chemicals and 20µM for chemicals procured from Sigma-

Aldrich, in series of two-fold dilutions. The sole exception to the standard dosage was 

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), which had a starting dose of 50nM due to 

https://assets.clue.io/resources/sop-cell.pdf
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its extreme potency. The vehicle control used was DMSO. Four positive controls were 

used (vorinostat, geldanamycin, mitoxantrone, withaferin-a). Four wells on each plate 

were reserved for L1000 pipeline assay controls. These include A01: bead only control 

(negative control), B01: POSAMP control (hybridization/staining positive control), A02 

& B02 (reference RNA control).  

  For cell lysis, 30μL of medium was aspirated and 25μl TCL Lysis Buffer (Qiagen 

1031576) was added. Plates were sealed and maintained at room temperature for 30 

minutes and frozen in −80°C freezer. Following treatment and lysis, the gene expression 

of the HEPG2 cells was profiled using the L1000 platform, a high-throughput assay that 

measures the expression of ~1000 landmark genes and computationally infers the 

expression of non-measured transcripts (Subramanian et al. 2017). 

 For each perturbation and landmark gene, we computed the change in gene 

expression following the perturbation using a moderated z-score procedure as described 

in the CMap-L1000 workflow.  Differential expression values were calculated as 

moderated z-scores for each landmark gene and each unique perturbation (chemical and 

dose combination) perturbation, collapsed to a single value across replicates.  

Assessing the transcriptional strength of a perturbation 

 We used the transcriptional activity score (TAS) as a summary measure of the 

impact of a chemical perturbation on landmark gene expression. TAS integrates signature 

strength, defined as the number of genes up-regulated or down-regulated by a particular 

perturbation above a given moderated z-score threshold, and replicate correlation, a 

measurement of similarity among triplicate profiles corresponding to the same 
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perturbation (unique combination of chemical, dose, cell line, time). Formally, TAS is 

quantified as the geometric mean of the signature strength (SSngene) and the replicate 

correlation (CCq75) in eq. (1). SSngene is defined as the number of landmark genes 

(referred to as card) with ModZadj greater than 2 in eq. (2). ModZ is defined as the 978-

element vector of replicate collapsed z-scores of landmark genes and nrep is the number 

of replicates in eq. (3). CCq75 is the 75th percentile of the Spearman’s correlation 

between replicates in landmark space. 

 𝑇𝐴𝑆 =  
√𝑆𝑆𝑛𝑔𝑒𝑛𝑒∗max(𝐶𝐶𝑞75,0)

√978

 [1]  

 𝑆𝑆𝑛𝑔𝑒𝑛𝑒 =  𝑐𝑎𝑟𝑑(|𝑚𝑜𝑑𝑧𝑎𝑑𝑗| >= 2) [2] 

 𝑚𝑜𝑑𝑧𝑎𝑑𝑗 =  𝑚𝑜𝑑𝑧 ∗  √𝑛𝑟𝑒𝑝 [3] 

TAS was calculated for each aggregated profile (one unique score per chemical and dose 

combination). This metric takes value in the [0,1] range, with higher values of TAS taken 

to represent a higher level of chemical bioactivity.  

Statistical tests for comparison of TAS across profiles 

 We tested for the difference in TAS values among adjacent dose groups using a 

one-tailed Wilcoxon Signed-Rank Test (paired difference test), with the pairing 

determined by the unique chemical IDs to determine the statistical significance of strictly 

increased TAS levels between adjacent and increasing dose groups.  

 We next tested for difference in TAS between chemicals. In particular, for each 

dose rank, two-group comparisons of TAS scores between carcinogens and non-
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carcinogens, and between genotoxicants and non-genotoxicants, were conducted using 

one-tailed unpaired two-samples Wilcoxon test, to determine the presence and 

significance of increased TAS for the carcinogenic compared to non-carcinogenic group, 

or for the genotoxic compared to non-genotoxic group.  

Equivalent In-vitro dose (Cmax) estimation and association with TAS 

 Finding the relationship between in-vitro gene expression responses and adverse 

phenotypes in-vivo is an important goal of this study. To this end, we assessed the 

relationship between in-vitro transcriptional bioactivity (TAS) and corresponding in-vivo 

dose used in the rodent bioassay from which carcinogenicity labels were derived. Using a 

toxicokinetic model, we estimated the equivalent in-vitro dose (Cmax) corresponding to 

the in-vivo dose tested in the rat bioassay. Cmax values, maximum plasma 

concentrations, were estimated using a 3-compartment model in the R package HTTK 

v1.8 (Pearce et al. 2017). For carcinogenic compounds, these values were derived from 

the CPDB-reported median toxic dose (TD50) administered in rats. For non-

carcinogenicity compounds, Cmax values were derived from the CPDB-reported 

maximum dose administered in rats. Chemicals with missing TD50 (if carcinogenic) or 

maximum dose (if non-carcinogenic) were omitted from this analysis. It was assumed 

that dosing was once per day for 365 days. While these Cmax values were not used in the 

in-vitro dosing scheme, they can be used in the interpretation of the aberrant behavior of 

some of our in-vitro profiles.  
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Supervised learning for prediction of carcinogenicity and genotoxicity 

 To build classifiers for the prediction of carcinogenicity and genotoxicity, we 

used the moderated z-scores of landmark genes as predictive features. The Random 

Forest classifier was used, as implemented in the R package caret (Kuhn 2008). The 

performance of the classifier was evaluated using a resampling scheme consisting of 25 

random repeats of training on 70% of the samples and testing on the remaining 30%. The 

training and test set split was performed at the chemical level, so that all replicates of 

each chemical were only included either in the train or the test set, to avoid “information 

leakage” (over-fitting). To assess the effect of chemicals’ bioactivity on the performance 

of the classifier, the evaluation was repeated on different subsets of profiles 

corresponding to different TAS thresholds (all profiles, TAS>0.2, >0.3, >0.4).  Area 

under the ROC curve (AUC) was used for the assessment of a classifier performance, as 

it is a well-established metric that captures the trade-off between sensitivity and 

specificity across multiple thresholds.  

 Final predictions of carcinogenicity and genotoxicity were made using leave-one-

(chemical)-out (LOCO) cross-validation (CV); that is, at each CV iteration, a single 

chemical’s profiles across multiple doses are left out and a classifier is trained based on 

all remaining chemicals, then applied to the prediction of the left-out chemical’s profiles.  

This procedure is repeated with each of the TAS subsets.  

Deriving pathway signatures of carcinogenicity 

 We derived pathway activity scores using the R Bioconductor package GSVA 

(Hänzelmann et al. 2013). GSVA is a competitive test of gene set enrichment that takes 
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as input a gene-by-sample expression matrix and generates a geneset-by-sample 

enrichment score matrix, with its entries representing the pathway enrichment of each 

sample with respect to each of a user specified list of gene-sets. Pathway enrichment 

scores were calculated for pathways in the MsigDB C2 Reactome pathway compendium 

(Croft et al. 2014; Fabregat et al. 2016; Liberzon et al. 2011). The geneset-projected 

matrix was then used as input for differential analysis with respect to sample phenotype 

labels (carcinogenicity or genotoxicity) using the R Bioconductor package limma (Ritchie 

et al. 2015; Smyth 2005) to identify pathways with differences in activity levels between 

chemical groups. This differential analysis was repeated from data inputs with various 

TAS thresholding (TAS > 0, 0.2, 0.3, 0.4). One-sided p-values consistent with the 

direction of change in pathway activity scores were estimated. The p-values across 

analyses from multiple TAS subsets were combined using the Fisher's method, and 

adjusted for multiple hypothesis testing using False Discovery Rate (FDR) procedure 

(Benjamini and Hochberg 1995).  

Comparison to Drugmatrix signatures 

 Using gene set enrichment analysis (GSEA) (Subramanian et al. 2005), we 

compared how well our profiles recapitulated external signatures of carcinogenicity and 

genotoxicity extracted from the NTP Drugmatrix database (Ganter et al. 2006). The 

Drugmatrix is a compendium of microarray profiles of short-term chemical exposures in 

intact rat organs (liver samples used only) and in cell cultures (primary rat hepatocytes). 

The Drugmatrix-derived signatures were defined as the lists of genes in the Drugmatrix 

significantly associated with long-term carcinogenicity and genotoxicity. Data processing 
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of the Drugmatrix data was consistent with methods described in Gusenleitner et al. 

(2014). Gene features were mapped from rat Ensembl gene identifiers to human gene 

symbols using Biomart (Durinck et al. 2005). Differential expression analysis was 

conducted using limma (Ritchie et al. 2015; Smyth 2005) to identify markers of 

carcinogenicity and genotoxicity after correcting for the effect of dose and duration of 

exposure.  For each comparison, a list of significant genes was derived using a FDR 

cutoff of 0.01 and absolute value of log fold change of 0.2, up to a maximum of 300 

genes as ranked by FDR. Signatures of carcinogenicity and genotoxicity (direction 

sensitive: upregulated/downregulated) were derived for three Drugmatrix subsets: liver 

profiles, cell culture profiles, and low-dose cell culture profiles (< 50µM), the latter 

consistent with the range of doses used in our experiment.  These gene signatures were 

tested for enrichment against our L1000 profiles in various subsets (TAS > 0, 0.2, 0.3, 

0.4), using the binary phenotypes of carcinogenicity and genotoxicity and the GSEA 

method, with empirical p-values estimated based on 10,000 gene-set permutations. 

Comparison with CMap signatures 

 We performed a systematic comparison of our signatures to those in the CMap 

database. To this end, we computed the connectivity score, a measure of similarity, 

between pairs of signatures, in this case, between each of our signatures and each of the 

perturbation signatures in the CMap, which comprises ~1.3 million profiles 

corresponding to 19,811 drugs and small molecules, and 5,075 molecular (gene-specific 

knockdown and over-expression) perturbations across 3 to 77 cell lines (Subramanian et 

al. 2017). The connectivity scores are expressed as percentile values in the [-100, 100] 
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range, wherein a score of 100 represents maximum signature overlap, -100 represents 

maximum signature reversal and 0 represents lack of concordance between signatures in 

either direction. Connectivity scores were computed with respect to both individual 

CMap perturbagens, and Perturbagen Classes (PCLs), defined as sets of perturbagens 

with similar MoAs or gene target annotations. Next, we performed differential 

connectivity analysis with respect to our chemical groups (carcinogens vs. non-

carcinogens, genotoxicants vs. non-genotoxicants) using a one-tailed Wilcoxon rank-sum 

test to test for presence of increased connectivity in the positive class (carcinogenic or 

genotoxic). These tests were repeated for each TAS-based subset of our data, and false 

discovery rate (FDR) values were calculated. A minimum mean connectivity score of 60 

for the positive class was used to filter out differential connectivity hits with low base 

connectivity scores. 

Investigation of AhR activation in L1000 profiles 

 To examine the behavior of AhR-related chemicals included in the study, we 

tested whether these chemicals exhibit enriched activity of AhR-related gene-sets 

compiled from independent sources. Lists of chemicals with known AhR activity were 

identified using multiple AhR-related Tox 21 reporter assays extracted from the tool 

Tox21 Enricher, or using custom chemical annotation with expert knowledge (referenced 

as "Sherr_AHR_agonist" in Figure 2.1.6A). Lists of AhR target genes were compiled 

from literature, as annotated in Table S5.  

 A one-directional weighted Kolmogorov-Smirnov (KS) test was performed to test 

for the enrichment of "AhR-positive" samples (profiles corresponding to AhR-related 
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chemicals) among the top-ranked profiles sorted by descending AhR geneset activity 

scores. The activity scores represent the median scores across four individual AhR 

geneset scores calculated using GSVA.   

 Profiles corresponding to AhR-related chemicals in the list "Sherr_AHR_agonist" 

were clustered using the similarity matrix derived from the connectivity scores of the 

selected profiles (see previous section for the calculation of connectivity scores).  

Statistical Reporting 

 All statements indicating significance are based on threshold of multiple 

hypothesis corrected α < 0.05, unless otherwise specified.  

2.1.3 Results 

TAS analysis and chemical “bioactivity” 

 We used the transcriptional activity score (TAS) as a proxy for chemical 

bioactivity. Subsequent analyses are based on subsets of profiles at different TAS 

thresholds (TAS > 0, 0.2, 0.3, 0.4). TAS > 0.2 is the standard cutoff for sufficient 

bioactivity adopted by the CMap-L1000 workflow (Subramanian et al. 2017), while TAS 

> 0.3 and TAS > 0.4 represent more stringent thresholds we used to assess the effect of 

increasing bioactivity on downstream analysis such as classification and gene-set 

enrichment. While the majority of our profiles showed low transcriptional bioactivity, a 

substantial percent of profiles achieved sufficient TAS. Among 330 chemicals 

represented across 1972 replicate collapsed profiles, 133 chemicals (40.3%) achieved 
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TAS > 0.2 in at least one dose, 89 chemicals (26.97%) achieved TAS > 0.3 and 63 

chemicals (19.09%) achieved TAS > 0.4.   

The effect of chemical dose on transcriptional bioactivity 

 We performed statistical tests to compare TAS of adjacent dose groups and to 

evaluate how bioactivity is affected by dose. Statistically significantly higher TAS were 

found when comparing dose rank 3 with rank 2 (FDR < 0.01), rank 4 with 3, rank 5 with 

4 and rank 6 with 5 (FDR < 0.001)(Figure 2.1.1A). The consistent significance of TAS 

differences between adjacent dose groups implies that increasing dose is effective at 

increasing the transcriptional bioactivity of profiles, with the maximum dose used in this 

experiment yielding the highest range of TAS scores. When binned by TAS range (Figure 

2.1.1B), the monotonically increasing dose response of TAS was apparent across all bins 

and stronger for higher TAS ranges.  

The effect of carcinogenicity and genotoxicity on transcriptional bioactivity 

 Next, we evaluated whether the level of a chemical bioactivity as captured by 

TAS had any association with that chemical’s long-term carcinogenicity or genotoxicity. 

Remarkably, carcinogenicity showed no effect on TAS in all dose groups (Figure 

2.1.1C). On the other hand, genotoxicity showed a marginally significant effect on TAS 

among profiles with dose rank 1 (lowest dose group) and dose rank 6 (highest dose 

group) where genotoxic chemicals had nominally significantly higher TAS compared to 

non-genotoxic chemicals (p-value cutoff > 0.05), although following multiple hypothesis 

testing (FDR method), no groups showed significance at FDR < 0.05 (Figure S2.1.2).  
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Comparison of in-vivo rat bioassay dosage with in-vitro bioactivity 

 The lack of association between TAS and carcinogenicity motivated us to further 

investigate the relationship between the L1000 doses and the in-vivo doses used in the 

rodent bioassay. To this end, we tested the association between in-vitro bioactivity (TAS) 

and the estimated equivalent in-vitro dose, Cmax (see Methods), where Cmax represents 

the estimated in-vitro dose corresponding to the in-vivo dose tested in the rat bioassay. 

Cmax estimates could be calculated for 183 of the 330 chemicals included in our screen. 

The mean TAS of profiles for each chemical were plotted against the same chemical's 

Cmax/40μM (the ratio of estimated equivalent dose to the max in-vitro dose) (Figure 

2.1.1D).  

 To determine the association between TAS, in-vivo carcinogenicity, and Cmax, 

we used the following linear regression model: 

log
10

(Cmax) ~ α + βTAS × TAS + βCARC × CARC + βT:C × TAS: CARC 

 TAS denotes the mean TAS for each chemical (across 6 doses), and CARC 

denotes the carcinogenicity status of the chemical in the rodent bioassay. We tested for 

significance of the coefficients βTAS, βCARC, βT:C under the null hypotheses of zero-valued 

coefficients (no effect).  We found significant effects of TAS (βTAS= -4.49, p-value 

= 0.01), and CARC ( βCARC= -1.22, p-value = 0.001) and non-significant effect of the 

interaction of TAS and CARC (βT:C = 3.1, p-value = 0.16). 

 As expected, TAS was negatively associated with Cmax. In other words, 

chemicals that required a low equivalent dose to elicit a carcinogenic response in the 

rodent bioassay tended to be more transcriptionally active in the in-vitro assay. On the 
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other hand, there were exceptions, as carcinogenic chemicals with low TAS and non-

carcinogenic chemicals with high TAS were observed and can be explained by several 

unique pharmacokinetic properties.  

 We annotated the carcinogenic chemicals with low TAS based on their structural 

group membership, in-vivo dose requirement for carcinogenicity labeling, and 

requirements for metabolic activation in HEPG2. Carcinogenic chemicals with low TAS 

tend to fall in one or more of the following categories: (1) small nitrosamines and other 

alkylating agents that form DNA adducts but are not adequately recognized by the DNA 

repair machinery (enriched in Group 2, Figure 2.1.1D), (2) require bioactivation by 

CYP2E1 and other p450s that are not present at high levels in HEPG2 cell culture (also 

enriched in Group2, Figure 2.1.1D), or (3) require high equivalent In-vitro dose (Cmax) 

to be carcinogenic, thus likely under-dosed in our in-vitro assay (enriched in Group 1 in 

Figure 2.1.1D).  

 Among non-carcinogenic chemicals with high TAS, we generally noted lower 

overall doses used in the rodent bioassays due to dose limiting toxicity or early deaths at 

higher doses in the cancer bioassay, e.g., Cyclosporin A (immune suppression and kidney 

toxicity)(Ryffel 1992), Pyrimethamine, Rhodamine 6G and Rotenone (bone marrow 

suppression)(Abdo et al. 1988; National Toxicology Program 1978; National Toxicology 

Program 1989), and hexachlorocyclopentadiene (point of contact pulmonary 

toxicity)(National Toxicology Program 1994). Thus, if higher doses were tolerated in 

rodent bioassays, it is possible that some of these chemicals would elicit a carcinogenic 

response in liver. 



 

 

25 

The effect of transcriptional bioactivity on prediction of carcinogenicity and 

genotoxicity  

 While chemical bioactivity levels were not associated with long-term 

carcinogenicity, the most relevant question was whether a chemical’s bioactivity affected 

the ability of its expression profile to be predictive of carcinogenicity (and genotoxicity). 

To answer this question, we built multiple classifiers based on profiles with TAS values 

within various ranges and used a random resampling scheme to assess their prediction 

performance. Datasets corresponding to different TAS ranges were randomly split into 

train (70%) and test (30%) sets multiple times (n=25), classifiers were built on the train 

sets, and predictions were made on the test sets. The average Area Under the Curve 

(AUC), sensitivity, and specificity were then estimated over the 25 random resamples. 

The prediction AUC improved with higher stringencies of TAS (Figure 2.1.2). We 

achieved the highest predictive accuracy within the most stringent TAS subset (TAS > 

0.4), with 72.2±2.7% (mean±se) AUC for prediction of carcinogenicity (Figure 2.1.2A), 

and 82.3±1.6% AUC for prediction of genotoxicity (Figure 2.1.2B). These results suggest 

that short in-vitro gene expression profiles of chemical perturbations, given sufficient 

transcriptional bioactivity, can accurately predict long-term chemical carcinogenicity and 

to a greater extent, genotoxicity. 

 In addition to the AUC, we report the sensitivity (true positive rate) and 

specificity (true negative rate) at the cutoff of 0.5 in Figure S2.1.3. Higher specificities 

were observed at the expense of lower sensitivities in most TAS groups for both 



 

 

26 

classifiers. This outcome is desirable for a preliminary screening strategy in which a 

higher false-positive rate can be tolerated. 

Gene markers for prediction of carcinogenicity and genotoxicity 

 Final predictive models of carcinogenicity, genotoxicity, and genotoxicity within 

carcinogens were built using the entire set of profiles with TAS > 0.4. Landmark genes 

were ranked by variable importance and the top 20 genes for each model were reported in 

Figure 2.1.3. Variable importance was measured by the Mean Decrease in Gini Index 

(MeanDecreaseGini) as defined in the function importance in the R package 

randomForest (Liaw and Wiener 2002). In the carcinogenicity prediction model, top 

genes included BLCAP, an apoptosis inducing gene, and SESN1, a target of p53 in 

response to DNA damage and oxidative stress (Figure 2.1.3A). Among the top 20 

landmark genes for prediction of genotoxicity were pro-apoptotic regulators such as 

BLCAP and BAX (Figure 2.1.3B). BAX is regulated by p53 and has been shown to be 

involved in p53-mediated apoptosis, a hallmark of DNA damage response to genotoxic 

chemical exposure. Of note, the absolute magnitude of the variable importance of top 

markers is model dependent – thus not comparable between models – and is not 

informative about the comparative performance of different classifiers.  

 The markers in Figure 2.1.3 were the most predictive features of carcinogenicity 

and genotoxicity in the restricted space of the L1000 landmark genes, and as such, are not 

necessarily the most relevant to define chemicals’ MoAs. For a more thorough MoA 

analysis, see section "Pathway enrichment analysis for characterizing MoAs of 
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carcinogenicity and genotoxicity", where gene-set scores were derived from the 

expression of all genes, including the L1000-inferred ones. 

Final predictions of carcinogenicity and genotoxicity in bioactive profiles 

 Final predictions of carcinogenicity and genotoxicity were made using a leave-

one-chemical-out cross-validation scheme, in which predictive models were trained based 

on all but one chemical and predictions were made on the profiles of the left-out chemical 

(see methods). This procedure was repeated for all unique chemicals in profiles with TAS 

> 0.4 to derive probability measurements of the profile being "Positive" for either 

carcinogenicity or genotoxicity (see methods) using a probability threshold of 0.5. 

Prediction probabilities for carcinogenicity and genotoxicity were reported along with the 

true class labels denoted by the dot colors (Figure 2.1.4). From this representation, we 

observed that predictions tend to be consistent across profiles of varying doses of the 

same chemical. Several exceptions exist in chemicals whose prediction probabilities were 

close to 0.5. In addition, prediction probabilities monotonically increasing as a function 

of dose were observed for some compounds, e.g., 3'-Methyl-4-dimethylaminoazobenzene 

showed increased probability of genotoxicity prediction with increasing dose. However, 

this pattern did not generalize to all chemicals.  

Predictions of unlabeled chemicals 

 Using the final predictive models trained on all profiles with TAS > 0.4, 

predictions of carcinogenicity and genotoxicity were made for the chemicals without 

known CPDB annotation (Figure S2.1.4). The majority of unlabeled profiles were 

predicted "Positive" for both carcinogenicity and genotoxicity using a probability 
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threshold of 0.5. This is likely due to bias in chemical selection. Sources of unknown 

chemicals include chemicals of interest to the Superfund Research Program (likely 

environmental toxicants), chemicals that were tested for either carcinogenicity or 

genotoxicity in the CPDB but whose labels cannot be determined, and controversial 

chemicals in commercial use (triclosan, Glycel). Many profiles have predicted 

probabilities between 0.5-0.65, indicating low confidence in prediction, potentially 

attributable to low bioactivity of profiles. When restricting predictions to unlabeled 

profiles with TAS > 0.4 to be consistent with the subset used for model training, the 

separation of ranges of prediction probabilities becomes clearer (Figure S2.1.4B and 

S1.1.4D). The top two ranked predicted carcinogens, benzo(a)pyrene and 7,12-

Dimethylbenz(a)anthracene, are two polyaromatic hydrocarbons (PAHs) that have been 

shown to manifest carcinogenic and genotoxic properties.  

 The top ranked predicted genotoxicant, indoxyl sulfate, is an endogenous 

tryptophan metabolite, which has been shown to activate p53 expression through reactive 

oxygen species (ROS) production and is a source of endogenous oxidative DNA damage 

(Shimizu et al. 2013). While indoxyl sulfate may not necessarily be considered a 

genotoxicant as it is a uremic solvent found in low concentrations (1-5µM) in the human 

serum normally, it activates the AhR, inducing cytochrome P450 enzymes which 

metabolize other substrates, including mutagenic intermediates (see Result section 

“Characterizing AhR-mediated response in L1000 gene expression profiles”). Thus, 

prediction of indoxyl sulfate as a genotoxicant may be due to transcriptional activation of 

shared pathways involved in metabolism of genotoxic chemicals.  
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Pathway enrichment analysis to characterize MoAs of carcinogenicity and 

genotoxicity 

 To identify pathway-level differences between carcinogens and non-carcinogens, 

and similarly, between genotoxicants and non-genotoxicants, we performed differential 

pathway enrichment analysis and ranked pathways according to the significance of their 

differential enrichment between chemical groups. In accordance with the breakdown of 

TAS subsets used in classification analysis, and based on the observation that increasing 

thresholds of TAS yield better classification performance, the differential pathway 

enrichment analysis was repeated for each of the TAS subsets previously considered 

(Table S2 and Table S3). With no TAS threshold (e.g., inclusion of all profiles), only a 

few pathways were differentially scored between carcinogens and non-carcinogens and 

between genotoxicants and non-genotoxicants. With increasing thresholds of TAS, the 

number of significantly expressed pathways increased. At TAS 0.2 and above, the 

identity of significant pathways became more stable, particularly for genotoxicity-related 

pathways, with many significant pathways shared across TAS > 0.2, 0.3, and 0.4. To 

quantify the similarity of significant pathways across TAS subsets, we measured by 

Jaccard index the overlapping proportion of significant (p<0.05) pathways among all 

possible TAS subset pairs, and then computed the mean Jaccard index of each TAS 

subset with respect to all other TAS subsets. The mean Jaccard index for carcinogenicity 

was 0.14, 0.36, 0.42, and 0.41 for TAS > 0, 0.2, 0.3, and 0.4, respectively. For 

genotoxicity, it was 0.23, 0.54, 0.54, and 0.52. The increase in the number and in the 

overlap of significant pathways at higher TAS is likely due to the associated stronger 
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signal. At lower TAS, the larger number of false positives likely increased the noise level 

and heterogeneity of the transcriptional response, and the consequent reduction in the 

number of pathways found to be significantly enriched.  

 We derived an aggregated ranking score of differential pathway enrichment by 

combining p-values across all the TAS subsets (see methods) and the lists of 

differentially enriched pathways (combined FDR < 0.05) with respect to carcinogenicity 

and genotoxicity are included in Excel Tables S6 and S7, respectively. When comparing 

carcinogens to non-carcinogens, we observed up-regulation of immune-related pathways 

(interferon-α/β), cell death (apoptosis induced DNA fragmentation), DNA repair 

(nucleotide excision repair), transcriptional regulation (RNA polymerase I, II, and III 

related activity), and cell cycle checkpoints (p53-dependent G1 DNA damage 

checkpoint), and down-regulation of various metabolism related pathways (phase II 

conjugation, phase I functionalization, peptide hormone biosynthesis), cell-cell 

organization and communication (cell-cell junction organization, integrin cell surface 

interactions, tight junction interactions), and G-protein signaling. Among genotoxicants 

compared to non-genotoxicants, upregulated pathways include DNA repair (nucleotide 

excision repair, formation of incision complex in GG-NER), AKT signaling, 

programmed cell death, G1/S DNA damage checkpoints, innate immune response 

(interferon signaling, toll-like receptor signaling). Down-regulated pathways include 

xenobiotic metabolism (phase I and phase II metabolism), peptide hormone biosynthesis, 

cell-cell organization and cell-cell communication, innate immune response (complement 

cascade), and various hemostasis and metabolism related pathways. 
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 From the differentially scored pathways of carcinogenicity, we identified a 

reduced set consisting of the top 40 up-regulated and top 40 down-regulated pathways 

with Reactome categories as ordered by the aggregated rankings and visualized their 

enrichment scores across profiles with TAS > 0.2 in Figure S2.1.5A (top pathways 

differentially enriched with respect to carcinogenicity) and Figure S2.1.5B (genotoxicity). 

Hierarchical clustering of samples revealed stratification by carcinogenicity status, with 

Cluster 1 significantly enriched for carcinogens compared to Cluster 2 (Fisher test p-

value = 0.0073), and an even stronger stratification by genotoxicity status, with Cluster 1 

significantly enriched for genotoxicants compared to Cluster 2 (Fisher test p-value = 

7.36e-7). 

Comparison of L1000 signatures of carcinogenicity and genotoxicity with 

signatures from Drugmatrix 

 We tested for enrichment of the Drugmatrix-derived signatures of carcinogenicity 

and genotoxicity against our L1000-based differential signatures of carcinogenicity and 

genotoxicity (Table S4). Both the directional concordance of signatures (column 

"direction_match", e.g., are the genes upregulated by carcinogens in Drugmatrix also 

upregulated in L1000?) and the significance of signature enrichment (column 

"FDR.q.val") were measured. Significant similarities were observed between signatures 

derived from Drugmatrix low dose rat primary hepatocyte cell cultures and our L1000 

profiles. For example, the signature of up-regulated genes in response to low-dose 

carcinogens in cell cultures (UP_CARC_CELL_LOWDOSE) was enriched in the L1000-

profiled carcinogen subsets at TAS > 0.4, 0.3, and 0.2 (FDR<0.05). Conversely, the 
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signature of down-regulated genes in response to low-dose carcinogens in cell cultures 

(DN_CARC_CELL_LOWDOSE) was enriched in the L1000-profiled non-carcinogen 

subsets at TAS > 0.2 and 0 (FDR<0.05). Similarly, signature of genotoxicants in the 

Drugmatrix cell cultures ("UP_GTX_CELL_LOWDOSE") was enriched in the L1000-

profiled genotoxicant subsets at TAS > 0.4, 0.3, and 0. When repeating the analysis for 

signatures derived from all Drugmatrix cell culture profiles (including high doses), 

signatures of genotoxicity were generally directionally consistent with L1000 profiles (in 

all 8 relevant tests), but signatures of carcinogenicity were inconsistent, and in fact 

sometimes behaved in the opposite direction (directions matched according to 

expectation in 2 out of 8 relevant tests). For example, the Drugmatrix signature 

"UP_CARC_CELL" was enriched among non-carcinogens in the L1000 TAS > 0.4 

subset. This inconsistency is likely due to the use of extremely high doses for some of the 

chemicals in the Drugmatrix cell culture profiles. For reference, the mean dose in 

Drugmatrix cell culture profiles was ~3,000uM and the max dose was 180mM. In 

contrast, the max dose among L1000 profiles was 40uM.  

 Next, we compared signatures derived from the Drugmatrix in-vivo rat liver 

profiles to the L1000 profiles. For carcinogenicity, the signature of down-regulated genes 

in response to carcinogens ("DN_CARC_LIVER") was correctly enriched among non-

carcinogens in L1000 TAS < 0.4, 0.3, 0.2 and 0 with FDR < 0.05. Similarly, the signature 

of up-regulated genes in response to carcinogens ("UP_CARC_LIVER") was marginally 

enriched among L1000 TAS < 0.4 (FDR = 0.06), and TAS < 0.3 (FDR = 0.09) 

carcinogens. On the other hand, the signatures of genotoxicity were largely not enriched 
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in the right direction (e.g., "DN_GTX_LIVER" shows enrichment among genotoxicants 

of TAS 0.4).  

 To rule out the possibility that the observed signatures’ inconsistency was due to 

platform differences – since the Drugmatrix data were microarray-based while our data 

were L1000-based – we compared Drugmatrix cell culture to Drugmatrix liver signatures 

of genotoxicity (both microarray based). We found that the downregulated genotoxicant 

signature in liver was also behaving in the opposite direction compared to the cell culture 

signature. This finding suggests that the signatures’ inconsistency between liver and cell 

line was likely due to differences between in-vitro and in-vivo responses to exposure 

rather than to differences in the profiling platform. Upon detailed inspection of the 

Drugmatrix liver signatures, we identified an enrichment of genes related to metabolism 

in both the up- and down-regulated gene signatures (lipid metabolism, cholesterol 

biosynthesis, Phase I metabolism in "UP_GTX_LIVER", amino acid metabolism, fatty 

acid metabolism in "DN_GTX_LIVER"), supporting the conclusion that there may be 

substantial differences between metabolic activities in in-vitro and in-vivo models 

(Figure S2.1.6).  

 In summary, L1000-derived signatures of carcinogenicity and genotoxicity were 

concordant with Drugmatrix low dose cell culture signatures, but inconsistent with 

Drugmatrix liver signatures, with the differences largely driven by discrepancies in the 

expression of certain metabolism-related genes between in-vitro and in-vivo exposures. 
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Comparison of L1000 signatures of carcinogenicity and genotoxicity with drug 

perturbation signatures in the CMap 

 The availability of the CMap offered the opportunity to compare our profiles to a 

much larger database of pharmacologically annotated signatures and allowed us to 

predict MoAs or pharmacological properties based on signature similarity. To this end, 

we first computed the similarity of our signatures to each signature in the CMap using 

connectivity scores (see Methods). We then identified the CMap signatures that showed 

significant difference in connectivity scores (FDR < 0.05) between carcinogens and non-

carcinogens, and between genotoxicants and non-genotoxicants. The top CMap hits are 

summarized at the level of Perturbagen Classes (PCLs) in Figure 2.1.5.  

 Focusing on the significantly differential PCLs across all TAS subsets (TAS > 

0.2, 0.3, 0.4), we found that carcinogens, compared to non-carcinogens, were 

significantly more connected to drug classes consisting of topoisomerase inhibitors, DNA 

synthesis inhibitors, and ribonucleotide reductase. Genotoxicants, compared to non-

genotoxicants, were significantly more connected to the three aforementioned drug 

classes, as well as to CDK inhibitors, aurora kinase inhibitors, and ubiquitin specific 

peptidases (Figure 2.1.5).   

Characterizing AhR-mediated response in L1000 gene expression profiles  

 Carcinogens and genotoxicants are sometimes recognized by cellular receptors 

such as the aryl hydrocarbon receptor (AhR). Given that the AhR is an important 

mediator of the toxicity of many chemicals represented in our dataset, we sought to 

investigate the effects of AhR-activated chemicals in terms of known AhR-regulated 
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gene expression and the similarity of transcriptomic profiles among sub-groups of AhR 

agonists.   

 The L1000 profiles exhibited consistent enrichment of AhR-related gene-set 

activity among chemicals labeled as AhR-active in several Tox21 reporter assays, 

namely, HTS_ACTIVE.agonism_AhR (p-value: 2.9e-7), 

HTS_ACTIVE.cytotoxicity_AhR/agonism (pvalue: 1.5e-4) and ATG_Ahr_CIS_up (p-

value: 0.006)(Figure 2.1.6A). This finding validated the ability of unbiased gene 

expression profiling to accurately capture endpoints from more specific and targeted 

assays such as those in the Tox21 library.   

 Next, we examined an expert-curated set of AhR-related chemicals (Group: 

Sherr_AHR_agonist). Based on the similarity of their gene expression profiles as 

measured by the connectivity scores, we found two functionally distinct classes of AhR-

related chemicals (Figure 2.1.6B). Cluster 1 contains 5 profiles (out of 6) of perturbation 

by benzo(a)pyrene, a strong AhR agonist and known genotoxicant. Cluster 2 is enriched 

with profiles of strong exogenous AhR ligands, most with potent toxic effects, including 

7, 12-dimethylbenz(a)anthracene (DMBA) and TCDD. It is not surprising that many of 

these chemicals also had high in-vitro transcriptional bioactivity (high TAS). 

Interestingly, profiles of indoxyl sulfate clustered with the group of strong AhR agonists. 

While indoxyl sulfate is an endogenous AhR ligand, it can be considered a uremic toxin 

that is observed at elevated levels in patients with chronic renal failure (Niwa et al. 1999). 

Cluster 3 contains endogenous AhR ligands (l-kynurenine, indole-3-carbonyl, kynurenic 

acid, xanthurenic acid, and cinnabarinic acid). Since l-tryptophan is not an AHR ligand, 
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its presence in this latter group suggests that it is metabolized to one of the kynurenine 

pathway metabolites that are AhR ligands (l-kynurenine, kynurenic acid, xanthurenic 

acid, and cinnabarinic acid). These results show promise for our platform to be used not 

only as a general predictor of active transcriptional pathways such as the AhR signaling 

pathway, but also to distinguish, with finer granularity, classes of AhR agonists according 

to the transcriptomic profile they induce.    

Carcinogenome Portal – a framework for data query and visualization 

 All data described in this manuscript are available for public access. Data 

processed under the standard CMap-L1000 pipeline are available under 

https://clue.io/data/CRCGN_ABC. To facilitate the interactive querying of the 

downstream analysis results produced by this study, we developed a web portal 

(https://carcinogenome.org/HEPG2). The query and visualization functionalities 

supported by the portal include differential expression, gene-set enrichment, and 

connectivity analysis against CMap signatures. This interface supports both marker-

centered (genes, pathways, CMap signatures) and chemical-centered queries. For 

instance, one can find the top gene markers and pathways regulated by a particular 

perturbation; identify the top chemicals that up-regulate a particular gene or pathway of 

interest; or find CMap chemicals or chemical groups that are most similar to the profiles 

of a particular perturbation. In addition, the portal supports bulk query and visualization 

of groups of perturbations in the form of heatmaps. 

https://carcinogenome.org/HEPG2
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2.1.4 Discussion 

Prediction of carcinogenicity and genotoxicity 

 The results from the prediction of carcinogenicity and genotoxicity experiments 

provide strong evidence that transcriptional bioactivity as captured by TAS had a high 

impact on the classifier performance. In fact, while absolute levels of bioactivity were not 

associated with carcinogenicity in our experiments, a sufficiently high bioactivity was 

necessary to elicit enough transcriptional signal to use a chemical's expression profile for 

carcinogenicity prediction. Thus, when limiting to profiles with high TAS, the 

performance of our predictive models drastically improved. Among highly bioactive 

profiles (TAS>0.4), our classifiers yielded mean AUC of 72.2% for prediction of 

carcinogenicity (Figure 2.1.2A), and 82.3% for prediction of genotoxicity (Figure 

2.1.2B). To boost the effective sample size used in classification, we outlined the 

following dose selection strategy for improving bioactivity of in-vitro gene expression 

profiles.   

