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There are two ways in which a science develops; in response to problems which
is itself creates, and in response to problems that are forced on it from the out-
side. Ian Hacking, 1975

Sometimes it is the people no one imagines anything of who do the things
that no one can imagine; Alan Turing in The Imitation Game

Scholarship that is indifferent to human suffering is immoral.Richard Levins
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CHING-HAO WANG
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Major Professor: Pankaj Mehta, PhD
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ABSTRACT

This thesis provides a physics account of the ability of cells to integrate envi-

ronmental information to make complex decisions, a process commonly known as

signaling. It strives to address the following questions: (i) How do cells relate the

state of the environment (e.g. presence/absence of specific molecules) to a desired

response such as gene expression? (ii) How can cells robustly transfer informa-

tion? (iii) Is there a biophysical limit to a cells’ ability to process information? (iv)

Can we use the answers to the above questions to formulate biophysical princi-

ples that inform us about the evolution of signaling? Throughout, I borrow tech-

niques from non-equilibrium statistical physics, statistical learning theory, infor-

mation theory and information geometry to construct biophysical models capable

of making quantitative experimental predictions. Finally, I address the connection

of energy expenditure and biological efficiency by zeroing in on a process unique

to eukaryotic cells– nuclear transport. The thesis concludes with a discussion of

our theory and its implications for synthetic biology.
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tion. An exemplary signaling system that combines signaling and
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is transmitted across the cytosol into the nucleus to induce gene ex-

pression. Contrast between common features of cell signaling and

gene expression is summarized. This figure is adapted from(Lim
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1·3 Information is encoded in the state proteins and further processed

via protein-protein interactions. A generic signaling pathway is

depicted on the left where nodes represent proteins while directed

edges illustrate their interactions (e.g. binding/dissociations, enzy-

matic reactions). Shown on the right is the biophysical representa-

tion of a node (in this case a protein). A node in the pathway can be

thought of as a switch that can change between ON (usually catalyt-

ically active) and OFF (catalytically inactive) states, leading to the

change of output. Such state switching is dictated by the protein-

protein interactions. Conceptually, information is encoded as the

ON and OFF states of these nodes. Note that more than two states

are possible for each node. Since the switching between states typ-

ically involves protein-protein interactions, one can imagine it as a

mechanism by which information is processed. . . . . . . . . . . . . 14

1·4 Information currencies in cell signaling. Unlike electronic systems,

cell signaling employs different currencies to process and transmit

information. The purple species indicates the protein that can switch

between ON (orange-red haloed circle) and OFF states, as depicted

in Figure 1·3. Such switching (or writing and erasing) can be man-

ifested a variety of ways such as binding and dissociation, post-

translational modifications, conformational changes, and localiza-

tion to different part of the cell. In (B), the modification is shown as

X with X = P, Me, Ub indicating phosphorylation, methylation, and

ubiquitination, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 15
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1·5 Protein-protein interactions mediate various mechanisms of infor-

mation processing in cell signaling. Interactions between proteins

can change various aspects of cell signaling (indicated by solid ar-

rows) such as protein’s conformation, post-translational modifica-

tions, and catalytic activities. They may also localize proteins to

specific site within the cell such as nucleus to allow for DNA-protein

interactions. These aspects (colored boxes), regarded as the curren-

cies of cell signaling, can directly or indirectly affect one another

(dashed arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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2·1 (A) A model signaling network that consists of three nodes is shown.

The PPIs and PTMs that involve a single node (e.g. kinase node, col-

ored dark blue) is illustrated on the right. In a PTM network, edges

between nodes encodes both the phosphorylation dependent PPIs

and the resulting change in enzymatic activities (e.g. active/inactive).

(B) Naturally occurring pathways that can be conceptualized as the

network shown in A. In epidermal growth factor receptor (EGFR)

signaling, binding of EGF to the extracellular domain of EGFR leads

ot the its dimerization and the phoshorylation of its kinase domain.

This triggers signaling through phosphoryaltion-dependent inter-

actions. (C) A signaling pathway can be viewed as a noisy com-

munication channel (left). The input to this pathway is a ligand (L)

that binds to the receptor kinase (R) which, through allosteric inter-

actions, leads to receptor kinase phosphorylation. The phosphory-

lated receptor kinase then specifically binds its cognate kinase (K )

which in term translocates into the nucleus to activate transcription.

A pictorial summary of these events are shown on the right. The

steady-state phosphorylation probability is annotated. Non-specific

interactions (i.e. those highlighted in green) serve as noise in the net-

work representation. All species are colored according to the nodes

they correspond to (left). (D) Probability of PTM states in the ther-

modynamic model. Species are labeled with reference to A. As in

the main text, binary variables R ,K1,TF ∈ {0, 1} are used to indi-

cate the PTM states of these species with value 1 indicating a phos-

phorylated state (transcribed state for TF) and 0 otherwise. Panels

are organized according to the binding interactions involved and

are indicted at the top. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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2·2 Noise due to non-specific protein-protein interactions (PPIs) limits

the quality of information transmission. (A) A simple linear net-

work that mediates information of input (L) through a n-layer ki-

nase cascade ( Ki , i = 1, 2, · · · , n), to an output transcription factor

(TF) which is active when phosphorylated. As in Figure ?? C, green

circles indicates noise. (B) Color map shows the numerically simu-

lated log-signal-to-noise ratio (log-SNR), defined by Eq.(2.10), of the

network shown in A at different level of specific and non-specific

interactions. Binding affinities βθi ,j is drawn from a normal distri-

bution with mean 〈θ〉 and variance 0.01 (see main text for simulation

details). This quantity can also be obtained by solving Eq.(A.9) (see

Appendix). In this panel, we show the result for n = 2, 5. (C) Input-

output relation of the n-layer kinase cascade (n = 2, 5) at tight- and

weak-binding is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2·3 Specificity in PPIs mediates the information-speed tradeoff. (A) A

non-zero constant input (ligand binding of duration indicated in

red) is administered to the network shown on the left. This signal

turns on the output (TF) to its steady-state before switching off. The

speed of response is defined as τ−1, where τ is the time for output

TF to reach a new steady-state after the input is turned off (indicated

as response decay in blue). (B) Mutual information and response

speed as a functions of mean binding affinity β〈θ〉 for the network

shown in A with n = 5. (C) Mutual information versus response

speed as β〈θ〉 is varied. Different colors correspond to networks of

different depth n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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2·4 Effect of cross-talk between pathways on information capacity. (A)

Schematic of insulated and cross-talked networks are shown. Dashed

connections represents cross-talks between pathways. Three envi-

ronmental conditions that differ in terms of the correlation between

the two signals they provide to the network (left) are illustrated:

inputs with zero, negative, and positive correlation (see Appendix

A for details). (B) Mutual information between inputs (R1,R2) and

outputs (two TFs) is calculated for different input correlations, dif-

ferent mean binding affinities, and different cross-talk levels. Columns

are arranged based on the sign of correlation, bars are grouped ac-

cording to the strength of the binding affinities for protein-protein

interaction (weak/tight-binding corresponds to β〈θ〉 = −5/ − 1),

and colors indicate the presence or absence of cross-talks. In the net-

works with (without) crosstalk, the binding affinity of the cross-talk

interactions (i.e. dashed lines in the cross-talked networks shown in

A) is set to β〈η〉 = −5/0 (see Appendix A 4 for more details.) . . . . 38

xx



2·5 InfoMax design finds the PPIs that maximize information transmis-

sion. (A) InfoMax is applied to networks with one input, n layers

of kinase, and one output. For n = 2 and 5, the bar graph on the

left shows the binding affinities that give the maximum mutual in-

formation (indicated as Imax on top), as opposed to a non-optimal

solution with mutual information I < Imax shown on the right, all

measured in bits. Bars indicate binding affinities between proteins.

For example, bar labeled as R → K1 is the binding affinity of re-

ceptor kinase R to kinase K1. (B) InfoMax applied to 2-nw -2 net-

works. This nomenclature refers to all-to-all connected networks

with two nodes in the input layer, nw in the hidden, and two at

the output layer. Binding affinities of all networks are optimized

to achieve maximum mutual information using simulated anneal-

ing (see Methods). Bar charts show the optimized binding affinities

with Imax indicated on top. In this panel, networks are subject to

inputs with zero correlation. In all panels, −βθ is constrained to be

within [−2, 8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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3·1 (A) Shown here are three representative network motifs in signal-

ing based on cascade of two or more (phosphorylation based) en-

zymes, the activity of which is determined by opposing regulators

(i.e. kinase and phosphatase). Coherent feedforward loop: epider-

mal growth factor receptor (EGFR) activation (i.e. input, not shown)

activates the ERK-RSK-SRF pathway. Both phosphorylated RSK and

SRF function to promote the transcription of FOS gene. This motif

can filter out noise and distinguish transient from sustained inputs.

Incoherent feedforward loop: EGFR signaling wherein the activa-

tion of EGFR induces both the expression of FOS and its inhibitor

zinc-finger protein 36 (ZFP36), which promotes FOS mRNA degra-

dation. This motif demonstrates the transient memory of FOS due to

the initial activation of ERK before it turns on ZFP36 whose level ac-

cumulation serves to shut off FOS. The perceptron-like motif can or-

chestrate multi-input-multi-output (MIMO) decisions(Jordan et al.,

2000). For example, cell division control protein 42 (Cdc42), a mem-

ber of the Rho family GTPases, can be stimulated both by the recep-

tor tyrosine kinase (RTK) as well as the G-protein coupled receptor

(GPCR). Depending on the combination of these inputs, Cdc42 can

activate different downstream kinases: p21 activation kinase (Pak),

S6-kinase (S6K), and SRF. (B): Thermodynamics model of signal-

ing based on kinase phosphorylation. The biophysical parameters

shown here can be mapped to chemical kinetics rate constants mea-

surable in experiments (see Appendix B for more details). (C): Our

design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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3·2 Learning to engineer computations and decisions. (A): Learning

to implement desired decision surface (decision surface) with 2-1-

1 perceptron motif (c.f. Figure 3·1B). This network consists of three

types of protein kinases (K1, K2, and K3) that can undergo phospho-

rylation cascade. The phosphorylation of K1 and K2 are controlled

by binding of ligands L1 and L2, respectively. K1 and K2 can both

interact with and phosphorylate K3 which in term regulates the ex-

pression of some target gene. The target and learned decision sur-

face (i.e. input-output relation, I-O relation) are shown in blue and

green, respectively. The parameters (effective binding energies in

units of kBT and the kinase concentrations in units of 1M) learned

that implement this specific design are shown on the right. For more
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Chapter 1

Introduction

‘Among substances are by general consent reckoned bodies and especially nat-
ural bodies; for they are the principles of all other bodies. Of natural bodies some
have life in them, others not; by life we mean self-nutrition and growth (with its
correlative decay). It follows that every natural body which has life in it is a sub-
stance in the sense of a composite. ’ (Aristotle, 350 BC)

The cell is the basic unit of life. It defines the structural and functional unit

of living organisms that display remarkable properties that preserves and furthers

their existence. Irrespective of the differences in their identities, cells of all living

organisms are equipped with the ability to sense and react to the environments.

This is particularly important for the development of cells under evolutionary

pressure. For example, the ability to move towards nutrients and to avoid en-

vironmental stress and toxins could confer a tremendous competitive advantage

for early unicellular organisms. For multicellular organisms, such ability is also

critical since their functioning relies substantially on the constant monitoring and

exchange of information with the environment to coordinate the activities of in-

dividual cells. Furthermore, disruptions of communication between cells and the

environments they live in are usually associated with disease such as cancer. To

reduce the occurrence of such outcome and to maximize their chances of survival,
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it is conceivable that cells must have evolved some kind of mechanisms to process

information.

In this chapter, I explore this idea that cells, being the smallest unit of life, are

processing environmental information to decide on their behaviors. I begin with a

discussion on the fundamental role of cell signaling, a process defined as the relay

of environmental information to intracellular response, its importance, ubiquity,

and molecular basis. I then contrast cell signaling with information processing

done by human-made electronic devices such as computers and cells phone to

argue that they are conceptually similar even though having different physical

implementations. Based on these discussions, I motivate and outline the questions

to be addressed in this thesis and highlight the ingredients of a plausible physical

theory to tackle these questions. Throughout, I emphasize the general properties

of cell signaling in terms of its core molecular biology, and showcase how these

pieces of qualitative understandings culminate in a hint on the formulation of a

plausible physical theory.

1.1 All living cells are able to sense and response

While there isn’t a unanimous definition of life, it is commonly agreed that the

ability to response to stimuli is an essential characteristic of a living being– an en-

tity that preserves, furthers, and reinforces its existence(Koshland, 2002). This is

perhaps not hard to imagine since we typically consider something life-like if it

is responsive to some type of external probe (e.g. a gentle smudge). For single-

celled organisms, such ability would allow them to evade environmental toxins

and stresses, therefore conferring them an selective advantage in the course of

evolution. But for that to have happened, a tiny being like cell must be able to

discern a wide variety of environmental conditions such as the existence of molec-
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ular species, temperature, pH values etc., and to adjust aspects of their, say, gene

expression, metabolism, and structure etc., in the wake of changes in these condi-

tions (see Figure. 1·1). With the emergence of multicellular organisms, individual

cells have evolved specialized biochemical machinery (to be discussed later) to

communicate with other cells within the same organism, thereby implementing

a high-level of coordination among these cells to function as an integrated entity.

Therefore, by studying the stimulus-response behaviors observed in cells, one can

learn a great deal about how living organisms function and came to being.

nutrients

signals from 

other cells

envorinmental

stress

extracellular

matrix

growth/

division

gene

expression

secretion/

production

senescence/

death

homeostasis/
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INPUTS

OUTPUTS

morphological

changes

Figure 1·1: Cells respond to a wide range of inputs by invoking
different responses. Some commons inputs (green arrows) and out-
puts (red arrows) are shown. In many cases, the outputs will change
the response to future inputs (i.e. feedback). The ability to monitor
and self-regulate its internal state (i.e. homeostasis) is also indicated.
This figure is adapted from(Lim et al., 2014)

1.2 How do cells process information?

Now having a picture of cells relating external information to some sort of inter-

nal response, which is commonly called cell signaling, it is perhaps not hard to
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imagine these teeny-tiny cells as some sort of information processing or decision-

making systems. But unlike our human-made devices such as computers and cell

phones which consists of gazillions of transistors that are tidily wired, cell sig-

naling systems are made up of densely packed proteins, lipids, and many other

biomolecules diffusing around, all surrounded by a water-impermeable membrane.

So how is that a genetically-encoded information processing system that operates

at such ‘messy’ environment like this is able to generate the diverse behavior that

we observe at the cellular and even the organismic level? This is the question that

is central to all biology.

In the following, I discuss a few features fundamental to cellular information

processing. Before that, let me clarify a few jargons. A signaling pathway is a col-

lection of molecules in a cell, most of which are proteins and lipids, that work in

tandem to regulate and control the functions and behaviors of one or more cells.

Pathway activation refers to the event that the first molecular species in the pathway,

labeled sequentially in time, receives a signal (e.g. ligand binding, see Figure 1·1)

and induce subsequent events.

1.2.1 Cellular information processing must operate at multiple scales in space
and time

A typical signaling pathway can be roughly divided into two parts, based on the

location where events occurred – those at the plasma membrane and the cytosol

(termed signaling for convenience), and those “around” the nucleus (termed gene

expression1), see Figure 1·2. For most eukaryotic signaling pathways, upon acti-

vation, an extracellular signal has to “propagate” into the cell and across the cy-

tosol, before reaching the nucleus to promote or repress the transcription of spe-

1Note that not all signaling pathway leads to gene expression (e.g. those related to apoptosis).
The terminology used here is just for convenience
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cific genes. To get a sense of scale, a mammalian cell is roughly d = 10− 100µm

in diameter, with a nucleus roughly 10% of its size. Proteins in the cytoplasm has

diffusion constant of the order D ≈ 10 µm2/sec (Milo and Phillips, 2015), which

implies that it takes roughly τ = d2/6D ≈ 1 sec - 3 mins for a protein to diffuse

across a mammalian cell, and τ ∼ 10 ms for a prokaryotic cell such as E. coli with

d ∼ 1 µm. If the terminal stage of a pathway involves gene expression, it would

take additional minutes to hours to complete. In this case, from signal activation

to the terminal gene expression, a pathway would require a physical process that

spans roughly 90% the body size of a mammalian cell at the sub-minute to minute

time scale, plus a sequence of events leading to gene expression that happen within

the nucleus but requires hours to finish. And remember we haven’t taken the time

scale for signal activation and the many enzymatic reactions that occur within the

pathway into account! In contrast to human-made device like computers and cell

phones, the sheer thought of the scales that a cellular signaling system operates on

should amaze all!

Apart from the separation of space and time scales, signaling and gene expres-

sion have other important distinctions. For example, most signaling steps do not

expend energy anywhere close that required to synthesize a new protein, usually

requiring a few ATPs (whose hydrolysis to ADP leads to Gibbs free energy change

at standard condition of roughly ∆G ∼ −30kJ/mol) to transmit information from

one molecule to the other (Garrett and Grisham, 2010; Lim et al., 2014). Protein

synthesis, on the other hand, requires tons of energy (roughly a few cellular en-

ergy coins such as ATP, GTP, etc., per amino acid), which, for a typical naturally-

occurring protein of roughly 100 or more amino acid in length, is a few hundreds

times of that expended at a single ‘signaling step. However, this energy is not

wasted since gene expression is rather stable and the effects are usually cell-wide,
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not limited spatially to specific part of a cell. This is probably not surprising since

a wholescale change in the cellular state is likely to require the production of new

proteins to help the cell adapt to its new environment. Figure 1·2 presents a typi-

cal cellular information processing system as a composition of signaling and gene

expression subunits. Contrasts between both units are summarized in this figure.

IN

L

ININ

L

cell signaling

• extracellular-intracelluar communication

• “fast” ON and OFF (seconds to minutes)

• sequential and directional response

• requires “less” energy (no protein synthesis)

gene expression

• “slow” ON and OFF (minutes to hours)

• stable changes (hours to days)

• confined spatial response

• requires “more” energy (transcription and 

translation)

Figure 1·2: Cells integrate signaling and gene expression to achieve
regulation. An exemplary signaling system that combines signal-
ing and gene regulatory unit‘s is shown as red and green boxes, re-
spectively. Signaling input is assumed to be ligand (L) binding to
the receptor that straddles the cell surface depicted as a purple box.
This input is transmitted across the cytosol into the nucleus to induce
gene expression. Contrast between common features of cell signaling
and gene expression is summarized. This figure is adapted from(Lim
et al., 2014)

1.2.2 Information is encoded as the state of proteins and processed via the in-
teractions between them

Now let’s discuss how information is defined in the cellular context. First let’s

go back to our favorite example to gain some intuition. For modern digital infor-

mation processing systems such as computers, inputs are transformed into binary
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codes interpretable by the machine before central processing unit (CPU), a partic-

ular kind of electronic circuitry, carries out specific instructions (e.g. programs)

based on these inputs. We can think of the information contained in the input

as being relayed across a series of nodes or switches that record these binary states.

Through a sequence of changes in the states of these node, input is “processed”

into the output that defines state of the last node. If one has a system with many

nodes wired together, information can be embedded, process and transmitted in

a more complicated manner. Indeed, this is the basis of modern electronic infor-

mation processing system whose architecture relies heavily on the sophisticated

linkage between many transistors that collectively encode a binary representation

(i.e. Boolean) of input signal.

On a similar vein, one can imagine that a cell signaling system is encoding the

environmental information as the states of some sort. But unlike electronic systems

where electrons flowing through the circuit is treated as a fundamental informa-

tion currency, cell signaling employs multiple information units, depending on the

pathway and molecular interactions it underlies (c.f. Figure 1·4). Indeed, there’s a

wider variety of molecular devices that cell can adopt to read and process different

types of signals, see Figure. 1·1. In comparison, most electronic systems utilize one

type of architecture that digitize signal before converting it to some output format

at the end of processing. This is perhaps not so surprising since the task we sub-

ject these electronic systems to is standardized to achieve efficiency, consistency,

and uniformity. For tiny beings like cells, the environments they live in can be

noisy and unpredictable, therefore, it might be advantageous for them to develop

diverse ways to process different information. This brings to the core questions–

what is the workhorse of information currencies in cell signaling and what’s the

molecular basis of that?
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As it turns out, proteins plays a dominant role in cell signaling. Proteins are

diverse class of biomolecules that constitute more than 50% of the dry weight of

cell body. They are essential in virtually every aspects of cell function and behavior,

including metabolism, DNA replication, signaling, transportation of molecules,

and the support of structure of cells and organisms. This is made possible due to

the versatility inherent in proteins, each of which is tailored to its biological role.

Of particular interest to signaling is the class of proteins called enzymes which act as

catalysts that increase the rate at which certain biochemical reaction occurs. As we

shall explore more in this thesis, these are the reactions that physically “records”

and “modifies”, therefore, process information. Simply put, the information cells

collects about the environment is encoded in the states of proteins that are written and

erased (or switched back and forth) by specific enzymatic reactions.

In Figure 1·3, I summarize the idea we discussed in this part by showing that

cell signaling is like electronic systems where information is transferred as a se-

ries of ”switches” or ”nodes” (realized by transistors) that are wired to form com-

plex circuitry. The difference is, however, that now these nodes represent proteins

bearing some sort of states that can switch between, say, ON (e.g. catalytically

active) and OFF (inactive) states through enzymatic reactions and other physical

processes. One may naturally ask, what are the mechanism by which state tran-

sition happens? Before moving on, I’d like to point out that in addition to pro-

teins, signaling also involves lipids, ions, and other biomolecules. However, these

molecules plays mostly a supporting role as they facilitate and assist the main bio-

chemical reactions that change the states of the proteins (i.e. switching the states

that encode information). We’ll come back to this point in later chapters.



9

1.2.3 Proteins can change their states through various mechanisms

In Figure 1·4, I illustrate a few common ways that the state of proteins can be

changed. For example, they can switch to the ON state (activation) through bind-

ing/dissociation with other proteins, a change of their conformations, catalytic

reactions catalyzed by their enzymes, or via localization to other parts within the

cell.

Of particular importance is the binding and dissociation between proteins or

other molecules that facilitate the so-called post-translational modifications (PTMs).

PTMs are chemical modifications that include the addition or removal of small

chemical groups such as phosphate, or big structure such as small regulatory pro-

tein ubiquitin (of mass 8.5 kDa), thereby changing the catalytic properties of the

modified proteins (e.g. enzymatically active or inactive). These modifications are

generally performed by specific signaling enzymes such as kinase that catalyzes

phosphorylation and phosphatase that undo phosphorylations. In a loose sense,

we refer the state of proteins as their PTM state (e.g. phosphorylation or methyla-

tion state)2.

Since most signaling proteins are enzymes that catalyze reactions such as chem-

ical modifications of other proteins (e.g. PTMs) and other biomolecules, their ac-

tivation or inactivation by their upstream signals can lead to widespread down-

stream effects. For example, the phosphorylation of certain proteins can promote

gene expression and protein production, thus driving a massive change in the cel-

lular state. This is in part due to the specificity and efficiency of these proteins

as enzymes. Moreover, a change in the enzymatic activity of proteins is usually

associated with a change in their conformations. For this reason, these two sig-

naling currencies (i.e. enzymatic activity and conformations) are usually consid-

2Broadly speaking, state can include the conformational or the allosteric state of proteins. But
since these different states are usually coupled, here we use this term loosely for convenience.
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ered together. One important example is the class of proteins that act as molecular

switches inside cells, G proteins. These proteins can switch between active and

inactive conformations, depending on whether they are bound to GTP or GDP3

that are needed in the synthesis of RNA during transcription process. Again,

since these are associated with changes in catalytic activities, the switching is facil-

itated by other enzymes such as Guanine nucleotide exchange factors (GEFs) and

GTPase-activating proteins (GAPs)4.

1.2.4 Protein-protein interaction mediates the currencies of signaling

Previously we discussed the many ways by which proteins can change their states

and that such changes define a range of signal currencies (c.f. Figure 1·4). More-

over, in as much as the switching between logic states in electronic circuit deter-

mines the outcome of a digital computing system, changes in the protein state link

signal inputs to outputs and guides cellular information processing.

By and large, most signaling currencies involve the interactions between pro-

teins and other molecules. For example, binding of a kinase to its substrate can

change the substrate’s phosphorylation state (therefore the catalytic activity); in-

teractions between protein and peptide or small chemical group can drastically

alter protein’s conformational (thus the catalytic) state; localization can bring pro-

teins to specific site of the cell where their substrates are easily found, etc.. Fig-

ure 1·5 illustrates that protein-protein interactions (PPIs) serves as a mediator to

the signaling curries that cells utilize to process information.

One important insight that came out of this observation is that through PPIs,

changes in one aspect of signaling often leads to changes of others, as we enumerated

in the previous paragraph and shown in Figure 1·5. Therefore, one can imagine

3Usually GTP-bound state is the active state while GDP-bound is inactive
4GEFs catalyze the switching from GDP-bound to GTP-bound state while GAPs catalyze the

reverse.
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PPIs as a knob that coordinates different aspects of cellular information processing

whose concerted regulation gives rise to the diverse behaviors that we observe

at both the cellular and organismic level. Indeed, this approach is in line with

the field of synthetic biology that strives to understand cellular control programs

through harnessing the interactions within the molecular circuits.

1.3 What might be a plausible physical theory?

In this chapter, we discussed that the ability to respond to stimuli is one of the

defining features of life. Such ability allows living organisms to monitor the con-

ditions of environment and to adjust aspects of their life in the wake of changes

in these conditions. For that to happen, their cells have evolved specialized sig-

naling pathway with proteins, lipids, and other biomolecules. We then argued

that although cell signaling has to operate on multiple scales in space and time, it

is operationally equivalent to information processing carried out by human-made

devices such as computers and cell phones. However, unlike these devices that

rely on one information currency, namely, the flow of electrons through the circuit,

cells utilize multiple currencies that are coupled to each other by protein-protein

interaction (c.f. Figure 1·4 and Figure 1·5). By doing so, cells develop a wide range

of “molecular devices” that can relate different types of signals to different outputs,

thereby implementing a higher level of regulation and coordination to function as

a integrated organism.

From the physics point-of-view, it is natural to ask what’s the level of abstrac-

tion based on the biology of signaling we’ve discussed so far would allow us to

build a physical model to further our understanding? Particularly, what are the

ingredients such as degrees of freedom, time scale, interactions etc relevant to cell

signaling that would culminate in theory verifiable through quantitative experi-
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mentations? Here I argue that since PPIs mediate various mechanisms of cell sig-

naling, a plausible physical theory about cellular information processing should

incorporate some aspects of these interactions. To do so and to account for the fact

that both the intracellular and extracellular environments are thermal in nature, I

adopt a statistical physics approach, namely, starting from a statistical description

of PPIs that lands at predictions on macroscopic and measurable quantities. How-

ever, to explore notions like information processing requires tools from disciplines

apart from physics such as information theory and complexity theory. Therefore,

a plausible physical theory should be able to bridge these tools with the statistical

physics that aims at characterizing the interactions relevant in signaling. This goal

epitomizes the model and methodology I developed in this thesis.

1.4 Organization of thesis

Finally, based on the biology and the provision for a physical model we discussed

in this chapter, I summarize the questions I attempt to address in this thesis:

• What’s the minimal model based on protein-protein interactions that would

allow us to relate the inputs to the outputs of a given signaling pathway?

• How do these interactions give rise to a quantification of information trans-

mission across a signaling network?

• What’s the limit to cell’s ability to transmit information?

• Can we harness these interactions to design signaling pathways that imple-

ment desired input-output relations or computations?

• What’s the theoretical underpinning of cellular computations and how simi-

lar they are to those done by human-made electronic devices?
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• Is is possible to define the capacity to cell’s ability to perform computations?

At the end of this thesis, I discuss how our answers to these questions culmi-

nate in a deeper understanding of cellular information processing through signal-

ing, and discuss their implications to synthetic biology whose ultimate goal is to

engineer molecular building blocks to generate novel cellular control programs.
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active/ON

inactive/OFF

PROTEIN-PROTEIN

INTERACTIONS

SIGNALING

PATHWAY

Figure 1·3: Information is encoded in the state proteins and fur-
ther processed via protein-protein interactions. A generic signal-
ing pathway is depicted on the left where nodes represent pro-
teins while directed edges illustrate their interactions (e.g. bind-
ing/dissociations, enzymatic reactions). Shown on the right is the
biophysical representation of a node (in this case a protein). A node
in the pathway can be thought of as a switch that can change be-
tween ON (usually catalytically active) and OFF (catalytically inac-
tive) states, leading to the change of output. Such state switching is
dictated by the protein-protein interactions. Conceptually, informa-
tion is encoded as the ON and OFF states of these nodes. Note that
more than two states are possible for each node. Since the switching
between states typically involves protein-protein interactions, one
can imagine it as a mechanism by which information is processed.
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x

(A) binding/disscociation (B) post-translational 

modifications

(C) conformational change (D) localization

X = P, Me, Ub,...etc.

Figure 1·4: Information currencies in cell signaling. Unlike elec-
tronic systems, cell signaling employs different currencies to pro-
cess and transmit information. The purple species indicates the pro-
tein that can switch between ON (orange-red haloed circle) and OFF
states, as depicted in Figure 1·3. Such switching (or writing and eras-
ing) can be manifested a variety of ways such as binding and dissoci-
ation, post-translational modifications, conformational changes, and
localization to different part of the cell. In (B), the modification is
shown as X with X = P, Me, Ub indicating phosphorylation, methy-
lation, and ubiquitination, respectively.
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conformations

Figure 1·5: Protein-protein interactions mediate various mecha-
nisms of information processing in cell signaling. Interactions
between proteins can change various aspects of cell signaling (in-
dicated by solid arrows) such as protein’s conformation, post-
translational modifications, and catalytic activities. They may also
localize proteins to specific site within the cell such as nucleus to
allow for DNA-protein interactions. These aspects (colored boxes),
regarded as the currencies of cell signaling, can directly or indirectly
affect one another (dashed arrows).
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Chapter 2

What controls the flow of information across
signaling network?

‘I formerly defined the possible as that which in a given state of information (real
or feigned) we do not know not to be true. But this definition today seems to me
only a twisted phrase which, by means of two negatives, conceals an anacoluthon.
We know in advance of experience that certain things are not true, because we see
they are impossible. ’ (Charles Sanders Peirce, 1897)

Eukaryotic cells transmit information by signaling through complex networks

of interacting proteins. Here we develop a theoretical and computational frame-

work that relates the biophysics of protein-protein interactions (PPIs) within a sig-

naling network to its information processing properties. To do so, we generalize

statistical physics-inspired models for protein binding to account for interactions

that depend on post-translational state (e.g. phosphorylation). By combining these

models with information theoretic methods, we find that PPIs are a key determi-

nant of information transmission within a signaling network, with weak interac-

tions giving rise to ”noise” that diminishes information transmission. While noise

can be mitigated by increasing interaction strength, the accompanying increase

in transmission comes at the expense of a slower dynamical response. This sug-
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gest that the biophysics of signaling protein interactions give rise to a fundamen-

tal ”speed-information” trade-off. Surprisingly, we find that cross-talk between

pathways in complex signaling networks do not significantly alter information

capacity–an observation that may partially explain the promiscuity and ubiquity

of weak PPIs in heavily interconnected networks. We conclude by showing how

our framework can be used to design synthetic biochemical networks that maxi-

mize information transmission, a procedure we dub ”InfoMax” design.

