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ABSTRACT 

 The medial temporal lobe supports the encoding of new facts and experiences, 

and organizes them so that we can infer relationships and make unique associations 

during new encounters. Evidence from studies on humans and animals suggest that the 

hippocampus is specifically required for our ability to form these internal representations 

of the world. The mechanism by which the hippocampus performs this function remains 

unclear, but electrophysiological recordings in the hippocampus support a general model. 

One component of this model suggests that the cortex represents places, times, and events 

separately, and then the hippocampus generates conjunctive representations that connect 

the three. According to this hypothesis, the hippocampus binds places and events to an 

existing relational structure. This dissertation explores how item and place associations 

develop within cortex, and then examines the relational structure that organizes these 

events within the hippocampus. The first study suggests that contrary to previous models, 

events and places are bound together outside of the hippocampus in the entorhinal cortex 

and perirhinal cortex. The second study shows that this relational scaffold may be 

embodied by a continually changing code that permits both the association and separation 
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of information across the continuum of time. The final study suggests that the 

hippocampus and entorhinal cortex contain qualitatively different time codes that may act 

in a complementary fashion to bind events and places and relate them across time. 

Overall, these studies support a theory wherein time is encoded in a range of brain 

regions that also contain conjunctive item and position information. In these regions, 

conjunctive representations of items, places, and times are organized not only by their 

perceptual similarity but also their temporal proximity. 
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Chapter 1. General Introduction 

1.1 The taxonomy of memory 

  

 Our understanding of the world around us is composed of the accumulated 

knowledge and experience that we have gained throughout our lives. Our worldview and 

our identity are comprised of these memories that come in the form of associations, skills, 

facts, and beliefs about the stimuli we constantly experience, as well as autobiographical 

memories. Our autobiographical memories, also known as episodic memories contain 

perhaps the most detailed and salient experiences we have and can be consciously 

conjured in great detail. Indeed it is an incredible feat to perform ‘mental time travel’ and 

conjure the myriad details of a past experience from a prompt as simple as the smell of a 

perfume. 

 Our long-term memories have historically been described in two basic forms: first 

are those memories that we consciously recall and can verbalize, such as facts, concepts 

and past experiences. The second form of memories are those skills and habits that 

cannot be easily articulated. The first clear evidence towards a dissociation of these two 

types of long-term memory came after the famous surgery on patient H.M. by William 

Scoville, and the subsequent study by Brenda Milner (Caparelli et al., 2012). HM 

received bilateral removal of major portions of his medial temporal lobe, including the 

anterior hippocampus and rhinal cortices in an attempt to cure intractable epilepsy. After 

his surgery, H.M. was left frozen in time: he was unable to recall any recent experiences 

and he was unable learn new factual information. H.M. was, however, spared his ability 
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to learn new skills such as habit and motor learning (Gabrieli, Corkin, Mickel, & 

Growdon, 1993).  

The importance of medial temporal lobe structures is clear from observations of 

HM. Every time H.M. shifted his attention his memory was wiped clean, leaving him 

completely dependent on others for the remainder of his life. Every shift in attention 

required HM to reorient himself in space, and progress in any activity he had made before 

the shift was immediately lost. The findings from the case of H.M. formed the questions 

and theories of memory research for decades, and chiefly led to the belief that the medial 

temporal lobe is specifically responsible for consciously encoding, retrieving, and 

organizing those explicit, or declarative memories. 

Deficits in this type of memory are rather common in those affected by diseases 

such as Alzheimer’s, Parkinson’s disease, dementia, and traumatic brain injury, and are a 

central reason for why these disorders are so debilitating (Gaugler, James, Johnson, 

Scholz, & Weuve, 2016). A better understanding of this type of memory has broad 

implications that span areas from childhood education, all the way to neuropsychiatric 

disease. In the interest of precision over descriptive accuracy, these memories that are 

specifically dependent upon the medial temporal lobe will be defined as explicit 

memories. 

The defining features of explicit memory have been described in many ways, and 

extend far beyond their uniquely verbal form described above. In essence, skill and habit 

memories are automatic, inflexible, and progressively shaped. Conversely, explicit 

memory has been described as declarative, symbolic, flexible, hierarchical, detailed, and 
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relational in form (Cohen et al., 1999; Cohen & Squire, 1980; Collins & Quillian, 1969; 

Tulving, 1985; Tulving & Madigan, 1970). The organization of explicit memory is still 

not fully understood, and no one taxonomy accounts for the myriad anatomical, 

psychological, and physiological observations of the process of remembering the 

organized facts and details from our past. 

 

1.1.1 Interrogating explicit memory in the lab 

The psychological study of explicit memory is broad and comprehensive, but 

generally involves variations on a common theme. Explicit memory involves an encoding 

period where ‘items’ are presented, followed by a mnemonic delay, and then a test period 

where the subject recalls those past ‘items’ or experiences. One method for testing 

explicit memory is called free recall. This test begins with the subject observing a list of 

items or item pairs. After a prolonged delay that can span minutes to hours to days the 

subject then recalls items or pairs from the list. These tests are useful in understanding 

how we organize memories in our mind. Subjects can freely recall large numbers of 

items, but generally perform better at recalling items towards the beginning of the list 

(called primacy) and at the end of the list (recency) (Murdock, 1962).  Similarly, subjects 

tend to recall items together that were initially observed close in time (the contiguity 

effect) (Kahana, 1996). These effects support the theory that the temporal order of stimuli 

is an important organizer of information in memory. Similarly, subjects will also tend to 

recall items in groups based on their common features, e.g. pieces of furniture, or 

different fruits (Bousfield, 1953; G. H. Bower, 1970). Tests of free recall are informative, 
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in that they provide evidence that our explicit memories are organized based on temporal 

and conceptual similarity. However, free recall is a test that cannot easily be adapted for 

study in nonverbal animals, and therefore it is difficult to study the neurological substrate 

for this type of memory. 

In an alternative test of explicit memory, subjects are prompted with a second list 

of items during the recall phase, and then rate the items on their familiarity. This memory 

task can be performed on humans, nonhuman primates, and rodents alike, and animal 

species show order effects such as primacy and recency as well (Kesner, Crutcher, & 

Beers, 1988). Variations on this test examine more complicated memories, such as those 

for the relationships between items. For example, one may be presented with a sequence 

of items during study, and then upon presentation of two of those items during test, asked 

to retrieve the earlier item in the list. Initial use of these types of recall experiments in 

animals was instrumental in establishing a congruency in mnemonic abilities between 

animals and humans.  

An initial report observed that the scrub jay could form memories that included 

not only the identity of different food items, but also where and when they had been 

cached (Clayton & Dickinson, 1998). Expanding on these results, a variety of groups 

found that both rats and monkeys would preferentially explore objects, places, and 

object-place combinations that they had never experienced (Ennaceur & Delacour, 1988; 

Parkinson, Murray, & Mishkin, 1988). Thus, animals could remember highly detailed 

configurations items in unique places and times, and would often prefer new item-place-

time (also known as ‘what-where-which’) configurations to those recently seen (Eacott & 
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Norman, 2004; Parkinson et al., 1988). These authors argued that in an operational sense, 

animals could create memories nearly as specific as those in humans, and the strength of 

these memories could be behaviorally tested. This laid the groundwork for research into 

the anatomical underpinnings of the different associations that comprise explicit memory. 

The gross and mesoscale anatomy of the medial temporal lobe is conserved across 

species, so anatomical research on the explicit memory systems in rodents and monkeys 

began later, but quickly surpassed that in humans (Illustration 1) (Squire, 1992; Witter, 

1993). In broad sweeps, the perirhinal cortex (PRC) and postrhinal (POC) (or 

parahippocampal cortex (PHC)) receive connections from widespread brain regions, and 

converge upon the medial and lateral entorhinal cortex, respectively. From there, these 

two anatomically segregated information streams converge directly onto the hippocampal 

formation. The hippocampus contains a largely unidirectional excitatory loop, where the 

formation of episodic memories is thought to occur (Illustration 1) (Amaral, 1993). Fiber 

pathways return back from the hippocampus to the cortex via the same two pathways in a 

segregated manner. The entorhinal cortex is thought to be the cortical gateway to the 

hippocampus across species, and the hippocampus is thought to be the nexus of explicit 

memory formation. This large body of behavioral evidence for researchers to be 

convinced that animals could generate memories rich enough to be analogous to explicit 

memory (Griffiths, Dickinson, & Clayton, 1999; Tulving, 2001).  
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Illustration 1: The extended declarative memory system and the hippocampal trisynaptic loop. 

Top: Two cortical processing streams converge upon the medial temporal lobe. Fiber pathways 

converge from widespread neocortical regions separately into the medial entorhinal cortex and 

lateral entorhinal cortex. Bottom: The hippocampal trisynaptic loop begins with superficial 

entorhinal cells innervating the dentate, continues from dentate to ca3, ca3 to ca1, and then returns 

out to deep layers of the entorhinal cortex. Adapted from (Eichenbaum, 2000; Neves, Cooke, & Bliss, 

2008) 
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1.2 The organization of explicit memory 

Following initial reports that explicit memory was anatomically localized, the 

most viable step forward was the anatomical dissection of the different conceptual 

components of this type of memory. There are two prominent theories describing the 

organization of explicit memory, each involving a different dichotomy. One theory on the 

organization of memory posits that there are two systems that support explicit memory, 

called semantic memory and episodic memory. In its original theoretical conception, 

Tulving described episodic memory as that which ‘receives and stores information about 

temporally dated episodes or events, and temporal-spatial relations among these events’ 

(Tulving, 1972). Tulving fervently argued that episodic memory is a distinctly human 

entity, and therefore unable to be studied in animals (Cheke & Clayton, 2010; Terrace & 

Metcalfe, 2005). In other words, episodic memory is the memory of specific experiences 

that happened to us in our past that carry an autobiographical index (Holt, Reiff, & 

Scheerer, 1961). This is in contrast to semantic memory, which is described as those facts 

that are not associated with a unique instance in our past.  

Alternatively, studies wherein the subject reports their confidence in their 

memory judgements suggest there are two systems that contribute to item recognition 

(Fortin, Wright, & Eichenbaum, 2004; Yonelinas, 2002; Yonelinas, Kroll, Dobbins, 

Lazzara, & Knight, 1998). One system supports vivid recollection of past events in great 

detail, and can place them in a unique location and time. The other system supports a 

vague sense of stimulus familiarity, and does not involve the recall of details about that 

past experience. These systems are similar to episodic memory and semantic memory, 
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except that in this theory, each system acts in parallel rather than in series (Yonelinas, 

2002). One common element of these two theories is that there is a system that supports 

the memory for the elements of an experience and their relationships, whereas the other 

system supports a weaker memory for the elements alone. The section below first 

outlines how different types of mnemonic associations can be operationally defined, then 

covers the brain regions necessary for these categories, and finally covers the anatomical 

organization of the system these regions comprise. 

 

1.2.1 The anatomical localization of different types of associations 

Studies examining the differential contributions of medial temporal lobe sub-

regions to different types of explicit memory draw different conclusion depending on the 

species and behavior. Studies from monkeys performing delayed matching tasks tend to 

support a hierarchical organization, such that memory for conjunctions is built from item 

and place memories. Rodent studies suggest parallel independent systems for item, place, 

and conjunctive memories, and human studies vary widely.  

An influential collection of rodent studies leveraged spontaneous exploration to 

tease apart the anatomical substrates for episodic and semantic memories. These studies 

showed that PRC lesions specifically block recognition of recently seen objects, POC 

lesions block memory for the locations of objects, and hippocampal lesions block 

memory for the association of the two (Eacott & Gaffan, 2011; Norman & Eacott, 2005). 

This literature supports a modular system wherein the PRC and POC are necessary for 

semantic associations that comprise items and places, and the hippocampus is required to 
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bind these events and places into a spatiotemporal context in episodic memory (Eacott & 

Norman, 2004; Norman & Eacott, 2005). These studies found a triple dissociation of item 

memory, place memory and item-place memory within the rodent brain. In other words, 

the recognition of objects was independent from recognition of places, and both were 

independent of recollection of episodic-like conjunctive memories (Eacott, Machin, & 

Gaffan, 2001). 

A separate body of work performed in monkeys has provided contradictory 

results and suggests an interdependence of item and item-place memory. These studies 

are based upon operant tasks wherein the subject is rewarded for discriminating the novel 

object, location, or object-location from that presented during a previous study period. In 

these experiments, PRC and POC lesions in monkeys produced deficits in not only item 

or position memory, but also in item-position conjunctions (Suzuki, Zola-Morgan, 

Squire, & Amaral, 1993; Zola-Morgan, Squire, Amaral, & Suzuki, 1989). Alternatively, 

lesions of the hippocampus selectively impaired relational, or episodic-like memory and 

not item or place memory (Mishkin, 1978; Murray & Mishkin, 1998; Parkinson et al., 

1988). These studies used a delayed matching task, rather than spontaneous exploration 

to conclude that episodic and semantic memory work in serial. One alternative 

conclusion from these studies is that the rhinal cortices are necessary to act upon and use 

those conjunctive item-place memories to obtain reward. Despite this alternative, the 

rodent and monkey work established some conflict in the literature about whether 

semantic memory and episodic memory acted in parallel or in series. On the other hand, 
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these two literatures agreed that semantic memory remained intact following lesions 

restricted to the hippocampal formation. 

Observational studies in humans conflicted with both the monkey and the rodent 

literature. A wide variety of studies on humans with brain damage caused by viral 

encephalitis, anoxia, or physical injury to medial temporal structures observed that 

humans exhibit similar impairments in episodic and semantic memory (Squire & Zola, 

1998). These studies concluded that episodic and semantic memory are two components 

of a unitary phenomenon, and are anatomically inseparable. However, a very impactful 

paper by Faraneh Vargha-Khadem observed spared declarative memory in a group of 

patients who at a young age received lesions specifically to the hippocampus for medical 

reasons. Crucially, these patients had episodic deficits, but were spared their ability to 

encode new semantic information (Vargha-Khadem et al., 1997). As such, these children 

exhibited normal aptitude in school even though they could not remember the specifics of 

prior events. This result was inconsistent with the previous human literature and instead 

agreed with the animal literature, suggesting that at least semantic memory can function 

independently of episodic memory. This result stoked a contentious debate between 

researchers about whether episodic and semantic memory were truly independent 

(DeLong & Heinz, 1997; Eichenbaum, 1998). More recent evidence suggests a double 

dissociation between episodic like associations and semantic like recognition in humans 

as well. Recent human cases have recapitulated results in rodents that recognition may be 

impaired in the event of anterior temporal lobe damage, while recollection may be spared 

(Bowles et al., 2007). 
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Functional MRI studies on humans also support an anatomical separation between 

memory for items, places, and conjunctions (Eichenbaum, Yonelinas, & Ranganath, 

2007).  These more modern studies show differential activation in rhinal regions and the 

hippocampus during encoding and retrieval of items and conjunctive associations. 

Specifically, PRC or anterior temporal cortex activity during event encoding is predictive 

of later item recognition only whereas PHC and hippocampal activity is predictive of 

item-context associations (Davachi, Mitchell, & Wagner, 2003; Weis et al., 2004). 

Further work has implicated the hippocampus specifically during both encoding and 

retrieval involve a time component, such as for sequences of items (Ross, Brown, & 

Stern, 2009). These studies support a model consistent across species wherein the PRC 

supports memory for items, and the hippocampus supports the relationships between 

them. 

1.2.2 Interactions between hippocampus and cortex 

While the hippocampal dependent associative memories and rhinal cortex 

dependent item or place memories can be dissociated from one another, there is a large 

body of literature describing interactions between the two. This literature focuses on the 

time-limited dependence of memories on the hippocampus, and the hippocampal 

dependent ability to navigate semantic structures, or schema.  

While it is clear that the hippocampus is necessary to encode new memories, its 

role diminishes as memories grow older. Rodents with hippocampal lesions show sparing 

of old memories, and even H.M. was able to recall detailed autobiographical memories 

from the distant past (Anagnostaras, Maren, & Fanselow, 1999; Caparelli et al., 2012). 
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These observations appear to contradict theories that suggest relational or conjunctive 

memory is strictly hippocampal, and reveal cross modal associations may not always 

require the hippocampus (Kitamura et al., 2017; Wiltgen, Brown, Talton, & Silva, 2004). 

This well-replicated evidence that the hippocampus is only temporarily necessary for 

explicit memories supports the classic theory that memory consolidation involves the 

migration of a memory from the hippocampus to the cortex (McGaugh, 1999). Dubbed 

systems consolidation, this model describes how episodic memories initially dependent 

upon the hippocampus slowly lose such dependence. One theory posits that this 

phenomenon occurs during sleep and quiet daydreaming and may involve transient 

reactivation of memory engrams (Todorova & Zugaro, 2018; Wiltgen et al., 2004; Zhang, 

Fell, & Axmacher, 2018). 

Conversely, there is a large literature in rodents and in humans showing 

hippocampal lesions cause deficits in the flexible expression of semantic memory. These 

observations extend the function of the hippocampus beyond a role in encoding concrete 

what-where-when associations that comprise individual autobiographical experiences, 

and implicate a role in the flexible processing and expression of semantic content. 

Formally known as the relational theory of hippocampal processing, Howard 

Eichenbaum and Neal Cohen aided in part in conceiving this theory and have provided 

great empirical evidence in support, using both human and rodents as subjects 

(Eichenbaum & Cohen, 2014; Konkel, Warren, Duff, Tranel, & Cohen, 2008).  

The relational theory of memory fuses neuropsychological observations of item 

and associative memories with the psychological observations of Piaget on memory 
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schema. Indeed the notion that all memory is built upon a foundation of preexisting 

knowledge, or schema is well established in the psychology literature (Piaget, 1952). In 

this context, schema are the organized neural patterns entering the hippocampus from the 

cortex and are analogous to recognized semantic items. The proposed role of the 

hippocampus is to integrate new information into schema via different forms of memory 

consolidation, is similar to putting new items into context.  

A number of existing data points can be reevaluated to support the relational 

theory. Early studies of rodents who lost the ability to navigate familiar spatial 

environments following hippocampal lesions supports an inability to integrate new 

locations into an existing spatial framework (Morris, Garrud, Rawlins, & O’Keefe, 1982). 

Similarly, human amnesiacs have trouble placing cities on maps even though they can 

describe their general location, suggesting a more subtle deficit in relational processing 

(Rosenbaum et al., 2000, 2005). These data that initially supported a deficit in spatial 

navigation can be reinterpreted to support the relational theory. Furthermore, human 

fMRI work suggests the hippocampus is specifically involved when subjects experience 

or imagine novel stimuli or stimulus conformations (Hasselmo & Stern, 2006; Preston, 

Shrager, Dudukovic, & Gabrieli, 2004; Stern et al., 1996; Zeithamova, Schlichting, & 

Preston, 2012). More recent supporting evidence from human amnesiacs has come from 

studies of language processing that outline deficits in multiple source information 

(Kurczek, Brown-Schmidt, & Duff, 2013). In rodents, hippocampal lesions cause deficits 

in relational tasks such as transitive inference, temporal order memory, and symmetry 

(Eichenbaum & Cohen, 2014). In a pair of influential studies, groups from the 
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Eichenbaum lab showed that rodents were trained on odor pair associations, they could 

structure the odor sets and make inferences about the relationship between novel pairings 

(Bunsey & Eichenbaum, 1996; DeVito, Kanter, & Eichenbaum, 2009). Crucially, these 

experiments showed that in rats and mice the hippocampus was necessary to make 

inferences about item relationships in a non-spatial domain. Together, these observations 

suggest that episodic-like associations are slowly shifted out of the hippocampus, but the 

flexible access to memories is hippocampal-dependent. 

The relational theory of memory processing explains a wide range of 

experimental findings, but also makes predictions about how episodic memories are 

related. First, redefining semantic content into schema suggest that the information 

entering the hippocampus may already contain not only items but common 

spatiotemporal contexts in which they occur. Individual memories can thus be considered 

pointers along continuous ‘contextual’ axes, and the similarity of these pointers is 

measured as their closeness along these axes (Nielson, Smith, Sreekumar, Dennis, & 

Sederberg, 2015). In this way, the neural substrate for an episodic memory, or episode 

can also reflect its schematic similarity to other memories (Bellmund, Gärdenfors, Moser, 

& Doeller, 2018; Huth, Nishimoto, Vu, & Gallant, 2012; LaRocque et al., 2013). Second, 

it is clear that the hippocampus is necessary for processing novel situations, and relating 

them to others across space and time (Tulving & Markowitsch, 1998). This suggests that 

the hippocampus may be necessary to act appropriately in novel situations, by rapidly 

organizing new experiences into existing schema (Kimble & Kimble, 1965; Zeithamova 

et al., 2012). 
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1.3 The neurobiological basis of memory  

 In parallel to the taxonomy of human episodic memory, there exists a more 

general theory of memory that is described at the cellular and molecular level. In 1920 

Richard Semon was the first to describe a memory engram as an indelible physical 

change in the brain, and hypothesized how it may be encoded and retrieved (Schacter, 

Eich, & Tulving, 1978). Subsequent attempts dominated the basic anatomy research for 

decades. At the crux of this debate was whether certain skills, memories, and functions 

were topographically organized onto the surface of the cortex, or whether these skills and 

memories were distributed throughout the cortex. While some scientists found evidence 

for localization using electrical stimulation, others were less successful when using lesion 

techniques (Lashley, 1929; Penfield & Rasmussen, 1950). 