In-vitro dose recommendation  

 The selection of doses in short-term acute exposures for prediction of long-term 

in-vivo phenotypes is a challenging task. In this experiment, we chose to adopt a standard 

6-dose titration, starting from 40µM or 20µM depending on source of chemicals. The 

sole exception to the standard dosing was TCDD, whose starting concentration is 50nM 

due to its extreme potency. The choice of standard dosing was made for a couple of 

reasons: 1) lack of commercial availability of certain chemicals at higher stock 

concentrations; 2) scarcity of in-vitro dose recommendations from publicly available 
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data, e.g., dose recommendations derived from MTT assays; and 3) cost efficiency of 

standardized dosing using the L1000 platform.  

 One alternative dosing scheme is to determine unique doses for each chemical 

using the MTT assay. For instance, a previous study of genotoxicity prediction based on 

in-vitro experiments selected doses based on a MTT assay resulting in 80% viability at 

72h incubation, or maximum dose of 2mM in the case of lack of cytotoxicity 

(Magkoufopoulou et al. 2012). Some chemicals used in that study were administered at 

doses that vastly exceeded the 40µM or 20µM dose limit adopted in our experimental 

setup. Furthermore, the lack of plateau effect in dose response as a function of TAS 

(proxy for bioactivity) suggests that doses exceeding the 40µM or 20µM threshold may 

indeed yield profiles with higher bioactivity and increase the power to detect gene and 

pathway markers for prediction of carcinogenicity and genotoxicity without experiencing 

saturation effects (response plateauing) or excessive cell death. Although standardizing 

dosage across chemicals was the logistically and cost-effective solution for this 

experiment, going forward, MTT assays are highly recommended for maximizing 

biological signal across transcriptional profiles. Estimation of the appropriate in-vitro 

dose from toxicokinetic modeling of the in-vivo doses tested in animal bioassays, when 

available, is another viable alternative, as shown in Figure 2.1.1D and associated 

discussion. We offer these dose recommendations in the context of accurate hazard 

prediction, for which this study has shown that sufficient signal (transcriptional 

bioactivity) is necessary. For effective risk assessment and translation, human relevant 

doses should be considered.  
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Acute vs. chronic response 

 Through analysis of transcriptional activity scores between carcinogens and non-

carcinogens (Figure 2.1.1C), we observed that long-term carcinogenicity, as established 

from long-term in-vivo rodent studies, had no effect on transcriptional bioactivity in our 

short-term assay (Figure 2.1.2A). This observation supports the conclusion that 

bioactivity as defined by TAS at less than 40µM is not associated with carcinogenicity, 

and consequently, a short-term chemical perturbation with minimal transcriptional 

response cannot be assumed "safe". 

 While TAS alone was not predictive of carcinogenicity, it was instrumental to the 

selection of those compounds with sufficient bioactivity to allow us to build an accurate 

gene expression-based classifier of carcinogenicity (up to 72.2% AUC). It was also 

instrumental to capturing important MoAs of carcinogenicity, as shown by our pathway 

enrichment analysis, which highlighted the upregulation of interferon-α/β response, cell 

death, DNA repair, and transcriptional regulation (RNA polymerase I, II, III) pathways in 

response to carcinogen exposure, as well as downregulation of phase I and phase II 

metabolism and cell-cell organization and communication pathways. Overall, we 

observed a stronger signal of genotoxicity compared to carcinogenicity, which is to be 

expected, as the latter is a more heterogeneous phenotype and thus harder to capture as a 

binary distinction; this is also evidenced by the higher accuracy of the genotoxicity 

classifier (82.3%) as well as the by the higher TAS among genotoxicants compared to 

non-genotoxicants. 
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Implication of findings in context of tumor initiation and promotion 

Chemical carcinogens can be classified into tumor initiators and promoters. 

Initiators cause changes to the DNA (mutagens) and promoters drive the proliferation of 

the cell, typically by interacting with receptors to affect pathways leading to cell 

proliferation. We derived labels of carcinogenicity based on long-term rodent studies, 

which includes both tumor initiators and promoters. However, it is important to 

understand that we used short-term human cell line gene expression patterns to predict 

long-term rodent carcinogenicity. Pathways relevant to tumor initiation were accurately 

captured by the short-term in-vitro gene expression data (DNA repair, DNA damage, 

etc). As for tumor promotion, promoters typically interact with receptors to mediate cell 

proliferation, and our cell culture model contains a subset of receptors that mediate these 

processes. However, one limitation is that culture conditions are already a promotion 

environment (high growth) that might limit the detection of promoting agents. Another 

limitation is that tumor promoters mediated by receptors not expressed in a culture 

system may elicit reproducible but not biologically accurate patterns of gene expression 

in the short-term in-vitro assay, although they may be correctly classified by our machine 

learning approach. Mechanistic expert judgement will need to be applied to evaluate the 

relevance of these findings to human carcinogenicity. 

Interfacing with the Connectivity Map 

One of the important features of the perturbation experiment data we generated is 

in their support for “guilt by association” inference of chemical function by signature-



 

 

41 

based comparison to the Connectivity Map’s Perturbagen Classes (PCLs), as illustrated in 

Figure 2.1.5. 

 For example, we showed that carcinogens are significantly more connected than 

non-carcinogens to the PCL consisting of topoisomerase inhibitors. These represent a 

specific class of DNA synthesis inhibitors, which are mainly recognized as 

chemotherapeutic drugs that preferentially inhibit the topoisomerase enzymes (commonly 

topoisomerase I or II) in cancer cells to slow their rate of replication. Topoisomerase I or 

II introduce single- or double-strand DNA breaks in cells undergoing replication, and 

form topoisomerase-DNA complexes. Most topoisomerase inhibitors function by 

trapping these complexes, leading to increased strand breaks but incomplete DNA 

replication, subsequently provoking DNA damage response and DNA repair (Pommier 

2006; Pommier 2013; Wang et al. 2002). Thus, DNA damage response induced by 

topoisomerase inhibitors is expected to mimic the response to genotoxic carcinogens. 

 Other relevant PCLs also exhibit shared MoAs with carcinogens and 

genotoxicants.  Aurora kinase inhibitors play a major role in cell cycle regulation through 

the induction of G1 arrest and apoptosis (Bavetsias and Linardopoulos 2015). Ubiquitin 

specific peptidases, specifically USP24, have been shown to play a role in DNA damage 

response (Zhang and Gong 2015).  

Challenges and future developments  

 This experiment aimed to accelerate short-term in-vitro testing approaches to 

predict long-term chemical carcinogenicity. We showed that short-term in-vitro gene 

expression profiling is not only capable to accurately predict carcinogenicity and 
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genotoxicity, but is also useful to characterize important mechanisms of carcinogenic 

response, particularly DNA damage and repair, and changes in cell cycle and cell-cell 

organization and communication. Other general biological processes that may be relevant 

for carcinogenic response, including inflammatory response, immune dysfunction, 

metabolic disruption and endocrine disruption, require further investigation in other in-

vitro contexts.  

 The choice of HEPG2 as our primary cell line model was driven by the abundance 

of chemical annotations for liver carcinogenicity and the appropriateness of HEPG2 for 

the study of liver toxicity. However, there are limitations in its use. Firstly, the expression 

of genes involved in phase I and phase II metabolism vary between passages and results 

relating to xenobiotic metabolism may be difficult to determine (Soldatow et al. 2013); 

this is also seen in the comparison of our genotoxicity-related signatures to Drugmatrix 

liver signatures. One potential contribution to this effect is the low bioactivation capacity 

in HEPG2 compared to in-vivo. As an alternative, the hepatoma cell line, HepaRG, 

which has a liver-like bioactivation, could be used as an in-vitro liver model for studying 

carcinogens and genotoxicants. One study has shown that while HEPG2 performs better 

in discriminating signatures between genotoxic and non-genotoxic carcinogens, HepaRG 

is a more suitable in-vitro liver model for biological interpretation of effects of chemical 

exposures (Jennen et al. 2010).  Secondly, since HEPG2 is a cancer cell line, the 

exposures of carcinogens in this line may show differences as compared to a non-

transformed cell line. For the purpose of predictive modeling, these cell line-specific 

nuances may be overlooked as long as the performance of the classifier is adequate.  
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Other cell line candidates for follow up studies should include more realistic 

hepatocyte models, such as induced pluripotent stem cells (iPSC)-derived hepatocytes, or 

organoids (Davidson et al. 2015; Underhill and Khetani, 2018). Alternatively, hepatic 

stem cells such as oval cells could be considered given that the stem cell theory of cancer 

initiation and maintenance is well supported (Fábián et al. 2013; Tan et al. 2006).  

 While liver carcinogenicity prediction was the adverse phenotype of choice for 

this study, this experiment provided us with many valuable insights to facilitate future 

experiments, including the logistics of large chemical panels procurement, and chemical 

and dose selection for tissue-specific carcinogenicity. It also set the stage for in-vitro 

based exposure studies of additional adverse phenotypes. For instance, we initiated the 

in-vitro screening of mammary gland carcinogenicity through the use of a non-

tumorigenic human mammary epithelial cell line, MCF10A and p53-deficient MCF10A. 

The experimental and computational pipeline we established, paired with the cost-

effective technology we used for chemical exposure and gene expression profiling, paves 

the way for the screening of large chemical panels for exposure-based experiments in 

other organ, disease, and adverse outcome contexts.  

2.1.5 Conclusions 

 Long term tests for chemical carcinogens based on epidemiology and rat studies 

are expensive and time consuming and not feasible for scaling to a large number of 

chemicals. In this study, we detailed a high-throughput gene expression profiling of more 

than 300 liver carcinogens and non-carcinogens in a short term in-vitro exposure model. 

These gene expression profiles, given sufficient transcriptional bioactivity, were capable 
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of accurate prediction of long-term carcinogenicity and even more accurate prediction of 

genotoxicity. Pathway enrichment analysis revealed similarities between pathway level 

response captured by the short term in-vitro exposures and known MoAs of 

carcinogenesis, particularly genotoxic mechanisms such as DNA damage and repair. 
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Figure 2.1.1 Boxplot of Transcriptional Activity Scores (TAS) by sample subsets  

A. Boxplot of TAS distributions for each dose level (rank = 1 lowest dose, rank 6 = 
highest dose). Numeric labels indicate the significance of paired one-sided two-group 
TAS comparison between adjacent dose groups, adjusted for multiple comparisons across 
doses using the False Discovery Rate method (FDR) (* = FDR < 0.05, *** = FDR < 
0.001) (see methods).  B. Boxplot of TAS distribution for each dose level, binned by 
TAS subsets. C. Distribution of TAS grouped by chemical carcinogenicity within each 
dose level. P-values indicate the significance of unpaired one-sided two-group TAS 
comparison between TAS of carcinogenic chemicals and TAS of non-carcinogenic 
chemicals within each dose group (* = p< 0.05, ** = p< 0.01, *** = p< 0.001) (see 
methods). D. Scatter plot of mean TAS per chemical and the ratio of equivalent in-vitro 

dose (Cmax) over maximum in-vitro dose (40uM) (see methods for Cmax calculation). 
Boxplots in Panel A, B, and C have the following specifications: the lower, middle, upper 
hinges corresponding to the 25th, 50th (median), and 75th percentile, the upper and lower 
whiskers extend to the smaller and largest value at most 1.5 * IQR (inter-quartile range) 
from the hinge, and data points beyond the whiskers represented as dots. 
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Figure 2.1.2 Performance of classifiers in predictive models  

A. of carcinogenicity, and B. genotoxicity. From left to right: (1) Summary statistics 
tables of Area Under the Curve (AUC) for each Transcriptional Activity Score (TAS) 
subsets; data represented are the median, mean and se (standard error) of the AUC scores. 
(2) Boxplots of AUC across resamples (N = 25) for each TAS subset with the lower, 
middle, upper hinges corresponding to the 25th, 50th (median), and 75th percentile, the 
upper and lower whiskers extending to the smaller and largest value at most 1.5 * IQR 
(inter-quartile range) from the hinge, and data points beyond the whiskers represented as 
dots. Dotted line at 0.5 represents the expected AUC of a random classifier. Labels in 
each TAS group ("n=") represent the number of unique chemicals in the model training 
and validation step. (3) Receiver operating characteristic (ROC) curves (False Positive 
Rate (FPR) vs. Average True Positive Rate (TPR)). Thick lines represent vertical 
averaging of ROC curves across resamples in each TAS group shown with bars denoting 
the standard errors. Thin semi-transparent lines represent ROC curves of individual 
resamples in each TAS group.  
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Figure 2.1.3 Top 20 landmark gene features of predictive models 

A. of carcinogenicity and B. genotoxicity as ranked by variable importance (Mean 
Decrease in Gini Index) in the predictive models of Transcriptional Activity Scores 
(TAS) > 0.4 subset.  
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Figure 2.1.4 Dot plot of probabilities of predicted classes for hold-out chemicals in 

the Transcriptional Activity Score (TAS) > 0.4 subset  

Point outline colors represent actual class labels (carcinogenic vs. non-carcinogenic, 
genotoxic vs. non-genotoxic). Point shapes represent dose ranks (dose rank 6 represents 
the highest dose level for each chemical). X-axis positions of points represent predicted 
probability of class "Positive" (carcinogenic in left column or genotoxic in right column), 
e.g. at the cutoff of 0.5 (red line), instances with values greater than 0.5 are predicted 
"Positive" and those with less than 0.5 are predicted "Negative".  
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Figure 2.1.5 Connectivity scores of top CMap Perturbagen Classes with differential 

connectivity (FDR < 0.05) to Carcinogens vs. Non-carcinogens and Genotoxicants 

vs. Non-genotoxicants grouped by Transcriptional Activity Scores (TAS) subsets  

The lower, middle, upper hinges of boxplots correspond to the 25th, 50th (median), and 
75th percentile. The upper and lower whiskers extend to the smaller and largest value at 
most 1.5 * IQR (inter-quartile range) from the hinge, and data points beyond the whiskers 
represented as dots. 
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Figure 2.1.6 Investigation of profiles of AhR related chemical perturbations  

A. Profiles with AhR activity ranked by median geneset scores of AhR target gene lists. 
B. AhR-related profiles clustered by connectivity scores.  
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2.2 Network-based analysis of transcriptional profiles from chemical 

perturbations 

The work in section was published: 

Mulas F, Li A, Sherr DH, Monti S. 2017. Network-based analysis of transcriptional 

profiles from chemical perturbations experiments. BMC Bioinformatics 18: 130. 

2.2.1 Introduction 

High-throughput screening of gene expression data of chemical perturbations can 

help identify patterns of similarly behaving perturbations in terms of their biological 

effects in vivo or in vitro. One method of constructing and comparison biological 

networks under multiple conditions is through transcriptional network inference and 

comparison. Network models – with genes represented by nodes and gene-gene 

interaction represented by edges – are inferred from experimental data and manually 

curated repositories. One instance of network models is gene co-expression networks, 

where genes are connected if the corresponding gene is significantly co-expressed across 

a set of samples of a specific context. These networks are particularly useful as they 

represent a snapshot of gene co-regulation in the experiment under study (Zhang and 

Horvath, 2005). 

  In the context of co-expression network inference, one popular method widely 

used in the study of protein interactions is scale free networks (SFN), in which degree of 

connection of member nodes follow the power law (Barabasi, 2009). The construction of 

these networks usually relies on the computation of gene-gene correlations across 

replicate experiments, and on the subsequent thresholding of the absolute correlation 
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values so as to define as connected only those genes with correlation above a chosen 

threshold (Butte el al. 2000; Carter et al. 2004). Although this approach has proven 

extremely useful in identifying key hub genes in multiple biological conditions (Margolin 

et al. 2006), the high sensitivity of the obtained networks to the choice of threshold raises 

questions about the reproducibility of the obtained results, as well as about their 

biological meaning (Zhang et al. 2005, Carter et al. 2004). An alternative approach is to 

use Correlation Networks (CN), where all pairwise gene associations are considered, to 

avoid loss of information in those cases where the analysis focuses on the identification 

of groups of tightly connected genes (modules), rather than on the identification of single 

key nodes (hubs). 

Regardless of the methodology used to infer the graph, network-derived gene 

modules can be investigated experimentally in order to gain insights into their biological 

function, or with the help of gene and pathway annotation resources. Additionally, the 

comparison of correlation networks from different conditions (e.g., different disease 

stages, or perturbations with different chemicals) may help identify modules whose 

connectivity is significantly altered in the compared conditions (Zhang et al. 2013). 

Connectivity-based comparisons may thus help identify “aggregate changes” that could 

be missed by standard methods of differential analysis comparing individual genes 

(Davis et al. 2009). 

In this study, we describe the development of a network-based analysis pipeline 

and its application to gene expression datasets from chemical perturbation experiments, 

with the goal of elucidating the modes of actions of the profiled perturbations. We apply 
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our pipeline to the analysis of the DrugMatrix dataset from the National Toxicology 

Program (NTP) (Ganter et al. 2005), one of the largest toxicogenomics datasets available, 

which contain organ-specific gene expression measurements for model organisms 

exposed to hundreds of chemical compounds with varying carcinogenicity and 

genotoxicity. 

Previous studies have shown that it is possible to infer highly accurate predictive 

models of chemical-associated long-term cancer risk from rat-based short-term 

toxicogenomics data, and to identify genes significantly associated with carcinogenesis 

(Gusenleitner et al. 2014). Here, we aim to go beyond the inference of predictive models 

and the identification of single biomarker genes, towards the identification of gene 

modules or pathways significantly associated with the profiled chemical perturbations 

and the induced adverse phenotypes. We do so by comparing the connectivity of gene 

modules in the networks derived from the control samples (“Control network”) to those 

obtained from samples collected after the exposure to specific chemical compounds. To 

this end, we reconstruct chemical-specific transcriptional networks, and show that by 

grouping chemicals based on the similarity of their associated networks we can identify 

groups of chemicals or drugs with similar functions and similar carcinogenicity and 

genotoxicity profiles. We also show that the in-silico annotation by pathway enrichment 

analysis of the gene modules with a differential connectivity (i.e. showing a gain or loss 

of connectivity for specific groups of compounds) can point to the main molecular 

pathways induced by specific chemicals. 
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2.2.2 Methods 

Data resources 

The DrugMatrix (Ganter et al. 2005), available through the Gene Expression 

Omnibus (GEO) with the accession number GSE57822, contains gene expression profiles 

from male rat primary tissues (liver, kidney, heart and thigh muscle) and cultured rat 

hepatocytes, corresponding to treatments with 376 chemicals, and including 994 control 

samples from rats kept in matched conditions. Each compound was administered at 

multiple doses and durations (6 h - 7 days), and each combination of tissue, compound, 

time and dose was profiled in triplicate. Of the 376 chemicals tested, 255 were annotated 

with either carcinogenicity or genotoxicity information in the Carcinogenic Potency 

Database (CPDB) (Gusenleitner et al. 2014), corresponding to 3448 profiles. In our 

study, only the samples from liver were considered, both for controls (279 samples) and 

for chemical perturbations represented by at least 10 samples and including all doses and 

durations available. 

Data processing 

Both Affymetrix datasets were normalized using the R Bioconductor package 

frma and frmaTools [32]. The Median Absolute Deviation (MAD) was used as the 

variation filter to select the 7000 best-ranked probes whose expression was then 

considered for inference of transcriptional networks. Data normalization, gene selection, 

network inference and other analyses were performed with custom scripts developed 

using the programming languages R, and several Bioconductor packages. 

Network inference and modules analysis 
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Transcriptional network inference starts by defining an adjacency matrix 

A = {aij}, with weight aij denoting the strength of the relation of genes i and j in the 

expression data. Scale-free transformations (thresholding) can then be applied to the 

correlation measurements to achieve a scale-free topology typical of biological networks, 

characterized by relatively few highly connected nodes (hubs) among a larger number of 

sparsely connected neighbors (Zhang and Horvath, 2005). In this work, we explored both 

the direct use of non-transformed correlation networks (CN) as well as of scale-free 

transformed networks (SFN). 

In order to obtain a correlation matrix, Pearson correlation measures between all 

pairs of gene expression profiles were computed. In the CN approach, the correlation 

matrix was directly used as the adjacency matrix A. Conversely, in the SFN approach two 

additional steps were required: i) only those edges with correlation values exceeding a 

specific threshold were retained, with the threshold selected so that the resulting 

distribution of connectivities fitted a scale-free topology; and ii) the adjacency matrix A 

was computed by transforming the thresholded correlation values into a topological 

overlap matrix (TOM), which takes into account the indirect interactions between each 

couple of genes in the network (Zhang and Horvath, 2005). In both approaches, 

hierarchical clustering with Ward’s method was then applied to the obtained adjacency 

matrix, and a dynamic tree cutting algorithm was applied to determine the number and 

composition of gene clusters, henceforth referred to as gene modules. We used the R 

package cutreeDynamic with minimum cluster size set to 10 genes, method set to 

“hybrid” and “deepSplit” parameter set to 4, which allows a higher number of more 
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homogeneous clusters if compared to other parameter settings. Finally, a Module 

Differential Connectivity score (MDC) was used to compare the connectivity of gene 

modules between networks (Zhang et al. 2013). For a specific module composed of N 

genes and an edge set EN, the MDC measures the ratio of the weighted cardinalities of 

EN in the two network, i.e.: 

𝑀𝐷𝐶(𝑋, 𝑌) =  
|𝐸𝑁𝑥|

|𝐸𝑁𝑦|
 

where |EN X | and |EN Y | denote the average connectivities aij X and aij Y among 

the module’s genes within networks X and Y. MDC values below 1 represent a loss of 

connectivity of the module in X with respect to Y, while values exceeding 1 indicate a 

gain of connectivity. 

Inference of Compound and Aggregate Compound Networks 

The inference approach (CN) showing the best validation results was used to 

analyze how different compounds (or groups of compounds) affect the connectivity 

patterns of specific gene modules. All non-treated liver samples available were used to 

construct the Control Network, while for the treatment-related networks we relied only 

on chemical compounds for which at least ten replicate experiments (animals) were 

available, obtaining 62 Compound Networks. 

In order to build Aggregate Networks representing multiple chemical compounds, 

the similarity of Compound Networks based on their module composition was measured 

by the adjusted Rand index (aRI) (Rand, 1971). The aRI is a well-accepted measure that 

allows for the comparison of clustering results even when these yield different numbers 
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of clusters. Groups of chemical compounds were then identified by applying dynamic 

tree cutting (Langfelder et al. 2008)(cutreeDynamic hybrid, minimum cluster size set to 3 

compounds, “deepSplit” set to 4) to the hierarchical tree obtained by merging 

compounds, with the Ward method, based on their aRI similarity. For each of the 13 

groups detected, an aggregate network was built using partial correlation, in place of 

simple correlation, as the adjacency measure, so as to control for the potential 

confounding effect of the chemicals grouped. The sample sizes of these groups ranged 

from 41 to 154, with an average of 86 samples used to infer correlation values. Internal 

similarity of compounds in each group was assessed by evaluating the overlap of their 

interacting proteins, as retrieved through the CTD database (Davis et al. 2015), by means 

of the Fisher exact test. Specifically, a p-value was obtained for each pair of compounds 

in a group and the median p-value was used as the score of internal similarity among the 

aggregated set of compounds. The significance of these measures was assessed by 

randomly selecting equally sized groups of compounds from the CTD database and 

computing their internal similarity, with the procedure repeated 1000 times. 

Selection and annotation of significant modules 

For each Control Network-specific module, a confidence interval for the value of 

the corresponding MDC with respect to each Aggregate Network (or Individual 

Compounds network) was computed by randomly selecting with replacement the same 

number of samples from the replicates of non-treated samples. After 1000 iterations, the 

standard value of each log-transformed MDC was compared with the obtained estimates 
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of MDC confidence interval. The resulting p-values assess the significance of the 

deviation of the MDC from 1 (with 1 denoting lack of differential connectivity). 

The same bootstrap procedure was adopted for modules extracted from each 

Aggregate Network (or Individual Compounds network), this time by randomly selecting 

with replacement the same number of samples from the entire set of perturbations. 

In order to rank the control modules most specifically altered by each compound 

group, the changes in connectivity of each module m measured for a compound group g i 

with respect to the Control Network c were compared to those obtained for the other 

compound groups (Tawa et al. 2014). First, the absolute value of the difference in the 

MDC scores between two groups of compounds gi and gj was computed for each module 

m as: 

∆𝑚𝑔𝑖,𝑔𝑗 =  |𝑙𝑜𝑔𝑀𝐷𝐶𝑚 (𝑔𝑖 , 𝑐) − log 𝑀𝐷𝐶𝑚(𝑔𝑗 , 𝑐)| 

This was used to compute the specificity of module m to compound group g i, as: 

𝑆𝑝(𝑚)𝑔𝑖 =  ∑ ∆𝑚𝑔𝑖,𝑔𝑘

𝑁

𝑘=1

 

where N denotes the total number of compound groups different from gi. For each 

compound group, modules with score exceeding the top 5th percentile of the overall 

distribution of specificity scores were selected for enrichment analysis. 

Specificity of modules inferred from the Aggregate Compounds Networks was 

assessed based on two alternative criteria, depending on the frequency of observation of 

the same module (or a highly overlapping module, Fisher test p-value < 0.01) in the 

networks. Modules identified in more than 50% of the aggregate networks were labeled 
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as “high frequency” and a score Sp(m)gi for module m to compound group gi, was 

computed as described for the Control Network modules. The Specificity score was 

obtained as 𝑆𝑝(𝑚)𝑔𝑖

𝑁𝑡𝑜𝑡
 where Ntot denotes the total number of compound groups. For each 

compound group, modules with score exceeding the top 5th percentile of the overall 

distribution of specificity scores were selected as “high frequency” specific modules. 

Modules identified in less than 50% of the networks were labelled as “low 

frequency” and selected based on significance of their correspondent MDC values 

(p < 0.01). 

Both Control Network-derived and Aggregate Network-derived (low and high 

frequency) specific modules were annotated by enrichment of the hallmark gene sets part 

of the MSigDB compendium (Liberzon et al. 2011). Significance of pathway enrichment 

was computed using a hyper-geometric distribution-based test and corrected for multiple 

hypothesis testing across multiple pathway gene sets via the false discovery rate (FDR) 

estimation. Hallmark pathways with FDR ≤ 0.25 was reported for each specific gene 

module in both Control Networks and Aggregate Networks. 

Selected genes and Hallmark gene sets were compared with the “Perturbational 

Transcriptome”, a list of genes identified as significantly differentially expressed (with 

respect to matched controls) in at least five compounds. Each module was tested for 

enrichment of genes included in the Perturbational Transcriptome by a hyper-geometric 

test. 
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2.2.3 Results 

Differential connectivity analysis of chemical perturbations 

As shown in Figure 2.2.1, the network-based pipeline for differential connectivity 

analysis starts by inferring chemical-specific Compound Networks, obtained from 

samples collected after the exposure to specific chemical compounds (Figure. 2.2.1.a), 

and a network from the control samples, hereafter named “Control Network” (Figure. 

2.2.1.b). Groups of compounds are then identified based on the similarity of their 

individual network structures. For each group, a new “Aggregate Compound Network” is 

inferred by pooling all the samples across the clustered compounds (Figure. 2.2.1.c-e). 

Next, modules of tightly connected genes are identified in each of the constructed 

networks and compared between conditions (i.e., control vs. compound group) in terms 

of Module Differential Connectivity (MDC) (Figure. 2.2.1.f). Given a module identified 

in one of the two networks under comparison (e.g., the aggregate compound network), 

the MDC score is computed as the ratio of the average connectivity across all the genes 

within the module in the aggregate network (numerator) and in the control network 

(denominator). This score represents changes of connectivity in the Compound group 

with respect to the Control. MDC scores are computed for all modules in the networks, 

and tests of statistical significance and module specificity are performed to identify 

modules that will be further investigated through enrichment analysis based on pathway 

repositories and additional annotation sources (Figure. 2.2.1.g-h). 
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Reproducibility analysis for network inference 

The inference and comparison methods were evaluated on networks derived from 

independent sample subsets extracted from the same dataset by a resampling approach. In 

this case, we attained more reproducible results, with the distribution of MDC values 

correctly centered at 1, and with a lower variance when using the correlation network 

(CN) approach rather than the Scale-Free Network (SFN) approach. An additional 

advantage of the simpler CN approach is that it does not require the selection of a 

threshold for the correlation values, a choice that is highly sensitive to the samples 

analyzed and strongly influences the subsequent calculation of MDC values. Based on 

these results, the subsequent analyses were all based on the CN approach as the network 

inference method of choice. 

Groups of similar chemicals can be inferred by network analysis 

Using the CN approach, we analyzed how different groups of compounds affect 

the connectivity pattern of specific gene modules. First, we inferred the network from the 

non-treated liver samples, hereafter named “Control Network”. The Control Network was 

clustered into 60 gene modules, with sizes ranging from 21 to 551 genes. 

Next, chemical-specific Compound Networks were inferred for each of the 62 

chemicals for which at least ten replicate experiments (animals) were available. We 

aimed at identifying chemicals with similar network structure, which were then grouped 

to infer “Aggregate Compound Networks”. This step had two main goals: i) to study how 

well groups of chemicals with similar known features (e.g., similar mechanism of action) 

can be identified through networks; and ii) to increase the sample size available for 
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network inference. For the aggregation of the chemicals, the Compound Networks were 

compared pairwise based on the similarity of their respective modules as measured by the 

adjusted Rand index (aRI) (Rand, 1971). The aRI is a score specifically devised for the 

comparison of clustering results even when the two networks have different number of 

clusters (i.e., modules). Hierarchical clustering was then applied to the matrix of aRI’s to 

induce a similarity-based partial ordering and grouping of the chemicals (Fig. 2.2.2.a). 

The aRI-based clustering yielded a clear separation between non-genotoxic 

carcinogens (left sub-dendrogram in Fig. 2.2.2.b) and genotoxic non-carcinogens (right 

sub-dendrogram). Of notice, genotoxic compounds were not as well separated when we 

applied alternative, more standard clustering approaches, such as one based on the direct 

similarity of the chemicals’ expression profiles. 

Module differential connectivity highlights chemicals’ modes of action 

Samples related to the 13 groups identified (Figure 2.2.2.b) were used to infer 

Aggregate Compound Networks, each representing the partial correlation among genes 

across all replicate experiments from the group of compounds considered. As shown in 

Fig. 2.2.1, we aimed at comparing the Control Network with multiple perturbations by 

analyzing the changes in gene modules connectivity. This analysis was repeated twice, 

first using the modules identified in the Control Network, and then using the modules 

identified in each of the Aggregate Compound Networks. 

Control network-centered analysis 

For each of the modules identified in the Control Network, the MDC score was 

computed to measure the change in connectivity (gain or loss) among the module’s genes 
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due to the action of each group of chemicals. Significance of the MDC values was 

assessed by a bootstrap approach, whereby a confidence interval for each MDC is 

estimated by performing network inference on bootstrapped (i.e., sampled with 

replacement) versions of the original dataset.  

Since the modules are defined in the control network, hence are the same for each 

pairwise comparison, the results can be represented as a matrix and an associated color-

coded heatmap, with each row corresponding to a Control Network module, and each 

column corresponding to a compound group. Several modules manifest a remarkable 

change of connectivity, as captured by their MDC scores, and as confirmed by their 

estimated q-values. 

In order to focus on compound-specific effects, we computed a “Specificity 

Score” for each Control module (Tawa et al. 2014). The specificity score quantifies the 

uniqueness of a gain or loss of connectivity to a given compound group. Briefly, for a 

given group of compounds and a given module, the differences in MDC between that 

group of compounds and all the other groups are computed. Specificity is then defined as 

the sum of all the differences, with higher values identifying modules with a high MDC 

absolute value relative to all the others. Modules with scores exceeding a top percentile 

of the distribution of Specificity values were subject to enrichment analysis and 

significant pathways were selected with FDR-corrected p-values. A bipartite graph in 

Fig. 2.2.4 is used to graphically represent the obtained associations between compound 

groups and enriched gene sets. All groups except one (G10) showed at least one top 
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specific module significantly enriched for Hallmarks gene sets (Enrichment FDR-

corrected p-value < 0.25). 

Aggregate network-centered analysis 

Taking an approach complementary to the one adopted in the control network-

centered analysis, here a set of gene modules is defined for each of the aggregate 

compound networks. That is, for each aggregate network, a set of densely connected 

modules is identified, and their change of connectivity with respect to the control network 

is calculated by MDC. Since a potentially distinct set of modules is identified in each 

aggregate network, this precludes the representation of the differential connectivity 

analysis results across the aggregate networks in matrix form. 

In this analysis, we first identified high frequency (HF) modules as those modules 

for which similar grouping of genes (i.e., similar composition) was found across multiple 

aggregate networks (Fisher test, p < 0.01). A Specificity Score was then computed to 

highlight those with MDC values specific to a particular compound group. We next 

identified, low frequency (LF) modules, i.e., modules whose composition was unique to 

only one or few Aggregate Networks. Both HF and LF modules are graphically 

represented in Figure. 2.2.5, where Hallmarks gene sets have been used to investigate 

their biological function. Taken together, the findings described below confirm that the 

approach is capable of identifying known modes of action (Waters et al. 2010), and of 

grouping compounds based on their coordinated effect on molecular pathways. 

Comparison of network-based approach to standard differential expression analysis 
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A comparison of our network-based analysis results with those from standard 

differential expression analysis highlighted the complementarity of the two approaches. 

Differentially expressed genes identified as belonging to the “Perturbational 

transcriptome” in our previous study (Gusenleitner et al. 2014), and their correspondent 

enriched Hallmarks, were evaluated in terms of their overlap with genes and gene sets 

identified by the present approach. First, each of the Control and Compound-related 

modules was scored for its enrichment in terms of differentially expressed genes. As 

expected, a majority of the modules (26 out of 32) were significantly enriched for 

differentially expressed genes (Fisher test, p < 0.01). Table S6 shows a summary of this 

analysis where all genes contained in at least one of the modules identified were 

compared with the Perturbational transcriptome. Despite the significant overlap yielded 

by the two approaches, a considerable number of genes were identified only by one of the 

methods, pointing to the complementarity of the approaches. Interestingly, many of the 

genes and Hallmarks identified only with the network-based approach were associated to 

pathways previously implicated in mediation to chemical responses, and described in the 

following section, including Heme Metabolism, Myc targets, and inflammation signaling. 

2.2.4 Discussion 

 Both Control-centered and Compound-centered network based analyses yielded 

biologically meaning findings that reflects known or novel mechanisms of the chemical 

perturbations, as discussed in detail below.  
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Alcohol-induced liver inflammation 

As shown in Fig. 2.2.3, G1 has a specific effect on a high number of pathways, 

mostly associated with inflammation and tumorigenesis. Given that liver samples have 

been considered in this study, the significant impact of this group on the entire pathway 

set could be explained by the high number of alcohols included in group G1. In fact, 

alcohol-mediated activation of inflammation signaling pathways in the liver is known to 

increase tumorigenesis in mice and to activate pro-inflammatory cytokines, such as tumor 

necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and nuclear factor kappa B (NFκB) 

(Wang et al. 2010). This liver damage response has been reported for several members of 

the “G1-Solvents” group, including allyl alcohol (Lee et al. 1996), Lipopolysaccaride, 

known as an endotoxin, (Wang et al. 2010), and chloroform (Gupta et al. 2003).  

Hypolipidemic compounds induce cholesterol metabolism and inflammation 

Groups G3 (Statins) and G5 (Fibrates), both including hypolipidemic compounds, 

show a specific alteration of modules related to cholesterol and fatty acid metabolism. In 

particular, the highest Specificity score is obtained by the Fibrates on module “thistle1”, 

enriched for Fatty Acid Metabolism. While all the other groups of chemicals cause a 

LOC of the “thistle1” module, groups G5 and G3 are the only ones to produce a GOC, 

with a higher MDC obtained by Fibrates. Statins have a more significant effect on the 

module “honeydew”, enriched for cholesterol homeostasis (Table S7), which has not a 

high specificity ranking for the Fibrates, confirming different actions of those two distinct 

classes of drugs. Statins are also associated with stress response pathways, including 

oxidative phosphorylation, UV response and activation of TNF-α in both Control (Figure. 
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2.2.3) and compounds-related modules (Figure. 2.2.4). While hypoxia-inducible factors 

were found to play a role in the inhibition of cholesterol synthesis (Schröder et al. 2011), 

an inflammatory response of the liver has not been clearly reported in the literature. 

However, the indication of liver damage as a rare side effect by FDA might suggest that 

tissue-specific network analysis could capture most of the possible mechanisms induced 

by drugs exposure. 