2.1 Introduction

Cells have evolved complex protein signaling networks to process information

about their living environments (Barabasi and Oltvai, 2004; Blais and Dynlacht,

2005; MacArthur et al., 2009; Martello and Smith, 2014). These networks play a

central role in cellular decision-making, development, growth, and migration (Seet

et al., 2006; Scott and Pawson, 2009; Lim et al., 2014). In eukaryotic cells, signaling

pathways such as Wnt/β-Catenin(Angers and Moon, 2009; MacDonald et al., 2009)

and TGF-β pathways(Massagué, 2012) have important homeostatic functions (e.g.,

cell proliferation, differentiation, and fate determination), with disruptions in their

signaling leading to tumorigenesis and drive metastasis (Anastas and Moon, 2013;

Moustakas and Heldin, 2014).

Information transfer in signaling networks occurs via the addition of covalent

chemical groups that alter the regulatory state of a signaling protein (e.g. phos-

phorlyation of a Tyrosine residue). Addition and removal these post-translational

modifications (PTMs) are respectively catalyzed by ”writer” (e.g. a kinase) and

”eraser” (e.g. a phosphatase) enzyme activities. Information transfer occurs when

the ratio of these opposing activities is altered by an upstream input (e.g. lig-

and binding to receptor), and becomes rapidly and reversibly encoded in the PTM
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state of the downstream substrate (e.g. phosphorylated or non-phosphorylated).

An important breakthrough in the understanding of signaling network connec-

tivity came with the discovery of protein-protein interaction (PPI) domains that

specifically bind to PTM-modified motifs, effectively “decoding” the PTM state

of a substrate(Deribe et al., 2010; Scott and Pawson, 2009). By linking an activity

to a substrate through binding, PTM-mediated PPI interactions serve as signaling

network links by interconnecting writer/eraser cycles (Fig. 2·1A). One of the best-

known examples of a PTM-binding domain is the Src homology 2 (SH2) domain,

which specifically docks to motifs containing phosphorylated tyrosine. For exam-

ple, SH2 recognition plays a central role in the EGF pathway, connecting initial

receptor autophosphorylation to downstream signaling events via recruitment of

SH2 domain-containing enzymes to their substrates (Fig. 2·1A,C).

Given their role in mediating information transfer between signaling proteins,

the question naturally arises as to how the biophysical features of PTM-PPI in-

teractions relate to a pathway’s emergent, network-level information processing

properties. Here, we create a theoretical framework for exploring this relationship

using a thermodynamically-inspired statistical model in which biochemical par-

tition functions relate the probability of finding the system in a given state (e.g.

bound, unbound, etc.) to relevant biophysical features like interaction affinity and

species concentration (Ackers et al., 1982; Hill, 2013; Weinert et al., 2014). Models

of this class have been successfully used to understand the biophysics of promoter

regulation in transcriptional networks(Bintu et al., 2005b; Kinney et al., 2010; ?;

Weinert et al., 2014). Here, we extend this approach to signaling networks by

introducing variables representing PTM-dependent PPIs, thereby accounting for

the non-equilibrium nature of reversible, enzyme-catalyzed phosphorylation. We

combine this statistical physics approach with information theory(Shannon, 2001;
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Cover and Thomas, 2012), which has seen widespread recent application in bi-

ology(Johnson, 1970). Examples include the modeling of information processing

in gene networks(Tkačik et al., 2009; Walczak et al., 2010; Tkačik and Walczak,

2011; Granados et al., 2018), enzyme cascades (Detwiler et al., 2000), and bacterial

signaling networks(Mehta et al., 2009; Tostevin and Ten Wolde, 2009), as well as

calculating information capacity in canonical eukaryotic signaling networks from

single cell measurement of input-output relationships(Cheong et al., 2011; Brennan

et al., 2012).

Our joint a framework allows us to investigate the relationship between the

biophysics of PPI-PTM interactions and signaling network information process-

ing. We chose to model a simple, idealized signaling pathway in order to more

directly probe this relationship. Here, our approach is inspired by synthetic biol-

ogy, where a principle goal is engineering synthetic regulatory circuits capable of

executing designed regulatory function, typically through direct experimental ma-

nipulating features like protein expression level and PPI strength. Thus, in contrast

to previous approaches that investigate the information capacity of pre-existing,

native networks, our goal with this work is to ask how we can manipulate the

biophysics of PPIs to engineer new networks that optimize information transmis-

sion. Information processing circuits must necessarily balance three competing

requirements that are often in tension: i) minimizing unwanted “noise” that cor-

rupts the true signal, ii) ensuring that the circuits can respond quickly to dynam-

ical perturbations, and iii) maximizing the dynamic range of inputs. In signaling

networks, it has been argued significant noise is introduced by weak, promiscu-

ous PPIs(Ladbury and Arold, 2012; Voliotis et al., 2014), often in combination with

low levels of background kinase and phosphatase activity(Chung et al., 2010; Sch-

lessinger, 2000).Thus, we hypothesize in the current work that while increasing the
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strength of PTM-PPI interactions may reduce noise, it may also involve inherent

tradeoffs in response times and dynamic range.

Motivated by these considerations, we focus in this article on a series of interre-

lated conceptual questions: How can we quantify noise due to promiscuous PPIs?

How does the strength of PPIs affect information transmission and dynamic re-

sponse times in signaling networks? How do network architecture and cross-talk

affect information transmission(Hill, 1998; Schwartz and Ginsberg, 2002; Hunter,

2007; Voliotis et al., 2014; Kontogeorgaki et al., 2017)? Can we rationally choose

PPIs in synthetic biochemical networks that maximize information transmission?

We begin by discussing how to generalize thermodynamic models to binding that

include PTMs. We then discuss how basic elements of these models can serve as

an input into information theoretic calculations. Using this framework, we quanti-

tatively show how weak PPIs give rise to non-specific binding, resulting in “noise”

that reduces information transmission. We then show that while noise can be di-

minished by increasing PPI strength, increased information transmission comes

results in a slower dynamical response—a biophysical manifestation of what in

engineering is often called the “gain-bandwidth” tradeoff. We then show that

cross-talk between pathways in highly interconnected signaling networks does not

significantly alter information capacity. We conclude by discussing ”InfoMax”, a

new procedure for designing synthetic biochemical networks that optimize gain-

bandwidth tradeoff.

The paper is organized as follows. We begin by discussing how to generalize

thermodynamic models for binding to include PTMs. We then discuss how the

basic elements of these models can serve as an input into information theoretic cal-

culation. Using this framework, we quantitatively show how weak PPIs give rise

to non-specific binding, resulting in “noise” that reduces information transmis-
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sion. We then show that such noise can be significantly decreased by increasing

the strength of PPIs at the expense of a slower dynamical response, a biophysical

manifestation of what in engineering is often called the “gain-bandwidth” tradeoff.

We then show that cross-talks between pathways in complex signaling networks

does not significantly alter information capacity. We conclude by discussing a new

procedure ”InfoMax” for designing synthetic biochemical networks.

2.2 Including post-translational modifications in thermodynamic
models

To construct a thermodynamic model, we consider an idealized post-translational

signaling network with phosphorylation as the only PTM. Each node in the net-

work represents a distinct kinase activity, and linkages between nodes are me-

diated by PTM-dependent PPIs (Figure 2·1A). Here, phosphorylation of a kinase

node by an upstream activity renders it ’active’ and competent to engage with and

phosphorylate (and subsequently activate) a downstream kinase. We sought to

create a generalizable thermodynamic expression for describing such a network.

For a given multi-state molecular system, thermodynamics provide a concise

description of the statistical weight of each state, and therefore the probability

of observing a state when the system is at steady state. At thermal equilibrium

the statistical weight of a given microscopic configuration is proportional to its

Boltzmann factor defined as e−βE , where E is the energy of this microstate and

β = 1/(kBT ) is the inverse temperature with kB being the Boltzmann constant.

As we noted, conventional thermodynamic prescription based on transcriptional

regulation(Bintu et al., 2005b; Kinney et al., 2010; Garcia et al., 2010; Weinert et al.,

2014) does not include PTMs and PTM-dependent bindings. Here we introduce a

new set of variables to account for PTMs.
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For brevity, we consider a simplified signaling network (Figure 2·1C); a linear

pathway consisting of a membrane-spanning receptor kinase R , a single freely-

diffusing protein kinases K1, and target transcription factor TF . We treat R ,K1,TF ∈

{0, 1} with value 1 indicating a phoshphorylated state (transcribed state for TF )

and 0 otherwise. Pathway activation (input) is initiated by ligand (L) binding to the

receptor at the cell surface, leading to receptor autophosphorylation (i.e. R = 1).

This results in phosphorylation-dependent recruitment and phosphorylation of K1

(i.e. K1 = 1). Phosphorylated K1 then translocates into the nucleus where it binds

to and phosphorylates TF (i.e. TF = 1), activating transcription.

Within the context of this simplified signaling system, we begin to describe

the thermodynamics of the interactions involved, breaking down the network de-

picted in Figure 2·1C into three parts and enumerating the possible states within

each. As depicted in Figure 2·1A,C, the receptor kinase only has two possible PTM

states (phosphorylated or not). We label the probability of phosphorylated recep-

tor kinase as P(R = 1) = q, where q ∈ [0, 1] is the parameter that encapsulates

ligand activation. The probability of the complementary configuration is therefore

given by P(R = 0) = 1− q. (ii) Based on our discussion above, the interaction

between R and K depends crucially on the value of R . Simple enumeration re-

veals that there are four possible scenarios: (K1,R) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},

as shown in Figure 2·1D. The first two involve the interaction between unphos-

phorylated receptor (i.e. R = 0) and K1 while the last two involve that between

phosphorylated receptor (i.e. R = 1) and K1. Thermodynamics dictates that when

a system reaches equilibrium, the steady-state distribution of a microscopic state

is given by the Boltzmann factor of that state divided by the sum of the Boltzmann

factor of all possible states (i.e., partition function). It’s worth noting that although

enzymatic reactions (i.e. phosphorylation) are involved in signaling can drive a
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system out of equilibrium, we show in Appendix that the steady state distribu-

tion of a given state takes the Boltzmann form. In other words, the probability of

having a phosphorylated PK given that the receptor kinase is phosphorylated, viz.

P(K1 = 1|R = 1) =
e−βθR,K1

1 + e−βθR,K1

, (2.1)

where the numerator is the Boltzmann factor associated with this configuration

while the denominator is the sum of this factor and that associated with (K1,R) =

(0, 1) (i.e., factor 1). Here we denote θR,K1
as the binding affinity (BA) of R to K1

(i.e. θR,K1
= ∆F − µ̃, where ∆F is the free energy difference between the bound

and unbound state and µ̃ is the chemical potential of phosphorylated R ; see Ap-

pendix A for its expression in terms of kinetic parameters.) By conservation, the

complementary configuration has probability P(K1 = 0|R = 1) = 1 − P(K1 =

1|R = 1) = 1/(1+ exp(−βθR,K1
)). The cases where receptor is not phosphorylated

(i.e. R = 0) are similar except that the binding affinity is now denoted as W , which

is assumed to be positive and large (i.e. βW & 1 ) so that the probability of having

a phosphorylated K1 given that there’s no signal input is almost zero, viz.

P(K1 = 1|R = 0) =
e−βW

1 + e−βW
≈ 0, (2.2)

which implies P(K1 = 0|R = 0) = 1− P(K1 = 1|R = 0) ≈ 1. Note that practically

this would require βW ≥ 4.60 in order to achieve e−βW ≤ 0.01. With all these

defined, one can summarize all four configurations and their statistical weights

by the phosphorylation probability of K1 conditioned on the state of R , P(K1|R)

(see Fig. 2·1D). (iii) Finally, since the thermodynamic description of the interaction

between K1 and TF is the same as that between R and K1, one can write down

P(TF |K1) in a similar fashion by relating θR,K1
to θK1,TF (see Fig. 2·1D.)
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2.3 Mutual information and PPIs

Mutual information between two random variables measures how much know-

ing one tells us about the other, usually measured in units of bits(Shannon, 2001;

Cover and Thomas, 2012). In biology, it has been widely used to characterize the

information transfer by biochemical systems (Johnson, 1970; Detwiler et al., 2000;

Tkačik et al., 2009; Mehta et al., 2009; Walczak et al., 2010; Tkačik and Walczak,

2011; Cheong et al., 2011; Brennan et al., 2012). Here we focus on defining this

information-theoretic quantity in terms of PPIs for a given PK signaling network.

The mutual information of interest is that between the receptor kinase and TF

output, I (R ;TF ), since it quantifies how many input states cell can distinguish

solely by examining its TF readout. Mathematically,

I (R ;TF ) = ∑
R

∑
TF

P(R)P(TF |R) log2

[
P(TF |R)
P(TF )

]
. (2.3)

Note that since the summations in Eq.(2.3) are over {0, 1}, this signaling network

represents a discrete (binary) channel(Cover and Thomas, 2012). Physically speak-

ing, P(TF ) quantifies the transcriptional readout, P(TF |R) defines the input-output

relation (i.e., channel transfer function), and P(R) measures the input, all at steady-

states. Note that the state of PK, K1, is absent from this expression since it is embed-

ded in the input-output relation. Within the thermodynamic framework defined

based on Fig. 2·1C and detailed in Fig. 2·1D, all quantities in Eq.(2.3) can be ex-

plicitly calculated: signal input P(R) is given in Fig. 2·1D while the channel input-

output relation (i.e. transfer function), P(TF |R), is obtained by first invoking the

conditional independence of TF and R on K1, then marginalizing contributions

from K1, viz. P(TF |R) = ∑K1
P(TF |K1)P(K1|R). Finally, the output is simply
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Figure 2·1: (A) A model signaling network that consists of three
nodes is shown. The PPIs and PTMs that involve a single node (e.g.
kinase node, colored dark blue) is illustrated on the right. In a PTM
network, edges between nodes encodes both the phosphorylation
dependent PPIs and the resulting change in enzymatic activities (e.g.
active/inactive). (B) Naturally occurring pathways that can be con-
ceptualized as the network shown in A. In epidermal growth factor
receptor (EGFR) signaling, binding of EGF to the extracellular do-
main of EGFR leads ot the its dimerization and the phoshorylation of
its kinase domain. This triggers signaling through phosphoryaltion-
dependent interactions. (C) A signaling pathway can be viewed as
a noisy communication channel (left). The input to this pathway is
a ligand (L) that binds to the receptor kinase (R) which, through al-
losteric interactions, leads to receptor kinase phosphorylation. The
phosphorylated receptor kinase then specifically binds its cognate
kinase (K ) which in term translocates into the nucleus to activate
transcription. A pictorial summary of these events are shown on
the right. The steady-state phosphorylation probability is annotated.
Non-specific interactions (i.e. those highlighted in green) serve as
noise in the network representation. All species are colored accord-
ing to the nodes they correspond to (left). (D) Probability of PTM
states in the thermodynamic model. Species are labeled with refer-
ence to A. As in the main text, binary variables R ,K1,TF ∈ {0, 1} are
used to indicate the PTM states of these species with value 1 indicat-
ing a phosphorylated state (transcribed state for TF) and 0 otherwise.
Panels are organized according to the binding interactions involved
and are indicted at the top.
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given by P(TF ) = ∑R P(TF |R)P(R). Explicitly, the transfer function is given by:

P(TF = 1|R = 1) ≈
(

e−βθK1,TF

1 + e−βθK1,TF

)(
e−βθR,K1

1 + e−βθR,K1

)
(2.4)

P(TF = 1|R = 0) ≈ 0 (2.5)

P(TF = 0|R = 1) ≈
(

1

1 + e−βθK1,TF

)(
e−βθR,K1

1 + e−βθR,K1

)
+

(
1

1 + e−βθR,K1

)
(2.6)

P(TF = 0|R = 0) ≈ 1, (2.7)

where the approximation in the last line of these expressions indicates the limit

where βW & 1 so that e−βW → 0. In this limit, the output is simply

P(TF = 1) ≈
(

e−βθK1,TF

1 + e−βθK1,TF

)(
e−βθR,K1

1 + e−βθR,K1

)
q (2.8)

P(TF = 0) ≈
[(

1

1 + e−βθK1,TF

)(
e−βθR,K1

1 + e−βθR,K1

)
+

(
1

1 + e−βθR,K1

)]
q + (1− q)

(2.9)

With all these at hand, we can express Eq. (2.3) as a function of BAs θi ,j . In Ap-

pendix A, we provide the analytic expression of mutual information Eq.(2.3) in

terms of BAs. We have thus established an explicit functional relation between

mutual information and PPIs.

2.4 Results

2.4.1 Weak binding affinities result in noise that limit the signal-to-noise ratio
and information capacity

A key biophysical quantity that controls the network level properties is the bind-

ing affinity – or equivalently the binding energy – between proteins. When the

binding affinity is large, proteins stay tightly bound to there targets. Small binding

affinities allow proteins to quickly bind and unbind from targets but can give rise
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to transient binding. Here we examine how these considerations affect informa-

tion transmission through a signaling network. To understand this tradeoff quan-

titatively, we consider a family of single-input, single-output signaling networks

consisting of a receptor kinase R that phosphorylates a variable size intermediate

layer consisting of n kinases Ki (i = 1, · · · , n), and a transcriptional output TF (see

Fig. 2·2A). The binary variables R ,Ki ,TF ∈ {0, 1} encode the PTM-state of the

protein with the value 1 indicating a phosphorylated state and 0 an unphospho-

rlyated state. We assume that the output transcription factor is active if and only

if it is phosphorylated and the that the circuit is designed to activate the TF in the

presence of a ligand at concentration L. We focus on information transmission at

steady-state and neglect information encoded in the temporal dynamics.

A fundamental measure of noise in signaling networks is the signal-to-noise

ratio (SNR) (Detwiler et al., 2000; Cover and Thomas, 2012). To define the SNR,

we make use of the probability that the output TF is active in the presence of the

ligand Q(L) ≡ P(TF = 1|L). In general, this input-output function is probabilis-

tic. The stochasticity in Q stems from the probabilistic nature of protein-protein

binding that is inherent in our thermodynamically-inspired models. And as in

all thermodynamic models the more negative the binding affinities (θk,j where

k , j ∈ {R ,Ki ,TF}), the smaller the effect of thermal fluctuations. In terms of Q(L),

the output obtained under a high input, L = 1, (e.g. large number of phosphory-

lated receptor kinase) defines the best “signal” one can obtain for a given realiza-

tion of BAs. On the other hand, there can still output signals even when the input

is absent (i.e. L = 0) due to thermal “noise” inherent in PPIs (i.e. contributions

from W , see Appendix A 1 for details). We therefore define the signal-to-noise ra-

tio (SNR) of a given network/channel as the ratio between Q(L = 1) and Q(L = 0),

averaged over realizations of BAs.
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To understand the effect of the strength of PPI on the SNR, we consider drawing

the binding affinities for the interactions in our network from a normal distribution

θi ,j ∼ N (µ, σ) with mean binding affinity µ ≡ 〈θ〉 and variance σ2, where 〈·〉

refers to average over different realizations of BAs. The PPIs involving W , which

sets the time scale of unbinding between unphosphorylated kinase to its substrate,

is varied in the following analysis. This allows us to probe the effect of both the

mean binding strength as well as the thermal noise resulting from W . Under these

assumptions, we can analytically derive a formula for the SNR (see Appendix A for

full derivations). When proteins bind tightly (i.e. large negative binding energies

βµ . −1), the SNR for the simplest signaling network L→ R → TF reduces to the

following simple expression:

SNR ≡ 〈Q(L = 1)〉
〈Q(L = 0)〉 = eβW

[
1− e

β
(

µ+ σ2

2

)]
(2.10)

For networks with n-layers of kinase between input R and output TF , as de-

picted in Figure 2·2A, we plot the color map of their log-SNR at different level of

specific and non-specific PPIs in Figure 2·2B. Regardless of the depth of network,

n, strong specificity in PPIs, namely, tighter binding, always leads to higher SNR.

This suggests that BA is an important source of “noise” that limits the resolution of

output signal. To further explore this idea, we calculate the corresponding input-

output relation (i.e. P(TF = 1) as a function of P(R = 1) ≡ q) in Figure 2·2C both

at tight- and weak-binding. As shown, networks with strong BAs always have a

larger gain, implying a higher information capacity(Cover and Thomas, 2012; De-

twiler et al., 2000). Note that the activation of the receptor kinase, R = 1, depends

on whether it is bound to ligand, and thus q is implicitly a function of ligand con-

centration L. In Appendix A 1, we explicitly calculate input-output mutual infor-

mation, I (R ;TF ), for networks of varying depth at both binding scenarios. We also
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examined the effect of input distributions on mutual information (see Appendix A

for details). As expected, the mutual information is zero when input is completely

certain, viz. q = 0, 1. When binding is tight (i.e., βµ . −1), the optimal input

distribution q? that maximizes the mutual information is q? = 0.5 – the input dis-

tribution with highest entropy (see Appendix A 2 Figure A·2). Surprisingly, for

weak binding we find numerically and analytically that q? ≤ 0.5 (see Appendix A

2 Figure A·5).

To summarize, we have found that the binding affinity of interactions can be

directly related to the information transmission and the signal-to-noise ratio. We

find that weak binding affinities give rise to noise stemming from thermal fluctu-

ations and that this noise can always be reduced by increasing binding affinities

and making binding more deterministic.

Noise due to non-specific PPIs mediates the “information-speed” trade-off

The previous observations are hard to reconcile with the observation that many

PTM-recognition domains such as SH2 and SH3 have only moderately strong bind-

ing affinities (Ladbury and Arold, 2000; Ladbury and Arold, 2011). For this reason,

we investigated tradeoffs that arise from having strong PPIs. One common re-

quirement of eukaryotic signaling pathways is that they should be able to quickly

respond to changes in the environmental conditions. This led us to ask how the

strength of PPIs affects kinetics. Stronger binding affinities make it harder for pro-

teins to disassociate, suggesting that there maybe a trade-off between reducing

noise and responding quickly in the biophysics of PPIs.

To test these ideas, we ‘translated’ our thermodynamic model for the cascade

studied in Figure 2·3A into a kinetic model. Note that the thermodynamic model

presented in Fig. 2·1D can be explicitly derived from the kinetic formulation. Here

we invoke this duality to investigate both the signaling dynamics through kinetic
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Figure 2·2: Noise due to non-specific protein-protein interactions
(PPIs) limits the quality of information transmission. (A) A simple
linear network that mediates information of input (L) through a n-
layer kinase cascade ( Ki , i = 1, 2, · · · , n), to an output transcription
factor (TF) which is active when phosphorylated. As in Figure ?? C,
green circles indicates noise. (B) Color map shows the numerically
simulated log-signal-to-noise ratio (log-SNR), defined by Eq.(2.10),
of the network shown in A at different level of specific and non-
specific interactions. Binding affinities βθi ,j is drawn from a normal
distribution with mean 〈θ〉 and variance 0.01 (see main text for simu-
lation details). This quantity can also be obtained by solving Eq.(A.9)
(see Appendix). In this panel, we show the result for n = 2, 5. (C)
Input-output relation of the n-layer kinase cascade (n = 2, 5) at tight-
and weak-binding is shown.
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formulation as well as the steady-state information capacity by the thermody-

namic calculation presented in the previous section. Based on our thermodynamic

framework, we first calculated input-output mutual information, viz. I (R ;TF ) in

Fig. 2·1C, with BAs drawn from distributions with different means 〈θ〉. Due to

the interplay between the kinetic and thermodynamic picture which we explicitly

derived in Appendix A, we mapped these mean BAs 〈θ〉 to their corresponding

kinetic rates. The key idea behind this mapping is that the steady state solution of

the kinetic model with these rate constants is equivalent to its probabilistic coun-

terpart in the thermodynamic model presented above. For example, the fraction of

phosphorylated PK i at steady state is the same as P(Ki = 1) in the thermodynamic

model. The BAs in the thermodynamic picture, θi ,j , is related to the Michaelis con-

stant of kinase j phosphorylation reaction by i , Km, via θi ,j = kBT ln(Km/X SS
i ),

where X SS
i is the steady state concentration of phosphorylated kinase i .

We performed simulations to measure dynamic response of the signaling cir-

cuit to an abrupt perturbation where the input signal was suddenly removed (see

Figure 2·3A). We characterized the response times by measuring the time τ it took

the output to reach a new steady-state. We repeated this procedure for binding

affinities drawn from distributions with different means 〈θ〉. In Figure 2·3B, we

plot both mutual information and the response speed, defined as the inverse of the

response time τ−1, against β〈θ〉. This plot shows that response speed and mutual

information change in opposite ways as the binding affinity is decreased. Tight-

binding (specific PPIs, more negative β〈θ〉) allows the network to transmit more

information at the expense of a slower dynamical response (see Figure 2·3C).

This “speed-information” trade-off can be viewed as a biophysical manifesta-

tion of the gain-bandwidth tradeoff (Detwiler et al., 2000). Intuitively, tighter bind-

ing means that the binding off-rate is fairly small compared to the on-rate which
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is dictated by diffusion. This implies once proteins are bound through specific

interactions, the lifetime of the bound complex is long.

2.4.2 Information loss in signaling ‘can’ be mitigated by cross-talks when in-
puts are correlated

Thus far, we have considered discreet, linearly connected pathways with a single

input and output. However, native eukaryotic signaling networks are highly in-

terconnected, with multiple inputs and outputs that cross-talk through PPIs. For

this reason, we wanted to better understand how information transduction capac-

ity in multi-input, multi-output (MIMO) networks depended on both the strength

of PPIs and the structure of the input signal (i.e. the correlation between inputs).

To do so, we studied two parallel pathways, each consisting of an input recep-

tor kinase R and output TF (see Figure 2·4A). In this scheme, cross-talk refers

to interactions where proteins in one pathway activate those in the other (i.e.,

dashed lines in Figure 2·4A). We varied the binding affinity and correlation be-

tween two inputs, R1 and R2 – defined as the connected correlation function (co-

variance) between the inputs c ≡ 〈R1R2〉 − 〈R1〉〈R2〉with 〈·〉 indicating an average

over the joint input distribution P(R1,R2) – and calculated the mutual informa-

tion, I ({R1,R2}; {TF1,TF2}) between all the inputs outputs, (see Figure 2·4B for

examples). We found that, regardless of the degree of correlation between inputs,

pathway cross-talk is always detrimental to information transmission when noise

from non-specific binding is small (i.e., tight-binding). However, for weak binding

and positively correlated inputs, cross-talk can confer a slight benefit, actually in-

creasing information transmission (see Figure 2·4C and Appendix A 6 Figure A·8

for full statistics under the distribution of correlations). This can be rationalized

by noting that cross-talk allows cells to reduce noise by ”averaging” the two input

signals. This averaging is of course only possible if the signals are correlated and
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contain redundant information.

Our results show that while inter-pathway cross-talk usually degrades infor-

mation, it may actually provide a benefit when input signals are correlated by

reducing noise due to weak PPIs. Simulations on larger pathways confirm this

qualitative trend (though it becomes more difficult to define cross-talk for more

complex circuits). Finally, we note that our presentation has been limited to the

case where cross-talk involves cross-activation between pathways (i.e., pathway 1

activates the pathway 2 intermediate and vice versa). This is reasonable since we

have restricted ourselves to considering networks consisting of kinases and some

background phosphatase activity. If instead, we had allowed for cross-inhibition

between pathways (i.e., pathway 1 inhibits the pathway 2 intermediate and vice

versa), information capacity would be slightly increased for negatively correlated

signals (results not shown) and diminished for correlated inputs.

2.4.3 Information maximization for complex multi-input, multi-output circuits

System-wide studies of phosphorylation-based signaling networks have revealed

underlying PPI networks to be highly interconnected (Levy et al., 2010; Breitkreutz

et al., 2010). Here we asked how interconnectivity within signaling network can

affect its information capacity. To explore this question, we developed a new algo-

rithm we dub ”InfoMax”, which identifies the binding affinities and protein con-

centrations that maximize information transmission for a given network topology.

InfoMax, which stands for information maximization, begins with an initial ran-

dom guess of binding affinities. It then utilizes the thermodynamic framework

we developed to calculate the input-output mutual information using these affini-

ties. Optimization is then performed on these affinities to maximize mutual infor-

mation. Since the explicit functional dependence of mutual information on bind-

ing affnity is known (c.f. Eq.(2.3) and Figure 2·1D), this procedure can be done
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Figure 2·3: Specificity in PPIs mediates the information-speed trade-
off. (A) A non-zero constant input (ligand binding of duration indi-
cated in red) is administered to the network shown on the left. This
signal turns on the output (TF) to its steady-state before switching
off. The speed of response is defined as τ−1, where τ is the time
for output TF to reach a new steady-state after the input is turned
off (indicated as response decay in blue). (B) Mutual information
and response speed as a functions of mean binding affinity β〈θ〉 for
the network shown in A with n = 5. (C) Mutual information ver-
sus response speed as β〈θ〉 is varied. Different colors correspond to
networks of different depth n.

through a combination of analytic and iterative schemes. To make our approach

more generalizable and agnostic to topology, we opted to use simulated anneal-

ing to conduct optimization (see Methods for detailed description). A Python

implementation of InfoMax is freely available at the author’s Github repository:

https://github.com/chinghao0703/InfomaxDesign.

In order to test the utility of InfoMax, we constructed a library of two-input-

two-output networks where we systematically varied network depth (total num-

ber of nodes per layer, n in Figure 2·5A) and width (number of nodes per layer,

nw in Figure 2·5B). PPI affinities in these networks were optimized using the In-

foMax algorithm, allowing us to identify the PPIs configuration with the highest

maximum mutual information, subject to the constraints that BAs are bounded

within a given range. We found that increasing network depth always decreased

https://github.com/chinghao0703/InfomaxDesign
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information transmission. This can be understood by noting that additional sig-

naling layers increase non-specific PPI-mediated noise, without ever increasing

the strength of the input signal. This observation is a manifestation of the data-

processing inequality (DPI), which states that information is never gained by ad-

dition more layers when transmitting across noisy channels (Cover and Thomas,

2012; Kinney and Atwal, 2014)( see Figure 2·5A and Appendix A 4 Figure A·7). For

the optimal solution found, mutual information almost saturates at the 1 bit limit,

and deviation from this optimal, say, with weak-binding interactions for any given

layer in the kinase cascade, will substantially diminish information transmission

(see Figure 2·5A). In contrast, we found that increasing the width of the intermedi-

ate network can increase information transmission modestly for small widths. As

seen in Figure 2·5B, these gains quickly saturate after the network reaches the 2-4-2

topology (nw = 4). This suggests that modestly widening networks can alleviate

bottlenecks in information transmission by reducing noise from weak PPIs.

Interestingly, InfoMax also reveals a PPI-design strategy crucial for networks

with complex topology. For one input, one output networks, we have shown pre-

viously that tight-binding between proteins (i.e. specific interactions) helps trans-

mit information. However, for MIMO networks with wide intermediate layers

(e.g. those shown in Figure 2·5B with large nw ), such intuition is not straight-

forward, especially when inputs are correlated. This is illustrated in the solution

found through InfoMax in Figure 2·5B. For example, a subset of cross-layer PPIs

are substantially stronger than others, and such combination of BAs collectively

achieves maximum mutual information.
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2.5 Discussions

The ability of cells to reliably transduce environmental signals is critical for their

survival, growth, and proliferation. In this article, we developed a theoretical

framework for relating the biophysics of post-translational modifications (PTMs)

and protein-protein interactions (PPIs) to information processing in eukaryotic sig-

naling networks. We showed that PPIs with moderate binding affinities necessar-

ily result in thermal noise that limits information transmission within a signal-

ing pathway. While noise can be reduced by increasing binding affinities, this

comes with the expense of sluggish dynamic responses, highlighting a fundamen-

tal trade-off between information and signaling pathway response dynamics. Al-

though extensive pathway cross-talk is relatively common in signaling networks,

we found that it confers little or no advantage to a signaling networks information

capacity.