An alternative framing to this debate Hebb hypothesized that the engram of a 

memory might exist at a finer scale: within the connections between neurons residing in 

the brain. Hebb suggested that learning occurred when neurons fired together, and the 

anatomical substrate of memory was a change in the connections between those neurons 

as a result (Attneave & Hebb, 1950). Subsequently, a variety of researchers found 

physiological evidence of activity induced synaptic change in model systems (Bliss & 

Lømo, 1973; For review: Feldman, 2009).  A real breakthrough occurred when Eric 

Kandel showed a direct relationship between synaptic changes and behavioral learning 

(Brunelli, Castellucci, & Kandel, 1976; Castellucci & Kandel, 1976). This collection of 

papers revealed that a learned stimulus response relationship coincided with changes in 
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the connections between neurons responsible for perceiving the stimulus and producing 

the response. Kandel later showed that modifying the synaptic strength between those 

neurons was responsible for producing the behavioral association (Castellucci & Kandel, 

1976). These separate pieces of evidence led to the synaptic theory of memory and 

provided a basis for how a pair of cells, one responding to a stimulus, and another 

generating a response may become associated when that stimulus and response co-occur.  

Cellular neuroscience provided a possible mechanism for learning and memory, 

whereas the cognitive neuroscience literatures pointed to the hippocampus as the locus 

where this biochemical process ought to be leveraged to subserve declarative memory. 

The specific hypothesis was that the hippocampus contained firing patterns that somehow 

embodied the spatial and temporal relations among events that occur in every-day life 

(Eichenbaum, Otto, & Cohen, 1994; Howard, Fotedar, Datey, & Hasselmo, 2005). These 

firing patterns would organize in a manner conducive to synaptic learning, so that the 

elements of episodic memory could be rapidly formed and remembered. The basic 

principle of this organization was thought to be the same as for the rest of the brain: 

individual units would have firing fields, and would fire when a stimulus was present 

providing a window for synaptic plasticity.  

Traditional models of firing fields involve a stepwise translation of simple 

sensory stimuli to more complicated configurations of stimuli, and ultimately to the items 

and associations that comprise the objects and places with which we interact (Wiesel & 

Hubel, 1979). A stereotypical model might involve combined inputs from cells that 

respond to different features of an object onto a single cell that represents the whole 
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object (Hopfield, 1995).  When all features are present, the combined inputs are sufficient 

to cause that cell to fire. When the post-synaptic cell fires as a result of the combined 

input from the presynaptic cells firing, the active synapses are strengthened and those 

features are then associated with that object. In a similar vein, inactive inputs 

corresponding to features not associated with that object are diminished, and outputs 

from active feature cells to other inactive object cells are also diminished. These models 

have been incredibly effective at describing the signaling cascades in primary cortices, 

and have been successfully employed as an in-silico model of learning and memory. 

 

1.4 Memory mechanisms in the medial temporal lobe 

While circuits across the brain exhibit firing fields and synaptic plasticity, the 

hippocampus and surrounding regions exhibit unique forms of plasticity and firing 

properties in support of episodic memory function. The hippocampus exhibits some of 

the most rapid and sometimes transient forms of synaptic plasticity and reorganization, 

some of the most intricate laminar organization, and some of the most complex tuning 

curve parameters yet described in the brain. These characteristics all work together to 

allow for continuous encoding of experience in the most detailed form. 

The hippocampus has been long studied for its easily inducible synaptic plasticity 

in highly specific and organized synaptic pathways (Bliss & Lømo, 1973). Indeed long 

term potentiation was first discovered in the hippocampus, and provided a proof of 

concept for information storage on a behaviorally-relevant timescale. The hippocampus 

also contains some of the only neurons in the mammalian brain to undergo neurogenesis, 
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supplying the circuit continuously with new opportunities for synaptic plasticity to occur 

(Kempermann, Jessberger, Steiner, & Kronenberg, 2004). Along with a continual supply 

of new neurons, synapses in the hippocampus are thought to be highly dynamic. A recent 

study found that dendritic spines in the hippocampus undergo 100% turnover in a matter 

of weeks, in contrast with the cortex, which is thought to contain a significant proportion 

of dendritic spines that are virtually static (Attardo, Fitzgerald, & Schnitzer, 2015; 

Holtmaat et al., 2005).  

Along with its unique cellular characteristics, the hippocampus exhibits a unique 

network organization suggestive of a role in episodic memory. John O’Keefe was the first 

to examine firing patterns in the hippocampus of freely moving subjects in vivo. He was 

able to do this through development of a technology allowing for extracellular unit 

recordings from freely moving rodents. In his rats, O’Keefe found hippocampal neurons 

that only fired when the animal occupied a specific location in the testing arena. These 

cells appeared to have firing fields centered on a specific ‘place’ and thus were dubbed 

‘place cells’. In this seminal report, O’Keefe also described other cells, dubbed ‘misplace 

cells’ whose firing fields seemed to select for certain events occurring in a specific place, 

either the surprising removal, or insertion of a cue. While ascribing cells to a specific 

function is convenient, it is more prudent to describe the firing fields displayed by these 

cells instead. Therefore, ‘place fields’ will be used to describe this intricate organization 

of action potentials (O’Keefe & Burgess, 1996). These highly selective firing fields 

served as a crucial link to connect cognitive abilities in vertebrates down to cellular and 

molecular changes in the brain.  
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This laid the groundwork for models that describe how information cascades 

converging on the hippocampus generate highly specific patterns of activity contributing 

to the synaptic learning that underlies the association of stimuli to a unique spatial 

context. Under one hypothesis, place fields may represent the spatial context within 

which events may occur. Thus, a place field may coincidently occur with an object field 

responding when an object is placed there, and through rapid plasticity, that object is 

bound to a place. Item place associations are two of the three necessary components of an 

episodic memory, the third being time. 

A second breakthrough in our understanding of how episodic associations may be 

formed came when Pastalkova published a paper that described hippocampal firing fields 

that organized in time (Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008). These 

cells, later dubbed ‘time cells’ exhibit firing fields at specific moments after an event, 

marking how long ago that event took place (Eichenbaum, 2014; Macdonald, Lepage, 

Eden, & Eichenbaum, 2011). Much like place fields, time cells provide an obvious 

substrate for tracking when experiences occur, and provides a potential mechanism for 

ordering events across time. Together with the discovery of place fields, these studies 

reveal a cellular code in the hippocampus for a combined spatiotemporal context that 

could function to generate episodic associations between events. This theory makes 

intuitive sense, but as the following sections will show, the physiological and anatomical 

organization of memory in vertebrates goes far beyond the simple firing fields and fire 

together, wire together plasticity rules initially discovered in invertebrates. 
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1.5 Anatomy of the medial temporal lobe 

Place fields exist in all hippocampal subregions of the declarative memory 

network, and similarly specific firing fields can be found in neighboring cortex. The 

declarative memory system includes multiple medial temporal lobe structures, subcortical 

structures including the septum and thalamic relays and their connections, and some 

prefrontal areas. Within these structures, there is a computational mechanism for rapidly 

encoding information, and transforming it into a crystallized, durable form.  

As discussed above, cellular activity can promote the changes in synaptic 

connections between neurons that underlie memory. Therefore, the organization of 

synaptic connections is the basis for memory organization itself. The section below 

outlines the pathways that are crucial for episodic memory, and describes the importance 

of the connections between nodes in the episodic memory loop. It is these cells, and more 

specifically their synapses that are thought to be the substrate for episodic and semantic 

memory. Thus, it is the firing fields generated by these cells that support and modify 

synapses to encode new episodic memories.  

1.5.1 Segregated processing streams converging on the hippocampus 

A large body of anatomical tractography research has identified a general 

direction of flow in this system that arise from two general processing streams that 

converge in the hippocampus proper, and then project back out to the same two pathways 

(van Strien, Cappaert, & Witter, 2009). These two processing streams carry qualitatively 

different information in that the medial processing stream carries information about 

spatial configurations and orientations, whereas the lateral processing stream carries 
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information about objects and their perceptible features and relationships. These two 

processing streams converge in the hippocampus and initiate what is canonically called 

the trisynaptic loop. The trisynaptic loop begins with the entorhinal projections into 

granule cells in the dentate gyrus. Dentate Granule cells then send their axons to CA3, 

and then CA3 cells send projections that converge with those from the EC to CA1, thus 

ending the trisynaptic loop. CA1 cells project chiefly out to the subiculum and then to 

widespread areas of the cortex (Blatt & Rosene, 1998). Within this trisynaptic framework 

there exist even more intricate topologies that are discussed below. 

The medial processing stream is a convergence of fibers from temporal, parietal 

and occipital cortices that enters the POC and then the medial entorhinal cortex. The 

lateral processing stream is a bundle of fibers originating from ventral temporal and 

frontal association areas as well as unimodal olfactory regions in the rat, or unimodal 

visual regions in the monkey to the PRC and then to the lateral entorhinal cortex 

(Burwell, Witter, & Amaral, 1995; Witter et al., 2000). The medial and lateral entorhinal 

cortices exhibit exquisite organization, and show clearly converging and diverging inputs 

into the hippocampus. 

The medial and lateral entorhinal cortices together give rise to the two main 

cortical inputs to the hippocampus: the perforant pathway (pp) arising from layer 2 cells, 

and the temporoammonic pathway (ta) arising from layer 3 cells. These connections are 

topographically organized, or are ‘lamellar’ such that the cells at a specific dorsoventral 

level in the medial and lateral entorhinal cortex project the same dorsoventral level (or 

rostrocaudal level in primates) in the hippocampus (Amaral & Witter, 1989; Sloviter & 
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Lømo, 2012). In contrast, the MEC and LEC send axons to separate layers and levels of 

the hippocampus within this framework. The medial pp axons ramify in the inner third of 

the dentate molecular layer at the distal dendrite, whereas lateral pp axons ramify in the 

outer third of the dentate molecular layer at intermediate dendrites of dentate granule 

cells (van Groen, Miettinen, & Kadish, 2003). Moreover, the medial and lateral inputs 

exhibit distinct synaptic receptor classes, such as the mu opioid receptor (Breindl, 

Derrick, Rodriguez, & Martinez, 1994). The lateral ta pathway sends more axons to the 

distal (closer to the subiculum) region of CA1, and more heavily innervates cells residing 

in the superficial cell layer, whereas the Medial ta pathway sends more axons to the 

proximal region of CA1, and more heavily innervates cells residing in the deep layer 

(Masurkar et al., 2017). These anatomical similarities and differences suggest that the 

types of information conveyed by these axons are qualitatively different, but are both 

integrated within the hippocampus. Further clues to how these types of information differ 

within the entorhinal cortices are found in the electrophysiological properties and laminar 

distribution of cells in each of these regions. The most obvious differences between these 

regions may be the noticeably denser packing of cells in layer 2 of the LEC over the 

MEC (Amaral & Witter, 1989). 

1.5.2 The hippocampus proper 

The hippocampus proper is necessary for the retrieval of episodic memories as 

characterized by the joint representation of what, where, and when information. The 

hippocampus is made up of three principal regions each with unique properties that 

suggest they perform complementary computational functions. The dentate gyrus exhibits 
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sparse coding and neurogenesis that suggest a function called pattern separation: CA3 

exhibits denser coding and recurrent connectivity that suggests pattern completion: and 

CA1 exhibits highly organized temporal dynamics in its firing fields that reflects 

multiplexing of inputs and suggests a role in integrating information from two sources (J. 

K. Leutgeb, Leutgeb, Moser, & Moser, 2007; S. Leutgeb & Leutgeb, 2007; Neunuebel & 

Knierim, 2014). 

The dentate gyrus receives its major input from the pp, comprising the first node 

in trisynaptic loop from the entorhinal cortex. The dentate gyrus is comprised chiefly of 

excitatory granule cells and mossy cells, and inhibitory basket cells (Amaral, Scharfman, 

& Lavenex, 2007). Granule cells extend dendrites throughout the molecular layer, and 

send axons through the stratum lucidum to CA3 (Senzai & Buzsáki, 2017). Dentate 

granule cells receive lateral pp input to their distal dendrites, and medial pp input to their 

intermediate dendrites. A computationally relevant feature of the dentate gyrus is the 

extreme sparsity of its activity. Granule cells of the dentate rarely fire action potentials, 

suggesting they are responsive only to very specific elements of experience. This is 

achieved by a unique inhibitory environment wherein inhibitory interneurons and 

longitudinal association fibers have extremely efficacious clamping influence on granule 

activity. Dentate granule cells express unique GABAergic receptor subtypes on their 

distal, intermediate and proximal dendrites that result in shunting inhibition of inputs to 

their dendritic tree (J. D. Foster, Kitchen, Bettler, & Chen, 2013). Conversely, mossy 

cells residing in the hilus are highly active, ramify on local interneurons, and are thought 

to act in an inhibitory feedback loop that may help tune the sparsity of granule cell firing 
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fields (Amaral et al., 2007). Feedback along the dentate gyrus via mossy cells extends 

through a longitudinal fasciculus projecting almost the full longitudinal extent of the 

dentate, suggesting that the dentate is capable of behaving as a singular unit (Scharfman 

& Myers, 2013). A second unique and incredibly important feature of the dentate is that 

dentate granule cells are continually generated throughout life (Kempermann et al., 

2004). Young granule cells progress through multiple developmental stages, including 

those marked by intracellular chloride balance, and later preferential excitability by 

lateral pp input (Collie et al., 2018; Dieni, Chancey, & Overstreet-Wadiche, 2013; 

Kempermann et al., 2004). Interestingly, cell populations are not recycled, but rather the 

number of granule cells continually increases throughout life. Neurogenesis is thought to 

aid in the function of pattern separation as continual dendritic growth offers a constant 

opportunity for the creation of new synaptic connections, and therefore new 

constellations of connectivity (Kitamura et al., 2009). Without new synapses, one could 

easily imagine that the pathways carved into the brain by experience become worn, and 

with no new naïve cells, there ceases to be an opportunity to break this mold. Indeed 

disrupting neurogenesis in the dentate causes episodic memory deficits in animals (Akers 

et al., 2014; Goodman et al., 2010). These two properties suggest that dentate granule 

cells may respond only to very specific inputs, and cells are continually available to 

integrate new information. These temporally transient and thematically sparse firing 

patterns match the nature of episodic memories. Episodic memories are incredibly 

specific, and we continue to create new memories throughout our lifetime. 
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Dentate granule cells send axons that terminate in the stratum lucidum onto the 

proximal dendrites of CA3 pyramidal neurons. The synaptic contacts between dentate 

granule cells and CA3 pyramidal cells are notably efficacious, and are so dubbed 

‘detonator synapses’ (Henze, Wittner, & Buzsáki, 2002). CA3 neurons also receive 

inputs from the entorhinal cortex via the pp as well as direct feedforward excitation from 

other CA3 pyramidal cells. Entorhinal axons ramify on the distal dendrites of CA3 in a 

similar manner to dentate in that the lateral pp axons ramify on the more apical dendrites 

of CA3 cells (Witter, 2007). The activity of CA3 pyramidal cells is markedly different 

from that of dentate granule cells in that these cells have a much higher basal firing rate 

(GoodSmith et al., 2017). However the representation of experience in CA3 is still 

sparser than that in CA1 (Stefan Leutgeb, 2004). A higher firing rate together with the 

prominence of feedforward excitation in CA3 both suggest that a sparse, or degraded 

input can generate a dense and stable activation pattern. CA3 thus is suggested to perform 

pattern completion, the complementary function to the dentate (Neunuebel & Knierim, 

2014).  

Within the hippocampus there is a balance between feedforward excitation and 

excitation from the dentate versus external input from the entorhinal cortex. This balance 

is mediated by cholinergic tone, such that when acetylcholine is high, inputs from dentate 

CA3 recurrent fibers are repressed (Hasselmo & Schnell, 1994; Hasselmo, Schnell, & 

Barkai, 1995). This is thought to allow for cortical inputs, especially those from the LEC 

to dominate, and may correspond to encoding phases of memory (Kahle & Cotman, 

1989). Conversely when cholinergic tone is low, dentate and CA3 recurrents may be 
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potentiated, allowing for stored patterns in the dentate and CA3 to propagate through the 

trisynaptic loop (Winson & Abzug, 1978). This dynamic weighting of pathways is 

thought to be a mechanism for rapid storage and retrieval of episodic information, as 

acetylcholine release changes from memory encoding to retrieval (Hasselmo, 1999; 

Teles-Grilo Ruivo & Mellor, 2013). 

CA3 axons send collaterals (called Schaffer collaterals) to the CA1 area of the 

hippocampus, comprising the third synapse of the trisynaptic loop. Schaffer collaterals 

ramify onto the proximal dendrites of CA1 neurons in the stratum radiatum, whereas 

inputs from the entorhinal cortex traveling through the ta pathway innervate the distal 

dendritic tree of CA1 neurons. These synapses occur in the stratum lacunosum 

moleculare, so named for its high degree of vascularization. There is further segregation 

of ta fibers such that the LEC inputs prefer to innervate CA1 neurons that are more distal 

to CA3, and that reside in the more superficial cell layer, whereas MEC inputs prefer to 

innervate proximal, deeper CA1 neurons. This highly organized topology of afferents 

suggests there is integration of a wide range of inputs at the level of CA1 (Masurkar et 

al., 2017).  

CA1 pyramidal cells send axon collaterals chiefly to the subiculum, but also to 

widespread regions of the cortex (Blatt & Rosene, 1998). From the subiculum, the major 

output then projects to the entorhinal cortex and in turn back down the spatial and non-

spatial cortical processing streams. In this way, the hippocampal formation receives 

highly processed information from two sources, manipulates that information through an 

intricately organized feed-forward loop, and then feeds back on those same cortical 
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systems, presumably modifying the input traces in a way that sub-serves declarative 

memory formation. 

The fimbria is a lemniscus of fibers that courses the length of the hippocampus 

and continues on as the fornix to connect the two hippocampi, and each directly to 

subcortical structures. Commonly known as Papez circuit, these fibers arise from all 

hippocampal subfields and travel through the fimbria/fornix to the contralateral 

hippocampus, and insert into the diencephalon via the mammillary bodies (Vann, 2013). 

Collaterals from those fibers continue in a loop to innervate subcortical structures 

including areas in the thalamus and hypothalamus (Wyss, Swanson, & Cowan, 1979). 

The connections to the septum are of specific interest, wherein inhibitory GABAergic, 

and excitatory glutamatergic and cholinergic fibers from subcortical structures innervate 

the hippocampus through the fornix as well. Modulation of septal activity has marked 

effects on hippocampal network activity, such as gating hippocampal output, and 

modulating local oscillations (Brandon et al., 2011; Haam, Zhou, Cui, & Yakel, 2018; 

Villette et al., 2010).  

 

1.6 Physiology of the medial temporal lobe 

 As mentioned before, the firing patterns of hippocampal cells were initially 

thought to be a substrate for spatial navigation. While initial research focused on dorsal 

CA1 unit firing during spatial navigation, the studies outlined below make clear that unit 

activity across the MTL can be correlated to various aspects of experience and memory. 

The sections below will outline how firing fields in the medial temporal lobe reflect 
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processing of spatial locations, objects and non-spatial stimuli, object-position 

associations, abstract contextual designations, the temporal order of future and past 

events, and finally time itself. This research suggests that the medial temporal lobes 

contain a code that reflects the myriad stimuli one may experience, and the spatial and 

temporal relationships between them, that supports episodic memory. 

1.6.1 Spatially tuned firing fields in the hippocampus 

The spatial firing characteristics of hippocampal cells are most easily studied, as 

their observation requires no behavioral manipulations and minimal behavioral 

monitoring. Indeed, studies on the spatial specificity of hippocampal unit activity have 

provided a wealth of information as to how hippocampal neurons organize their firing 

fields. While initially discovered in CA1, place fields have been found throughout the 

hippocampus, and examination of the environmental and physiological factors that 

modulate place fields is a focus of continuing research (McNaughton, Barnes, & 

O’Keefe, 1984; O’Keefe & Dostrovsky, 1971; Rangel et al., 2014). 

Place fields are generally studied under the backdrop of spatial navigation as an 

animal traverses a linear track or wanders an open field in search of randomly placed 

food. In this situation place fields are incidentally recorded, and appear to represent 

nothing else but the current position and bearing of the rat (O’Keefe, 1976). While ‘place 

cells’ are increasingly studied in more mnemonically relevant situations, their inception 

and much of their characterization has been in rats and mice performing this relatively 

passive paradigm. 
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Place fields represent the myriad of stimuli across modalities that comprise a 

location in an environment. As such, the removal of a single modality is insufficient to 

fully disrupt place field representations. Place fields persist in blind rats (Save, Cressant, 

Thinus-Blanc, & Poucet, 1998), in the dark and without auditory cues (Save, Nerad, & 

Poucet, 2000), in zero gravity (Knierim, McNaughton, & Poe, 2000), in and even virtual 

reality (Harvey, Collman, Dombeck, & Tank, 2009). Similarly, lesions to the prefrontal 

cortex (Kyd & Bilkey, 2005), thalamus, post-subiculum, entorhinal cortex (Brun et al., 

2008; L. Lu et al., 2013; Van Cauter, Poucet, & Save, 2008), PRC (Lee & Park, 2013), 

mammillary bodies (Sharp & Koester, 2008), fornix (Miller & Best, 1980), CA3 

(Nakashiba, Young, McHugh, Buhl, & Tonegawa, 2008), and medial septum (Stefan 

Leutgeb & Mizumori, 1999) are insufficient alone to abolish place. Together these 

studies show that while no one region or sensory modality is necessary for place fields, a 

wide range of stimuli and processing streams contribute to their existence. 