Effect of estrogens, steroids and cancer drugs on cellular replication 

Both modules related to estrogens and to cancer treatment have an effect on the 

connectivity of module “maroon”, enriched for pathways related to cellular replication. 

While this module is gaining connectivity as an effect of proliferation-inducing drugs 

contained in group G4 (estrogens), a loss of connectivity is observed for G9 

(chemotherapeutics) and G11, pointing to the disruption of the cellular replication 

machinery caused by anti-cancer drugs. The gain of connectivity of G2M checkpoint 

induced by G10 (Alkylating-cancer) and p53 pathway in the compound-related modules 

(Fig. 2.2.4) also confirms known mechanisms in the treatment of tumors and DNA 

damage (Kastan and Bartek, 2004). 

The loss of connectivity of inflammation-related pathways observed on G6 

perturbation could be explained by the known action of some steroids-related 

compounds.  

Non-homogeneous groups of compounds have known common effects 

Interesting results can be observed for non-homogeneous groups of compounds 

for which a predominant pharmacological action could not be assigned. In particular, 
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group G13 (Antiseptics-Estrogens) shows a double effect, clearly visible in Fig. 2.2.3, by 

acting on inflammation-related pathways and on mitosis gene sets. Possible key players 

of this group are Safrole, which has been shown to induce liver DNA damage (explaining 

the action on stress response pathways) (Ding et al. 2015) and Methyl salicylate, shown 

to have an estrogenic potential (Zhang et al. 2012), thus increasing the coordinated 

activity of genes related to cellular replication pathways. Another interesting example is 

group G7, containing four chemicals with apparently different functions. As suggested by 

the specific loss of connectivity induced on module “coral1”, related to inflammatory 

response, the majority of compounds included in this group have antioxidant properties 

(Aviram et al. 1998; Jamdade et al. 2016; Pigoso et al. 2002). Among these, Atorvastatin 

is a compound belonging to the class of Statins, which was not grouped with the other 

Statins in G3. Interestingly, no other statins except for one were demonstrated to have 

antioxidant effects in vitro, confirming the grouping of compounds found with aRI 

(Aviram et al. 1998; Schröder et al. 2011). 

2.2.5 Conclusion 

We have presented a pipeline for transcriptional network inference and 

comparison that was primarily designed for the analysis of chemical perturbations from 

high-throughput transcriptional screening experiments. Here, we applied it to the analysis 

of gene expression profiles from rat-based chemical exposure experiments. We show that 

groups of chemicals with similar functions and carcinogenicity/genotoxicity profiles can 

be identified through our proposed pipeline. In addition, modules with altered 

connectivity due to the action of specific compounds were enriched for pathways actually 
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related to the chemicals’ action. These findings highlight potential advantages in the 

application of this network-based approach. In the context of drug discovery (or 

repositioning), the methods presented here could help assign new functions to novel (or 

existing) drugs, based on the similarity of their associated network with those built for 

other known compounds. Additionally, networks with patients as nodes could be 

compared with the same tools in order to identify groups with a similar response to a set 

of drugs. In fact, the proposed methodology has broad applicability beyond the uses here 

described and could be used as an alternative or as a complement to standard approaches 

of differential gene expression analysis. 

 

 

Figure 2.2.1 Workflow of network-based analysis of transcriptional profiles from 

chemical perturbations 

DrugMatrix liver samples are used to infer chemical-specific Compound Networks (a) 
and a Control Network (b). Similarity in terms of network structure is evaluated to 
identify groups of compounds, whose samples are pooled to infer Aggregate Compound 
Networks (c-e). Modules of tightly connected genes both in the Control network and in 
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Compound Aggregate networks are identified and compared across conditions in terms of 
Module Differential Connectivity (MDC) (f). Modules with a change in connectivity that 
is highly specific to each compound group are investigated through pathway enrichment 
analysis (g-h) 

 

Figure 2.2.2 Compounds aggregation 

Similarity of 62 chemical compounds based on adjusted Rand Index (aRI). a. Heatmap of 
aRI and grouping of compounds with similar networks structure. b. Zoom-in on the 
compounds grouping 
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Figure 2.2.3 Enrichment of specific Control modules 

Bipartite graph representing associations between compound groups and enriched 
Hallmarks gene set corresponding to specifically altered modules extracted from the 
Control Network 
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Figure 2.2.4 Enrichment of specific Compounds-related modules 

Bipartite graph representing associations between compound groups and enriched 
Hallmark gene sets corresponding to specifically altered modules extracted from each 
Aggregate Compound Network 
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CHAPTER THREE: Towards cancer therapy - Molecular characterization of the 

cancer genome and epi-genome using integrative analysis 

3.1 Introduction 

A central goal of cancer genomics research is to identify the key genetic and 

epigenetic fingerprints that promote the initiation and progression of cancer. These 

fingerprints can manifest across multiple biological levels quantifiable by high-

throughput profiling technologies, such as RNA and protein expression, copy number, 

DNA methylation and microRNA profiling. 

Large-scale cancer genomics data compendia such as The Cancer Genome Atlas 

(TCGA) have collected comprehensive multi-omics datasets for tens of thousands of 

patients across ~30 types of cancer (Cancer Genome Research Network, 2013). The 

availability of such large-scale datasets provides an opportunity for method development 

to integrate data from multiple types of profiling platforms towards the discovery of 

novel diagnostic and prognostic biomarkers and therapeutic targets.  

Past research using integrative approaches have shown success in discovering novel 

cancer drivers (Akavia et al. 2010; Xie et al. 2012). However, the existing methods still 

rely on ad-hoc, albeit sophisticated, analysis methods and scripts not accessible to 

analysts other than those responsible for their development. Furthermore, the generated 

analysis results are often static, and not accessible in an interactive fashion. The approach 

here presented aims to address both these shortcomings.  

The central hypothesis behind integrative approaches is that the key molecular 

fingerprints of cancer manifest through multiple layers of genetic and epigenetic markers. 
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Integration of these layers provides greater power to detect relevant disease markers, such 

as cancer drivers or potential therapeutic targets. An important type of genetic alteration 

in cancer is somatic copy-number alteration (SCNA). SCNAs harbor many known cancer 

drivers and play an important role in cancer initiation and progression through activation 

of oncogenes and inactivation of tumor suppressors (Zack et al. 2013). Identification of 

novel SCNA-associated cancer drivers is complicated by the fact that each SCNA contain 

many genes, the majority of which are likely not to have any critical functional effects. 

One approach to tackle this problem is to prune the set of candidate drivers based on their 

association with other types of paired omics data, such as gene expression profiles. For 

example, one can prioritize genes found in frequent SCNA peaks whose gene expression 

changes are associated with corresponding copy number changes (Lai et al. 2017). Even 

after this pruning step, the set of remaining candidate drivers might still yield too many 

testable hypotheses for use in functional validation studies. More importantly, association 

between SCNA and gene expression alone may not be the best metric for ranking 

potential cancer drivers.  

To address this problem, we present a methodology, and an associated software 

package, to identify SCNA associated genes and to perform prediction of cis gene drivers 

prioritized by their capability of mediating downstream gene expression trans effects, that 

is, by combining information from trans genes (genes outside the SCNA of interest) 

whose expression is also associated with a particular SCNA event of interest. The 

approach is predicated on the hypothesis that SCNA-related drivers of tumorigenesis will 

mediate a larger proportion of the downstream effect observable by trans gene expression 
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than non-drivers. Using this heuristic, we identify putative SCNA-associated cancer 

drivers as the cis gene mediating the most trans gene expression, although the method 

allows users to customize the set of trans genes considered for mediation analysis.  

We developed a corresponding software tool, integration of Epi-DNA and Gene 

Expression (iEDGE), for prediction of (epi-)DNA related cancer drivers. Preliminary 

versions of iEDGE have shown success in uncovering SCNA-associated cis driver genes 

in diffuse large B cell lymphoma (Chapuy et al. 2018, Monti et al. 2012). Here, we 

utilized iEDGE for predicting SCNA-associated cancer drivers across 19 cancer types 

using the data from TCGA, with a particular focus on analysis of TCGA breast cancer. 

Our list of candidate drivers is highly enriched for known oncogenes and tumor 

suppressors and additionally implicates many suspected drivers as well as novel 

candidate genes with potential prognostic or therapeutic importance in cancer. 

3.2 Methods 

An overview of the iEDGE approach is summarized in Figure 3.1. Briefly, 

iEDGE integrates samples quantified from a gene expression profiling assay paired with 

another genomic or epi-genomic assay capturing information upstream of gene 

expression, such as SCNAs, DNA methylation, or microRNA expression. First, we 

identify the features mapping from the epi-DNA assay to gene expression. In the case of 

SCNAs, cis genes of each SCNA are defined as genes within the focal peaks of the 

SCNA, and trans genes are defined as genes outside of the focal peaks. Then, iEDGE 

performs differential expression analysis to identify cis and trans genes significantly 

associated with each SCNA and, optionally, pathway enrichment analysis of each 
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significant cis and trans gene sets (Figure 3.1A). Next, iEDGE predicts cis driver genes 

using mediation analysis, wherein each differentially expressed cis gene is ranked by the 

number of differentially expressed trans genes it mediates as determined using the Sobel 

test of mediation (Figure 3.1B).  

Copy number and gene expression pre-processing 

We utilized the dataset of somatic copy number alterations and RNA-seq from the 

TCGA breast cancer cohort, which was preprocessed using Firehose v0.4.13 and 

downloaded from the Broad Institute TCGA GDAC repository 

(http://gdac.broadinstitute.org/runs/).  

The SCNA dataset was preprocessed using GISTIC2.0 under the Firehose run 

release analyses__2015_08_21, which identified 29 significant focal amplifications and 

40 significant focal deletions to be considered for integrative analysis (Broad Institute 

TCGA Genome Data Analysis Center 2015). SCNA status by sample was binarized using 

the amplitude threshold of 0.1, that is, SCNA status = 1: t < 0.1 or 0: t >= 0.1 for 

amplifications and 1: t< -0.1 or 0: t >= -0.1 for deletions. Cis genes were identified by 

GISTIC2.0 as genes in the wide peak of each significant SCNA with boundaries selected 

at the confidence level of 0.99. Trans genes were identified as genes outside the wide 

peak of each SCNA.  

The gene expression data is a RSEM processed gene expression matrix 

(stddata__2015_06_01). Expression values were log2-transformed prior to integrative 

analysis. The samples were categorized into breast cancer subtypes using a combination 

of the pam50 classifier (Parker et al. 2009) and the HER2 status. HER2 status was 

http://gdac.broadinstitute.org/runs/
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determined using HER2 receptor activity, labeled positive if tested positive by either 

FISH or IHC method. In HER2 negative samples, the pam50 classification was used. 

Samples with gene expression-based membership in one of four major breast cancer 

subtypes (Luminal A, Luminal B, Her2, Basal) were retained for integrative analysis. 

Tumors classified as “Normal-like” by pam50 were removed from further analysis. A 

total of 1050 samples (primary solid tumors only) were found with paired gene 

expression and SCNA data by matching the sample barcode identifier (combination of 

patient id and sample type).  

Determining significantly expressed SCNA associated cis and trans genes 

We performed differential expression of cis and trans genes with respect to each 

GISTIC2.0 defined significant focal SCNA peak. The significance of differential 

expression was estimated using limma (Ritchie et al. 2015) for each SCNA with samples 

split into two groups (amplified vs. normal for amplification peaks and deleted vs. normal 

for deletion peaks) using FDR < 0.25 and fold change > 1.2 for cis genes, and FDR < 

0.01 and fold change > 1.5 for trans genes. One-sided significant levels were reported for 

cis genes with the rationale that a focal amplification is commonly associated with an 

increase in gene expression and a deletion is associated with a decrease in gene 

expression. Two-sided significant levels were reported for trans genes, as indirect 

downstream effects can occur through either transcriptional repression or activation.  

Pathway enrichment analysis of significant cis and trans gene sets 

Significantly differentially expressed cis and trans gene sets were tested for 

pathway enrichment using the MSigDB gene set compendia hallmark (hallmark gene 
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sets), c2.cp (curated gene sets from online pathway databases), and c3 (motif gene sets), 

version 5.0 (Liberzon et al. 2011).  The significance of pathway enrichment was 

determined using a hypergeometric distribution-based test and corrected for multiple 

hypothesis testing using the False Discovery Rate (FDR) method (Benjamini and 

Hochberg 1995).  

For breast cancer-specific pathway enrichment results, pathways with significant 

enrichment (FDR < 0.25) in any SCNA were reported (Figure 3.2). In addition, each 

SCNA was labeled according to its over-representation in a particular breast cancer 

subtype using a one-sided Fisher exact test comparing counts of SCNA occurrence within 

vs. outside each breast cancer subtype (FDR < 0.05). Subtype-specific SCNAs were 

subsequently used in conjunction with pathway enrichment results to determine subtype-

specific pathway enrichments using a one-sided Fisher exact test (FDR < 0.05).  

Mediation testing and prediction of cis drivers 

To elucidate which cis genes are likely to mediate the association between copy 

number alteration and trans gene expression, we used the Sobel test to estimate the 

mediation effect of each cis gene and its significance (Sobel 1982). Briefly, we model the 

association for each triplet of SCNA, cis gene, and trans gene using the linear regression 

models specified in Figure 3.1B. The mediation effect of the cis gene: Δτ = τ - τ', 

represents the change in the magnitude of the effect of the SCNA status on the trans gene 

expression after controlling for the cis gene expression. The significance of the mediation 

effect is calculated from the t statistic: t = Δτ /SE, where SE is the pooled standard error 
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term, and is compared to the normal distribution to determine the p-value and FDR 

(Benjamini and Hochberg 1995).  

An important simplifying model assumption is that the association between each 

SCNA and trans gene is mediated by at most one cis gene, therefore the cis gene 

mediator for each SCNA-trans gene pair is chosen based on the most significant 

mediation effect (ranked by the FDR values of the mediation test).  

Once the cis genes mediator is determined for each unique trans gene, the mediation 

effect of cis gene i on trans gene j can be expressed as either binary (0 or 1) or as the 

weight 𝑤𝑖𝑗 =  
∆𝜏𝑖𝑗

𝑠𝑖𝑔𝑛(𝜏𝑖𝑗)×𝜏𝑖𝑗
, limited to the range of [0, 1].  Thus, the total mediation effect 

of cis gene i across m significantly expressed trans genes, also referred to as the Weighted 

Fraction of Trans Mediation (WFTM), is expressed as 𝑀𝑖  = ∑ 𝑤𝑖𝑗 × 𝐼𝑖𝑗
𝑚
1 , where Iij 

denotes the indicator variable taking the value 1 if cis gene i is has the most significant 

mediation effect on trans gene j among all cis genes, 0 otherwise.  

Next, for each SCNA, we rank each cis gene based on its total mediation effect Mi. The 

cis gene with the highest value of Mi is denoted as the "Rank-1 cis gene" for the given 

SCNA, the candidate driver gene of the alteration.  

Assessing enrichment of predicted cis drivers in databases of known cancer drivers 

To investigate the functional impact of putative drivers identified by iEDGE, we 

tested for the enrichment of iEDGE predicted driver genes in several cancer driver 

databases. Reference cancer driver genes, denoted as either “oncogenes” or “tumor 

suppressors” in the original sources, were compiled using data from Tuson Explorer 

(Davoli et al. 2013), Online Mendelian Inheritance in Man (OMIM) (Hamosh et al. 
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2005), Cancer Gene Census (CGC) from Catalogue of Somatic Mutations In Cancer 

(COSMIC) (“Cancer Gene Census” 2018; Forbes et al. 2017), and Uniprot (The UniProt 

Consortium, 2017). We tested for the overrepresentation among Rank-1 cis genes, 

compared to non-Rank-1 cis genes, of known drivers from the reference databases (Table 

3.2). Enrichment tests were conducted separately for each reference database and driver 

type, i.e., oncogene (“_OG”), tumor suppressor (“_TN”), or both (“_COMBINED”), as 

well as using the union of the driver genes across databases (column “ANY” indicates 

union of drivers across knowledge bases). Enrichment significance was calculated using a 

one-sided Fisher exact test assessing the overrepresentation of Rank-1 vs. non-Rank-1 cis 

genes with respect to their membership in the reference driver list, conditional on the 

direction of change, e.g. amplified cis genes among oncogenes, deleted cis genes among 

tumor suppressors, or direction insensitive. P-values are adjusted with the FDR procedure 

to correct for multiple hypothesis testing across 19 tumor types.  

Copy number-associated gene dependencies 

SCNAs often lead to overexpression of driver oncogenes and confer a tumor-

promoting environment. In other words, driver oncogenes are more likely to act as 

essential genes (increased gene dependency) in an amplified state. To identity such genes, 

we looked for copy number associated gene dependencies using data available from 

DepMap, specifically, gene dependency data (McFarland et al. 2018) and cancer cell line 

genomics data from the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012; 

Cancer Cell Line Encyclopedia Consortium 2015). In particular, we mined for genes with 

associations between gene dependency (Combined RNAi screens from Broad, Novartis, 
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Marcotte) and somatic copy number status across cell lines (CCLE). To do this, we used 

a linear regression model Y = α X + β where Y is the Gene Dependency Score and X is 

the copy number level (log2 relative to ploidy) across cell lines. Gene dependency scores 

were calculated using DEMETER2 (McFarland et al. 2018). A negative gene dependency 

score corresponds to high gene dependency, e.g., an increased gene essentiality. In 

contrast, a high gene dependency score corresponds to non-essential genes. We looked 

for genes with significantly negative association between copy number and Gene 

Dependency Score, that is, genes in which higher copy number is associated with higher 

gene essentiality, using a one-sided t-test on the coefficient α (alternative hypothesis α < 

0). Additionally, FDR correction was performed across p-values for all genes. Since gene 

dependency scores are calculated from only gene knockdowns, we were only able to test 

amplification-driven gene dependencies, whereas overexpression assays would be needed 

for detection of deletion-driven gene dependencies. 

Finally, to determine if iEDGE was able to uncover an enrichment of 

amplification-driven gene dependencies, we tested for enrichment of genes with 

amplification-driven gene dependencies among iEDGE-predicted Rank-1 cis genes using 

a one-sided Fisher test on the contingency table of counts (rows: membership in Rank-1 

vs. non-Rank-1, columns: presence vs. absence of amplification driven gene 

dependencies). 

Pan-Cancer Analysis 

TCGA gene expression and copy number (GISTIC2.0) data were retrieved using 

Firehose v0.4.13 for 19 cancer types as summarized in Table S9. Gene expression data 
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(RNASeq) correspond to the latest release at the time of retrieval (stddata__2015_02_04 

for cancer types ACC, KIRP, THCA and stddata__2016_07_15 for all other cancer 

types). SCNA copy number data uses the GISTIC2.0 run corresponding to Firehose run 

release analyses__2016_01_28. Gene expression processing and copy number processing 

steps for the pan-cancer analysis are consistent with methods used for the BRCA-only 

analysis. Of note, the BRCA dataset in the pan-cancer analysis includes all TCGA BRCA 

samples with paired copy number and gene expression data to be consistent with 

processing of other TCGA cancer types, contrary to the removal of samples without an 

assigned molecular subtype in the BRCA-only analysis.  

We tested for enrichment of known cancer driver genes among Rank-1 cis genes 

in each of the 19 TCGA cancer types using a one-sided Fisher test (Table S3.3), 

consistent with the BRCA-only analysis. FDR correction was performed on the nominal 

p-values across all 19 cancer types for each test (unique combination of database origin 

and alteration direction, gain or loss). Enrichment tests are direction sensitive (“OG” tests 

for enrichment of oncogenes in Rank-1 cis genes in amplifications, “TN” tests for 

enrichment of tumor suppressors in Rank-1 cis genes in deletions, “COMBINED” tests 

for the union of the two sets). 

We also tested for enrichment of amplification-driven gene dependencies in 

Rank-1 cis genes across the 19 cancer types (see Methods: Copy number-associated gene 

dependencies) (Table S3.4). Multiple hypothesis correction using the FDR procedure 

(Benjamini and Hochberg 1995) was used to adjust the significance values across 

multiple cancer types.  
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Evaluation of the Reproducibility of Cis Driver Gene Predictions in BRCA 

To evaluate the consistency of Rank-1 driver gene predictions, we generated 100 

bootstrapped resamples of the original TCGA breast cancer dataset using sampling with 

replacement with the number of samples equal to the size of the original dataset, derived 

the predicted Rank-1 cis genes across the 100 bootstrapped datasets, and compared these 

predictions against the original list of predicted Rank-1 cis genes from the full dataset. A 

reproducibility score was calculated for each of the original predicted Rank-1 cis gene as 

the percent of inclusion of the particular gene as a Rank-1 cis gene among the 

bootstrapped results. To explain the variation on reproducibility scores across genes, we 

modeled these scores using linear regression models with the dependent variable being 

either the Weighted Fraction of Trans Mediated (WFTM) or the Entropy of WTFM for 

the alteration of interest, calculated as the Shannon Entropy of WTFM of all differentially 

expressed cis genes within the alteration harboring the Rank-1 cis gene of interest. A 

two-sided t-test on the slope, 1, of the linear regression, with Ha: 1  0, was used to 

estimate significance, defined as p-value < 0.05.   

Evaluation of Mediation Testing from Simulated Data 

The Sobel test of mediation identifies cis genes that mediates SCNA and trans 

gene expression. To determine the conditions in which mediation is correctly identified, 

we used a forward simulation approach to generate labeled data of true positives and true 

negative, and then applied the mediation test to estimate its sensitivity and specificity.  

True positive instances of mediation were generated using the following linear 

regression models: 
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𝑌𝑎 = 1 + 
1

𝑋𝑎 + 𝑁(0,1
2) 

𝑍𝑎 = 2 + 
2

𝑌𝑎 + 𝑁(0,2
2) 

Here, Xa denotes the independent variable (SCNA status), Za is a dependent 

variable (trans gene expression) and Ya is a true mediator of Xa and Za (cis gene 

expression).   

True negative instances, representing the lack of a mediation effect, were 

generated using the following models: 

𝑌𝑏 = 1 + 
1

𝑋𝑏 + 𝑁(0,1
2) 

𝑍𝑏 = 2 + 
2

𝑋𝑏 + 𝑁(0,2
2) 

Here, Xb is the independent variable (SCNA status) and Yb and Zb are both 

dependent variables generated based on separate regression models from Xb.  

Variables X, Y, Z are vectors of length n, representing the sample size of the data. 

X is a binary vector (0s and 1s) corresponding to the binarized SCNA copy number 

status.  is the standard deviation of the Gaussian noise term. We fixed 1 and 2 at 0.7 

based on estimation from real data (TCGA breast cancer). The mediation test was 

performed on 1000 simulated true positives and 1000 simulated true negatives, and 

performance was measured in terms of AUC, sensitivity and specificity. For sensitivity 

and specificity, mediation calls were made based on the Sobel test p-value of 0.05.  Test 

performance was recorded for simulated datasets based on a range of values of n (sample 

size) and  (standard deviation of the Gaussian noise in the regression models). The 

standard deviation  is a proxy for the correlation strength between dependent and 

independent variables, as higher noise corresponds to weaker correlation. For 
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interpretability purposes, values for the parameter  are converted to the corresponding 

Pearson correlation estimates using a Loess model (Local Regression).  

Software availability 

iEDGE is available as an R package for download at 

https://github.com/montilab/iEDGE.  

Data Access 

The datasets analyzed in this study are available from the Broad Institute TCGA 

GDAC (http://gdac.broadinstitute.org/runs/) as described in Methods. iEDGE reports on 

these datasets are available in an interactive web portal (https://montilab.bu.edu/iEDGE) 

to allow for exploration and mining of results in user-friendly tabular and graphical 

formats.  

3.3 Results 

iEDGE identifies SCNA-associated cis and trans genes and pathway signatures in 

TCGA breast cancer 

To identify cis and trans gene signatures of SCNAs in breast cancer, we 

performed integrative analysis on paired copy number and gene expression data from 

TCGA breast cancer primary tumors from four gene-expression based molecular 

subtypes (Luminal A, Luminal B, Her2 and Basal) using the workflow summarized in 

Figure 3.1.  

Focal SCNAs were identified using GISTIC2.0 (Mermel et al., 2011), including 

29 amplifications and 40 deletions. Next, we identified sets of cis and trans genes with 

significant differential expression with respect to each SCNA, pathway enrichments of 

https://github.com/montilab/iEDGE
http://gdac.broadinstitute.org/runs/
https://montilab.bu.edu/iEDGE
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cis and trans gene sets (Figure 3.1A) and made predictions for cis gene drivers of each 

SCNA using mediation analysis (Figure 3.1B). 

  We identified a list of cis genes whose expression is significantly associated with 

each SCNA. This list comprises an average of 20 genes (and a median of 8 genes) per 

SCNA, totaling 1330 genes (269 in amplifications, 1061 in deletions) out of the original 

2003 genes across all SCNAs identified using GISTIC2.0, a number clearly still too large 

for meaningful consideration for functional validation. The significance cutoff includes a 

fold change of log2 gene expression > 1.2 and FDR < 0.25 for the one-directional test of 

significance of differential expression with respect to the presence/absence of the 

alteration harboring the gene of interest (gene expression upregulation in amplifications 

and downregulation in deletions).  

Similarly, we compiled a list of significantly differentially expressed trans genes 

using a fold change cutoff of log2 gene expression > 1.5 and bidirectional FDR < 0.1. 

This list contains an average of 865 (a median of 598) significant trans genes per SCNA. 

Pathway enrichment analyses of the union of cis and trans genesets yielded 

interesting and potentially biological meaningful patterns (Figure 3.2).  Several pathways 

were enriched across most SCNAs. For instance, gene sets 

HALLMARK_ESTROGEN_RESPONSE_LATE, 

HALLMARK_ESTROGEN_RESPONSE_EARLY, 

HALLMARK_G2M_CHECKPOINT were significant hits in more than 75% of SCNAs. 

These gene sets may indicate global patterns of downstream effects related to genomic 

instability induced by co-occurring SCNAs across tumor samples (Figure S3.1), since co-



 

 

87 

occurring SCNAs will tend to have common pathway enrichments in the cis or trans 

genes. To elucidate breast cancer subtype specific pathway enrichments, we categorized 

each SCNA by their enrichment in each of four major breast cancer types: Luminal A, 

Luminal B, Her2, Basal. In addition, for each pathway, we tested if the enrichment across 

SCNAs tended to occur in subtype-specific SCNAs compared to non-subtype-specific 

SCNAs (Figure 3.2). Several significant pathways were found to be occurring more 

frequently in Basal-specific SCNAs, including HALLMARK_SPERMATOGENESIS, 

HALLMARK_KRAS_SIGNALING_UP, HALLMARK_E2F_TARGETS, 

HALLMARK_BILE_ACID_METABOLISM, 

HALLMARK_FATTY_ACID_METABOLISM, HALLMARK_UV_RESPONSE_UP, 

HALLMARK_MYOGENESIS (FDR < 0.05). The enrichment of KRAS signaling can be 

explained by published evidence supporting KRAS activation in basal-type breast cancer 

cells compared to luminal cells (Kim et al, 2015).  

iEDGE identifies known cancer drivers in TCGA breast cancer 

In addition to identifying cis and trans gene expressions of SCNAs, iEDGE can be 

used to predict cis gene drivers of each SCNA (Figure 3.1B). For each SCNA in the 

TCGA breast cancer dataset, we ranked the significant cis genes using the Sobel test of 

mediation (Sobel 1982) to predict the driver gene of the alteration. Cis genes were ranked 

by the weighted fraction of significant trans genes they mediate. Rank-1 cis genes, the 

predicted driver genes for each SCNA, are summarized in Table 3.1.  

To verify the functional relevance across all Rank-1 driver gene predictions, we 

tested the list of Rank-1 cis genes for enrichment in cancer driver databases compared to 
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non-Rank-1 cis genes (Table 3.2). Significance of enrichment was determined using a 

one-sided Fisher exact test on the contingency table of counts of Rank-1 vs. non-Rank-1 

cis genes against the list of known cancer drivers vs. unknown genes (P-value < 0.05). 

Predicted Rank-1 driver genes in amplifications were significantly enriched for known 

oncogenes in UNIPROT, COSMIC and the combined test (union of driver databases), 

and predicted Rank-1 driver genes in deletions were significantly enriched for tumor 

suppressors in TUSON, UNIPROT, COSMIC, and the combined test. Among the 65 

Rank-1 cis genes (Table 3.1), known cancer drivers included MCL1, ACTL6A, ZNF703, 

MYC, CCND1, FOXA1, ERBB2, CCNE1, ZNF2017 (oncogenes in amplifications) and 

RPL5, ZMYND10, KMT2C, CSMD1, CDKN2B, PTEN, CREBL2, FANCA, MAP2K4, and 

ARHGAP35 (tumor suppressors in deletions) (Table 3.2). 

iEDGE identifies amplification-driven gene dependencies in TCGA breast cancer 

In addition to the prediction of known cancer drivers, we assessed whether 

iEDGE was capable of identifying genes with copy-number driven cancer dependencies, 

specifically, amplification-driven gene dependencies (see Methods). We identified genes 

with increased essentiality in an amplified state using DepMap data of genetic screens 

(RNAi screens) paired with copy number data (CCLE) (Table S8) and tested for their 

enrichment among iEDGE Rank-1 cis genes. In the TCGA breast cancer dataset, we 

found a highly significant enrichment of Rank-1 cis genes in genes with amplification-

driven gene dependencies (Fisher test one-sided P-value: 3.53e-5). These were ERBB2, 

CCNE1, CCND1, FOXA1, ANKRD17, MCL1. Multiple literature sources suggest that all 

of these genes are linked to breast cancer development in the overexpressed state. 
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ERBB2, CCND1, CCNE1 are well-characterized oncogenes present among our curated 

set of cancer driver databases. FOXA1 has been shown to play an important role in 

promoting ER+ breast cancer (Meyer and Carroll 2012). ANKRD17 is a cyclin E/Cdk2 

substrate which positively regulates cell cycle progression by promoting G1/S transition 

(Deng et al. 2009). MCL1 high expression is linked to poor prognosis in triple-negative 

breast cancer and targeting of MCL1 restricts the growth of triple negative breast cancer 

xenografts, suggesting its potential therapeutic value (Campbell et al. 2018).  

In summary, using the cis gene mediation step, we identified known SCNA-

associated breast cancer gene drivers and potentially novel genes with amplification-

driven gene dependency that are of potential prognostic or therapeutic value.  

TCGA pan-cancer analysis 

Next, the driver prediction procedure was carried out across 19 cancer types from 

TCGA (Table S9). We tested for the enrichment of Rank-1 cis genes with known cancer 

drivers across the 19 cancer types and found significant enrichment (FDR < 0.05) in 15 

out of 19 cancer types, which includes all tested cancer types with exception of COAD, 

ESCA, KIRC, THCA (Table 3.3). 

Additionally, we tested for the enrichment of Rank-1 cis genes with genes 

manifesting amplification-driven dependencies and found significant enrichment (FDR < 

0.05) in 8 out of the 19 cancer types analyzed, including BLCA, BRCA, CESC, ESCA, 

HNSC, LUAD, OV, UCEC (Table 3.4).  

To assess the importance of the cis mediating step for the identification of known 

cancer drivers, we ordered Rank-1 cis genes by the number of cancer types they occur in 
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and tracked which of these genes were validated cancer drivers (Figure 3.3).  The derived 

ordered Rank-1 gene list was then compared with the ordered list of recurrent top 

differentially expressed cis genes (top D.E.) in each SCNA, irrespective of their cis-

mediating rank as well as with the ordered list of all recurrent differentially expressed cis 

genes in each SCNA. These comparisons confirmed that the recurrent Rank-1 cis genes 

were more likely to capture known drivers than both the recurrent top D.E. cis genes and 

all cis genes (Figure 3.3A). Remarkably, among the top 15 Rank-1 cis genes, 14 genes 

were known cancer drivers (PTEN, WWOX, CCNE1, CDKN2A, MAP2K4, EGFR, 

KAT6A, MYC, KRAS, ERBB2, WHSC1L1, PARK2, CREBBP, RB1) and only 1 was 

unverified (ATP9B) (Figure 3.3B, left) (Fisher’s exact test p-value: 7.76e-08).  In 

contrast, in the absence of the mediation step, among the top 15 top D.E. genes in 

SCNAs, 9 were confirmed drivers (Figure 3.3B, middle) (Fisher’s exact test p-value: 

0.0047), and among the top 15 cis genes in SCNAs, only 4 were confirmed drivers 

(Figure 3.3B, right) (Fisher’s exact test p-value: 0.21). These results demonstrate the 

usefulness of the mediation test in further restricting the list of SCNA-associated cis 

genes to those of functional relevance across multiple cancer types. The mediation test 

provides a substantial improvement over ranking solely based on the cis gene differential 

expression, and demonstrates the added value of performing integrative analysis that 

models downstream biological effects as captured by trans gene expression.   

In addition to enrichment for known cancer drivers, Rank-1 cis genes that 

frequently occur across cancer types (Figure 3.3) include putative or novel genes 

implicated in cancer initiation or progression. These include: TRIP13, a mitosis regulator 
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that was shown to promote tumor growth in colorectal cancer (Sheng et al, 2018) and is a 

predictor of poor prognosis in prostate cancer (Dong et al. 2019); ORAOV1, a gene 

overexpressed in many solid  tumors that is linked to generation of reactive oxygen 

species (Zhai et al. 2014); TPX2, an interactor and substrate of Aurora-A that is a potent 

oncogene amplified in many cancers and a promising therapeutic target (Kufer et al. 

2002; Yan et al, 2016); and DUSP22, which has been shown to behave as a tumor 

suppressor gene in peripheral T-cell lymphomas (Mélard et al, 2016) and regulates ERα 

dependent transcription in breast cancer cells (Sekine et al, 2007).  

Evaluation of reproducibility of Rank-1 cis genes 

To evaluate the reproducibility of cis gene ranking based on mediation testing, we 

quantified the consistency of Rank-1 cis gene predictions across bootstrapped resamples 

of the original TCGA breast cancer dataset (Figure 3.4). The majority of Rank-1 cis 

genes (69.2%) was consistently found as Rank-1 cis genes in bootstrapped datasets with 

greater than 0.75 fraction of inclusion, and the fraction of inclusion is not biased by 

SCNA type (amplification or deletion) (Figure 3.4A).  We further revealed that the 

fraction of inclusion is positively associated with the Weighted Fraction of Trans 

Mediation (WFTM), the score used to rank cis genes within each SCNA (Figure 3.4B). In 

particular, while Rank-1 cis genes with lower fraction of inclusion across bootstrapped 

resamples tend to have lower WFTM, Rank-1 cis genes with higher fractions of inclusion 

show more variability in WFTM but generally tend to have higher WFTM. The fraction 

of inclusion is negatively associated with the entropy of WFTM of cis genes in SCNAs of 

interest (Figure 3.4C). This is an indication that SCNAs with a single dominant cis gene 
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mediating the majority of trans genes (lower entropy) tend to yield more reproducible 

Rank-1 cis genes across bootstrapped resamples than SCNAs with multiple cis genes 

with similar trans mediation (higher entropy).  

Sensitivity and Specificity of mediation testing 

Evaluation of the Sobel test of mediation was carried out using simulated data of 

true positives and true negative examples of mediation. Test performance, as measured 

using AUC, sensitivity and specificity, was recorded for varying combinations of 

correlation between the independent variable and mediator (“correlationXY”) and sample 

size (“N”) (Figure 3.5). High specificity (true negative rate) was consistently achieved for 

all input parameter ranges. Sensitivity (true positive rate) drops under conditions of low 

correlation and low sample size. Nevertheless, the conditions for lower sensitivity is not 

characteristic of real datasets that were used to test and validate iEDGE. Specifically, 

high correlation between SCNA and cis genes and between SCNA and trans genes is 

expected given that only cis and trans genes that were significantly expressed with 

respect to the SCNA were considered prior to mediation testing. Additionally, sufficient 

sample size is achieved in most of TCGA datasets tested (Table S9), with the only 

exception being the TCGA Adrenocortical carcinoma dataset (n = 77) in which mediation 

results should be interpreted with caution.  

Graphical Portal of iEDGE Results Enable Targeted Queries 

In order to enable fast interactive browsing of iEDGE precomputed runs on 

massive datasets such as the TCGA pancancer set, we developed a web portal 

(http://montilab.bu.edu/iEDGE/) to allow users to query iEDGE results selectively by 

http://montilab.bu.edu/iEDGE/
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cancer types, genes, and SCNAs. This portal displays graphical and tabular results for 

each step of the iEDGE pipeline, including differential expression of cis and trans genes, 

mediation analysis for driver prediction, and pathway enrichment analysis.  

An overview of an example walkthrough of a targeted query is illustrated in Figure S3.2. 

Here, the TCGA breast cancer (BRCA) report is selected and the gene query is ERBB2 

(HER2). The table of differential expression results is available for the cytoband 17q12 in 

which ERBB2 resides in. Additionally, results of the mediation testing and driver gene 

prediction is available in a bipartite graph format. In this case, the graph indicates that 

ERBB2 is the top mediating cis gene and predicted driver of the SCNA.  