Our results are consistent with other theoretical works that implicate noise as a

major source of information transmission error in signaling (Detwiler et al., 2000;

Tkačik et al., 2009; Mehta et al., 2009; Walczak et al., 2010; Tostevin and Ten Wolde,

2009; Cheong et al., 2011; Brennan et al., 2012). What is novel about in this work

is the ability to directly trace the origin of noise in eukaryotic signaling networks

to the strength of PTM-mediated protein-protein interactions. Our results on cross

talk also agree with those obtained in (Tareen et al., 2018) that cross-talks degrades

information for channels where input noise can be neglected and inputs are uncor-

related. In addition, our information-theoretic analysis reveals the disadvantages

of a deep signaling network, particularly in the face of high non-specific binding

(see Appendix A 4 Figure A·7). This is consistent with previous work on MAP ki-

nase cascade (Detwiler et al., 2000), where the authors argued that maintaining fast

response times requires a smaller number of steps with a higher gain per node in
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order to overcome molecular shot noise. Our simulations also show that informa-

tion transmission quickly degrades for depths larger than three, which potentially

explains the ubiquity of MAP-kinase cascades.

Our work has interesting implications for both natural and synthetic circuits.

A recent study of the kinase-phosphatase interaction network in budding yeast

identified 1844 interactions in budding yeast. Somewhat surprisingly, the bind-

ing affinities of many of the identified interactions fell into a narrow affinity win-

dow(Breitkreutz et al., 2010). Binding affinity clustering was particularly pro-

nounced for the kinase/phosphatase catalytic domains that mediate phosphorylation-

dependent binding(Mok et al., 2010). Our work on the information-speed tradeoff

outlined above suggests such an optimized affinity range could be a common fea-

ture of networks that need to transmit signals reliably yet quickly in response to

noisy environments (Ladbury and Arold, 2012).

Another intriguing observation from the yeast kinase-phosphatase interactions

is the existence of extensive cross-talk between signaling pathways (Breitkreutz

et al., 2010) that the authors describe a ‘collaborative network of interactions’ – a

topology that suggests a distributed cellular decision-making strategy (Levy et al.,

2010). In this article, we show that cross-talk, while unlikely to increase informa-

tion transmission, is also not particularly detrimental for signaling. Thus, widespread

experimental observations of cross-talk in yeast signaling networks likely has an

alternative origin. An intriguing hypothesis is that cross-talk arises because of evo-

lutionary selection for signaling robustness(Levy et al., 2010). Distributing infor-

mation processing tasks to many interacting proteins may allow cells to maintain-

ing reliable information transmission even when proteins are deleted or modified.

Our study is directly inspired by synthetic biology, where a long-standing engi-

neering goal is to create cell-based therapies by reprogramming the way in which
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cells interact with their environment(Fischbach et al., 2013). Creating synthetic

kinase-based signaling circuitry that enables user-customized sense and respond

function will necessarily involve information processing considerations, and may

favor circuit designs that maximize mutual information between receptor-mediated

input and transcriptional output. The potential design space for signaling circuits

is vast-unlike genetic circuits, signaling circuits consists of freely diffusible molec-

ular components and thus possess many more tunable parameters that have to

be accounted for during design, including circuit topology, intracellular species

concentrations, lifetimes, interaction affinities, and intrinsic catalytic rates (Bashor

and Collins, 2018). Conclusions from our work suggest some general rules that

could be used to constrain the search for productive circuit configurations. For ex-

ample, focusing on engineering high interaction specificity for parts that mediate

PTM-mediated PPIs could potentially mitigate noise, while using Infomax could

be used to maximize the information capacity for a given circuit architecture.
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Figure 2·5: InfoMax design finds the PPIs that maximize information
transmission. (A) InfoMax is applied to networks with one input, n
layers of kinase, and one output. For n = 2 and 5, the bar graph on
the left shows the binding affinities that give the maximum mutual
information (indicated as Imax on top), as opposed to a non-optimal
solution with mutual information I < Imax shown on the right, all
measured in bits. Bars indicate binding affinities between proteins.
For example, bar labeled as R → K1 is the binding affinity of receptor
kinase R to kinase K1. (B) InfoMax applied to 2-nw -2 networks. This
nomenclature refers to all-to-all connected networks with two nodes
in the input layer, nw in the hidden, and two at the output layer.
Binding affinities of all networks are optimized to achieve maximum
mutual information using simulated annealing (see Methods). Bar
charts show the optimized binding affinities with Imax indicated on
top. In this panel, networks are subject to inputs with zero correla-
tion. In all panels, −βθ is constrained to be within [−2, 8].
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Chapter 3

Can we design signaling network to
implement desired functions?

”If one wants to make a machine mimic the behaviour of the human computer
in some complex operation one has to ask him how it is done, and then translate
the answer into the form of an instruction table. Constructing instruction tables is
usually described as ’programming.’” (Alan Turing, 1950)

It is known that living cells use complex biochemical networks to perform so-

phisticated computational tasks. Yet, a major question in synthetic and systems

biology remains: How are network level computational properties encoded in the

biophysics of protein-protein interactions (PPIs)? We address this question by de-

veloping a new computational framework relating the thermodynamics of PPIs to

network signaling properties in a simplified synthetic biochemical system inspired

by the ”reader-writer-eraser” signaling paradigm (RWE paradigm). We show with

our framework that networks engineered to have identical steady-state decision

surfaces can exhibit very different dynamical behaviors. More generally, our work

shows that complex computational and information processing tasks can be pro-

grammed in cellular signaling circuits by manipulating biophysical parameters.
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3.1 Introduction

One of the defining features of living organisms is the ability to sense and re-

spond to environmental signals by invoking internal responses (i.e. decisions),

which often leads to changes in gene expression or phenotypic properties. At

the cellular level, this ability, often termed cell signaling, forms the basis of de-

velopment(Kuchroo et al., 1995; Gerhart and Kirschner, 1997), immunity(Taganov

et al., 2006), and tissue homeostasis(Pasparakis, 2009). In the past few decades,

there has been a large effort to characterize and understand the basic principles

governing cellular signaling (Koch et al., 1991; Pawson and Nash, 2003; Lim and

Pawson, 2010; Lim et al., 2014; Hunter, 2000; Selimkhanov et al., 2014; Detwiler

et al., 2000), and to use this knowledge to engineer novel signaling networks to

implement complex decisions(Kiel et al., 2010; Lim, 2010; Khalil and Collins, 2010;

Morsut et al., 2016; Roybal et al., 2016; Bashor et al., 2010; Lim et al., 2014). Despite

these considerable successes, our understanding of how biophysical properties –

such as the strength and types of protein-protein interactions (PPIs) – shape and

constrain the cellular decisions via signaling remains limited(Dayarian et al., 2009;

Letsou and Cai, 2016).

Cellular signaling networks are composed of multiple specialized proteins in-

teracting with one another. These proteins often exist in multiple internal states

(e.g. phosphorylated or unphosphorylated; allosteric conformations etc.) that

function as the biochemical correlates of information. From the point of view of

information processing and computation, the internal states of proteins (e.g. the

phosphorylation state) play an analogous role in biochemical circuits to the volt-

age state (high or low) of a memory cell in modern computers. For example, a

protein that bears two internal states can in principle store one bit of information.

Just as computers perform computations by manipulating memory states through
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physically wired circuitry, biochemical signaling networks perform computations

by modifying the internal states of proteins through PPIs. Thus, to be able to per-

form complex computations biochemical signaling networks must be able to store

many bits of information and selectively and reliably change the internal states of

proteins in the network.

These observations suggest that cellular decisions through signaling is inti-

mately related to the structural organization of signaling proteins. Over the last

few decades, it has become clear that many signaling proteins in eukaryotes have

a modular structure. Proteins often possess multiple structural domains with dis-

tinct functional roles. Domains can be divided into two broad categories: inter-

action domains, which mediate interactions with other molecules within the cell

(Koch et al., 1991; Pawson and Nash, 2003) and catalytic domains, which catalyze

reversible enzymatic reactions through post-translational modifications (PTMs)

such as phosphorylation or methylation (Jin and Pawson, 2012; Lim et al., 2014).

Even with the functional distinction between domains from different categories,

they often work in tandem to regulate the catalytic activity of proteins through al-

losteric control. In contrast with conventional allostery where the catalytic activity

and binding interactions of a protein are tightly coupled into a single structural

unit(Cui and Karplus, 2008; Monod et al., 1965), the emerging ”modular allostery”

paradigm suggests that in many signal proteins there exists a structural separa-

tion between the output catalytic and regulatory domains(Lim, 2002; Taylor and

Radzio-Andzelm, 1997). Those that implement modular allostery usually contain

catalytic domains that, when isolated, display constitutive activity but are oth-

erwise auto-inhibited by other regions of the protein through steric blocking or

conformational contortion. Indeed, this modular domain structure confers a wide

variety of PPIs and allosteric control, which essentially provide the underlying
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”biophysical hardware” cells can utilize to carry out computation and decision

making.

Synthetic biologists have started to exploit these insights to start engineering

sophisticated synthetic signaling networks. One of the prominent principles ex-

ploited in recent synthetic systems is the RWE paradigm(Bashor et al., 2010; Lim

et al., 2014; Khalil and Collins, 2010). Writer proteins such as kinase or Guanine

nucleotide exchange factor (GEF) enzymatically catalyze the transfer of chemical

marks onto target molecules, whereas eraser proteins (e.g. phosphatase or GTPase-

activating proteins, GAPs) catalyze the removal of the chemical mark. The pres-

ence of a mark is then read out by a reader module, usually a binding motif that

recognizes and binds the modified chemical mark.

Inspired by these ideas, in this chapter we present a new theoretical framework

to explicitly relate the thermodynamics of PPIs to cellular decisions carried by sig-

naling networks. In this chapter, we consider synthetic-biology inspired circuits

based on the reader-writer-eraser signaling paradigm. For concreteness, most of

our examples focus on circuits that utilize phosphorylation cascades where the

phosphorylation of an enzyme can modify its catalytic activity.

A novel feature of our framework is that we can systematically “program”

network level computational and information processing properties by an appro-

priate choice of microscopic biophysical parameters (e.g. protein concentrations,

binding energies, Michaelis-Menten constants). We also develop a method for ex-

amining the sensitivity of network level computational properties to changes in

these biophysical parameters. Importantly, these biophysical properties can be

easily manipulated in experiments allowing for the rationally-design synthetic cir-

cuits with a desired computational process. We concentrate on two types of design

problems: designing synthetic circuits to implement a given multi-input multi-
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output (MIMO) steady-state response function (i.e. MIMO decision surfaces) and

finding networks that optimize information transmission (InfoMax). The first of

these is closely related to programming computation and the latter to information

transmission. Though obviously related, the two objectives are different and opti-

mize different objective functions since making decisions necessarily involves the

loss of information (Mehta and Schwab, 2012; Mehta et al., 2016; ten Wolde et al.,

2016).

The chapter is organized as follows. We begin by introducing a thermody-

namics model for the steady-state properties of PPI networks. Note that although

similar type of analysis has been applied to the context of transcriptional network

and enzymatic reactions(Bintu et al., 2005c; Bintu et al., 2005a; Einav et al., 2016;

Razo-Mejia et al., 2017), here we focus on how to properly frame it in the context

of signaling and to incorporate the non-equilibrium nature of catalytic reactions

into the network level (Mehta et al., 2016). After that we introduce a method-

ology to systematically learn how to implement decisions through experimentally

accessible “parameters”. We then expatiate the notion of decisions in terms of com-

putation and information, with the former focusing on how to faithfully realize a

target input-output relation (I-O relation) while latter emphasizing how to reliably

transmit information. We then apply our framework to examine how commonly

occurring signaling motifs such as coherent and incoherent feedforward loops and

two-input, two-output decision surfaces and show that it is possible to tune bio-

physical parameters to have the same steady-state decision surface, but very dif-

ferent dynamical behaviors. We then discuss the implications of our work through

the lens of synthetic biology, and discuss experimental realizations. We then con-

clude with a discussion of the implications of our analysis for understanding the

more, complex, naturally occurring in eukaryotic cell signaling.
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3.2 Results

3.2.1 Modular allostery and the “reader-writer-eraser” paradigm

Cell signaling relates extracellular cues (i.e. inputs) into intracellular responses. To

model this process, we need an extended computational framework that combines

both the thermodynamics of protein-protein interactions and a model of how the

catalytic activity of proteins can change the post-translational state of a protein.

Inspired by naturally occurring networks (see Figure 3·1A ), we focus on phos-

phorylation cascades with two or more different protein kinases. For example, in

the ERK pathway shown in the left panel of Figure 3·1A epidermal growth factor

receptor (EGFR) activation (i.e. input) facilitates the phosphorylation of extracel-

lular signal-regulated kinase (ERK), which in term drives the phosphorylation of

its downstream effector ribosomal protein S6 kinase (RSK). Phosphorylated RSK

then catalyzes the phosphorylation of its downstream serum response factor (SRF),

which then promotes the transcription of FOS mRNA (i.e. output).

Natural circuits, such as the one described above, often posses complex pro-

teins that can undergo complex allosteric changes in response to post-translational

modifications. This significantly complicates efforts to both model and build syn-

thetic systems. For this reason, we focus on simple synthetic systems based on the

“reader-writer-eraser” signal relay paradigm(Bashor et al., 2010; Lim et al., 2014;

Khalil and Collins, 2010). In our system, proteins are engineered to have modular

allostery.

As in another other signaling systems, the catalytic activity of signaling pro-

teins is not only affected by its own activator (e.g. the kinase that phosphorylates

the proteins) , but also by an opposing regulator called a phosphatase that de-

sphosphorylates the protein. Through out, we assume that phosphatases are con-

stitutively expressed, resulting in a constant background dephosphorylation rate.
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In the absence of a kinase, proteins are quickly desphosphorylated and a protein

must be bound to an active kinase in order to be phosphorylated.

3.2.2 A thermodynamic model combining protein interactions with post trans-
lational modifications

We now discuss how we mathematically model such a systems. Concretely, let n

be the number of distinct kinases in the protein kinase interaction network that can

undergo phosphorylation and dephosphorylation, and let xi , i = 1, · · · , n be the

binary variable indicating the phosphorylation state of protein kinase i with xi = 1

and 0 being phosphorylated and unphosphorylated, respectively. Due to the mod-

ular domain composition, these kinases are assumed to interact in a phosphory-

lation dependent manner. When a protein kinase is phosphorylated, it can bind

its cognate binding partners (i.e. other kinase proteins) and change their phos-

phorylation state. Conversely, the phosphorylation state of a protein kinase can be

modified if it is bound by another phosphorylated kinase. Since all molecules can

only bind and modify the phosphorylation state of another kinase only if they are

themselves phosphorylated and that their interactions are cognate, we will use the

shorthand of calling phosphorylated kinase active (xi = 1) and unphosphorylated

kinase inactive (xi = 0).

Next we can combine the catalytic activity and binding interactions of kinases

into a single generalized thermodynamic model. It’s worth noting that similar

models have been proposed to help understand transcriptional regulation (Bintu

et al., 2005c; Bintu et al., 2005a; Phillips et al., 2012). In particular, this type of

analysis has been shown that for a wide class of regulatory architectures one can

derive a set of “governing equations” that relates fold change in gene expression to

physically tunable regulatory parameters(Garcia and Phillips, 2011). However, cell

signaling is at many levels more complex than transcriptional regulation, in part
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due to the intricate PPIs that are coupled to enzymatic reactions. From thermo-

dynamics standpoint, this implies that underlying process is often driven from the

equilibrium, therefore, enzymatic steady state need not follow Boltzmann distribu-

tion(Einav et al., 2016). Here we show (see Appendix B) that in our framework the

“probability” of enzymatic activity at steady state shares similar functional form

as that derived from the Boltzmann formalism. Indeed, this was also discovered

in simple repression models built on specific transcriptional circuits(Phillips, 2015;

Razo-Mejia et al., 2017). Note that simple systems with kinase cascade was consid-

ered in (Heinrich et al., 2002) but via the conventional chemical kinetics approach.

We begin by introducing a effective binding energy matrix ∆ε whose ji-th ele-

ment encodes the change of ”effective binding energy” when active kinase j binds

i , thereby rendering i catalytically active (i.e. phosphorylated). Concretely, ∆εji is

related to the Michaelis constant of the enzymatic reaction of i phosphorylation by

j , K (ji)
M , through ∆εji = kBT logK

(ji)
M , where kB is the Boltzmann constant and T is

temperature (see Figure 3·1B for a table summary and Appendix B for details). In

addition, we denote [ci ] ([c̃i ]) as the concentration of protein kinase i at its phos-

phorylated (unphosphorylated) form. Let P(x1 = 1|x\i , θ) be the steady-state prob-

ability of kinase i being in phosphorylated form, given the phosphorylation states

of other kinases in the system x\i , and the physical parameters θ := {∆ε, [c], [c̃]}.

Heuristically, one can express it in a suggestive Boltzmann form:

P(xi = 1|x\i , θ) =
∑j 6=i [cj ]xje

−∆εji/(kBT )

1 + ∑j 6=i [cj ]xje
−∆εji/(kBT )

.. (3.1)

In writing this we have set the weight of the unbound state to 1, and have made

use of the assumption that j can bind its cognate partner only if it is phosphory-

lated (i.e. xj = 1). We also assume that the probability for i to be phosphory-

lated is directly proportional to the probability to be bound by a kinase, which
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is simply the weighted Boltzmann factor. This, together with the condition that

[ci ] = P(xi = 1|x\i , θ)Ci , where Ci = [ci ] + [c̃i ] is the total concentration of i , defines

a generalized thermodynamic model for the state of our protein kinase interaction

network. Note that this can actually be derived by the conventional approach

based on the chemical kinetics of kinases and phosphatases(See Appendix B). Fi-

nally, we note that our formalism can be generalized to more complex signaling

circuit by replacing Eq. 3.1 with an appropriate partition function.

3.2.3 Finding biophysical parameters that implement a given decision surface

To see how these interactions can be used to relate environmental cues (i.e. input)

to cellular decisions (i.e. outputs), it is helpful to view the signaling network as a

directed graphical model. First one represents different kinases by different nodes

whose activities are labeled by xi , and use directed links to indicate the phospho-

rylation reactions with arrow pointing from kinase to its substrate. For instance,

the directed arrow in the left panel of Figure 3·1, x2 → x3, encodes the fact that 2

(RSK) is the kinase of 3 (SRF). Indeed, one can also replace the summation over

j 6= i in Eq. (4.3) by its specific kinase denoted as j ∈pa(j). Following the same

example, we can write pa(3) = {2} since the kinase of 3 (SRF) is 2 (RSK). Since

every such phosphorylation event is directional and can be characterized by a con-

ditional probability Eq. (4.3), we can simply apply chain rule to arrive at the joint

probability of kinase activity:

P(x) := P(x1, · · · , xn) =
n

∏
i=1

P(xi |pa(i), θ), (3.2)

where P(xi |pa(i), θ) is given by Eq. (4.3). Note that x\i in Eq. (4.3) is now replaced

by pa(i) due to the specificity and directionality of interactions.

In the examples considered below, we assume that the ultimate output of our
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signaling network is transcriptional (e.g. a promoter for gfp controlled by an out-

put kinase). We model this by assuming that kinases in the last layer can bind

bind (multiple) transcription factor binding site(s), with the binding probability

again governed by a simple thermodynamic function of the form given in Eq. (3.1)

[CITE]. In assuming this form, we have assumed a hill coefficient of one for tran-

scription factor binding. However, cooperatively can be easily incorporated by

modifying the Michelis-Mentin form in Eq. (3.1) to a Hill equation. This highlights

another advantage of the framework discussed here: post-translational and tran-

scriptional information processing can be treated on equal footing using a single

thermodynamic model.

The equations above depend on the phosphorylation states of all proteins in our

network. To calculate the input-output relation for a signaling network, we simply

marginalize out the phosphorylation states of all kinases except for the input and

output (see 3.4 for details). For a signaling networks with m intermediate proteins,

in general this involves summing over 2m states and can become computationally

intractable when trying to design input-output surfaces for large networks (m �

1). To circumvent this computational bottleneck, we have written code that allows

us to perform this step quickly using a sophisticated algorithm based on Belief

Propagation (BP) (Yedidia et al., 2003; Yedidia, 2001; Mezard and Montanari, 2009).

Importantly, even after we marginalize, the input-output relation depends on

all the biophysical parameters θ in the signaling network: the concentration of all

proteins as well as the binding energy between all protein pairs. Our goal is to find

θ that reproduce a desired input-output relation. From a computational perspec-

tive, the ability to reproduce complex, multi-input, multi-output relations allows

for the programming of complex decision surfaces in response to environmental

inputs.
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Algorithmically speaking, for a given graphical representation of signaling path-

way associated with some parameters θ and a target decision surface, we first use

Eq. (4.3) and Eq. (3.2) to build a probabilistic description of kinase activity. We

then marginalize out the phosphorylation states of all kinases except for the input

and output to arrive at the decision surface defined through θ. Based on this, we

construct a objective function that measures the difference between the target de-

cision surface and the decision surface implemented through the current θ. This

function is then minimized by performing gradient descent on this objective func-

tion with respect to θ. Such gradient descent algorithms form the backbone of

many machine learning and optimization algorithms (Bishop, 2006). The output

of this procedure is a ”learned” decision surface which is a local minimum of the

objective function (see Figure 3·1C for the algorithm flowchart).

3.2.4 Learning decision surfaces for multi-input signaling circuits

We demonstrate our framework on a variety of two-input circuits shown in In Fig-

ure 3·2. The inputs to these circuits are the concentrations of two ligands L1 and L2

which can bind the receptors and induce a conformational change between an ac-

tive and inactive state. We model this process using a simple thermodynamically-

inspired two state model where the probability that the receptor is active depends

on the external ligand concentration. Such a simple two-state model of receptors

have been successfully used to make quantitative predictions in the context bacte-

rial chemotaxis (Keymer et al., 2006) and quorum sensing (Mehta et al., 2009; Teng

et al., 2011). Within the two-state receptor model, there is a one-to-one mapping

between ligand concentration Li and the probability that the receptor is active qi .

For this reason, we represent the inputs to the circuits directly in probability space

rather than working in concentration space (see (Mehta et al., 2009; Teng et al.,

2011) for detailed discussion).
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Figure 3·1: (A) Shown here are three representative network mo-
tifs in signaling based on cascade of two or more (phosphorylation
based) enzymes, the activity of which is determined by opposing
regulators (i.e. kinase and phosphatase). Coherent feedforward
loop: epidermal growth factor receptor (EGFR) activation (i.e. in-
put, not shown) activates the ERK-RSK-SRF pathway. Both phos-
phorylated RSK and SRF function to promote the transcription of
FOS gene. This motif can filter out noise and distinguish transient
from sustained inputs. Incoherent feedforward loop: EGFR sig-
naling wherein the activation of EGFR induces both the expression
of FOS and its inhibitor zinc-finger protein 36 (ZFP36), which pro-
motes FOS mRNA degradation. This motif demonstrates the tran-
sient memory of FOS due to the initial activation of ERK before it
turns on ZFP36 whose level accumulation serves to shut off FOS.
The perceptron-like motif can orchestrate multi-input-multi-output
(MIMO) decisions(Jordan et al., 2000). For example, cell division con-
trol protein 42 (Cdc42), a member of the Rho family GTPases, can be
stimulated both by the receptor tyrosine kinase (RTK) as well as the
G-protein coupled receptor (GPCR). Depending on the combination
of these inputs, Cdc42 can activate different downstream kinases:
p21 activation kinase (Pak), S6-kinase (S6K), and SRF. (B): Thermo-
dynamics model of signaling based on kinase phosphorylation. The
biophysical parameters shown here can be mapped to chemical ki-
netics rate constants measurable in experiments (see Appendix B for
more details). (C): Our design flow.
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K1 K2

K3

A

K1 K2

K4

B Learning decision surface with peceptron 2-3-1 motif

K5K3

K1 K2

K4 K5K3

C

Learning decision surface with peceptron 2-1-1 motif

Learning decision surface with peceptron 2-3-2 motif (MIMO)

Leaned engineering parameters

error= 0.6735

Figure 3·2: Learning to engineer computations and decisions. (A):
Learning to implement desired decision surface (decision surface)
with 2-1-1 perceptron motif (c.f. Figure 3·1B). This network consists
of three types of protein kinases (K1, K2, and K3) that can undergo
phosphorylation cascade. The phosphorylation of K1 and K2 are
controlled by binding of ligands L1 and L2, respectively. K1 and K2
can both interact with and phosphorylate K3 which in term regulates
the expression of some target gene. The target and learned decision
surface (i.e. input-output relation, I-O relation) are shown in blue
and green, respectively. The parameters (effective binding energies
in units of kBT and the kinase concentrations in units of 1M) learned
that implement this specific design are shown on the right. For more
details on learning, see and main text and Appendix B. (B,C): Sim-
ilar to (A) but with more complex perceptron-like motifs. MIMO:
multi-input-multi-output.
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A

B

Learned parameters corresponding to Figure 2B

Learned parameters corresponding to Figure 2C

Figure 3·3: Learned parameters of panel B and C.Here we show the
learned parameters of DS implemented in Figure 3·2B,C. Note that
concentrations are held fixed through learning. In other words, opti-
mization is taken over the effective binding affinities ∆εji .
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In Figure 3·2A , we considered a simple 2-1-1 cascade where the two recep-

tors both phosphorylate a single kinase which regulates an output gene (e.g GFP

expression). The goal is to train this simple circuit to learn the discontinuous input-

output relation shown in blue. In the target decision surface, the output is negli-

gible if the both ligand concentrations are below some thresholds (denoted by q∗1

and q∗2 and both chose to be 0.5), proportional to q1 if q1 ≥ q∗1 and q2 < q∗2 , L2 if

q2 > q∗2 and q1 < q∗1 , and q1 + q2 if q1 ≥ q∗1 and q2 ≥ q∗2 . The learned decision

surface (green) and the corresponding biophysical parameters that generate this

surface are also shown. Notice that the learned surface captures the essential fea-

tures of the target decision surface (blue). For example, it showcases the transition

of expression around q1, q2∼ 0.5, between the three regimes discussed above.

It is also easy to rationalize the learned biophysical parameters. Notice that the

desired output is always linear in the receptor probabilities. For this reason, it is es-

sential that the concentration of kinase three (K3) be in excess of the concentration

of the two receptor (K1 and K2) to prevent saturation effect. This is exactly what is

found by our algorithm. Furthermore, since for our example q∗1 = q∗2 = 0.5, there

is a symmetry between the two ligands. This is reflected in the fact that the bind-

ing energies of the two receptors to the intermediate kinase K3 are nearly identical

(∆ε13 ≈ ∆ε23).

In Figure 3·2 B, we show that the same surface can also be learned by a 2-3-1

network where two inputs can regulate three distinct protein kinases, all of which

down regulate the expression of a common gene of interest. Not surprisingly, this

architecture also can learn the desired surface. Examining the underlying biophys-

ical parameters, one again we see that the binding energies of the two receptor for

all three intermediate kinases are symmetric. Moreover, even though the decision

circuit can be in principle implemented using just of one of the kinases in the mid-
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dle layer (K3, K4, K5) as in the 2-1-1 circuit in Figure 3·2A, our algorithm chooses to

utilize all three kinases to form the decision surface. The reason for this is that the

fit to the target surface can be slightly improved by using all three kinases, since

increasing the number of parameters always improves fits. This suggests that in

the presence of a strong evolutionary pressure to make high fidelity decisions and

in the absence of an opposing evolutionary pressure favoring small circuits, im-

plementation of decision surfaces in cellular signaling circuits maybe distributed

over many proteins. We return to this point in the discussion.

Our algorithm can also be used to design mulit-input-multi-output (MIMO)

decision surfaces (Jordan et al., 2000). Figure 3·2 C shows the target and learned

input-output relation for a 2-3-2 circuit with two inputs and two outputs. One of

the outputs (YFP) depends only on the concentration L1 of ligand 1, where as the

target surface for the other output (GFP) is the same as for Figure 3·2A,B. Once

again our algorithm can identify biophysical parameters that reproduce many of

the essential features of the target MIMO circuit. Interestingly, an examination of

the binding energies indicates that the L2-receptor binds primarily to the kinase K5

whereas the L1 receptor binds all three intermediate kinases (K3,K4,K5). Further-

more, kinase K5 regulates the YFP output and does not bind to GFP. Thus, we see

that we can think of the YFP as being essentially governed by the linear pathway

K1 → K5 → YFP , even though there is cross-talk between the L1 receptor and

K5 and K5 is also used to produce the GFP-output. If one naively examined the

circuit, the binding of K5 to GFP may seem like superfluous crosstalk, however we

know that this binding in fact is a crucial component of creating the desired deci-

sion surface for GFP. These examples highlight how implementing even a simple

MIMO decision surface can give rise to extremely complex phenotypes at the level

of PPIs.
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A B

C D

Figure 3·4: Robustness of learned DS. Here we use the 2-1-1 net-
work (Figure 3·2) for demonstration. Based on the model in the
main text we calculate the Fisher’s information matrix (FIM), gµν, de-
fined in Eq.(3.26). To illustrate FIM in 2-dimensional space, we chose
∆ε21 = ∆ε31 := θ1 and ∆ε43 := θ2 while fixing the concentrations
of all proteins constant so that we have effectively 2 parameters(i.e.
µ, ν ∈ {θ1, θ2}, which we abbreviate as µ, ν ∈ {1, 2}). In panel (A) we
showed the solution on the θ1-θ2 plane. White dot indicates the point
where the solution found by our design flow (c.f. Eq.(3.26)). ê1, ê2 are
the eigenvectors of FIM. (B-D) Components of FIM. The eigenvalues
of FIM are: λ1 = 2.78× 10−4 and λ2 = 1.49× 10−7.
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3.2.5 Circuits with identical steady-state properties can display diverse dynam-
ical behaviors

In the previous sections, we have shown that it is possible to program complex

computational and information processing tasks in cellular signaling circuits by

designing the energetics of PPIs. Our focus has been almost entirely on the steady-

state properties of these circuits. However, there is mounting experimental evi-

dence that cellular signaling circuits also display complex dynamical behaviors.

The advances in time-lapse microscopy techniques have allowed for the direct vi-

sualization of transcriptional circuit dynamics in living cells and it is now well-

established that many key transcription and regulatory factors display pulsatile

behaviors. Beyond transcription, recent work using quantitative mass spectroscopy

has shown that external signals can induce multiple waves of distinct phosphory-

lation events and protein interactions in cellular signaling networks. It has also

been suggested that cells can expand their signaling pathway capabilities through

dynamical multiplexing, a process that encodes the stimulus information through

the dynamics of regulatory molecules(Detwiler et al., 2000; Hao and O’shea, 2012;

Tay et al., 2010; Purvis and Lahav, 2013). These observations inspired us to ask can

signaling circuits that implement the same steady-state decisions surface display

distinct dynamical behaviors?

To address this, we examined the steady-state and dynamical properties of two

signaling motifs that have been widely studied in the systems and synthetic biol-

ogy literature : the coherent feedforward loop (CFFL) and the incoherent feedfor-

ward loop (ICFFL) (see Figure 3·1A) (Alon, 2007; Shoval and Alon, 2010). These

motifs appear commonly in genetic networks(Shen-Orr et al., 2002; Mangan et al.,

2003; Milo et al., 2002; Lee et al., 2002) and are also common in many key signaling

pathways such as EGFR pathway (Anjum and Blenis, 2008; Kolch et al., 2015). For
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both these motifs, we applied our framework to identify biophysical parameters

that implement the sigmoid input-output relation shown in Figure 3·5, with target

decision surface in depicted in red, the response of the CFFL and ICFFL in blue

and green respectively. As can be seen from the figure, both network topologies

can reproduce the desired input-output relation with high precision.