Place fields take time to organize, and may take multiple visits to a place for 

fields to develop. Place field formation is thought to be a rapid event that involves both 

intracellular and circuit level mechanics that are modulated by attention. When the 

animal attentively scans a new environment, presumably in an attempt to orient 

themselves, place fields are more likely to develop (Monaco, Rao, Roth, & Knierim, 

2014). Recent work examining the formation of place fields reveals a complicated 

interplay between intracellular phenomena and network influences that occur prior to 

organized spiking activity. Specifically, novelty and attention promote parvalbumin 

(PV+) cell firing and depresses somatostatin (SOM+) cell firing (Sheffield, Adoff, & 
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Dombeck, 2017). As PV+ cells are thought to clamp somatic potentials, and SOM+ cells 

dendritic potentials, this suggests a shift in network state towards current integration in 

the dendritic compartment (Abbas et al., 2018; Amilhon et al., 2015). This likely 

increases the probability of what are called dendritic plateau potentials in the 

hippocampus. CA1 place field formation is usually preceded by dendritic plateau 

potentials, which require both NMDA receptors and sustained calcium influx. This 

suggests place field formation involves a mechanism that extends the time window for 

synaptic plasticity (Bittner, Milstein, Grienberger, Romani, & Magee, 2017). Sheffield 

went on to show that this may be a mechanism by which specific dendritic branches are 

chosen above others, as the dendrites exhibiting plateau potentials drive stable place field 

activity (Sheffield et al., 2017). This choice process likely involves interneurons, as their 

activity is thought to strongly suppress sparsely active inputs and effectively threshold 

inputs (Grienberger, Milstein, Bittner, Romani, & Magee, 2017; Wagatsuma et al., 2017). 

These results together suggest a model wherein inputs converging on specific dendrites 

are selected to generate new place fields by a shift in interneuron dynamics. These inputs 

generate dendritic plateau potentials that selectively increases the efficacy of those inputs, 

so that subsequent visits to that place elicits firing field activity.  

A closer examination of the inputs to CA1 during field formation revealed that 

these plateau potentials are often generated by finely timed inputs from EC and CA3 

(Bittner et al., 2015). Both SOM and PV interneurons are thought to organize inputs 

within the fine timescale of oscillations in the local field potential (LFP) (Royer et al., 

2012). Interneuron spiking is thought to generate local oscillations in the hippocampal 
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LFP, which influences pyramidal firing through phasic and compartmentalized inhibition 

(Amilhon et al., 2015). The theta rhythm is a well-documented and prominent oscillation 

occurring in the local field potential at 7-12 Hz (Buzsáki, 2002). A recent report 

perturbing SOM+ interneurons suggests a central role of these cells in controlling both 

the power and timing of ca1 afferents to specific phases of theta rhythm (Lovett-Barron et 

al., 2012). This suggests an alternative mechanism for organizing inputs and supporting 

place fields supported by network oscillations. 

Both spatial coordination via plateau potentials, and temporal coordination via 

oscillatory coupling may synergistically act to generate new place fields. Interestingly, 

place fields can be generated in the absence of NMDA receptor activity, however they 

show lower long term stability (Kentros, 1998). Thus, while network coordination may 

be sufficient to generate place fields, NMDA dependent synaptic plasticity is required for 

long term stability of place fields, and consequently memory for context. 

Once established, cell firing during passes through a place field exhibit a 

stereotyped pattern that is characterized by bursting activity that occurs at a specific 

relationship to theta (O’Keefe & Recce, 1993). Place fields in CA1 and CA3 both phase-

lock to the theta rhythm in the LFP (Schomburg et al., 2014). The existence of this 

rhythm, as well as the selectivity of pyramidal cells to a specific phase of the rhythm 

suggests interneuron networks aid in both generation of and maintenance of place fields.  

Both the amplitude of the theta rhythm as well as the firing of place fields tend to 

be dependent on the animals behavior. Theta power and place field firing are elevated 

when the animal is moving faster, and this is not a mere product of visual flow (X. Lu & 
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Bilkey, 2010).  This observation suggests that these cells are important when animals are 

integrating changing sensory inputs. Further supporting this theory, place fields 

representing neighboring positions fire in rapid sequences, called ‘theta sequences’ that 

recapitulate the relationship between the places they represent in real time (D. J. Foster & 

Wilson, 2007). This relationship is promoted through a complex interaction with the theta 

rhythm. Specifically, as an animal moves through a place field, that cells spikes occur at 

progressively earlier phases of the theta rhythm (Skaggs, McNaughton, Wilson, & 

Barnes, 1996). This is called phase precession, and precedes the fine organization of 

adjacent place fields. When theta is disrupted, place fields cease to exhibit this finely 

timed relationship, and recently formed place fields display unreliable spike time 

relationships with their neighbors (Feng, Silva, & Foster, 2015). Indeed, theta is 

hypothesized to support segregated encoding and retrieval functions in the hippocampus, 

as well as in organizing ensemble activity across space and time (Hasselmo & Stern, 

2014). Overall, these characteristics of place fields suggest they form relationships 

between each other that is based on the temporal relationships between the places they 

represent. In other words, place firing may represent pointers along a dimension that are 

linked to their neighbors like a chain or net. 

When examining ensembles of place fields across different behaviors and 

environments, studies have shown that place field ensembles can change as a coherent 

unit, or in a disjointed fashion. Individual place fields generally anchor to prominent 

environmental cues much like we do when orienting ourselves in space. In some 

circumstances, rotation of prominent visual cues can cause an ensemble of place fields to 
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rotate coherently as though the entire map were guided by these cues. Interestingly, these 

maps are generally insensitive to the relocation of local objects in the enclosure 

(Cressant, Muller, & Poucet, 1997). Place maps are also sensitive to the geometry of an 

environment, and undergo changes that may correlate to when the animal senses 

difference. In a pair of similar experiments, animals were place in an environment as it 

transitioned from a square into a circle. In one experiment the animals were familiar with 

both the square and the circle geometries, having previously built separate hippocampal 

representations for each enclosure. As the animal was introduced to varying intermediates 

between a square and circle, the hippocampal place representation mapped either to the 

square or to the circle, but not a morph between the two (Wills, 2005). Similarly, when 

mice mistakenly confuse their orientation in a symmetric room, their place maps are 

coherently flipped as well (Keinath, Julian, Epstein, & Muzzio, 2017; Kinsky, Sullivan, 

Mau, Hasselmo, & Eichenbaum, 2018). Finally, one study found that when rats confused 

one room with another, they generated identical place maps in each environment 

(Grieves, Jenkins, Harland, Wood, & Dudchenko, 2016).  These data suggest that 

ensembles of place fields can maintain coherence across very similar situations. 

Other environmental manipulations cause ensembles of place fields to change in a 

disjointed fashion. In an interesting replication of the above circle-square experiment, 

animals were exposed to a progressively morphing enclosure, rather than random 

intermediates between a circle and square (J. K. Leutgeb et al., 2005). In this experiment, 

hippocampal place maps slowly morphed with the environment, with different fields 

changing at different moments. A separate study found similar results by cleverly rotating 
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proximal and distal cues out of register. This experiment revealed not a dichotomy, but 

rather a spectrum of shifting fields such that some followed local cues, some followed 

distal cues, and many showed a graded shift reflecting an intermediate between the two. 

This was in stark contrast to head direction cells, that all rotated coherently from trial to 

trial (Knierim, 2002). However in both of these experiments, the difference between the 

environments and the referenced context were obvious, and thus the animals may have 

recognized this was a new place built from familiar components. These studies suggest 

that the hippocampal representation can ‘remap’ in a dynamic fashion that may reflect the 

similarity of that context to multiple reference points.  

Together, the observations of both coherent shifts in place maps as well as 

disjointed remapping suggests a dynamic mechanism that reflects a dynamic 

representation of context memory. When the environment is similar enough to what 

might be held in memory, the map may behave as an attractor network, overcoming 

differences. On the other hand when the current environment is clearly new, the 

hippocampal map may include features that are similar to old maps, but the relationships 

between nodes in the new representation may reflect the unique conformation of the 

current situation. 

1.6.2 Hippocampal firing fields are sufficient for memory 

The data on remapping suggest that place maps are the substrate for ones memory 

of a spatial environment. Indeed a large body of research using a wide range of 

techniques has provided evidence for a causal role in place field firing and the memory of 

the events occurring in that place. One amazing body of work has leveraged the action of 
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immediate early genes to label active cells and provide evidence of a ‘hippocampal 

engram’ for an environment (X. Liu et al., 2012). In these studies, cells exhibiting firing 

field activity are “tagged’ by leveraging the action of immediate early genes expressed 

after a cell exhibits a high firing rates. This in theory captures all the cells that exhibited 

place field activity in that chamber (Morgan & Curran, 1989; Shen & Greenberg, 1990). 

When these tagged cells are then reactivated in a different environment using 

optogenetics, animals respond as if they were still in the tagged chamber. Scientists have 

been able to tag both aversive and appetitive experiences, and have shown that the 

activity of these hippocampal ensembles represents not just the place or stimulus alone, 

but the conjunctive representation of these stimuli and the place they occurred (Redondo 

et al., 2014). Thus, the activity of a hippocampal ensemble provides information to the 

animal about where they are and what experiences may have happened there in the past. 

Following up on this hypothesis, one study associated reward via medial forebrain bundle 

stimulation with the firing of a single place field during sleep (de Lavilléon, Lacroix, 

Rondi-Reig, & Benchenane, 2015). When the animal was put back into the environment 

in which that cell fired, the animal preferred the place in which that cell had fired earlier. 

Remarkably, the action of a single hippocampal neuron provides sufficient information 

for an animal to know their precise location in space, and to prefer that location when it is 

artificially linked to reward. 
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1.6.3 Hippocampal firing fields lock to non-spatial stimuli 

Hippocampal units also generate firing fields that are centered on a variety of 

nonspatial cues, such as odors, tones, objects, and even tastes that are organized in a 

similar manner to place fields (Aronov, Nevers, & Tank, 2017; Herzog et al., 2019; 

Komorowski, Manns, & Eichenbaum, 2009; Otto & Eichenbaum, 1992; Terada, Sakurai, 

Nakahara, & Fujisawa, 2017). Generally units will respond to one or more stimuli of a 

set, and often times they will respond in a graded fashion firing maximally to one item, 

and less so for others (Otto & Eichenbaum, 1992). These firing fields generally lock to 

the onset of the stimulus, and generally sustain firing when the animal attends to that 

stimulus (Terada et al., 2017). In one interesting investigation, hippocampal units were 

found to respond with firing fields that tiled a spectrum of sound frequencies as an animal 

navigated to a target frequency to obtain reward. In other words, individual units would 

respond when a specific tone was heard, and as that tone changed pitch, the cells firing 

rate field diminished. This study provided evidence that the hippocampus may map non-

spatial dimensions in the same way that it maps place: by generating firing fields that 

center on pointers along that dimension. Much like place fields, stimulus responsive cells 

exhibit both theta locking and phase precession (Aronov et al., 2017; Terada et al., 2017). 

This provides evidence that hippocampal ensembles may map non-spatial stimuli onto a 

continuum of relatedness by organizing the spectrum of stimuli onto a series of 

overlapping firing fields. 
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1.6.4 Hippocampal firing fields depend on “context” 

Aside from generating firing fields centered on non-spatial stimuli, non-spatial 

changes to an environment can trigger remapping of hippocampal spatial representations 

(Bulkin, Law, & Smith, 2016; Smith & Mizumori, 2006; Stark, Reagh, Yassa, & Stark, 

2018). For example, changing non-spatial features such as the ambient odor, the presence 

of an overhead light, or even the specific task the animal is performing can induce 

remapping in hippocampal representations. Indeed some studies have induced two 

completely independent spatial maps of the exact same space by generating two 

behavioral paradigms in the same place (Markus et al., 1995). These results led 

researchers to suggest that hippocampal place fields contain a code for more than just 

space, but a general notion of context.  

Context can be a sweepingly broad definition, causing one review to make the 

confusing claim that that context must be both stable across time, but also be continually 

changing (Stark et al., 2018). One review generated a more concrete definition of context 

as a constellation of spatial and situational factors that designate one behaviorally 

relevant setting from another (Smith & Mizumori, 2006). Alternatively, if interpreted 

through a relational theory lens, context can be defined as the schematic similarity 

between episodic experiences. Under this interpretation, context involves the overall 

semantic similarity between one experience to another, and therefore is expressed on a 

spectrum, rather than as unrelated entities (Huth et al., 2012). 
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1.6.5 Coding of recent past and future plans 

Animals may also hold different representations of the same place that depend on 

either past or planned trajectories. Route dependent place fields have been observed both 

preceding, as well as following divergent navigational behaviors (Ferbinteanu & Shapiro, 

2003). Classically, place field ‘splitting’ has been observed during mnemonic delays 

during delayed non-match to place tasks (Wood, Dudchenko, Robitsek, & Eichenbaum, 

2000). Splitting is not restricted to space however, as during odor sequence learning 

tasks, hippocampal cells may respond only to an odor if it follows another odor (Allen, 

Salz, McKenzie, & Fortin, 2016). More generally, place fields are sensitive to sequences 

of events as they play out in time. Conceptually, successful navigation depends on, and 

episodic memory is organized into an ordered sequence of events. This dependence of 

hippocampal firing patterns on the sequential elements of an experience supports the 

notion that hippocampal activity patterns reflect the index of not only places and things, 

but also the sequence of places and things that comprises an episode.  

1.6.6 Hippocampal firing fields code temporal context  

 Initial reports of the hippocampal map suggested the hippocampus generates 

temporally stable representations within a given context. A static representation of space 

provides a stable foundation onto which to bind experiences (O’Keefe & Dostrovsky, 

1971). Prolonged stability can be found in individual hippocampal firing fields for up to 

months of time. In contrast, studies examining cross-temporal discriminations indicate 

instability is a key feature of the hippocampal representation. The rate of change in the 

overall hippocampal representation across time correlates to ones’ ability to recall the 
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relative order of events both humans and in animals (Jenkins & Ranganath, 2016; Manns, 

Howard, & Eichenbaum, 2007). Constant flux may appear in direct conflict with a stable 

schematic foundation onto which experiences may be assimilated. However, a large body 

of empirical work outlines multiple mechanisms by which the hippocampus can exhibit 

both a stable representation and one that is constantly changing across time.  

In a group of studies done in the Leutgeb lab, Emily Mankin recorded from a 

variety of hippocampal and cortical regions over the course of weeks. Mankin found that 

as time wore on, the hippocampal map morphed in some regions more than others. 

Specifically, this study observed that in general, CA1 place fields ‘drifted’ over the 

course of weeks when compared to CA3, which were stable over that lag. Crucially, even 

though individual units drifted across time, the ensemble always discriminate between 

different enclosures (Mankin et al., 2012; Mankin, Diehl, Sparks, Leutgeb, & Leutgeb, 

2015). Thus, this study found that hippocampal ensembles could track both changes 

within a context across time while holding a stable representation of the differences 

between spatial contexts. A separate study observed dentate activity across extended time 

exhibited similar changes, and revealed this time code to be impacted by neurogenesis 

(Rangel et al., 2014). These results are corroborated by a study that used a different 

methodology. In this study, the active cell ensemble in the dentate was labeled using the 

tet-tag technology previously mentioned in unique environments separated by hours or 

days. The overlap in the active ensemble was lower between environments experienced 

across greater time lags, and this was correlated to a behavioral readout of perceived 

similarity between those experiences (Cai et al., 2016).  
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Together these studies corroborate the role of the dentate in separating 

experiences (pattern separation), of CA3 in representing consistencies across time 

(pattern completion), and of CA1 in mapping both commonalities and differences. 

Furthermore, these studies suggest that the hippocampal map includes a representation of 

a slowly changing context. However they do not explain how individual units express 

such a code, and whether this code exists across the continuum of time scales. 

1.6.7 Hippocampal time cells 

While the above studies have examined temporal modulation of firing fields 

under the backdrop of space or events, other studies have managed to isolate time more 

specifically. Time cells, introduced in the last section, are those with firing fields that 

occur at precise delays after an event. While time cells have been observed during delays 

in which position is not fixed, time cells are most widely studied as animals run in place 

so as to fix other environmental features (Gill, Mizumori, & Smith, 2011; Pastalkova et 

al., 2008). This affords behavioral control so that time fields can be attributed to no 

external cues, and thus only the passage of time. Time cells have also been found in head-

fixed preparations and are thus not dependent on treadmill movement (Macdonald, 

Carrow, Place, & Eichenbaum, 2013). Time fields have been found in the dorsal 

hippocampus in both CA1 and CA3 and arise regardless of the need to associate events 

prior to the delay with those following (Salz et al., 2016). This organization of firing 

fields around time is of specific relevance to relational theories of hippocampal function 

because it provides a viable structure for relating events across time (Kitamura, 

Macdonald, & Tonegawa, 2015; Villette, Malvache, Tressard, Dupuy, & Cossart, 2015). 
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Indeed time cells can be considered as pointers that identify an experience, and because 

of their relationship to other cells can provide a pathway to relate thematically similar or 

temporally close experiences. 

 
1.7 Spatial and non-spatial correlates of entorhinal activity 

Place fields are thought to arise from inputs from a variety of cortical regions that 

together represent the spatial and non-spatial context of the animal (Stefan Leutgeb, 

Leutgeb, Moser, & Moser, 2005; Solstad, Moser, & Einevoll, 2006). The firing properties 

of hippocampal firing fields are organized across a variety of dimensions, and reflect the 

overall schematic organization of ongoing experience. In order to understand how this 

schematic landscape is generated and how it is organized, research has examined the 

properties of cells that innervate the hippocampus. Indeed these properties must either be 

generated within the hippocampus, or are passed on to the hippocampus from 

surrounding cortex (Eichenbaum, 2014). This search has led to the cataloging of firing 

fields in the medial and lateral entorhinal cortices.  

As outlined above in the anatomy section, the medial and lateral entorhinal 

cortices are terminal nodes in two segregated processing streams. The MEC receives 

input from brain regions responsible for spatial orientation and movement related 

perception, whereas the LEC receives input from regions that join multimodal inputs to 

define the features that comprise objects and creatures. From these two regions, spatial 

and non-spatial information converge onto cells at all stages of the hippocampal 

trisynaptic loop. 
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1.7.1 The medial entorhinal cortex 

The response properties of MEC cells are in accordance with its ascribed spatial 

function. Within the MEC, units may respond to boundaries, head directions, and other 

physical determinants of space. Cells that respond when a rat encounters a physical 

boundary such as a wall are called border cells (Solstad, Boccara, Kropff, Moser, & 

Moser, 2008). Head direction cells fire only when the rat is facing a specific topographic 

direction, and are located throughout the spatial processing stream (Burgalossi et al., 

2011). Grid cells show incredible spatial modulation such that they contain firing fields 

that are organized in a grid like lattice across an open enclosure (Hafting, Fyhn, Molden, 

Moser, & Moser, 2005). Groups of grid cells form modules, such that within a module 

the spacing and orientation between each cells firing fields but not their locations are 

coherent across the population (Stensola et al., 2012). Moreover, individual units within 

the MEC may exhibit conjunctive head direction, velocity, and grid selectivity (Sargolini 

et al., 2006). These observations have reinforced the theory that the MEC specifically 

processes spatial information, but a lack MEC involvement in non-spatial processing has 

not been reported. Thus, it remains unclear whether the MEC can exhibit object-selective 

activity. 

1.7.2 The lateral entorhinal cortex 

LEC unit activity has been less well describe in the literature, however reports are 

consistent with its role in processing non-spatial information. In contrast to the MEC, the 

LEC exhibits poor spatial selectivity in open environments (Hargreaves, Rao, Lee, & 

Knierim, 2005). A similar dichotomy between the Medial and lateral entorhinal cortices 
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was described by Jim Knierim and colleagues, wherein LEC ensembles track local cues 

whereas MEC ensembles track distal cues (Neunuebel, Yoganarasimha, Rao, & Knierim, 

2013). In line with a local object framework, firing fields can be observed in the LEC at 

the location of objects within an enclosure (Wang et al., 2018). When space is controlled, 

object and odor responsive fields are well documented in the LEC and show a wide range 

of responses. Some units in the LEC may respond to a single odor or object, others may 

respond to only new, or misplaced objects, and yet other cells may respond to multiple 

objects in a graded fashion (Young, Otto, Fox, & Eichenbaum, 1997). One class of cells 

in the LEC that has intrigued memory researchers is the object trace cell that exhibits 

firing fields in the locations where objects have been removed (Tsao, Moser, & Moser, 

2013). This suggests that the LEC may process spatial information, but only where there 

is relevant non-spatial information. Together these data suggest that units in LEC 

generate firing fields centered on local objects, but also exhibit mnemonically relevant 

activity patterns that might include space. 

1.7.3 Time in the MEC and LEC 

 As outlined above, hippocampal units organize activity across mnemonic delays 

by generating firing fields that are sequentially active. There are two strong hypotheses 

for how such a sequence of firing fields becomes bound to a sequence of events. On the 

one hand, pre-organized recurrent activity may generate a template onto which external 

stimuli may be bound and later recalled. On the other, a slowly evolving time code 

elsewhere in the brain provides the input necessary for the generation of time cell like 

pointers along the dimension of time (Eichenbaum, 2014). 
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While the MEC is the most likely candidate for the source of spatial information 

in the hippocampus, and the LEC for non-spatial, it remains unclear how these inputs 

generate hippocampal firing fields sensitive to the conjunction of space, events, and time 

all together. The existing literature has suggested largely non-overlapping functions of 

the medial and lateral entorhinal cortex (Van Cauter et al., 2013). Aside from spatial and 

non-spatial processing, studies have shown that the MEC is capable of organizing firing 

fields over short delays, whereas the LEC is capable of organizing firing activity across 

extended time (Kraus et al., 2015; Tsao et al., 2018). Aside from examining different 

time scales, these studies also describe different firing characteristics of single units. 