3.4 Discussion 

Methods developed for the integrative analysis of (epi-)DNA regulators and gene 

expression data often focus only on the genes harbored by the alteration regions, while 

not considering the downstream (trans-)effects, which may limit a method’s ability to 

detect cancer driver genes. We present a computational framework for the integrative 

analysis of (epi-)DNA and gene expression data for large-scale datasets, iEDGE, that is 

able to thoroughly catalogue the cis and trans effects of epi-(DNA) alterations, and to 

predict the most likely cis-driver genes based on the extent of their mediation of 

downstream trans-genes.  

The first step of the iEDGE pipeline uses differential expression analysis to 

determine the cis and trans genes that are associated with the presence/absence of a 

particular epi-DNA alteration across samples. By measuring the alterations’ association 

with trans genes we capture meaningful biological mechanisms representing downstream 
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effects that are generally missed by tools that only consider genes within the alterations 

(e.g., GISTIC2.0). Trans genes are of potential high relevance considering that (epi-

)DNA regulators such as SCNAs harbor many upstream genes in signaling pathways, 

e.g., transcription factors, wherein the set of target genes effected can shed light on 

processes or pathways associated with disease progression.  

The second step of the pipeline, the mediation analysis, ranks the set of cis genes 

by the extent of their mediation of trans genes. We showed that mediation analysis 

captures important cancer driver genes in our study of the TCGA breast cancer dataset. 

We then expanded these results by performing a pan-cancer analysis across 19 cancer 

types in the TCGA, further highlighting our tool’s ability to identify known, as well as 

potentially novel drivers.  

We conducted extensive in silico validation of predicted cis driver genes, by first 

testing for their enrichment with known drivers from multiple cancer driver databases. 

We then characterized predicted drivers by testing for their “essentiality” against genetic 

screens and cellular model data included in the DepMap, to explore SCNA-associated 

gene dependencies. Both analyses showed that our list of predicted genes is significantly 

enriched for cancer genes of functional relevance, either as cancer drivers, potential 

cancer therapeutic targets, or markers of disease progression. Further experimental 

studies are needed to validate and characterize predicted drivers.  

Similar approaches have recognized the importance of integrating gene 

expression and the coordinated expression of affected gene modules for identifying 

drivers. One notable method is CONEXIC (Akavia et al., 2010), which identified 
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functional gene modules for each candidate regulator in the form of copy number 

alteration (CNA). The conceptual steps of iEDGE are similar to the “Single Modulator 

Step” outlined in Akavia et al, in which, first, cis genes are defined in their “candidate 

driver gene” selection process, and trans genes are defined in their “target gene modules” 

selection step, and second, a scoring function is used to find the single candidate driver 

gene that best associates with the target gene expression module. The implementation 

details of the second step for the scoring of driver genes is different compared to iEDGE. 

iEDGE considers each 3-layer relationship between SCNA status, cis, and trans gene 

expression to calculate a mediation effect and to rank cis genes, whereas the “Single 

Modulator Step” of CONEXIC computes the best candidate driver using a Normal 

Gamma scoring function to measure each target gene’s fit with each candidate driver’s 

gene expression. In addition to the “Single Modulator Step”, CONEXIC uses an iterative 

procedure modeled after the module network method (Lee et al. 2006; Segal et al. 2003) 

to improve the scores of each module and their regulatory programs. This is not a feature 

of iEDGE but can be ran as an independent post-processing step to further refine the list 

of candidate genes. On the other hand, while CONEXIC is not available for public use, 

iEDGE is available as an open-source R package to enable analysis of custom datasets, 

and a graphical web portal is available for exploration and querying of precomputed runs 

on the TCGA datasets.  

Other model-based methods incorporate models of causal relationships between 

multiple levels of genomic data through the scores of conditional dependencies, measured 

using partial correlation coefficients for normal continuous features (Amgalan and Lee 
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2015), or conditional mutual inclusive information for binary or mixed binary and 

continuous features (Kim et al. 2016; Zhang et al. 2014). These approaches are similar to 

the mediation testing step of iEDGE, but they are more conservative models that detect 

full mediation, e.g., significant hits are instances in which the conditional independence 

given the mediator is zero, a condition that is rarely satisfied by genomic data, whereas 

mediation tests are also able to capture partial mediation in which the association 

between the independent and response variable is significantly reduced in size when the 

mediator is introduced but may still be different from zero.   

One assumption used in the iEDGE analysis presented in this study is that the 

number of trans genes that a cis gene mediates is a proxy measure of a gene’s importance 

(i.e., of its likelihood of being a cancer driver). This a simple and intuitive heuristic to 

estimate the extent of transcriptional impact from each (epi-)DNA regulator, albeit it may 

not be an appropriate assumption for specific use cases. For more targeted analysis, one 

may be only interested in predicting the cis gene that mediates gene targets in a particular 

pathway. Our tool is customizable in that the user can specify the set of trans genes to 

consider for mediation based on their membership in a pathway of interest or an 

experimentally derived gene signature.   

We use SCNA as an example of epi-DNA events to demonstrate a convenient use case 

for this tool as SCNAs can be used to easily define genomic boundaries for distinguishing 

cis and trans acting genes. However, this tool can also be applicable to the integrative 

analysis of other genomic/epi-genomic data types such as DNA methylation, DNA 

mutations, and microRNA regulatory networks. Similarly, gene expression dataset can 
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use a variety of quantitative gene-centric measures such as RNA-seq, microarray, or 

proteomic assays.  

 

 
 

Figure 3.1 Overview of iEDGE workflow 

A. The main workflow of iEDGE starts with identifying the cis and trans gene expression 
signatures of epi-DNA alterations, in this case Somatic Copy Number Alterations 
(SCNA) through differential expression analysis. Next, we perform pathway enrichment 
analysis to identify pathways or genesets associated with each SCNA.  
B. The Cis-to-Trans gene mediation analysis using the Sobel test is an optional module 
which identifies putative driver cis genes of each epi-DNA alteration. Here, given the 
alteration of interest, the list of differentially expressed cis genes and trans genes, we use 
the mediation test to determine the cis gene which mediates the most trans gene 
expression.  
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Figure 3.2 Pathway enrichments of cis and trans gene signatures of TCGA breast 

cancer somatic copy number alterations 

Heatmap of gene signature in enrichments for the union of cis and trans differentially 
expressed gene sets with respect to each SCNA for the TCGA breast cancer dataset. 
Column color labels indicate the enrichment of each SCNA for a particular breast cancer 
subtype determined by Fisher’s exact test of counts for within-subtype vs. outside-
subtype counts of SCNA occurrence.  
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Figure 3.3 Sensitivity of cancer driver predictions across multiple cancer types 

A. Sensitivity of Driver Predictions vs. Occurrence of Genes in Number of Cancer Types 
B. Barplot of top 15 genes ranked by occurrence in number of cancer types. From the 
left: Rank 1 Mediating Cis Genes, middle: Top differentially expressed (D.E.) Cis Genes, 
right: all cis genes differentially expressed in alteration. Known cancer drivers are 
marked with (*) in bold font.  
 

A.

B.

Figure 3.3
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Figure 3.4 Reproducibility of Rank 1 cis genes among bootstrapped resamples  

A. Inclusion of Cis Rank 1 Genes in Bootstrapped Resamples 
B. Fraction of inclusion vs. Weighted Fraction of Trans Mediation (WFTM) 
C. Fraction of inclusion vs. entropy of WFTM of cis genes in alteration  
 
 

A.
B.

C.

Figure 3.4
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Figure 3.5 Mediation test performance on simulated data  

AUC (Area Under the ROC Curve), sensitivity (true positive rate), specificity (true 
negative rate) for various values of correlationXY (correlation between SCNA and 
mediator) and N (sample size).  
 

 

Table 3.1 Differential Expression of Rank-1 Cis Genes in Somatic Copy Number 

Alterations (SCNA) in TCGA Breast Cancer 

 

Alteration ID Cis Gene Rank Trans 
Mediated 

Total 
Trans 
Genes 

FTM  
(Fraction 
of Trans 
Mediated
) 

WFTM  
(Weighted 
Fraction 
of Trans 
Mediated) 

AmplificationPeak2 MCL1 1 63.23 365 0.35 0.17 

AmplificationPeak3 DESI2 1 44.80 200 0.26 0.22 

AmplificationPeak4 MRPS25 1 126.20 491 0.52 0.26 

AmplificationPeak5 ACTL6A 1 503.21 1569 0.39 0.32 

(Correlation between SCNA and mediator)

Figure 3.5
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AmplificationPeak6 ANKRD17 1 69.13 603 0.31 0.11 

AmplificationPeak7 TRIP13 1 146.48 204 0.84 0.72 

AmplificationPeak8 TBC1D7 1 708.94 1332 0.69 0.53 

AmplificationPeak10 ZNF703 1 65.78 259 0.41 0.25 

AmplificationPeak11 VDAC3 1 186.36 318 0.80 0.59 

AmplificationPeak12 MYC 1 163.50 1721 0.60 0.10 

AmplificationPeak13 RBM17 1 1320.23 2332 0.66 0.57 

AmplificationPeak14 PPIF 1 168.14 464 0.74 0.36 

AmplificationPeak15 CSTF3 1 130.17 370 0.55 0.35 

AmplificationPeak16 CCND1 1 65.00 221 0.45 0.29 

AmplificationPeak17 RSF1 1 29.16 322 0.17 0.09 

AmplificationPeak18 CCDC77 1 1077.01 1510 0.94 0.71 

AmplificationPeak19 CCT2 1 153.60 453 0.49 0.34 

AmplificationPeak20 TEX30 1 526.90 1480 0.40 0.36 

AmplificationPeak21 FOXA1 1 109.67 441 0.67 0.25 

AmplificationPeak22 PGPEP1L 1 327.68 769 0.95 0.43 

AmplificationPeak23 USP22 1 5.26 118 0.11 0.04 

AmplificationPeak24 ERBB2 1 61.96 598 0.16 0.10 

AmplificationPeak25 TUBD1 1 146.81 690 0.57 0.21 

AmplificationPeak26 NOTCH3 1 74.81 647 0.44 0.12 

AmplificationPeak27 CCNE1 1 951.15 1220 0.95 0.78 

AmplificationPeak28 UBE2S 1 51.36 97 0.79 0.53 

AmplificationPeak29 ZNF217 1 38.31 584 0.28 0.07 

DeletionPeak1 DNAJC16 1 57.11 424 0.18 0.13 

DeletionPeak2 RPL5 1 63.84 230 0.35 0.28 

DeletionPeak3 ANKMY1 1 170.45 820 0.26 0.21 

DeletionPeak4 ZMYND1
0 

1 298.70 1188 0.29 0.25 

DeletionPeak5 CPLX1 1 342.50 1349 0.40 0.25 

DeletionPeak6 LRP2BP 1 298.96 1383 0.43 0.22 

DeletionPeak7 IL6ST 1 386.42 3251 0.32 0.12 

DeletionPeak9 DUSP22 1 23.95 113 0.35 0.21 

DeletionPeak10 PNRC1 1 151.14 320 0.52 0.47 

DeletionPeak11 FRMD1 1 8.40 98 0.37 0.09 

DeletionPeak12 GPR146 1 385.03 1328 0.44 0.29 

DeletionPeak13 KMT2C 1 42.38 405 0.36 0.10 

DeletionPeak14 CSMD1 1 29.16 609 0.56 0.05 
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DeletionPeak15 HGSNAT 1 93.70 378 0.55 0.25 

DeletionPeak17 CDKN2B 1 19.64 539 0.20 0.04 

DeletionPeak18 PGM5 1 164.75 545 0.77 0.30 

DeletionPeak19 AK8 1 400.58 1315 0.40 0.30 

DeletionPeak20 PTEN 1 268.89 892 0.70 0.30 

DeletionPeak21 LRRC27 1 631.45 1185 0.68 0.53 

DeletionPeak22 SIRT3 1 326.73 1088 0.36 0.30 

DeletionPeak23 EHD1 1 32.56 158 0.26 0.21 

DeletionPeak24 REXO2 1 76.59 300 0.29 0.26 

DeletionPeak25 ACAD8 1 37.50 305 0.22 0.12 

DeletionPeak26 CREBL2 1 132.00 235 0.66 0.56 

DeletionPeak27 ANKS1B 1 635.40 1766 0.95 0.36 

DeletionPeak28 PRKAB1 1 410.45 1566 0.34 0.26 

DeletionPeak29 LPAR6 1 141.24 505 0.60 0.28 

DeletionPeak30 TTC8 1 366.13 1679 0.24 0.22 

DeletionPeak31 HERC2 1 100.02 1339 0.17 0.07 

DeletionPeak32 FANCA 1 436.34 1177 0.46 0.37 

DeletionPeak33 MAP2K4 1 256.71 545 0.80 0.47 

DeletionPeak34 RUNDC1 1 472.54 1237 0.39 0.38 

DeletionPeak35 TSHZ1 1 81.32 417 0.22 0.20 

DeletionPeak36 ATP8B3 1 137.85 1379 0.53 0.10 

DeletionPeak37 ARHGAP
35 

1 272.28 1069 0.36 0.25 

DeletionPeak38 DEFB132 1 256.26 1388 0.48 0.18 

DeletionPeak39 ANKRD20
A11P 

1 10.46 129 0.51 0.08 

DeletionPeak40 TRMU 1 10.14 87 0.17 0.12 
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Table 3.2 Enrichment of Rank 1 Cis Genes in Cancer Driver Databases in TCGA 

breast cancer 

 

Test_Type Dat
aba
se 

Count
_Rank
1_Driv
er 

Count_
Rank1_
Unkno
wn 

Count_
NonRan
k1_Driv
er 

Count_N
onRank1
_Unkno
wn 

Cou
nt_
Tot
al 

Fisher_
P.Value
_OneSid
ed 

Rank1_
DriverG
ene_Lis
t 

Oncogene_
in_cis_Amp
lification 

TUS
ON_
OG 

2 25 2 240 269 5.14E-
02 

MYC, 
ERBB2 

Oncogene_
in_cis_Amp
lification 

OMI
M_
OG 

1 26 1 241 269 1.91E-
01 

MCL1 

Oncogene_
in_cis_Amp
lification 

UNI
PRO
T_O
G 

9 18 23 219 269 1.61E-
03 

MCL1, 
ACTL6A
, 
ZNF703
, MYC, 
CCND1, 
FOXA1, 
ERBB2, 
CCNE1, 
ZNF217 

Oncogene_
in_cis_Amp
lification 

COS
MIC
_OG 

5 22 5 237 269 1.25E-
03 

MYC, 
CCND1, 
FOXA1, 
ERBB2, 
CCNE1 

Oncogene_
in_cis_Amp
lification 

ANY
_OG 

9 18 27 215 269 4.10E-
03 

MCL1, 
ACTL6A
, 
ZNF703
, MYC, 
CCND1, 
FOXA1, 
ERBB2, 
CCNE1, 
ZNF217 
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TumorSup
pressor_in
_cis_Deleti
ons 

TUS
ON_
TN 

5 33 27 996 106
1 

4.47E-
03 

RPL5, 
KMT2C
, PTEN, 
MAP2K
4, 
ARHGA
P35 

TumorSup
pressor_in
_cis_Deleti
ons 

OMI
M_
TN 

1 37 30 993 106
1 

6.82E-
01 

RPL5 

TumorSup
pressor_in
_cis_Deleti
ons 

UNI
PRO
T_T
N 

7 31 70 953 106
1 

1.62E-
02 

ZMYND
10, 
CSMD1
, 
CDKN2
B, 
PTEN, 
CREBL2
, 
MAP2K
4, 
ARHGA
P35 

TumorSup
pressor_in
_cis_Deleti
ons 

COS
MIC
_TN 

5 33 22 1001 106
1 

2.04E-
03 

RPL5, 
KMT2C
, PTEN, 
FANCA, 
MAP2K
4 

TumorSup
pressor_in
_cis_Deleti
ons 

ANY
_TN 

10 28 121 902 106
1 

1.31E-
02 

RPL5, 
ZMYND
10, 
KMT2C
, 
CSMD1
, 
CDKN2
B, 
PTEN, 
CREBL2
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, 
FANCA, 
MAP2K
4, 
ARHGA
P35 

 

Table 3.3 Enrichment of known cancer drivers among rank 1 cis genes in TCGA 

pancancer analysis (19 cancer types) 

Cancer 
Type 

ANY_
OG 

ANY_
TN 

ANY_COM
BINED 

ANY_OG_RANK1_CIS_
IN_AMP 

ANY_TN_RANK1_CI
S_IN_DEL 

ACC 6.77E-
01 

1.14E
-02 

2.97E-02 FAM32A PARK2, MKRN1, 
GABARAPL2 

BLCA 7.58E-
02 

6.63E
-02 

4.35E-03 TRIT1, FGFR3, MYB, 
EGFR, KAT6A, MYC, 
GATA3, KRAS, ERBB2, 
CCNE1 

ARID1A, FHIT, 
WTAP, CDKN2A, 
PTEN, ZFP36L1, 
CREBBP 

BRCA 6.18E-
02 

2.16E
-02 

5.76E-04 MCL1, ACTL6A, 
ZNF703, MYC, CCND1, 
FOXA1, ERBB2, 
CCNE1, ZNF217 

RPL5, ZMYND10, 
KMT2C, CSMD1, 
CDKN2B, PTEN, 
CREBL2, FANCA, 
MAP2K4, 
ARHGAP35 

CESC 2.83E-
01 

1.14E
-02 

6.07E-03 EGFR, FADD, YAP1, 
ERBB2, FZR1 

FHIT, EEF1E1, PTEN, 
WWOX, MAP2K4, 
ELAC1, STK11, 
BTG3, KDM6A 

COAD 4.99E-
01 

1.40E
-01 

9.54E-02 WHSC1L1, KLF5, 
GRB7, PDRG1 

REG4, MTAP, B2M, 
SMAD3, MAP2K4, 
SMAD4, BTG3 

ESCA 2.83E-
01 

3.04E
-01 

1.13E-01 TRIT1, RIT1, EGFR, 
KAT6A, CCNE1 

CDKN2A, LARP4B, 
ELAC1, BTG3 

GBM 6.18E-
02 

1.14E
-02 

7.84E-05 MDM4, PDGFRA, 
MYC, CDK4, MDM2, 
AKT1 

DFFB, PARK7, 
DMRTA2, MED23, 
QKI, MTAP, EXT2, 
RB1 

HNSC 1.55E-
01 

1.15E
-01 

1.13E-02 NFE2L2, EGFR, 
WHSC1L1, SNAI2, 
PDCD1LG2, NFIB, 
IGF1R, CBFA2T2 

VAMP3, NSD1, 
TFAP2A, CDKN2A, 
NOTCH1, LARP4B, 
PTEN, ZNF750 
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KIRC 1.00E
+00 

8.48E
-01 

9.52E-01 
 

SKI 

KIRP 2.58E-
01 

1.14E
-02 

4.29E-03 SQSTM1, TES CDHR2, MTAP, 
TBRG1, NDRG2, 
CDK10, NF2 

LIHC 4.99E-
01 

1.14E
-02 

9.03E-03 TERT, NOL7, ST7 TPRG1L, NRG1, 
PTEN, DLG2, SDHD, 
RB1, WWOX, 
NCOR1 

LUAD 7.58E-
02 

8.28E
-02 

6.07E-03 RLF, EIF5A2, TERT, 
MET, KRAS, CDK4, 
MDM2, CCNE1 

RAP1A, XPC, SESN1, 
PARK2, CDKN2A, 
LARP4B, MOAP1, 
WWOX, SMARCA4 

LUSC 2.39E-
01 

6.36E
-03 

9.61E-04 BCL11A, NFE2L2, 
SOX2, WHSC1L1, 
ARHGEF39, URI1, 
CRKL 

FOXP1, PARK2, 
PTPRD, CDKN2A, 
ZMYND11, PTEN, 
RB1, B2M, CREBBP, 
WWOX, NF1, 
RNF126 

OV 1.43E-
01 

2.12E
-05 

5.12E-06 PPIE, WHSC1, 
RNF144B, KAT6A, 
KRAS, SIVA1, BRD4, 
CCNE1 

ARID1A, ING5, 
UHRF2, ZMYND11, 
PTEN, BTRC, EI24, 
RB1, UBE3A, 
CREBBP, WWOX, 
MAP2K4, NF1 

PAAD 4.99E-
01 

3.74E
-04 

5.76E-04 ACTL6A, FAM60A, 
MIEN1 

RAD17, SESN1, 
CREBL2, CHD8, 
NDNL2, MAP2K4, 
TRIM37, ELAC1, 
CERK 

PRAD 4.94E-
01 

1.14E
-02 

1.59E-02 SET, GRAP, MALT1, 
AURKA 

JAK1, PRDM5, 
PIK3R1, ZNF292, 
PTEN, CDKN1B, 
SETD8, ZFHX3, CIC 

READ 1.82E-
01 

1.55E
-01 

2.66E-02 YY1AP1, WHSC1L1, 
PAN3, PRR14, ERBB2 

SDHB, YAP1, 
WWOX, SMAD4 

THCA 1.00E
+00 

5.38E
-01 

7.13E-01 
 

CCDC6, INTS6 

UCEC 7.11E-
02 

3.74E
-04 

5.12E-06 SETDB1, TACC3, 
NEDD9, FGFR1, 
KAT6A, MYC, KRAS, 

PRDM2, SFN, FHIT, 
PARK2, FAM120A, 
DLG2, TIRAP, 



 

 

108 

ERBB3, GRB7, CCNE1, 
CDC25B 

CREBBP, ZFHX3, 
WWOX, NF1, ZNRF3 

Table 3.4 Enrichment of Amplification-driven gene dependencies among rank 1 cis 

genes in amplifications in TCGA pancancer analysis (19 cancer types) 

 

Cance
r Type 

P.Value (One-sided 
Fisher's Exact Test) 

FDR (One-sided 
Fisher's Exact 
Test) 

List of Genes Rank 1 with 
Amplification-Driven Gene 
Dependency 

ACC 1 1 
 

BLCA 2.6436E-07 5.0228E-06 EGFR, ERBB2, GATA3, KRAS, MYB, 
KAT6A, CCNE1 

BRCA 3.5317E-05 0.00033552 ERBB2, ANKRD17, FOXA1, MCL1, 
CCND1, CCNE1 

CESC 0.00994043 0.02698116 EGFR, ERBB2, BCL2L1 

COAD 0.56624663 0.89655717 KLF5 

ESCA 0.0012639 0.00480281 EGFR, ANKRD17, KAT6A, CCNE1 

GBM 0.03484641 0.07356464 CDK4, MDM2, MDM4 

HNSC 0.00931701 0.02698116 EGFR, IGF1R, NFIB, PPFIA1 

KIRC 1 1 
 

KIRP 1 1 
 

LIHC 1 1 
 

LUAD 0.00046296 0.00293207 CDK4, KRAS, MDM2, MET, CCNE1 

LUSC 0.53780376 0.89655717 PPFIA1 

OV 0.0127933 0.03038408 KRAS, KAT6A, CCNE1 

PAAD 1 1 
 

PRAD 1 1 
 

READ 0.22838937 0.4339398 ERBB2 

THCA 1 1 
 

UCEC 0.00098788 0.00469242 KRAS, BCL2L1, KAT6A, IRS2, 
CCNE1 
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Chapter 4: Conclusions and Future Directions 

4.1 Summary of Thesis Aims 

 In this dissertation, I presented two aims that, through distinct data analysis 

techniques and methodological developments, addressed knowledge gaps in our 

understanding of the cancer genome landscape. The first aim, using gene expression 

datasets of chemical perturbations, is targeted toward the goal of cancer prevention. The 

second, using human patient cancer genomics data, focuses on the discovery of cancer 

driver genes and potential therapeutic agents. These two aims can be considered two 

complementary contributions towards the construction of the overarching 

“carcinogenome”. While these projects utilize datasets of distinct origins, the first using 

perturbational gene expression profiles and, the second using multi-level genomic 

profiling of real human tumors, they are both necessary for the overall understanding of 

the cancer genome landscape from the perspective of the ultimate goals of cancer 

prevention and therapy.  

From the point of view of cancer prevention, identification of environment agents 

with carcinogenic effects and understanding the mechanism of action of such agents is 

critical. While a handful carcinogenic chemicals have been successfully identified, less 

than 2% of total chemicals in consumer or industrial use have been rigorously tested for 

carcinogenicity. In this thesis, I addressed the knowledge gap of chemical carcinogenicity 

through a in-vitro gene expression profiling effort that profiles a large sample size of 

chemicals relevant for liver carcinogenicity (Chapter 2.1). Secondly, I contributed to 

methodological developments for analyzing large-scale gene expression profiles of 
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chemical perturbations through the work in network-based analysis of perturbational 

profiles (Chapter 2.2).  

From the perspective of cancer therapy, I developed the tool iEDGE, an 

integrative approach that predicts cancer driver genes associated with (epi-)genetic marks 

such as somatic copy number alterations (SCNAs) (Chapter 2). This tool has proven to be 

instrumental for identifying known and novel cancer drivers and therapeutic markers 

across multiple types of cancer.  

4.2 Contributions  

4.2.1: Building liver carcinogenicity and genotoxicity models from in-vitro 

high-throughput transcriptomic assays (Chapter 2.1) 

• I was a key contributor for the experimental design in all phases of the project, 

including chemical selection and procurement.  

• I developed the computational pipeline for data analysis in the project. 

Computational modules include, but are not limited to, differential expression 

analysis, pathway enrichment analysis, scripts for comparison of our generated 

data to external knowledge bases such as Toxcast, Drugmatrix, and Cmap data.  

• I developed the web portal, implemented using R Shiny, for user friendly query of 

results from the study (carcinogenome.org). Additionally, I set up and maintained 

the server for the web portal. 

• Manuscript under review (Li et al. 2018). BioRxiv preprint available:  

https://www.biorxiv.org/content/early/2018/05/16/323964.  

https://carcinogenome.org/
https://www.biorxiv.org/content/early/2018/05/16/323964
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4.2.2 Network-based analysis of transcriptional profiles from chemical 

perturbations (Chapter 2.2) 

• I provided scripts for interpretation of results and generated key figures for the 

manuscript.  

• I aided in discussions during manuscript preparation, particularly in the 

interpretation of results.   

• Manuscript published: Mulas F, Li A, Sherr DH, Monti S. 2017. Network-based 

analysis of transcriptional profiles from chemical perturbations experiments. 

BMC Bioinformatics 18: 130. 

4.2.3 Towards cancer therapy - Molecular characterization of the cancer 

genome and epi-genome using integrative analysis (Chapter 3) 

• I developed the R package for iEDGE (https://github.com/montilab/iEDGE). 

• I tested and evaluated iEDGE on several TCGA datasets.   

• I developed a web portal for querying iEDGE results on TCGA datasets 

(http://montilab.bu.edu/iEDGE/).  

• Manuscript in preparation (Li et al. 2018). 

• Previous published work based on preliminary versions of iEDGE: 

o Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, 

Lawrence MS, Roemer MGM, Li AJ, Ziepert M, et al. 2018. Molecular 

https://github.com/montilab/iEDGE
http://montilab.bu.edu/iEDGE/
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subtypes of diffuse large B cell lymphoma are associated with distinct 

pathogenic mechanisms and outcomes. Nat Med 24: 679–690. 

4.3 Accomplishments and Future Directions 

4.3.1: Building liver carcinogenicity and genotoxicity models from in-vitro 

high-throughput transcriptomic assays (Chapter 2.1) 

In this study, I detailed our study aimed at short-term in-vitro high-throughput 

gene expression profiling of more than 300 liver carcinogens and non-carcinogens. We 

had to overcome many challenges due to the ambitious nature of the study which relies 

on the hypothesis that in-vitro short-term assays can predict and characterize in-vivo 

long-term carcinogenicity response.  

 A major accomplishment from this study is that we were able to achieve accurate 

classifiers with 72.2% AUC for prediction of carcinogenicity and 82.3% for prediction of 

genotoxicity. Additionally, we captured relevant MoAs of carcinogenicity such as 

upregulation of immune response, cell death, DNA repair and transcriptional regulation 

and downregulation of metabolism related pathways, and cell-cell organization and 

communication.  

 We showed that Transcriptional Activity Score (TAS) of the gene expression 

profiles, while not predictive of carcinogenicity, has a high impact on classifier 

performance. It is also important for capturing relevant MoAs of carcinogenicity as 

shown by the pathway enrichment analysis. After restricting data analysis to profiles of 

high TAS, we found significant improvement of classifier performance as well as 

increased enrichment of known MoAs relevant to carcinogenesis. We have also verified 
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the relevance of our findings through comparison with external resources such as 

Drugmatrix, Tox21, and CMap.  

 An important factor for achieving high TAS is dose. Although we used 

standardized doses across chemicals for this experiment, we offered recommendations for 

dose schemes for future experiments based on observations from this study. For instance, 

due to several chemicals not receiving adequate TAS, we recommended MTT assays for 

dose determination moving forward. We also showed in-vitro to in-vivo dose 

extrapolation procedures can be useful for dose determination for in-vitro assays in case 

where in-vivo dosing and carcinogenicity data is available.  

 This experiment is the largest study of high-throughput transcriptional profiling of 

liver carcinogens to our knowledge. The results from this study was instrumental for 

assessing the viability of in-vitro short-term screening for long-term carcinogenicity 

prediction. Its success set the stage for in-vitro screening of other types of carcinogens 

such as breast carcinogens. For example, we initiated the in-vitro screening of mammary 

gland carcinogens using MCF10A and p53 deficient MCF10A. More generally, the 

experimental and analysis pipeline used in this project, paired with our suggestions for 

dosing improvements, paves the way for screening of large chemical panels for other 

organ, disease, and adverse outcome contexts.  

4.3.2 Network-based analysis of transcriptional profiles from chemical 

perturbations (Chapter 2.2) 

 In this study, we presented a computational pipeline for transcriptional network 

inference and comparison for analysis of chemical perturbations from high-throughput 
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transcriptional profiling experiments. This pipeline was applied to the analysis of gene 

expression profiles from rat-based chemical exposure experiments, with a focus on 

grouping and characterization of chemicals with known labels of carcinogenicity and 

genotoxicity. 

 We showed that groups of chemicals with similar pharmacological functions and 

carcinogenicity/genotoxicity labels can be identified using our pipeline. Importantly, 

gene modules with altered connectivity were enriched for pathways related to the 

chemicals’ known mechanisms of action. These findings demonstrate the advantage of 

this network-based approach, compared to traditional differential expression analysis, in 

characterizing modes of actions of chemical perturbations from transcriptional profiles.  

4.3.3 Towards cancer therapy - Molecular characterization of the cancer 

genome and epi-genome using integrative analysis (Chapter 3) 

 In this chapter, I presented computational tool for integrative analysis of (epi-) 

DNA and gene expression for large-scale genomic datasets, iEDGE. I applied this tool 

towards characterization of cis and trans gene expression effects of somatic copy number 

alterations (SCNAs) in several cancer genomic datasets and predicted cis gene drivers of 

each SCNA based on the extent of their mediation of downstream trans genes.  

 We showed that inclusion of trans genes in the integrative analysis led to more 

meaningful pathway enrichments that highlighted processes in subtype-specific breast 

cancers. Through iEDGE analysis of 19 cancer types, we showed that the mediation 

testing step leads to greater sensitivity in capturing known cancer driver genes compared 

to analysis based on differential expression of cis genes alone. In addition to testing for 
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enrichment of iEDGE identified drivers for known cancer drivers, we characterized 

predicted drivers by testing for enrichment of amplification driven gene dependencies 

using data from DepMap which combined gene essentiality data from genetic screens 

with genomic characterization of cell lines.  Both analyses showed that our list of 

predicted genes is significantly enriched for cancer genes of functional relevance either as 

cancer drivers or potential prognostic markers or therapeutic targets.  

 While we focused on application of iEDGE for SCNA and gene expression data, 

this tool is applicable to a broader set of (epi-) genetic alterations including DNA 

methylation, DNA mutation, and microRNA regulatory networks. In general, any type of 

(epi-) genetic data is applicable as long as cis and trans effects can be defined. More 

studies are needed to evaluate iEDGE in these other contexts.  

 Since we used iEDGE for unbiased exploratory analysis of large-scale cancer 

genomic datasets, we adopted a simple heuristic for ranking of cis genes for driver 

prioritization, which considers only the weighted fraction of trans genes mediated. For 

more specific use cases, more sophisticated procedures for cis gene prioritization can be 

used. For instance, one may consider using weights to specify a set of a-priori defined 

trans genes that should be prioritized in the mediation analysis from gene sets derived 

from external studies.  
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.  
APPENDIX 

Table S1 List of chemicals used in HEPG2 in vitro gene expression profiling. 