The learned biophysical parameters can be related directly to dynamical pa-

rameters for both of these motifs using a kinetic model of enzymatic activity. The

kinetic model uses ordinary differential equations (ODE) to model the push-pull

enzyme kinetics at each layer in the cascade. By comparing the steady-state so-

lutions of the kinetic ODE model with those from the biophysics based thermo-

dynamic model, it is possible to directly map biophysical parameters to kinetic

parameters and vice versa. For example, Michaelis-Menten constants characteriz-

ing the enzyme kinetics can be calculated directly from PPI binding energies (see

Sec. Kinetics for details).

We used the inferred kinetic models to examine the dynamic response of the

learned CFFL and ICFFL to two different dynamic input profiles: a sustained, con-

stant input (Figure 3·1 panel BDF) and an input that decays exponentially in time

(Figure 3·1 panel CEG). As can be seen from the graph, the CFFL turns “on” more

quickly in response to a signal than a ICFFL but turns “off” extremely slowly, on

time scales of ∼ 100s . In fact, the response of the CFFL is barely evident on the

twenty second time scale shown in Panels E and G. This shows that the dynamic

responses of this circuits are markedly different despite having the same steady-

state behavior.

We can understand these differences by noting that the target steady-state de-

cision surface requires an extremely high output signal when input signal is high.

For CFFL, this can only be achieved by guaranteeing that the PPI interaction ener-
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gies are extremely large. A direct consequence for this is that once bound, a kinase

will remain bound and active for an extremely long time even after the signal has

been removed. The ICFFL, on the other hand, displays another subtle feature in

terms of learned parameters. Attaining a large output signal in the ICFFL requires

combining a minimal activation of the repressive pathway (blue→ red→ orange

in panel A) with a strong activation (blue → purple). This implies that a scant

stimulus on the input (blue) is sufficient to activate the output (purple) due to the

insufficient repressive regulator activities. Furthermore, this leads to a time scale

separation in the rates at which upstream proteins are inactivated when compared

to the output signal(panel G).

The kinetics described above suggest that CFFL-based circuits can buffer tem-

poral fluctuations in the inputs and hence are more robust to input noise than

those utilizing an ICCFL motif. However, this robustness to input noise and tem-

poral fluctuations comes at a steep price: an extremely sluggish dynamic response.

This suggests that depending on the desired dynamic properties (fast dynamic re-

sponses or robustness to fluctuations), it maybe advantageous to use different mo-

tifs for implementing the same static steady-state response.

3.3 Discussion

We showed that in cell signaling the input stimulus is intimately related to the out-

put decision through the thermodynamics of signal protein interactions. To reify

this notion, we construct a theoretical framework based on thermodynamics of

these interactions, and use it to further explore how cellular decisions can be im-

plemented on par with the desired functions. We exemplify this idea through the

computation perspective which emphasizes carrying out target decision surface

or I-O relation. In response to the emerging experimental capability to diagnose
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Figure 3·5: Learning to implement desired decision with naturally
occurring motifs. (A) Motifs used are CFFL and ICFFL. Red curve
indicates the target decision while blue circles and green squares rep-
resent that implemented by CFFL and ICFFL, respectively. Learned
parameters are then used to simulate the kinetics (i.e. nodes in the
network diagram) of kinase activity (B-G). (B): Constant temporal
input stimulation. (C): Same as (B) but with exponentially decay-
ing input profile e−λt , λ = 1.0. (D): Kinase activity of the CFFL
subject to constant stimulation (i.e. panel (B)) using the learned pa-
rameters that implements the I-O relation in (A): αi = 1.0, β1 =
e−8.2, β2 = e−7.5, β3 = β4 = e−6.3,K = e−2,Ci = 2.5 (See Ap-
pendix B for interpretations of parameters). (F): Kinase activity
of ICFFL subject to constant stimulation with learned parameters:
αi = 1.0, β1 = β2 = e1.0, β3 = e−0.05, β4 = e−3.0,K = e−2,Ci = 2.5.
(E): Same as (D) on CFFL but with exponentially decaying stimula-
tion (i.e. λ = 1.0). (G): Same as (F) on ICFFL but with exponentially
decaying stimulation (i.e. λ = 1.0). In (D)(E)(F)(G), activities are
normalized to the maximum value attainable by all kinases. Colors
of curves are matched to that of the nodes in the networks shown in
(A).
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signaling through monitoring the dynamics of regulatory activities, we illustrate

how our framework can be used to expand our understanding of signaling capac-

ity beyond the steady-state decisions.

It’s worth noting that the computations signaling networks implement is fun-

damentally different from the InfoMax design we presented in the previous chap-

ter. For computations, signaling network can be thought of as a machine that in-

corporates a sensor that can detect environmental stimuli, and a circuit that can

process them into some sort of response. For example, the perceptron-like path-

way shown in Figure 3·1A illustrates that cell division control protein 42 (Cdc42)

can be stimulated both by the receptor tyrosine kinase (RTK) as well as the G-

protein coupled receptor (GPCR). Depending on the combination of these inputs,

Cdc42 can activate different downstream kinases, say, p21 activation kinase (Pak)

essential for cell movement. In this case, we have a mapping from certain combina-

tion of RTK and GPCR stimulation to the downstream Pak activation, a well-defined

I-O relation (i.e. computation). Biologically speaking, the states of the signaling

molecules and the network they intertwined into constitute the circuitry by which

designated computation with specific physiological implications is done. On the

information realm, however, the context is more obscure since the very notion of

information could in general be defined in a manner that is irrespective of teleol-

ogy of the physical design. Translating this to the previous example, it means that

maximizing mutual information between the input and output does not necessar-

ily guarantee to activate Pak even when both RTK and GPCR are at their right level.

This is because generically speaking information is construed as the reduction of

uncertainty of variables with the knowledge of their correlates, whose raison d’être

is agnostic about the functionalities relevant to the biology (i.e. activate Pak when

appropriate level of GPCR and Pak is provided). Therefore, to relate the InfoMax



66

calculation presented here to the physiological meaning of signaling requires spe-

cial scrutiny. For example, we showed that cells are able to transmit more informa-

tion by using a more complex network. From the physics standpoint, deploying

complex network demands more signal proteins and more reversible enzymatic

reactions, which means more energy consumption(Mehta et al., 2016). One rele-

vant question is why does this energy go to information and what is it good for?

A plausible and intuitive answer lies in the information theoretic interpretation of

mutual information: the higher it is, the more certain cells are about their output

(input) when knowing their input (output). However, this answer is not an exact

statement about the physiological functionality relevant to biology (e.g. express

certain genes when specific inputs are present); rather, it’s a modifier for state-

ments about functionality. One can sensibly think of higher mutual information

implies being able to more reliably discern input signals for the output desired, a

notion of robustness. To further explore what this sort of information calculation

entails, and to further relate that to the physical meaning of energy consumed and

biological functionality, we suspect a deeper understanding to the relevant biol-

ogy is required (e.g. undiscovered cross-talks between pathways might be a leaky

channel for information).

On the theoretical side, since our approach relies only on the steady-state statis-

tics of signaling activities, there’s no need to solve the complex kinetics equations

especially when dealing with large signaling networks to learn a specific decision.

In addition, the thermodynamics parameters learned are those accessible in exper-

iments: Michaelis constants and concentrations. This implies that cellular decision

can in principle be physically maneuvered by tuning the interactions between signal-

ing molecules and changing their concentrations. To accomplish this in synthetic

networks, one would need to have control over protein modifications and inter-



67

actions, which are often done via mutagenesis, insertion of unstructured recogni-

tion sequences, or alteration of domain composition. However, this is in general

harder than engineering genetic circuit since mutation inside domains or on glob-

ular proteins can easily induce structural changes that lead to protein misfolding

and aggregation. Beyond this structural constraint, the promiscuity of protein in-

teractions and crosstalks between pathways also makes it difficult to engineering

specific interactions. Furthermore, one also need to design modules that can be se-

lectively activated by small molecules or external perturbations such as pH value

or temperature for signal activation, as well as linear polypeptides that can be post-

translationally modified and recognized by other modular domains. Therefore, to

experimentally probe the applicability of our theoretical framework, one would

require a better engineering protocol to address the issue mentioned above.

From the standpoint of systems biology, it is natural to ask how is signaling

circuit more special than its genetic counterpart whose regulatory behaviors are

simpler and easier to implement, if the goal of engineering is to utilize cellar com-

ponents to carry out certain function? Component-wise speaking, signaling op-

erates on specialized proteins and their interactions, which is far more modular

and harder to manipulate than DNA and DNA binding proteins deployed in ge-

netic circuit. However, since signaling pathways usually involve large number of

such molecules, they are usually less stochastic than genetic circuits where burst-

ing of mRNA transcription and protein synthesis often render the process noisy.

On the systems scale, signaling spans across different length scales, ranging from

the size of a cell (where signal activation occurs) down the that of the nucleus

(where downstream decision through gene expression take place). Nevertheless,

it usually has fast response (milliseconds to minutes), as opposed to genetic circuit

where response ranges from minutes for prokaryotes and hours for eukaryotes. In
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addition, many signaling pathways are built on the signaling cascades (e.g. phos-

phorylation cascade), which can be used to achieve signal amplifications and other

functions reminiscent of those in electronic circuits. Therefore, it is highly advan-

tageous to employ signaling network which is modular in design to achieve func-

tionalities with fast response and low stochasticity (i.e. robustness).

Finally, we stress that in this chapter we devise a theoretical framework to con-

nect the systems level behavior of signaling to the underlying molecular interac-

tions. It is our belief that our framework, along with solutions to the experimental

hurdles mentioned above, should provide a practical protocol towards syntheti-

cally engineering networks to create new functionalities that at the broader scale

might impact biotechnology and biomedicine.

3.4 Methods and Materials

3.4.1 Using gradient descent to design an input-output relation

Here we briefly describe how to construct the loss function in order to learn the

target decision surface shown in Figure 3·2A. Other motifs can be done in a similar

fashion. Let qi = P(xi = 1|Li ), i = 1, 2 be the probability of input parameterized

by ligand concentration Li (see Figure 3·2 and (Keymer et al., 2006; Mehta et al.,

2009; Teng et al., 2011)):

qi = P(xi = 1|Li ) =
1

1 + e−β(Li−L
(0.5)
i )

, (3.3)

where L
(0.5)
i is the ligand concentration at which the receptor is on half the time.

We also introduce T (L) where L = (L1, L2) as the target decision surface. Learn-

ing then amounts to finding the parameters ∆ε that produce an output activation

probability which recapitulates T (L). For the 2-1-1 motif shown in Figure 3·2A,
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the loss function used to get the leanred decision surface reads:

L(∆ε, L, x4 = 1) ≡ 1

M

M

∑
m=1

[
logP(x4 = 1|x(m)

\4 , L, ∆ε)− logT (L)
]2
− C ||ε||2

=
1

M

M

∑
m=1

log
P(x4 = 1|x(m)

\4 , L, ∆ε)

T (L)

2

− C ||ε||2, (3.4)

where M is the number of samples, η is the learning rate, C is the regularization,

and P(x4 = 1|x(m)
\4 , L, ∆ε) is the output probability based on the inputs and param-

eters given, which can be obtained by forward sampling x
(m)
\4 := (x

(m)
1 , x

(m)
2 , x

(m)
3 )

from the graphical model defined through Eq. (4.3) and Eq. (3.2). Concretely,

P(x4 = 1|x(m)
\4 , L, ∆ε) = P(x4|x (m)

3 )P(x
(m)
3 |x (m)

1 , x
(m)
2 )P(x

(m)
1 |L1)P(x

(m)
2 |L2). (3.5)

Note that the target decision surface used in Figure 3·2 is given by a piece-wise

discontinuous linear surface in the receptor probability space:

T (L) =



q1 + q2 if q1 ≥ q∗1 and q2 ≥ q∗2

q1 if q1 ≥ q∗1 and q2 < q∗2

q2 if q1 < q∗1 and q2 ≥ q∗2

δ� 1 if q1 < q∗1 and q2 < q∗2 ,

(3.6)

where δ is set to be 10−3 and q∗1 = q∗2 = 0.5 in all panels of Figure 3·2.

3.4.2 Implementing decisions using CFFL and ICFFL

Here we only summarize how we implement desired decisions using CFFL and

ICFFL illustrated in Figure 3·5 using Eq. (4.3) and Eq. (3.2). The detailed calcula-

tion based on kinetics equations is presented in the Appendix B.
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Coherent feedforward loop (CFFL)

Let T (q1) be the input-output relation we want to implement (i.e. target red curve

in Figure 3·5A). This input-output function is a sigmoid in the probability that the

input receptor is in the on state: T (q1) = 1
1+e−10∗(q1−0.5)

. As such, this requires an

extremely large amplification of the signal at high inputs. Fulfilling this basic fea-

ture dominates the kinetic properties of this circuits. All the probability functions

used in the optimization procedure are given below:

T (q1) =
1

1 + e−10∗(q1−0.5)
(3.7)

P(x2 = 1|x1) =
1

Z2

(
x1[c1]e

−∆ε13/(kBT )
)

(3.8)

P(x3 = 1|x2) =
1

Z3

(
x2[c2]e

−∆ε23/(kBT )
)

(3.9)

P(x4 = 1|x1, x3) =
1

Z4

(
x1x3[c1][c3]e

−(∆ε14+∆ε34+J)/(kBT )
)

, (3.10)

where the partition functions Zi are given by

Z2 = 1 + x1[c1]e
−∆ε12/(kBT ) + (1− x1)[c̃1]e

−W/(kBT ) (3.11)

Z3 = 1 + x2[c2]e
−∆ε23/(kBT ) + (1− x2)[c̃2]e

−W/(kBT ) (3.12)

Z4 = 1 + x1[c1]e
−∆ε14/(kBT ) + x3[c3]e

−∆ε34/(kBT )

+ x1x3[c1][c3]e
−(∆ε14+∆ε34+J)/(kBT )

+ · · · , (3.13)

where in Z4 we neglect terms proportional to e−W/(kBT ) since those events are

probabilistically unlikely. We optimize the loss function with respect to ∆ε =

(∆ε12, ∆ε23, ∆ε14, ∆ε34). We also include a cooperativity energetic reward J to

encourage kinase 4 phosphorylation due to the activation of both of its upstreams:

kinase 1 and kinase 3.
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Incoherent feedforward loop (ICFFL)

All the probability functions used in the optimization procedure are given below:

f (p1) =
1

1 + e−10∗(q1−0.5)
(3.14)

P(x1 = 1|L) =
1

1 + e−10∗(L−0.5)
(3.15)

P(x2 = 1|x1) =
1

Z2

(
x1[c1]e

−∆ε12/(kBT )
)

(3.16)

P(x3 = 1|x2) =
1

Z3

(
x2[c2]e

−∆ε23/(kBT )
)

(3.17)

P(x4 = 1|x1, x3) =
1

Z4

(
x1(1− x3)[c1][c̃3]e

−(∆ε14+∆ε̃34+J)/(kBT )
)

, (3.18)

with the partition functions Zi given by

Z2 = 1 + x1[c1]e
−∆ε12/(kBT ) + (1− x1)[c̃1]e

−W/(kBT ) (3.19)

Z3 = 1 + x2[c2]e
−∆ε23/(kBT ) + (1− x2)[c̃2]e

−W/(kBT ) (3.20)

Z4 = 1 + x1[c1]e
−∆ε14/(kBT ) + x3[c3]e

−∆ε34/(kBT ) + (1− x3)[c̃3]e
−∆ε̃34/(kBT )

+ x1(1− x3)[c1][c̃3]e
−(∆ε14+∆ε̃34+J)/(kBT ) + x1x3[c1][c3]e

−(∆ε14+∆ε34)/(kBT )

+ · · · , (3.21)

where ∆ε̃34 is the binding energy of inactive kinase 3 to kinase 4, as opposed to

∆ε34 for that between active kinase 3 to kinase 4. We treated ∆ε̃34 as a constant

while optimizing the loss function with respect to ∆ε = (∆ε12, ∆ε23, ∆ε14, ∆ε34).

We also include a cooperativity energetic reward J to encourage kinase 4 phospho-

rylation due to the inactivation of its upstream repressive kinase 1 and the activa-

tion of upstream kinase 1. In Z4, we neglect a few terms pertaining to non-specific

binding (i.e. ∼ e−W/(kBT )) since these events are probabilistically unlikely.
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Loss function used

L ≡ 1

N

N

∑
α=1

(
f (p1)− P(x4 = 1|x(α)\4 , ∆ε, p1)

)2
+ C ||∆ε||22, (3.22)

where {x(α)\4 }
N
α=1 = {(x (α)1 , x

(α)
2 , x

(α)
3 )}Nα=1 is the set of samples generated from our

model defined above and in the main text using the parameters ∆ε at each op-

timization step, and C is the regularization constant introduced to avoid trivial

solutions (i.e. all energies are infinitely negative). The parameters are updated

according to

∆ε← ∆ε− η∇∆εL, (3.23)

where η is the learning rate.

3.4.3 Robustness of decision from Fisher’s information

One of the most intuitive ways to quantify the uncertainties or robustness against

perturbation in parameters in a statistical model is to calculate the Fisher Infor-

mation Matrix (FIM). More concretely, for a probability function associated with

a parametric family of parameters Θ: P(x|θ), the robustness of the model can

be gauged by the difference between the probability generated by a fixed set of

parameter θ and that by a small deviation from that parameter θ + δθ. In the

Bayesian’s language, this difference measures how more likely one is to produce

typical data from oneself than the other would be. A typical measure is the Kullback-

Leibler divergence (KL divergence):

DKL[P(x|θ)||P(x|θ+ δθ)] =
∫

dxP(x|θ) log
P(x|θ)

P(x|θ+ δθ)
(3.24)

By expanding P(x|θ+ δθ) around θ and assuming |δθ| << 1, one gets,

DKL[P(x|θ)||P(x|θ+ δθ)] ' gµνδθµδθν +O(δθ3), (3.25)
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where gµν is the Fisher information matrix (FIM)

gµν = −〈∂µ∂ν logP(x|θ)〉P(x|θ) = −
∫

dxP(x|θ) ∂2

∂θµ∂θν
logP(x|θ) (3.26)

One can show that FIM, gµν, is indeed a legal metric and is symmetric, positive

semi-definite. In addition, it is invariant under transformation on θ. The eigen-

vector corresponding to small eigenvalue represents the combination of parame-

ters that is irrelevant to model behavior (i.e. sloppiness) while that for the large

eigenvalue indicates the combination that is crucial (i.e. stiffness). In statistics, for

unbiased estimator T(X ) of parameter θ, the Cramér-Rao bound is just the inverse

of FIM:

covθ(T(X )) ≥ g(θ)−1 (3.27)
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Chapter 4

Is there a limit to cell’s ability to perform
computation?

‘Progress imposes not only new possibilities for the future but new restrictions.
It seems almost as if progress itself and our fight against the increase of entropy
intrinsically must end in the downhill path from which we are trying to escape.’

(Norbert Wiener, 1950)

Cells have evolved sophisticated signaling networks to perform computations

and make decisions in response to environmental cues. The proteins in these

signaling networks often possess a modular structure that combines interaction

domains that mediate protein-protein interactions (PPIs), allosteric domains, and

specialized domains that can read, write, or erase a post-translational modifica-

tion such as phosphorylation. Here, we adapt ideas from the statistical physics to

develop a novel theoretical framework for quantifying the computational capacity

of such signaling networks. We show that the biophysics underlying PPIs funda-

mentally limits the ability of such networks to perform computations and derive

a bound for the computational capacity of a generic signaling network. We relate

our bound to statistical learning theory (i.e. Cover’s Theorem for the computa-

tional capacity of perceptrons) and discuss the implications of our framework for
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identifying design bottlenecks in synthetic circuits.

4.1 Introduction

Living organisms must sense and respond to dynamic environments. One com-

mon strategy to accomplish this feat is signal transduction. At the cellular level,

this ability to sense and respond, often called cell signaling, forms the basis of de-

velopment(Kuchroo et al., 1995; Gerhart and Kirschner, 1997), immunity(Taganov

et al., 2006), and tissue homeostasis(Pasparakis, 2009). In the past few decades,

there has been a large effort to characterize and understand the basic principles

governing cellular signaling networks (Koch et al., 1991; Pawson and Nash, 2003;

Lim and Pawson, 2010; Lim et al., 2014; Hunter, 2000; Selimkhanov et al., 2014;

Brennan et al., 2012; Cheong et al., 2011; Detwiler et al., 2000) and to use this

knowledge to engineer novel signaling networks capable of carrying out complex

computations(Lim, 2010; Khalil and Collins, 2010; Morsut et al., 2016; Roybal et al.,

2016; Bashor et al., 2010; Lim et al., 2014). Despite these considerable successes, our

understanding of how biophysical properties – such as the strength and types of

protein-protein interactions – shape and constrain the computational capabilities

of cellular signaling networks remains limited.

Cellular signaling networks are composed of multiple, interacting proteins.

Proteins often exist in multiple internal states (e.g. phosphorylated or unphospho-

rylated; a particular conformation, etc.) that function as the biochemical correlates

of information. From the point of view of information processing and computa-

tion, the internal states of proteins (e.g. the phosphorylation state) play an anal-

ogous role in biochemical circuits to the voltage state (high or low) of a memory

cell in modern computers. For example, a protein that can be in two internal states

can in principle store 1 bit of information. Just as computers perform computa-
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tions by manipulating memory states, biochemical signaling networks perform

computations by modifying the internal states of proteins through protein-protein

interactions (PPIs). Thus, to be able to perform complex computations biochemical

signaling networks must be able to store many bits of information and selectively

and reliably change the internal states of proteins in the network. Whereas the for-

mer is directly related to the number of protein species, the latter is related to the

number and specificity of realizable PPIs (see Figure 4·1).

These observations suggest that the computational capacity of signaling net-

works is intimately related to the structural organization of signaling proteins.

Over the last few decades, it has become clear that many signaling proteins in

eukaryotes have a modular structure. Proteins often possess multiple structural

domains with distinct functional roles. Domains can be divided into two broad

categories: interaction domains, which mediate interactions with other molecules

within the cell (Koch et al., 1991; Pawson and Nash, 2003) and catalytic domains,

which catalyze reversible enzymatic reactions through post-translational modifica-

tions (PTMs) such as phosphorylation or methylation (Jin and Pawson, 2012; Lim

et al., 2014). Different proteins species possess different combinations of catalytic

and interaction domains.

In contrast with conventional allostery where the catalytic activity and binding

interactions of a protein are tightly coupled into a single structural unit(Cui and

Karplus, 2008; Monod et al., 1965), the emerging “modular allostery” paradigm

suggests that in many proteins there exists a structural separation between the

output catalytic and regulatory domains(Lim, 2002; Taylor and Radzio-Andzelm,

1997). Proteins that implements modular allostery usually contain catalytic do-

mains that, when isolated, display constitutive activity but are otherwise auto-

inhibited by other regions of the protein through steric blocking or conformational
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contortion. This modular domain structure provides the underlying “biophysi-

cal hardware” that allows cells to evolve signaling networks to carry out complex

computations using proteins.

Synthetic biologists have started to exploit these insights to start engineering

sophisticated synthetic signaling networks. One of the prominent principles ex-

ploited in recent synthetic systems is the RWE signal relay paradigm(Bashor et al.,

2010; Lim et al., 2014; Khalil and Collins, 2010) (see Chapter 3). Writer proteins

such as kinase or Guanine nucleotide exchange factor (GEF) enzymatically cat-

alyze the transfer of chemical marks onto target molecules, whereas eraser pro-

teins (e.g. phosphatase or GTPase-activating proteins, GAPs) catalyze the removal

of the chemical mark. The presence of a mark is then read out by a reader module,

usually a binding motif that recognizes and binds the modified chemical mark.

Inspired by these ideas, in this paper we present a new theoretical framework

for quantifying the computational capacity of signaling networks based on modu-

lar allostery. We focus primarily on the reader-writer-eraser paradigm but our re-

sults and methods easily generalize to more complex signaling networks. We show

that for large networks, the computational capacity of a signaling network is fun-

damentally limited by the number of interaction domains rather than the number

of distinct protein species. The underlying reason for this is that cross-talk between

proteins prevents the signaling network from realizing most potential configura-

tions of the network (see Figure 4·1). In this paper we focus on the steady-state

computational capacity of signaling networks. Real signaling network likely use

important dynamical properties to transmit information and perform computa-

tion (Dayarian et al., 2009; Cheong et al., 2011; Selimkhanov et al., 2014; ten Wolde

et al., 2016; Detwiler et al., 2000) and it will be interesting to understand how to

generalize our framework to study dynamics.
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The chapter is organized as follows. We begin by introducing a thermody-

namic biophysical model for the steady-state properties of protein-protein interac-

tion networks. We then define computational capacity and discuss how it can be

calculated using ideas for statistical physics(Engel and Van den Broeck, 2001). We

then use this framework to show that the computational capacity of signaling net-

works based on the reader-writer-eraser framework scales polynomially (rather

than exponentially) in the number of protein species. We then frame our results

in the context of statistical learning theory and discuss the implications of our re-

sults for understanding natural circuits and designing complex synthetic signaling

circuits.

4.2 Results

4.2.1 Generalized thermodynamic model of a synthetic protein-protein inter-
action network

Inspired by synthetic biology, we focus on modeling signaling networks that im-

plements a simple form of the reader-writer-eraser paradigm. The fundamental

building blocks of our synthetic system consists of four basic types of domains:

catalytic kinase domains that phosphorylate a particular residue (e.g. tyrosine

kinase , serine/threonine kinases), phosphatase domains (tyrosine phosphatase,

serine/theonine phosphatase), constitutive interaction domains and their cognate

binding sites (e.g PDZ domains, Leudine zippers), and phosphorylation-state de-

pendent interaction domains and their cognate binding sites (e.g. SH 2 domain,

FHA domain, WW domain). In general, the binding sites of phosphorylation-state

dependent interactions contain or are near the phosphorylation site that controls

binding. We call the type of interaction domain or binding site (i.e SH2 or WW

domain) its flavor.
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Figure 4·1: Number of biophysically realizable collective protein in-
ternal states (i.e. configurations) is limited by the diversity of domain
interactions. (A) Shown here are the domain diagrams of n distinct
protein species, each of which bears specific internal states. In partic-
ular, species i has ni internal (e.g. allostery, phosphorylation) states.
Species shown here indicate n1 = 3, n2 = 2, · · · nn = 1. Total number
of collective (species) internal states Ntotal is given by Πn

i=1ni , which,
in the case where ni = 2 for all i , becomes 2n. (B) Varieties of pro-
tein domain interactions can be summarized by a table of binding
domain (BD) pairs with internal state-dependent binding affinity. In
this example, there are M distinct domain interactions so M binding
pairs. (C) Number of realizable configurations Nrealizable is far less
than Nconfig due to the number of ways proteins can interact with
one another.
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Our synthetic system contains two kinds of protein species, writer proteins

which contain a kinase domain, and eraser proteins which contain a phosphatase

domain. A protein consists of three parts: a catalytic domain which is a kinase

domain (C = K) for writers and a phosphatase domain (C = P) for erasers,

phosphorylation-dependent interaction domain with flavor α, and a binding site

for a phosphorlyation dependent domain with flavor β (See Figure). In general,

the flavors of the binding site and interaction domain will be different. For this

simple synthetic system, each species of protein i can be represented by a triplet

vi = (αi , βi , Cj ) and its phosphorylation state is represented by a single binary

number xi = 0, 1. If there are M flavors of interaction domains, there are generally

n = 2M(M − 1) different potential species since αi 6= βi . Note that in our simple

system we do not make use of constitutive interaction domains all interactions are

dependent on phosphorylation.

Proteins in our synthetic system interact in a phosphorylation dependent man-

ner (see Figure 4·1). When a protein is phosphorylated, it can bind other proteins

and change their phosphorylation state. Conversely, the phosphorylation state of

a protein can be modified if it is bound by another phosphorylated protein. In all

cases, the the strength binding depends on the flavor of the binding site and in-

teraction domains. Since both writers and erasers can only bind and modify the

phosphorylation-state of another protein if they are themselves phosphorylated,

we will use the shorthand of calling phosphorylated proteins active (xi = 1) and

unphosphorylated proteins inactive (xi = 0).

We can combine the catalytic activity and binding interactions of our protein

interaction into a single generalized thermodynamic model. Similar models have

played an important role in understanding transcriptional regulation(Phillips et al.,

2012; Bintu et al., 2005b; Garcia et al., 2010). We begin by introducing a M ×M
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binding energy matrix ∆εαβ that encodes the change in binding energy when an

interaction domain with flavor α binds a phosphorylated binding site of flavor β.

We can also introduce 2(M2 −M) concentrations for each protein species i, [ci ]. If

we denote the probability for protein i to in state xi by Pi (xi ), then we can introduce

the state-dependent concentrations

[c(xi )] = Pi (xi )[ci ]. (4.1)

The probability that a protein i is bound by a another protein j can then simply

be written using the thermodynamic model based on Boltzmann statistics as

pboundij =
[cj (xj )]xje

−β∆ε(αi ,βj )

1 + ∑k [ck(xk)]xke
−β∆ε(αi ,βk )

, (4.2)

with β = 1/kBT is the inverse temperature). In writing this, we have set the

weight of the unbound state to 1 and we have made use of the assumption that a

protein k can bind only if it is phosphorylated (i.e. xk = 1). This simple thermody-

namic model captures the equilibrium energetics of binding.

We must extend this model to account for the catalytic activity of proteins. Once

a protein is bound by a writer or eraser, its phospho-state can be changed. We as-

sume that writes favor phosphorylation (xi = 1) while erasers favor the unphos-

phorylated state xi = 1. We assume that the probability for a protein i to be phos-

phorylated is directly proportional to the probability to be bound by a kinase. If

we consider a system with n protein species, this gives us the following equations

Pi (xi = 1|W\i ) ≡ Pi (xi = 1) = ∑
js.t.Cj=K

[cj (xj )]xje
−β∆ε(αi ,βj )

1 + ∑k [ck(xk)]xke
−β∆ε(αi ,βk )

., (4.3)

whereW\i = {j 6= i such that Cj = K} Note, these must be supplemented by the

self-consistency equations (Eq.(4.1)). Together, this defines a generalized thermo-
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dynamic model for the state of our protein interaction network.

4.2.2 Defining computational capacity

The computational capacity of a network depends on its ability to manipulate in-

formation. In our synthetic reader-writer-eraser system, the biochemical correlate

of information is contained in the phosphorylation states of the proteins that make

up the network. Since each protein i can be in one of two states, phosphorylated

or unphosphorylated state xi = 1, 0, the state of the network can be described by

a binary vector x = (x1, x2, ... , xn), where n is the number of protein species in the

network.

Notice that the maximum number of possible configurations in a network with

n species is 2n. However, many of these configurations may in practice be inacces-

sible due to biophysical constraints on protein-protein interactions (PPIs). In par-

ticular, given a set of binding energies ∆ε(α, β) between M interaction-domains,

we can ask how many of these configurations can actually be realized with high

probability (we will define this more carefully below). When calculating this num-

ber, we allow the cell to choose the concentrations ci of all protein species. We

define the computational capacity, of the network as the maximum number of

high-probability states that can be realized for any fixed choice of ci .

We can make this more precise by taking the zero temperature limit β → ∞

in the expression Eq.(4.3). In this case, the shape of the Boltzmann distribution re-

duces from sigmoid to a step function and the protein has either probability strictly

1 or 0 to be in a given phosphorylation state (i.e Pi (xi = 1) ∈ {0, 1} when β→ ∞).

In other words, in this limit is assigned to its most probable configuration.