MEC units observed across a mnemonic delay appeared to have multi-peaked firing 

fields that centered on moments during the delay. Conversely, LEC units observed over 

minutes and hours exhibited slowly decaying, or slowly firing rates across time. These 

studies leave open the question of whether the LEC also represents time at a finer scale, 

and whether it does so via sequences similar to those exhibited in the dorsal hippocampus 

and MEC. 
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Chapter 2. Complementary Functional Organization of Neuronal Activity Patterns 

in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Corticesa 

2.1 Abstract  

Abstract: It is commonly conceived that the cortical areas of the hippocampal 

region are functionally divided into the perirhinal cortex (PRC) and the lateral entorhinal 

cortex (LEC) that selectively process object information and the medial entorhinal cortex 

(MEC) that selectively processes spatial information. Contrary to this notion, in rats 

performing a task that demands both object and spatial information processing, single 

neurons in PRC, LEC, and MEC, including those in both superficial and deep cortical 

areas and in grid, border, and head direction cells of MEC, have a highly similar range of 

selectivity to object and spatial dimensions of the task. By contrast, representational 

similarity analysis of population activity reveals a key distinction in the organization of 

information in these areas, such that PRC and LEC populations prioritize object over 

location information whereas MEC populations prioritize location over object 

information. These findings bring to the hippocampal system a growing emphasis on 

                                                        
a This chapter was published in Journal of Neuroscience as the following manuscript:  
Keene, C. S., Bladon, J., McKenzie, S., Liu, C. D., O’Keefe, J., & Eichenbaum, H. B. (2016). Complementary 
Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and 
Medial Entorhinal Cortices. The Journal of Neuroscience, 36(13), 3660–3675. 
https://doi.org/10.1523/JNEUROSCI.4368-15.2016 
All contributing authors including Christopher S. Keene have given expressed consent for its 
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population analyses as a powerful tool for characterizing neural representations 

supporting cognition and memory. 

2.2 Introduction:  

A main theme in the functional anatomy of the medial temporal lobe (MTL) 

memory system has emphasized input pathways composed of extensions of the classic 

“what” and “where” streams that converge within the MTL (Davachi, 2006; Diana, 

Yonelinas, & Ranganath, 2007; Eichenbaum et al., 2007; Strange, Witter, Lein, & Moser, 

2014).  One pathway involves inputs from sensory and association areas that enter the 

MTL via the perirhinal cortex (PRC) and then the lateral entorhinal cortex (LEC) where 

information about objects and events is represented (Amaral & Witter, 1989; Burwell & 

Amaral, 1998; Burwell et al., 1995; Kerr, Agster, Furtak, & Burwell, 2007; van Strien et 

al., 2009). The other pathway involves inputs from spatial processing areas that enter the 

MTL via the parahippocampal (in primates; postrhinal in rodents) cortex (PHC) and then 

the medial entorhinal cortex (MEC) where information about spatial context is 

represented.  While there are connections between the PRC-LEC and PHC-MEC areas, 

most emphasize that the two streams converge primarily within the hippocampus where 

objects and events are represented in spatial context.  This simple model has recently 

been challenged by reconsiderations of the functional distinctions between LEC and 

MEC that suggest a mixture of object and spatial processing functions in these areas 

(Knierim, Neunuebel, & Deshmukh, 2013; Morrissey & Takehara-Nishiuchi, 2014; 

Sasaki, Leutgeb, & Leutgeb, 2015). 
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Here we examine object versus spatial coding in PRC, LEC, and MEC, 

respectively, as embodied in this model.  Studies on MEC have highlighted “grid cell” 

neurons that fire with spatial periodicity throughout an environmental context (Hafting et 

al., 2005), as well as neurons that encode head direction and spatial borders (Moser et al., 

2014; Sargolini et al., 2006).  Notably, the observation of prominent spatial coding is 

almost exclusively from studies of animals foraging in an open field in the absence of 

salient non-spatial stimuli or task demands.  By contrast, LEC neurons exhibit little 

spatial specificity in this behavioral situation (Hargreaves et al., 2005) and PRC neurons 

exhibit none (Deshmukh, Johnson, & Knierim, 2012).  Conversely, in experiments where 

animals perform object recognition or discrimination tasks, PRC and LEC neurons fire 

during the presentation of specific odor (in rats) or visual (in monkeys) cues, during 

maintenance of non-spatial memories, or associated with behavioral responses, but firing 

patterns associated with the animals’ location in space were not examined (Ahn & Lee, 

2015; Brown & Banks, 2015; Igarashi, Lu, Colgin, Moser, & Moser, 2014; Suzuki, 

Miller, & Desimone, 1997; Young et al., 1997). Some recent studies have identified 

activity in PRC and LEC neurons associated with objects or visual patterns in particular 

places as animals explore an open field (Deshmukh et al., 2012; Deshmukh & Knierim, 

2011; Tsao et al., 2013) or traverse a circular path in a maze (Neunuebel et al., 2013).  In 

these studies the objects and visual cues were not associated with specific behaviors or 

rewards and the only behavioral demand was movement through the environment in 

which these cues were positioned.  So, it is unclear whether the objects and visual cues 
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were encoded as specific non-spatial stimuli independent of their locations or as among 

the stimuli composing distinct spatial representations of a changing environment. 

In the present study we examined the activity patterns of PRC, LEC, and MEC 

neurons and neuronal populations in animals performing a task in which they were 

required to use the current spatial context to associate objects with reward or non-reward 

at multiple locations within each context.  This task demanded the animals to attend to 

the environmental cues and to the objects independent of their location in an 

environment, as well as to employ the spatial context to guide retrieval of object-reward 

associations.   

 

2.3 Materials and methods 

Subjects.   

Subjects were 10 Long-Evans rats (Charles River) weighing between 300-325 

grams at the start of the experiment.  All animals were single housed and maintained on a 

12 h light/dark cycle (lights on 8:00 A.M. to 8:00 P.M.).  Behavioral training and testing 

were conducted exclusively during the light phase.  Animals were maintained at a 

minimum 85% of their ad libitum feeding body weight and had ad libitum access to water 

in the home cage.  Procedures were conducted according to the requirements set by the 

National Institutes of Health (NIH) and Boston University Institutional Animal Care and 

Use Committee. 

Materials and apparatus.   
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The behavioral training environment was a custom-built apparatus (160 l x 60 w x 

40 h cm) consisting of two 40 cm x 40 cm boxes connected by a central alley.  The 

training apparatus was surrounded by black curtains which limited the availability of 

distal cues.  Each context was composed of unique visual and tactile cues.  The objects 

consisted of identical terra cotta pots (10 cm high with an internal diameter of 9 cm), with 

unique digging media and odors (e.g., purple beads with grapefruit scent).  To prevent the 

animal being guided by the smell of the Froot Loop, the pots and digging media were 

sprinkled with crushed Froot Loops.  An open field environment (1 m x 1m) was used to 

examine spatial firing patterns of cells following behavioral training. 

Behavioral task.   

Rats were trained to perform the complete behavioral paradigm through 

successive stages.  Initially, rats were trained to dig for a reward (one-quarter Froot Loop) 

buried in a pot filled with unscented sand.  Once rats reliably retrieved buried rewards, 

they were trained on a simple odor discrimination task in their home cages.  Two pots 

filled with sand each scented with a distinct odor (aloe and cloves) were simultaneously 

presented to the rat in pseudorandomized left or right positions.  The aloe-scented pot 

was always rewarded, while the cloves-scented pot was never rewarded.  Simple odor 

discrimination continued until the rats reached a criterion of 80% correct across 20 

consecutive trials.  Upon reaching criterion, rats were habituated to the testing apparatus 

during a 30 min exploration period with Froot Loops scattered throughout the 

environment and all context dividers removed.  Following habituation, behavioral 

training in the complete task ensued.   
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The behavioral training environment consisted of two chambers composed of 

unique visual and tactile cues on the floors and walls connected by a central alleyway that 

allowed rats to shuttle between them, with access restricted to one context per trial 

(Figure 1).  The objects consisted of identical terra cotta pots with unique digging media 

and odors (e.g., purple beads with grapefruit scent), which could be presented in either of 

two pseudorandomized positions for a given trial where the rat was restricted to a single 

context.  Rewards in the form of one-quarter Froot Loop (Kellogg’s) were buried in the 

rewarded pot on each trial.  After reaching behavioral criterion, 10 rats were implanted 

with microdrives targeting PRC, LEC, or MEC (five PRC, four LEC, and four MEC with 

3 microdrives yielding both PRC and LEC data in the same rats).  Following recovery, 

neuronal activity in perirhinal or entorhinal cortex was monitored in rats during the 

retrieval of memories where two distinct environmental contexts (1 and 2) predicted 

different reward expectations for behavioral responses to two distinct objects (A and B) 

presented in either of two positions within each context.  It is important to note that 

context, but not position within a context, was predictive of object-reward associations.  

When presented at either position in Context 1, choosing object A was rewarded and 

choosing object B was not rewarded, whereas in Context 2, choosing object B was 

rewarded and not A (Figure 1).  Positions within a context shared the same object-reward 

association, whereas comparisons across context reflected opposing object-reward 

associations.  Each session consisted of two contexts with two paired odor/digging media 

combinations, but new sets of contexts and stimuli were introduced throughout training in 

the same order across all rats.  After each behavioral training session, rats were allowed 
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to explore an open field environment while foraging for Froot Loops which was later 

used to examine spatial firing patterns of cells in MEC. 

Each session consisted of 90 trials, 45 in each context.  In a typical trial, the 

animal was allowed to enter and explore one of the contexts in the absence of objects for 

10 seconds.  At the end of this context exploration period, a divider was inserted in the 

middle of the context restricting the rat to one half of the context while two pots (Objects 

A and B) with unique digging media and odors were placed in the corners behind the 

divider.  The divider was then removed, allowing the rat to approach the pots where it 

could choose to dig in the pot or refrain from digging and sample the other pot.  The 

beginning of object sampling was defined as the moment in time when the rat’s nose 

crossed the threshold of the pot rim.  Object position within each context was pseudo-

randomized, and no object occurred in the same location for more than three consecutive 

trials.  After most trials, the animal moved into the opposite context via the alleyway.  

However, on 9 trials for each session, the animal remained in the same context for an 

additional trial to prevent utilization of a strict alternation strategy.  On these trials, the 

pots were removed, the rat remained in the same context, and the context exploration 

period began, after which the divider was inserted and testing resumed as previously 

described.  Prior to drive implantation, rats were trained to criterion, which was defined 

as correct performance on 70% of trials in each context over a 20 trial block.  Following 

implantation, rats were re-trained to criterion and given at least two overtraining sessions 

prior to initiation of electrophysiological recordings.  As recordings progressed, rats were 

trained on new object-context association problems that involved novel digging mediums 
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and contextual cues.  Following the initial learning session in which criterion 

performance was obtained on a new problem, animals were presented with the same 

problem in a number of additional overtraining sessions, which provided the data for this 

study. 

Surgery.   

Anesthesia was induced by inhalation of 5% isoflurane (Webster Veterinary 

Supply) in oxygen and was maintained at 2-3% throughout surgery.  Prior to surgery, 

animals were injected with the analgesic Buprenex (Buprenorphine hydrochloride, 0.03 

mg/kg IM; Reckitt Benckiser healthcare Ltd.), an antiobiotic Cefazolin (330 mg/ml IM; 

West-Ward Pharmaceutical Corp.), and placed in a stereotaxic frame (Kopf), where an 

incision was made along the midline to expose the skull.  Animals were implanted with 

microdrives that contained 18-24 independently drivable tetrodes aimed at the junction of 

perirhinal and lateral entorhinal cortex (centered at anteroposterior AP = -6.92 mm; 

mediolateral ML = 5.2 mm; 16-20° lateral angle, varied to more directly target LEC at 

16° and PRC at 20°) or the dorsocaudal portion of medial entorhinal cortex 

(anteroposterior AP = -8.0 mm; mediolateral ML = 4.6 mm; 25° angle from anterior to 

posterior; all coordinates derived from (Paxinos & Watson, 1997)).  Each tetrode was 

composed of four 12 μm RO 800 wires (Sandvik Kanthal HP Reid Precision Fine Tetrode 

Wire; Sandvik Company, Palm Coast, FL) gold-plated to reduce impedance to between 

180 and 220 kΩ at 1 kHz.  At the end of surgery, all tetrodes were lowered ∼5 mm and 

∼2 mm into tissue, in PRC-LEC and MEC, respectively.  In addition, animals were 
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injected with post-operative doses of Buprenex and Cefazolin as described above.  

Animals were allowed to recover for one week before behavioral testing resumed. 

Neural Recordings.   

Electrophysiological recordings were collected using a 96 channel OmniPlex D 

Neural Data Acquisition System (Plexon Inc.).  Each channel was amplified and band-

pass-filtered for both single unit activity (154 Hz-8.8 kHz) and local field potentials (1.5 

Hz-400 kHz).  Spike channels were referenced to a local electrode in the same region to 

remove movement related noise.  Action potentials were detected by threshold crossing 

and digitized at 40 kHz.  Cineplex Studio (Plexon Inc.) was used for video recording of 

behavioral training sessions.  Single units were isolated using Offline Sorter (Plexon 

Inc.), and behavioral events were time-stamped using Cineplex Editor (Plexon Inc.).  All 

data analysis was performed using custom scripts for MATLAB (MathWorks).  To 

reduce the likelihood of recording from the same neurons across multiple sessions, 

tetrodes were lowered prior to each testing session (∼0.18 mm or more), and the amount 

which a tetrode was lowered was based on a visual inspection of the identified units.  In 

order to maximize unit quality, a score of 1 to 10 was generated for each unit based on 

the separation of each cluster from neighboring clusters and the background noise.  Only 

units with a score of 5 or above were included in the analysis presented here. 

Histology.  

 Upon completion of behavioral testing, rats were anesthetized under 5% 

isoflurane in oxygen and tetrode placements were confirmed by creating a lesion at the 

tetrodes tip by passing a 40 μA current until the connection was severed on each wire.  
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Animals subsequently received an overdose injection of Euthanol (Virbac AH, Inc.) and 

were perfused intracardially with 0.9% saline followed by 10% formalin phosphate 

(VWR).  Brains were removed and placed in a 20% sucrose solution until processed.  

Using a cryostat (Leica CM 3050s; Leica Biosystems), brains were cut into 40 μm 

sections (coronal for PRC-LEC, sagittal for MEC), mounted onto presubbed glass slides, 

and stained with cresyl violet to determine the location of tetrode tip lesions and tetrode 

tracks.  The stereotaxic atlas of Paxinos & Watson (2007) was used to confirm the 

localization of tetrode tip lesions within LEC and MEC.  This information was used in 

conjunction with driver turn counts to estimate the neuronal layer for each recording, 

with each unit categorized as either superficial (layers II and III) or deep (layers IV-VI) 

for PRC, LEC, and MEC, as well as to distinguish between Areas 35 and 36 in PRC. 

Analysis 

Single neuron analysis.   

Rats could sample the two objects presented on each trial multiple times, and all 

object sampling events in which the rat dug in the rewarded pot and refrained from 

digging in the non-rewarded pot were considered in our analysis.  To estimate the 

entorhinal representation of every object sampling event, for each cell the number of 

spikes fired was counted for up to the first 1.5 s of object sampling and this count was 

divided by the sampling duration to give the average firing rate for each cell on each 

object sampling event. 

Selectivity Index for individual neurons.   
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Firing rates during object sampling were calculated as the number of spikes as a 

function of the time from the onset of object sampling when the animal’s snout begins to 

cover the rim of the pot until the animal began to dig or turn its head away from the pot, 

using event markers in the video recordings.  As previously described (Komorowski, et 

al., 2009), object, position, and context selectivity for each neuron were measured using a 

selectivity index (SI) calculated as: 

 

 

where n is the number of conditions for the dimension under study (e.g., two in the case 

of objects, four in the case of positions), λi is the average firing rate of the neuron for the 

ith possible event type, and λpref is the average firing rate of the neuron in the condition 

associated with highest firing rate for the dimension under study.  SI = 1 if a cell fired for 

only one condition. Conversely, SI = 0 if the cell fired equally under all conditions.  To 

test whether the SI values for individual units were larger than that expected by chance, 

we compared each observed SI value against a distribution of 10,000 SI scores in which 

the object and/or position identities of all events were randomly shuffled for each session 

individually.  Cells were defined as significantly selective for a dimension if p < 0.01 for 

the observed SI value relative to the shuffling distribution.  This analysis was performed 

for each of four dimensions (Figure 5A and 5B): (1) For context SI, firing rates were 

compared between the two context conditions; (2) For position SI, firing rates were 
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compared between the four position conditions; (3) For object SI, firing rates were 

compared between the two object conditions; (4) For object-position SI, firing rates were 

compared among the eight object-position combinations (two objects in each of two 

positions in two contexts).   

To further evaluate the observed average SI values for each dimension for each 

region, we employed a similar bootstrap shuffling procedure.  In this case, we shuffled 

the object and/or position identities for each trial 1,000 times per session.  Thus, the 

observed firing patterns were maintained, albeit with shuffled object and/or position 

identities.  The average values of this shuffling distribution (dotted lines in Figure 5A) 

reflect a stringent criterion against which we compared the observed average SI values 

for each dimension for each region to determine significant coding for task dimensions.  

All post-hocs for SI comparisons utilized a Wilcoxon rank-sum test with a Bonferroni 

correction for multiple comparisons (significance threshold of p = 0.05/4 dimensions = 

0.0125) to determine significance. 

Characterization of spatial firing patterns of individual neurons.   

We additionally examined the spatial firing properties of MEC neurons as animals 

foraged in an open field, particularly to identify grid cells, border cells, and head 

direction cells.  After each testing session we continued to collect data from the same 

neurons (see waveforms in Figure 4) as the animals foraged for randomly sprinkled Froot 

Loop bits in an open field environment over a period of 20 mins.  Spatial firing rate maps 

were estimated using the total number of spikes that occurred when the rat was at a given 

location (3 x 3 cm bins) divided by the total time spent in that bin.  Only bins visited at 
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least twice for a total time of at least 200 ms were included.  Spikes were included if the 

rat was moving at a velocity > 3 cm/sec.  Spatial firing maps were smoothed with a 2D 

Gaussian filter (σ = 1 pixel). 

 

Grid scores were calculated using previously established methods (Brandon et al., 

2011).  Briefly, the six surrounding peaks of the autocorelogram of the smoothed rate 

map for each cell were identified, and the rate map was corrected for the ellipse of the 

hexagon.  Then, the rotational symmetry of a circular donut of pixels encompassing the 

six identified peaks was calculated at 30, 60, 90, 120, and 180 degrees.  The minimum 

difference in symmetry of 60 and 120 degrees to that at 30, 90, 120, and 180 degrees was 

then calculated as the raw grid score.  A bootstrap confidence measure of the grid score 

was adopted (Bonnevie et al., 2013).  We calculated the grid score as above for each cell 

10,000 times after the spike timestamps were shuffled while preserving the temporal 

structure of the spike train.  A unit was classified as a grid cell if the observed gridness 

score surpassed the critical threshold of p = 0.01 compared to the shuffled distribution. 

Similarly, border scores were calculated using methods described previously 

(Solstad et al., 2008).  For each cell, its place fields were defined as contiguous groups of 

pixels in the smoothed rate map that had a firing rate of at least 30% of the maximum 

firing rate pixel.  Then, the ratio of the place field’s coverage of each wall to that place 

field’s average distance from that wall was calculated to represent the border score.  

Border cells were designated as those with border scores above 0.4 for any of the four 

walls. 
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In order to determine the animal’s head direction, tracking coordinates for the 

LED were first smoothed to estimate the animal’s location for any missing tracking 

frames.  Then, the angle of displacement was calculated by taking the arc tangent of the 

difference in coordinates recorded at 40 Hz, providing a heading estimate.  As with grid 

cells, for each cell the spike timestamps were shuffled 10,000 times while preserving the 

temporal structure of the spike train.  The number of spikes at each head direction (in 5 

degree bins) was then summed and divided by the total occupancy of that head direction.  

The length of the resultant vector was then compared to the shuffled distribution.  Units 

with an observed vector length below the critical threshold of p = 0.01 were considered 

head direction cells. 

Representational Similarity Analysis (RSA) of neural ensemble activity patterns.   

Neural ensemble firing patterns were explored using a representational similarity 

analysis (RSA) to determine the extent to which multiple task dimensions were encoded 

by PRC, LEC, and MEC (Kriegeskorte, 2008; McKenzie et al., 2014).  To measure the 

similarity of ensemble representations of different object sampling events, the average z-

normalized firing rate for each neuron was calculated for all object sampling.  A 

population vector was then composed for every sampling event based on these 

normalized rates, and the population vector of each event was then correlated to that for 

all other events, and then the correlation coefficients of similar comparisons (e.g. all 

comparisons between events involving different objects of the same value in the same 

position) were averaged, yielding a pattern of correlation coefficients that reflects the 
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degree of similarity or separation of population representations between events that differ 

in multiple task dimensions, and these patterns were similar in each subject (Figure 6).   

Using the pooled correlations from all sessions for all rats within a brain region (PRC, 

LEC, or MEC), we calculated the strength of the coding dimension (e.g., object in 

position) using the ensemble correlations.  We first compared the average correlation for 

events within a given condition (e.g., all sampling events in the same position with 

Object A) for a task dimension versus events that were between conditions for that 

dimension (e.g., events in the same position with Object A versus Object B).  In this 

manner, a single dʹ was calculated for each dimension as follows: 

 

𝑑ʹ =  
𝜇𝑤 − 𝜇𝑏

√1
2 (𝜎𝑤  

2 +  𝜎𝑏
2)

 

 

Where, µw is the mean correlation coefficient for within condition events for that 

dimension with variance, σ2
w, and µb is the mean correlation coefficient for between 

condition events with variance, σ2
b.  The observed dʹ was compared to bootstrapped data 

in which event identities were randomly shuffled 10,000 times and then the correlation 

analysis and dʹ metric for each bootstrap sample were recomputed.  When the observed dʹ 

was larger than 95% of the 10,000 shuffled dʹ metrics, the dimension captured by the dʹ 

was considered to have been significantly coded by the perirhinal or entorhinal cortices. 