 
BUID Chemical Name CAS Carcinogenicity Genotoxicity TAS 

(mean
) 

BUID_001193 o-Phenylenediamine.2HCl 615-28-1 + + 0.609 

BUID_001308 p-Rosaniline.HCl 569-61-9 + + 0.55 

BUID_000888 2-Methyl-1-nitroanthraquinone 129-15-7 + + 0.534 

BUID_000070 o-Aminoazotoluene 97-56-3 + + 0.52 

BUID_001483 Trp-P-1 acetate 75104-43-
7 

+ + 0.48 

BUID_000879 3'-Methyl-4-dimethylaminoazobenzene 55-80-1 + + 0.478 

BUID_000939 Michler's ketone 90-94-8 + + 0.433 

BUID_001188 1-Phenylazo-2-naphthol 842-07-9 + + 0.429 

BUID_000117 Auramine-O 2465-27-2 + + 0.408 

BUID_000248 Captafol (2425-06-
1) 

+ - 0.383 

BUID_001148 Oxymetholone 434-07-1 + - 0.362 

BUID_001379 2,3,7,8-Tetrachlorodibenzo-p-dioxin 1746-01-6 + - 0.278 

BUID_000808 Kepone 143-50-0 + - 0.266 

BUID_000605 Ethinyl estradiol 57-63-6 + - 0.255 

BUID_001139 N-(9-Oxo-2-fluorenyl)acetamide 3096-50-2 + N/A 0.254 

BUID_001160 2,3,4,5,6-Pentachlorophenol, technical 
grade 

87-86-5 + - 0.243 

BUID_001077 p-Nitrosodiphenylamine 156-10-5 + + 0.242 

BUID_001366 Tamoxifen citrate 54965-24-
1 

+ N/A 0.24 

BUID_000284 3-Chloro-4-(dichloromethyl)-5-hydroxy-
2(5H)-furanone 

77439-76-
0 

+ N/A 0.232 

BUID_000058 1-Amino-2-methylanthraquinone 82-28-0 + + 0.225 

BUID_000906 4,4'-Methylene-bis(2-chloroaniline) 101-14-4 + + 0.216 

BUID_000283 4-Chloro-4'-aminodiphenylether 101-79-1 + N/A 0.206 

BUID_000307 Chlorobenzene 108-90-7 + - 0.2 

BUID_001075 N-Nitrosodimethylamine 62-75-9 + + 0.191 

BUID_000363 p-Cresidine 120-71-8 + + 0.19 

BUID_000485 Diethylstilbestrol 56-53-1 + - 0.188 

BUID_000206 Budesonide 51333-22-
3 

+ N/A 0.186 

BUID_000055 3-Amino-9-ethylcarbazole.HCl 6109-97-3 + + 0.18 

BUID_000513 N,N-Dimethyl-4-aminoazobenzene 60-11-7 + + 0.177 

BUID_001121 Norlestrin 8015-12-1 + N/A 0.166 

BUID_000390 DDT 50-29-3 + - 0.163 

BUID_000780 IQ.HCl 
 

+ + 0.162 

BUID_000553 2,6-Dinitrotoluene 606-20-2 + N/A 0.151 

BUID_000069 2-Aminoanthraquinone 117-79-3 + + 0.15 

BUID_000431 1,2-Dibromoethane 106-93-4 + + 0.149 

BUID_000395 Dehydroepiandrosterone acetate 853-23-6 + N/A 0.148 

BUID_000507 3,3'-Dimethoxybenzidine.2HCl 20325-40-
0 

+ + 0.144 

BUID_001017 2-Nitrofluorene 607-57-8 + + 0.144 

BUID_001435 Triamcinolone acetonide 76-25-5 + N/A 0.143 

BUID_001479 Tris-(1,3-dichloro-2-propyl)phosphate 13674-87-
8 

+ + 0.141 

BUID_000957 Nafenopin 3771-19-5 + - 0.14 

BUID_000791 Isoniazid 54-85-3 + + 0.139 

BUID_000874 Methyl carbamate 598-55-0 + - 0.138 

BUID_001284 C.I. acid red 114 6459-94-5 + + 0.137 

BUID_001376 3,3',4,4'-Tetraaminobiphenyl.4HCl 7411-49-6 + N/A 0.136 

BUID_000276 Chlorendic acid 115-28-6 + - 0.135 
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BUID_000713 Hexachlorobenzene 118-74-1 + - 0.134 

BUID_000914 Methyleugenol 93-15-2 + - 0.133 

BUID_000187 C.I. direct black 38 1937-37-7 + + 0.132 

BUID_000053 1-Amino-2,4-dibromoanthraquinone 81-49-2 + + 0.13 

BUID_001315 Safrole 94-59-7 + - 0.127 

BUID_001463 2,4,5-Trimethylaniline 137-17-7 + + 0.127 

BUID_001276 Pyrilamine maleate 59-33-6 + N/A 0.126 

BUID_001010 Nitrobenzene 98-95-3 + - 0.122 

BUID_001518 C.I. disperse yellow 3 2832-40-8 + + 0.122 

BUID_000098 Aramite 140-57-8 + N/A 0.12 

BUID_001085 Nitrosoheptamethyleneimine 20917-49-
1 

+ + 0.12 

BUID_001373 Telone II 542-75-6 + + 0.12 

BUID_001220 Piperonyl butoxide 51-03-6 + - 0.118 

BUID_001425 Toluene diisocyanate 26471-62-
5 

+ + 0.118 

BUID_000744 Hydrazobenzene 122-66-7 + + 0.117 

BUID_001241 Prednisolone 50-24-8 + - 0.117 

BUID_000613 Ethyl alcohol 64-17-5 + - 0.116 

BUID_000913 Methylethylketoxime 96-29-7 + N/A 0.115 

BUID_000947 Monocrotaline 315-22-0 + - 0.115 

BUID_000019 2-Acetylaminofluorene 53-96-3 + + 0.114 

BUID_001145 4,4'-Oxydianiline 101-80-4 + + 0.114 

BUID_000534 3,3'-Dimethylbenzidine.2HCl 612-82-8 + + 0.113 

BUID_000636 di(2-Ethylhexyl)phthalate 117-81-7 + - 0.112 

BUID_000908 4,4'-Methylene-bis(2-methylaniline) 838-88-0 + + 0.112 

BUID_001175 Phenobarbital, sodium 57-30-7 + - 0.112 

BUID_000007 Acetaminophen 103-90-2 + - 0.11 

BUID_000101 Aroclor 1016 12674-11-
2 

+ N/A 0.11 

BUID_000361 Coumarin 91-64-5 + + 0.11 

BUID_000418 2,4-Diaminotoluene 95-80-7 + + 0.11 

BUID_000365 Cupferron 135-20-6 + + 0.109 

BUID_001465 2,4,6-Trimethylaniline.HCl 
 

+ N/A 0.109 

BUID_001103 N-Nitrosomorpholine 59-89-2 + + 0.108 

BUID_000578 Doxylamine succinate 562-10-7 + - 0.107 

BUID_001404 Thioacetamide 62-55-5 + - 0.107 

BUID_000925 4-(Methylnitrosamino)-1-(3-pyridyl)-1-
(butanone) 

64091-91-
4 

+ N/A 0.106 

BUID_001110 N-Nitrosopyrrolidine 930-55-2 + + 0.106 

BUID_000756 1-Hydroxyanthraquinone 129-43-1 + N/A 0.105 

BUID_000558 1,4-Dioxane 123-91-1 + - 0.104 

BUID_000715 a-1,2,3,4,5,6-Hexachlorocyclohexane 319-84-6 + N/A 0.103 

BUID_001073 N-Nitrosodiethanolamine 1116-54-7 + + 0.103 

BUID_001081 N-Nitrosoephedrine 17608-59-
2 

+ N/A 0.103 

BUID_000840 MeIQx 77500-04-
0 

+ + 0.102 

BUID_000299 [4-Chloro-6-(2,3-xylidino)-2-pyri-
midinylthio]acetic acid 

50892-23-
4 

+ N/A 0.1 

BUID_000987 Nitrite, sodium 7632-00-0 + + 0.1 

BUID_001072 Nitrosodibutylamine 924-16-3 + + 0.1 

BUID_001108 N-Nitrosopiperidine 100-75-4 + + 0.1 

BUID_001498 Vinyl acetate 108-05-4 + - 0.1 

BUID_000343 Ciprofibrate 52214-84-
3 

+ N/A 0.098 

BUID_000315 Chloroform 67-66-3 + - 0.096 

BUID_000498 Diisononyl phthalate 68515-48-
0 

+ - 0.096 

BUID_000104 Aroclor 1260 11096-82-
5 

+ N/A 0.093 

BUID_001078 N-Nitrosodipropylamine 621-64-7 + + 0.093 

BUID_001114 o-Nitrotoluene 88-72-2 + - 0.09 

BUID_000676 Furfural 98-01-1 + + 0.089 

BUID_000377 Cyclopentanone oxime 1192-28-5 + N/A 0.088 

BUID_001302 Retrorsine 480-54-6 + + 0.086 

BUID_001507 N-Vinylpyrrolidone-2 88-12-0 + - 0.085 

BUID_000858 Methapyrilene.HCl 135-23-9 + - 0.082 
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BUID_000630 Ethylene thiourea 96-45-7 + + 0.073 

BUID_000658 N-(2-Fluorenyl)-2,2,2-
trifluoroacetamide 

363-17-7 + N/A 0.072 

BUID_000675 Furan 110-00-9 + - 0.07 

BUID_000394 Dehydroepiandrosterone 53-43-0 + N/A 0.069 

BUID_001113 o-Nitrosotoluene 611-23-4 + N/A 0.068 

BUID_000656 Fluconazole 86386-73-
4 

+ N/A 0.066 

BUID_001074 N-Nitrosodiethylamine 55-18-5 + + 0.064 

BUID_001082 Nitrosoethylmethylamine 10595-95-
6 

+ + 0.064 

BUID_000202 Bromodichloromethane 75-27-4 + + 0.063 

BUID_001408 4,4'-Thiodianiline 139-65-1 + + 0.061 

BUID_000682 Gemfibrozil 25812-30-
0 

+ N/A 0.06 

BUID_000912 4,4'-Methylenedianiline.2HCl 13552-44-
8 

+ + 0.06 

BUID_000937 Metronidazole 443-48-1 + + 0.06 

BUID_000607 Ethionine 13073-35-
3 

+ - 0.059 

BUID_000320 3-(p-Chlorophenyl)-1,1-dimethylurea 150-68-5 + - 0.057 

BUID_000256 Carbon tetrachloride 56-23-5 + - 0.055 

BUID_000609 4-Ethoxy-phenylurea 150-69-6 + - 0.052 

BUID_001185 2-Phenyl-1,3-propanediol dicarbamate 25451-15-
4 

+ N/A 0.049 

BUID_000444 Dichloroacetic acid 79-43-6 + + 0.047 

BUID_000006 Acetamide 60-35-5 + - 0.046 

BUID_000349 Clofibrate 637-07-0 + N/A 0.046 

BUID_000141 Benzidine 92-87-5 + + 0.044 

BUID_000737 Hydrazine sulfate 10034-93-
2 

+ + 0.042 

BUID_001167 Petasitenine 60102-37-
6 

+ N/A 0.026 

BUID_001309 Rotenone 83-79-4 - - 0.672 

BUID_001303 Rhodamine 6G 989-38-8 - - 0.665 

BUID_000721 Hexachlorophene 70-30-4 - - 0.584 

BUID_000862 Methotrexate 59-05-2 - - 0.494 

BUID_001277 Pyrimethamine 58-14-0 - - 0.458 

BUID_000719 Hexachlorocyclopentadiene 77-47-4 - - 0.407 

BUID_001378 2,2',5,5'-Tetrachlorobenzidine 15721-02-
5 

- + 0.394 

BUID_001386 Tetraethylthiuram disulfide 97-77-8 - - 0.332 

BUID_001456 Tricresyl phosphate 1330-78-5 - - 0.321 

BUID_000380 Cyclosporin A 59865-13-
3 

- - 0.31 

BUID_000764 8-Hydroxyquinoline 148-24-3 - + 0.306 

BUID_001396 Tetramethylthiuram disulfide 137-26-8 - + 0.284 

BUID_000421 2,5-Diaminotoluene sulfate 6369-59-1 - + 0.274 

BUID_001299 Retinoic acid 302-79-4 - N/A 0.273 

BUID_001338 Sorbic acid 110-44-1 - - 0.273 

BUID_001259 Propyl gallate 121-79-9 - - 0.26 

BUID_000589 Endosulfan 115-29-7 - - 0.246 

BUID_000293 2-Chloro-p-phenylenediamine sulfate 61702-44-
1 

- + 0.242 

BUID_000963 N-(1-Naphthyl)ethylenediamine.2HCl 1465-25-4 - + 0.234 

BUID_001405 4,4'-Thiobis(6-tert-butyl-m-cresol) 96-69-5 - - 0.234 

BUID_001173 Phenformin.HCl 834-28-6 - - 0.226 

BUID_001394 Tetrakis(hydroxymethyl)phosphonium 
chloride 

124-64-1 - - 0.204 

BUID_001385 Tetracycline.HCl 64-75-5 - - 0.198 

BUID_001489 Turmeric oleoresin (79%-85% 
curcumin) 

8024-37-1 - - 0.198 

BUID_000185 Bisphenol A 80-05-7 - - 0.193 

BUID_000818 Lithocholic acid 434-13-9 - - 0.192 

BUID_000238 Caffeine 58-08-2 - - 0.187 

BUID_000435 Dibutyltin diacetate 1067-33-0 - - 0.179 

BUID_000692 Glutaraldehyde 111-30-8 - + 0.179 

BUID_000144 Benzoate, sodium 532-32-1 - N/A 0.176 
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BUID_000302 2-Chloroacetophenone 532-27-4 - - 0.174 

BUID_001004 4-Nitro-o-phenylenediamine 99-56-9 - + 0.173 

BUID_000446 1,2-Dichlorobenzene 95-50-1 - - 0.172 

BUID_000587 Emodin 518-82-1 - + 0.172 

BUID_000904 alpha-Methyldopa sesquihydrate 41372-08-
1 

- - 0.166 

BUID_001400 Theophylline 58-55-9 - - 0.166 

BUID_000563 Diphenyl-p-phenylenediamine 74-31-7 - + 0.165 

BUID_000733 4-Hexylresorcinol 136-77-6 - - 0.165 

BUID_000644 Etodolac 41340-25-
4 

- N/A 0.163 

BUID_000111 Aspirin 50-78-2 - - 0.162 

BUID_000556 2,4-Dinitrotoluene 121-14-2 - + 0.162 

BUID_000094 p-Anisidine.HCl 20265-97-
8 

- + 0.161 

BUID_000408 Diallyl phthalate 131-17-9 - - 0.161 

BUID_000590 Endrin 72-20-8 - - 0.161 

BUID_000455 1,1-Dichloroethane 75-34-3 - - 0.159 

BUID_000618 p,p'-Ethyl-DDD 72-56-0 - + 0.158 

BUID_001183 Phenyl-b-naphthylamine 135-88-6 - - 0.152 

BUID_000896 Methyl parathion 298-00-0 - + 0.149 

BUID_000192 FD & C blue no. 1 3844-45-9 - N/A 0.148 

BUID_000295 3-Chloro-p-toluidine 95-74-9 - - 0.148 

BUID_000397 Deltamethrin 52918-63-
5 

- - 0.148 

BUID_000375 Cyclohexylamine.HCl 4998-76-9 - - 0.147 

BUID_001293 FD & C red no. 3 16423-68-
0 

- - 0.146 

BUID_000109 l-Ascorbic acid 50-81-7 - - 0.144 

BUID_000649 Fenthion 55-38-9 - - 0.144 

BUID_001182 1-Phenyl-3-methyl-5-pyrazolone 89-25-8 - - 0.144 

BUID_000258 Carbromal 77-65-6 - - 0.143 

BUID_001250 Promethazine.HCl 58-33-3 - - 0.142 

BUID_000196 HC blue no. 2 33229-34-
4 

- + 0.14 

BUID_000844 dl-Menthol 15356-70-
4 

- - 0.14 

BUID_000867 Methoxychlor 72-43-5 - - 0.139 

BUID_000304 p-Chloroaniline 106-47-8 - + 0.138 

BUID_000312 (2-Chloroethyl)trimethylammonium 
chloride 

999-81-5 - - 0.138 

BUID_000571 2,5-Dithiobiurea 142-46-1 - - 0.138 

BUID_001184 N-Phenyl-p-phenylenediamine.HCl 2198-59-6 - - 0.138 

BUID_000125 Azinphosmethyl 86-50-0 - + 0.137 

BUID_000501 Dimethoate 60-51-5 - + 0.136 

BUID_000974 Nickel (II) sulfate hexahydrate 10101-97-
0 

- - 0.135 

BUID_000151 1H-Benzotriazole 95-14-7 - + 0.133 

BUID_001154 Penicillin VK 132-98-9 - - 0.133 

BUID_000829 Malaoxon 1634-78-2 - - 0.13 

BUID_000836 d-Mannitol 69-65-8 - - 0.13 

BUID_001395 Tetrakis(hydroxymethyl)phosphonium 
sulfate 

55566-30-
8 

- - 0.128 

BUID_000426 Dibenzo-p-dioxin 262-12-4 - - 0.126 

BUID_000876 2-Methyl-4-chlorophenoxyacetic acid 94-74-6 - N/A 0.126 

BUID_001028 3-Nitropropionic acid 504-88-1 - + 0.126 

BUID_001007 p-Nitroaniline 100-01-6 - + 0.125 

BUID_001523 FD & C yellow no. 5 1934-21-0 - - 0.125 

BUID_000562 Diphenhydramine.HCl 147-24-0 - - 0.124 

BUID_000777 Iodoform 75-47-8 - + 0.124 

BUID_000332 Chlorpheniramine maleate 113-92-8 - - 0.123 

BUID_000024 Acrolein 107-02-8 - + 0.122 

BUID_000559 Dioxathion 78-34-2 - + 0.121 

BUID_000423 Diazinon 333-41-5 - - 0.12 

BUID_000747 Hydrochlorothiazide 58-93-5 - - 0.12 

BUID_000008 Acetohexamide 968-81-0 - - 0.119 

BUID_001152 Parathion 56-38-2 - - 0.119 

BUID_000460 2,4-Dichlorophenoxyacetic acid 94-75-7 - - 0.118 
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BUID_001422 Tolazamide 1156-19-0 - - 0.118 

BUID_001486 l-Tryptophan 73-22-3 - - 0.118 

BUID_001503 Vinyl toluene 25013-15-
4 

- - 0.115 

BUID_000033 Adipamide 628-94-4 - - 0.114 

BUID_000505 2,4-Dimethoxyaniline.HCl 54150-69-
5 

- + 0.114 

BUID_000454 p,p'-Dichlorodiphenyl sulfone 80-07-9 - - 0.113 

BUID_000538 Dimethylformamide 68-12-2 - - 0.112 

BUID_001213 Phthalic anhydride 85-44-9 - - 0.112 

BUID_001285 C.I. food red 3 3567-69-9 - + 0.112 

BUID_001449 Trichlorofluoromethane 75-69-4 - - 0.112 

BUID_000303 4'-(Chloroacetyl)-acetanilide 140-49-8 - + 0.111 

BUID_001024 1-Nitronaphthalene 86-57-7 - + 0.111 

BUID_001187 1-Phenyl-2-thiourea 103-85-5 - - 0.11 

BUID_001524 FD & C yellow no. 6 2783-94-0 - - 0.11 

BUID_000333 Chlorpropamide 94-20-2 - - 0.109 

BUID_000798 Isopropanol 67-63-0 - - 0.107 

BUID_001423 Tolbutamide 64-77-7 - - 0.107 

BUID_000725 Hexamethylenetetramine 100-97-0 - + 0.105 

BUID_000336 Choline chloride 67-48-1 - - 0.104 

BUID_000360 Coumaphos 56-72-4 - - 0.104 

BUID_000648 Fenaminosulf, formulated 140-56-7 - + 0.104 

BUID_001335 Sodium diethyldithiocarbamate 
trihydrate 

148-18-5 - - 0.104 

BUID_000230 g-Butyrolactone 96-48-0 - - 0.103 

BUID_000477 N,N-Diethyl-m-toluamide 134-62-3 - - 0.102 

BUID_000830 Malathion 121-75-5 - - 0.102 

BUID_000657 Fluometuron 2164-17-2 - - 0.098 

BUID_000520 Dimethyl terephthalate 120-61-6 - - 0.097 

BUID_000787 Isobutyraldehyde 78-84-2 - - 0.097 

BUID_000340 Cimetidine 51481-61-
9 

- N/A 0.095 

BUID_000646 Eugenol 97-53-0 - - 0.095 

BUID_000373 Cyclohexanone 108-94-1 - - 0.094 

BUID_001149 Oxytetracycline.HCl 2058-46-0 - - 0.093 

BUID_001319 Scopolamine hydrobromide trihydrate 6533-68-2 - - 0.093 

BUID_001370 Tegafur 37076-68-
9 

- N/A 0.092 

BUID_000946 Monochloroacetic acid 79-11-8 - - 0.091 

BUID_001009 4-Nitroanthranilic acid 619-17-0 - + 0.091 

BUID_001212 Phthalamide 88-96-0 - - 0.091 

BUID_000855 Methacrylonitrile 126-98-7 - - 0.09 

BUID_001274 Pyrazinamide 98-96-4 - - 0.089 

BUID_001453 2,4,5-Trichlorophenoxyacetic acid 93-76-5 - - 0.089 

BUID_001493 Urea 57-13-6 - - 0.088 

BUID_000155 Benzyl alcohol 100-51-6 - - 0.086 

BUID_001176 Phenol 108-95-2 - - 0.086 

BUID_001446 1,1,1-Trichloroethane, technical grade 71-55-6 - + 0.084 

BUID_000040 Aldicarb 116-06-3 - - 0.083 

BUID_000193 FD & C blue no. 2 860-22-0 - - 0.082 

BUID_001515 Xylene mixture (60% m-xylene, 9% o-
xylene, 14% p-xylene, 17% 
ethylbenzene) 

1330-20-7 - - 0.082 

BUID_000457 2,4-Dichlorophenol 120-83-2 - - 0.081 

BUID_000568 Dipropylene glycol 25265-71-
8 

- - 0.08 

BUID_001192 m-Phenylenediamine.2HCl 541-69-5 - + 0.079 

BUID_001349 Succinic anhydride 108-30-5 - - 0.076 

BUID_000134 Barium chloride dihydrate 10326-27-
9 

- - 0.074 

BUID_000211 n-Butyl chloride 109-69-3 - - 0.071 

BUID_000344 Citral 5392-40-5 - - 0.071 

BUID_000010 Acetonitrile 75-05-8 - - 0.07 

BUID_000084 Ampicillin trihydrate 7177-48-2 - - 0.07 

BUID_001195 Phenylephrine.HCl 61-76-7 - - 0.07 

BUID_000831 Maleic hydrazide 123-33-1 - - 0.068 

BUID_000885 Methyl methacrylate 80-62-6 - - 0.068 
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BUID_001281 Quinapril.HCl 82586-55-
8 

- N/A 0.068 

BUID_001298 Resorcinol 108-46-3 - - 0.068 

BUID_000246 Caprolactam 105-60-2 - - 0.066 

BUID_001132 C.I. acid orange 10 1936-15-8 - - 0.065 

BUID_001002 3-Nitro-4-hydroxyphenylarsonic acid 121-19-7 - - 0.063 

BUID_000800 Isopropyl-N-(3-chlorophenyl)carbamate 101-21-3 - N/A 0.062 

BUID_001137 Oxamyl 23135-22-
0 

- N/A 0.059 

BUID_001356 Sulfisoxazole 127-69-5 - - 0.058 

BUID_001526 HC yellow 4 59820-43-
8 

- + 0.055 

BUID_000259 b-Carotene 7235-40-7 - + 0.054 

BUID_001415 Tin (II) chloride 7772-99-8 - - 0.054 

BUID_001401 Thiabendazole 148-79-8 - + 0.052 

BUID_000704 FD & C green no. 3 2353-45-9 - - 0.05 

BUID_000148 Benzoin 119-53-9 - - 0.048 

BUID_001475 Triprolidine.HCl monohydrate 6138-79-0 - - 0.048 

BUID_001296 HC red no. 3 2871-01-4 - + 0.047 

BUID_000341 trans-Cinnamaldehyde 14371-10-
9 

- - 0.045 

BUID_000684 Geranyl acetate mixture 
(105-87-3) 

- - 0.045 

BUID_000503 Dimethoxane 828-00-2 - + 0.042 

BUID_000317 2-(Chloromethyl)pyridine.HCl 6959-47-3 - + 0.038 

BUID_001214 Picloram, technical grade 1918-02-1 - - 0.028 

BUID_001711 Suberoylanilide hydroxamic acid 149647-
78-9 

N/A N/A 0.605 

BUID_000143 Benzo(a)pyrene 50-32-8 N/A + 0.46 

BUID_002874 Indoxyl Sulfate 2642-37-7 N/A N/A 0.341 

BUID_002897 sulforaphane 4478-93-7 N/A N/A 0.304 

BUID_000533 7,12-Dimethylbenz(a)anthracene 57-97-6 N/A + 0.302 

BUID_001648 Triclosan 3380-34-5 N/A N/A 0.214 

BUID_001967 Clotrimazole 23593-75-
1 

N/A N/A 0.211 

BUID_002901 2-(1’H-indole-3’-carbonyl)-thiazole-4-
carboxylic acid methyl ester 

448906-
42-1 

N/A N/A 0.207 

BUID_002354 Quinoxyfen 124495-
18-7 

N/A N/A 0.201 

BUID_000225 tert-Butylhydroquinone 1948-33-0 N/A - 0.198 

BUID_002870 1-Methyl-N-[2-methyl-4-[2-(2-
methylphenyl)diazenyl]phen yl-1H-
pyrazole-5-carboxamide 

301326-
22-7 

N/A N/A 0.176 

BUID_001838 3,3',5,5'-Tetrabromobisphenol A 79-94-7 N/A N/A 0.173 

BUID_002612 Spironolactone 52-01-7 N/A N/A 0.168 

BUID_002485 Prallethrin 23031-36-
9 

N/A N/A 0.161 

BUID_002896 nifedipine 21829-25-
4 

N/A N/A 0.16 

BUID_002873 Indole-3-carbinol (I3C) 700-06-1 N/A N/A 0.147 

BUID_002881 rosiglitazone 122320-
73-4 

N/A N/A 0.146 

BUID_002875 4-Hydroxy-2-quinolinecarboxylic acid 492-27-3 N/A N/A 0.135 

BUID_002883 Tris(2-chloroethyl)phosphate 13674-84-
5 

N/A N/A 0.133 

BUID_002886 Acid Orange 156 68555-86-
2 

N/A N/A 0.124 

BUID_002882 triphenyl phosphine oxide 791-28-6 N/A N/A 0.118 

BUID_002895 Pregnenolone 16alpha-carbonitrile 1434-54-4 N/A N/A 0.118 

BUID_002889 pregnenolone 145-13-1 N/A N/A 0.117 

BUID_002877 4,8-Dihydroxy-2-quinolinecarboxylic 
acid 

59-00-7 N/A N/A 0.101 

BUID_002879 indole-3-aldehyde 487-89-8 N/A N/A 0.099 

BUID_002871 2-Amino-3-oxo-3H-phenoxazine-1,9-

dicarboxylic acid 

606-59-7 N/A N/A 0.092 

BUID_001476 Tris(2-chloroethyl)phosphate 115-96-8 N/A - 0.088 

BUID_002309 Triphenyl phosphate 115-86-6 N/A N/A 0.085 

BUID_002884 2-ethyl-2-hexenal 645-62-5 N/A N/A 0.069 
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BUID_002904 Glycel 70901-12-
1 

N/A N/A 0.058 

BUID_000210 Butyl benzyl phthalate 85-68-7 N/A - 0.057 

BUID_002900 L-kynurenine 2922-83-0 N/A N/A 0.057 

BUID_001439 Tributyl phosphate 126-73-8 N/A - 0.051 

BUID_002586 Mono(2-ethylhexyl) phthalate 4376-20-9 N/A N/A 0.034 
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Table S2 Ranked list of differentially enriched pathways (c2 reactome) between 

carcinogens vs. non-carcinogens across multiple TAS subsets 

 
Signatur
e 

Ran
k 

Pathway ID P.Value 
TAS>0 

P.Value
TAS>0.
2 

P.Value
TAS>0.
3 

P.Value
TAS>0.
4 

P.Value 
Combin
ed 

FDR 
Combine
d 

CARC_U
P 

1 REACTOME_EXTRINSIC_PATHWAY_FOR_APOPTOSIS 1.24E-
01 

3.53E-
04 

1.94E-
02 

2.38E-
04 

4.29E-
07 

1.45E-04 

CARC_U
P 

2 REACTOME_TRANSCRIPTION 1.17E-
01 

4.09E-
04 

2.30E-
03 

8.71E-
04 

2.24E-
07 

1.45E-04 

CARC_U
P 

3 REACTOME_RNA_POL_III_TRANSCRIPTION 3.86E-
02 

7.84E-
03 

1.46E-
02 

1.54E-
04 

1.23E-
06 

2.77E-04 

CARC_U
P 

4 REACTOME_NEF_MEDIATED_DOWNREGULATION_OF
_MHC_CLASS_I_COMPLEX_CELL_SURFACE_EXPRESSIO
N 

5.16E-
04 

9.06E-
03 

3.93E-
03 

1.11E-
01 

3.17E-
06 

5.34E-04 

CARC_U
P 

5 REACTOME_TRAF3_DEPENDENT_IRF_ACTIVATION_PA
THWAY 

8.13E-
03 

2.45E-
02 

2.59E-
02 

7.75E-
04 

5.64E-
06 

6.34E-04 

CARC_U
P 

6 REACTOME_NFKB_ACTIVATION_THROUGH_FADD_RIP
1_PATHWAY_MEDIATED_BY_CASPASE_8_AND10 

1.73E-
02 

4.69E-
03 

2.10E-
02 

2.06E-
03 

5.05E-
06 

6.34E-04 

CARC_U
P 

7 REACTOME_APOPTOSIS_INDUCED_DNA_FRAGMENTA
TION 

1.91E-
01 

1.55E-
03 

5.93E-
03 

3.61E-
03 

8.35E-
06 

8.04E-04 

CARC_U
P 

8 REACTOME_METABOLISM_OF_NON_CODING_RNA 4.99E-
01 

3.12E-
02 

1.56E-
02 

1.38E-
04 

3.41E-
05 

2.87E-03 

CARC_U
P 

9 REACTOME_ABORTIVE_ELONGATION_OF_HIV1_TRAN
SCRIPT_IN_THE_ABSENCE_OF_TAT 

4.17E-
01 

1.01E-
01 

6.45E-
03 

1.53E-
04 

4.09E-
05 

3.06E-03 

CARC_U
P 

10 REACTOME_HS_GAG_DEGRADATION 7.20E-
03 

9.13E-
03 

2.48E-
02 

4.07E-
02 

6.03E-
05 

3.42E-03 

CARC_U
P 

11 REACTOME_MRNA_DECAY_BY_5_TO_3_EXORIBONUC
LEASE 

4.63E-
01 

8.63E-
02 

2.49E-
02 

6.76E-
05 

6.09E-
05 

3.42E-03 

CARC_U
P 

12 REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATIO
N_FROM_TYPE_3_PROMOTER 

2.56E-
01 

1.44E-
02 

1.75E-
02 

8.57E-
04 

5.16E-
05 

3.42E-03 

CARC_U
P 

13 REACTOME_ACTIVATED_AMPK_STIMULATES_FATTY_
ACID_OXIDATION_IN_MUSCLE 

2.11E-
02 

5.72E-
02 

2.79E-
02 

2.47E-
03 

7.25E-
05 

3.76E-03 

CARC_U
P 

14 REACTOME_INTERFERON_ALPHA_BETA_SIGNALING 8.11E-
05 

1.56E-
01 

1.48E-
01 

1.08E-
01 

1.51E-
04 

6.78E-03 

CARC_U
P 

15 REACTOME_DEADENYLATION_DEPENDENT_MRNA_D
ECAY 

4.91E-
01 

7.36E-
03 

2.68E-
02 

2.07E-
03 

1.50E-
04 

6.78E-03 

CARC_U
P 

16 REACTOME_RESOLUTION_OF_AP_SITES_VIA_THE_M
ULTIPLE_NUCLEOTIDE_PATCH_REPLACEMENT_PATH
WAY 

4.81E-
01 

3.32E-
01 

1.08E-
02 

1.42E-
04 

1.77E-
04 

7.14E-03 

CARC_U
P 

17 REACTOME_MRNA_3_END_PROCESSING 2.58E-
01 

1.42E-
01 

6.71E-
03 

1.02E-
03 

1.80E-
04 

7.14E-03 

CARC_U
P 

18 REACTOME_ELONGATION_ARREST_AND_RECOVERY 3.30E-
01 

9.85E-
02 

2.02E-
02 

5.71E-
04 

2.49E-
04 

9.32E-03 

CARC_U
P 

19 REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_
TO_CYTOPLASM 

4.82E-
01 

5.49E-
02 

1.75E-
02 

8.80E-
04 

2.67E-
04 

9.46E-03 

CARC_U
P 

20 REACTOME_RNA_POL_I_RNA_POL_III_AND_MITOCH
ONDRIAL_TRANSCRIPTION 

3.77E-
01 

7.44E-
04 

4.54E-
02 

5.26E-
02 

3.98E-
04 

1.34E-02 

CARC_U
P 

21 REACTOME_NUCLEOTIDE_EXCISION_REPAIR 4.82E-
01 

2.52E-
01 

1.19E-
02 

6.33E-
04 

5.10E-
04 

1.45E-02 

CARC_U
P 

22 REACTOME_FORMATION_OF_INCISION_COMPLEX_IN
_GG_NER 

4.18E-
01 

2.44E-
02 

1.48E-
02 

6.11E-
03 

5.15E-
04 

1.45E-02 

CARC_U

P 

23 REACTOME_RNA_POL_II_PRE_TRANSCRIPTION_EVEN

TS 

3.64E-

01 

6.20E-

02 

1.98E-

02 

1.81E-

03 

4.64E-

04 

1.45E-02 

CARC_U
P 

24 REACTOME_CLEAVAGE_OF_GROWING_TRANSCRIPT_I
N_THE_TERMINATION_REGION_ 

3.24E-
01 

1.47E-
01 

9.18E-
03 

2.08E-
03 

5.10E-
04 

1.45E-02 

CARC_U
P 

25 REACTOME_UNWINDING_OF_DNA 3.35E-
01 

8.75E-
02 

1.46E-
02 

2.42E-
03 

5.64E-
04 

1.46E-02 

CARC_U
P 

26 REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATIO
N_FROM_TYPE_2_PROMOTER 

1.06E-
01 

2.75E-
02 

6.47E-
02 

5.26E-
03 

5.48E-
04 

1.46E-02 

CARC_U
P 

27 REACTOME_RNA_POL_II_TRANSCRIPTION 3.97E-
01 

1.11E-
01 

1.88E-
02 

1.66E-
03 

7.09E-
04 

1.77E-02 

CARC_U
P 

28 REACTOME_FORMATION_OF_THE_HIV1_EARLY_ELON
GATION_COMPLEX 

4.16E-
01 

7.00E-
02 

2.20E-
02 

2.38E-
03 

7.69E-
04 

1.85E-02 

CARC_U
P 

29 REACTOME_GLOBAL_GENOMIC_NER_GG_NER 4.88E-
01 

2.21E-
01 

1.54E-
02 

1.39E-
03 

1.07E-
03 

2.48E-02 
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CARC_U
P 

30 REACTOME_BASE_EXCISION_REPAIR 4.94E-
01 

4.80E-
01 

1.82E-
02 

6.20E-
04 

1.20E-
03 

2.70E-02 

CARC_U
P 

31 REACTOME_INTERFERON_GAMMA_SIGNALING 1.93E-
04 

2.19E-
01 

2.61E-
01 

2.88E-
01 

1.37E-
03 

2.98E-02 

CARC_U
P 

32 REACTOME_CREB_PHOSPHORYLATION_THROUGH_T
HE_ACTIVATION_OF_RAS 

1.74E-
02 

1.57E-
02 

7.01E-
02 

1.87E-
01 

1.51E-
03 

2.99E-02 

CARC_U
P 

33 REACTOME_VIRAL_MESSENGER_RNA_SYNTHESIS 4.25E-
01 

1.10E-
02 

1.50E-
01 

5.12E-
03 

1.50E-
03 

2.99E-02 

CARC_U
P 

34 REACTOME_AKT_PHOSPHORYLATES_TARGETS_IN_TH
E_CYTOSOL 

1.47E-
01 

2.41E-
02 

2.99E-
02 

3.38E-
02 

1.51E-
03 

2.99E-02 

CARC_U
P 

35 REACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE
_PLASMA_MEMBRANE 

2.03E-
02 

1.62E-
01 

7.06E-
02 

1.69E-
02 

1.62E-
03 

3.06E-02 

CARC_U
P 

36 REACTOME_MITOTIC_G1_G1_S_PHASES 4.57E-
01 

3.12E-
02 

4.99E-
02 

5.58E-
03 

1.63E-
03 

3.06E-02 

CARC_U
P 

37 REACTOME_POST_NMDA_RECEPTOR_ACTIVATION_E
VENTS 

7.25E-
03 

9.12E-
03 

2.05E-
01 

3.41E-
01 

1.84E-
03 

3.17E-02 

CARC_U
P 

38 REACTOME_FORMATION_OF_RNA_POL_II_ELONGATI
ON_COMPLEX_ 

3.44E-
01 

8.21E-
02 

3.75E-
02 

4.08E-
03 

1.75E-
03 

3.17E-02 

CARC_U
P 

39 REACTOME_RESPIRATORY_ELECTRON_TRANSPORT 5.56E-
02 

4.35E-
03 

2.14E-
01 

8.69E-
02 

1.80E-
03 

3.17E-02 

CARC_U
P 

40 REACTOME_SLBP_DEPENDENT_PROCESSING_OF_REP
LICATION_DEPENDENT_HISTONE_PRE_MRNAS 

3.61E-
01 

8.28E-
02 

1.70E-
02 

9.69E-
03 

1.93E-
03 

3.26E-02 

CARC_D
N 

1 REACTOME_GLUCURONIDATION 2.16E-
03 

4.37E-
05 

1.10E-
04 

1.92E-
05 

1.71E-
12 

1.15E-09 

CARC_D
N 

2 REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 2.64E-
01 

4.75E-
04 

4.30E-
06 

6.09E-
06 

2.23E-
11 

7.51E-09 

CARC_D
N 

3 REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY 1.03E-
01 

1.05E-
04 

4.90E-
06 

3.38E-
04 

1.04E-
10 

2.33E-08 

CARC_D
N 

4 REACTOME_TIGHT_JUNCTION_INTERACTIONS 1.99E-
01 

1.89E-
03 

1.65E-
05 

5.45E-
06 

1.85E-
10 

3.12E-08 

CARC_D
N 

5 REACTOME_AXON_GUIDANCE 4.35E-
01 

5.86E-
03 

1.57E-
05 

1.36E-
06 

2.85E-
10 

3.85E-08 

CARC_D
N 

6 REACTOME_GLUTAMATE_NEUROTRANSMITTER_RELE
ASE_CYCLE 

1.52E-
01 

8.81E-
03 

2.93E-
05 

3.50E-
06 

6.61E-
10 

7.42E-08 

CARC_D
N 

7 REACTOME_TRANSPORT_TO_THE_GOLGI_AND_SUBS
EQUENT_MODIFICATION 

5.43E-
04 

1.34E-
04 

1.18E-
03 

3.19E-
03 

1.22E-
09 

9.94E-08 

CARC_D

N 

8 REACTOME_CTLA4_INHIBITORY_SIGNALING 5.93E-

02 

1.69E-

03 

3.56E-

05 

7.12E-

05 

1.15E-

09 

9.94E-08 

CARC_D
N 

9 REACTOME_TRAFFICKING_OF_AMPA_RECEPTORS 2.98E-
01 

8.39E-
04 

4.77E-
04 

2.51E-
06 

1.33E-
09 

9.94E-08 

CARC_D
N 

10 REACTOME_COMMON_PATHWAY 9.99E-
03 

5.36E-
05 

1.73E-
03 

4.80E-
04 

1.90E-
09 

1.28E-07 

CARC_D
N 

11 REACTOME_GLYCOPROTEIN_HORMONES 9.54E-
03 

9.93E-
03 

6.88E-
04 

1.54E-
05 

3.93E-
09 

2.17E-07 

CARC_D
N 

12 REACTOME_CELL_CELL_JUNCTION_ORGANIZATION 4.76E-
01 

2.14E-
03 

5.39E-
05 

2.13E-
05 

4.51E-
09 

2.17E-07 

CARC_D
N 

13 REACTOME_ELEVATION_OF_CYTOSOLIC_CA2_LEVELS 1.30E-
01 

1.21E-
02 

1.36E-
04 

5.26E-
06 

4.37E-
09 

2.17E-07 

CARC_D
N 

14 REACTOME_SEMAPHORIN_INTERACTIONS 1.31E-
01 

8.61E-
03 

1.74E-
05 

4.62E-
05 

3.59E-
09 

2.17E-07 

CARC_D
N 

15 REACTOME_CELL_CELL_COMMUNICATION 4.74E-
01 

2.03E-
02 

2.76E-
05 

6.93E-
06 

6.77E-
09 

3.04E-07 

CARC_D
N 

16 REACTOME_CD28_DEPENDENT_VAV1_PATHWAY 8.92E-
02 

9.38E-
04 

1.29E-
04 

3.28E-
04 

1.22E-
08 

5.13E-07 

CARC_D
N 

17 REACTOME_CD28_CO_STIMULATION 1.99E-
01 

1.18E-
03 

8.47E-
05 

2.40E-
04 

1.59E-
08 

6.30E-07 

CARC_D
N 

18 REACTOME_REGULATION_OF_INSULIN_SECRETION_B
Y_GLUCAGON_LIKE_PEPTIDE1 

4.99E-
01 

3.01E-
02 

1.13E-
04 

3.50E-
06 

1.92E-
08 

7.20E-07 

CARC_D
N 

19 REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESI
S 

6.04E-
02 

6.74E-
03 

6.96E-
04 

3.71E-
05 

3.20E-
08 

1.13E-06 

CARC_D
N 

20 REACTOME_L1CAM_INTERACTIONS 3.04E-
01 

1.01E-
01 

5.30E-
04 

1.13E-
06 

5.25E-
08 

1.77E-06 

CARC_D
N 

21 REACTOME_PLATELET_ADHESION_TO_EXPOSED_COL
LAGEN 

3.79E-
01 

2.65E-
03 

2.44E-
04 

8.71E-
05 

5.98E-
08 

1.92E-06 

CARC_D
N 

22 REACTOME_PROSTACYCLIN_SIGNALLING_THROUGH_
PROSTACYCLIN_RECEPTOR 

3.73E-
01 

2.83E-
03 

2.44E-
04 

1.19E-
04 

8.20E-
08 

2.51E-06 

CARC_D
N 

23 REACTOME_CELL_JUNCTION_ORGANIZATION 4.68E-
01 

1.14E-
02 

1.35E-
04 

5.61E-
05 

1.05E-
07 

3.08E-06 
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CARC_D
N 

24 REACTOME_PD1_SIGNALING 2.09E-
01 

1.73E-
04 

1.73E-
04 

7.38E-
03 

1.18E-
07 

3.31E-06 

CARC_D
N 

25 REACTOME_PEPTIDE_HORMONE_BIOSYNTHESIS 5.09E-
02 

2.70E-
02 

1.27E-
03 

3.43E-
05 

1.48E-
07 

3.89E-06 

CARC_D
N 

26 REACTOME_ACETYLCHOLINE_NEUROTRANSMITTER_R
ELEASE_CYCLE 

4.17E-
01 

2.24E-
03 

5.11E-
04 

1.27E-
04 

1.50E-
07 

3.89E-06 

CARC_D
N 

27 REACTOME_DEVELOPMENTAL_BIOLOGY 4.44E-
01 

5.13E-
02 

1.77E-
04 

1.70E-
05 

1.68E-
07 

4.07E-06 

CARC_D
N 

28 REACTOME_PHOSPHORYLATION_OF_CD3_AND_TCR_
ZETA_CHAINS 

1.11E-
01 

3.37E-
04 

3.18E-
04 

5.82E-
03 

1.69E-
07 

4.07E-06 

CARC_D
N 

29 REACTOME_ACTIVATION_OF_RAC 1.63E-
01 

1.70E-
02 

9.39E-
04 

2.80E-
05 

1.75E-
07 

4.08E-06 

CARC_D
N 

30 REACTOME_FORMATION_OF_FIBRIN_CLOT_CLOTTIN
G_CASCADE 

9.32E-
02 

4.32E-
04 

1.19E-
03 

1.60E-
03 

1.84E-
07 

4.13E-06 

CARC_D
N 

31 REACTOME_REGULATION_OF_INSULIN_LIKE_GROWT
H_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWT
H_FACTOR_BINDING_PROTEINS_IGFBPS 