To see how this works, let us consider species activation probability in a sys-

tem containing just writers first. Note that by taking the zero temperature limit

β → ∞, Pi (xi ) → xi ∈ {0, 1}, as can be inferred self-consistently from [cj (xj )] =
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Figure 4·2: Biophysical constraints associated with protein activity
configurations. (A) Shown here are three configurations of a signal-
ing systems consisting of three writer species (W), along with their
configuration vector (left column) and the associated constraints in
physical parameter space (right column): ∆εij is the effective binding
energy between species i and j . The two terms shadowed in yellow
in the right column indicates that the configurations they correspond
to are not compatible. (B) Exemplary species diagram. This construc-
tion is similar to the synthetic example given in Fig.4·1.

Pj (xj )[cj ]→ xj [cj ]. Concretely,

P(xi = 1)|β→∞ =


1, if ∃ j ∈ W\i s.t. xj = 1 AND ∆εij < 0

0, if ∀ j ∈ W\i , xj = 0

OR ∀ j ∈ W\i s.t. xj = 1, ∆εij > 0

(4.4)

(4.5)

Note that since xj ∈ {0, 1} and [cj (xj )]→ xj [cj ] in this limit, the binding energy

matrix ∆ε(αi , βj ) reduces to a single scalar ∆εij under the summation over xj ∈

{0, 1} in Eq. (4.3). We term ∆εij the effective species binding energy between species

i and species j .

This “zero-temperature limit” procedure smoothens out the irrelevant but prin-
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cipally rugged probability landscape in high dimensional parameter space (i.e. Eq.

(4.3) ), thus singling out the probability states that capture the underlying physics

(i.e. Eq. (4.4) ). In spirit, this transition between two functional resolutions (i.e.

from smooth to binary) is the same as that in the Fermi-Dirac distribution func-

tion of fermions in physics or as that in Hill function in biochemistry and phar-

macology. In Fig.4·2A, we illustrate this idea by considering a systems with 3

writer protein species whose activities are collectively denoted by the binary vec-

tor (x1, x2, x3). By reading off Eq. (4.4), one immediately sees that, for example,

the species state configuration (1, 0, 1) implies that (i) ∆ε13 < 0 (ii) ∆ε21 > 0 AND

∆ε23 > 0 (iii) ∆ε31 < 0. Similarly, we can read off the binarized probability for

all other configurations, two of which are shown in Fig.4·2A. Indeed, the construc-

tion of the constraint table in Fig.4·2A expatiates that the interactions mediating

cell signaling, namely, binding affinities between species ∆εij , and their concen-

trations, [cj ], fundamentally determines the realizability of configurations. To see

this, consider the same system in Fig.4·2A but now the interaction between species

1 and 2 are designed such that ∆ε13 > 0. Note that this is always possible by re-

engineering, say, the constitutive binding domains, of the proteins involved (e.g.

utilize different binding domain in Fig.4·1B). However, such construction explic-

itly violates condition (i), one of the existence criteria of configuration (1,0,1). This

implies that one can never use this system with this particularly designed interac-

tion (e.g. one set of reader binding domain flavor table in Fig.4·1B) to implement

(1,0,1) configuration. In abstraction, this means the realizability of configurations

is contingent on the underlying protein interactions.
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4.2.3 Computation is limited by the number of biophysically realizable config-
urations: notion of capacity

Since the realizability of activity configurations is dependent on the underlying

interactions, it is natural to speculate that for any given signaling systems with spe-

cially designed interactions, not all configurations are biophysically implementable.

To illustrate this, we consider configurations (1,0,1) and (0,1,1) in the previous ex-

ample (see Fig.4·2A). Reading off Eq. (4.4) one finds the first configuration implies

(i) ∆ε13 < 0 (ii) ∆ε21 > 0 AND ∆ε23 > 0 (iii) ∆ε31 < 0 while the latter implies (iv)

ε12 > 0 AND ∆ε13 > 0 (v) ∆ε23 < 0 (iii) ∆ε32 < 0. However, condition (ii) and (v)

are obviously incompatible, meaning there’s no way to design the interactions of a

three-writer-protein system that constitute an all-to-all network to simultaneously

implement (1,0,1) and (0,1,1) configurations. It is, on other hand, possible to real-

ize both (1,0,1) and (1,1,1) or both (0,1,1) and (1,1,1) by fine-tuning the interactions

(e.g. changing the binding domains of proteins, see Fig.4·1C) such that there’s no

contradiction in the constraints of interactions, as we illustrate in Fig.4·2A. This

observation imparts a critical message: for a given set of interactions (e.g. num-

ber of binding domain pairs, see Fig.4·1C) in a given signaling system with fixed

number of protein species, be it writer or eraser, there is a inherent limit to the

number of mutually compatible configurations. For instance, in the three-writer-

species system we considered, this number is obviously smaller than 23 = 8 since

we already identified two pairs of mutually incompatible configurations. As we

argued that in the digital logic how powerful a computational unit is, namely, it’s

capacity, depends crucially on the number of configurations it can implement and

assign meaning (e.g. targeted Boolean function) to, one can define in parallel the

cell signaling version:
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Definition of capacity

The computational capacity C of a signaling network is the maximum num-

ber of collective species internal states (i.e. configurations) this network can

realize, pursuant to the underlying biophysical laws.

It is obvious that if the activities of signal proteins that constitute the network

are labeled by binary variables (e.g. 0 or 1), then C ≤ 2n.

4.3 Computational capacity of a signaling network in the large n

limit

4.3.1 Writers only

In Appendix B, I show that

Result 1 (Computational capacity: writer only). Suppose that the biophysics govern-
ing the compatibility of any two proteins are independent. Then the capacity of computa-
tion C in the large n (i.e. number of proteins in the system) limit is given by

C � n−1/2

(
4

3

) n−1
2

(4.6)

4.3.2 Systems with both writers and erasers

In the previous section we considered systems with n writer species (e.g. kinases).

Here we incorporate eraser species (e.g. phosphatases) into our analysis. Fo-

cus on our synthetic system, now every species is either one of the two cate-

gories Ci ∈ {W , E}, namely, writer or eraser. We order the species label such

that the phosphorylation state vector x = (x1, · · · , xm, xm+1, · · · , n) is partitioned

into writer (kinase) sector i ∈ W = {1, · · · ,m} and the eraser (phosphatase) sector

i ∈ E = {m+ 1, · · · , n}. In other words, such system contains m writer species and

n −m eraser species. Similar to the case without erasers, we can write down the
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probability of species i at state xi = 1 (c.f. Eq.(4.3))

Pi (xi = 1) = ∑
j s.t. Cj=W

xje
−β[∆ε(αi ,βj )]

1 + ∑k,∀Ck xke
−β[∆ε(αi ,βk )(xk )]

. (4.7)

Note that the summation over k in the denominator is over all erasers and writ-

ers E ,W whereas that over j in the numerator is over writersW only. In the zero

temperature limit, this probability becomes binary so that we can use ∆εij to char-

acterize the exponents in the Boltzmann factor. Similar to the argument made in

the previous section, the interpretation of Eq.(C.40) reads:

Pi (xi = 1)|β→∞ =



1, if { ∃ j ∈ W\i s.t. xj = 1 AND ∆εij < 0 }

AND { ∀ k ∈ E , xk = 0 OR ∀k ∈ E s.t. xk = 1, ∆εik > ∆εij }

0, if { ∀ j ∈ W\i , xj = 0 OR ∀ j ∈ W\i s.t. xj = 1, ∆εij > 0 }

OR { ∃ k ∈ E , s.t. xk = 1 AND ∆εik < 0}
(4.8)

The biophysical interpretation of this equation line by line is summarized as fol-

lows.

Species i is phosphorylated if it is

1. At least bound to one active writer AND

2. All active erasers bind i loosely than active writers do

Whereas species i is not phosphorylated (xi = 0) if

3. There’s no active writers present OR active writers exit but none of them

binds i OR

4. It is bound to active erasers
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Note that since in the zero temperature limit proteins are either in strongly bound

or strongly unbound state and that case 1 dictates ∆εij < 0, we can reasonably

replace ∆εik > ∆εij in the second line of Eq.(C.41) by ∆εik > 0 (active erasers bind

i extremely loose). With this we can rewrite Eq.(C.41) as

Pi (xi = 1)|β→∞ =



1, if { ∃ j ∈ W\i s.t. xj = 1 AND ∆εij < 0 }

AND { ∀ k ∈ E , xk = 0 OR ∀k ∈ E s.t. xk = 1, ∆εik > 0 }

0, if { ∀ j ∈ W\i , xj = 0 OR ∀ j ∈ W\i s.t. xj = 1, ∆εij > 0 }

OR { ∃ k ∈ E , s.t. xk = 1 AND ∆εik < 0}
(4.9)

In Appendix B, I show the following:

Result 2 (Incompatibility probability: with eraser). Consider systems with n protein
species among with m are writers and the remaining n − m are erasers. Assume that
the biophysics governing the compatibility of any two proteins are independent. Then
under the writer-eraser symmetry, the probability of two configurations being incompatible
Pm(n), is given by

Pm(n) =

(
2m

3

[
1− m− 1

3

(
2

3

)m−2
](

3

4

)n

+
m(m− 1)

2n+2

)
+

(
m→ n−m

n→ m

)
(4.10)

Result 3 (Computational capacity: with eraser). Consider systems with n protein
species among with m are writers and the remaining n − m are erasers. Assume that
the biophysics governing the compatibility of any two proteins are independent. Then the
capacity of computation C in the large n (i.e. number of proteins in the system) limit is
given by

C � Pm(n)
−1/2 (4.11)

One can easily check that in the limit where m→ n, Eq.(4.11) reduces to Eq.(4.6).
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Figure 4·3: Incompatibility probability and capacity in synthetic
systems with both writers and erasers: Pm(n) is given by Eq.(C.46)

4.4 Discussion

We develop a framework to describe the computation process by which cells utilize

to relay messages derived from extracellular cues to intracellular effectors, namely,

signal transduction. We also demonstrate that such computation is fundamentally

limited by the underlying interactions between as well as the modular nature of

signal proteins, which are the molecules that carry out the relay. In particular,

we derive the capacity of computation explicitly and show that it is far less than

what a cell signaling system can accommodate following the combinatorial logic

paradigm (i.e. exponential in the number of protein species). The computational

capacity is also shown to be dependent on the fraction of writer proteins and the

complexity of protein binding interactions, which reinforces the idea that the bot-

tleneck stems from the cell signaling system itself. Since the origin of capacity is

the thermodynamics of protein interactions, our result also underscores the im-

portance of thermodynamics in computation(Bennett, 1982; Mehta et al., 2016),

particularly pertaining to molecular processes within living cells.



90

A B C

Figure 4·4: Effect of network sparsity on capacity measured by the
fraction of biophysically realizable configurations: C/2n, where n is
the number of protein species. Shown here are Monte Carlo simu-
lation of different set of network ensembles with different sparsity p
(connectivity probability) and fraction of writers α. (A) α = 0.2 (B)
α = 0.5 (C) α = 0.9. In all panels, dots are results of Monte Carlo
simulations. Dashed lines are shown only for clarity.

The theory we present presumes that the underlying signaling network is all-

to-all connected, namely, every single protein is allowed to interact with one an-

other, as long as the underlying energetics permits. This raises a question regard-

ing the effect of network sparsity on capacity. To see how capacity scales with the

number of protein species at signaling networks with different sparsity, we intro-

duce in our Monte Carlo sampling procedure (Methods) a sparsity measure p ( with

p = 1 meaning all-to-all connected and p � 1 barely connected). In Fig.4·4, we

show PC ≡ C/2n for networks with different p at varying fraction of writers α. It is

clear that higher connectivity always guarantees larger capacity. And this advan-

tage is more pronounced when the network contains more writers. Concretely, PC

at sparsity p = 1.0 is two orders-of-magnitude of that at p = 0.1, when α = 0.9 (see

Fig. 4·4 C). In addition, the exponentially suppressed tail of PC echos the result in

Fig.4·3.
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Generally speaking, the suppression of capacity can be understood by count-

ing the number of parameters in a given signaling network. Consider a system of

n species whose activities are labeled by binary variables (0 or 1), meaning each

species can only be one of the two states. Combinatorially speaking, the maxi-

mum number of distinct configurations is 2n. On the energetics side, however, the

number of elements in the relative interaction matrix Fij = εij − kBT log[cj ] is n2.

Suppose elements of Fij can only take value from a finite flavor setM with cardi-

nality M , then the total number of energetics parameters is Mn2. Therefore, the

difference in the number of parameters in a system with n protein species between

these two categories is 2n −Mn2 � 1 for finite M . This implies that there will al-

ways be far less energetics parameters cells can utilize to carry out computation

than the that enabled by the number of protein species (c.f. 2Mn � 2n). In other

words, due to biophysical constraints cells always under exploit the combinatorial

nature of digital computation. Therefore, the fraction of attainable computation,

PC , is strongly suppressed at large n.

This counting argument also highlights an important message pertaining to

synthetic biology: in designing sophisticated synthetic circuit to perform complex

computation (i.e. demanding high capacity C ), it is always more advantageous to

increase the domain interaction complexity M (e.g. having more binding domain

pairs, see Fig.4·1B) rather than employing more proteins (i.e. increase merely n).

This is because while utilizing more protein species certainly enhance the flex-

ibility of design (e.g. more energetics parameters ∼ Mn2), our previous argu-

ment shows that this will introduce far too many configurations that even utilizing

the increased energetics parameters can never implement, thus higher degree of

under-exploitation.

On the methodology side, our result is reminiscent of Cover’s theorem on func-
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Table 4.1: Cover’s perceptron vs. Cell signaling

Parameters Perceptrons Cell signaling
Capacity C # of dichotomies # of compatible config.
data x x ∈ Rd binary protein act. vector
n # of data points # of protein species
d data dimension (q, q′,m): writer & eraser
Cmax 2n (max. # of dichotomies) 2n (max. # of config.)
Incomp. geometry biophysics

tion counting in statistical learning theory(Cover, 1965). This theorem places a

bound on the number of dichotomies realizable by linear separators (i.e. percep-

trons) for a generic set of n points in Rd , provided that they satisfy general position

(i.e. any subset of d or fewer points is linearly independent). Specifically, Cover

showed that when the number of data points n is much greater than the data di-

mension d , the fraction of linearly separable points is exponentially suppressed in

n, similar to PC in cell signaling. Intuitively, linear separability depends on the

number of data points n as well as the their dimension d , since they both affect the

degree of freedom we can maneuver the separating hyperplane with to realize the

desired dichotomies. In the context of cell signaling, this translates into the com-

putational capacity is contingent on the variety of protein species n as well as how

they interact through binding domain interactions (q, q′,m), for they collectively

dictates the physical implementation of computation (see Table 4.1). In as much

the same way as in cell signaling that the suppression of capacity is attributed

to the insufficient number of utilizable energetics parameters to exploit the com-

binatorial nature of computation, perceptron’s separation capacity is drastically

circumscribed due to the limited spatial degree of freedom d available to separate

the colossally many data points n. Therefore, PC in both cases bear similar degree

of suppression at large n (see Appendix B). We include in Table 4.1 a comparison

between the two realms of capacity.

Python class to generate signaling network and to infer capacity using this
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Monte Carlo procedure is freely available at: https://github.com/chinghao0703/

MC_capacity

https://github.com/chinghao0703/MC_capacity
https://github.com/chinghao0703/MC_capacity
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Chapter 5

Example study: Thermodynamic paradigm of
nuclear transport by living cells

‘Scientific revolutions are inaugurated by a growing sense... that an existing
paradigm has ceased to function adequately in the exploration of an aspect of nature
to which that paradigm itself had previously led the way.’

(Thomas Kuhn, 1962)

The chapter is adapted from the following publication: Thermodynamic paradigm

for solution demixing inspired by nuclear transport in living cells, Ching-Hao Wang,

Pankaj Mehta, Michael Elbaum, Phys. Rev. Lett 118, 158101 (2017)

Living cells display a remarkable capacity to compartmentalize their functional

biochemistry. A particularly fascinating example is the cell nucleus. Exchange of

macromolecules between the nucleus and the surrounding cytoplasm does not in-

volve traversing a lipid bilayer membrane. Instead, large protein channels known

as nuclear pores cross the nuclear envelope and regulate the passage of other pro-

teins and RNA molecules. Beyond simply gating diffusion, the system of nuclear

pores and associated transport receptors is able to generate substantial concentra-

tion gradients, at the energetic expense of guanosine triphosphate (GTP) hydroly-

sis. In contrast to conventional approaches to demixing such as reverse osmosis or
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dialysis, the biological system operates continuously, without application of cyclic

changes in pressure or solvent exchange. Abstracting the biological paradigm, we

examine this transport system as a thermodynamic machine of solution demixing.

Building on the construct of free energy transduction and biochemical kinetics, we

find conditions for stable operation and optimization of the concentration gradi-

ents as a function of dissipation in the form of entropy production.

5.1 Introduction

Demixing of solutions is a difficult thermodynamic problem with important prac-

tical consequences (Dijkstra and Frenkel, 1994). Examples include the desalination

of seawater, medical dialysis, and chemical purification. In all of these processes,

free energy is consumed in order to balance entropy of mixing. Typical engineer-

ing approaches to demixing involve application of hydrostatic pressure (reverse

osmosis), solution exchange (dialysis), or phase change (crystallization or distil-

lation) (Mistry et al., 2011; Glynn and Reardon, 1990). In this context living cells

adopt a fundamentally different paradigm by establishing and maintaining con-

centration gradients at steady-state under a fixed set of intrinsic thermodynamic

parameters. This recalls the similar capacity to operate mechanochemical motors

isothermally (Parmeggiani et al., 1999; Parrondo et al., 2000).

A prominent example of molecular separation is the eukaryotic cell nucleus,

wherein the concentrations of many proteins and RNA differ significantly from

those in the cell body (cytoplasm). These gradients are maintained by a trans-

port system that shuttles molecular cargo in and out via large protein channels

known as nuclear pores (Maul and Deaven, 1977; Talcott and Moore, 1999). This

system has been under intensive study in the biological (Görlich and Kutay, 1999;

Stewart, 2007; D’Angelo and Hetzer, 2008; Wente and Rout, 2010; Kimura and
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Figure 5·1: (Color online) Demixing of cargo across the nuclear mem-
brane is driven by Ran coupled to NTF2 and importin system. (A)
With such coupling (upper panel), nuclear cargo accumulation is fa-
vored and Ran GTP/GDP exchange cycle proceeds faster than with-
out coupling (lower panel). The thickness of arrowed curves in Ran
cycle indicates strength of reaction flux; length of arrowed lines in
cargo transport represents the rate at which the underlying processes
occur. (B) Details of molecular demixing machine in the context of
nuclear transport. Species labels as above. Reactions corresponding
to Ran cycle and cargo transport are highlighted by red and green
boxes, respectively. The orange dashed box includes all reactions
coupled by the importin-NTF2 system. See also Fig S1 in the Supple-
mentary Material.
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Imamoto, 2014) and biophysical (Peters, 2003; Kopito and Elbaum, 2007; Wagner

et al., 2015; Zahn et al., 2016; Vovk et al., 2016) literatures, with particular emphasis

on single-molecule interactions at the pore itself (Keminer and Peters, 1999; Yang

et al., 2004; Kubitscheck et al., 2005; Grünwald et al., 2011). Simple thermody-

namic considerations make clear that equilibrium pore-molecule interactions are

insufficient to support concentration gradients in solution. Demixing between two

compartments cannot occur spontaneously, but must be coupled to a free energy

source (Hill, 2012). At the same time, demixing does not require rectified translo-

cation (Görlich et al., 2003). Concentration gradients may be established in the

presence of a balanced, bi-directional exchange (Kopito and Elbaum, 2007; Kopito

and Elbaum, 2009; Lolodi et al., 2016).

Nuclear pores represent an unusual transporter in that there is no membrane

to cross. Water, ions, and small molecules diffuse freely across the nuclear enve-

lope to equilibrate between the two compartments. Generally, the permeability

drops between molecular weight 20 kDa and 40 kDa (Peters, 1984; Samudram

et al., 2016). Transport of larger macromolecules relies on a special class of pro-

teins, called transport receptors (i.e. “importin”), that usher their cargoes across

the nuclear pores by virtue of specific interactions with the channel components.

Recognition between importins and their molecular cargo depends on the presence

of particular amino acid sequences known as nuclear localization signals (NLS)

(Grote et al., 1995; Görlich and Kutay, 1999; Rexach and Blobel, 1995). The affinity

between importin and cargo is regulated by a small GTP-binding protein called

Ran (Smith et al., 2002; Terry et al., 2007). When associated with GTP (RanGTP),

Ran binds strongly to importin in a manner that is competitive to NLS binding.

By contrast, Ran associated with GDP (RanGDP) binds importin very weakly. Ran

interconverts between these two forms through GTP hydrolysis and GTP/GDP ex-
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change, facilitated by the GTPase Activating Protein (RanGAP) and the Guanosine

Exchange Factor (RanGEF), respectively (Bos et al., 2007). RanGAP is structurally

bound to the cytoplasmic face of the nuclear pore and RanGEF is bound to chro-

matin. Their activities generate a high concentration of RanGTP in the nucleus and

RanGDP in the cytoplasm (see FIG.5·1).

Demixing is powered by transducing free energy from GTP hydrolysis through

the interactions of transport receptor with Ran. The transport machinery has been

formulated in terms of coupled chemical kinetics (Görlich et al., 2003; Riddick and

Macara, 2005; Kim and Elbaum, 2013b) but the energetics have not yet been ad-

dressed. In particular, we ask: How does the rate of dissipation (energy consump-

tion) relate to the achieved concentration gradient? What is the proper definition

of transport efficiency? Is there an optimal working point given the nonequilib-

rium nature of this cellular machine? To address these questions, it is helpful to

reformulate the problem in a thermodynamic language. For consistency with the

literature we retain the biological nomenclature, yet the aim is to understand the

natural engineering in a more abstract sense that might ultimately be implemented

synthetically.

5.2 Thermodynamic formulation

In the thermodynamic formulation, a central role is played by energy transduction

in a “futile cycle” among the components (see FIG. 5·1). This is roughly analogous

to heat flow in a Carnot cycle. The importin receptor binds RanGTP, and a second

receptor known as nuclear transport factor 2 (NTF2) binds specifically RanGDP.

The forward cycle takes RanGTP out to the cytoplasm with importin and RanGDP

back to the nucleus with NTF2. Detailed balance is broken by the distribution

of RanGAP and RanGEF as described above, so that the reverse cycle is scarcely
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populated.

Free energy from the Ran cycle is transduced by importin to bias the steady-

state free cargo concentrations in the nuclear and cytoplasmic compartments. De-

tails of the underlying biochemical reactions are shown in FIG. 5·1B and can be

modeled on the basis of mass action. The corresponding kinetic parameters can be

found from the literature or estimated from simple scaling arguments (see FIG. S1

and Supplementary Material for details of the kinetic model(sup, )). Numerical

solutions are obtained by solving all the coupled rate equations using a standard

Runge-Kutta method (The code used for simulation is available in the Supplemen-

tary Material). We emphasize that the present aim is not so much to model the

biological implementation as to explore the generic operation of the thermody-

namic machine. Relations between parameters are therefore more important than

specific values.

Energetics enter the model via the charging of Ran with GTP and its subse-

quent hydrolysis to GDP (reactions 5 and 2 in FIG. S1, respectively). The flux

through these two reactions must be equal in steady state. Energy is drawn from

the non-equilibrium ratio of free GTP to GDP, θ, which is maintained by cellular

metabolism and defines an effective “free energy” Fθ := kBT log (θ). A typical

value of θ is roughly a few tens to a hundred (Garrett and Grisham, 2008; ?). In-

dependent of the complex operational details of RanGEF and RanGAP with as-

sociated co-factors, we can look at the steady states and relate the reactions to θ.

(See Supplementary Material for details.) On the nuclear side, the complex NTF2-

RanGDP exchanges for NTF2 and RanGTP. The dissociation constant KD (forward

divided by reverse flux) can be shown to be proportional to θ. Conversely, on the

cytoplasmic side the corresponding KD is proportional to 1/θ. As a result, any

enhancement of flux through the futile cycle in the forward reaction conferred by
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Figure 5·2: (Color online) Phase diagram of nuclear localization. (A)
The cargo nuclear localization NL:= [C ]nu/[C ]cyto (color shadings)
is obtained by varying the total importin and total NTF2 concentra-
tions while keeping overall cargo level fixed at [C ]tot = 100 nM. (B)
A family of curves shows NL for several cargo concentrations as a
function of importin concentration with [NTF2]tot = 100 nM. The
1D curve for [C ]tot = 100 nM is a cut across the plot of panel A. Lo-
cations of NL maximum are marked by diamonds (see FIG.5·4C as
well). Kinetic rate constants used are given in the Supplementary
Material. Total Ran concentration [Ran]tot=75 nM.

increasing θ (i.e. reaction 5 in FIG.S1C) is balanced by the contradicting counter-

part in preventing RanGTP release (i.e. reaction 2 in FIG.S1C).

A useful measure of cargo demixing is the nuclear localization ratio, NL, de-

fined as the ratio between nuclear and cytoplasmic cargo concentrations: [C ]nu/[C ]cyto .

This ratio defines a chemical potential, ∆µ = −kBT log [C ]nu/[C ]cyto , that mea-

sures the excursion from equilibrium. FIG. 5·2A shows NL as a function of im-

portin and NTF2 concentrations. The most striking feature is that NL is maximum

for intermediate levels of importin. The importin concentration at which NL is

maximized, [Im∗], grows with the total cargo load, [C ]tot (see FIG. 5·2B). Further-

more, [Im∗] is largely independent of NTF2 concentration for different cargo con-

centration considered (see FIG. S5). This suggests an inherent optimization.

At first sight it is surprising that augmenting the importin concentration, which
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increases the number of molecules that can transport cargo to nucleus, may de-

crease the localization ratio. The optimal dependence of NL on importin reflects

the dual role importin plays as the inbound carrier of cargo protein as well as the

outbound carrier of RanGTP. Powering the futile cycle requires that importin bind

RanGTP, whereas cargo transport requires importin to bind cargo. This establishes

a binding competition in the nucleus that is a characteristic feature of protein im-

port (FIG.5·3A). In spite of the higher affinity of RanGTP for importin, the cycle

analysis shows that importin in the nucleus binds cargo more rapidly. As seen in

FIG. 5·3BC, NL is maximized close to the point at which the difference between the

reaction fluxes of importin-cargo formation ( Φ−7 := Φ̃−7 [Im]nu = (k−7 [C ]nu)[Im]nu

) and importin-RanGTP formation (Φ+
4 := Φ̃+

4 [Im]nu = (k+4 [RanGTP ]nu)[Im]nu )

is maximal. Intuitively, this is the realm where importin can bind cargo effec-

tively while maintaining its coupling to the reaction cycle that transduces energy

for cargo transport.

5.3 Entropy production of futile cycle

To understand the thermodynamics of nuclear transport, we formulate the trans-

port system as a nonequilibrium Markov process. Since a nonequilibrium steady

state (NESS) necessarily breaks detailed balance in the underlying Markov pro-

cess, the system has a nonzero entropy production (Hill, 2012; Mehta and Schwab,

2012; Lang et al., 2014). This is the energy per unit time required to maintain the

NESS, with units of power. Following the Schnakenberg description, the EP for a

NESS is given by (Lebowitz and Spohn, 1999)

EP = kBT ∑
i ,j

PSS
i W (i , j) log

W (i , j)

W (j , i)
, (5.1)
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Figure 5·3: (Color online) Competition between RanGTP and cargo
to bind importin. (A) Schematic of the two competing reactions. (B)
Reaction flux for importin-RanGTP formation Φ̃+

4 ∼ k+4 [RanGTP ]
and (C) flux for importin-cargo formation Φ̃−7 ∼ k−7 [C ]nu. Fluxes
are scaled by [Im]nu (see text). Parameters as in FIG.5·2

where PSS
i is the steady state probability distribution of state i while W (i , j) de-

notes the transition probability from state i to state j . Concretely, PSS
i is the frac-

tion of reactants that participate in the transition reaction starting from state i while

W (i , j) can be calculated from the relevant reaction fluxes. Note that the sum in

Eq.(5.1) is taken over all links of the reaction network. This is equivalent to sum-

ming over the links pertaining to the Ran futile cycle. (See Supporting Material for

details).

This entropy production provides a direct measure of the power input to the

underlying biochemical circuit. FIG. 5·4A shows EP for various importin and

NTF2 concentrations. FIG. 5·4B adds various cargo concentrations for a fixed level

of [NTF2]. In each case, as the importin concentration increases, EP first drops to a

minimum and then peaks before slowly decaying. Note that the minimal dissipa-

tion (entropy production) tracks closely with the value at which the NL ratio peaks

(see FIG.5·4C). These conditions define an optimal efficiency of the demixing ma-
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chine. With further increasing importin concentration, the futile cycle decouples

from cargo translocation and EP increases. At a still higher concentration, EP peaks

and then decreases. This can be understood qualitatively as a short circuit via re-

action 8, where importin moves between compartments carrying neither cargo nor

RanGTP. As seen in FIG.5·4D, for such high importin levels the corresponding flux

Φ8 exceeds that of the RanGTP loading to importin, Φ4.

5.4 Discussions

To the best of our knowledge the optimal steady-state has not been observed ex-

perimentally. The kinetic rate of nuclear protein uptake was found to be reduced by

microinjection of importin receptor to live cells; rate equation simulations done in

parallel also pointed to the dual role of importin (FIG. 5·3A) (Ribbeck and Görlich,

2001). Steady-states were not reported in that study, however. Other possible ex-

perimental tests include titration of importin protein to nuclei reconstituted in vitro

in Xenopus egg extract and optical activation of importin receptors, similarly to in-

duction of nuclear transport by NLS activation (Niopek et al., 2014). An important

point in comparison with literature is that we have considered a single, collective

“cargo” for transport. In reality, multiple cargoes compete for binding to relatively

few but promiscuous transport receptors. This competition leads to a partitioning

according to equilibrium binding affinities and may lead to vastly different kinet-

ics. However the steady-state NL ratio (in solution) is independent of the affin-

ity, reflecting thermodynamic control and equilibration of the chemical potentials

(Kopito and Elbaum, 2009; Kim and Elbaum, 2013b; Lolodi et al., 2016). Consistent

with this paradigm, in which a net accumulation occurs together with a balanced

bidirectional flux, the simulations show that the nuclear and cytoplasmic concen-

trations of the importin-cargo complex (X4 and X11, respectively) equilibrate in
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Figure 5·4: (Color online) Phase diagram of entropy production. (A)
Entropy production is plotted as a 2D function of NTF2 and im-
portin, at fixed cargo concentration [C ]tot = 100 nM. Compare with
FIG. 2A. (Axes extend to 5 instead of 0 nM to avoid numerical di-
vergence.) (B) A family of curves shows the entropy production
for several cargo concentrations as a function of importin concen-
tration; NTF2 concentration fixed at [NTF2]tot = 100 nM. The 1D
curve for [C ]tot = 100 nM is a cut across the plot of panel A. Com-
pare with FIG. 2B. Peaks and troughs are marked by squares and
circles, respectively. (C) Locations of entropy production max/min
(square/circle) and that of nuclear localization maximum (diamond).
Colors match curves in panel B. The importin concentration at which
EP is minimum is close to but always less than [Im∗], where NL
is maximum. Thus, one strategy for maximizing the efficiency of
demixing is to have the futile cycle operate in regime where its en-
tropy production is minimized. (D) EP decreases at very high im-
portin concentration. This reflects a loop around the energetic reac-
tion Φ4 via the reversible reaction Φ8. Here [NTF2]tot=100 nM, as in
the panel B. In all panels, [Ran]tot = 75 nM. Kinetics constants as in
FIG.5·2 and 5·3 (see SM Section II).
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steady-state. It is also interesting to note that RanGTP loading onto importin (re-

action 4) was identified in the earlier analysis as the primary rate-limiting step in

accumulation kinetics (Kim and Elbaum, 2013b).