We used the dʹ metric to measure the separation of the distributions of the correlation 

coefficients for specific task features from zero or against the distribution of coefficients 
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from an appropriately opposing condition to characterize the population signal of that 

feature.  Conjunctive object-position coding was defined as the dʹ distance between 

correlation coefficients for events that involved that same object in the same position 

versus events that involved different objects at the same position (Figure 5D 

Obj*Pos).  Object coding was defined as the dʹ distance between correlation coefficients 

for events that involved the same object at different positions versus events that involved 

different objects at different positions within the same context (Figure 5D 

Object).  Position coding was defined as the dʹ distance between correlation coefficients 

for events at the same position versus events at different positions within the same 

context (Figure 5D Position).  Context coding was defined as the dʹ distance between 

correlation coefficients for comparisons among events in the same context at different 

positions versus that for all events in the opposing context (Figure 5D Context).  All post-

hoc dʹ comparisons utilized a Bonferroni correction for multiple comparisons 

(significance threshold of p = 0.05/4 dimensions = 0.0125) to determine significance. 

Cosine Vector Analysis.   

To ensure the robustness of the findings in the dʹ distance analysis, ensemble 

representations were also analyzed using the cosine between population vectors to 

determine the similarity of representations.  First, firing rates for each neuron were 

normalized to the maximum firing rate among all object-sampling events to create a 

population vector of normalized rates for each event.  Then, a cosine score was calculated 

as 1 - the cosine of the included angle between points made by the pairs of vectors for the 

comparison of each event to all others of the same type.  Strength of a coding dimension 
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was calculated by comparing the mean cosine score for events within versus between 

sample conditions for that dimension.  As with the RSA analysis, dʹ distances were 

calculated for the cosine scores for the comparisons described in the previous paragraph. 

Bayesian Classifier.   

As a separate test of event similarity that had a different set of assumptions, a 

naïve Bayesian classifier was used (MATLAB R2014b function with type set to 

determine the probability that a pattern of neural activity was recorded for each object 

and place combination, two objects in four positions; as in McKenzie et al., 2014).  Due 

to uneven sampling, rats often preferred a particular object and position combination and 

would sample those more often.  Therefore, we only considered the last 5 sampling 

events for each object and place combination.  When there were fewer than 5 events, that 

category of object and position trial was eliminated.  Next, the z-scored population vector 

was calculated for each event, as described above.  The dimensionality of the ensemble 

representation for each event was reduced via principal component analysis (PCA) and 

only the first four components were used to categorize object/position combinations.  

Then, the mean, variance, and covariance of each object/position four-dimensional 

ensemble representation was estimated with one event missing from each object and 

position combination.  Next, a multidimensional normal distribution with the estimated 

means, variance, and covariance matrices were fit to each cluster of object/position 

ensemble representations (maximum 8).  Finally, the probability of the missing events 

being any of the possible object/position combinations was calculated based on the 
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probability of that object/position combination given the ensemble representation as 

estimated by the normal distributions above. 

The degree of dimensional coding was calculated in a similar fashion to that for 

the correlation coefficients and cosine analysis, though the dʹ was calculated based on the 

probability of classifying within each dimension (e.g., events occurring at the correct 

position) or across that dimension (e.g., events occurring at a different position).  To test 

significance, we ran a bootstrap analysis in which event identities were shuffled 10,000 

times, and if the observed dʹ for the difference in probabilities was greater than 95% of 

the shuffled dʹ metrics, we concluded that PRC, LEC, or MEC encoded that dimension. 

Temporal Dynamics of Population Firing Patterns.  

 To assess when coding for different task dimensions emerged during object 

sampling, the dʹ metric was calculated exactly as with the correlation RSA, except that dʹ 

strength was calculated for 200 ms time bins centered ± 3s around object sampling 

(Figure 8).  In order to control for the rats’ position in space during the approach to 

objects, we considered only the first object-sampling event of each trial. Significance 

testing of the observed dʹ values was performed using the dʹ bootstrap analysis at each 

time point with a significance threshold of p = 0.05. 

Dendrogram Analysis.   

To explore the organization of ensemble representations for the 8 types of object 

sampling events (i.e., conjunctions of 2 objects in 2 positions within 2 contexts), we 

generated composite ensemble representations for each event type using the firing 

rates of all principal neurons recorded in PRC, LEC and MEC.  The composite 
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population vector for each type of event was calculated as follows: for each neuron the 

number of spikes observed was divided by the sampling duration on each event, then 

these firing rates were standardized into z-scores using the mean and standard deviation 

of firing rates across events, then the mean z-score firing rates across events were 

calculated.  The relationships between the composite population vectors for the 8 types of 

events were then assessed using an agglomerative hierarchical clustering algorithm 

(MATLAB R2014b function ‘linkage’).  The agglomerative hierarchical clustering 

algorithm takes the unweighted average distance between pairs of the 8 vectors, where 

the Pearson's correlation coefficient was used as the distance metric.  Of the 8 vectors, the 

two that were nearest were combined, then calculations of distances between the revised 

set of vectors was repeated and nearest two vectors were combined.  This process was 

repeated iteratively until only two combinations remained. The height of each line in the 

dendrogram represents the similarity (mean r value) between the event types being 

connected. 

 

2.4 Results 

2.4.1 Behavioral performance   

We recorded activity from neurons in PRC, LEC, and MEC while rats performed 

a context-guided object-reward association task that required subjects to select one of two 

objects presented simultaneously within each of two distinctive spatial contexts differing 

in multiple features (Figure 2).  When presented in Context 1, Object A was rewarded in 

either of two positions, and Object B was not. When presented in Context 2, Object B 
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was rewarded in either position, and Object A was not. Context, but not position within 

context, was predictive of object-reward association in this task. Thus, subjects were 

required to use the current context to guide learning and retrieval of distinct associations 

for the same objects. Several different problems consisting of different contexts and 

objects were successively employed (but will all be referred to here as Context 1 and 2 

and Objects A and B). In the initial learning session on each problem, rats reached the 

performance criterion of 70% correct in each context within a 20 trial block on average 

by trial 38 (range, 30-44 trials) for PRC implanted rats (n = 5), by trial 34 (range, 11-45 

trials) for LEC implanted rats (n = 4), and by trial 38 (range, 17-70 trials) for MEC 

implanted rats (n = 4), respectively. A one-way ANOVA on the average trials to criterion 

revealed no differences in the rate at which rats learned new problems (F (2, 11) = 0.08, p 

= 0.91). Subsequently, animals performed in overtraining sessions on each problem 

where performance was 96.4 ± 1.0% for PRC implanted rats, 97.0 ± 0.8% for LEC 

implanted rats, and 94.2 ± 1.3% for MEC implanted rats.  A one-way ANOVA on 

performance in overtraining sessions revealed no differences (F (2, 58) = 1.49, p = 0.23).  

In this study, data analysis focused on these overtraining sessions (14 for PRC, 17 for 

LEC, 30 for MEC). 
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Figure 1: Context dependent object discrimination task.  

  Rats were trained to perform a context-guided object association task.  Each context consisted of 

unique tactile and visual stimuli.  On a typical trial, rats were allowed to explore the context for 10 s 

(context exploration period).  Then, two objects consisting of terracotta pots with unique digging 

media and odors were presented in either of two positions (object sampling period).  Object A, but 

not B, was always reinforced in either position within Context 1, whereas Object B, but not A, was 

always reinforced in Context 2.   
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2.4.2 Single neuron isolation   

In five PRC implanted rats, a total of 204 units were isolated. In four LEC 

implanted rats, a total of 188 units were isolated. In four MEC implanted rats, a total of 

323 units were isolated. A 10 Hz firing rate cutoff across the whole session was used to 

exclude interneurons, yielding 164 PRC neurons, 164 LEC neurons, and 236 MEC 

neurons for analysis (summarized in Table 1). Neurons were subdivided by whether they 

were recorded in superficial or deep laminae based on a combination of histological 

examination, driver turn counts, and maps of tetrode locations within the microdrives.  

The anatomical distribution of neurons recorded from PRC, LEC, and MEC is presented 

in Figure 2. Based on these criteria, a total of 92 deep units and 72 superficial units were 

identified in PRC, a total of 57 deep units and 107 superficial units were identified in 

LEC, and a total of 133 deep units and 103 superficial units were identified in MEC.  In 

addition, a total of 95 units were identified in Area 35 and 69 units were identified in 

Area 36 within PRC.  Finally, open field exploration sessions following behavioral 

testing were used to characterize spatial firing properties of MEC units in order to further 

categorize and analyze spatially heterogeneous populations of grid cells, border cells, and 

head direction cells.  A total of 23 grid cells, 27 border cells, and 125 head direction cells 

were isolated and analyzed separately from the other MEC units. 
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Figure 2: Recording site reconstruction.  

 In the left set of panels (A), red circles indicate estimated tetrode locations during neuronal 

recordings in MEC, whereas in the right set of panels blue circles and green circles indicate 

estimated tetrode locations in LEC and PRC, respectively.  Inspection of histology for tetrode tracks 

and tetrode tip lesions were used in conjunction with driver turn counts and maps of tetrode 

locations to estimate tetrode locations during neuronal recordings. 

 

2.4.3 PRC, LEC, and MEC neurons encode multiple dimensions of both object and 

spatial information   

During the object sampling period neurons in PRC, LEC, and MEC exhibited 

remarkable mixed selectivity associated with multiple task dimensions both across the 

population of cells in each region and within single neurons.  Several examples of this 

pattern are provided in Figure 3 where the firing pattern of each example is illustrated for 
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each of the eight object-position combinations, four in each context.  The beginning of 

object sampling was defined as the moment when the rat’s nose reached the rim of the 

pot (the 0 time point for the rasters and histograms in Figures 3 and 4) and object 

sampling ended when the rat either began to dig or turned away, up to a maximum of 1.5 

s after onset.  Mixed selectivity in each brain region was readily apparent in neurons 

recorded in both superficial and deep layers, as well as within all the spatially 

heterogeneous subpopulations within MEC (Summarized in Table 1).  For example, PRC 

Unit 2, LEC Unit 4, and MEC Units 5 and 6 were highly selective for specific object-

position conjunctions.  LEC Unit 3 fired differentially during sampling of Object A 

relative to B across multiple positions.  MEC grid cell 1 demonstrated particularly 

striking specificity for Object B in Position 1 of Context 1 (Figure 4).  Thus, even 

neurons typically considered dedicated to spatial representation exhibited object selective 

firing in animals performing this task, and vice versa. 

To quantify selectivity of neurons for features of the task, we calculated a 

selectivity index (Komorowski et al., 2009) for each of four task dimensions: context, 

position, object identity, and conjunction of object and position within a context.  SI 

scores ranged from zero, reflecting a lack of selectivity, to 1, reflecting fully selective 

activation for one condition of a dimension.  SI scores were calculated for each 

dimension in each recording session.  We also examined whether the observed average SI 

value across all single units for each brain region was indicative of significant coding for 

each task dimension using a similar bootstrap shuffling procedure in which object and/or 

position identities were shuffled for each trial.  The dotted lines in Figure 5A reflect this 
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bootstrap distribution.  We found that each of the four task dimensions was significantly 

encoded in each area (all p’s < 0.001; Figure 5A).  Thus, there was significant position as 

well as object coding in PRC, LEC, and MEC, rather than the selective position coding in 

MEC and selective object coding in PRC and LEC as one might expect. 

We also examined selectivity between brain regions by comparing average SIs in 

each area for each dimension (Figure 5A) and by comparing the fraction of neurons in 

each area that individually distinguished conditions of a particular dimension (Figure 

5B).  MEC neurons exhibited slightly greater average selectivity relative to PRC or LEC 

neurons (two-way ANOVA, main effect of region, F (2, 2796) = 19.82, p < 0.00001; no 

interaction, F (6, 2796) = 1.76, p = 0.08).  Post-hoc tests confirmed that MEC exhibited 

significantly greater selectivity with respect to context (p’s < 0.002) as well as position (p 

< 0.0001), although the magnitude of these differences is modest (Figure 5A). 

In comparing the proportions of cells in different areas that code for specific 

dimensions, it is important to consider that the proportion of cells significantly coding for 

dimensions (Figure 5B), but not the average SI values (Figure 5A), was sensitive to 

increases in firing rate.  Given a higher average firing rate in MEC (PRC 2.16 ± 0.19 Hz, 

LEC 2.08 ± 0.17 Hz, MEC 3.07 ± 0.16 Hz; p < 0.0001), we randomly down-sampled 

MEC neurons to an average firing rate equivalent to that of PRC and LEC neurons 

(Mizuseki & Buzsáki, 2013; Bonnevie et al., 2013).  As can be seen in Figure 5B and in 

greater detail in Table 1, more cells in MEC significantly coded for context, position, and 

the conjunction of object-position information than in PRC or LEC (p’s < 0.001), while 

there were no differences in proportions of cells significantly coding task dimensions 
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between PRC and LEC (p’s > 0.3).  Thus, although analysis of single unit properties with 

the selectivity index revealed some quantitative differences in selectivity, the most 

striking result of this analysis is that all regions exhibit substantial coding for the full 

spectrum of task dimensions.  This observation challenges the commonly held view that 

PRC and LEC selectively encode object and not spatial information whereas MEC 

selectively encodes spatial information (Davachi et al., 2006; Eichenbaum et al., 2007).  

2.4.4 Selectivity for task dimensions is similar across anatomical subdivisions of PRC, 

LEC, and MEC   

When neurons were separated by laminar location of their recordings, superficial 

neurons in PRC exhibited greater selectivity overall relative to deep layer neurons (one-

way ANOVA, F (1, 810) = 5.22, p = 0.02), but post-hoc tests revealed no differences 

between subdivisions with respect to specific task dimensions (p’s > 0.01).  In contrast, 

there was no difference in stimulus selectivity between Area 35 neurons and Area 36 

neurons within PRC (one-way ANOVA, F (1, 810) = 0.35, p = 0.55).  There was also no 

difference in stimulus selectivity between superficial vs deep layers within LEC (one-

way ANOVA, F (1, 801) = 0.64, p = 0.42).  However, within MEC, superficial neurons 

exhibited greater selectivity than neurons in deep layers (one-way ANOVA, F, (1, 1155) 

= 30.16, p < 0.0001).  Post-hoc tests confirmed that superficial layers of MEC exhibited 

greater object-context (p = 0.003) and object-position selectivity (p = 0.003).  Again, 

despite some modest differences in coding across laminar subdivisions, these results 

reflect similar coding of task dimensions across these subdivisions.  
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Furthermore, contrary to the common emphasis on spatial coding in MEC grid 

and border cells, we found that grid cells, border cells, and head direction cells exhibited 

selectivity for all task dimensions, including those involving object selectivity (see 

bottom half of Table 1; all p’s < 0.01).  Indeed the selectivity of these spatial coding cells 

was greater than that of the remaining MEC population (two-way ANOVA, F, (3, 1310) 

= 19.62, p < 0.0001).  Post-hoc tests confirmed that grid cells and head direction cells 

exhibited greater selectivity for all task dimensions (p’s < 0.01) relative to the remaining 

MEC population, other than object coding for grid cells (p = 0.42) and context coding for 

head direction cells (p = 0.015).  Border cells exhibited similar selectivity to the 

remaining MEC population (p’s > 0.06), and there were no differences in selectivity 

between the spatial cell groups (p’s > 0.01).  Given that many grid cells and border cells 

also exhibit significant head direction modulation, we also compared selectivity between 

a combined group of grid cells and border cells without head direction modulation 

against that of cells with significant head direction coding only and found no differences 

in selectivity between these groups (p’s > 0.01; see Table 1 for more information).  Thus, 

spatial selectivity properties (identified during open field foraging) may contribute in part 

to the identification of contexts, positions, and objects during memory performance, 

although all these dimensions are substantially encoded even by cells that lack the 

specific spatial firing properties observed during open field.  
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Figure 3:  Examples of neuronal firing patterns during object sampling.   

Rasters and perievent histograms depict activity patterns during the sampling of each Object (A or 

B) at each Position (1 or 2) within each Context (1 or 2). Time 0 indicates the onset of object 

sampling.  Histograms represent firing rates in 167 ms time bins.  Observed SI (top row for each unit 

below) and statistical significance as determined by comparing observed SI values against 

bootstrapped distribution (significance level p < 0.01): 

Unit 1: C = 0.71; P = 0.66; O = 0.35; O-P = 0.80. 
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Unit 1: C p < 0.0001; P p < 0.0001; O p = 0.04; O-P p < 0.0001. 

Unit 2: C = 0.78; P = 0.78; O = 0.74; O-P = 0.83. 

Unit 2: C p < 0.0001; P p < 0.0001; O p = 0.0001; O-P p < 0.0001. 

Unit 3: C = 0.50; P = 0.37; O = 0.62; O-P = 0.73. 

Unit 3: C p = 0.002; P p = 0.11; O p < 0.0001; O-P p < 0.0001. 

Unit 4: C = 0.44; P = 0.79; O = 0.79; O-P = 0.81. 

Unit 4: C p = 0.03; P p < 0.0001; O p < 0.0001; O-P p = 0.0002. 

Unit 5: C = 0.77; P = 0.91; O = 0.82; O-P = 0.92. 

Unit 5: C p = 0.0001; P p < 0.0001; O p < 0.0001; O-P p < 0.0001. 

Unit 6: C = 0.84; P = 0.78; O = 0.57; O-P = 0.82. 

Unit 6: C p < 0.0001; P p < 0.0001; O p = 0.0004; O-P p < 0.0001. 

 

Abbreviations: C = Context, O-C = Object-Context, O = Object, O-P = Object-Position, P = Position. 

 
 

 

Figure 4  Examples of neuronal firing patterns for grid cells. 

Object sampling Rasters and perievent histograms (top half) for grid cells shown as in Figure 3. In 

the bottom half of each example, from left to right are firing rate maps for the entire session of the 

behavioral task, the open field session, and an autocorrelogram for the open field session.  Below that 

are the average tetrode waveforms for spikes isolated during the behavioral (left) and open field 

(right) sessions, respectively. 
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Observed SI (top row for each unit below) and statistical significance as determined by comparing 

observed SI values against bootstrapped distribution (significance level p < 0.01): 

Grid Cell 1: C = 0.91; P = 0.89; O = 0.94; O-P = 0.96; grid score = 0.15. 

Grid Cell 1: C p = 0.0004; P p = 0.0003; O p < 0.0001; O-P p < 0.0001.  

Grid Cell 2: C = 0.31; P = 0.64; O = 0.23; O-P = 0.83; grid score = 0.42. 

Grid Cell 2: C p = 0.14; P p = 0.0001; O p = 0.29; O-P p < 0.0001. 

Grid Cell 3: C = 0.31; P = 0.76; O = 0.50; O-P = 0.80; grid score = 0.36. 

Grid Cell 3: C p = 0.14; P p < 0.0001; O p = 0.007; O-P p < 0.0001. 

Abbreviations: C = Context, O-C = Object-Context, O = Object, O-P = Object-Position, P = Position. 

 
 

 

Figure 5: Single unit and population coding for task dimensions.   

A) Average Selectivity Index (SI) + S.E. for task dimensions during object sampling in PRC, LEC, 

and MEC. Dotted lines indicate the average SI values from a bootstrapped distribution in which the 

position and/or object identities were shuffled for each trial (preserving firing rates and patterns).  

Note that even with this stringent criterion to determine coding of task dimensions, we found 
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significant coding for all dimensions in all three regions.  B) Percentage of cells that significantly code 

for task dimensions after controlling for firing rate differences. C) Mean correlations coefficients + 

S.E. for comparisons between object sampling events that are the same or different in distinct 

dimensions (object, position, context; diff = different). D) Strength of population coding of different 

task dimensions, measured as dʹ distance between distributions of z-scored firing rates for context, 

position coding, object coding, and objects in specific positions (Obj*Pos). 

 

 
Figure 6: Mean correlation coefficients for individual rats.   
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Mean correlation coefficients for comparisons between object sampling events that are the same or 

different in distinct dimensions (object, position, context) for individual subjects in A) PRC, B) LEC, 

and C) MEC.  Diff = different. 

 

2.4.5 Ensemble representations in PRC, MEC, and LEC organize information distinctly   

To explore how neural populations represented the task dimensions, we employed 

a Representational Similarity Analysis (RSA).  This analysis yields modest, but highly 

reliable, correlation coefficients that indicate that ensemble firing patterns are highly 

consistent between identical individual events (Figure 5C; e.g., sampling events 

involving the same object in the same position and context).   

First, to measure the extent to which identical events were coded similarly, 

population vectors for odd-numbered events were correlated against those for even-

numbered events for each of the two objects within each of the two positions in each of 

the two contexts. The mean of those eight correlation coefficients was used to measure 

the ensemble similarity for identical events within each of the recording sessions 

(14 for PRC, 17 for LEC, 30 for MEC; see Figure 5C, first set of bars). For all other 

comparisons, population vectors for object-sampling events of each type were correlated 

with those for a different type of event. To measure the similarity of ensemble 

representations for different objects sampled at the same position, population vectors for 

odd-numbered events for one object were correlated against even-numbered events for 

the other object, and vice versa (even-numbered events for the first object against odd-

numbered events for the second object), to compose eight total correlations, and the mean 

of those correlation coefficients was used to measure the representational similarity for 
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different objects (holding position and context constant) in each session (see Figure 5C, 

second set of bars). The same approach was used to measure the representational 

similarities for the same or different objects at different positions within a context, 

including the separation of odd- and even-numbered events to ensure that similar 

amounts of data were used in all analyses. To assess the similarity of ensemble 

representations for the same object between positions, population vectors for sampling 

events involving an object in one position were correlated with those for the same object 

in the other position within the same context (see Figure 5C, third set of bars) or with that 

for the other object in the other position within the same context (see Figure 5C, fourth 

set of bars), again comparing odd-numbered against even-numbered events and vice 

versa. To assess the similarity of ensemble representations of objects between contexts, 

population vectors for odd-numbered and even-numbered events for the same object (see 

Figure 5C, fifth set of bars) or different objects (see Figure 5C, sixth set of bars) at 

positions between contexts were similarly correlated.  The mean correlation coefficients 

for individual rats for all 3 brain regions are presented in Figure 6, showing that the 

overall pattern of correlations was similar across individual subjects. 