1.80E-
02 

3.84E-
03 

1.28E-
03 

1.06E-
03 

2.20E-
07 

4.78E-06 

CARC_D
N 

32 REACTOME_ACTIVATION_OF_KAINATE_RECEPTORS_
UPON_GLUTAMATE_BINDING 

3.85E-
01 

6.11E-
03 

4.12E-
04 

1.54E-
04 

3.30E-
07 

6.95E-06 

CARC_D
N 

33 REACTOME_NETRIN1_SIGNALING 2.66E-
01 

1.29E-
02 

6.80E-
04 

8.95E-
05 

4.42E-
07 

9.03E-06 

CARC_D
N 

34 REACTOME_AMINO_ACID_SYNTHESIS_AND_INTERCO
NVERSION_TRANSAMINATION 

2.13E-
02 

4.88E-
05 

7.34E-
03 

3.08E-
02 

4.90E-
07 

9.72E-06 

CARC_D
N 

35 REACTOME_N_GLYCAN_ANTENNAE_ELONGATION 1.96E-
02 

5.07E-
03 

3.04E-
03 

1.33E-
03 

7.82E-
07 

1.46E-05 

CARC_D
N 

36 REACTOME_THROMBIN_SIGNALLING_THROUGH_PRO
TEINASE_ACTIVATED_RECEPTORS_PARS 

4.67E-
01 

1.15E-
02 

6.69E-
04 

1.11E-
04 

7.77E-
07 

1.46E-05 

CARC_D
N 

37 REACTOME_ION_TRANSPORT_BY_P_TYPE_ATPASES 1.08E-
01 

5.48E-
02 

2.28E-
03 

4.29E-
05 

1.08E-
06 

1.96E-05 

CARC_D
N 

38 REACTOME_N_GLYCAN_ANTENNAE_ELONGATION_IN
_THE_MEDIAL_TRANS_GOLGI 

1.53E-
02 

1.10E-
02 

1.73E-
03 

2.08E-
03 

1.12E-
06 

1.98E-05 

CARC_D
N 

39 REACTOME_PLATELET_HOMEOSTASIS 4.62E-
01 

2.97E-
02 

5.63E-
04 

8.36E-
05 

1.18E-
06 

2.04E-05 

CARC_D
N 

40 REACTOME_SIGNALING_BY_PDGF 3.58E-
01 

2.68E-
03 

2.87E-
04 

3.53E-
03 

1.68E-
06 

2.83E-05 
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Table S3 Ranked list of differentially enriched pathways (c2 reactome) between 

genotoxicants vs. non-genotoxicants across multiple TAS subsets 

 
Signatur
e 

Ran
k 

Pathway ID P.Value 
TAS>0 

P.Value 
TAS>0.
2 

P.Value 
TAS>0.
3 

P.Value 
TAS>0.
4 

P.Value 
Combin
ed 

FDR 
Combine
d 

GTX_UP 1 REACTOME_FORMATION_OF_INCISION_COMPLEX_IN
_GG_NER 

2.54E-
03 

3.90E-
06 

1.01E-
05 

1.46E-
05 

1.82E-
14 

1.23E-11 

GTX_UP 2 REACTOME_AKT_PHOSPHORYLATES_TARGETS_IN_TH
E_CYTOSOL 

2.01E-
02 

3.17E-
05 

1.05E-
05 

1.27E-
05 

7.80E-
13 

2.63E-10 

GTX_UP 3 REACTOME_EXTRINSIC_PATHWAY_FOR_APOPTOSIS 1.27E-
03 

4.38E-
05 

1.13E-
04 

2.35E-
05 

1.29E-
12 

2.89E-10 

GTX_UP 4 REACTOME_PRE_NOTCH_TRANSCRIPTION_AND_TRA
NSLATION 

6.16E-
02 

1.55E-
05 

5.72E-
05 

1.11E-
05 

4.74E-
12 

7.99E-10 

GTX_UP 5 REACTOME_GLOBAL_GENOMIC_NER_GG_NER 2.63E-
02 

1.83E-
05 

1.48E-
04 

2.11E-
05 

1.08E-
11 

1.46E-09 

GTX_UP 6 REACTOME_NEF_MEDIATED_DOWNREGULATION_OF
_MHC_CLASS_I_COMPLEX_CELL_SURFACE_EXPRESSIO
N 

7.12E-
04 

3.39E-
04 

2.21E-
04 

2.14E-
03 

5.57E-
10 

6.25E-08 

GTX_UP 7 REACTOME_NUCLEOTIDE_EXCISION_REPAIR 6.59E-
02 

7.06E-
05 

6.48E-
04 

8.19E-
05 

1.12E-
09 

1.08E-07 

GTX_UP 8 REACTOME_ACTIVATED_AMPK_STIMULATES_FATTY_
ACID_OXIDATION_IN_MUSCLE 

8.02E-
02 

6.93E-
04 

2.34E-
04 

2.18E-
04 

9.95E-
09 

8.38E-07 

GTX_UP 9 REACTOME_RNA_POL_I_TRANSCRIPTION_INITIATION 6.99E-
03 

2.11E-
03 

1.69E-
03 

2.59E-
03 

1.59E-
07 

1.19E-05 

GTX_UP 10 REACTOME_INTRINSIC_PATHWAY_FOR_APOPTOSIS 5.34E-
02 

3.29E-
04 

8.36E-
03 

5.59E-
04 

1.96E-
07 

1.32E-05 

GTX_UP 11 REACTOME_MRNA_DECAY_BY_5_TO_3_EXORIBONUC
LEASE 

2.21E-
01 

7.81E-
03 

3.81E-
03 

2.05E-
05 

3.02E-
07 

1.85E-05 

GTX_UP 12 REACTOME_APOPTOSIS 1.97E-
02 

4.76E-
04 

7.18E-
03 

2.24E-
03 

3.34E-
07 

1.88E-05 

GTX_UP 13 REACTOME_FORMATION_OF_TRANSCRIPTION_COUP
LED_NER_TC_NER_REPAIR_COMPLEX 

7.09E-
02 

3.31E-
04 

3.18E-
03 

2.76E-
03 

4.38E-
07 

2.15E-05 

GTX_UP 14 REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RE
SPONSE 

1.24E-
01 

7.02E-
04 

2.59E-
03 

9.34E-
04 

4.46E-
07 

2.15E-05 

GTX_UP 15 REACTOME_ELONGATION_ARREST_AND_RECOVERY 1.42E-
01 

2.71E-
03 

4.08E-
03 

1.58E-
04 

5.12E-
07 

2.30E-05 

GTX_UP 16 REACTOME_FORMATION_OF_RNA_POL_II_ELONGATI
ON_COMPLEX_ 

8.21E-
02 

1.89E-
03 

3.51E-
03 

5.13E-
04 

5.68E-
07 

2.39E-05 

GTX_UP 17 REACTOME_PROCESSING_OF_INTRONLESS_PRE_MRN
AS 

3.48E-
01 

4.63E-
03 

3.14E-
03 

8.11E-
05 

7.96E-
07 

3.16E-05 

GTX_UP 18 REACTOME_ACTIVATION_OF_BH3_ONLY_PROTEINS 1.95E-
01 

1.62E-
03 

6.37E-
03 

3.98E-
04 

1.42E-
06 

5.31E-05 

GTX_UP 19 REACTOME_DNA_REPAIR 7.99E-
02 

8.62E-
04 

1.44E-
02 

1.06E-
03 

1.79E-
06 

6.36E-05 

GTX_UP 20 REACTOME_RNA_POL_II_PRE_TRANSCRIPTION_EVEN
TS 

2.10E-
01 

1.30E-
03 

4.29E-
03 

1.44E-
03 

2.70E-
06 

9.09E-05 

GTX_UP 21 REACTOME_FORMATION_OF_THE_HIV1_EARLY_ELON
GATION_COMPLEX 

1.15E-
01 

1.74E-
03 

5.97E-
03 

1.55E-
03 

2.92E-
06 

9.39E-05 

GTX_UP 22 REACTOME_RNA_POL_I_TRANSCRIPTION_TERMINATI
ON 

1.22E-
02 

3.79E-
03 

3.71E-
03 

1.35E-
02 

3.56E-
06 

1.09E-04 

GTX_UP 23 REACTOME_NOTCH_HLH_TRANSCRIPTION_PATHWAY 1.63E-
01 

8.84E-
03 

9.80E-
04 

2.08E-
03 

4.33E-
06 

1.27E-04 

GTX_UP 24 REACTOME_RNA_POL_III_TRANSCRIPTION 2.65E-
01 

2.02E-
03 

9.07E-
03 

6.43E-
04 

4.58E-
06 

1.29E-04 

GTX_UP 25 REACTOME_TRANSCRIPTION 1.87E-
01 

3.54E-
03 

4.81E-
03 

1.17E-
03 

5.28E-
06 

1.42E-04 

GTX_UP 26 REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_
P27_P21 

2.16E-
01 

2.02E-
03 

6.57E-
03 

1.47E-
03 

5.89E-
06 

1.53E-04 

GTX_UP 27 REACTOME_ABORTIVE_ELONGATION_OF_HIV1_TRAN
SCRIPT_IN_THE_ABSENCE_OF_TAT 

2.22E-
01 

4.24E-
03 

9.06E-
03 

5.39E-
04 

6.37E-
06 

1.59E-04 

GTX_UP 28 REACTOME_RESOLUTION_OF_AP_SITES_VIA_THE_M
ULTIPLE_NUCLEOTIDE_PATCH_REPLACEMENT_PATH
WAY 

1.72E-
01 

1.45E-
02 

2.14E-
02 

9.35E-
05 

6.84E-
06 

1.65E-04 

GTX_UP 29 REACTOME_PURINE_CATABOLISM 5.06E-
03 

7.70E-
03 

1.89E-
02 

7.58E-
03 

7.49E-
06 

1.71E-04 
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GTX_UP 30 REACTOME_HS_GAG_DEGRADATION 1.56E-
01 

3.46E-
03 

4.70E-
03 

2.24E-
03 

7.63E-
06 

1.71E-04 

GTX_UP 31 REACTOME_TRANSCRIPTION_COUPLED_NER_TC_NER 2.28E-
01 

1.37E-
03 

1.24E-
02 

2.54E-
03 

1.22E-
05 

2.66E-04 

GTX_UP 32 REACTOME_ER_PHAGOSOME_PATHWAY 1.22E-
01 

5.51E-
03 

1.39E-
02 

1.31E-
03 

1.46E-
05 

3.07E-04 

GTX_UP 33 REACTOME_BASE_EXCISION_REPAIR 1.54E-
01 

1.48E-
02 

2.63E-
02 

3.07E-
04 

2.07E-
05 

4.23E-04 

GTX_UP 34 REACTOME_RECRUITMENT_OF_MITOTIC_CENTROSO
ME_PROTEINS_AND_COMPLEXES 

3.75E-
01 

1.33E-
02 

3.28E-
03 

2.17E-
03 

3.59E-
05 

7.11E-04 

GTX_UP 35 REACTOME_CELL_CYCLE_CHECKPOINTS 3.04E-
02 

5.52E-
03 

3.99E-
02 

6.06E-
03 

3.99E-
05 

7.68E-04 

GTX_UP 36 REACTOME_TRAF3_DEPENDENT_IRF_ACTIVATION_PA
THWAY 

4.40E-
03 

2.27E-
02 

2.78E-
02 

1.74E-
02 

4.62E-
05 

8.22E-04 

GTX_UP 37 REACTOME_DOWNSTREAM_SIGNALING_EVENTS_OF_
B_CELL_RECEPTOR_BCR 

3.42E-
02 

8.38E-
03 

1.67E-
02 

1.02E-
02 

4.64E-
05 

8.22E-04 

GTX_UP 38 REACTOME_SYNTHESIS_OF_DNA 3.35E-
02 

6.00E-
03 

4.09E-
02 

5.81E-
03 

4.58E-
05 

8.22E-04 

GTX_UP 39 REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATIO
N_FROM_TYPE_3_PROMOTER 

2.04E-
02 

6.66E-
03 

4.54E-
02 

8.65E-
03 

5.02E-
05 

8.67E-04 

GTX_UP 40 REACTOME_LOSS_OF_NLP_FROM_MITOTIC_CENTROS
OMES 

4.19E-
01 

1.16E-
02 

5.27E-
03 

2.52E-
03 

5.89E-
05 

9.68E-04 

GTX_DN 1 REACTOME_PYRUVATE_METABOLISM 3.13E-
03 

3.00E-
06 

2.36E-
06 

2.97E-
05 

8.63E-
15 

5.82E-12 

GTX_DN 2 REACTOME_ACTIVATION_OF_KAINATE_RECEPTORS_
UPON_GLUTAMATE_BINDING 

1.36E-
01 

1.68E-
04 

3.61E-
06 

2.45E-
06 

1.73E-
12 

3.88E-10 

GTX_DN 3 REACTOME_ION_CHANNEL_TRANSPORT 2.97E-
01 

5.64E-
05 

9.30E-
06 

9.83E-
07 

1.34E-
12 

3.88E-10 

GTX_DN 4 REACTOME_IONOTROPIC_ACTIVITY_OF_KAINATE_RE
CEPTORS 

3.96E-
02 

4.74E-
04 

6.12E-
05 

5.38E-
07 

4.83E-
12 

6.51E-10 

GTX_DN 5 REACTOME_CREB_PHOSPHORYLATION_THROUGH_TH
E_ACTIVATION_OF_CAMKII 

8.22E-
02 

3.66E-
05 

3.40E-
05 

5.13E-
06 

4.16E-
12 

6.51E-10 

GTX_DN 6 REACTOME_TRANSPORT_TO_THE_GOLGI_AND_SUBS
EQUENT_MODIFICATION 

3.75E-
05 

1.33E-
05 

1.65E-
04 

1.51E-
02 

9.16E-
12 

1.03E-09 

GTX_DN 7 REACTOME_PLATELET_CALCIUM_HOMEOSTASIS 4.09E-
01 

2.47E-
04 

3.44E-
05 

5.23E-
07 

1.29E-
11 

1.24E-09 

GTX_DN 8 REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 1.56E-

05 

4.58E-

05 

2.61E-

03 

3.84E-

03 

4.51E-

11 

3.80E-09 

GTX_DN 9 REACTOME_THROMBIN_SIGNALLING_THROUGH_PRO
TEINASE_ACTIVATED_RECEPTORS_PARS 

1.03E-
01 

5.44E-
05 

4.38E-
05 

4.94E-
05 

7.32E-
11 

5.48E-09 

GTX_DN 10 REACTOME_ION_TRANSPORT_BY_P_TYPE_ATPASES 4.97E-
01 

2.83E-
04 

1.58E-
05 

6.87E-
06 

9.01E-
11 

6.07E-09 

GTX_DN 11 REACTOME_GLYCOPROTEIN_HORMONES 1.33E-
01 

1.28E-
03 

4.58E-
05 

3.23E-
06 

1.42E-
10 

8.73E-09 

GTX_DN 12 REACTOME_NETRIN1_SIGNALING 1.75E-
01 

2.59E-
05 

9.66E-
05 

7.00E-
05 

1.70E-
10 

9.52E-09 

GTX_DN 13 REACTOME_PLATELET_ADHESION_TO_EXPOSED_COL
LAGEN 

7.65E-
02 

2.07E-
03 

1.35E-
04 

7.99E-
06 

8.01E-
10 

4.15E-08 

GTX_DN 14 REACTOME_PTM_GAMMA_CARBOXYLATION_HYPUSI
NE_FORMATION_AND_ARYLSULFATASE_ACTIVATION 

1.26E-
03 

1.82E-
02 

3.80E-
04 

4.03E-
05 

1.54E-
09 

7.40E-08 

GTX_DN 15 REACTOME_ACETYLCHOLINE_NEUROTRANSMITTER_R
ELEASE_CYCLE 

3.00E-
01 

1.96E-
04 

1.63E-
04 

5.71E-
05 

2.28E-
09 

1.02E-07 

GTX_DN 16 REACTOME_TIGHT_JUNCTION_INTERACTIONS 2.08E-
01 

1.07E-
03 

6.30E-
04 

4.96E-
06 

2.83E-
09 

1.19E-07 

GTX_DN 17 REACTOME_PLATELET_HOMEOSTASIS 4.93E-
01 

2.55E-
04 

9.18E-
05 

8.45E-
05 

3.84E-
09 

1.52E-07 

GTX_DN 18 REACTOME_GLUCURONIDATION 4.17E-
02 

2.67E-
03 

1.16E-
04 

8.73E-
05 

4.37E-
09 

1.57E-07 

GTX_DN 19 REACTOME_INTERACTION_BETWEEN_L1_AND_ANKY
RINS 

3.38E-
01 

1.22E-
03 

1.08E-
03 

2.55E-
06 

4.42E-
09 

1.57E-07 

GTX_DN 20 REACTOME_COMMON_PATHWAY 4.66E-
04 

4.06E-
03 

5.00E-
04 

1.50E-
03 

5.36E-
09 

1.79E-07 

GTX_DN 21 REACTOME_PEPTIDE_HORMONE_BIOSYNTHESIS 1.78E-
01 

3.73E-
03 

1.19E-
04 

1.88E-
05 

5.59E-
09 

1.79E-07 

GTX_DN 22 REACTOME_REGULATION_OF_PYRUVATE_DEHYDROG
ENASE_PDH_COMPLEX 

1.09E-
02 

2.32E-
04 

2.71E-
04 

2.62E-
03 

6.63E-
09 

2.03E-07 

GTX_DN 23 REACTOME_ELEVATION_OF_CYTOSOLIC_CA2_LEVELS 3.00E-
01 

7.06E-
04 

2.20E-
04 

6.25E-
05 

1.02E-
08 

2.98E-07 
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GTX_DN 24 REACTOME_ETHANOL_OXIDATION 5.74E-
03 

4.12E-
03 

8.88E-
04 

2.40E-
04 

1.66E-
08 

4.67E-07 

GTX_DN 25 REACTOME_CELL_CELL_JUNCTION_ORGANIZATION 1.47E-
01 

4.08E-
04 

1.14E-
03 

9.12E-
05 

2.01E-
08 

5.43E-07 

GTX_DN 26 REACTOME_N_GLYCAN_ANTENNAE_ELONGATION 2.36E-
02 

2.22E-
04 

1.27E-
03 

2.37E-
03 

4.58E-
08 

1.19E-06 

GTX_DN 27 REACTOME_INTEGRATION_OF_PROVIRUS 2.05E-
02 

3.87E-
02 

2.38E-
04 

1.11E-
04 

5.86E-
08 

1.46E-06 

GTX_DN 28 REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESI
S 

1.64E-
01 

2.15E-
03 

4.20E-
04 

1.50E-
04 

6.18E-
08 

1.49E-06 

GTX_DN 29 REACTOME_UNBLOCKING_OF_NMDA_RECEPTOR_GL
UTAMATE_BINDING_AND_ACTIVATION 

4.28E-
01 

1.61E-
03 

1.23E-
03 

4.17E-
05 

9.33E-
08 

2.17E-06 

GTX_DN 30 REACTOME_ACTIVATION_OF_RAC 7.94E-
02 

9.71E-
04 

1.18E-
03 

4.80E-
04 

1.12E-
07 

2.51E-06 

GTX_DN 31 REACTOME_REGULATION_OF_INSULIN_SECRETION_B
Y_ACETYLCHOLINE 

5.28E-
02 

7.85E-
04 

1.70E-
03 

1.26E-
03 

2.10E-
07 

4.56E-06 

GTX_DN 32 REACTOME_REGULATION_OF_INSULIN_SECRETION 3.07E-
01 

1.00E-
03 

4.65E-
04 

7.55E-
04 

2.48E-
07 

5.07E-06 

GTX_DN 33 REACTOME_SYNTHESIS_OF_PIPS_AT_THE_LATE_END
OSOME_MEMBRANE 

1.71E-
01 

8.88E-
03 

4.78E-
04 

1.47E-
04 

2.46E-
07 

5.07E-06 

GTX_DN 34 REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYN
APSES 

3.46E-
01 

2.22E-
03 

1.59E-
03 

1.03E-
04 

2.83E-
07 

5.61E-06 

GTX_DN 35 REACTOME_RAS_ACTIVATION_UOPN_CA2_INFUX_TH
ROUGH_NMDA_RECEPTOR 

1.58E-
01 

9.74E-
04 

3.53E-
03 

2.56E-
04 

3.09E-
07 

5.95E-06 

GTX_DN 36 REACTOME_PROLACTIN_RECEPTOR_SIGNALING 7.93E-
02 

1.77E-
03 

6.03E-
04 

1.71E-
03 

3.22E-
07 

6.04E-06 

GTX_DN 37 REACTOME_COPI_MEDIATED_TRANSPORT 7.78E-
02 

2.92E-
04 

1.47E-
03 

4.60E-
03 

3.38E-
07 

6.15E-06 

GTX_DN 38 REACTOME_REGULATION_OF_INSULIN_LIKE_GROWT
H_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWT
H_FACTOR_BINDING_PROTEINS_IGFBPS 

6.41E-
03 

6.90E-
03 

1.64E-
03 

3.83E-
03 

5.68E-
07 

1.01E-05 

GTX_DN 39 REACTOME_CD28_DEPENDENT_PI3K_AKT_SIGNALING 2.61E-
02 

2.11E-
04 

1.67E-
02 

3.51E-
03 

6.45E-
07 

1.08E-05 

GTX_DN 40 REACTOME_OPSINS 3.00E-
01 

2.01E-
03 

6.62E-
03 

8.20E-
05 

6.55E-
07 

1.08E-05 
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Table S4 GSEA analysis of enrichment of Drugmatrix signatures in L1000 profiles 

 
Drugmatrix_s
ample_type 

signature_name compar
ison 

L1000_
subset 

dire
ctio
n_of
_enr
ichm
ent 

direction_
match 

ES 
(Enrichm
ent 
Score) 

NES 
(Normali
zed 
Enrichm
ent 
Score) 

NOM.p.v
al 

FDR.q.va
l 

CELL_LOWDO
SE 

UP_CARC_CELL_LOWDOSE carc tas_0.4 pos MATCH 2.97E-01 1.57E+00 3.59E-04 1.41E-03 

CELL_LOWDO
SE 

DN_CARC_CELL_LOWDOSE carc tas_0.4 neg MATCH -2.20E-
01 

-
1.08E+00 

2.57E-01 3.62E-01 

CELL_LOWDO
SE 

UP_CARC_CELL_LOWDOSE carc tas_0.3 pos MATCH 3.02E-01 1.50E+00 6.53E-04 4.88E-03 

CELL_LOWDO
SE 

DN_CARC_CELL_LOWDOSE carc tas_0.3 neg MATCH -2.35E-
01 

-
1.15E+00 

1.16E-01 1.88E-01 

CELL_LOWDO
SE 

UP_CARC_CELL_LOWDOSE carc tas_0.2 pos MATCH 2.99E-01 1.51E+00 0.00E+00 5.17E-03 

CELL_LOWDO
SE 

DN_CARC_CELL_LOWDOSE carc tas_0.2 neg MATCH -2.68E-
01 

-
1.29E+00 

2.03E-02 3.58E-02 

CELL_LOWDO
SE 

DN_CARC_CELL_LOWDOSE carc tas_0.0 neg MATCH -2.28E-
01 

-
1.34E+00 

6.67E-03 1.51E-02 

CELL_LOWDO
SE 

UP_CARC_CELL_LOWDOSE carc tas_0.0 neg NONMATC
H 

-2.08E-
01 

-
1.23E+00 

1.17E-02 4.31E-02 

CELL_LOWDO
SE 

UP_GTX_CELL_LOWDOSE gtx tas_0.4 pos MATCH 1.77E-01 1.28E+00 0.00E+00 2.99E-02 

CELL_LOWDO
SE 

DN_GTX_CELL_LOWDOSE gtx tas_0.4 neg MATCH -2.43E-
01 

-9.34E-
01 

6.42E-01 6.64E-01 

CELL_LOWDO
SE 

UP_GTX_CELL_LOWDOSE gtx tas_0.3 pos MATCH 2.18E-01 1.42E+00 0.00E+00 3.84E-03 

CELL_LOWDO
SE 

DN_GTX_CELL_LOWDOSE gtx tas_0.3 neg MATCH -3.19E-
01 

-
1.30E+00 

6.64E-02 6.86E-02 

CELL_LOWDO
SE 

UP_GTX_CELL_LOWDOSE gtx tas_0.2 pos MATCH 1.84E-01 1.19E+00 5.88E-02 7.84E-02 

CELL_LOWDO
SE 

DN_GTX_CELL_LOWDOSE gtx tas_0.2 neg MATCH -2.67E-
01 

-
1.08E+00 

3.35E-01 3.21E-01 

CELL_LOWDO
SE 

UP_GTX_CELL_LOWDOSE gtx tas_0.0 pos MATCH 2.42E-01 1.37E+00 0.00E+00 1.11E-02 

CELL_LOWDO
SE 

DN_GTX_CELL_LOWDOSE gtx tas_0.0 neg MATCH -2.05E-
01 

-8.44E-
01 

7.77E-01 8.02E-01 

CELL DN_CARC_CELL carc tas_0.4 neg MATCH -2.00E-
01 

-8.92E-
01 

7.09E-01 7.47E-01 

CELL UP_CARC_CELL carc tas_0.4 neg NONMATC
H 

-3.59E-
01 

-
1.63E+00 

7.39E-04 1.33E-03 

CELL DN_CARC_CELL carc tas_0.3 neg MATCH -2.30E-
01 

-
1.03E+00 

3.89E-01 3.78E-01 

CELL UP_CARC_CELL carc tas_0.3 neg NONMATC
H 

-3.58E-
01 

-
1.63E+00 

7.53E-04 7.50E-04 

CELL DN_CARC_CELL carc tas_0.2 pos NONMATC
H 

2.36E-01 1.07E+00 2.80E-01 2.58E-01 

CELL UP_CARC_CELL carc tas_0.2 neg NONMATC
H 

-4.03E-
01 

-
1.81E+00 

1.67E-04 8.77E-05 

CELL DN_CARC_CELL carc tas_0.0 pos NONMATC

H 

2.53E-01 1.10E+00 2.93E-01 2.68E-01 

CELL UP_CARC_CELL carc tas_0.0 neg NONMATC
H 

-2.85E-
01 

-
1.56E+00 

0.00E+00 3.49E-03 

CELL UP_GTX_CELL gtx tas_0.4 pos MATCH 1.97E-01 1.29E+00 2.22E-02 5.97E-02 

CELL DN_GTX_CELL gtx tas_0.4 neg MATCH -3.66E-
01 

-
1.48E+00 

1.00E-04 4.06E-03 

CELL UP_GTX_CELL gtx tas_0.3 pos MATCH 2.19E-01 1.30E+00 3.01E-02 3.33E-02 

CELL DN_GTX_CELL gtx tas_0.3 neg MATCH -4.30E-
01 

-
1.85E+00 

0.00E+00 0.00E+0
0 

CELL UP_GTX_CELL gtx tas_0.2 pos MATCH 2.18E-01 1.29E+00 2.04E-02 5.78E-02 

CELL DN_GTX_CELL gtx tas_0.2 neg MATCH -3.79E-
01 

-
1.63E+00 

0.00E+00 7.10E-04 

CELL UP_GTX_CELL gtx tas_0.0 pos MATCH 2.62E-01 1.39E+00 7.24E-03 1.26E-02 
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CELL DN_GTX_CELL gtx tas_0.0 neg MATCH -3.10E-
01 

-
1.39E+00 

1.04E-02 2.98E-02 

LIVER UP_CARC_LIVER carc tas_0.4 pos MATCH 2.34E-01 1.23E+00 4.59E-02 6.00E-02 

LIVER DN_CARC_LIVER carc tas_0.4 neg MATCH -3.17E-
01 

-
1.48E+00 

3.05E-03 6.62E-03 

LIVER UP_CARC_LIVER carc tas_0.3 pos MATCH 2.44E-01 1.19E+00 8.08E-02 9.39E-02 

LIVER DN_CARC_LIVER carc tas_0.3 neg MATCH -3.68E-
01 

-
1.72E+00 

0.00E+00 4.17E-04 

LIVER UP_CARC_LIVER carc tas_0.2 pos MATCH 2.39E-01 1.19E+00 7.24E-02 1.28E-01 

LIVER DN_CARC_LIVER carc tas_0.2 neg MATCH -4.14E-
01 

-
1.91E+00 

0.00E+00 0.00E+0
0 

LIVER DN_CARC_LIVER carc tas_0.0 neg MATCH -2.51E-
01 

-
1.41E+00 

1.03E-03 1.21E-02 

LIVER UP_CARC_LIVER carc tas_0.0 neg NONMATC
H 

-2.38E-
01 

-
1.39E+00 

5.49E-03 1.08E-02 

LIVER DN_GTX_LIVER gtx tas_0.4 pos NONMATC
H 

1.85E-01 1.20E+00 0.00E+00 2.99E-02 

LIVER UP_GTX_LIVER gtx tas_0.4 neg NONMATC
H 

-2.60E-
01 

-
1.04E+00 

4.12E-01 6.13E-01 

LIVER DN_GTX_LIVER gtx tas_0.3 pos NONMATC
H 

1.94E-01 1.16E+00 1.33E-01 1.11E-01 

LIVER UP_GTX_LIVER gtx tas_0.3 neg NONMATC
H 

-3.03E-
01 

-
1.28E+00 

4.78E-02 5.27E-02 

LIVER DN_GTX_LIVER gtx tas_0.2 pos NONMATC
H 

2.06E-01 1.23E+00 5.71E-02 7.10E-02 

LIVER UP_GTX_LIVER gtx tas_0.2 neg NONMATC
H 

-2.99E-
01 

-
1.26E+00 

6.30E-02 1.04E-01 

LIVER DN_GTX_LIVER gtx tas_0.0 pos NONMATC
H 

2.71E-01 1.42E+00 6.47E-03 1.30E-02 

LIVER UP_GTX_LIVER gtx tas_0.0 neg NONMATC
H 

-3.95E-
01 

-
1.72E+00 

1.10E-04 3.90E-04 
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Table S5 Genesets of literature referenced AhR targets 

 
 

Geneset Name AhR geneset 1 AhR geneset 2 AhR geneset 3 AhR geneset 4 

Description omeprazole (AhR agonist) 
responsive gene signature from 
cryopreserved human hepatocytes 

Cross-referenced AhR 
regulated genes (table 
1) 

Predicted functional 
partners of AhR in human 
from stringDB 

Microarray identified 
TCDD (AhR agonist) 
responsive genes 

Reference Moscovitz et al., 2018 Beischlag et al., 2008 stringDB (Szklarczyk et al., 
2017) with data 
referencing multiple 
sources 

Lo and Matthews, 
2012 

Reference URL http://jpet.aspetjournals.org/conte
nt/365/2/262/ 

https://www.ncbi.nlm
.nih.gov/pmc/articles/
PMC2583464/ 

https://string-
db.org/cgi/network.pl?task
Id=z6NWkfGxpKH3 

https://www.ncbi.nlm
.nih.gov/pubmed/229
03824 

Genes (overlap with 

gene symbols in L1000 
gene expression) 

CYP1A1 CYP1A1 HSP90AA1 CYP1A1 

 
CYP3A4 CYP1A2 ARNT CYP1A2 

 
SLC10A1 CYP1B1 AIP CYP1B1 

 
SLCO1B1 ALDH3A1 CYP1A1 ALDH1A3 

  
EREG CYP1B1 TIPARP 

  
NQO1 CYP1A2 SLC7A5 

  
ALAS1 ESR1 SECTM1 

  
PTGS2 MAF DLX2 

  
CDKN1B NFE2L2 LRRC15 

   
RB1 RND1 

    
VIPR1 

    
EDC3 

    
ST3GAL1 

    
LMCD1 

    
PYGL 

    
RUNX2 

    
LMO2 

    
NEDD9 

    
VTCN1 

    
KRT20 

    
DISC1 

    
ALS2CL 

    
PRPS1 

    
MAPRE2 

    
LRRC23 

    
DDIT4 

    
SLC2A11 
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VDR 

    
RUNX1 

    
PCBP3 

    
SLC3A2 

    
STC2 

    
CRISPLD2 

    
TPCN1 

    
BCL3 

    
DNMBP 

    
TXNRD1 

    
LAMA3 

    
TFAP2A 

    
SFT2D2 

    
FAM65A 

    
IER3 

    
MTMR6 

    
ATXN1 

    
CACNA1D 

    
ELF4 

    
TRIM13 

    
RRP12 

    
FLVCR2 

    
MYBBP1A 

    
ESPN 

    
NOP16 

    
SAT1 

    
BATF 

    
FOSL2 

    
RIN1 

    
ALDH1B1 

    
NAT10 

    
SLC27A2 

    
NFE2L2 

    
NIN 

    
PSPC1 

    
DDX21 

    
USP3 
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NOP2 

    
UBE2G2 

    
DKC1 

    
IGF1R 

    
TRAFD1 

    
OSBPL2 

    
FAM32A 

    
XPO6 

    
ZNF259 

    
DDX24 

    
MICAL2 

    
NPY1R 

    
PSG5 

    
RET 

    
LRRFIP2 

    
TRIM36 

 
 
Table S6 Comparison of genes and gene sets identified as differentially connected in 

the network-based approach (A) and by the standard differential expression 

analysis (B). 

  A B A and B only in A only in B 

genes 2293 2540 1224 1069 1316 

gene sets 27 29 21 6 8 

 

Table S7 Aggregate Network-related modules with connectivity specifically altered 

by compound groups.  