In summary, we have analyzed the biological paradigm for nuclear transport

from a thermodynamic point of view. Building upon prior understanding that

protein cargo demixing is facilitated by hydrolysis of GTP, we draw the connec-

tion between consumption of chemical energy and maintenance of the cargo con-

centration gradient at non-equilibrium steady states. We show that the efficacy

of nuclear localization ratio peaks at intermediate importin level, which is not far

from the power consumption (entropy production) minimal. It is likely that the

cell maintains an importin concentration at an advantageous level with respect

to these operating points defined by the thermodynamic analysis. Interestingly,

the system as configured is robust to the quality of the chemical energy source, in

the sense that the NL ratio is almost independent of the GTP:GDP ratio θ when

θ & 20, FIG. S4. A thermodynamic definition of the system efficiency remains elu-

sive, however. Whereas conventional efficiency of an engine is a dimensionless

ratio of mechanical to thermal power, in the NESS a constant free energetic gra-

dient (chemical potential in the present case) is maintained by a constant power

input. The ratio has units of time. This could be renormalized sensibly by a char-

acteristic remixing time, e.g., the permeability of the nuclear pores to the cargo-

importin complex. There is no guarantee of a bound at unity, however, so the

definition remains ad hoc, a useful figure of merit. It is also interesting to contrast

the competitive interactions between receptor and RanGTP in nuclear protein ac-

cumulation (import) with the cooperative interactions in nuclear protein depletion

(export). While these are often considered as simple inverse processes, they differ

in this essential aspect (Kim and Elbaum, 2013a).
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This work is part of a larger literature that seeks to examine basic biophysical

processes from a thermodynamic perspective. It is now clear that thermodynam-

ics fundamentally constrains the ability of cells to perform various task ranging

from detecting external signals (Berg and Purcell, 1977; Endres and Wingreen,

2009; Mora and Wingreen, 2010), to adaptation (Sartori et al., 2014), to making

fidelity decisions (Lang et al., 2014), generating oscillatory behavior (Elowitz and

Leibler, 2000), and of course generating forces and dynamic structures (Nédélec

et al., 1997; Surrey et al., 2001; Karsenti, 2008). In all these examples, it is possible

to map these tasks to Markov processes and compute the corresponding entropy

production rate. This suggests that there may be general theorems about thermal

efficiency in cells that are independent of the particular task under consideration

(Mehta and Schwab, 2012; Mehta et al., 2016; Barato and Seifert, 2015; Gingrich

et al., 2016). It will be interesting to explore if this is actually the case and to see

if these principles can be applied to synthetic biology and ultimately biomimetic

engineering (Mehta et al., 2016).
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Appendix A

Appendix of Chapter 2

A.1 Details of InfoMax

Let G be the network given and {θ(0)} be the initial BAs (parameters) which we

sample uniformly from [−8, 2]. For each time step t (t = 0, · · · ,T = 106), we

either add to each elements of {θ(t)} a fixed finite amount±δθ = ±10−4 or leave it

un-perturbed, completely at random. The perturbed parameter {θ(t)?}is accepted

with probability p = min{1, exp{α[I ({θ(t)?})− I ({θ(t)})]}}, where α = log t. If ac-

cepted, set {θ(t+1)} ← {θ(t)?}; otherwise, set {θ(t+1)} ← {θ(t)}. This procedure

continues until any elements in {θ(t)} falls beyond [−8, 2] or t = T , whichever

comes earlier. Python codes for such implementation is available at the author’s

Github repository: https://github.com/chinghao0703/InfomaxDesign. In Fig-

ure 2·5, we perform 100 simulated annealing routines with un-correlated inputs

and report the realization that gives maximum mutual information denoted as

Imax. The pseudo-code of the InfoMax procedure is given in Algorithm 2.

A.2 Signal-to-noise ratio (SNR) of signaling circuit

Consider a biochemical pathway that involves the relay of a (possibly continu-

ous) signal c to the intracellular kinase X which intern activates an output Y . We

assume that these proteins are catalytically active only when they undergo a post-

translational modification (PTM). We represent the PTM-state of the proteins as

https://github.com/chinghao0703/InfomaxDesign
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Algorithm 1 InfoMax: maximizing mutual information with respect to BAs

Require: Binding affinity (BA) range S ← [−8.0, 2.0], perturbation δθ ← 10−4,
termination threshold T ← 106, and function I (·) that computes the input-
output mutual information of a given signaling network G with BA {θ}.

1: procedure INFOMAX(G )
2: t ← 0
3: Draw BA uniformly from S : {θ(t)} ← U(S)

4: while t ≤ T AND {θ(t)} ∈ S do
5: Draw a uniformly from {1, 0,−1} and update BA {θ(t)?} ← {θ(t) + a ·

δθ}
6: Compute p ← min{1, exp{α[I ({θ(t)?})− I ({θ(t)})]}}, where α = log t
7: Draw b uniformly from [0, 1]
8: if b ≤ p then
9: Accept {θ(t+1)} ← {θ(t)?}

10: else
11: {θ(t+1)} ← {θ(t)}
12: t + 1← t

return {θ(t)}

binary random variables that take value 1 when catalytically active and 0 oth-

erwise. Pictorially, this pathway can be summarized as the following channel:

c → X → Y . Note that in the appendix, we first set β = 1 to simplify notation in

the calculation and put it back in at the end using dimensional analysis.

To calculate the signal-to-noise ratio (SNR),we need the probability of the out-

put given the input, Q(c) ≡ P(Y = 1|c). Specifically,

P(Y = 1|c) = ∑
X∈{0,1}

P(Y = 1|X )P(X |c) (A.1)

=

(
e−θx

1 + e−θx

)
︸ ︷︷ ︸

ηb

f (c) +

(
e−W

1 + e−W

)
︸ ︷︷ ︸

ηW

(1− f (c)) , (A.2)

where f (c) ≡ P(X = 1|c) is the probability that kinase X is phosphorylated in

the presence of a ligand at concentration c . The functional form of f (c) is not

relevant so we simply assume that it is a monotonically increasing function of c
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and attains 1(0) when c = 1(0). Note that when f (c) = 1 (i.e. full input signal),

Q(c) is purely dictated by bindings of phosphorylated kinase to its substrate (i.e.

θx , see Fig. 2·1D), whereas when f (c) = 0 (i.e. no input signal), the contribution

is solely from the those involving unphosphorylated kinase (i.e. W , see Fig. 2·1D).

Therefore, we define the signal-to-noise ratio (SNR) formally as:

SNR ≡ 〈Q(c = 1)〉
〈Q(c = 0)〉 =

〈ηb〉
〈ηW 〉

, (A.3)

where 〈·〉 denotes the average with respect the distribution of BAs. To simplify,

we assume that W is a constant that sets the time scale of non-specific bindings

and that the specific BA θx ∼ N (µ, σ2) is drawn from a Gaussian distribution with

mean µ� −1 (i.e. tight-binding) and variance σ2. Since θx is normally distributed,

eθx follows log-normal distribution. In this tight-binding approximation,

ηb =
1

1 + eθx
≈ 1− eθx ≡ 1− Z , (A.4)

where Z ≡ eθx ∼ logN (µ, σ2). From this, one can calculate its first two moments:

〈ηb〉 = E[1− Z ] =

∞∫
0

dz (1− z)
1

zσ
√

2π
exp

[
− (log z − µ)2

2σ2

]

= 1− exp

(
µ +

σ2

2

)
(A.5)

and

〈η2
b〉 = E[(1− Z )2] =

∞∫
0

dz
1− 2z + z2

σ
√

2π
exp

[
− (log z − µ)2

2σ2

]

= 1− 2 exp

(
µ +

σ2

2

)
+ exp[2

(
µ + σ2

)
]. (A.6)
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From this one can also derive its variance

Var(ηb) = 〈η2
b〉 − 〈ηb〉2

= e2(µ+σ2)(1− e−σ2
). (A.7)

These quantities can be used to analyze the effect of heterogeneity in θX on Q(c)

which we summarized in Fig. A·1. Finally, after putting the energy unit β−1 = kBT

back in and noting that e−βW � 1 so that ηW ≈ e−βW , the signal-to-noise ratio is

simply

SNR =
〈ηb〉
〈ηW 〉

= eβW

[
1− e

β
(

µ+ σ2

2

)]
. (A.8)

Note that one can still calculate the SNR without assuming tight-binding, except

in this case there’s no closed form solution. Follow the same procedure while re-

taining ηb = e−θx /(1 + e−θx ) and performing change-of-variable, one ended up

with the following integrals:

〈ηb〉 =
1

σ
√

2π

∞∫
0

dλ
1

1 + λ
exp

[
− (log λ + µ)2

2σ2

]
(A.9)

〈η2
b〉 =

1

σ
√

2π

∞∫
0

dλ
λ

(1 + λ)2
exp

[
− (log λ + µ)2

2σ2

]
. (A.10)

One can further apply Laplace method by assuming M ≡ 1/(2σ2) � 0 (i.e. σ2 →

0, zero temperature limit) to get

〈ηb〉M�1 ≈
e−µ

1 + e−µ (A.11)

〈η2
b〉M�1 ≈

(
e−µ

1 + e−µ

)2

, (A.12)

implying that Var(ηb) ∼ 0 and 〈ηb〉 is simply the mean-field value. In this case,



111

the SNR with the energy unit in place reads

SNRM�1 ≈
e−β(µ−W )

1 + e−βµ
. (A.13)
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Figure A·1: Inverse coefficient of variation (CV−1) of Q(c) assum-
ing negligible ηW is shown for different value of µ ≡ 〈θi ,j 〉 and
σ2 ≡ Var(θi ,j ), where θi ,j is the binding affinity of Ki to Kj and the
average 〈·〉 is taken over different parameter realizations θi ,j . Note
that µ < 0 by definition. Different colors indicate different σ whose
values are encoded in the color bar. Colored curves are theoretical
predictions Eq.(A.9)(A.10), open circles are calculated via sampling
network parameters as described in Methods. Black dashed curve
is the analytical result in the tight-binding limit whose expression is
given by Eq.(A.5)(A.7) with σ corresponding to that of the yellow
open circles (σ = 0.1). Note the logarithmic scale.

A.3 Deriving the information capacity

In this section, we derive the mutual information transduced across a linear signal-

ing network based on phosphorylation cascade. Note that linearity here refers to

the network topology not that of the transfer function relating phosphorylation re-

action downstream. Concretely, we consider a n-phosphorylation kinase cascade

represented by a Bayesian network of the form: xin → x1 → · · · → xn → xout,
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where xi , xin, xout ∈ {0, 1} as defined in the main text. For brevity, we denote

xout ≡ xn+1 and xin ≡ x0. Due to the Markovian nature of this network, the joint

distribution of kinase states can be factorized as

P(x) := P(x0, · · · , xn+1) =

(
n

∏
i=0

P(xi+1|xi )
)
P(x0), (A.14)

where the conditionals are given by

P(xi+1 = 1|xi ) =
xie
−θi ,i+1

1 + xie−θi ,i+1
. (A.15)

Note that we denote the relative binding affinity of i to i + 1 as θi ,i+1 (c.f. Eq. (A.35))

. From now on, every energetic parameters are measured in units of kBT . To

simplify notation, we represent the conditional probability by a transfer matrix

defined as:

Mi+1,i =

(
P(xi+1 = 1|xi = 1) P(xi+1 = 1|xi = 0)
P(xi+1 = 0|xi = 1) P(xi+1 = 0|xi = 0)

)
(A.16)

To calculate the mutual information between x1 and xn,

I (x0; xn+1) = ∑
x0

∑
xn+1

P(x0)P(xn+1|x0) log2

[
P(xn+1|x0)

P(xn+1)

]
, (A.17)

we need to get P(xn+1|x0) first. Using the matrix notation, we have

P(xn+1|x0) = ∑
x1

· · ·∑
xn

n

∏
i=0

P(xi+1|xi )

= ∑
xn

P(xn+1|xn)P(xn|xn−1) · · ·∑
x2

P(x3|x2)∑
x1

P(x2|x1)P(x1|x0)

=
n

∏
i=0

Mi+1,i ≡ Pn+1,0, (A.18)
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from which we can derive the marginal probability of xn+1:

pn+1 = ∑
x0

P(xn+1|x0)P(x0) =

(
n

∏
i=0

Mi+1,i

)
p0 = Pn+1,0p0, (A.19)

where pn+1 ≡ (P(xn+1 = 1),P(xn+1 = 0))T , and similarly for p0. With this defined

and for a given set of θi ,j , we can calculate mutual information Eq. (A.17) by a series

of matrix multiplications.

Now consider several realizations of such signaling circuits with θi ,j drawn

from some distribution, say, Gaussian with mean µ and variance σ2. In the tight-

binding limit, µ� −1 and the transfer matrix Eq. (A.16) approximates the identity

matrix I due to Eq. (A.15). From this, one can easily show that mutual information

averaged over different realizations is given by:

〈I (x0; xn+1)〉 = −q log2 q − (1− q) log2(1− q) ≡ H2(q), (A.20)

where q ≡ P(x1 = 1), and H2(q) is the entropy function of Bernoulli process with

probability q of one of the two values. Note that this calculation does not depend

on the depth of the network (i.e. n), which implies as long as this approximation

holds (i.e. tight-binding), mutual information is always peaked when input is least

certain (i.e. q = 0.5), see Figure A·2.

A.4 Optimal input to reach maximum mutual information

In this section, we derive the optimal input that gives maximum mutual informa-

tion. To simplify notation, let’s define

bn =
n−1

∏
i=1

fi = ∏
i=1

(
e−θi ,i+1

1 + e−θi ,i+1

)
. (A.21)



114

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x
0

 ;
 x

n
+

1

Figure A·2: At tight-binding mutual information for linear network
reduces to binary entropy function. Linear network of depth n = 8
is used. Red squares are obtained by averaging the result over 100
different realizations of binding affinities using the methods detailed
in this appendix. Dashed black curve is plotted using Eq. (A.20).
Parameters used are: βµ = −5, σ = 0.1. The value and location of
maximum mutual information obtained by averaging is indicated as
(q, Imax) = (0.5, 0.99998).
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Figure A·3: Mutual information as a function of mean binding affin-
ity µ ≡ 〈θ〉 at different inputs. Note that maximum mutual infor-
mation may not occur at q = 0.5 (dashed orange curve) away from
tight-binding (i.e. less negative β〈θ〉). In all panels, σ = 0.1.
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From this, one can re-write Eq. (A.18) and Eq. (A.19) as

Pn,1 =

(
bn 0

1− bn 1

)
, pn =

(
q bn

1− q bn

)
. (A.22)

Plugging this back in to the definition of mutual information,Eq. (A.17), one gets,

I (x1; xn) = −qbn log q + q(1− bn) log(1− bn)− (1− q bn) log(1− q bn) (A.23)

After taking the derivate of Eq. (A.23) with respect to q and setting it to zero,

one finds that the optimal input q? that gives the maximum mutual information

I (x1; xn) is the solution to the following transcendental equation:

bn log

(
q?

1− q?bn

)
= (1− bn) log(1− bn) (A.24)

A.5 Relating thermodynamics to a kinetic model of phosphoryla-
tion cascade

Here we derive the Eq.(2.3) in the main text (re-written as Eq. (A.34) here) from

chemical kinetics. Following Fig. A·6, let Xi be the concentration of kinase i in

its active (i.e. phosphorylated) form and X̃i be that of its inactive (i.e. unphos-

phorylated) form. For each step i of cascade except for i = 1, the rate of phos-

phorylation is dependent on the concentration of active kinase Xi−1 and that of

the inactive downstream X̃i . We describe the phosphorylation rate of kinase i by

Φ+
i = α̃iXi−1X̃i . Assuming the phosphatase concentration is constant, we can write

down the dephosphorylation rate as Φ−i = βiXi . Here α̃i , βi are the kinetics rate

constants of phosphorylation and dephosphorylation reactions, respectively. With

this defined we can write down the kinetics equations for all kinases in the path-
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Figure A·4: Tighter binding always increases information trans-
mission for cascades of depths n = 0, 3, 13. Here Var(θi ,j ) ≡ σ2 =
0.01. All panels are generated by averaging 100 realizations of bind-
ing affinities using the scheme detailed in Appendix A 2.
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Figure A·5: Location of maximum mutual information is not neces-
sarily at input with most uncertainty (q = 0.5). White filled circles
are calculated by numerically searching for the input q? on this color
map that gives maximum mutual information. Red open circles are
obtained through solving Eq. (A.24). Here Var(θi ,j ) ≡ σ2 = 0.01.
The color map is generated by averaging 100 realizations of binding
affinities using the scheme detailed in Appendix A 2.

way (except for the first one) as: (∀i > 1)

dXi

dt
= Φ+

i −Φ−i (A.25)

= α̃iXi−1X̃i − βXi (A.26)

= αiXi−1

(
1− Xi

Ci

)
− βiXi , (A.27)

where αi = α̃iCi is the pseudo-first order rate constant and Ci = Xi + X̃i is the

total concentration of kinase i . For the first kinase, its phosphorylation is stimu-

lated by active receptors whose concentration is denoted as R(t). In addition, it is

dephosphorylated by phosphatase at rate β1. Combining this we have

dX1

dt
= α1R(t)

(
1− X1

C1

)
− β1X1. (A.28)
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Figure A·6: Signal network based on PK cascade. The input of this
signaling pathway is conceptualized as receptor kinase activation R
which could potentially be time-varying. The phosphorylation cas-
cade depicted here is as described in the main text. Here we denote αi

(βi ) as the phosphorylation (dephosphorylation) rate of the cascade
stage Ki → Ki+1.
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At steady-state, we have for i 6= 1

X SS
i =

CiX
SS
i−1

γiCi + X SS
i−1

, (A.29)

where γi = βi/αi . Divide both sides by the total concentration of kinase i , Ci , one

gets the steady-state activation probability of i :

pSSi =
X SS
i−1(γiCi )

−1

1 + X SS
i−1(γiCi )−1

. (A.30)

This is related to the Michaelis-Menton equation VmaxS/(Km + S) by recognizing

X SS
i−1 → S (A.31)

Ci → Vmax (A.32)

Km → Ciγi (A.33)

Finally, the steady-state probability model presented in the main text,

P(xi = 1|xi−1) =
xi−1e

−θi−1,i/(kBT )

1 + xi−1e−βθi−1,i/(kBT )
, (A.34)

can be interpreted under this kinetics frameworks by relating

θi−1,i = kBT ln

(
Km

X SS
i−1

)
= ∆F − µ̃i−1, (A.35)

where ∆F = kBT lnKm is the free energy difference between the bound and un-

bound state and µ̃i−1 = kBT lnX SS
i−1 is the chemical potential of active kinase i − 1.

A.6 Effects of network depth

Here we examine how the depth of network affects information transduction ca-

pacity. According to data processing inequality (DPI)(Cover and Thomas, 2012;

?), information is never gained when transmitted through some noisy channel (or
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Figure A·7: Data processing inequality and biochemical noise: Mu-
tual information across a linear network (X1 → X2 → · · · → Xn)
is shown as the color map. Models are described in details in SI
Sec.A.3. For tight/weak-binding (left/right panel), mean binding
affinity βµ = −5/− 0.1. In all panels, q = P(x1 = 1) and standard
deviation of binding affinities σ = 0.1.

observation process). Formally, DPI states that suppose we have a Markov chain:

X1 → X2 → X3, where X1 ⊥ X3 ‖X2 (i.e. X1 and X3 are independent condition-

ally on X2), then it must be that I (X1;X3) ≤ I (X1;X2). The pertinent question is

therefore how much information degradation across signaling circuit is controlled

by biochemical noise due to non-specific PPIs. In Fig.A·7, we calculated mutual

information for networks described in SI Sec.A.3 of varying depth at two binding

scenarios. At tight-binding, the noise due to promiscuity of PPIs is small and we

observe that DPI is almost saturated (i.e. equality in DPI holds). In the other limit,

information is always degraded when as it is relayed downstream.

A.7 Implementation of complex networks

Here we consider all-to-all connected 2-n-2 networks, where n ∈ N is the number

of intermediate nodes. The goal is to compare the maximum mutual information
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conferred by optimal binding affinities (i.e. InfoMax) to that of the simplistic 2-2

network with and without cross-talks. To do so, we first construct such networks

with varying n, subject them to inputs with different correlations, then maximize

mutual information with respect to binding affinities. From a practical point of

view, it is useful to define the followings. In the sequel, we use Roman letters

i , j , k , · · · to denote the identity of nodes (i.e. protein species label) while reserv-

ing Greek letters µ, ν, σ, · · · for configurations (i.e. joint protein phosphorylation

states).

Let x = (x1, x2) be the input (phosphorylation) state vector, y = (y1, y2, · · · , yn)

be the intermediates, and z = (z1, z2) be the outputs. Denote the binding affinity

between yi and xj as θi ,j and that between zk and yi as ηk,i (all measured in units of

kBT ). In other words, these energetics parameters can be summarized by the bind-

ing matrix ` ∈ Rn×2 and  ∈ R2×n. To distinguish the variable space (indexed by

i , j , k · · · ) from the configuration space (indexed by µ, ν, σ, · · · ), let X = {x(µ), µ =

1, · · · , 22}, Y = {y(µ), µ = 1, · · · , 2n}, and Z = {z(µ), µ = 1, · · · , 22} be the set of

input, intermediate, output configurations, respectively. Define Pµν : X → Y as

a matrix that relates the joint states of two inputs (of dimensionality four) to that

of the intermediates and Qσµ : Y → Z for that between the intermediates and the

outputs. In matrix form,

Pµν =


1

...
...

...
0 Pµ,2 Pµ,2 Pµ,2
...

...
...

...

0
...

...
...

 , and Qσµ =


1 0 ... 0
... Q2,µ ... ...
... Q4,µ ... ...
... Q3,µ ... ...

 , (A.36)
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from which one can calculate the input-output and output marginal probability as

Pσν(Z|X ) = QσµPµν (A.37)

Pσ(Z) = QσµPµνqν, (A.38)

where qν is the joint probability of the inputs, namely, P(x1, x2). Note that we

use the Einstein notation where repeated indices are implicitly summed over. To

simplify notation, denote y
(µ)
i as the i-th component of the phosphorylation state

vector of intermediate nodes y(µ) = (y
(µ)
1 , · · · , y

(µ)
n ). Let uµ = {i |i ∈ Y , y

(µ)
i = 1}

be the set of intermediate nodes that are phosphorylated and vµ = Y \ uµ be those

of that are not. The matrix element of Pµν is therefore:

Pµ,2 = ∏
i∈uµ

f (θi ,1) ∏
j∈vµ

[1− f (θj ,1)] (A.39)

Pµ,3 = ∏
i∈uµ

f (θi ,2) ∏
j∈vµ

[1− f (θj ,2)] (A.40)

Pµ,4 = ∏
i∈uµ

g(θi ,1, θi ,2) ∏
j∈vµ

[1− g(θi ,1, θi ,2)], (A.41)

where

f (ζ) =
e−ζ

1 + e−ζ
(A.42)

g(ζ, ξ) =
e−ζ + e−ξ

1 + e−ζ + e−ξ
. (A.43)

Note that in writing down g , we ignored higher-order interactions such as those

due to cooperativity∼ e−ζ−ξ etc. We also choose x(ν) = {(0, 0), (1, 0), (0, 1), (1, 1)}
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for ν = 1, 2, 3, 4 ordering. Similarly,

Q2,µ = h(η1,uµ) [1− h(η2,uµ)] (A.44)

Q3,µ = [1− h(η1,uµ)] h(η2,uµ) (A.45)

Q4,µ = h(η1,uµ) h(η2,uµ), (A.46)

where the function h, with higher order interactions ignored, reads

h(ηi ,Si ) =
∑j∈Si e

−ηi ,j

1 + ∑j∈Si e
−ηi ,j

(A.47)

With all these matrices defined, we can compute the mutual information Eq.

(A.17) by a series of matrix multiplications as we did in Sec. A.3.

A.8 Effects of input correlations and pathway cross-talks on in-
formation capacity

In this appendix, we show the results of a full analysis on pathway cross-talks to

complement Figure 2·4. The network studied are depicted as labeled according

Figure 2·4A.
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Figure A·8: (A) Network studied and the distribution of input cor-
relation P(c) (B) Violin plot for mutual information for network and
input correlation shown in A. Violins are categorized according to
their cross-talk levels and binding affinities. Blue for ’cross-talk’ with
βη = −5.0 and green for ’no cross-talk’ with βη = 0 (see Appendix
A 4 for details). Tight-binding refers to β〈θ〉 = −5.0 while weak-
binding to β〈θ〉 = −1.0.
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Figure A·9: Gain of mutual information through cross-talks for the
network shown in Figure A·8. Information gain ∆I is defined as
the different between the mutual information with and that with-
out cross-talk. The label ’most’ and ’least’ are annotated based on
maximizing and minimizing ∆I with respect to input correlations c ,
respectively.



125

Appendix B

Appendix of Chapter 3

B.1 Kinetics model on phosphorylation cascade

Here we consider kinase phosphorylation cascade without the ADD-gate logic.

Following FIG. B·1, let Xi be the concentration of kinase i in its active (i.e. phos-

phorylated) form and X̃i be that of its inactive (i.e. unphosphorylated) form. For

each step i of cascade except for i = 1, the rate of phosphorylation is dependent

on the concentration of active kinase Xi−1 and that of the inactive downstream X̃i .

We describe the phosphorylation rate of kinase i by Φ+
i = α̃iXi−1X̃i . Assuming

the phosphatase concentration is constant, we can write down the dephosphoryla-

tion rate as Φ−i = βiXi . Here α̃i , βi are the kinetics rate constants of phosphoryla-

tion and dephosphorylation reactions, respectively. With this defined we can write

down the kinetics equations for all kinases in the pathway (except for the first one)

as: (∀i > 1)

dXi

dt
= Φ+

i −Φ−i (B.1)

= α̃iXi−1X̃i − βXi (B.2)

= αiXi−1

(
1− Xi

Ci

)
− βiXi , (B.3)

where αi = α̃iCi is the pseudo-first order rate constant and Ci = Xi + X̃i is the

total concentration of kinase i . For the first kinase, its phosphorylation is stimu-

lated by active receptors whose concentration is denoted as R(t). In addition, it is
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dephosphorylated by phosphatase at rate β1. Combining this we have

dX1

dt
= α1R(t)

(
1− X1

C1

)
− β1X1. (B.4)

At steady-state, we have for i 6= 1

X SS
i =

CiX
SS
i−1

γiCi + X SS
i−1

, (B.5)

where γi = βi/αi . Divide both sides by the total concentration of kinase i , Ci , one

gets the steady-state activation probability of i :

pSSi =
X SS
i−1(γiCi )

−1

1 + X SS
i−1(γiCi )−1

. (B.6)

Note Eq.(B.7) can be mapped to our steady-state probability model presented in

the main text, namely,

P(xi = 1|pa(xi )) =
∑j∈pa(i) xj [cj ]e

−∆εji/(kBT )

1 + ∑j∈pa(i) xj [cj ]e
−∆εji/(kBT ) + (1− xj )[c̃j ]e−W/(kBT )

(B.7)

≈
∑j∈pa(i) xj [cj ]e

−∆εji/(kBT )

1 + ∑j∈pa(i) xj [cj ]e
−∆εji/(kBT )

, (B.8)

through

X SS
i−1 → xi−1[ci−1] (B.9)

γiCi → e∆εi ,i−1/(kBT ). (B.10)

Note that in Eq.(B.7) [cj ] and [c̃j ] are the concentration of kinase j in active and

inactive form, respectively, at steady state. Also, Eq.(B.5) is related to the Michaelis-
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Menton equation VmaxS/(Km + S) via

X SS
i−1 → S (B.11)

Ci → Vmax (B.12)

Km → Ciγi (B.13)

Henrich et’ al showed that signal amplification at each stage i is possible only if

Xi−1 < Ci (1− γi ) . (B.14)

If the concentration of activated kinase i is not much smaller than the total, then

amplification is possible only if γi is almost but still smaller than 1 (i.e. αi ≈ βi but

αi > βi ). Whereas in the weakly activated regime (i.e. Xi � Ci ), amplification only

requires βi < αi . In addition, they showed that longer signaling pathways do not

always have a longer signal duration since they can distribute amplification over

more steps.

B.2 CFFL

Following FIG. B·1, we simulate the following kinetics equations

dX1

dt
= α1R(t)

(
1− X1

C1

)
− β1X1, (B.15)

dX2

dt
= α2X1

(
1− X2

C2

)
− β2X2, (B.16)

dX3

dt
= α3X2

(
1− X3

C3

)
− β3X3, (B.17)

dX4

dt
= α4

(
X1

K

)
X3

(
1− X4

C4

)
− β4X4, (B.18)

where one can interpret α̂4 = α4

(
X1
K

)
as the perturbed excitatory phosphorylation

rate of kinase 4 by kinase 1. Note that the receptor activation function is chosen to



128

be R(t) = e−λt . To see how this related to the model presented in the main text,

lets solve for the steady-state fraction of phosphorylated kinase 4:

pSS4 ≡
X4

C4
=

X3(C4γ4)−1
(
X1
K

)
1 + X3(C4γ4)−1

(
X1
K

) . (B.19)

Next recall our mapping: X1 → x1[c1], X3 → x3[c3], (C4γ4)−1 → e−∆ε34/(kBT ), and

X1

K
→ x1[c1]e

−∆ε14/(kBT ),

we can cast Eq.(B.19) into

pSS4 ≡
X4

C4
=

x3x1[c1][c3]e−(∆ε14+∆ε34)/(kBT )

1 + x3x1[c1][c3]e−(∆ε14+∆ε34)/(kBT )
, (B.20)

which is approximately P(x4 = 1|x1, x3) except that a few terms pertaining to

xj [cj ]e
−∆εj4 etc. are neglected in the partition function to be consistent with the

AND nature of this CFFL. At steady state, one can solve these equations and get

the input-output relation:

1

X4
=

1

C4
+

K

C1

(
γ4

C3
+

γ4γ3

C2

)
+

Kγ4γ3γ2

C 2
1

+
K

R

(
γ4γ1

C3
+

γ4γ3γ1

C2
+

2γ4γ3γ2γ1

C1

)
+

Kγ4γ3γ2γ2
1

R2
. (B.21)

Note that due to the AND gate nature, the input-output relation is no longer

Michaelis-Menton like. To see this, one can solve Eq.(B.1) and (B.4) to get:

1

Xi
=

i

∑
j=1

1

Cj

i

∏
k=j+1

γk +
1

R

i

∏
k=1

γk , (B.22)

which is linear in 1/Cj and 1/R but not in CFFL implemented here.
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B.3 ICCFL

Here the kinetics equations are slightly modified (c.f. FIG. B·2)

dX1

dt
= α1R(t)

(
1− X1

C1

)
− β1X1, (B.23)

dX2

dt
= α2X1

(
1− X2

C2

)
− β2X2, (B.24)

dX3

dt
= α3X2

(
1− X3

C3

)
− β3X3, (B.25)

dX4

dt
=

(
α4

1 + X3
K

)
X1

(
1− X4

C4

)
− β4X4, (B.26)

where one can intepret α̂4 = α4/(1 + X3/K ) as the phosphoryation rate of kinase

4 perturbed by the ‘’inhibitory” kinase 1 with strength K . Note that this choice of

model allows us to relate K to our probabilistic model in the main text. To see this,

note that at steady-state Eq.(B.26) implies:

pSS4 ≡
X4

C4
=

X1(C4γ4)−1
(

1 + X3
K

)−1

1 + X1(C4γ4)−1
(

1 + X3
K

)−1
. (B.27)

Recall that X1 → x1[c1], (C4γ4)−1 → e−∆ε14/(kBT ) and note that when (X3/K )� 1

(c.f. the repressive nature of kinase 3 to 4):(
1 +

X3

K

)−1

∼ 1− X3

K
→ (1− x3)[c̃3]e

−∆ε34/(kBT ),

we can cast Eq.(B.27) into

pSS4 ≡
X4

C4
=

x1(1− x3)[c1][c̃3]e−(∆ε14+∆ε34)/(kBT )

1 + x1(1− x3)[c1][c̃3]e−(∆ε14+∆ε34)/(kBT )
, (B.28)

which is approximately P(x4 = 1|x1, x3) except that a few terms pertaining to

xj [cj ]e
−∆εj4 , j = 1, 3 and non-specific bindings are neglected in the partition func-

tion. Similarly, one can solve for the input-output. To simplify notation, we only
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write down the solution for X3/K is small so that α̂4 = α4(1− X3/K ):

1

X4
=

1

C4
+

(
γ4

C1
+

γ4γ1

R

)(
1

C3
+

γ3

C2
+

γ3γ2

C1
+

γ3γ2γ1

R

)
×(

1

C3
+

γ3

C2
+

γ3γ2

C1
+

γ3γ2γ1

R
− 1

K

)
(B.29)

B.3.1 Summary of parameters

Parameters Meaning or definition
Xi (X̃i ) conc. of active (inactive) kinase i

αi PPlation. rate of kinase i
βi De-PPlation rate of kinase i
γi Propensity of de-phosphorylation
Ci Total conc. of kinase i

γiCi Michaelis constant of reaction j → i : K (ji)
M

K Regulatory strength of AND gate

Here is the summary of parameters extracted from the sigmoid decision shown

in Figure 4 of main text.