Although a statistical comparison of the individual bars in Figure 5C is not easily 

interpreted, it is clear that PRC and LEC share a highly similar pattern of correlations for 

events varying across dimensions and on some dimensions these are distinct from that 

found in MEC.  In particular, whereas MEC ensembles are similar for different objects in 

the same position (p < 0.0001), PRC and LEC ensembles have independent 

representations for different objects in the same position (correlation not significantly 
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different from zero, p’s > 0.3).  Conversely, whereas PRC and LEC ensembles have 

similar representations for the same object at different positions (p’s = 0.002), MEC 

ensembles do not (p > 0.5). This dissociation reflects stronger position coding in MEC 

ensembles and stronger coding of object information in PRC and LEC.  It is also notable 

that, in all areas, representations of different objects in different positions and 

comparisons between contexts were negatively correlated (all p’s < 0.005), indicating 

strong pattern separation of representations across these dimensions. 

In order to better quantify these distinct patterns of activity, these correlations 

were combined in several ways described below to provide a straightforward measure of 

the similarity of population representations associated with each task dimension.  We 

used a dʹ metric (as in McKenzie et al., 2014) to measure the separation of the 

distributions of the correlation coefficients for specific task features from zero or against 

the distribution of coefficients from an appropriately opposing condition (see Materials 

and Methods for each comparison).  As seen in Figure 5D, analysis of the ensemble 

representations revealed both similarities and differences in the representation of task 

dimensions.  A two-way ANOVA on the dʹ metric indicated a main effect of task 

dimension (F, (3, 232) = 23.75, p < 0.00001), a main effect of region (F, (2, 232) = 3.57, 

p = 0.03), and a significant interaction (F, (6, 232) = 7.21, p < 0.00001).  Post-hoc tests 

indicated that PRC, LEC, and MEC populations equally strongly represented contexts 

(p’s > 0.4), while MEC exhibited stronger representation of position information than 

PRC (p = 0.001) and LEC (p = 0.001).  In contrast, PRC and LEC exhibited stronger 

representation of object information (p’s = 0.0001) and object-position conjunction 
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information than MEC (PRC vs MEC p = 0.009, PRC vs MEC p = 0.001).  Consistent 

with findings of mixed selectivity from the SI analysis, analysis of ensemble 

representations in PRC, LEC, and MEC indicated that all regions encode all task 

dimensions (all p’s < 0.01), but the observed double dissociation between MEC 

representation of position and PRC-LEC representation of objects and object-position 

conjunctions indicates a difference in the underlying organization of representations in 

PRC-LEC and MEC. 

To test the generality of the RSA approach, ensembles of recorded neurons were 

also analyzed using the cosine separation of population vectors to characterize the 

similarity of representations.  Strength of coding dimensions to different task features 

were identified by comparing dʹ distributions of mean cosine scores similar to the RSA 

approach.  Analysis of these dʹ comparisons with a two-way ANOVA revealed a very 

similar pattern of population coding as with the RSA approach (Figure 7A), indicating a 

main effect of task dimension (F, (3, 232) = 19.86, p < 0.00001), no main effect of region 

(F, (2, 232) = 0.18, p = 0.84), and a significant interaction (F, (6, 232) = 6.42, p < 

0.00001).  Similar to the RSA results, post-hoc tests indicated that PRC, LEC, and MEC 

populations equally strongly represented contexts (p’s > 0.3), while also indicating 

similar representation of object-position conjunctions (p’s > 0.2).  In contrast to those 

similarities in function, MEC exhibited stronger representation of position information 

than PRC (p = 0.006) and LEC (p = 0.001), while PRC and LEC exhibited stronger 

representation of object information (PRC vs MEC p = 0.01, PRC vs MEC p = 0.0005).  

Despite reflecting more similar representations with respect to object-position 
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conjunctions, these results are nonetheless highly consistent with those found with the 

RSA approach, and they suggest a distinct, but complementary, organization of object 

and spatial information at the population level between PRC-LEC and MEC. 

We further tested the generality of these findings across analytical approaches by 

estimating the probability that a pattern of ensemble firing rates was recorded in each of 8 

object in position combinations using a Bayesian decoding algorithm.  Since there is a 

probability associated with each object/position combination, we could determine 

whether there were different hierarchies of coding probabilities among the areas 

examined.  MEC ensembles exhibited nearly equivalent coding probabilities for position 

and object/position conjunctions, followed by object and context coding probabilities.  In 

contrast, LEC ensembles exhibited object/position and object coding probabilities most 

strongly, followed by context coding and then position coding probability.  In PRC, the 

hierarchy was less distinct with strong object/position coding, followed by relatively 

equivalent coding of context, position, and object information.  With respect to the 

decoding probabilities for task dimensions, for all regions ensembles were most likely to 

have originated from trials with the same object and position combination (mean 

probability PRC = 0.29; LEC = 0.32; MEC = 0.42), which was greater than the 

probability of the neural activity originating from trials with different objects or positions 

(PRC mean probability = 0.15, dʹ = 0.66, p < 0.01; LEC mean probability = 0.15, dʹ = 

0.71, p < 0.001; MEC mean probability = 0.13, dʹ = 0.81, p < 0.001).  These differences 

in probabilities reflect strong object-in-position coding.  PRC and LEC exhibited the 

greatest object coding, followed by MEC, indicated by a greater probability of ensembles 
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originating from sampling events of the same object in different positions (PRC mean 

probability = 0.18; LEC mean probability = 0.19; MEC = 0.11) than different objects in 

different positions within a context (PRC mean probability = 0.10, dʹ = 0.34, p < 0.001; 

LEC mean probability = 0.07, dʹ = 0.42, p < 0.001; MEC mean probability = 0.07, dʹ = 

0.24, p < 0.001).  In contrast, MEC exhibited the greatest position coding, followed by 

PRC and LEC, reflected by a greater probability of ensembles originating from sampling 

events in the same position (PRC mean probability = 0.20; LEC mean probability = 0.22; 

MEC = 0.28) than sampling events at different positions within a context (PRC mean 

probability = 0.14, dʹ = 0.32, p < 0.001; LEC mean probability = 0.13, dʹ = 0.53, p < 

0.001; MEC mean probability = 0.09, dʹ = 1.29, p < 0.001).  Finally, a greater probability 

of ensembles originated from sampling events within contexts (PRC mean probability = 

0.17; LEC mean probability = 0.17; MEC = 0.19) than across contexts (PRC mean 

probability = 0.08; dʹ = 0.59, p < 0.001; LEC mean probability = 0.09, dʹ = 0.22, p < 

0.001; MEC mean probability = 0.07, dʹ = 0.09, p = 0.05, not significant), indicating 

roughly equivalent context coding in LEC and MEC.   

To directly compare the findings among brain regions and relate these findings to 

the correlation and cosine separation analyses, we compared the decoding probabilities 

for task dimensions using the dʹ metric (Figure 7B).  An ANOVA was conducted on the 

dʹ values generated with the Bayesian decoding algorithm.  This analysis indicated no 

main effect of region (F, (2, 168) = 1.04, p = 0.35), but did indicate a significant 

interaction (F, (3, 168) = 5.47, p < 0.0001).  Post-hoc tests revealed an underlying pattern 

that was highly similar to those found in the ensemble correlation and cosine separation 
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analyses.  LEC exhibited greater object coding than MEC (p = 0.005) and MEC exhibited 

greater position coding than PRC or LEC (p’s < 0.001).  However, PRC did not exhibit 

greater object coding than MEC (p > 0.05), potentially owing to a higher probability of 

context decoding in PRC.  In contrast, there were no differences between PRC, LEC, and 

MEC with respect to context or object-position conjunctive coding as determined by the 

decoding algorithm (p’s > 0.05).  Together, this group of analyses demonstrates reliable 

patterns of activity in PRC, LEC, and MEC suggesting distinct, but complementary roles 

in processing object and spatial information. 
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Figure 7: Population coding of task dimensions in MEC and LEC during object sampling.   

A) Strength of coding as in Figure 5D, except using dʹ distance between distributions of average 

cosine values for firing rates normalized by the maximum firing rate during object sampling.  B) 

Strength of coding using dʹ distance between mean probabilities that patterns of ensemble firing 

rates were recorded in each of the eight object in position combinations determined by a Bayesian 

decoding algorithm. 
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2.4.6 Coding of task dimensions across time during object sampling   

We also compared these brain areas with respect to the temporal dynamics of 

information coding among the different task dimensions based on the correlation RSA (as 

in Figure 5D).  Significant sustained position coding was evident in MEC earliest, 

followed approximately 1-2 s later by PRC and LEC (Figure 8A).  Furthermore, position 

coding appeared to peak around the onset of object sampling, which was particularly 

pronounced in MEC (PRC peak = -400 ms, = 0.35, p < 0.001; LEC peak = -400 ms, d = 

0.30, p < 0.001; MEC peak = 0 ms, dʹ = 0.82, p < 0.001).  In contrast, significant object 

coding was evident in PRC and LEC at the onset of object sampling (Figure 8B) with 

sustained peak firing beginning at approximately 500 ms after the onset of object 

sampling (PRC peak = 800 ms, = 0.32, p < 0.001; LEC peak = 1200 ms, d = 0.31, p < 

0.001), whereas MEC did not exhibit significant object coding in this analysis (MEC 

peak = 600 ms, dʹ = 0.07, p = 0.24).  Despite these differences in position and object 

coding, there was less difference in the onset of object-in-position coding among PRC, 

LEC, and MEC (Figure 8C).  Sustained, significant coding for this task dimension was 

evident at or just after the onset of object sampling (0 ms) with peak firing at 

approximately 1-1.5s after the onset of object sampling (PRC peak = 1200 ms, = 0.82, p 

< 0.001; LEC peak = 1000 ms, d = 0.74, p < 0.001; MEC peak = 1400 ms, dʹ = 0.71, p < 

0.001).  It should also be noted that the timing pattern is unique for each of these 

dimensions, reflecting distinct coding of each of these features of events.  Collectively, 

the temporal dynamics of coding of different task dimensions further distinguishes MEC 

as emphasizing position coding, whereas PRC and LEC population activity reflects 
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earlier and stronger object coding, consistent with the results of the other population 

analyses. 

 

Figure 8: Coding for task dimensions is expressed at different times across regions during object 

sampling.  
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The average dʹ strength calculated from mean correlations (as in Figure 5D) for each task dimension 

is depicted over time (using 200 ms bins) before and after the onset of object sampling (0 s).  MEC 

exhibits the earliest and strongest position coding compared to the pattern for PRC or LEC (A), 

whereas PRC and LEC exhibit early and strong object coding, which is not observed in MEC (B), 

and all three regions exhibit a similar degree of conjoint object-position coding that peaks later than 

separate coding of positions and objects (C).  Color coded bars at the top of each graph indicate 

periods in which the dimension was significantly coded. 

 

2.4.7 PRC-LEC and MEC exhibit distinct hierarchical organizations of information   

To explore the organization of dimensions represented in PRC, LEC, and MEC 

populations, we performed an additional analysis in which similarities between 

population vectors for each sample type were iteratively clustered according to their 

mean correlation coefficients.  The highest correlations result in the tightest clustering of 

nodes in the organizational structure and successively lower correlations reflect greater 

separation of representations, resulting in a systematic hierarchical organization of task 

dimensions (Figure 9).  At the top of the hierarchy for all regions, representations were 

strongly separated (negatively correlated) by events that occurred in different contexts.  

Within each context-based cluster, in PRC and LEC, events within each context were 

next separated by the object presented.  Then, within each object cluster, the positions 

where objects occurred were separated. In MEC events within each context were also 

strongly separated (negatively correlated).  Then, in contrast to PRC and LEC, within 

each context-based cluster, events were separated by the positions in which objects were 

sampled.  Then within each position representation, objects were separated. Finally, in all 

areas, representations of identical events are most closely associated. Thus, although 

PRC, LEC, and MEC exhibit great similarity in mixed selectivity at the single neuron 
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level, RSA revealed an emergent distinction between these areas in complementary 

organizations of event representations. 
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Figure 9: Hierarchical organization of event representations by task dimensions.   
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Dendrograms illustrating organization of population representations in PRC, LEC, and MEC during 

object sampling for each specific type of object sampling event (a particular object in a specific 

position within one context).  Letters indicate Objects A or B in Positions 1 or 2 (Context 1) or 

Positions 3 or 4 (Context 2) with + or – indicating whether the stimulus was reinforced.  Repeated 

events (e.g., A1+ and A1+) indicate comparison of population vectors for even and odd numbered 

events for that event type (see Online Methods).  Black = correlation of population vectors between 

contexts.  Red = correlations between objects. Green = correlations between positions.  Blue = 

correlations between even and odd numbered trials. 

 

2.5 Discussion 

The present observations on PRC, LEC and MEC neuronal firing patterns 

quite dramatically reject the notion that PRC and LEC neurons selectively encode 

object information whereas MEC neurons selectively encode spatial information. 

Given the direct and indirect connections between these areas (Suzuki & Amaral, 

1994; Witter et al., 1989; Burwell & Amaral, 1998; Kerr et al., 2007), it should be 

expected that information processed in each of these areas is shared with the other.  

However, the extent to which individual PRC, LEC and MEC neurons, including even 

grid cells, border, and head direction cells, process both object and spatial 

information equally is surprising. At the same time, population analyses strikingly 

dissociated PRC and LEC from MEC networks as prioritizing object and spatial 

information, respectively. These observations reinforce conclusions from recent 

studies that the full content and organization of representations in higher order 

brain areas is most clearly revealed in population analyses (Rigotti et al., 2013; 

Shamir, 2014).   

Given the previous reports of striking coding of specific spatial dimensions 

(position, direction, borders) in MEC neurons, it was quite surprising that MEC 
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neurons of all subtypes (grid, border, head direction, other) strongly encoded object 

information and did so at least as well as PRC and LEC neurons.  Also, given previous 

observations suggesting a lack of spatial coding by PRC and LEC neurons 

(Hargreaves et al., 2005; Deshmukh et al., 2012), it was quite surprising that PRC 

and LEC neurons strongly encoded position and context, although not quite 

matching that seen in MEC.  The most obvious difference in the present study and 

previous work is that both spatial and object dimensions were salient features of the 

task demands in this context-guided object-reward association paradigm.  However, 

it is notable that both spatial context, which is important for task performance, and 

position within contexts, which is not required for task performance, were strongly 

encoded by PRC, LEC and MEC.  Perhaps, once contextual spatial cues are relevant, 

both global and local spatial information become sufficiently salient to demand 

representation. This interpretation is consistent with other recent studies that have 

previously identified spatial coding in a minority of LEC cells (Deshmukh et al., 

2011; Tsao et al., 2013).  Both studies provided evidence of spatial “memory” fields 

at prior locations when objects were moved in or removed from the environment, 

while Deshmukh and colleagues also provided examples of activity similar to place 

field firing when objects were presented.  In addition, studies on earlier stages of 

information processing prior to LEC and MEC, that is in the PRC and postrhinal 

cortex, have also reported mixed selectivity of neuronal activity in animals 

performing memory tasks where objects and spatial choices are relevant (Furtak et 

al., 2012; Ahn et al., 2015).  The present findings suggest that both LEC and MEC also 



 

 

91 

represent organizations of objects and events within spatial contexts (see also 

Knierim et al., 2013), and that even PRC exhibits a combination of object and spatial 

coding.   

It was particularly striking that grid cells strongly encoded object 

information, often differentiating objects sampled at the same location (See Figure 

4).  In contrast to the common view that grid cells are specialized for position 

coding, results from the present study strongly suggest that grid cells possess strong 

object-coding properties that have been largely overlooked to this point. Future 

investigation of these properties could yield further insights about the organization 

of information in cortical structures of the hippocampal region and beyond, given 

the detailed understanding of grid cell function and organization (Moser & Moser, 

2013; Moser et al., 2014; Witter et al., 2014).   

The Representational Similarity Analysis employed here revealed that, 

within equivalent coding of specific dimensions by single PRC, LEC and MEC 

neurons, populations of neurons in all these areas developed distinct systematic 

organizations of those dimensions. Notably, both areas developed quite separate 

(anti-correlated) networks consistent with the opposite reward associations of 

objects in the two contexts.  Other recent studies have shown that grid cell firing 

patterns in MEC are responsive to contextual differences (Marozzi et al., 2015) as 

well as a merging of spatial contexts (Carpenter et al., 2015). Furthermore, strong 

pattern separation of contextual representation was also observed in the 

hippocampus in a previous study that employed the same task (McKenzie et al., 
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2014). Thus, contrary to other work suggesting that pattern separation occurs 

selectively within subregions of the hippocampus (Leutgeb et al., 2004; Lee et al., 

2004; Bakker et al., 2008), here the entire hippocampal system responds to a strong 

demand for reducing interference between the opposite object associations in the 

two contexts by robust pattern separation. 

Within the two context-based networks, PRC, LEC and MEC organize the 

object and spatial information quite differently. Within each context-based network, 

the closely interconnected PRC and LEC populations distinguish objects and then 

only within each object representation distinguish the positions where objects are 

sampled. Conversely, within each context-based network, MEC populations 

distinguish the positions where object sampling occurs, and then only within each 

position representation distinguish the objects at those locations.  Notably, the 

population representation within the MEC is very similar to that observed in the 

hippocampus (McKenzie et al., 2014), suggesting a prominent role of MEC in driving 

spatial organization in the hippocampus. Overall, this pattern of findings suggests 

we move from thinking about modality specific processing areas within the 

hippocampal system (Eichenbaum et al., 2007) to conceiving the hippocampal 

system as composed of interconnected areas each of which process all the 

information but differently organize the dimensions of information processing. 

2.6 Accompanying table 

 

Table 1: Unit proportions coding for task dimensions 
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Number and Percentage of Units Significantly Coding for SI Dimensions and Average SI Value ± 

SEM based on SI (interneurons excluded) and average SI ± SEM. # Signif. = number of cells with 

significant coding/total number of cells tested. Obj*Pos = Object X Position. 

 SI Dimension 
Context Position Object Obj*Pos 

Brain 
Region 

 

# Signif. % 
# 

Signif. 
% # Signif. % # Signif. % 

Avg SI ± SEM Avg SI ± SEM Avg SI ± SEM Avg SI ± SEM 

PRC 

Overall 
49/164 29.9% 39/164 23.8% 27/164 16.5% 46/164 28.0% 

 0.33 ± 0.02 0.43 ± 0.02  0.31 ± 0.02 0.55 ± 0.02 

Superficia
l 

28/72 38.9% 24/72 33.3% 16/72 22.2% 26/72 36.1% 

0.36 ± 0.03 0.45 ± 0.03 0.33 ± 0.03 0.58 ± 0.02 

Deep 
21/92 22.8% 15/92 16.3% 11/92 12.0% 20/92 21.7% 

0.30 ± 0.03 0.41 ± 0.03 0.31 ± 0.03 0.54 ± 0.02 

Area 35 
26/95 27.4% 20/95 21.1% 18/95 19.0% 26/95 27.4% 

0.31 ± 0.3 0.42 ± 0.02 0.32 ± 0.03 0.55 ± 0.02 

Area 36 
23/69 33.3% 19/69 27.5% 9/69 13.0% 20/69 29.0% 

0.34 ± 0.03 0.44 ± 0.03 0.30 ± 0.03 0.56 ± 0.03 

 

LEC 

Overall 
38/164 23.2% 47/164 28.7% 24/164 14.6% 43/164 26.2% 

0.31 ± 0.02  0.43 ± 0.02  0.26 ± 0.02  0.57 ± 0.02 

Superficia
l 

29/107 27.1% 35/107 32.7% 19/107 17.8% 28/107 26.2% 

0.31 ± 0.02 0.41 ± 0.02 0.27 ± 0.02 0.54 ± 0.02 

Deep 
9/57 15.8% 12/57 21.1% 5/57 8.8% 15/57 26.3% 

0.31 ± 0.03 0.46 ± 0.03 0.25 ± 0.03 0.61 ± 0.03 

 

MEC 
* 

Overall 
101/236 42.8% 

120/23
6 

50.8% 51/236 21.6% 101/236 42.8% 

 0.41 ± 0.02 0.51 ± 0.02 0.30 ± 0.1 0.59 ± 0.01 

Superficia
l 

44/103 42.7% 57/103 55.3% 27/103 26.2% 50/103 48.5% 

0.45 ± 0.03 0.55 ± 0.02 0.33 ± 0.02 0.65 ± 0.02 

Deep 
57/133 42.9% 63/133 47.7% 24/133 18.0% 51/133 38.3% 

0.39 ± 0.02 0.48 ± 0.02 0.28 ± 0.02 0.56 ± 0.02 

 

MEC 
Spatial 

** 

All Grids 
12/23 52.2% 12/23 52.2% 3/23 13.0% 13/23 56.5% 

0.52 ± 0.06 0.64 ± 0.05 0.32 ± 0.05 0.71 ± 0.04 

Grid Only 
7/12 58.3% 5/12 41.7% 0/12 0.0% 6/12 50.0% 

0.56 ± 0.09 0.66 ± 0.07 0.24 ± 0.06 0.70 ± 0.07 

Grid x HD 
5/11 45.5% 7/11 63.6% 3/11 27.3% 7/11 63.6% 

0.48 ± 0.07 0.62 ± 0.06 0.40 ± 0.08 0.72 ± 0.05 

62/125 49.6% 81/125 64.8% 37/125 29.6% 73/125 58.4% 
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All Head 
Direction 

0.44 ± 0.02 0.55 ± 0.02 0.34 ± 0.02 0.63 ± 0.02 

HD Only 
52/101 51.5% 66/101 65.4% 29/101 28.7% 59/101 58.4% 

0.43 ± 0.03 0.53 ± 0.02 0.32 ± 0.02 0.62 ± 0.02 

Border x 
HD 

5/13 38.5% 8/13 61.5% 5/13 38.5% 7/13 61.5% 

0.48 ± 0.09 0.60 ± 0.05 0.48 ± 0.06 0.69 ± 0.05 

All Border 
11/27 40.7% 14/27 51.9% 7/27 25.9% 11/27 40.7% 

0.46 ± 0.06 0.53 ± 0.04 0.34 ± 0.05 0.61 ± 0.04 

Border 
Only 

6/14 42.9% 6/14 42.9% 2/14 14.3% 4/14 28.6% 

0.43 ± 0.07 0.47 ± 0.06 0.22 ± 0.05 0.53 ± 0.06 

Other 
26/85 30.6% 28/85 32.9% 15/85 17.6% 18/85 21.1% 

0.35 ± 0.03 0.45 ± 0.03 0.26 ± 0.02 0.54 ± 0.02 

* Proportions reflect MEC downsampled data to allow direct comparison to PRC and LEC.  Average 

SI data was not sensitive to firing rate differences and therefore was not adjusted. 