Specificity score is computed only for HF module. GOC = Gain of connectivity, LOC = 

Loss of connectivity; HF= High Frequency, LF= Low Frequency 

MAIN FUNCTION ID MODULE SPECIFICIT
Y SCORE 

GAIN/LOS
S 

TYP
E 

ENRICHED HALLMARKS 

SOLVENTS G1 navajowhite2 0.25 GOC HF TNFA_SIGNALING_VIA_NFKB, 
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IL6_JAK_STAT3_SIGNALING, 

INTERFERON_GAMMA_RESPONSE 

cyan 0.28 GOC HF EPITHELIAL_MESENCHYMAL_TRANSIT
ION 

ANTI-FUNGALS G2 grey60 0.27 GOC HF ANGIOGENESIS 

orangered4 0.3 GOC HF CHOLESTEROL_HOMEOSTASIS 

skyblue3 0.26 GOC HF MYC_TARGETS_V1 

STATINS G3 thistle1 0.3 GOC HF FATTY_ACID_METABOLISM, 

CHOLESTEROL_HOMEOSTASIS 

honeydew1 0.28 GOC HF CHOLESTEROL_HOMEOSTASIS, 

MTORC1_SIGNALING 

coral1 NA GOC LF TNFA_SIGNALING_VIA_NFKB, 

INFLAMMATORY_RESPONSE, 

UV_RESPONSE_UP 

ESTROGENS G4 palevioletred3 0.24 GOC HF INTERFERON_ALPHA_RESPONSE 

mediumorchi
d 

NA GOC LF MYC_TARGETS_V2 

FIBRATES G5 coral1 NA GOC LF TNFA_SIGNALING_VIA_NFKB, 

HYPOXIA 

STEROIDS G6 lightcyan 0.26 GOC HF FATTY_ACID_METABOLISM 

CHEMOTHERAPEUTI
CS 

G9 palevioletred2 NA GOC LF P53_PATHWAY 

thistle3 NA GOC LF INTERFERON_GAMMA_RESPONSE, 

INTERFERON_ALPHA_RESPONSE 

ALKYLATING- 
CANCER 

G1
0 

lightpink4 NA GOC LF G2M_CHECKPOINT 

n.c (anti-cancer, 
estrogens) 

G1
1 

coral1 NA GOC LF TNFA_SIGNALING_VIA_NFKB 

tomato NA GOC LF MYC_TARGETS_V2 

ANTI-INFLAMM/ 
FUNGAL 

G1
2 

coral1 NA GOC LF APOPTOSIS 

lightslateblue NA GOC LF HYPOXIA 

lavenderblush
2 

NA GOC LF MYC_TARGETS_V2, 

MYC_TARGETS_V1 

salmon2 NA GOC LF HEME_METABOLISM 
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ANTISEPTICS / 
ESTROGENS 

G1
3 

skyblue3 0.26 GOC HF XENOBIOTIC_METABOLISM, 

MTORC1_SIGNALING 

coral1 NA GOC LF TNFA_SIGNALING_VIA_NFKB, 

HYPOXIA, 

TGF_BETA_SIGNALING, 

P53_PATHWAY, 

APOPTOSIS 

 

Table S8 Amplification-driven gene dependencies among cis genes in amplifications 

in TCGA Breast Cancer 

Gene Symbol Group Coefficient (Slope) Pvalue FDR Significance (FDR < 0.05) 

ERBB2 Cis Rank 1 -0.1318508 3.4332E-42 5.6758E-38 TRUE 

CCNE1 Cis Rank 1 -0.2001617 6.0405E-21 3.3287E-17 TRUE 

CCND1 Cis Rank 1 -0.1272435 5.7819E-09 7.9655E-06 TRUE 

FOXA1 Cis Rank 1 -0.1102331 1.1134E-07 0.00010226 TRUE 

ANKRD17 Cis Rank 1 -0.1526054 2.7519E-06 0.00129983 TRUE 

IRS2 Cis NonRank 1 -0.0527969 4.4622E-06 0.00204913 TRUE 

MCL1 Cis Rank 1 -0.1394048 8.2763E-06 0.00333715 TRUE 

IGF1R Cis NonRank 1 -0.1016525 5.2538E-05 0.01400912 TRUE 

LIG4 Cis NonRank 1 -0.038646 0.00015365 0.03097666 TRUE 

KCTD21 Cis NonRank 1 -0.0398466 0.00050753 0.07425207 FALSE 

ZNF784 Cis NonRank 1 -0.0560269 0.00146073 0.12609062 FALSE 

TFDP1 Cis NonRank 1 -0.0592732 0.00537496 0.23634839 FALSE 

ZNF703 Cis Rank 1 -0.0282214 0.00597179 0.24932848 FALSE 

ZNF217 Cis Rank 1 -0.0409088 0.00780709 0.27931467 FALSE 

OR2W3 Cis NonRank 1 -0.0429025 0.00834605 0.28566641 FALSE 

ZNF580 Cis NonRank 1 -0.0564098 0.00914388 0.29492223 FALSE 

KCNMB3 Cis NonRank 1 -0.0464382 0.01100085 0.31560188 FALSE 

SDCCAG8 Cis NonRank 1 -0.059072 0.01302775 0.3407829 FALSE 

AAMDC Cis NonRank 1 -0.0371954 0.01310872 0.3418193 FALSE 

TGDS Cis NonRank 1 -0.0272693 0.01514159 0.36611654 FALSE 

AURKC Cis NonRank 1 -0.0337778 0.02033904 0.41563045 FALSE 

ADPRHL1 Cis NonRank 1 -0.0347564 0.02246353 0.4343475 FALSE 

ZNF460 Cis NonRank 1 -0.0495407 0.0273906 0.47662306 FALSE 

SLC15A1 Cis NonRank 1 -0.0295258 0.02886242 0.48689136 FALSE 
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USP13 Cis NonRank 1 -0.0243926 0.0339077 0.52535421 FALSE 

PPP6R1 Cis NonRank 1 -0.0492691 0.03430773 0.52613678 FALSE 

ZNF274 Cis NonRank 1 -0.0130762 0.03443639 0.52614633 FALSE 

ZMIZ1 Cis NonRank 1 -0.0360358 0.03463215 0.52768551 FALSE 

COX18 Cis NonRank 1 -0.0529388 0.03755672 0.54511644 FALSE 

UGGT2 Cis NonRank 1 -0.0254059 0.0465598 0.58668186 FALSE 

ZNF581 Cis NonRank 1 -0.0356601 0.05952823 0.63864307 FALSE 

RAP2A Cis NonRank 1 -0.0179813 0.06904373 0.67660397 FALSE 

PIK3CA Cis NonRank 1 -0.0382066 0.07308259 0.68804182 FALSE 

GOLPH3L Cis NonRank 1 -0.0411693 0.07306642 0.68804182 FALSE 

ZFP28 Cis NonRank 1 -0.0302816 0.08118507 0.70932517 FALSE 

GRK1 Cis NonRank 1 -0.019318 0.08227314 0.71189798 FALSE 

ZNF547 Cis NonRank 1 -0.0365368 0.08970384 0.7275414 FALSE 

ZIC5 Cis NonRank 1 -0.0087923 0.09056707 0.72823675 FALSE 

MYO7A Cis NonRank 1 -0.019245 0.09573144 0.74142596 FALSE 

ERLIN2 Cis NonRank 1 -0.0177344 0.10002168 0.75059392 FALSE 

GPR180 Cis NonRank 1 -0.020376 0.10523636 0.76066616 FALSE 

DOCK9 Cis NonRank 1 -0.0142928 0.10594672 0.7627615 FALSE 

EFNB2 Cis NonRank 1 -0.0128848 0.10886666 0.77012566 FALSE 

ERCC5 Cis NonRank 1 -0.0161536 0.11989628 0.78553788 FALSE 

CLPTM1L Cis NonRank 1 -0.0228713 0.12886525 0.80060138 FALSE 

GAB2 Cis NonRank 1 -0.0137559 0.12947951 0.80321025 FALSE 

LAMP1 Cis NonRank 1 -0.0168387 0.13092574 0.80568805 FALSE 

ZNF550 Cis NonRank 1 -0.0300106 0.13525624 0.80803726 FALSE 

SIRT5 Cis NonRank 1 -0.017817 0.13769317 0.81210972 FALSE 

KIAA1549L Cis NonRank 1 -0.0173794 0.13922227 0.81646775 FALSE 

FRS2 Cis NonRank 1 -0.0191833 0.14175891 0.82201276 FALSE 

RSF1 Cis Rank 1 -0.0140401 0.14580254 0.82774988 FALSE 

NOTCH3 Cis Rank 1 -0.0310624 0.14787267 0.83073603 FALSE 

TBL1XR1 Cis NonRank 1 -0.0073624 0.15076845 0.8323311 FALSE 

ZNF579 Cis NonRank 1 -0.0226136 0.17174845 0.8657518 FALSE 

CEP72 Cis NonRank 1 -0.0143598 0.17808883 0.87429438 FALSE 

CASP14 Cis NonRank 1 -0.0165124 0.17935747 0.87544663 FALSE 

EPN1 Cis NonRank 1 -0.0191911 0.18880276 0.88773813 FALSE 

BRD9 Cis NonRank 1 -0.0126168 0.19704566 0.90237085 FALSE 

VDAC3 Cis Rank 1 -0.0073304 0.21867352 0.9293645 FALSE 

TCAP Cis NonRank 1 -0.0057259 0.23178031 0.94193514 FALSE 
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ZNF551 Cis NonRank 1 -0.0122978 0.24341286 0.95655563 FALSE 

PPP1R12C Cis NonRank 1 -0.0130338 0.2462885 0.95792972 FALSE 

KCTD14 Cis NonRank 1 -0.0093918 0.24753845 0.95792972 FALSE 

ZNF814 Cis NonRank 1 -0.0109311 0.24757471 0.95792972 FALSE 

OXGR1 Cis NonRank 1 -0.0092899 0.25523995 0.96360588 FALSE 

PAK1 Cis NonRank 1 -0.0079182 0.25611266 0.96469101 FALSE 

TRIM58 Cis NonRank 1 -0.0150117 0.26071762 0.9691522 FALSE 

ZNF124 Cis NonRank 1 -0.0161519 0.2631421 0.9727034 FALSE 

PPIF Cis Rank 1 -0.015168 0.26886982 0.9755213 FALSE 

SFTPA2 Cis NonRank 1 -0.0093825 0.26782012 0.9755213 FALSE 

FBXO18 Cis NonRank 1 -0.0131004 0.28189291 0.98546279 FALSE 

USP22 Cis Rank 1 -0.0032396 0.28351024 0.98735859 FALSE 

PDCD6 Cis NonRank 1 -0.001922 0.4418571 1 FALSE 

RANBP9 Cis NonRank 1 0.00725409 0.67576174 1 FALSE 

HIPK3 Cis NonRank 1 0.00387192 0.57073055 1 FALSE 

MBNL2 Cis NonRank 1 0.00619651 0.62847808 1 FALSE 

ZNF256 Cis NonRank 1 0.00366045 0.56749171 1 FALSE 

ABCC4 Cis NonRank 1 -4.381E-05 0.49854696 1 FALSE 

NET1 Cis NonRank 1 -0.0017059 0.45180462 1 FALSE 

TUBGCP3 Cis NonRank 1 0.36036427 1 1 FALSE 

ZBTB18 Cis NonRank 1 0.00331216 0.58383905 1 FALSE 

CCT2 Cis Rank 1 0.20523307 1 1 FALSE 

SLC12A7 Cis NonRank 1 0.02398174 0.97398575 1 FALSE 

POP4 Cis NonRank 1 0.01143103 0.69054661 1 FALSE 

STARD3 Cis NonRank 1 0.02507874 0.99530024 1 FALSE 

ILVBL Cis NonRank 1 0.00652016 0.59546773 1 FALSE 

CHML Cis NonRank 1 -0.0086256 0.37707321 1 FALSE 

RDH13 Cis NonRank 1 -0.0021493 0.44929504 1 FALSE 

U2AF2 Cis NonRank 1 0.34284534 1 1 FALSE 

COX20 Cis NonRank 1 -0.0007345 0.48711615 1 FALSE 

CLNS1A Cis NonRank 1 0.11039367 0.99998894 1 FALSE 

TEX29 Cis NonRank 1 0.00916023 0.66953932 1 FALSE 

ZNF543 Cis NonRank 1 0.01926515 0.817738 1 FALSE 

ZNF787 Cis NonRank 1 0.03438221 0.91090574 1 FALSE 

COL4A2 Cis NonRank 1 0.00374998 0.80869596 1 FALSE 

FBXL14 Cis NonRank 1 0.00399172 0.59095499 1 FALSE 

MIPOL1 Cis NonRank 1 0.02211109 0.87408151 1 FALSE 
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ZNF417 Cis NonRank 1 -0.0100134 0.31311064 1 FALSE 

ZNF548 Cis NonRank 1 0.01220992 0.66355746 1 FALSE 

ZNF524 Cis NonRank 1 -0.0117947 0.31393786 1 FALSE 

CSTF3 Cis Rank 1 0.07041714 0.99749749 1 FALSE 

ADSS Cis NonRank 1 -0.004601 0.43117564 1 FALSE 

CNST Cis NonRank 1 0.01516517 0.81571513 1 FALSE 

CLYBL Cis NonRank 1 0.04911335 0.99869721 1 FALSE 

NLRP7 Cis NonRank 1 0.04503415 0.89737595 1 FALSE 

ENSA Cis NonRank 1 0.01932006 0.86217819 1 FALSE 

GDPD4 Cis NonRank 1 0.00872305 0.68971421 1 FALSE 

ORAOV1 Cis NonRank 1 0.00671214 0.83792541 1 FALSE 

FH Cis NonRank 1 0.02158723 0.91443093 1 FALSE 

DZIP1 Cis NonRank 1 0.01210949 0.76195028 1 FALSE 

MYO16 Cis NonRank 1 0.00088472 0.52240798 1 FALSE 

ERC1 Cis NonRank 1 0.00027291 0.50600706 1 FALSE 

RPRD2 Cis NonRank 1 0.04653797 0.96617587 1 FALSE 

ATP11A Cis NonRank 1 0.01861572 0.91502289 1 FALSE 

MCF2L Cis NonRank 1 0.00112167 0.54951037 1 FALSE 

OPN3 Cis NonRank 1 0.00258379 0.54858556 1 FALSE 

ZIM2 Cis NonRank 1 0.01408318 0.71449807 1 FALSE 

TMEM86B Cis NonRank 1 0.0317536 0.8096276 1 FALSE 

ZNF549 Cis NonRank 1 0.01614318 0.79541213 1 FALSE 

AHCTF1 Cis NonRank 1 0.1165711 0.99993125 1 FALSE 

NALCN Cis NonRank 1 0.0361846 0.9918266 1 FALSE 

GDI2 Cis NonRank 1 0.0264093 0.97024903 1 FALSE 

PGBD2 Cis NonRank 1 -0.012215 0.31741354 1 FALSE 

ZNF544 Cis NonRank 1 0.00014742 0.50701348 1 FALSE 

UBE2S Cis Rank 1 -0.0002232 0.4967775 1 FALSE 

AQP11 Cis NonRank 1 -0.000388 0.48385538 1 FALSE 

B4GALNT3 Cis NonRank 1 0.03205786 0.99741086 1 FALSE 

CHAMP1 Cis NonRank 1 0.01999445 0.87090736 1 FALSE 

ZIK1 Cis NonRank 1 0.00135627 0.52367868 1 FALSE 

ZNF776 Cis NonRank 1 -0.0093528 0.31281467 1 FALSE 

ANXA11 Cis NonRank 1 0.0183763 0.85595005 1 FALSE 

HNRNPU Cis NonRank 1 0.06397617 0.9448164 1 FALSE 

UBAC2 Cis NonRank 1 0.0172858 0.94747788 1 FALSE 

NLRP9 Cis NonRank 1 -0.0051715 0.40295852 1 FALSE 
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ZNF530 Cis NonRank 1 0.00146413 0.51582234 1 FALSE 

IKBKB Cis NonRank 1 0.00921423 0.81573412 1 FALSE 

IL2RA Cis NonRank 1 0.01098336 0.79837212 1 FALSE 

IL15RA Cis NonRank 1 -0.0094688 0.32167013 1 FALSE 

ING1 Cis NonRank 1 0.00651614 0.69047774 1 FALSE 

ZNF773 Cis NonRank 1 0.00178368 0.52766934 1 FALSE 

IPO5 Cis NonRank 1 0.04046899 0.9675687 1 FALSE 

ZNF749 Cis NonRank 1 -0.0057844 0.3874731 1 FALSE 

ZNF805 Cis NonRank 1 0.02633724 0.91054938 1 FALSE 

MYC Cis Rank 1 0.00310355 0.62264384 1 FALSE 

NDUFB5 Cis NonRank 1 0.07522992 0.99967947 1 FALSE 

NDUFC2 Cis NonRank 1 0.00719401 0.77825697 1 FALSE 

NDUFS6 Cis NonRank 1 0.03548807 0.99020773 1 FALSE 

CCDC73 Cis NonRank 1 -0.0155654 0.31633398 1 FALSE 

ATP4B Cis NonRank 1 0.00891931 0.68066209 1 FALSE 

PCCA Cis NonRank 1 0.00156008 0.59766705 1 FALSE 

SCCPDH Cis NonRank 1 0.00055506 0.51082471 1 FALSE 

TUBD1 Cis Rank 1 -0.0068403 0.35081598 1 FALSE 

ZNF639 Cis NonRank 1 0.02179233 0.81436787 1 FALSE 

TBC1D7 Cis Rank 1 -0.0004486 0.48874937 1 FALSE 

NOL7 Cis NonRank 1 0.25806095 0.99999999 1 FALSE 

PEG3 Cis NonRank 1 0.02845491 0.88613651 1 FALSE 

CALML5 Cis NonRank 1 0.02939626 0.98692185 1 FALSE 

PNMT Cis NonRank 1 0.00473866 0.70003615 1 FALSE 

POLB Cis NonRank 1 0.01352516 0.92393409 1 FALSE 

GFOD1 Cis NonRank 1 0.05242106 0.99847828 1 FALSE 

ANKRD16 Cis NonRank 1 0.00452439 0.59629394 1 FALSE 

BIVM Cis NonRank 1 -0.0021457 0.45076616 1 FALSE 

TMCO3 Cis NonRank 1 -0.0005413 0.48963553 1 FALSE 

ARGLU1 Cis NonRank 1 0.17135131 1 1 FALSE 

KIF26B Cis NonRank 1 0.03437522 0.94586509 1 FALSE 

DCUN1D2 Cis NonRank 1 0.01922781 0.85136991 1 FALSE 

ZNF444 Cis NonRank 1 0.00128708 0.52400767 1 FALSE 

TCP11L1 Cis NonRank 1 -0.0041673 0.46740414 1 FALSE 

ANKRD10 Cis NonRank 1 0.01242958 0.7481094 1 FALSE 

RAB20 Cis NonRank 1 0.00513508 0.64823167 1 FALSE 

NLRP2 Cis NonRank 1 0.04543463 0.91893445 1 FALSE 
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ZNF692 Cis NonRank 1 0.0366747 0.99512297 1 FALSE 

ZNF416 Cis NonRank 1 0.00535888 0.61706086 1 FALSE 

MFN1 Cis NonRank 1 0.01586675 0.75753924 1 FALSE 

DNAJC3 Cis NonRank 1 -0.0037168 0.37456116 1 FALSE 

NAT14 Cis NonRank 1 0.05151886 0.88202146 1 FALSE 

ZNF695 Cis NonRank 1 0.00876887 0.66611578 1 FALSE 

MRPL47 Cis NonRank 1 0.03804039 0.94524677 1 FALSE 

VN1R1 Cis NonRank 1 0.00329472 0.54253805 1 FALSE 

ZNF304 Cis NonRank 1 0.00990978 0.63604804 1 FALSE 

USP35 Cis NonRank 1 -0.0103196 0.30421358 1 FALSE 

ZNF71 Cis NonRank 1 0.00090043 0.5140303 1 FALSE 

RAD52 Cis NonRank 1 0.02801393 0.87351326 1 FALSE 

KDM5A Cis NonRank 1 0.01293002 0.84845963 1 FALSE 

RPL28 Cis NonRank 1 0.22930621 1 1 FALSE 

SDHA Cis NonRank 1 0.02519182 0.98700674 1 FALSE 

MCUR1 Cis NonRank 1 -0.0075276 0.33206972 1 FALSE 

ZNF667 Cis NonRank 1 -0.0016475 0.47357935 1 FALSE 

TFB2M Cis NonRank 1 -0.0017956 0.45985776 1 FALSE 

CCDC168 Cis NonRank 1 0.02531129 0.84279923 1 FALSE 

MRPS25 Cis Rank 1 0.02503258 0.86001733 1 FALSE 

SMYD3 Cis NonRank 1 -0.0008826 0.42640566 1 FALSE 

MRPL36 Cis NonRank 1 0.00297571 0.5616329 1 FALSE 

UPF3A Cis NonRank 1 0.00760859 0.721719 1 FALSE 

WNK1 Cis NonRank 1 0.02791257 0.88906637 1 FALSE 

SLC6A12 Cis NonRank 1 0.01633251 0.8664876 1 FALSE 

SLC9A3 Cis NonRank 1 0.01403311 0.86322223 1 FALSE 

TERT Cis NonRank 1 0.03769704 0.99431035 1 FALSE 

TPP2 Cis NonRank 1 0.01766255 0.89700012 1 FALSE 

SDHAP3 Cis NonRank 1 0.00023022 0.52212488 1 FALSE 

ZIC2 Cis NonRank 1 0.0032614 0.71358973 1 FALSE 

ZNF134 Cis NonRank 1 0.01797694 0.73679406 1 FALSE 

ALG8 Cis NonRank 1 0.02118257 0.96126484 1 FALSE 

PRRG4 Cis NonRank 1 0.02034037 0.88747519 1 FALSE 

KDELC1 Cis NonRank 1 -0.0060086 0.3477355 1 FALSE 

ZSCAN5A Cis NonRank 1 -0.0041315 0.3214184 1 FALSE 

PLEKHF1 Cis NonRank 1 0.02221683 0.95075949 1 FALSE 

CARS2 Cis NonRank 1 0.07344072 0.99689601 1 FALSE 
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ADIPOR2 Cis NonRank 1 0.00748951 0.69238424 1 FALSE 

ZNF419 Cis NonRank 1 0.01949632 0.81605689 1 FALSE 

ISOC2 Cis NonRank 1 0.01045267 0.63652305 1 FALSE 

GRTP1 Cis NonRank 1 -0.0012897 0.46418954 1 FALSE 

QSER1 Cis NonRank 1 0.03740575 0.95679269 1 FALSE 

TUBAL3 Cis NonRank 1 -0.0084994 0.35463976 1 FALSE 

ZNF669 Cis NonRank 1 0.00301203 0.5500145 1 FALSE 

LPCAT1 Cis NonRank 1 0.0101044 0.96678242 1 FALSE 

ZNF672 Cis NonRank 1 0.04377144 0.99240955 1 FALSE 

ZNF606 Cis NonRank 1 -0.0076844 0.36851278 1 FALSE 

TMEM254 Cis NonRank 1 0.02167449 0.87358835 1 FALSE 

TARS2 Cis NonRank 1 0.05377597 0.9837105 1 FALSE 

SH3BP5L Cis NonRank 1 -0.003006 0.44156323 1 FALSE 

YEATS4 Cis NonRank 1 0.03673502 0.9980863 1 FALSE 

WNT5B Cis NonRank 1 0.00256322 0.56125752 1 FALSE 

HORMAD1 Cis NonRank 1 0.01499117 0.85847843 1 FALSE 

PPP1R1B Cis NonRank 1 -0.0012583 0.44251376 1 FALSE 

STK24 Cis NonRank 1 0.00103379 0.57550395 1 FALSE 

EFCAB2 Cis NonRank 1 -0.0070778 0.33680328 1 FALSE 

CCDC77 Cis Rank 1 0.00957246 0.66797495 1 FALSE 

CUL4A Cis NonRank 1 0.01362829 0.83588589 1 FALSE 

ZNF496 Cis NonRank 1 -0.0062141 0.37298522 1 FALSE 

TMTC4 Cis NonRank 1 0.03332745 0.96368663 1 FALSE 

ZNF587 Cis NonRank 1 0.00317171 0.57310265 1 FALSE 

FIZ1 Cis NonRank 1 -0.0106968 0.33561027 1 FALSE 

ABHD13 Cis NonRank 1 0.00160335 0.55362007 1 FALSE 

RBM17 Cis Rank 1 0.16532471 1 1 FALSE 

KMO Cis NonRank 1 0.00628078 0.63366937 1 FALSE 

ACTL6A Cis Rank 1 0.33688424 1 1 FALSE 

URI1 Cis NonRank 1 0.22177821 1 1 FALSE 

ARHGEF7 Cis NonRank 1 0.02126154 0.96254141 1 FALSE 

CDC16 Cis NonRank 1 0.12764563 0.99999545 1 FALSE 

ZNF628 Cis NonRank 1 0.01167726 0.66146549 1 FALSE 

CLDN10 Cis NonRank 1 0.00971491 0.85467553 1 FALSE 

EXO1 Cis NonRank 1 -0.0083666 0.34351086 1 FALSE 

INTS4 Cis NonRank 1 0.22039359 1 1 FALSE 

TEX30 Cis Rank 1 0.04007422 0.97387295 1 FALSE 
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TRIP13 Cis Rank 1 0.09562849 1 1 FALSE 

PGAP3 Cis NonRank 1 -0.0003154 0.48669291 1 FALSE 

ZNF670 Cis NonRank 1 0.06718332 0.99765413 1 FALSE 

TM9SF2 Cis NonRank 1 -0.001623 0.44830685 1 FALSE 

ZNF264 Cis NonRank 1 0.05007457 0.96943805 1 FALSE 

CD59 Cis NonRank 1 0.00826601 0.63027026 1 FALSE 

CEP170 Cis NonRank 1 0.00231814 0.54710312 1 FALSE 

 

Table S9 Summary of TCGA datasets used in iEDGE pancancer analysis 

 
Cancer 
Type 
Abbreviat
ion 

Cancer Name Number of 
Samples (with 
SCNA & GEP) 

Number of 
SCNAs 
(GISTIC2.0) 

Number 
of 
Amplifica
tions 

Numbe
r of 
Deletio
ns 

ACC Adrenocortical carcinoma 77 44 18 26 

BLCA Bladder Urothelial 
Carcinoma 

404 73 37 36 

BRCA Breast invasive carcinoma 1075 70 28 42 

CESC Cervical squamous cell 
carcinoma and 
endocervical 
adenocarcinoma 

292 63 26 37 

COAD Colon adenocarcinoma 447 66 22 44 

ESCA Esophageal carcinoma 183 82 30 52 

GBM Glioblastoma multiforme 146 68 24 44 

HNSC Head and Neck squamous 
cell carcinoma 

514 76 28 48 

KIRC Kidney renal clear cell 
carcinoma 

525 29 10 19 

KIRP Kidney renal papillary cell 
carcinoma 

256 28 7 21 

LIHC Liver hepatocellular 
carcinoma 

364 61 27 34 

LUAD Lung adenocarcinoma 512 75 29 46 

LUSC Lung squamous cell 
carcinoma 

498 83 30 53 

OV Ovarian serous 
cystadenocarcinoma 

300 73 33 40 
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PAAD Pancreatic 
adenocarcinoma 

177 56 23 33 

PRAD Prostate adenocarcinoma 491 63 28 35 

READ Rectum adenocarcinoma 164 58 22 36 

THCA Thyroid carcinoma 495 41 9 32 

UCEC Uterine Corpus 
Endometrial Carcinoma 

537 101 50 51 

 

 

Figure S2.1.1 Overview of Experimental Design and Analysis Aims 

A. Data generation and annotation: Chemicals with long-term in vivo chemical 
annotation, as annotated by the Carcinogenic Potency Project, were procured. HepG2 
cells are exposed to each chemical and followed by gene expression profiling. The 
number of unique chemicals and unique profiles by category (carcinogen, non-
carcinogen, others) were catalogued.  
B. Data analysis: analysis of the data consists of 1) analysis of transcriptional bioactivity 
using the Transcriptional Activity Scores (TAS), 2) prediction of carcinogenicity and 
genotoxicity, 3) mechanisms of action analysis using differential pathway enrichment 
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analysis, and 4) comparison to other signatures such as signatures of carcinogenicity 
(Drugmatrix), small molecule perturbations (Cmap) and AhR Receptor activity (Tox21).  
 

 

 

 
Figure S2.1.2 Distribution of TAS grouped by chemical genotoxicity within each 

dose level 

P-values indicate the significance of unpaired one-sided two-group TAS comparison 
between TAS of genotoxic chemicals and TAS of non-genotoxic chemicals within each 
dose group (* = p< 0.05) (see methods). The lower, middle, upper hinges correspond to 
the 25th, 50th (median), and 75th percentile. The upper and lower whiskers extend to the 
smaller and largest value at most 1.5 * IQR (inter-quartile range) from the hinge. Data 
points beyond the whiskers are represented as dots. Following multiple hypothesis 
testing, the FDR values are reported as follows: Dose rank 1: FDR = 0.12, Dose rank 2: 
FDR = 0.88, Dose rank 3: FDR = 0.12, Dose rank 4: FDR = 0.24, Dose rank 5: FDR = 
0.55, Dose rank 6: FDR = 0.12. 
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Figure S2.1.3 Sensitivity and specificity rates of classifiers at threshold of 0.3 in 

predictive models of carcinogenicity and genotoxicity  

Boxplots have the following specifications: the lower, middle, upper hinges 
corresponding to the 25th, 50th (median), and 75th percentile, the upper and lower 
whiskers extend to the smaller and largest value at most 1.5 * IQR (inter-quartile range) 
from the hinge, and data points beyond the whiskers represented as dots. 
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Figure S2.1.4 Prediction probabilities on unlabeled chemicals  
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A. prediction of carcinogenicity in all unlabeled profiles, B. prediction of carcinogenicity 
in unlabeled profiles with TAS > 0.4, C. prediction of genotoxicity in all unlabeled 
profiles D. prediction of genotoxicity in unlabeled profiles with TAS > 0.4 
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Figure S2.1.5 Heatmap of pathway enrichment scores (GSVA) for top 40 

upregulated and downregulated differential pathways  

Differential pathways of A. carcinogenicity and B. genotoxicity for profiles with TAS > 
0.2. Columns are clustered using the ward method with euclidean distances. Rows are 
ordered by the frequency of the pathway categories among the top 40 (direction 
sensitive). 
 

 

 

Figure S3.1 Somatic copy number alteration status (SCNA) across subtyped TCGA 

breast cancer samples  

Figure S3.1
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Figure S3.2 iEDGE portal overview 

A. Selection of iEDGE report by cancer type 
B. Selection of query gene 
C. Differential expression table report for cis genes 
D. Graphical report of mediation testing and driver prediction 
 
 
 
  

A. Select cancer type B. Select query gene

C. Differential expression D. Mediation testing and Driver Prediction

Figure S3.2



 

 

151 

 
 

BIBLIOGRAPHY 

Abdo, K. M., Eustis, S. L., Haseman, J., Huff, J. E., Peters, A., & Persing, R. (1988). 
Toxicity and carcinogenicity of rotenone given in the feed to F344/N rats and 
B6C3F1 mice for up to two years. Drug and Chemical Toxicology, 11(3), 225–
235. https://doi.org/10.3109/01480548809017879 

Akavia, U. D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H. C., … 
Pe’er, D. (2010). An Integrated Approach to Uncover Drivers of Cancer. Cell, 
143(6), 1005–1017. https://doi.org/10.1016/j.cell.2010.11.013 

American Cancer Society. (n.d.-a). Asbestos and Cancer Risk. Retrieved November 27, 
2018, from https://www.cancer.org/cancer/cancer-causes/asbestos.html 

American Cancer Society. (n.d.-b). Cancer Facts & Figures 2017. Retrieved December 3, 
2018, from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-
facts-figures/cancer-facts-figures-2017.html 

American Lung Association. (n.d.). Lung Cancer Fact Sheet | American Lung 
Association. Retrieved November 27, 2018, from https://www.lung.org/lung-
health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-
cancer-fact-sheet.html 

Amgalan, B., & Lee, H. (2015). DEOD: uncovering dominant effects of cancer-driver 
genes based on a partial covariance selection method. Bioinformatics, 31(15), 
2452–2460. https://doi.org/10.1093/bioinformatics/btv175 

Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, 
O. S., … Aggarwal, B. B. (2008). Cancer is a Preventable Disease that Requires 
Major Lifestyle Changes. Pharmaceutical Research, 25(9), 2097–2116. 
https://doi.org/10.1007/s11095-008-9661-9 

Aviram, M., Rosenblat, M., Bisgaier, C. L., & Newton, R. S. (1998). Atorvastatin and 
gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against 
lipoprotein oxidation. Atherosclerosis, 138(2), 271–280. 
https://doi.org/10.1016/S0021-9150(98)00032-X 

Barabási, A.-L. (2009). Scale-Free Networks: A Decade and Beyond. Science, 
325(5939), 412–413. https://doi.org/10.1126/science.1173299 

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., … 
Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predictive 
modelling of anticancer drug sensitivity. Nature, 483(7391), 603–607. 
https://doi.org/10.1038/nature11003 

Bavetsias, V., & Linardopoulos, S. (2015). Aurora Kinase Inhibitors: Current Status and 
Outlook. Frontiers in Oncology, 5, 278. https://doi.org/10.3389/fonc.2015.00278 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical 
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical 

Society. Series B (Methodological), 57(1), 289–300. 

https://doi.org/10.3109/01480548809017879
https://doi.org/10.1016/j.cell.2010.11.013
https://www.cancer.org/cancer/cancer-causes/asbestos.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html
https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html
https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html
https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html
https://doi.org/10.1093/bioinformatics/btv175
https://doi.org/10.1007/s11095-008-9661-9
https://doi.org/10.1016/S0021-9150(98)00032-X
https://doi.org/10.1126/science.1173299
https://doi.org/10.1038/nature11003
https://doi.org/10.3389/fonc.2015.00278


 

 

152 

Broad Institute TCGA Genome Data Analysis Center. (2015). SNP6 Copy number 

analysis (GISTIC2). Broad Institute of MIT and Harvard. 
https://doi.org/10.7908/C1Z0379T 

Bucher, J. R., & Portier, C. (2004). Human carcinogenic risk evaluation, Part V: The 
national toxicology program vision for assessing the human carcinogenic hazard 
of chemicals. Toxicological Sciences: An Official Journal of the Society of 

Toxicology, 82(2), 363–366. https://doi.org/10.1093/toxsci/kfh293 
Butte, A. J., & Kohane, I. S. (2000). Mutual information relevance networks: functional 

genomic clustering using pairwise entropy measurements. Pacific Symposium on 

Biocomputing. Pacific Symposium on Biocomputing, 418–429. 
Campbell, K. J., Dhayade, S., Ferrari, N., Sims, A. H., Johnson, E., Mason, S. M., … 

Blyth, K. (2018). MCL-1 is a prognostic indicator and drug target in breast 
cancer. Cell Death & Disease, 9(2), 19. https://doi.org/10.1038/s41419-017-0035-
2 

Cancer Cell Line Encyclopedia Consortium, & Genomics of Drug Sensitivity in Cancer 
Consortium. (2015). Pharmacogenomic agreement between two cancer cell line 
data sets. Nature, 528(7580), 84–87. https://doi.org/10.1038/nature15736 

Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills, G. B., 
Shaw, K. R. M., Ozenberger, B. A., … Stuart, J. M. (2013). The Cancer Genome 
Atlas Pan-Cancer analysis project. Nature Genetics, 45(10), 1113–1120. 
https://doi.org/10.1038/ng.2764 

Carter, S. L., Brechbühler, C. M., Griffin, M., & Bond, A. T. (2004). Gene co-expression 
network topology provides a framework for molecular characterization of cellular 
state. Bioinformatics (Oxford, England), 20(14), 2242–2250. 
https://doi.org/10.1093/bioinformatics/bth234 

Center for Disease Control. (2016, January 1). CDC Press Releases. Retrieved November 
27, 2018, from https://www.cdc.gov/media/releases/2016/p1110-vital-signs-
cancer-tobacco.html 

Chapuy, B., Stewart, C., Dunford, A. J., Kim, J., Kamburov, A., Redd, R. A., … Shipp, 
M. A. (2018). Molecular subtypes of diffuse large B cell lymphoma are associated 
with distinct pathogenic mechanisms and outcomes. Nature Medicine, 24(5), 679–
690. https://doi.org/10.1038/s41591-018-0016-8 

Cosmic. (n.d.). Cancer Gene Census. Retrieved December 11, 2018, from 
http://cancer.sanger.ac.uk/census 

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., … D’Eustachio, P. 
(2014). The Reactome pathway knowledgebase. Nucleic Acids Research, 
42(Database issue), D472-477. https://doi.org/10.1093/nar/gkt1102 

Davidson, M. D., Ware, B. R., & Khetani, S. R. (2015). Stem Cell-Derived Liver Cells 
for Drug Testing and Disease Modeling. Discovery Medicine, 19(106), 349–358. 