Parameters Kinase i = 1 Kinase i = 2 Kinase i = 3 Kinase i = 4

αi 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
βi e−8.2 (e1.0) e−7.5 (e1.0) e−6.3 (e−0.05) e−6.3 (e−3.0)
Ci 2.5 (2.5) 2.5 (2.5) 2.5 (2.5) 2.5 (2.5)

B.4 Formulae used in the optimization

B.4.1 CFFL

Let f (p1), where p1 = P(x1 = 1), be the input-output relation we want to imple-

ment. All the probability functions used in the optimization procedure are given
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below:

f (p1) =
1

1 + e−10∗(p1−0.5)
(B.30)

P(x2 = 1|x1) =
1

Z2

(
x1[c1]e

−∆ε13/(kBT )
)

(B.31)

P(x3 = 1|x2) =
1

Z3

(
x2[c2]e

−∆ε23/(kBT )
)

(B.32)

P(x4 = 1|x1, x3) =
1

Z4

(
x1x3[c1][c3]e

−(∆ε14+∆ε34+J)/(kBT )
)

, (B.33)

where the partition functions Zi are given by

Z2 = 1 + x1[c1]e
−∆ε12/(kBT ) + (1− x1)[c̃1]e

−W/(kBT ) (B.34)

Z3 = 1 + x2[c2]e
−∆ε23/(kBT ) + (1− x2)[c̃2]e

−W/(kBT ) (B.35)

Z4 = 1 + x1[c1]e
−∆ε14/(kBT ) + x3[c3]e

−∆ε34/(kBT )

+ x1x3[c1][c3]e
−(∆ε14+∆ε34+J)/(kBT ) + · · · , (B.36)

where in Z4 we neglect terms proportional to e−W/(kBT ) since those events are

probabilistically unlikely. We optimize the loss function with respect to ∆ε =

(∆ε12, ∆ε23, ∆ε14, ∆ε34). We also include a cooperativity energetic reward J to

encourage kinase 4 phosphorylation due to the activation of both of its upstreams:

kinase 1 and kinase 3. This factor is reported as ∆ε14 in the table shown above

since it can be absorbed into it through K .
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B.4.2 ICFFL

All the probability functions used in the optimization procedure are given below:

f (p1) =
1

1 + e−10∗(p1−0.5)
(B.37)

P(x1 = 1|L) =
1

1 + e−10∗(L−0.5)
(B.38)

P(x2 = 1|x1) =
1

Z2

(
x1[c1]e

−∆ε12/(kBT )
)

(B.39)

P(x3 = 1|x2) =
1

Z3

(
x2[c2]e

−∆ε23/(kBT )
)

(B.40)

P(x4 = 1|x1, x3) =
1

Z4

(
x1(1− x3)[c1][c̃3]e

−(∆ε14+∆ε̃34+J)/(kBT )
)

, (B.41)

with the partition functions Zi given by

Z2 = 1 + x1[c1]e
−∆ε12/(kBT ) + (1− x1)[c̃1]e

−W/(kBT ) (B.42)

Z3 = 1 + x2[c2]e
−∆ε23/(kBT ) + (1− x2)[c̃2]e

−W/(kBT ) (B.43)

Z4 = 1 + x1[c1]e
−∆ε14/(kBT ) + x3[c3]e

−∆ε34/(kBT ) + (1− x3)[c̃3]e
−∆ε̃34/(kBT )

+ x1(1− x3)[c1][c̃3]e
−(∆ε14+∆ε̃34+J)/(kBT ) + x1x3[c1][c3]e

−(∆ε14+∆ε34)/(kBT )

+ · · · , (B.44)

where ∆ε̃34 is the binding energy of inactive kinase 3 to kinase 4, as opposed to

∆ε34 for that between active kinase 3 to kinase 4. We treated ∆ε̃34 as a constant

while optimizing the loss function with respect to ∆ε = (∆ε12, ∆ε23, ∆ε14, ∆ε34).

We also include a cooperativity energetic reward J to encourage kinase 4 phospho-

rylation due to the inactivation of its upstream repressive kinase 1 and the activa-

tion of upstream kinase 1. This factor is reported as ∆ε34 in the table shown above

since it can be absorbed into it through K . In Z4, we neglect a few terms pertaining

to non-specific binding (i.e. ∼ e−W/(kBT )) since these events are probabilistically

unlikely.
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Figure B·1: Signal transduction cascade that implements CFFL

B.4.3 Loss function used

L ≡ 1

N

N

∑
α=1

(f (p1)− P(x4 = 1|∆ε, p1))
2 + C ||∆ε||22, (B.45)

where C is the regularization constant introduced to avoid trivial solutions (i.e. all

energies are infinitely negative). The parameters are updated according to

∆ε← ∆ε− η∇∆εL, (B.46)

where η is the learning rate.
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Appendix C

Appendix of Chapter 4

C.1 Statistical mechanical model for generic systems

Consider a system of n protein species indexed by i = 1, · · · , n. Suppose for

each species i , there are ni internal states (e.g. phosphorylation, methylation, or

allosteric states) labelled by xi ∈ {0, · · · , ni − 1}. Denote E (ij)(xi , xj ) as the en-

ergy of species i at internal state xi and when bound to species j at state xj . Let

E
(i)
0 (xi ) be the energy of species i at state xi in solution. Note that for any pair of

i , j , E (ij) is a ni × nj matrix and for any i , E (i)
0 is a ni -dimensional column vec-

tor. We can write down for each protein species i at each of its internal state

xi ∈ Xi = {0, 1, · · · , ni − 1}, the following conditional probability

P(xi |X\i ) =
∑n

j 6=i ∑
nj−1
xj=0 [cj (xj )]e

−β[E (ij)(xi ,xj )−E
(i)
0 (xi )]

∑ni−1
xi=0 ∑n

j 6=i ∑
nj−1
xj=0 [cj (xj )]e

−β[E (ij)(xi ,xj )−E
(i)
0 (xi )]

, (C.1)

where X =
⋃n

i=1Xi is the collection of all internal state labels and [cj (xj )] is the

concentration of protein j at internal state xj . The symbol X\i indicates X\i =⋃n
j 6=i Xj . Note that [ci (xi )] is related to the concentration of protein species i , [ci ]

via

[ci (xi )] = [ci ]P(xi |X\i ) (C.2)
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Note that definition of concentration retains proper normalization of probability

since after summing over xi in Eq.(C.2), one gets

∑
xi

[ci (xi )] = [ci ]∑
xi

P(xi |X\i ) = [ci ] (C.3)

Consider for a simple two-species system i = 1, 2 with n1 = 3 and n2 = 2. Suppose

both the species concentrations [c1], [c2] and the energy matrices E (12),E (21), E (1)
0 ,

E
(2)
0 are known, one can utilize 5 equations exemplified by Eq.(C.1)(C.2) to solve

for the 5 variables: [c1(0)], [c1(1)], [c1(2)], [c2(0)], [c2(1)] of interest. Namely,

[c1(0)] = [c2(0)]e
−β[E (12)(0,0)−E (1)

0 (0)] + [c2(1)]e
−β[E (12)(0,1)−E (1)

0 (0)] (C.4)

[c1(1)] = [c2(0)]e
−β[E (12)(1,0)−E (1)

0 (1)] + [c2(1)]e
−β[E (12)(1,1)−E (1)

0 (1)] (C.5)

[c1(2)] = [c2(0)]e
−β[E (12)(2,0)−E (1)

0 (2)] + [c2(1)]e
−β[E (12)(2,1)−E (1)

0 (2)] (C.6)

[c2(0)] = [c1(0)]e
−β[E (21)(0,0)−E (2)

0 (0)] + [c1(1)]e
−β[E (21)(0,1)−E (2)

0 (0)]

+ [c1(2)]e
−β[E (21)(0,2)−E (2)

0 (0)] (C.7)

[c2(1)] = [c1(0)]e
−β[E (21)(1,0)−E (2)

0 (1)] + [c1(1)]e
−β[E (21)(1,1)−E (2)

0 (1)]

+ [c1(2)]e
−β[E (21)(1,2)−E (2)

0 (1)] (C.8)

Note that to relate this to P(xi |X\i ), one can invoke Eq.(C.2).

C.2 Problem setup in our synthetic system

In this section, we recast the generic model in the previous section into the one

presented in the main text (i.e. synthetic systems). We first consider a system with

writer proteins only that interact with on another in phosphorylation-dependent

(P-dependent) manner. When a protein is phosphorylated, it can bind other pro-

teins and change their phosphorylation state. Each species i is characterized by

the triplet vi = (αi , βi , Ci ), where αi , βi are the flavor of constitutive interaction do-
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main and P-dependent binding domain, respectively, and Ci = W is the label for

the catalytic domain, which in the case is simply writersW(see main text). We use

xi = 1 to label that phosphorylated state and xi = 0 for unphosphorylated state.

In this simplest setting, the probability of writer species i bound to another writer

species j is given by

pboundij =
xje
−β[∆ε(αi ,βj )−µj (xj )]

1 + ∑k xke
−β[∆ε(αi ,βk )−µk (xk )]

, (C.9)

where β = 1/(kBT ) is the inverse temperature, ∆ε(αi , βj ) is the energy difference

between bound and unbound state of species i and j , µj (xj ) is the chemical poten-

tial of j which is related to concentration through µj (xj ) = −β−1 log[cj (xj )]. Note

that [cj (xj )] = [cj ]Pj (xj ) where Pi (xi ) is the probability that species j is at state xj .

Concretely,

Pi (xi = 1) = ∑
j s.t. Cj=W

xje
−β[∆ε(αi ,βj )−µj (xj )]

1 + ∑k xje
−β[∆ε(αi ,βk )−µk (xk )]

. (C.10)

In the low temperature limit, Pj (xj = 1)→ {0, 1}. Thus, µj (xj = 1) = β−1 log[cj ] ≡

µj if Pj (xj = 1) = 1 while µj (xj = 1) → −∞ if Pj (xj = 1) = 0 (or in other words,

Pj (xj = 0) = 1). For the former, the quantity ∆ε(αi , βj )|xi=1,xj=1 − µj (xj = 1) ≡

∆εij − µj only depends on i , j . Its Boltzmann factor reads,

xje
−β[∆ε(αi ,βj )|xi=1,xj=1−µj (xj=1)] → 1 · e−β[∆ε(αi ,βj )|xi=1,xj=1−µj (xj=1))] ≡ e−β[∆εij−µj ],

(C.11)

The latter is always killed by the xj = 0 factor in the Boltzmann weight. Specifi-

cally, it reads (note µj (xj = 0)→ −∞)

xje
−β[∆ε(αi ,βj )|xi=1,xj=0−µj (xj=0)] → 0 · e−β∆ε(αi ,βj )|xi=1,xj=0e+β(−∞) = 0, (C.12)
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In sum, we can always use ∆εij − µj to summarize these two cases if xj is binary.

That dependence of µj on xj is already taken care of by the xj factor in the Boltz-

mann weight. Therefore, under this limit one has,

Pi (xi = 1)|β→∞ =


1, if ∃ j 6= i s.t. xj = 1 AND ∆εij < 0

0, if ∀ j 6= i , xj = 0 OR ∀j 6= i s.t. xj = 1, ∆εij > 0

(C.13)

Throughout the rest of this note, we consider only in this zero temperature limit.

Definition 1 (Design matrix). The design matrix Θ is a n × n matrix whose elements
are defined through θij = sgn(∆εij − µj ), ∀ 1 ≤ i , j ≤ n, where n is the number of distinct
proteins in the system and ∆εij is the binding affinities between protein i and j and µj

is the chemical potential of protein j . It is symmetric for homogenous systems in which
chemical potential of all proteins are the same.

Note that due the structure of our model, the diagonal elements don’t matter

(since we don’t consider self-interaction at this moment).

C.3 Bounds on admissible design matrix

To interpret the design matrix one needs to look at the biophysics that dictates the

resresponding configurations. For example, we would like to incorporate the fact

that protein i is active whenever the rest of others are active. This naturally con-

strain the existence of any design matrices (again, we ignore the diagonal entries)

having any row consisting of purely 1’s (i.e. ∃ i s.t. ∆εij > 0, ∀j 6= i , j = 1, · · · , n ).

This motivates the notion of admissible design matrix.

Definition 2 (Admissible design matrix). An n× n design matrix Θ is called admissible
at level n if without regard to its diagonal elements each row of Θ, namely, θi , i = 1, · · · n,
satisfies ‖θi‖0 ≤ n − 2. In other words, setting aside the diagonal elements, each row
cannot consists of purely 1’s.
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The following gives the bound on the allowed admissible n× n design matrix.

As a reminder, the goal is to first see how simple biophysics limits the combina-

torial complexity in the design matrix space. In the next section, we’ll see a fur-

ther reduction when translating these feasible matrices to compatible configurations,

where the notion of capacity of computation becomes clear.

Result 4. Let Rn be the number of admissible design at level n, then

Ln < Rn < Un, (C.14)

where

Un = 2∑n−1
k=1 k −

n−2

∑
l=1

(
n− 1

l

)
· 2l+∑n−2−l

k=1 k (C.15)

Ln = 2∑n−1
k=1 k −

n−2

∑
l=1

(
n− 1

l

)
· 2l+∑n−3

k=1 k (C.16)

Derivation. By definition, Rn is the number of distinct symmetric n× n binary ma-
trices that have at most n − 2 1’s in each row, without regard to the diagonal el-
ements. For a given n × n symmetric matrix, the degree-of-freedom is 2DOF(n) =

2∑n−1
k=1 k without considering any constraints . Therefore, to find Rn, it is sufficient to

count the possible ways of violation. Denote fn(l , k) as the number of configura-
tions having exactly l zeros in the first row among which k fails, namely, there are k
rows consists of n− 1 zeros, apart from the diagonal elements. Since the constraint
is applied to each row where there are only n − 1 elements that matters and that
one can choose to violate k = 1, · · · , l rows for a fixed l , Rn simply reads

Rn = 2∑n−1
k=1 k −

n−2

∑
l=1

l

∑
k=1

(
n− 1

l

)(
l

k

)
fn(l , k). (C.17)

Note that the summation of l extends up to n− 2 only due to the symmetric prop-
erty of the matrix. Since for all n ∈ Z+, n ≥ 3, ∀ 1 ≤ l ≤ n− 1 and ∀ 1 ≤ k ≤ l ,

fn(l , l) ≤ fn(l , k) ≤ fn(l , 1) ≤ fn(1, 1), (C.18)

and that fn(1, 1) = 2DOF(n−2) = 2∑n−3
k=1 k , fn(l , l) = 2DOF(n−1−l) = ∑n−2−l

k=1 k , Un and
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Ln are obtained simply by replacing fn(l , k) in Eq.(C.17) with fn(l , l) and fn(1, 1),
respectively, and invoking binomial res.

C.4 Size of minimal configuration space

Definition 3 (Activity vector)). An activity vector u ∈ dn is a n-dimensional vector
whose elements take value only from the alphabet set χ = {0, 1, · · · , d − 1}. Concretely,
u = (u1, · · · , un), where ui ∈ χ, ∀i = 1, · · · , n. A protein configuration vector is an
activity vector with χ = {0, 1}, namely, d = 2.

Definition 4 (Writer-eraser partition). Let u ∈ 2n be a binary protein configuration
vector indexed by the alphabet set χ = {0, 1}. Let αm(u) be a partition of u such that it
divides u up into a group of m and a group of n−m elements, for all m ∈ N,m ∈ [0, n],
in the following manner:

αm(u) = u1, u2 · · · , um|um+1, · · · , un

≡ {{u1, u2 · · · , um}, {um+1, · · · , un}}

The element of αm with cardinality m is termed the writer index set thus denoted as W
while the remaining is that of the erasers and is labeled as E . In other words, αm =W ∪E .
We call αm(u) a writer-eraser partition of u.

Definition 5 (Subset of activity vectors). Let u ∈ 2n be a binary protein configuration
vector and let αm(·) = (W ∪ E)(·) be a writer-reader partition. Then uW and uE refers
to the activity vector of writers and erasers, respectively, of this particular configuration u.
For example, let n = 4,m = 3 and let u = (1, 0, 1, 1). Then uW = (1, 0, 1) and uE = (1)

Definition 6. The mapping 1(·) : 2n →N takes in a binary vector of length n and returns
the bit positions where that vector has value 1. For example, let u = (1, 0, 1, 0) ∈ 24. Then
1(u) = {1, 3}.

Definition 7 (Configuration space). Let Bn be the space of all unique n-bit binary vec-
tors. The configuration space (CS) is the subset Cn ⊂ Bn so that all elements in this set are
consistent with physical constraints.

Definition 8 (CS of size k at level n). CS of size k at level n, denoted as D(n)
k , is the

collection of cardinality-k sets whose elements are all in Bn. Formally speaking, D(n)
k =

{Cn ⊂ Bn| |Cn| = k}. For convenience, the cardinality of D(n)
k is denoted as D(n)

k
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Definition 9 (Compatibility). Two n-bit binary vectors are compatible if they can coexist
in the configuration space.

Definition 10 (Subset of Bn). Let Bn be the set of all unique binary vectors of length
n. The subset W (n)

m ⊆ Bn is the collection of binary vectors in Bn having exactly m 1’s.
Namely, for all 0 ≤ m ≤ n

W
(n)
m = {ln ∈ Bn| ‖ln‖0 = m} (C.19)

The following facts can be proven by scrutinizing the constraints imposed by

the resresponding configurations (see Section VI).

Fact 1. W (n)
1 is never physical. That is, elements in W

(n)
1 are never in Cn.

Fact 2. W (n)
n−1 is not compatible with W

(n)
n .

Fact 3. W (n)
0 does not violate any constraints and should always be included in any CSs.

From the biophysics point of view, the catalytic nature of proteins implies one

should always include W
(n)
n . This, along with Fact 1, 2, and 3, motivates the defi-

nition of non-trivial CS.

Definition 11 (Non-trivial CS). A CS is called non-trivial as long as it contains more
than the following two elements: W (n)

0 and W
(n)
n . It is called trivial if otherwise.

Result 5 (Compatibility check). Let u(n) ∈ W
(n)
m and v (n) ∈ W

(n)
m′ , 2 ≤ m,m′ ≤ n− 2.

u(n) and v (n) are compatible if and only if for every bit i that u and v don’t agree, say,
(ui , vi ) = (1, 0), there exists at least one element in 1(u(n)) \ i but not in 1(v (n)), where
1(u(n)) is the set of bit positions in which u(n) is one; and similarly for (ui , vi ) = (0, 1).
In other words, u(n) and v (n) are incompatible if and only if there is exactly one pair of
(ui , vi ) = (1, 0) or (ui , vi ) = (0, 1) or both, ∀i ∈ [1, n].

Derivation. For simplicity in notation, we remove the superscript (n) from both u

and v but keep in mind that they’re of length n. Also since (ui , vi ) = (1, 0) and
(0, 1) are symmetric, we prove only the former. More specifically, we prove the
statement that [compatibility ⇔ ∀i ∈ [1, n], ∃w ∈ 1(u(n)) \ i , w /∈ 1(v (n))]. For
the sufficient part, it is equivalent to prove that the non-existence of such element
implies incompatibility. For any i , (ui , vi ) = (1, 0) translates into θik > 0, ∀k ∈ 1(v)
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as well as that there exists k ∈ 1(u) \ i such that θik < 0 in the parameter space.
If such element does not exist, then the set {1(u) \ i} ⊆ {1(v)}. However, this
implies that θij > 0, ∀j ∈ {1(v)} as well as the existence of k ∈ {1(u) \ i} ⊆ {1(v)}
such that θik < 0, a contradiction thus incompatibility. As for the necessary part,
the result follows simply by definition.

Result 6 (bitwise OR check: sufficiency). Let u(n) ∈ W
(n)
m and v (n) ∈ W

(n)
m′ , 2 ≤

m,m′ ≤ n− 2. If u(n)⊕2 v
(n) = 1n, namely, their bit-wise OR is exactly an n−dimensional

vector consists of purely 1’s, then u(n) and v (n) are compatible.

Derivation. Let x , y ,w , z be the number of (ui , vi ) = (1, 0), (0, 1), (1, 1), (0, 0) pairs
in u(n) and v (n), respectively. Clearly u(n) ⊕2 v

(n) = 1n implies that z = 0. Since
u ∈ W

(n)
m , v ∈ W

(n)
m′ and 2 ≤ m,m′ ≤ n − 2, we should have more than one

configurations of (1, 0) and (0, 1), namely, x , y ≥ 2. Thus by invoking res 5, u and
v are compatible.

Remark 1. Bit-wise OR check is not necessary for compatibility. That is, two bit string
could be compatible even though bitwise check is not satisfied, as illustrated by the follow-
ing example.

Example 1. Let u = (1, 0, 0, 1, 1, 1) and v = (0, 0, 0, 1, 0, 1). Clearly u ∈ W
(6)
4 , v ∈

W
(6)
2 and u ⊕2 v 6= 1n. However, there’s no violating constraints in the parameter space.

In particular, the only places where this could possibly happen are:[
(θ14 ∨ θ15 ∨ θ16) < 0

∧
(θ14 ∧ θ16) > 0

]
=⇒ θ14 > 0, θ15 < 0, θ16 > 0(C.20)[

(θ51 ∨ θ54 ∨ θ56) < 0
∧

(θ54 ∧ θ56) > 0
]
=⇒ θ54 > 0, θ51 < 0, θ56 > 0(C.21)

Example 2. Let |W| = 5, |E | = 2 and


u
v
w
p
q

 =


10011
00011
01011
11001
00111


Then (u, v), (v ,w) and (u,w) are incompatible while (p, q) are compatible because the
number of bit positions of (1, 0) and (0, 1) are both 2.

Since any non-trivial CS contains elements other than W
(n)
n and W

(n)
0 , and that

any elements in W
(n)
m , 2 ≤ m ≤ n − 2 are compatible with W

(n)
n and W

(n)
0 , an
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intuitive definition of minimal non-trivial CS is the set of configurations that con-

tains, in addition to W
(n)
n and W

(n)
0 , two additional compatible elements in W

(n)
m ,

2 ≤ m ≤ n− 2. Formally speaking, we have the following definition:

Definition 12 (minimal non-trivial CS). A CS D(n) is called minimally non-trivial if
D(n) = D(n)

4 . Specifically, let u(n) ∈ W
(n)
m and v (n) ∈ W

(n)
m′ , 2 ≤ m,m′ ≤ n− 2 be two

compatible configurations, the minimal non-trivial CS D(n) consists of exactly 4 elements:

D(n) = D(n)
4 = {W (n)

n ,W
(n)
0 , u(n), v (n)} (C.22)

The following Result establishes the number of minimal non-trivial CSs.

Result 7. Let D(n)
4 be the number of CS of size 4 at level n, namely, the cardinality of

minimal non-trivial CS D(n)
4 . Then for all n ≥ 4,

D
(n)
4 = 2n−1 − (n+ 1) + 2

n−4

∑
k=4

(k − 3)

(
n

k

)
1n≥8

+

n−3

∑
k=3

(n− k − 2)(k − 2)−
(
n

k

) b n2c
∑
k=3

(n− k − 3)(k − 2)

(
n

k

) 1n≥6

+ 2×


b n−12 c
∑
k=2

(
n

k

)
×
(
n− k − 5

2

)
+

n−3

∑
k=d n−12 e

(n− k − 2)

(
n

k

) 1n≥5,

(C.23)

where 1n≥m is an indicator function that is 1 whenever n ≥ m and 0 otherwise, b·c and
d·e are the floor and ceiling function, respectively.

Derivation. Since we’re considering only D
(n)
4 , it is sufficient to identify all possible

compatible pairs of configurations (u, v), where u ∈ W
(n)
m and v ∈ W

(n)
m′ , 2 ≤

m,m′ ≤ n − 2. Let x , y ,w , z be the number of (ui , vi ) = (1, 0), (0, 1), (1, 1), (0, 0)

pairs in u and v , respectively. By Result 5, x , y ∈ {0} ∪ {n ≥ 2|n ∈ Z+}. We can
parse it into different cases.

1. z = w = 0

In this case x , y ≥ 2 since 2 ≤ m,m′ ≤ n − 2. Then it amounts to count the
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number of configurations that solves x + y = n, which is

1

2

n−2

∑
k=2

(
n

k

)
= 2n−1 − (n+ 1) (C.24)

where the 1/2 factor is to mitigate over-counting since x and y are symmetric.
It is inherent that this applies only when n− 2 ≥ 2⇒ n ≥ 4.

2. w , z ≥ 1 and x , y ≥ 2

The problem translates into the nonnegative integer solution to x + y + z +

w = n, where x , y ≥ 2 and w , z ≥ 0. Define x ′ = x + w . Suppose x ′ = k ,
then y + z = n − k . The number of solution to this equation is H2

n−k−3 =

(n−k−2
1 ) = n − k − 2. In addition, since x ′ := x + w = k there are H2

k−3 =

(k−2
1 ) = k − 2 solutions to this equation. Finally, there are (nk) permutations

of such configuration pairs. In sum, we have

n−3

∑
k=3

(n− k − 2)(k − 2)

(
n

k

)
.

However, we double-count whenever x = y . This can be mitigated by sub-
tracting these cases:

n−3

∑
k=3

(n− k − 2)(k − 2)

(
n

k

)
−
b n2c
∑
k=3

(n− k − 3)(k − 2)

(
n

k

)
, (C.25)

where by writing this way it is inherent that n − 3 ≥ 3 ⇒ n ≥ 6. In other
words, we need to take this case into account only when n ≥ 6.

3. w , z ≥ 1 and x , y = 0

This is the null case since we’re not pairing two distinct pairs at all.

4. w , z ≥ 1 and x = 0 and y ≥ 2 (or y = 0 and x ≥ 2)
In this case y + z + w = n and y ≥ 2 since if otherwise we would include
W

(n)
n and W

(n)
n−1. This means y ′ ≡ y + z ∈ [4, n − 4] and the number of con-

figurations that solves this equation is

2×
n−4

∑
k=4

H2
k−4

(
n

k

)
= 2

n−4

∑
k=4

(k − 3)

(
n

k

)
, (C.26)
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where the factor 2 is to take into account to two symmetric cases (x = 0 or
y = 0). It is inherent that this applies only when n− 4 ≥ 4⇒ n ≥ 8.

5. w = 0, z ≥ 1 and x , y ≥ 2 (also the symmetric case z = 0, w ≥ 1 and x , y ≥ 2)
Let x = k ≥ 2, then y + z = n − k . Since y ≥ 2 and z ≥ 1, k ∈ [2, n − 3].
Intuitively the number of configurations that solve this equation is

2×
n−3

∑
k=2

H2
n−k−3

(
n

k

)
= 2

n−3

∑
k=2

(n− k − 2)

(
n

k

)
,

where factor 2 is to take into account the symmetric case: (z = 0,w ≥ 1 ) OR
(w = 0, z ≥ 1 ). However, we double-count whenever x = y , which occurs
once for all z = n− x − y = n− 2k ≥ 1 ⇒ k ≤

⌈
n−1

2

⌉
. To single this out, we

have

2×


b n−12 c
∑
k=2

(
n

k

)
×
[
(n− k − 3) +

1

2

]
+

n−3

∑
k=d n−12 e

(n− k − 2)

(
n

k

) (C.27)

It is inherent that this applies only when n− 3 ≥ 2⇒ n ≥ 5.

6. Cases in which at least one of x , y is zero is not feasible due to biophysical
constraints.

By summing over all cases the result follows.

C.5 Capacity of computation: synthetic systems with writers only

In the previous section, we started from the biophysics model and proved the nec-

essary and sufficient condition for two configurations to be compatible (i.e. res

5). In addition, we derived the size of the minimal non-trivial CS in res 7. In this

section we use res 5 to build up the scaling for capacity. Note that since we’re in-

terested in asymptotic behavior of capacity, the restriction on W
(n)
1 and W

(n)
n−1 can

be relieved since they have nearly zero contribution to capacity (2� 2n).
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Result 8 (Probability of incompatible configurations). The probability that two con-
figurations are incompatible in an n-writer-protein system, P(n), is given by

P(n) =
1

2n+2

{
4n ·

(
3

2

)n−1

− n(n− 1)

}
(C.28)

n�1−−→ 1

2n+2

[
4n

(
3

2

)n−1

− n2

]

≈ n

2

(
3

4

)n−1

(C.29)

Derivation. Let’s consider two random configurations (binary bit-stings of length
n). From res 5, the only chance for them to be incompatible is either (i) there exists
exactly one bit position of (1, 0) or (0, 1) (ii) or both. Thus, the probability of such
incompatible events reads:

P(n) =
2 · n · [3n−1 − (n− 1) · 2n−2] + (n2) · 2! · 2n−2

4n
(C.30)

=
2n−2

4n

{
2n

[
2 ·
(

3

2

)n−1

− (n− 1)

]
+ n(n− 1)

}

=
1

2n+2

{
4n ·

(
3

2

)n−1

− n(n− 1)

}
n�1−−→ 1

2n+2

[
4n

(
3

2

)n−1

− n2

]

≈ n

2

(
3

4

)n−1

, (C.31)

where the first term and the second term in Eq.(C.30) represents the two cases (i)
and (ii), respectively. Note that in case (i) we need to first select a bit position that
has (1, 0) or (0, 1). Then for the remaining n− 1 bit positions we need to subtract
the situation in which the complementary (0, 1) or (1, 0) exists since that will be
taken care of in case (ii).