** Proportions reflect MEC data without downsampling given within region comparisons only. 

Average SI data was not adjusted. 
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Chapter 3. In a Temporally Segmented Experience Hippocampal Neurons 

Represent Temporally Drifting Context but not Discrete Segmentsb 

 

3.1 Abstract 

There is widespread agreement that episodic memory is organized into a timeline 

of past experiences. Recent work suggests that the hippocampus may parse the flow of 

experience into discrete episodes separated by event boundaries. A complementary body 

of work suggests that context changes gradually as experience unfolds. We recorded from 

hippocampal neurons as male long evans rats performed 6 blocks of an object 

discrimination task in sets of 15 trials.  Each block was separated by removal from the 

testing chamber for a delay to enable segmentation. The reward contingency reversed 

from one block to the next to incentivize segmentation.  We expected animals to hold two 

distinct, recurring representations of context to match the two distinct rule contingencies. 

Instead, we found that overtrained rats began each block neither above nor below chance 

but by guessing randomly. While many units had clear firing fields selective to the 

conjunction of objects in places, a significant population also reflected a continuously 

drifting code both within block and across blocks. Despite clear boundaries between 

blocks, we saw no neural evidence for event segmentation in this experiment.  Rather, the 

                                                        
b This chapter, in full, is a reprint of a published manuscript hosted on BioRxiv, and was revised and 
resubmitted at Journal of Neuroscience (Resubmission Date: December 13, 2018) The full BioRxiv 
Citation is as follows: 
Bladon, J., Sheehan, D. J., Freitas, C. S. De, & Howard, M. W. (2018). In a temporally segmented 
experience hippocampal neurons represent temporally drifting context but not discrete segments . 
BioRxiv, 1–36. https://doi.org/10.1101/338962 
 Author Contributions: JHB & Howard Eichenbaum designed the experiment, JHB, DJS & CDF acquired 
the data, JHB, DJS & MWH analyzed the data, and JHB & MWH wrote the manuscript. 
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hippocampal ensemble drifted continuously across time. This continuous drift in the 

neural representation was consistent with the lack of segmentation observed in behavior. 

Significance statement: 

The neuroscience literature yet to reach consensus as to how hippocampal firing 

fields support the organizing of events across time in episodic memory. Initial reports of 

hippocampal activity focused on discrete episodes within which representations were 

stable, and across which representations remapped. However, it remains unclear whether 

this segmentation of representations is merely an artifact of cue responsivity. More 

recently, research has shown that a proportion of the population codes for temporal 

aspects of context by exhibiting varying degrees of drift in their firing fields. Drift is 

hypothesized to represent a continually evolving temporal context, however it is unclear 

whether this drift is continuous or is also a mere artifact of changing experiences. We 

recorded from the dorsal hippocampus of rats performing an object discrimination task 

that involved contexts that were segmented in time. Overtrained rats were unable to 

anticipate the identity of the upcoming context, but may have used context boundaries to 

their advantage. Event segmentation theory predicts that hippocampal ensembles would 

alternate between behaviorally-relevant segments.  Contrary to these predictions, animals 

showed weak evidence of context segmentation, even across blocks with different reward 

contingencies. Hippocampal ensembles showed neither evidence of alternating between 

stable contexts nor sensitivity to context boundaries, but did show robust temporal drift.  
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3.2 Introduction 

Episodic memory refers to the vivid recollection of a specific event situated in a 

unique place and time (Tulving & Madigan, 1970). In his description of episodic 

memory, Endel Tulving emphasized that a crucial distinction between episodic and 

semantic memory is that episodic memories are temporally dated, or are remembered in 

relation to other events across time. The hippocampus is essential for episodic memory 

and is thought to mediate this function by binding events to a representation of spatial 

and temporal context (Eichenbaum et al., 2007; Tulving, 1972). Indeed the hippocampus 

is specifically involved in both remembering the temporal order of past events and 

making associations across a temporal gap in both humans and animals (Caparelli et al., 

2012; Dede, Frascino, Wixted, & Squire, 2016; Fortin, Agster, & Eichenbaum, 2002; 

Kesner, Hunsaker, & Gilbert, 2005). Hippocampal ensembles are theorized to represent a 

‘cognitive map’ (O’Keefe & Nadel, 1978) that acts as a contextual or relational scaffold 

onto which events may be bound together for later retrieval (Davachi, 2006). 

There are two complementary models for how spatiotemporal context is 

structured in the hippocampus. Event segmentation theory suggests experience is 

segmented across time into discrete situational contexts (Figure 1 “Event Segmentation”) 

(Baldassano et al., 2017; DuBrow, Rouhani, Niv, & Norman, 2017; Muller & Kubie, 

1987; Zacks, Tversky, & Iyer, 2001). Temporal context theory suggests that the 

hippocampal representation of context evolves continually (Figure 10, “Temporal 
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Context”) (Howard & Eichenbaum, 2013; Howard et al., 2005). There is behavioral, 

neuroimaging and animal neurophysiological evidence consistent with both theories. 

Consistent with event segmentation theory, behavioral and neuroimaging 

evidence suggests that experiences are segmented in time. Studies on human recall have 

found that memories are organized by discrete situational contexts (Baldassano et al., 

2017; DuBrow et al., 2017; Muller & Kubie, 1987; Zacks et al., 2001). Abrupt changes in 

environmental or contextual cues across time can cause a behavioral separation in 

memory traces (Ezzyat & Davachi, 2011; Sols, Dubrow, Davachi, & Fuentemilla, 2017; 

Zacks et al., 2001). Hippocampal BOLD activity in humans, and ensemble activity in 

rodents increases when a border between contexts is perceived, as if the hippocampus 

parcellates experience into contextual chunks (Baldassano et al., 2017; Bulkin, Sinclair, 

Law, & Smith, 2018; DuBrow et al., 2017; Mack, Love, & Preston, 2016; Place, Farovik, 

Brockmann, & Eichenbaum, 2016).  

Although event segmentation has yet to be explicitly studied in rodents, 

electrophysiological evidence consistent with event segmentation can be found in the 

hippocampal representation of space (but see Bulkin et al. 2018 for a recent exception). 

In agreement with event segmentation theory, hippocampal ensembles generate separate 

maps across different spatial environments (Brandon, Koenig, Leutgeb, & Leutgeb, 2014; 

Komorowski et al., 2009; Stefan Leutgeb et al., 2005; Wills, 2005). In addition, 

hippocampal ensembles generate separate maps across a variety of explicit contextual 

designations that occur in the same physical space (Kobayashi, Nishijo, Fukuda, Bures, & 

Ono, 1997; Markus, Barnes, McNaughton, Gladden, & Skaggs, 1994; Smith & Bulkin, 
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2014; Wills, 2005). In a particularly clear example, neural segmentation across two 

physical contexts was found to develop as rats learned to discriminate between the two 

contexts (Komorowski et al., 2013, 2009). These studies suggest that hippocampal 

ensembles segment continuous experience to support discrimination between different 

spatial and behavioral contexts.  

Consistent with temporal context theory, behavioral and neuroimaging 

experiments suggest a continuous temporal signal that supports the organization of 

memories in time. The temporal contiguity effect describes the tendency for subjects to 

bind together unrelated events that occurred together in time, and has been shown across 

timescales in both neural and behavioral datasets (Folkerts, Rutishauser, & Howard, 

2018; Howard, Youker, & Venkatadass, 2008; Kahana, 1996; Manning, Polyn, Baltuch, 

Litt, & Kahana, 2011; Zaromb et al., 2006). Conversely, a continually evolving 

hippocampal signal also allows for segregation of related events that occur far apart in 

time (Cai et al., 2016; Manns et al., 2007). Human fMRI data show the representational 

similarity of hippocampal BOLD signals during recall of events reflects a broad 

continuum of relatedness that maps onto the temporal and spatial proximity of those 

events (Deuker, Bellmund, Navarro Schröder, & Doeller, 2016; Hsieh, Gruber, Jenkins, 

& Ranganath, 2014; Jenkins & Ranganath, 2016; Nielson et al., 2015; Schapiro, Kustner, 

& Turk-Browne, 2012; Schapiro, Turk-Browne, Norman, & Botvinick, 2016).  

There is a large body of neurophysiological evidence both in rodents and in 

humans that supports the temporal context theory. The classic view of hippocampal place 

fields suggests the hippocampal map represents the same spatial context across long 
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periods of time, extending for weeks to months (Thompson & Best, 1990). However 

these initial studies focused on only a small population of cells specifically sought out for 

their stability. Numerous studies have reported slow changes in the representation of 

place across extended time (Folkerts et al., 2018; Mankin et al., 2012, 2015; Manns et al., 

2007; Mau et al., 2018; Paz et al., 2010; Rubin, Geva, Sheintuch, & Ziv, 2015; Ziv et al., 

2013). Crucially, these reports consistently show that there are both stable and drifting 

units in the active ensemble, suggesting hippocampal ensembles are tracking both the 

similarities and differences in experiences across time. Indeed, multiple reports have 

found that while a minority of units are active across many days, there remains a stable 

population from which one could decode the animal’s spatial context and location within 

that context across large temporal lags (Mau et al., 2018; Rubin et al., 2015; Ziv et al., 

2013). These reports span temporal scales and show both stability and drift on the order 

of seconds, minutes, hours, and days. Moreover, these phenomena have been observed 

across a wide variety of recording methodologies suggesting this is a feature of the 

system, rather than a measurement artifact (Cai et al., 2016; Mankin et al., 2012; Manns 

et al., 2007; Mau et al., 2018).  

There is behavioral, neuroimaging and animal neurophysiology evidence 

consistent with both temporal drift and event segmentation, and the two hypotheses are 

not mutually exclusive (Figure 10 “Segmented Temporal Context’). However, these two 

bodies of work have never been directly compared in the same preparation. The goal of 

this experiment was to examine whether or how these two forms of context 

representation are observed in a task that leverages a temporally defined context. This 



 

 

101 

task paradigm involves two distinct behavioral contexts that are separated by a behavioral 

boundary. The hippocampus is hypothesized to map these contexts into discrete event 

representations as proposed by event segmentation theory, and to also contain a slowly 

drifting signal as proposed by temporal context theory. 

 

3.3 Experimental Methods 

 In order to determine how the hippocampal map segments similar experiences 

that occur across minutes, rats performed a task in which distinct behaviors were 

reinforced in different temporal blocks of trials in the same spatial environment. The 

boundary between blocks was cued by shuttling the animal to a separate chamber for 1 

minute, but there were no overt cues to signal the behavioral context at the time of the 

choice behavior. A representation of temporal context that changes continuously across 

blocks would be behaviorally suboptimal in this experiment (Figure 10 “Drifting 

Temporal Context”). Rather, the strategy to maximize reward would be to segment the 

experiment into behaviorally meaningful contexts by using the boundary cue (Figure 1 

“Event Segmentation”). 

During performance of this task, we recorded extracellularly from dorsal CA1 

ensembles. As in earlier work that showed evidence for spatial event segmentation 

(Komorowski et al., 2013, 2009), rats were presented with pairs of pots containing unique 

odors and digging media and the rat was rewarded for choosing the correct pot from the 

pair. The identity of the rewarded pot was consistent for each block of 15 trials after 

which the 1-minute boundary cue was imposed; for the next 15 trials the other pot was 
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rewarded. The event segmentation hypothesis predicts two stable mappings of objects 

and places, one for each rule condition (Figure 10 “Event Segmentation” panel). In 

contrast, the temporal context hypothesis predicts a continuous decorrelation of neural 

representations that was unaffected by the blocked structure of the experience (Figure 10 

“Drifting Temporal Context” panel). A representation validating both theories might 

involve a new but stable context instated at the start of each block of trials (Figure 10 

“Segmented Temporal Context” panel). 

 

        Subjects. Subjects were 5 male Long-Evans rats (Charles River) weighing 

between 350 and 450 grams and between the ages of 6 months to 1 year for the duration 

of the experiment. All animals were single housed and maintained on a 12 h light/dark 

cycle (lights on 8:00 A.M. to P.M.). Behavioral training and testing were conducted 

exclusively during the light phase. Animals were maintained at a minimum (85%) of their 

ad libitum feeding body weight during all behavioral training and testing periods. 

Procedures were conducted in accordance with the requirements set by the National 

Institutes of Health and Boston University Institutional Animal Care and Use Committee 

(IACUC). 

Behavioral Apparatus: The behavioral training and testing environment was a 

custom-built wood apparatus (40 l x 60 w x 40 h cm) consisting of a 40 cm x 40 cm box, 

and a 20 cm x 20 cm side alleyway. The objects consisted of identical circular terra cotta 

pots (10 cm high with an internal diameter of 9 cm), each with their own unique digging 

media and odors (e.g., purple beads with grapefruit scent). The pots were distinguishable 
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only by their scent and digging media, requiring the animal to overtly sample before 

choosing to dig. In order to prevent the animals from being guided by odor of the Froot 

Loop (Kellogg’s) cereal reward, finely crushed Froot Loops were sprinkled into all 

digging media. 

 

Surgery. Anesthesia was induced by inhalation of 5% isoflurane (Webster 

Veterinary Supply) in oxygen and then a stable plane was maintained at 1.5%-3% 

throughout the entirety of surgery. Before surgery animals were injected with the 

analgesic Buprenex (buprenorphine hydrochloride, 0.03 mg/kg i.m.; Reckitt Benckiser 

Healthcare), and the antibiotic cefazolin (330 mg/ml i.m.; West-Ward Pharmaceutical). 

The skin of the animal’s head covering the skull was shaved and cleaned with alcohol 

swabs before then being placed in a stereotaxic frame (Kopf). A longitudinal incision was 

made to expose the skull and the bone, and underlying fascia was cleared in order to gain 

access to stereotaxic coordinates and locations for anchoring screws. Animals were 

implanted with microdrives containing 18-24 independently drivable tetrodes targeting 

the dorsal pole of the CA1 cell layer of the hippocampus (centered at 3.6 mm posterior 

and 2.6 mm lateral from bregma). Finally a screw was placed above the cerebellum to 

serve as a ground signal. Each tetrode was composed of four 12 um RO 800 wires 

(Sandvik Kanthal HP Reid Precision Fine Tetrode Wire; Sandvik). Tetrodes were plated 

with non-cyanide gold solution, via electrolysis in order to reduce impedance to between 

180 and 220 k𝛀. At the conclusion of the surgery, all tetrodes were gradually lowered 

~0.5 - ~1.5 mm into tissue. Upon recovery from anesthesia, animals underwent post-
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operative care for 3 days and received doses of Buprenex and cefazolin, as described 

above, two times a day (12 hour intervals). Animals were allowed to recover 1 week 

before behavioral testing commenced. 

 

Neural Recordings. Electrophysiological recordings for this project were 

collected on a 96 channel OmniPlex D Neural Acquisition System (Plexon). Each 

channel was amplified on head-mounted preamps and then amplified again for total of 

1000x to 10,000x before being digitized at 40 kHz. Spike data were band-pass filtered 

from 200 Hz to 8.8 kHz and local field potentials from 1.5 Hz to 400 Hz. Spike channels 

were referenced to a local electrode in the same region in order to remove both 

movement-related and ambient electrical noise. That local reference electrode was then 

referenced to ground and provided the LFP signal in the region. Action potentials of 

neurons were detected via threshold crossing and then sorted later using Offline Sorter 

(Plexon). Cineplex Studio (Plexon) was used for capturing behavioral tracking data, and 

Cineplex Editor (Plexon) was employed to enter event markers and to verify animal 

tracking data. Between recorded training sessions tetrodes were advanced at a minimum 

of 40 µm and positioned based on visual inspection of spike clusters in order to maximize 

neural unit yield. Tetrodes were allowed to settle after turning over a period of days to 

prevent contamination of neural signals with tetrode drift. 

 

Histology. Upon completion of behavioral testing, rats were anesthetized with 

<5% isoflurane in oxygen. Anatomical recording sites were confirmed by creating a 
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small lesion in the brain tissue by passing a 40 µA current until the connection was 

severed (generally 2-8 seconds). Immediately after completion of electrolytic lesions, 

animals received an overdose injection (interperitoneal) of Euthasol (Virbac AH) and 

upon cessation of breathing were immediately transcardially perfused with ice cold 0.5% 

potassium phosphate buffered saline followed by 5% phosphate buffered formalin 

(VWR). Brains were then removed and placed in additional 5% formalin phosphate for at 

least 36 hours. Brains were then submerged in 30% sucrose for cryoprotection until 

sectioning into 40 µM thick sections via cryostat (CM 3050s; Leica Biosystems). Brain 

sections were processed using standard Nissl staining protocol in order to visually 

confirm tetrode-recording sites (Figure 1c). 

 

Animal Training and Task. Once each animal recovered from surgery they were 

initially trained to dig for Froot Loop (Kellogg) bits in an aloe-scented pot over a cloves 

scented pot (both in sand). Once they reliably dug in the aloe pot and refrained from 

digging in the cloves pot, training began in the blocked-reversal task. Each training and 

recording session consisted of 6 blocks of 15 trials for a total of 90 trials. Once the rat 

reached a criterion of 70% correct across a given session, recording commenced. Some 

sessions were terminated early (the shortest session was 85 trials) due to lack of 

motivation by the subject. Within each 15 trial block the reward contingency was set so 

that one pot always had food and the other pot did not. Each trial started with the 

insertion of a divider so that the experimenter could place the pots in a pseudorandom 

position. Once pots were placed, the divider was removed and the animal was allowed to 
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sample each pot, but only allowed to dig in one. Upon digging, the unchosen pot was 

immediately removed and the animal was allowed to dig until he found reward or gave 

up because he chose incorrectly. After either completion of reward consumption or a 3 

second delay following pot removal, the rat was shuttled to the far half of the chamber 

and the divider replaced. The next trial commenced immediately until trial 15 was 

reached. After the last trial of each block, the rat was shuttled into the side alley to wait 

for 60 seconds. After the break, the reward contingency was reversed and the next block 

of 15 trials was performed. 

Quantitative & Statistical Analyses: All analysis of the collected data were 

performed using custom scripts from MATLAB (MathWorks).  ANOVAs were 

performed using the ‘anovan’ function in MATLAB under a standard type 2 sum of 

squares. For individual unit analyses, peri-event histograms were generated from 120 to 

160 millisecond bins and smoothed using a moving average of a three bin span. All trials 

were included in peri-event rasters including those in which the rat responded incorrectly, 

but only the first sample in each trial is shown. Right and left samples correspond to each 

of the two pseudorandomized locations of the reward pots. Error bars on firing rates were 

calculated using the standard error of the mean. Spatial firing rate plots were generated 

using a 3 cm pixel size, and then convolved with a Gaussian smoothing kernel with a 

standard deviation of one pixel. Selectivity was evaluated by calculating a selectivity 

score below, where n represents the set of trial-types(two in the case of object and 

position, four in the case of object by position), and λ represents the mean firing rate for 

that event type. 𝜆𝑝𝑟𝑒𝑓 represents the trail type with the largest firing rate. 
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𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =

(𝑛 − ∑ (
𝜆𝑖

𝜆𝑝𝑟𝑒𝑓
)𝑛

𝑖=1 )

𝑛 − 1
  

 Significance was determined by generating a null distribution of selectivity 

scores after randomizing the trial identity of each sample. Only units that passed a 99% 

significance threshold from 10,000 boots were considered to code a particular dimension 

(Keene et al., 2016). 

For waveform and spike rate drift metrics, average waveform amplitude and spike 

rate was estimated for each 10 second bin spanning the whole recording session. We then 

measured the average absolute Euclidean distance and absolute difference in firing rate 

between each bin to all other bins. From that matrix, we regressed the values as a 

function of distance from the diagonal but excluding the diagonal to obtain an average 

waveform or spike rate distance as a function of temporal lag between bins for each cell. 

Units with an average firing rate of >10 Hz across the whole recording session were 

assumed to be interneurons and were removed from all population analyses.  