Davis, A. P., Grondin, C. J., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., 
King, B. L., … Mattingly, C. J. (2015). The Comparative Toxicogenomics 
Database’s 10th year anniversary: update 2015. Nucleic Acids Research, 
43(Database issue), D914-920. https://doi.org/10.1093/nar/gku935 

https://doi.org/10.7908/C1Z0379T
https://doi.org/10.1093/toxsci/kfh293
https://doi.org/10.1038/s41419-017-0035-2
https://doi.org/10.1038/s41419-017-0035-2
https://doi.org/10.1038/nature15736
https://doi.org/10.1038/ng.2764
https://doi.org/10.1093/bioinformatics/bth234
https://www.cdc.gov/media/releases/2016/p1110-vital-signs-cancer-tobacco.html
https://www.cdc.gov/media/releases/2016/p1110-vital-signs-cancer-tobacco.html
https://doi.org/10.1038/s41591-018-0016-8
http://cancer.sanger.ac.uk/census
https://doi.org/10.1093/nar/gkt1102
https://doi.org/10.1093/nar/gku935


 

 

153 

Davis, J. C., Furstenthal, L., Desai, A. A., Norris, T., Sutaria, S., Fleming, E., & Ma, P. 
(2009). The microeconomics of personalized medicine: today’s challenge and 
tomorrow’s promise. Nature Reviews Drug Discovery, 8(4), 279–286. 
https://doi.org/10.1038/nrd2825 

Davoli, T., Xu, A. W., Mengwasser, K. E., Sack, L. M., Yoon, J. C., Park, P. J., & 
Elledge, S. J. (2013). Cumulative haploinsufficiency and triplosensitivity drive 
aneuploidy patterns and shape the cancer genome. Cell, 155(4), 948–962. 
https://doi.org/10.1016/j.cell.2013.10.011 

Deng, M., Li, F., Ballif, B. A., Li, S., Chen, X., Guo, L., & Ye, X. (2009). Identification 
and Functional Analysis of a Novel Cyclin E/Cdk2 Substrate  Ankrd17. The 

Journal of Biological Chemistry, 284(12), 7875–7888. 
https://doi.org/10.1074/jbc.M807827200 

Ding, W., Levy, D. D., Bishop, M. E., Pearce, M. G., Davis, K. J., Jeffrey, A. M., … 
Manjanatha, M. G. (2015). In vivo genotoxicity of estragole in male F344 rats. 
Environmental and Molecular Mutagenesis, 56(4), 356–365. 
https://doi.org/10.1002/em.21918 

Dong, L., Ding, H., Li, Y., Xue, D., Li, Z., Liu, Y., … Wang, P. (2019). TRIP13 is a 
predictor for poor prognosis and regulates cell proliferation, migration and 
invasion in prostate cancer. International Journal of Biological Macromolecules, 
121, 200–206. https://doi.org/10.1016/j.ijbiomac.2018.09.168 

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., & Huber, W. 
(2005). BioMart and Bioconductor: a powerful link between biological databases 
and microarray data analysis. Bioinformatics (Oxford, England), 21(16), 3439–
3440. https://doi.org/10.1093/bioinformatics/bti525 

Eichner, J., Kossler, N., Wrzodek, C., Kalkuhl, A., Bach Toft, D., Ostenfeldt, N., … Zell, 
A. (2013). A toxicogenomic approach for the prediction of murine 
hepatocarcinogenesis using ensemble feature selection. PloS One, 8(9), e73938. 
https://doi.org/10.1371/journal.pone.0073938 

Ellinger-Ziegelbauer, H., Gmuender, H., Bandenburg, A., & Ahr, H. J. (2008). Prediction 
of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics 
analysis of short-term in vivo studies. Mutation Research, 637(1–2), 23–39. 
https://doi.org/10.1016/j.mrfmmm.2007.06.010 

Fábián, Á., Vereb, G., & Szöllősi, J. (2013). The hitchhikers guide to cancer stem cell 
theory: markers, pathways and therapy. Cytometry. Part A: The Journal of the 

International Society for Analytical Cytology, 83(1), 62–71. 
https://doi.org/10.1002/cyto.a.22206 

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., … 
D’Eustachio, P. (2016). The Reactome pathway Knowledgebase. Nucleic Acids 

Research, 44(D1), D481-487. https://doi.org/10.1093/nar/gkv1351 
Fielden, M. R., Brennan, R., & Gollub, J. (2007). A gene expression biomarker provides 

early prediction and mechanistic assessment of hepatic tumor induction by 
nongenotoxic chemicals. Toxicological Sciences: An Official Journal of the 

Society of Toxicology, 99(1), 90–100. https://doi.org/10.1093/toxsci/kfm156 

https://doi.org/10.1038/nrd2825
https://doi.org/10.1016/j.cell.2013.10.011
https://doi.org/10.1074/jbc.M807827200
https://doi.org/10.1002/em.21918
https://doi.org/10.1016/j.ijbiomac.2018.09.168
https://doi.org/10.1093/bioinformatics/bti525
https://doi.org/10.1371/journal.pone.0073938
https://doi.org/10.1016/j.mrfmmm.2007.06.010
https://doi.org/10.1002/cyto.a.22206
https://doi.org/10.1093/nar/gkv1351
https://doi.org/10.1093/toxsci/kfm156


 

 

154 

Fitzpatrick, R. B. (2008). CPDB: Carcinogenic Potency Database. Medical Reference 

Services Quarterly, 27(3), 303–311. https://doi.org/10.1080/02763860802198895 
Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., … Campbell, 

P. J. (2017). COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids 

Research, 45(D1), D777–D783. https://doi.org/10.1093/nar/gkw1121 
Ganter, B., Snyder, R. D., Halbert, D. N., & Lee, M. D. (2006). Toxicogenomics in drug 

discovery and development: mechanistic analysis of compound/class-dependent 
effects using the DrugMatrix database. Pharmacogenomics, 7(7), 1025–1044. 
https://doi.org/10.2217/14622416.7.7.1025 

Ganter, B., Tugendreich, S., Pearson, C. I., Ayanoglu, E., Baumhueter, S., Bostian, K. A., 
… Jarnagin, K. (2005). Development of a large-scale chemogenomics database to 
improve drug candidate selection and to understand mechanisms of chemical 
toxicity and action. Journal of Biotechnology, 119(3), 219–244. 
https://doi.org/10.1016/j.jbiotec.2005.03.022 

Gold, L. S., Manley, N. B., Slone, T. H., Rohrbach, L., & Garfinkel, G. B. (2005). 
Supplement to the Carcinogenic Potency Database (CPDB): results of animal 
bioassays published in the general literature through 1997 and by the National 
Toxicology Program in 1997-1998. Toxicological Sciences: An Official Journal of 

the Society of Toxicology, 85(2), 747–808. https://doi.org/10.1093/toxsci/kfi161 
Gupta, M., Mazumdar, U. K., Sivakumar, T., Vamsi, M. L. M., Karki, S. S., 

Sambathkumar, R., & Manikandan, L. (2003). Evaluation of Anti-inflammatory 
Activity of Chloroform Extract of Bryonia laciniosa in Experimental Animal 
Models. Biological and Pharmaceutical Bulletin, 26(9), 1342–1344. 
https://doi.org/10.1248/bpb.26.1342 

Gusenleitner, D., Auerbach, S. S., Melia, T., Gómez, H. F., Sherr, D. H., & Monti, S. 
(2014). Genomic models of short-term exposure accurately predict long-term 
chemical carcinogenicity and identify putative mechanisms of action. PloS One, 
9(7), e102579. https://doi.org/10.1371/journal.pone.0102579 

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). 
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes 
and genetic disorders. Nucleic Acids Research, 33(suppl_1), D514–D517. 
https://doi.org/10.1093/nar/gki033 

Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: gene set variation analysis for 
microarray and RNA-Seq data. BMC Bioinformatics, 14(1), 7. 
https://doi.org/10.1186/1471-2105-14-7 

Haworth, C. M. A., Dale, P., & Plomin, R. (2008). A Twin Study into the Genetic and 
Environmental Influences on Academic Performance in Science in nine-year-old 
Boys and Girls. International Journal of Science Education, 30(8), 1003. 
https://doi.org/10.1080/09500690701324190 

Huff, J., Jacobson, M. F., & Davis, D. L. (2008). The Limits of Two-Year Bioassay 
Exposure Regimens for Identifying Chemical Carcinogens. Environmental Health 

Perspectives, 116(11), 1439–1442. https://doi.org/10.1289/ehp.10716 
Irigaray, P., Newby, J. A., Clapp, R., Hardell, L., Howard, V., Montagnier, L., … 

Belpomme, D. (2007). Lifestyle-related factors and environmental agents causing 

https://doi.org/10.1080/02763860802198895
https://doi.org/10.1093/nar/gkw1121
https://doi.org/10.2217/14622416.7.7.1025
https://doi.org/10.1016/j.jbiotec.2005.03.022
https://doi.org/10.1093/toxsci/kfi161
https://doi.org/10.1248/bpb.26.1342
https://doi.org/10.1371/journal.pone.0102579
https://doi.org/10.1093/nar/gki033
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1080/09500690701324190
https://doi.org/10.1289/ehp.10716


 

 

155 

cancer: an overview. Biomedicine & Pharmacotherapy = Biomedecine & 

Pharmacotherapie, 61(10), 640–658. 
https://doi.org/10.1016/j.biopha.2007.10.006 

Jamdade, V. S., Mundhe, N. A., Kumar, P., Tadla, V., & Lahkar, M. (2016). Raloxifene 
Inhibits NF-kB Pathway and Potentiates Anti-Tumour Activity of Cisplatin with 
Simultaneous Reduction in its Nephrotoxictiy. Pathology & Oncology Research, 
22(1), 145–153. https://doi.org/10.1007/s12253-015-9988-6 

Jennen, D. G. J., Magkoufopoulou, C., Ketelslegers, H. B., van Herwijnen, M. H. M., 
Kleinjans, J. C. S., & van Delft, J. H. M. (2010). Comparison of HepG2 and 
HepaRG by Whole-Genome Gene Expression Analysis for the Purpose of 
Chemical Hazard Identification. Toxicological Sciences, 115(1), 66–79. 
https://doi.org/10.1093/toxsci/kfq026 

Judson, R. S., Houck, K. A., Kavlock, R. J., Knudsen, T. B., Martin, M. T., Mortensen, 
H. M., … Dix, D. J. (2010). In vitro screening of environmental chemicals for 
targeted testing prioritization: the ToxCast project. Environmental Health 

Perspectives, 118(4), 485–492. https://doi.org/10.1289/ehp.0901392 
Kastan, M. B., & Bartek, J. (2004). Cell-cycle checkpoints and cancer. Nature, 432, 316–

323. https://doi.org/10.1038/nature03097 
Kim, J. W., Botvinnik, O. B., Abudayyeh, O., Birger, C., Rosenbluh, J., Shrestha, Y., … 

Tamayo, P. (2016). Characterizing genomic alterations in cancer by 
complementary functional associations. Nature Biotechnology, 34(5), 539–546. 
https://doi.org/10.1038/nbt.3527 

Kim, R.-K., Suh, Y., Yoo, K.-C., Cui, Y.-H., Kim, H., Kim, M.-J., … Lee, S.-J. (2015). 
Activation of KRAS promotes the mesenchymal features of basal-type breast 
cancer. Experimental & Molecular Medicine, 47(1), e137. 
https://doi.org/10.1038/emm.2014.99 

Kleinstreuer, N. C., Dix, D. J., Houck, K. A., Kavlock, R. J., Knudsen, T. B., Martin, M. 
T., … Judson, R. S. (2013). In vitro perturbations of targets in cancer hallmark 
processes predict rodent chemical carcinogenesis. Toxicological Sciences: An 

Official Journal of the Society of Toxicology, 131(1), 40–55. 
https://doi.org/10.1093/toxsci/kfs285 

Kossler, N., Matheis, K. A., Ostenfeldt, N., Bach Toft, D., Dhalluin, S., Deschl, U., & 
Kalkuhl, A. (2015). Identification of specific mRNA signatures as fingerprints for 
carcinogenesis in mice induced by genotoxic and nongenotoxic 
hepatocarcinogens. Toxicological Sciences: An Official Journal of the Society of 

Toxicology, 143(2), 277–295. https://doi.org/10.1093/toxsci/kfu248 
Kriebel, D., Hoppin, P. J., Jacobs, M. M., & Clapp, R. W. (2016). Environmental and 

Economic Strategies for Primary Prevention of Cancer in Early Life. Pediatrics, 
138(Supplement 1), S56–S64. https://doi.org/10.1542/peds.2015-4268I 

Kufer, T. A., Silljé, H. H. W., Körner, R., Gruss, O. J., Meraldi, P., & Nigg, E. A. (2002). 
Human TPX2 is required for targeting Aurora-A kinase to the spindle. The 

Journal of Cell Biology, 158(4), 617–623. https://doi.org/10.1083/jcb.200204155 
Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of 

Statistical Software, 28(1), 1–26. https://doi.org/10.18637/jss.v028.i05 

https://doi.org/10.1016/j.biopha.2007.10.006
https://doi.org/10.1007/s12253-015-9988-6
https://doi.org/10.1093/toxsci/kfq026
https://doi.org/10.1289/ehp.0901392
https://doi.org/10.1038/nature03097
https://doi.org/10.1038/nbt.3527
https://doi.org/10.1038/emm.2014.99
https://doi.org/10.1093/toxsci/kfs285
https://doi.org/10.1093/toxsci/kfu248
https://doi.org/10.1542/peds.2015-4268I
https://doi.org/10.1083/jcb.200204155
https://doi.org/10.18637/jss.v028.i05


 

 

156 

Lai, Y.-P., Wang, L.-B., Wang, W.-A., Lai, L.-C., Tsai, M.-H., Lu, T.-P., & Chuang, E. 
Y. (2017). iGC—an integrated analysis package of gene expression and copy 
number alteration. BMC Bioinformatics, 18. https://doi.org/10.1186/s12859-016-
1438-2 

Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical 
cluster tree: the Dynamic Tree Cut package for R. Bioinformatics (Oxford, 

England), 24(5), 719–720. https://doi.org/10.1093/bioinformatics/btm563 
Lee, J. H., Ilic, Z., & Sell, S. (1996). Cell kinetics of repair after allyl alcohol-induced 

liver necrosis in mice. International Journal of Experimental Pathology, 77(2), 
63–72. https://doi.org/10.1046/j.1365-2613.1996.00964.x 

Lee, S.-I., Pe’er, D., Dudley, A. M., Church, G. M., & Koller, D. (2006). Identifying 
regulatory mechanisms using individual variation reveals key role for chromatin 
modification. Proceedings of the National Academy of Sciences, 103(38), 14062–
14067. https://doi.org/10.1073/pnas.0601852103 

Lemen, R. A., Dement, J. M., & Wagoner, J. K. (1980). Epidemiology of asbestos-related 
diseases. Environmental Health Perspectives, 34, 1–11. 

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest, 2, 5. 
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & 

Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. 
Bioinformatics (Oxford, England), 27(12), 1739–1740. 
https://doi.org/10.1093/bioinformatics/btr260 

Magkoufopoulou, C., Claessen, S. M. H., Tsamou, M., Jennen, D. G. J., Kleinjans, J. C. 
S., & van Delft, J. H. M. (2012). A transcriptomics-based in vitro assay for 
predicting chemical genotoxicity in vivo. Carcinogenesis, 33(7), 1421–1429. 
https://doi.org/10.1093/carcin/bgs182 

Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & 
Califano, A. (2006). ARACNE: An Algorithm for the Reconstruction of Gene 
Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics, 
7(Suppl 1), S7. https://doi.org/10.1186/1471-2105-7-S1-S7 

McFarland, J. M., Ho, Z. V., Kugener, G., Dempster, J. M., Montgomery, P. G., Bryan, J. 
G., … Tsherniak, A. (2018). Improved estimation of cancer dependencies from 
large-scale RNAi screens using model-based normalization and data integration. 
Nature Communications, 9(1), 4610. https://doi.org/10.1038/s41467-018-06916-5 

Mélard, P., Idrissi, Y., Andrique, L., Poglio, S., Prochazkova-Carlotti, M., Berhouet, S., 
… Cappellen, D. (2016). Molecular alterations and tumor suppressive function of 
the DUSP22 (Dual Specificity Phosphatase 22) gene in peripheral T-cell 
lymphoma subtypes. Oncotarget, 7(42), 68734–68748. 
https://doi.org/10.18632/oncotarget.11930 

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., & Getz, G. 
(2011). GISTIC2.0 facilitates sensitive and confident localization of the targets of 
focal somatic copy-number alteration in human cancers. Genome Biology, 12(4), 
R41. https://doi.org/10.1186/gb-2011-12-4-r41 

Meyer, K. B., & Carroll, J. S. (2012). FOXA1 and breast cancer risk. Nature Genetics, 
44(11), 1176–1177. https://doi.org/10.1038/ng.2449 

https://doi.org/10.1186/s12859-016-1438-2
https://doi.org/10.1186/s12859-016-1438-2
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1046/j.1365-2613.1996.00964.x
https://doi.org/10.1073/pnas.0601852103
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/carcin/bgs182
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1038/s41467-018-06916-5
https://doi.org/10.18632/oncotarget.11930
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1038/ng.2449


 

 

157 

Monti, S., Chapuy, B., Takeyama, K., Rodig, S. J., Hao, Y., Yeda, K. T., … Shipp, M. A. 
(2012). Integrative analysis reveals an outcome-associated and targetable pattern 
of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell, 
22(3), 359–372. https://doi.org/10.1016/j.ccr.2012.07.014 

National Toxicology Program. (1978). Bioassay of pyrimethamine for possible 
carcinogenicity. National Cancer Institute Carcinogenesis Technical Report 

Series, 77, 1–107. 
National Toxicology Program. (1989). NTP Toxicology and Carcinogenesis Studies of 

Rhodamine 6G (C.I. Basic Red 1) (CAS No. 989-38-8) in F344/N Rats and 
B6C3F1 Mice (Feed Studies). National Toxicology Program Technical Report 

Series, 364, 1–192. 
National Toxicology Program. (1994). NTP Toxicology and Carcinogenesis Studies of 

Hexachlorocyclopentadiene (CAS No. 77-47-4) in F344/N Rats and B6C3F1 
Mice (Inhalation Studies). National Toxicology Program Technical Report Series, 
437, 1–308. 

Nie, A. Y., McMillian, M., Parker, J. B., Leone, A., Bryant, S., Yieh, L., … Lord, P. G. 
(2006). Predictive toxicogenomics approaches reveal underlying molecular 
mechanisms of nongenotoxic carcinogenicity. Molecular Carcinogenesis, 45(12), 
914–933. https://doi.org/10.1002/mc.20205 

Niwa, T., Aoyama, I., Takayama, F., Tsukushi, S., Miyazaki, T., Owada, A., & Shiigai, 
T. (1999). Urinary indoxyl sulfate is a clinical factor that affects the progression 
of renal failure. Mineral and Electrolyte Metabolism, 25(1–2), 118–122. 
https://doi.org/10.1159/000057433 

Parker, J. S., Mullins, M., Cheang, M. C. U., Leung, S., Voduc, D., Vickery, T., … 
Bernard, P. S. (2009). Supervised Risk Predictor of Breast Cancer Based on 
Intrinsic Subtypes. Journal of Clinical Oncology, 27(8), 1160–1167. 
https://doi.org/10.1200/JCO.2008.18.1370 

Pearce, R. G., Setzer, R. W., Strope, C. L., Sipes, N. S., & Wambaugh, J. F. (2017). httk: 
R Package for High-Throughput Toxicokinetics. Journal of Statistical Software, 
79(1), 1–26. https://doi.org/10.18637/jss.v079.i04 

Peck, D., Crawford, E. D., Ross, K. N., Stegmaier, K., Golub, T. R., & Lamb, J. (2006). 
A method for high-throughput gene expression signature analysis. Genome 

Biology, 7(7), R61. https://doi.org/10.1186/gb-2006-7-7-r61 
Pommier, Y. (2013). Drugging topoisomerases: lessons and challenges. ACS Chemical 

Biology, 8(1), 82–95. https://doi.org/10.1021/cb300648v 
Pommier, Y., Barcelo, J., Rao, V. A., Sordet, O., Jobson, A. G., Thibaut, L., … Redon, C. 

(2006). Repair of Topoisomerase I-Mediated DNA Damage. Progress in Nucleic 

Acid Research and Molecular Biology, 81, 179–229. 
https://doi.org/10.1016/S0079-6603(06)81005-6 

Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods. 
Journal of the American Statistical Association, 66(336), 846–850. 
https://doi.org/10.2307/2284239 

Richard, A. M., Judson, R. S., Houck, K. A., Grulke, C. M., Volarath, P., 
Thillainadarajah, I., … Thomas, R. S. (2016). ToxCast Chemical Landscape: 

https://doi.org/10.1016/j.ccr.2012.07.014
https://doi.org/10.1002/mc.20205
https://doi.org/10.1159/000057433
https://doi.org/10.1200/JCO.2008.18.1370
https://doi.org/10.18637/jss.v079.i04
https://doi.org/10.1186/gb-2006-7-7-r61
https://doi.org/10.1021/cb300648v
https://doi.org/10.1016/S0079-6603(06)81005-6
https://doi.org/10.2307/2284239


 

 

158 

Paving the Road to 21st Century Toxicology. Chemical Research in Toxicology, 
29(8), 1225–1251. https://doi.org/10.1021/acs.chemrestox.6b00135 

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. 
(2015). limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Research, 43(7), e47. 
https://doi.org/10.1093/nar/gkv007 

Rodrigues, T., Santos, A. C., Pigoso, A. A., Mingatto, F. E., Uyemura, S. A., & Curti, C. 
(2002). Thioridazine interacts with the membrane of mitochondria acquiring 
antioxidant activity toward apoptosis – potentially implicated mechanisms. British 

Journal of Pharmacology, 136(1), 136–142. 
https://doi.org/10.1038/sj.bjp.0704672 

Ryffel, B. (1992). The carcinogenicity of ciclosporin. Toxicology, 73(1), 1–22. 
Schmidt, C. W. (2009). TOX 21: New Dimensions of Toxicity Testing. Environmental 

Health Perspectives, 117(8), A348–A353. 
Schröder, A., Wollnik, J., Wrzodek, C., Dräger, A., Bonin, M., Burk, O., … Zell, A. 

(2011). Inferring statin-induced gene regulatory relationships in primary human 
hepatocytes. Bioinformatics (Oxford, England), 27(18), 2473–2477. 
https://doi.org/10.1093/bioinformatics/btr416 

Schröder, M. S., Culhane, A. C., Quackenbush, J., & Haibe-Kains, B. (2011). survcomp: 
an R/Bioconductor package for performance assessment and comparison of 
survival models. Bioinformatics, 27(22), 3206–3208. 
https://doi.org/10.1093/bioinformatics/btr511 

Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., & Friedman, N. 
(2003). Module networks: identifying regulatory modules and their condition-
specific regulators from gene expression data. Nature Genetics, 34(2), 166–176. 
https://doi.org/10.1038/ng1165 

Sekine, Y., Ikeda, O., Hayakawa, Y., Tsuji, S., Imoto, S., Aoki, N., … Matsuda, T. 
(2007). DUSP22/LMW-DSP2 regulates estrogen receptor-α-mediated signaling 
through dephosphorylation of Ser-118. Oncogene, 26(41), 6038–6049. 
https://doi.org/10.1038/sj.onc.1210426 

Shimizu, H., Yisireyili, M., Higashiyama, Y., Nishijima, F., & Niwa, T. (2013). Indoxyl 
sulfate upregulates renal expression of ICAM-1 via production of ROS and 
activation of NF-κB and p53 in proximal tubular cells. Life Sciences, 92(2), 143–
148. https://doi.org/10.1016/j.lfs.2012.11.012 

Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer 

Journal for Clinicians, 68(1), 7–30. https://doi.org/10.3322/caac.21442 
Smyth, G. K. (2005). limma: Linear Models for Microarray Data. In R. Gentleman, V. J. 

Carey, W. Huber, R. A. Irizarry, & S. Dudoit (Eds.), Bioinformatics and 

Computational Biology Solutions Using R and Bioconductor (pp. 397–420). New 
York, NY: Springer New York. https://doi.org/10.1007/0-387-29362-0_23 

Sobel, M. E. (1982). Asymptotic Confidence Intervals for Indirect Effects in Structural 
Equation Models. Sociological Methodology, 13, 290–312. 
https://doi.org/10.2307/270723 

https://doi.org/10.1021/acs.chemrestox.6b00135
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/sj.bjp.0704672
https://doi.org/10.1093/bioinformatics/btr416
https://doi.org/10.1093/bioinformatics/btr511
https://doi.org/10.1038/ng1165
https://doi.org/10.1038/sj.onc.1210426
https://doi.org/10.1016/j.lfs.2012.11.012
https://doi.org/10.3322/caac.21442
https://doi.org/10.1007/0-387-29362-0_23
https://doi.org/10.2307/270723


 

 

159 

Soldatow, V. Y., LeCluyse, E. L., Griffith, L. G., & Rusyn, I. (2013). In vitro models for 
liver toxicity testing. Toxicology Research, 2(1), 23–39. 
https://doi.org/10.1039/C2TX20051A 

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., … 
Golub, T. R. (2017). A Next Generation Connectivity Map: L1000 Platform and 
the First 1,000,000 Profiles. Cell, 171(6), 1437-1452.e17. 
https://doi.org/10.1016/j.cell.2017.10.049 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. 
A., … Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proceedings of the 

National Academy of Sciences of the United States of America, 102(43), 15545–
15550. https://doi.org/10.1073/pnas.0506580102 

Tan, B. T., Park, C. Y., Ailles, L. E., & Weissman, I. L. (2006). The cancer stem cell 
hypothesis: a work in progress. Laboratory Investigation, 86(12), 1203–1207. 
https://doi.org/10.1038/labinvest.3700488 

Tawa, G. J., AbdulHameed, M. D. M., Yu, X., Kumar, K., Ippolito, D. L., Lewis, J. A., 
… Wallqvist, A. (2014). Characterization of Chemically Induced Liver Injuries 
Using Gene Co-Expression Modules. PLOS ONE, 9(9), e107230. 
https://doi.org/10.1371/journal.pone.0107230 

The Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills, 
G. B., Shaw, K. R. M., Ozenberger, B. A., … Stuart, J. M. (2013). The Cancer 
Genome Atlas Pan-Cancer analysis project. Nature Genetics, 45, 1113–1120. 
https://doi.org/10.1038/ng.2764 

The UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. Nucleic 

Acids Research, 45(Database issue), D158–D169. 
https://doi.org/10.1093/nar/gkw1099 

Tice, R. R., Austin, C. P., Kavlock, R. J., & Bucher, J. R. (2013). Improving the human 
hazard characterization of chemicals: a Tox21 update. Environmental Health 

Perspectives, 121(7), 756–765. https://doi.org/10.1289/ehp.1205784 
Tomasetti, C., Li, L., & Vogelstein, B. (2017). Stem cell divisions, somatic mutations, 

cancer etiology, and cancer prevention. Science (New York, N.Y.), 355(6331), 
1330–1334. https://doi.org/10.1126/science.aaf9011 

Tomasetti, C., & Vogelstein, B. (2015a). Variation in cancer risk among tissues can be 
explained by the number of stem cell divisions. Science, 347(6217), 78–81. 
https://doi.org/10.1126/science.1260825 

Tomasetti, C., & Vogelstein, B. (2015b). Variation in cancer risk among tissues can be 
explained by the number of stem cell divisions. Science, 347(6217), 78–81. 
https://doi.org/10.1126/science.1260825 

Uehara, T., Minowa, Y., Morikawa, Y., Kondo, C., Maruyama, T., Kato, I., … 
Urushidani, T. (2011). Prediction model of potential hepatocarcinogenicity of rat 
hepatocarcinogens using a large-scale toxicogenomics database. Toxicology and 

Applied Pharmacology, 255(3), 297–306. 
https://doi.org/10.1016/j.taap.2011.07.001 

https://doi.org/10.1039/C2TX20051A
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/labinvest.3700488
https://doi.org/10.1371/journal.pone.0107230
https://doi.org/10.1038/ng.2764
https://doi.org/10.1093/nar/gkw1099
https://doi.org/10.1289/ehp.1205784
https://doi.org/10.1126/science.aaf9011
https://doi.org/10.1126/science.1260825
https://doi.org/10.1126/science.1260825
https://doi.org/10.1016/j.taap.2011.07.001


 

 

160 

Underhill, G. H., & Khetani, S. R. (2018). Bioengineered Liver Models for Drug Testing 
and Cell Differentiation Studies. Cellular and Molecular Gastroenterology and 

Hepatology, 5(3), 426-439.e1. https://doi.org/10.1016/j.jcmgh.2017.11.012 
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., & Kinzler, K. 

W. (2013). Cancer Genome Landscapes. Science, 339(6127), 1546–1558. 
https://doi.org/10.1126/science.1235122 

Wang, H. J., Zakhari, S., & Jung, M. K. (2010). Alcohol, inflammation, and gut-liver-
brain interactions in tissue damage and disease development. World Journal of 

Gastroenterology, 16(11), 1304–1313. https://doi.org/10.3748/wjg.v16.i11.1304 
Wang, L., & Eastmond, D. A. (2002). Catalytic inhibitors of topoisomerase II are DNA-

damaging agents: induction of chromosomal damage by merbarone and ICRF-
187. Environmental and Molecular Mutagenesis, 39(4), 348–356. 
https://doi.org/10.1002/em.10072 

Ward, J. M. (2007). The Two-Year Rodent Carcinogenesis Bioassay — Will It Survive? 
Journal of Toxicologic Pathology, 20(1), 13–19. https://doi.org/10.1293/tox.20.13 

Waters, M. D., Jackson, M., & Lea, I. (2010). Characterizing and predicting 
carcinogenicity and mode of action using conventional and toxicogenomics 
methods. Mutation Research/Reviews in Mutation Research, 705(3), 184–200. 
https://doi.org/10.1016/j.mrrev.2010.04.005 

Xie, T., d’ Ario, G., Lamb, J. R., Martin, E., Wang, K., Tejpar, S., … Hodgson, J. G. 
(2012). A Comprehensive Characterization of Genome-Wide Copy Number 
Aberrations in Colorectal Cancer Reveals Novel Oncogenes and Patterns of 
Alterations. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0042001 

Yan, M., Wang, C., He, B., Yang, M., Tong, M., Long, Z., … Liu, Q. (2016). Aurora-A 
Kinase: A Potent Oncogene and Target for Cancer Therapy. Medicinal Research 

Reviews, 36(6), 1036–1079. https://doi.org/10.1002/med.21399 
Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., … 

Beroukhim, R. (2013). Pan-cancer patterns of somatic copy number alteration. 
Nature Genetics, 45(10), 1134–1140. https://doi.org/10.1038/ng.2760 

Zhai, C., Li, Y., Mascarenhas, C., Lin, Q., Li, K., Vyrides, I., … Panaretou, B. (2014). 
The function of ORAOV1/LTO1, a gene that is overexpressed frequently in 
cancer: essential roles in the function and biogenesis of the ribosome. Oncogene, 
33(4), 484–494. https://doi.org/10.1038/onc.2012.604 

Zhang, B., Gaiteri, C., Bodea, L.-G., Wang, Z., McElwee, J., Podtelezhnikov, A. A., … 
Emilsson, V. (2013). Integrated systems approach identifies genetic nodes and 
networks in late-onset Alzheimer’s disease. Cell, 153(3), 707–720. 
https://doi.org/10.1016/j.cell.2013.03.030 

Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression 
network analysis. Statistical Applications in Genetics and Molecular Biology, 4, 
Article17. https://doi.org/10.2202/1544-6115.1128 

Zhang, L., & Gong, F. (2015). Involvement of USP24 in the DNA damage response. 
Molecular & Cellular Oncology, 3(1). 
https://doi.org/10.1080/23723556.2015.1011888 

https://doi.org/10.1016/j.jcmgh.2017.11.012
https://doi.org/10.1126/science.1235122
https://doi.org/10.3748/wjg.v16.i11.1304
https://doi.org/10.1002/em.10072
https://doi.org/10.1293/tox.20.13
https://doi.org/10.1016/j.mrrev.2010.04.005
https://doi.org/10.1371/journal.pone.0042001
https://doi.org/10.1002/med.21399
https://doi.org/10.1038/ng.2760
https://doi.org/10.1038/onc.2012.604
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1080/23723556.2015.1011888


 

 

161 

Zhang, X., Zhao, J., Hao, J.-K., Zhao, X.-M., & Chen, L. (2015). Conditional mutual 
inclusive information enables accurate quantification of associations in gene 
regulatory networks. Nucleic Acids Research, 43(5), e31. 
https://doi.org/10.1093/nar/gku1315 

Zhang, Z., Jia, C., Hu, Y., Sun, L., Jiao, J., Zhao, L., … Hu, J. (2012). The estrogenic 
potential of salicylate esters and their possible risks in foods and cosmetics. 
Toxicology Letters, 209(2), 146–153. https://doi.org/10.1016/j.toxlet.2011.12.004 

https://doi.org/10.1093/nar/gku1315
https://doi.org/10.1016/j.toxlet.2011.12.004


 162 

CURRICULUM VITAE 



 163 



 

 

164 


	ACKNOWLEDGMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Contributions to cancer susceptibility: environment and genetics
	1.2 Exposure-based studies
	1.3 Cancer genomic profiling of primary tissues
	1.4 Dissertation Aims

	CHAPTER TWO: Towards Cancer Prevention – Characterization of transcriptomic profiles from chemical perturbations
	2.1 Building liver carcinogenicity and genotoxicity models from in-vitro high-throughput transcriptomic assays
	2.1.1 Introduction
	2.1.2 Methods
	Chemical selection and annotation
	Chemical procurement and data generation
	Assessing the transcriptional strength of a perturbation
	Statistical tests for comparison of TAS across profiles
	Equivalent In-vitro dose (Cmax) estimation and association with TAS
	Supervised learning for prediction of carcinogenicity and genotoxicity
	Deriving pathway signatures of carcinogenicity
	Comparison to Drugmatrix signatures
	Comparison with CMap signatures
	Investigation of AhR activation in L1000 profiles
	Statistical Reporting

	2.1.3 Results
	TAS analysis and chemical “bioactivity”
	The effect of chemical dose on transcriptional bioactivity
	The effect of carcinogenicity and genotoxicity on transcriptional bioactivity
	Comparison of in-vivo rat bioassay dosage with in-vitro bioactivity
	The effect of transcriptional bioactivity on prediction of carcinogenicity and genotoxicity
	Gene markers for prediction of carcinogenicity and genotoxicity
	Final predictions of carcinogenicity and genotoxicity in bioactive profiles
	Predictions of unlabeled chemicals
	Pathway enrichment analysis to characterize MoAs of carcinogenicity and genotoxicity
	Comparison of L1000 signatures of carcinogenicity and genotoxicity with signatures from Drugmatrix
	Comparison of L1000 signatures of carcinogenicity and genotoxicity with drug perturbation signatures in the CMap
	Characterizing AhR-mediated response in L1000 gene expression profiles
	Carcinogenome Portal – a framework for data query and visualization

	2.1.4 Discussion
	Prediction of carcinogenicity and genotoxicity
	In-vitro dose recommendation
	Acute vs. chronic response
	Implication of findings in context of tumor initiation and promotion
	Interfacing with the Connectivity Map
	Challenges and future developments

	2.1.5 Conclusions

	2.2 Network-based analysis of transcriptional profiles from chemical perturbations
	2.2.1 Introduction
	2.2.2 Methods
	Data resources
	Data processing
	Inference of Compound and Aggregate Compound Networks

	2.2.3 Results
	Differential connectivity analysis of chemical perturbations
	Reproducibility analysis for network inference
	Groups of similar chemicals can be inferred by network analysis
	Module differential connectivity highlights chemicals’ modes of action
	Aggregate network-centered analysis

	2.2.4 Discussion
	Alcohol-induced liver inflammation
	Hypolipidemic compounds induce cholesterol metabolism and inflammation
	Effect of estrogens, steroids and cancer drugs on cellular replication
	Non-homogeneous groups of compounds have known common effects

	2.2.5 Conclusion


	CHAPTER THREE: Towards cancer therapy - Molecular characterization of the cancer genome and epi-genome using integrative analysis
	3.1 Introduction
	3.2 Methods
	3.3 Results
	3.4 Discussion

	Chapter 4: Conclusions and Future Directions
	4.1 Summary of Thesis Aims
	4.2 Contributions
	4.2.1: Building liver carcinogenicity and genotoxicity models from in-vitro high-throughput transcriptomic assays (Chapter 2.1)
	4.2.2 Network-based analysis of transcriptional profiles from chemical perturbations (Chapter 2.2)
	4.2.3 Towards cancer therapy - Molecular characterization of the cancer genome and epi-genome using integrative analysis (Chapter 3)

	4.3 Accomplishments and Future Directions
	4.3.1: Building liver carcinogenicity and genotoxicity models from in-vitro high-throughput transcriptomic assays (Chapter 2.1)
	4.3.2 Network-based analysis of transcriptional profiles from chemical perturbations (Chapter 2.2)
	4.3.3 Towards cancer therapy - Molecular characterization of the cancer genome and epi-genome using integrative analysis (Chapter 3)


	APPENDIX
	BIBLIOGRAPHY
	CURRICULUM VITAE