Result 9 (Capacity of computation). Suppose that the biophysics governing the com-
patibility of any two proteins are independent. Then the capacity of computation C , which
is defined as the size of CS, in the large n (i.e. number of proteins in the system) limit is
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given by

C =
1

2
+ 2
√

δn−1/2

(
4

3

) n−1
2

(C.32)

Moreover, the large deviation rate function of P (δ)
C (n) := C/2n, which measure the de-

gree to which the capacity is constrained by biophysics scales as log n/n and converges
asymptotically to −1

2 log 4
3 + log 2 = 0.5493. Concretely,

ĨC ∼=
1

2n

(
log n− 2 log(2

√
δ) + log

4

3

)
− 1

2
log

4

3
+ log 2

n�1−−→ −1

2
log

4

3
+ log 2 = 0.5493 (C.33)

Derivation. For a CS with capacity C , every pair of configurations within it should
be compatible. Since there are (C2) pairs, the probability such a CS, which we de-
note as PC , reads

PC = [1− P(n)]
C (C−1)

2 (C.34)

By taking the natural logarithm and solve for the quadratic equation one has:

C =
1

2

[
1±

√
1 +

8 logPC

log (1− P(n))

]
(C.35)

Alternatively, we can define δ = − logPC > 0 and reexpress Eq.(C.34) using
Eq.(C.31) as

δ = − logPC

= −C (C − 1)

2
log [1− P(n)]

≈ C (C − 1)

2
· n

2

(
3

4

)n−1

, (C.36)

where in the last step we used res 8 and the fact that P(n) � 1 when n � 1. By
rearranging it we have

C =
1

2
± 2
√

δn−1/2

(
4

3

) n−1
2

(C.37)

One can extract the large deviation rate function IC (n), which is related to C/2n,
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namely, an estimate of how much capacity is suppressed by biophysics, through
C/2n ' e−nIC (n). The result in the large C limits reads

ĨC := lim
C→∞

IC (n)

= lim
C→∞

(
lim
n→∞
−1

n
log

C

2n

)
∼=

1

2n

(
log n− 2 log(2

√
δ) + log

4

3

)
− 1

2
log

4

3
+ log 2 (C.38)

n�1−−→ −1

2
log

4

3
+ log 2 = 0.5493 (C.39)

In Figure. ?? we plotted PC as a function of C and n as well as the P(n), the

probability that two randomly chosen configurations of length n are incompatible.

The scaling of capacity and the large deviation rate functions are illustrated there

as well.

C.6 Capacity of computation: synthetic systems with writers and
erasers

In the previous section we considered systems with n writer species (e.g. kinases).

Here we incorporate eraser species (e.g. phosphatases) into our analysis. Fo-

cus on our synthetic system, now every species is either one of the two cate-

gories Ci ∈ {W , E}, namely, writer or eraser. We order the species label such

that the phosphorylation state vector x = (x1, · · · , xm, xm+1, · · · , n) is partitioned

into writer (kinase) sector i ∈ W = {1, · · · ,m} and the eraser (phosphatase) sector

i ∈ E = {m+ 1, · · · , n}. In other words, such system contains m writer species and

n −m eraser species. Similar to the case without erasers, we can write down the
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probability of species i at state xi = 1 (c.f. Eq.(C.10))

Pi (xi = 1) = ∑
j s.t. Cj=W

xje
−β[∆ε(αi ,βj )−µj (xj )]

1 + ∑k,∀Ck xke
−β[∆ε(αi ,βk )−µk (xk )]

. (C.40)

Note that the summation over k in the denominator is over all erasers and writers

E ,W whereas that over j in the numerator is over writers W only. In the zero

temperature limit, this probability becomes binary so that we can use ∆εij − µj to

characterize the exponents in the Boltzmann factor (see the discussion that led to

Eq.(C.11) and Eq.(C.12)). Similar to Eq.(C.13), the interpretation of Eq.(C.40) reads:

Pi (xi = 1)|β→∞ =



1, if { ∃ j ∈ W\i s.t. xj = 1 AND ∆εij < 0 }

AND { ∀ k ∈ E , xk = 0 OR ∀k ∈ E s.t. xk = 1, ∆εik > ∆εij }

0, if { ∀ j ∈ W\i , xj = 0 OR ∀ j ∈ W\i s.t. xj = 1, ∆εij > 0 }

OR { ∃ k ∈ E , s.t. xk = 1 AND ∆εik < 0}
(C.41)

The biophysical interpretation of this equation line by line is summarized as fol-

lows.

Species i is phosphorylated if it is

1. At least bound to one active writer AND

2. All active erasers bind i loosely than active writers do

Whereas species i is not phosphorylated (xi = 0) if

3. There’s no active writers present OR active writers exit but none of them

binds i OR

4. It is bound to active erasers
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Note that since in the zero temperature limit proteins are either in strongly bound

or strongly unbound state and that case 1 dictates ∆εij < 0, we can reasonably

replace ∆εik − µk > ∆εij − µj in the second line of Eq.(C.41) by ∆εik > 0 (active

erasers bind i extremely loose). With this we can rewrite Eq.(C.41) as

Pi (xi = 1)|β→∞ =



1, if { ∃ j ∈ W\i s.t. xj = 1 AND ∆εij < 0 }

AND { ∀ k ∈ E , xk = 0 OR ∀k ∈ E s.t. xk = 1, ∆εik > 0 }

0, if { ∀ j ∈ W\i , xj = 0 OR ∀ j ∈ W\i s.t. xj = 1, ∆εij > 0 }

OR { ∃ k ∈ E , s.t. xk = 1 AND ∆εik < 0}
(C.42)

Fact 4. By contrasting Eq.(C.13) with Eq.(C.42), it is clear that the only modification
is the additional constraints imposed on the eraser sector E . If the activity of i is ON
(phosphorylated), these constraints on E are hard(i.e. ∀) whereas they are soft (i.e. ∃)when
writer is OFF.

Fact 5. To check for compatibility for two configurations u and v , one should still focus on
the bit positions i such that there is a disagreement. Let u, v be the two configurations of
interest and suppose (ui , vi ) = (1, 0). The constraint imposed by ui = 1 alone is on both
θij , ∀j 6= i , j ∈ 1(uW ) and θik , ∀k ∈ E , k ∈ 1(uE ):

{ ∃ j ∈ W\i s.t. xj = 1 AND ∆εij < 0 }
AND { ∀ k ∈ E , xk = 0 OR xk = 1, ∆εik > 0 } (C.43)

However, that by the complementary vi = 0 is rather subtle. It could,

1. as if without eraser sector, regularize only its writer sector θij , j ∈ 1(vW ),

{ ∀ j ∈ W\i , xj = 0 OR ∀ j ∈ W\i s.t. xj = 1, ∆εij > 0 } (C.44)

2. or impose no constraint on the writer sector and a set of (possibly contradicting)
constraints on the eraser:

{∃ k ∈ E , s.t. xk = 1 AND ∆εik < 0} (C.45)
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Note that imposing Eq.(C.43) and Eq.(C.44) is the same as the case without erasers since
the eraser sector of Eq.(C.43) and Eq.(C.44) will always be satisfied. However, Eq.(C.43)
and Eq.(C.45) implies that one can simply compare the constraints on the eraser part since
they always agree on the writer sector. Thus, the only way for incompatibility to occur is
when there’s a disagreement in the writer sector and the eraser sector fail to mitigate that
through Eq.(C.45), or vice versa. Since this two situations are symmetric, we state the
incompatibility criterion for the former.

Result 10 (Compatibility check: systems with erasers). Let u(n), v (n) be two con-
figurations in an n species system among which m of them are erasers. Then under the
writer-eraser symmetry, u(n) and v (n) are incompatible if and only if they satisfy at least
one of the following

1. there exists exactly one i such that (u(n)i , v
(n)
i ) = (1, 0) and 1(vE ) ⊆ 1(uE )

2. there exists exactly one i such that (u(n)i , v
(n)
i ) = (0, 1) and 1(uE ) ⊆ 1(vE )

3. there exists exactly one pair of i , j such that (u(n)i , v
(n)
i ) = (1, 0) and (u

(n)
j , v

(n)
j ) =

(0, 1) and 1(vE ) = 1(uE )

Derivation. First note that the first and the second cases are symmetric so we can
just prove the former. Let i be the bit position of disagreement, say, (ui , vi ) =

(1, 0). By Eq.(C.42), Fact 4 and Fact 5, it suffices to check if the condition on eraser
sector can mitigate the incompatibility implied by comparing only the writer part
of u and v . Specifically, (ui , vi ) = (1, 0) implies ∀k ∈ 1(uE ), θik > 0 as well as
∃l ∈ 1(vE ) such that θil < 0. For u and v to be compatible, there should exist
at least one element in 1(vE ) but not in 1(uE ). In other words, ∃ω ∈ 1(vE ) but
ω /∈ 1(uE )⇒ u and v are compatible. This is equivalent to the statement that if u
and v are incompatible, then 1(vE ) ⊆ 1(uE ). Similarly, by applying this argument
to case 3 one gets 1(vE ) ⊆ 1(uE ) and 1(uE ) ⊆ 1(vE ), meaning 1(uE ) = 1(vE ).
By Result 5, these are the only three cases where incompatibilities could emerge
from the writer sector. Since we have demonstrated the situation where the eraser
sector fail to mitigate these incompatibilities, the sufficient part is established. One
can easily check that these statements are also necessary due to the definition of
incompatibility.
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Example 3. Let |W| = 5, |E | = m = 2 and(
u
v
w

)
=

(
1001101
0001101
0000110

)

Then (u, v) and (w , v) are incompatible while u,w are compatible because they share more
than one (1,0) pairs and 1(wE ) 6⊆ 1(uE ).

With this we can calculate the probability that two randomly chosen configura-

tions are incompatible.

Result 11 (Incompatibility probability: with eraser). Consider systems with n protein
species among with m are writers and the remaining n − m are erasers. Assume that
the biophysics governing the compatibility of any two proteins are independent. Then
under the writer-eraser symmetry, the probability of two configurations being incompatible
Pm(n), is given by

Pm(n) =

(
2m

3

[
1− m− 1

3

(
2

3

)m−2
](

3

4

)n

+
m(m− 1)

2n+2

)
+

(
m→ n−m

n→ m

)
(C.46)

Derivation. By Result 10, Pm(n) is simply the product of the probability without
erasers (i.e. the first term in the numerator of Eq.(C.30) in Result 8 times another
factor that characterizes the eraser part. Since the first two cases are exactly the
same under u ↔ v symmetry, we prove only the first. To get the eraser probability,
first fix the size of uE and then count all possible vE such that 1(vE ) ⊆ 1(uE ).
Suppose there are n − m − k , k ∈ [0, n − m] elements in 1(uE ), namely, there are
only k zeros in uE , then all allowable 1(vE ) can never contain the k indices that
1(uE ) missed, otherwise 1(vE ) won’t be contained in 1(uE ). The number of such
1(vE ) is basically the cardinality of the power set of the remaining n−m− k degree
of freedom: 2n−m−k . Since there are (n−mk ) such 1(uE ), the probability that describes
the eraser condition reads:

P
E1,2
m (n) =

1

4n−m

n−m
∑
k=0

(
n−m

k

)
· 2n−m−k =

(
3

4

)n−m
, (C.47)

where the second equality is obtained by invoking Binomial theorem and the sym-
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bol E1,2 indicates the relevant eraser sector for case 1 and 2. By Result 8, the prob-
ability for case 1 and 2 in Result 10 reads

P
(W ,E)1,2
m (n) = PW1,2(m) · PE1,2m (n) =

1

4m
{

2m[3m−1 − (m− 1)2m−2]
}
·
(

3

4

)n−m

(C.48)
For case 3, applying the same argument to the eraser sector gives

PE3m (n) =
1

4n−m

n−m
∑
k=0

(
n−m

k

)
=

1

2n−m
, (C.49)

implying

P
(W ,E)3
m (n) = PW3(m) · PE3m (n) =

m(m− 1) · 2m−2

4m
· 1

2n−m
. (C.50)

After taking into account the writer-eraser symmetry and summing all cases, one
has

Pm(n) =
(
P
(W ,E)1,2
m (n) + P

(W ,E)3
m (n)

)
+

(
m→ n−m

n→ m

)
=

(
2m

3

[
1− m− 1

3

(
2

3

)m−2
](

3

4

)n

+
m(m− 1)

2n+2

)
+

(
m→ n−m

n→ m

)

C.7 Calculating capacity with Monte Carlo Sampling

Note that the symbol � indicates ”elementwise greater” since prob is a vector of

size capacity. Since this procedure is applied to all ensembles, we take their average

as the estimate:

C =
1

N
N
∑
l=1

C (l) (C.51)

Python class to generate signaling network and to infer capacity using this

Monte Carlo procedure is freely available at: https://github.com/chinghao0703/

MC_capacity

https://github.com/chinghao0703/MC_capacity
https://github.com/chinghao0703/MC_capacity
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Algorithm 2 MC capacity sampling

Require: Cutoff probability cutoff ← 0.5 and algorithm termination threshold
threshold← 103.

1: procedure CAPACITYMC(configurations in ensemble l)
2: capacity← 2
3: noupdates← 0
4: while noupdates < threshold do
5: draw a sample of size capacity from ensemble l
6: record their probability as prob
7: if prob � cutoff then
8: capacity← capacity +1
9: else

10: noupdates← noupdates +1
11: C (l) ← capacity

return C (l)
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Appendix D

Appendix of Chapter 5

D.1 Biophysical models

The 11 basic reactions constituting the whole transport process are depicted in Fig-

ure D·1. Our model incorporates the known (simplified) mechanism of nuclear

transport of cargo through binding with importin and the active consumption

of energy through hydrolysis of GTP. Such process is facilitated by Ran’s intrin-

sic GTPase activity, which is activated via interaction with the Ran GTPase acti-

vating protein (RanGAP). In addition, we also include the reverse conversion of

RanGDP to RanGTP through the action of guanine Exchange Factor RCC1 (known

as RanGEF). In addition to the standard model of nuclear transport whose biochem-

istry is summarized below, we also incorporates the backward reactions to account

for the reversibile nature of this transport process (Kim and Elbaum, 2013b).

• (Reaction 10, 9) In the cytoplasm, say, compartment A, the complex formed

by importin protein (transport receptor) and the cargo C interacts with the

nuclear pore complex and passes through the channel into the nucleus (com-

partment B).

• (Reaction 7, 4, 3) In the nucleus, RanGTP competes for binding with the re-

ceptor and causes the receptor to dissociate from the cargo. The new complex

formed by RanGTP and receptor then translocates to the cytoplasm while the

cargo is left inside the nucleus.
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Figure D·1: Molecular reactions involved in nuclear transport. (A)
Molecular species in our nuclear transport model. (B) Schematics of
the reactions involved in nuclear transport. Note that + and - signs
represent self-consistently the start and end points of the reactions,
rather than forward or reverse cycle orientations. Thus for example
k”+” and k”−” for reaction 9 in Eq.(S15) take signs for loss and gain,
respectively. (C) The subset of reactions in (B) that forms the futile
cycle (i.e. the energy source for nuclear transport).

• (Reaction 2) Once in the cytoplasm, the GTPase activating protein (RanGAP)

then binds to RanGTP, causing the hydrolysis of GTP to GDP and release of

energy.

• (Reaction 1, 6) The RanGDP produced in this process then binds the nuclear
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transport factor NTF2 which returns it to the nucleus.

• (Reaction 5) Now in the nucleus, RanGDP interacts with a guanine nucleotide

exchange factor (GEF) which replaces GDP with GTP, resulting again a RanGTP

from, and beginning a new cycle.

D.1.1 Kinetics equations

The whole process can be formulated by a set of kinetics equations involving both

cargo protein translocation and Ran regulation. The molecular species in the ki-

netics equations are labelled according to Figure D·1.

[X1] + [X2]
k+1


k−1

[X3] (D.1)

[X6]
k+2


k−2

[X7] + [X2] (D.2)

[X13]
k+3


k−3

[X6] (D.3)

[X14] + [X9]
k+4


k−4

[X13] (D.4)

[X10]
k+5


k−5

[X8] + [X9] (D.5)

[X3]
k+6


k−6

[X10] (D.6)

[X11]
k+7


k−7

[X14] + [X12] (D.7)

[X7]
k+8


k−8

[X14] (D.8)
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[X4]
k+9


k−9

[X11] (D.9)

[X7] + [X5]
k+10


k−10

[X4] (D.10)

[X8]
k+11


k−11

[X1] (D.11)

From this we can write down the following kinetics:

d [X1]

dt
= −k+1 [X1][X2] + k−1 [X3] + k+11[X8]− k−11[X1] (D.12)

d [X2]

dt
= −k+1 [X1][X2] + k−1 [X3] + k+2 [X6]− k−2 [X7][X2] (D.13)

d [X3]

dt
= k+1 [X1][X2]− k−1 [X3]− k+6 [X3] + k−6 [X10] (D.14)

d [X4]

dt
= −k+9 [X4] + k−9 [X11] + k+10[X7][X5]− k−10[X4] (D.15)

d [X5]

dt
= −k+10[X5][X7] + k−10[X4] (D.16)

d [X6]

dt
= −k+2 [X6] + k−2 [X2][X7] + k+3 [X13]− k−3 [X6] (D.17)

d [X7]

dt
= k+2 [X6]− k−2 [X2][X7]− k+8 [X7] + k−8 [X14]− k+10[X7][X5] + k−10[X4] (D.18)

d [X8]

dt
= k+5 [X10]− k−5 [X8][X9]− k+11[X8] + k−11[X1] (D.19)

d [X9]

dt
= k+5 [X10]− k−5 [X8][X9]− k+4 [X14][X9] + k−4 [X13] (D.20)

d [X10]

dt
= −k+5 [X10] + k−5 [X8][X9] + k+6 [X3]− k−6 [X10] (D.21)

d [X11]

dt
= −k+7 [X11] + k−7 [X12][X14] + k+9 [X4]− k−9 [X11] (D.22)

d [X12]

dt
= k+7 [X11]− k−7 [X12][X14] (D.23)

d [X13]

dt
= −k+3 [X13] + k−3 [X6] + k+4 [X14][X9]− k−4 [X13] (D.24)

d [X14]

dt
= −k+4 [X14][X9] + k−4 [X13] + k+7 [X11]− k−7 [X14][X12] + k+8 [X7]− k−8 [X14]

(D.25)
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D.2 Estimating the rate constants

Here we list the kinetics rate constants used in the simulation. Some of them are

directly available from literature while others are estimated as described below. In

the following, a = 100 µm3 s−1 is the nuclear pore permeability and νN = 100 µm3

and νC = 500 µm3 are the nuclear and cytoplasm compartment volumes, respec-

tively. The exponential free energy difference defined in Eq.(D.35)(D.43) are set to

be: e∆F = e∆F̃ = 50. Note that volume factors modulate the permeabilities in

the usual manner (see Eq.(1) in (Kim and Elbaum, 2013b)): Namely, rate constants

of cytosolic species (i.e. X1,X3,X4,X6,X7) across the nuclear membrane is given

by k±α = a/νC with α = 3, 6, 8, 9, 11 (i.e., reactions that involve crossing the nu-

clear pores). Rate constants for the nuclear counterparts (i.e. X8,X10,X11,X13,X14)

are, on the other hand, given by k±α = a/νN , with α = 3, 6, 8, 9, 11. For exam-

ple, kinetics equations for X3 (cytosolic NTF2-RanGDP complex) and X10 (nuclear

NTF2-RanGDP complex) should read (c.f. Eq.(D.14) and Eq.(D.21)):

d [X3]

dt
= k+1 [X1][X2]− k−1 [X3]−

a

νC
([X3]− [X10]) (D.26)

d [X10]

dt
= −k+5 [X10] + k−5 [X8][X9] +

a

νN
([X3]− [X10]) . (D.27)

D.2.1 Reaction 5: Ran exchange mediated by RanGEF

Figure D·2: Illustration of Ran GDP to GTP exchange reaction me-
diated by RanGEF
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Table D.1: Reaction rate constants used in the thermodynamic model
of nuclear transport

reaction KD or kin/kout k+ k−

1 25 nM 0.1 (nM−1 s−1) 2.5 (s−1)
2 ∼ e∆F̃/θ (s−1) 1 (nM−1 s−1)
3 ∼ 1 or 0.2(s−1) 1 or 0.2(s−1)
4 10 nM 0.1 (nM−1 s−1) 1 (s−1)
5 ∼ e∆F × θ (s−1) 1 (nM−1 s−1)
6 ∼ 1 or 0.2 (s−1) 1 or 0.2 (s−1)
7 20 nM 20 (s−1) 1 (nM−1 s−1)
8 ∼ 1 or 0.2 (s−1) 1 or 0.2(s−1)
9 ∼ 1 or 0.2 (s−1) 1 or 0.2(s−1)

10 20 nM 1 (nM−1 s−1) 20 (s−1)
11 ∼ 1 or 0.2(s−1) 1 or 0.2(s−1)

Table D.2: Molecular species involved in nuclear transport

Labels Species
N NTF2
Im Importin (importin)
RD RanGDP
RT RanGTP

N·RD NTF2+RanGDP complex
N·RT NTF2+RanGTP complex

Im·RD Importin+RanGDP complex
Im·RT Importin+RanGTP complex

fD (free) GDP
fT (free) GTP
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The goal is to estimate the KD for the following reaction:

[N · RD ]
k+5


k−5

[N ] + [RT ], (D.28)

namely,
k+5
k−5

=
[N ][RT ]

[N · RD ]
(D.29)

Consider the following two constituting reactions

[N · RD ] + [fT ]
k+α


k−α

[N · RT ] + [fD ] (D.30)

[N · RT ]
k+β


k−β

[N ] + [RT ] (D.31)

This implies (neglecting labels of steady states SS),

k+α
k−α

=
[N · RT ][fD ]

[N · RD ][fT ]
(D.32)

k+β

k−β
=

[N ][RT ]

[N · RT ]
(D.33)

Thus we can reexpress Eq.(D.32) using Eq.(D.33):

k+α
k−α

=
1

[N · RD ]

[fD ]

[fT ]
·
(
k−β

k+β
[N ][RT ]

)
=

(
[N ][RT ]

[N · RD ]

)
· [fD ]

[fT ]

k−β

k+β
=

k+5
k−5
· [fD ]

[fT ]

k−β

k+β
(D.34)

Thus
k+5
k−5

=
k+α
k−α
·
k+β

k−β
· [fT ]

[fD ]
∼ O(1) · k0e

∆F · exp

(
log

[fT ]

[fD ]

)
(D.35)

The first term (i.e. k+α /k−α ) comes from guanine nucleotide exchange reaction

and is of order one while the second (i.e. k+β /k−β ) is related to the free energy

difference between binding and un-binding of NTF2+RanGTP complex which is

much larger than 1: ∆F >> 1. This can also be understood using Eq.(D.33) by
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noting that in the nucleus NTF2 seldom binds to RanGTP. Finally, since the free

GTP to GDP ratio, [fT ]/[fD ], is buffered by cellular metabolism, we simply treat

the last term as a free parameter θ. Note that there is far more free GTP than Ran

on a molar basis. After rescaling time by τ ← tc0kdiff, with kdiff = 10 sec−1 nM−1

and c0 represent the diffusion-limited reaction rate and the characteristic molar

concentration (set to 1nM), respectively, and approximating e∆F ≈ 10 ∼ 100 , one

can estimate (k+5 /k−5 ) ∼ (10 ∼ 100)× θ, where θ := [fT ]/[fD ] is treated as a free

parameter.

D.2.2 Reaction 2: Ran exchange mediated by RanGAP

Figure D·3: Illustration of RanGTP to RanGDP exchange reaction
mediated by RanGAP

We aim to approximate KD for such reaction:

[Im · RT ]
k+2


k−2

[Im] + [RD ], (D.36)

k+2
k−2

=
[Im][RD ]

[Im · RT ]
(D.37)

Similarly the estimation is based on the following two steps:

[Im · RT ] + [fD ]
k+γ


k−γ

[Im · RD ] + [fT ] (D.38)

[Im · RD ]
k+δ


k−δ

[Im] + [RD ] (D.39)
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This implies (neglecting labels of steady states SS),

k+γ

k−γ
=

[Im · RD ][fT ]

[Im · RT ][fD ]
(D.40)

k+δ
k−δ

=
[Im][RD ]

[Im · RD ]
(D.41)

Thus we can reexpress Eq.(D.40) using Eq.(D.41):

k+γ

k−γ
=

1

[Im · RT ]

[fT ]

[fD ]
·
(
k−δ
k+δ

[Im][RD ]

)
=

(
[Im][RD ]

[Im · RT ]

)
· [fT ]

[fD ]

k−δ
k+δ

=
k+2
k−2
· [fT ]

[fD ]

k−δ
k+δ

(D.42)

Thus

k+2
k−2

=
k+γ

k−γ
·
k+δ
k−δ
· [fD ]

[fT ]
∼ O(1) · k0e

∆F̃ · exp

(
log

[fD ]

[fT ]

)
∼ k0× (10 ∼ 100)× 1

θ
(D.43)

D.3 Standard estimate of diffusion-limited reaction rate

Considering two type of molecules A and B diffusing in a viscous environment.

According the Fick’s law the diffusion flux of one type of molecule assuming the

other is at stationary is given as

~Jµ = −Dµ∇[µ], (D.44)

where µ = A,B and Dµ is the diffusion constant of molecule µ. Assuming spher-

ical symmetry one can integrate Fick’s law to get the total number of molecules

diffusing through a given surface area:

φtot = 4πR(DA +DB)[A][B ], (D.45)

where R is the sum of molecular radii of A and B. The factor ka := 4πR(DA+DB) is

exactly the reaction rate of the overall catalytic reaction under the assumption that
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the process is diffusion-limited (i.e. upon A and B are in contact, the intermediate

complex AB immediately reacts to form the final product P):

A+ B
ka−→ P (D.46)

Finally, recall Stokes-Einstein relation: D = kBT/(6πηa) with molecule (spherical)

particle radius a, we have

ka = 4π(2a)

(
2× kBT

6πηa

) [
m3

sec

]
→
(

8kBT

3η

)
NA103

[
1

M · sec

]
, (D.47)

where NA is the Avogadro’s constant. The factor 103 appears because we convert

the SI unit of volume m3 to liter. Using η = 10−1 (Pa·sec)= 10−3 kg/m/sec, we get

kdiff := ka ∼ 10× 109 [M−1 · sec−1] = 10 [nM−1 · sec−1] (D.48)

D.4 Simulation codes

MATLABr simulation codes are available for download at http://physics.bu.

edu/~chinghao/thermo_transport/codes/

D.5 Entropy Production

The distinct feature of systems out of thermodynamics equilibrium is the contin-

uous production of entropy. The rate of entropy change (in time) consists of two

parts: (i) the internal entropy change and (ii) the exchange of entropy with the

environment
dS

dt
= Π−Φ, (D.49)

where S is the entropy of the system and Π is the rate of entropy production and

Φ denotes the rate of entropy flow from the system to the outside. Within this con-

http://physics.bu.edu/~chinghao/thermo_transport/codes/
http://physics.bu.edu/~chinghao/thermo_transport/codes/
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text, the 2nd law of thermodynamics dictates Π ≥ 0 and the notion of steady states

translates into Π = Φ: entropy produced is continuously given away to the envi-

ronment. One can further distinguishes the equilibrium from the nonequilibrium

steady states by

• Equilibrium steady states (ESS): Π = Φ = 0

• Nonequilibrium steady states (NESS, i.e. irreversible): Π = Φ > 0

Consider systems that can be described by a continuous time Markov process

such that the probability flow can be written as a master equation:

d

dt
Pi (t) = ∑

j

[Pj (t)Wji − Pi (t)Wij ], (D.50)

where Wij is the transition rate from state j to state i and Pi (t) is the probability

of state i at time t. An appropriate microscopic description for the nonequilib-

rium system amounts to (i) having well-defined entropy for the irreversible sys-

tems and (ii) the entropy production rate Π should respects the non-negativity and

should vanish when system equilibrates (i.e. when it exhibits reversibility). For

systems described by the master equation, thermodynamics equilibrium is essen-

tially the detailed-balanced condition: PiWij = PjWji . The solution for the first is

the Boltzmann-Gibbs entropy:

S(t) = −kB ∑
i

Pi (t) logPi (t), (D.51)

while the entropy production rate is advanced by the Schnakenberg description

(Lebowitz and Spohn, 1999):

Π(t) =
kB
2 ∑

ij

[Pi (t)Wij − Pj (t)Wji ] log
WijPj (t)

WjiPi (t)
(D.52)

By imposing dS(t)/dt = 0 to Eq.(D.51) at steady state and using Eq.(D.50)(D.52)
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to simply, one gets the steady state entropy production rate:

Π = kB ∑
ij

WijPj log
Wij

Wji
, (D.53)

where Pi is the stationary probability distribution. It’s easy to check that Π −

Π(t) = dS/dt → 0 in the stationary state.

One can map the network in FIG. D·1B to a nonequilibrium Markov process. A

non-equilibrium steady state (NESS) essentially necessitates breaking the detailed

balance in the underlying Markov process and therefore, the system has a nonzero

entropy production that is continuously given away to the environment. Such en-

tropy production is exactly the power consumed by the circuit to maintain NESS.

Now defining EP := Π× T using (D.53) (in the same spirit as F = U − TS , where

F is the Helmholtz free energy), we have

EP = kBT ∑
i ,j

PSS
i W (i , j) log

W (i , j)

W (j , i)
, (D.54)

where PSS
i is the steady state probability distribution of state i while W (i , j) de-

notes the transition probability from state i to state j . Concretely, PSS
i is the frac-

tion of reactants participating in the transition reaction starting from state i while

W (i , j) can be calculated from the relevant reaction fluxes. For example, PSS
3

is the molar fraction of cytoplasmic NTF2-RanGDP (∼ [X3]) whereas W (3, 10)

is the transition probability of of NTF2-RanGDP into the nucleus: W (3, 10) =

(k+6 [X3])/(k+6 [X3] + k−1 [X3]) (See FIG.D·1C). Note that in principle the summation

in Eq.(D.54) to obtain the entropy production is taken over all links in FIG.D·1B.

It can be separated, however, into reactions 1-6 that represent the Ran futile cy-

cle (i.e. FIG. D·1C) and the remaining reactions 7-11 that do not explicitly involve

Ran. The latter are essentially passive and could be expected to satisfy detailed

balance at steady state. We have confirmed numerically that the contributions of
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reactions 7-11 in Eq.(D.54) cancel to zero, so the total entropy production is equal

that evaluated in the futile cycle alone. We can also inspect the reactions quali-

tatively. Reaction 9 is trivially in detailed balance because the concentrations X4

and X11 are equal in steady state. These represent the importin-cargo complex in

cytoplasm and nucleus, respectively. Clearly the net cargo binding/unbinding to

importin in the cytoplasm must balance that in the nucleus as well, so the con-

tributions of reactions 7 and 10 cancel. Finally, the free receptors importin and

NTF2 exchange passively across the nuclear envelope (reactions 8 and 11). Again

in steady state their cycle fluxes must balance, so their contributions to the entropy

production sum also cancel.

D.6 Weak sensitivity to the GTP:GDP ratio θ

Ultimately the (chemical) free-energetic fuel driving the transport cycle is the ratio

of GTP to GDP, θ, which is held out of equilibrium by cellular metabolism. We

find that the nuclear localization ratio, as well as biased concentrations of transport

receptors, is not strongly dependent on θ. This reflects the counterbalancing effects

of RanGEF and RanGAP as described in Section II above.
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Figure D·4: Effect of free GTP to free GDP ratio θ on nuclear local-
ization. (A) [NTF2]tot=100 nM (B) [NTF2]tot=10 nM. Other parame-
ters are the same for both panels: [C]tot=10 nM, [Ran]tot=75 nM and
[Im]tot=100 nM. Kinetics rate constants used are given in SM Section
II.
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[C]tot = 20 nM

[C]tot = 50 nM

[C]tot = 100 nM

A

B

C

Figure D·5: Phase diagram of nuclear localization and entropy pro-
duction. (A) total cargo concentration [C]tot = 20 nM (B) [C]tot = 50
nM and (C) [C]tot = 100 nM. Other parameters used are the same as
in FIG.3 and 4: [Ran]tot = 75 nM.
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