For population analyses, trial rate vectors were constructed for each cell by 

averaging the firing rate across the two seconds surrounding the first sampling event on 

each trial, and then z-normalizing the rate across trials for each individual neuron. All 

trials were included in these analyses, so as to reveal any performance effects as well as 

for statistical reasons. A z-transform was employed to prevent overreliance on highly 

active units or under reliance on sparsely active units. A population vector correlation 

matrix was generated for each rat by calculating the Spearman correlation of the 

population vector for each trial to each other (Figure 16B). That correlation matrix was 



 

 

108 

then averaged across all sessions to generate the ‘super rat’ matrix observed in Figure 6A. 

All measures of drift were constructed by first generating a mean value for each session 

onto which statistics were performed, and the mean +/- SEM across sessions was plotted. 

Bootstrap permutation tests were performed as described with a standard 10,000 

randomized samples in which the group index was randomized without replacement. 

Bayes factors were obtained by inputting summary statistics into an online engine 

accessible at http://pcl.missouri.edu/ (Liang, Paulo, Molina, Clyde, & Berger, 2008). 

 

3.4 Results and Figures 

3.4.1 Rats performed a temporally blocked object discrimination task 

We recorded from 768 cells across 25 sessions from 5 rats each implanted with a 

24-tetrode hyperdrive aimed at dorsal CA1 (Figure 10C). After removing putative 

interneurons and keeping only units with an average firing rate of below 10 Hz and with 

at least one spike for at least 5 sampling events we obtained 642 putative pyramidal cells. 

Rats were trained to perform a blocked object discrimination task designed to segment 

memory into six 15 trial blocks (Figure 10A). Within each block of 15 trials, one of the 

two distinguishable pots contained hidden reward. After each 15 trial block, a temporal 

delay signaled the end of a block; the reward contingency was reversed to the other pot 

for the subsequent block of trials (See Figure 10 “Event Segmentation”). Between blocks 

the rat was shuttled into a side chamber for 60 seconds so that the end of a block was 

signaled not only by an increased trial duration per se but also by an intervening 

experience. Individual trials took on average a little under 30 seconds to perform (26.0 

http://pcl.missouri.edu/
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+/- 0.40 sec), each block of trials took about 6 minutes (6.04 +/- 0.56 min), and a session 

lasted roughly 45 minutes (45.44  +/- 1.1 min). Each session contained an unequal but 

roughly similar number of sampling events at each item and position, however some 

animals showed a slight bias towards sampling the item on one side of the maze more 

often. Furthermore, we restricted our analyses to the first sampling event on each trial, as 

the identity of the object on the first sample remained pseudorandomized per task design. 

Only after the sample had terminated and a response was offered did the behavior 

systematically change towards rejecting the incorrect object and digging in the correct 

pot. 



 

 

110 

 

Figure 10: Task design and tetrode locations.  

A. Rats performed a blocked object discrimination task in which the reward contingency was held 

constant for 15 trials in a row and then reversed for the next 15. Each block took roughly 6 minutes, 

and each delay between blocks was fixed at 1 minute. B. Each trial consisted of three phases, a short 

inter trial interval, the pot setup phase, and the sample/choice phase. C. Recording locations of three 

individual tetrodes. Arrowheads indicate final tetrode locations in the pyramidal layer of dorsal CA1.  
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3.4.2 Rats performed as though each block of trials was a new episode. 

Following pre-training on simple pot discrimination, rats took roughly a week to 

reach a criterion of 70% correct within a given session. Recording began after criterion 

was reached. Once trained, all rats performed similarly to each other (Mean across 

rats=80% +/- 1.97%, ANOVA, F(4,20)=0.1), and all rats performed similarly across days 

(Mean across days=79% +/- 0.52% ANOVA, F(7,17)=1.61) and blocks within each day 

(Mean across blocks=79%+/-1.13% ANOVA, F(5,144)=1.73). Typically, errors were 

concentrated around the beginning of each block, but were not restricted to the beginning 

of the recording session (Figure 11). We generated two alternative hypotheses regarding 

behavior. We hypothesized that the rats would recognize the block transitions as a cue to 

change their response strategy, and would begin each block by switching their response 

towards digging in the now-correct pot. Alternatively, rats could have ignored the 

boundary cue. In this case the animals would begin each block by erroneously 

perseverating with the (now-incorrect) response from the previous block. We evaluated 

these hypotheses at the group level, but also at the individual animal level (if some rats 

respected the contextual cues while others did not, the group could perform at chance on 

average despite none of the individual rats performing at chance). To investigate both 

hypotheses, we compared each rat’s performance for each trial across blocks to chance by 

performing a binomial test on each animal. A two-sided binomial test asks whether the 

probability of correct responses was either above or below chance. Contrary to both 

hypotheses, only one rat performed different from chance for either of the first two trials 

in each block before a Bonferonni correction (Figure 11, Two Sided Binomial Test, Rat 1 
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Trial 1: 30% uncorrected binom p=0.03, trial 2: 38%, binom p=0.24: Other rats Trial 1: 

45.6%+/- 5.7%, minimum p=0.09, trial 2: 50.4%+/- 6.21%, minimum p= 0.31). By trial 5 

all rats were performing significantly above chance (Figure 2, trial 5:  81.5%+/- 4.38%, 

All binom. P<0.05, trials 6 to 15: 90.7% +/- 1.2%, All Binom. p< 0.005). Rats appeared 

to begin each block by impulsively digging in the first pot they encountered, as the 

probability of rejecting the first encountered pot on the first trial of each block was lower 

than for the last 8 trials of each block (Trial 1 reject rate mean=0.32 +/- 0.038% , trials 

11:15 reject rate mean=0.42 +/- 0.014%, ranksum p<0.05). Thus, rats appeared to begin 

each block of trials by guessing, and then rapidly learning the new rule contingency. The 

performance of each rat on each block could be described as either a recency-weighted 

averaging over recent experiences. Alternatively, they may have perceived the block 

delay as a new context but the behavioral contingency of that context was unknown to the 

rat. Both hypotheses account for the chance performance following the inter-block delay 

and also the learning of the new reward contingency within block (Figure 11 Right). 

However, an interpretation consistent with recency weighted averaging predicts a neural 

representation consistent with drifting temporal context (Figure 10), whereas recognition 

of the boundary but not anticipation of the rule predicts a neural representation consistent 

with either a segmented temporal context, or event segmentation (Figure 10).  
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Figure 11: Rats did not anticipate the reversal in reward contingency across blocks.  

Left: Mean +/- SEM performance throughout each recording session. Gray lines represent individual 

rats. Rats began each block in a session at chance regardless of the position of that block in the 

session. (Colored Bars represent changing context per Figure 1) Right: When all blocks were 

concatenated (colored blocks stacked), no rat performed better or worse than chance at the 

beginning of each block. Gray lines represent individual rats while black represents mean across all 

rats. Red line is chance performance.  All rats behaved as though each block represented a novel 

context in which to learn the rule contingency (colored bars represent evidence towards ‘temporal 

context’ as denoted in Figure 1). 

 

3.4.3 Single units replicated prior findings of object and position selective fields, 

but were impacted by context 

Single unit activity was observed by generating spatial heat plots (Figure 12), and 

peri-event rastergrams, and histograms centered on pot-sampling events (Figure 13).  

Consistent with previous reports, a large proportion of hippocampal cells had firing fields 

where the objects were presented (Figure 12, cells 1, 3, 5, and 6). When event-locked 

firing was examined, there was a large overlapping population of units whose firing fields 

discriminated between sampling events. Some units had firing fields consistently 

discriminated item regardless of position (Figure 13 top row, 43 cells (8% of putative 

pyramidal cells), showed an object selectivity score greater than 99% of 10,000 bootstrap 
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permutations). There were also units whose fields were specific to one position (Figure 12, 

106 cells (17% of putative pyramidal cells) showed a position selectivity score greater 

than 99% of 10,000 bootstrap permutations) as well as those specific to one item in one 

place (Figure 13 bottom row, 80 cells (12% of all putative pyramidal cells) showed object 

by position selectivity greater than 99% of 10,000 bootstrap permutations). Upon further 

investigation firing fields showed clear dependence on the shifting context (McKenzie et 

al., 2014) (Figure 14). 
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Figure 12: Many units showed spatially localized firing fields.  

Top plots: Black lines denote the running trajectories of the rat, while red dots denote the locations 

of spikes recorded from one unit. Bottom plots: Spatial heat maps of binned-firing rates for each 

unit. Yellow denotes maximal firing, blue denotes minimal firing. 
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Figure 13: Many units showed object-specific firing, (top four) and conjunctive object -position firing 

(bottom four).  

Peri-event rasters and histogram plots centered on object sampling. Time refers to seconds from 

sample onset, and rate refers to firing rate in Hz. We found some units to be object selective (red vs. 

blue) regardless of the position of the object (light shades v dark shades), as well as some objects to 

be selective to one object-position combination. 

 

3.4.4 A drifting contextual representation replicates previous findings and is 

uncorrelated to waveform drift 

Many units showed firing fields that were modulated by the changing context. 

The temporal context model and the event segmentation model each make a strong 

prediction for how context may modulate hippocampal firing fields (Figure 14). While 

putative pyramidal cells maintained the same spatial and object selectivity across blocks 

of trials, their rates showed obvious changes across contexts that seemed to resemble 

predictions from the temporal context model (Figure 14, bottom). Figure 14contains plots 

that include all trials including error trials, and each trial was color coded based on block 

(Figure 5, Color Scheme: Figure 1 “Segmented Temporal Context”). Briefly, event 

segmentation theory predicts that in this experiment firing fields should alternate across 

blocks so that units' response should be similar in the same the behavioral context.  

Conversely, temporal context theory predicts that in this experiment firing fields should 

change continuously without regard to the alternating behavioral contexts. For example, 

the first example cell (Figure 14) had a firing field that was selective to leftward samples 

of object 1, and was most robust for the first two blocks of trials. That is, this unit fired 

across two blocks of trials with different behavioral contexts and then ceased firing 

despite the repetition of those behavioral contexts. 
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3.4.5 Gradual changes in firing rate were uncorrelated with electrode stability 

To exclude the possibility that cells were drifting due to acquisition error, spike 

clusters from each tetrode were carefully examined as a function of time. First, tetrodes 

that included waveform clusters that obviously appeared not stationary with regard to 

time we excluded (Manns et al., 2007). Then, drift in spike amplitude was correlated to 

drift in spike rate in the remaining population of cells. For each cell, the Euclidean (4 

dimensional) distance was measured between the average spike amplitudes of each 10 

second bin in the session and then the distances were regressed against their bin lag to 

obtain a measure of waveform drift. The same was performed for absolute difference in 

average firing rate at the same 10-second bins to obtain a measure of firing rate drift. 

While there was a distribution of spike amplitude drift rates and activity drift rates, there 

was no relationship between the two measures (Figure 6, Spearman’s Rho, r2 (642) = 

0.0606, p>.05).  

These data revealed a wide spectrum of firing rate drift rates, as well as a wide 

spectrum of spike amplitude drift rates. However, as there was no relationship between 

these two distributions, the single unit data suggested that individual units exhibit a 

continuous spectrum of drift rates across time that is not due to recording artifact.  
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Figure 14: Many cells had context dependent firing fields.  

Top: Idealized firing fields of dCA1 units in the temporally blocked object discrimination task. Each 

color in rasters and line plots represent samples in one block of trials (See Figure 1A and Figure 2). 

Top Left: Ideal cell that responds selectively during one object-position combination, and does so 

only during blocks 2, 4, and 6 when object 2 is rewarded. Top Right: Idealized object-position 

conjunctive cell that responds maximally during block 4. Each idealized cell provides information 

about the object, position, and temporal structure of the task. Bottom: Empirical cells showed firing 

fields that seemed to be centered on a small contiguous block of trials, suggesting temporal drift. No 

empirical cells showed firing fields that alternated with blocks, showing a lack of evidence for event 

segmentation.  
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 Figure 15: Waveform drift is unrelated to spike rate drift.  

For each cell we measured the average spike rate and waveform shape for each 10 second bin across 

the recording session, and then measured the similarity within each metric at bins of increasing lag 

(see methods). Cells showed a wide distribution of spike-rate drifts (vertical line plot at bottom), and 

a wide distribution of spike shape drift rates (horizontal bars at left).  However, the spike-rate drift 

was unrelated to spike shape drift. Each example represents one cell at each corner of the scatter 

plot. Each unit cluster and waveforms are represented in red, and other units on that tetrode are 

included. Peak firing rates are listed below place plots for each unit during each block. Firing rate 

and waveform drift rates for each example unit, respectively: Unit 1: 0.26, 0.73; Unit 2: 0.69, 0.73; 

Unit 3: 0. 07, 0.01; Unit 4: 0.70, 0.08. 
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3.4.6 Ensemble activity suggests hippocampal patterns slowly drift 

To supplement the analysis on individual units, population analyses were used to 

determine whether hippocampal ensembles showed evidence for event segmentation, a 

drifting temporal context, or both. Event segmentation predicts that the hippocampus 

generates two stable representations, one for each rule condition (Figure 16A top 

left). This would manifest in alternating high correlations between blocks of the same 

rule condition, and low correlations between blocks of opposing rule condition. A drifting 

temporal context predicts that ensembles slowly change, and new representations would 

be continually generated (Figure 16A top right). This would manifest as a slow fall in the 

correlation between blocks at increasing temporal lag. We calculated the Spearman 

correlation of the population vector from each trial to all others to generate a correlation 

matrix for each rat (Figure 16B, Methods). We then averaged that matrix across all rats 

and sessions to generate a grand mean correlation matrix (Figure 16A Bottom). The 

empirical pattern of ensemble activity showed strong support for drift, characteristic of 

temporal context (Figure 16A right) but no apparent evidence that representations from 

past blocks with the same reward contingency were repeated (Figure 16A left). Correlation 

values were greater at the beginning and the end of the session, but this may have been 

due to the lack of an acclimatization period at the start, and the fact that some sessions 

were shorter than others (Monaco et al., 2014). Importantly, the correlation values did not 

fall smoothly at increasing distances from the diagonal of the matrix. This was likely due 
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to behavioral variables, such as where the rat was during the sampling event, and which 

pot the rat was sampling. Correlation matrices were reorganized to control for these 

variables. First trials were sorted by position such that the first and fourth quadrants 

contained trial pairs in the same position. This revealed a strong ensemble code for space, 

as exemplified in rats 2 and 4 (Figure 16B) where higher correlations were clustered at 

same position comparisons. The events were then sorted by object and lastly by time, to 

reveal correlations that fell more smoothly with increased distance from the diagonal 

(Figure 16B right). Furthermore, temporal proximity was evident across object and place 

representations in some rats as evidenced by yellow streaks parallel to the diagonal of the 

matrix, but away from the diagonal of the matrix (Figure 16B right, rats 1 and 4). These 

stripes signify that temporally proximal trials that differed in object or place were 

represented more similarly than those that were farther apart in time. Thus, there was also 

a portion of the ensemble that tracked trial lag, but not object or position. 
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Figure 16: Drift, and not a representation of the repeating rule conditions was apparent in 

correlation matrices.  
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A. Observed correlation matrix suggests continuous temporal drift. Top left: Predicted correlation 

matrix if ensembles represent a context code consistent with event segmentation. Top right: 

Predicted correlation matrix if ensemble code is consistent with drifting temporal context. Bottom: 

Empirical correlation matrix averaged across animals more closely resembles predicted matrix 

under the temporal context hypothesis. B. Trial-by-Trial correlation matrices for each rat also show 

temporal drift. Left: Matrices were sorted by trial number as was done in A. Right: Matrices sorted 

by position, then by object, then by trial number. Position coding can be seen as higher correlations 

in the top left and bottom right quadrants of each matrix. Object coding can be seen as nested 

quadrants within each position quadrant. Note that once trials were sorted by object and place that 

high correlations still clustered adjacent to the eye of the matrix, indicating that ensembles were 

more similar between trials at closer temporal proximity. Similarity was calculated by generating z-

normalized firing rate vectors for each cell across sampling events, and then calculating the 

spearman's rho between the population vectors on each trial. The color scale is equivalent across the 

two matrices for each rat, but a different scale was used for each rat. 

3.4.7 Hippocampal populations showed drift across blocks 

The effects observed in the correlation matrices were then quantified. If 

hippocampal ensembles reflected the two rule states, hippocampal activity would be more 

similar between blocks that shared a rule condition (at lag 2, and 4), versus those that 

involved opposing rule conditions (at lag 1, 3, and 5) (Figure 17 top left). Conversely, if 

hippocampal ensembles tracked time, then hippocampal activity would become 

progressively less similar between blocks at increasing lag (Figure 17 bottom left). The 

overall population correlation between blocks consistently fell as the block lag grew 

(Figure 17 Right, purple line) (across all trials slope=-0.025, Observed slope exceeded all 

10000 perms, permutation mean -2.38x10-7, σ=0.0034). The representation for the same 

behavior (e.g. same object, position, and response) also progressively decorrelated with 

block (Figure 17, Right, yellow line) (Permutation test: slope=-0.048, the observed slope 

exceeded all 10,000 bootstrapped permutations, permutation x=-1.5x10-5, σ=0.0073). 

Correlations for the same item, position, and response remained higher than those across 

all sample types at each block lag (Bonferonni corrected Ranksum test: Lag 1: Within 

object, position, response mean correlation = 0.16, across mean correlation =0.03, 
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p<1x10-4, Lag 2 within mean =0.08, across mean =-0.02, p<0.001, Lag 3 within mean 

=0.03, across mean =-0.06, p<0.001, Lag 4 within mean =0.01, across mean =-0.07, 

p<0.001, Lag 5 within mean =-0.05, across mean =-0.08, p<0.05) suggesting a robust 

code for objects and places even though both populations drifted. Finally, when these 

results were reevaluated after only using units with the most stable waveform clusters 

(most stable quartile, see Figure 15) the population still significantly decorrelated with 

increasing temporal lag, and at a similar rate (Slope=-0.038, Observed slope exceeded all 

10,000 perms, permutation mean 1.12x10-4, σ=0.0087). Finally, the representation of 

each delay in between blocks also progressively decorrelated with increasing lag (Figure 

17 Black line, Slope of correlation vs. lag=-0.076, observed slope exceeded all 10,000 

perms, perm mean=-3.6 x 10-3, σ=0.017). Therefore, all empirical curves replicate 

previous findings of a temporal context coded in conjunction with a stable code for items, 

places, and behavior. Note that deviations from the smoothly decreasing curves are small-

any contribution from discrete event coding would have to be much smaller than the 

contribution due to gradually-changing temporal context. Moreover, event segmentation 

would predict that the deviations from a smooth curve should be consistent from one type 

of comparison to the other, resulting in parallel curves (Figure 17, top left). However, to 

the extent there were deviations in the different empirical curves, they were not 

systematic across the type of comparison. Thus, consistent with behavior, there was no 

evidence that hippocampal populations represented blocks in discrete segments based on 

the two rule conditions. 
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Overall hippocampal ensembles showed strong temporal drift with no evidence 

that past blocks of the same rule condition used the same code. This was true for the 

overall population, but was also found in conjunction with a code for places, objects, and 

object-place conjunctions. Furthermore the code for objects and positions remained 

across all blocks. Thus even though hippocampal populations drifted from block to block, 

there remained a code for objects and positions that persisted throughout the recording. 

Temporal drift also persisted during the inter-block-delays, where there was also no 

evidence for an alternating neural structure. 
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Figure 17: Ensembles reflected a context code that continually changed across blocks and did not 

recur. 

Top left: Ideal curves under event segmentation hypothesis. Event segmentation predicts high 

correlations between blocks of the same rule condition at lags 2 and 4. Bottom left: Ideal curves 

under the contextual drift hypothesis. Contextual drift predicts a monotonic decrease in each curve. 

Right. Observed curves for ensemble correlations fell as the block lag between the trials grew. This 

was true for the overall population (purple line) as well as in the ensemble coding the same object 

(blue) or position (green) or same object, position and behavioral response (yellow), and finally the 

intervals between the blocks (black line). All curves show a systematic decrease from small to large 

lags with no obvious alternation. To the extent that there are fluctuations in the curves, these 

fluctuations were small and not consistent across different trial comparisons. 

 

3.4.8 Hippocampal populations showed drift within block 

The foregoing analyses demonstrate that the hippocampal ensemble changed 

gradually across blocks on the scale of tens of minutes. This subsection examines 

changes in hippocampal representation within a block on the scale of about a minute. To 

replicate previous findings, population correlations were compared between individual 
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trials (Figure 18) (Manns et al., 2007). There was significant temporal drift in the overall 

representations across trials (Figure 18 purple line, observed slope=-6.8x10-3, observed 

data exceeded all 10,000 perms, perm. x =-8.16 x10-6, σ=8.4x10-4).  Temporal drift within 

a block was apparent after controlling for object, (Figure 9 blue line, Observed slope= -

8.5x10-3, observed data exceeded all 10,000 perms, perm. x=6.98 x10-6, σ=1.1x10-3), 

position (Figure 18 green line, Observed slope= -7.1x10-3, observed data exceeded all 

10,000 perms, perm. x =-1.58 x10-5, σ=9.0x10-4), and object, position, and response 

(Figure 9 yellow line, Observed slope= -0.013, observed data exceeded all 10,000 perms, 

perm. x =-4.65 x10-7, σ=1.3x10-3). Drift was also apparent across exclusively correct 

trials (Not shown, Observed slope= -0.0095, observed data exceeded all 10,000 perms, 

perm. =-1.32 x10-5, σ=1.7x10-3) suggesting that this is not an artifact of the learning curve 

observed in Figure 11. This drift occurred individually in the overall population of each rat 

tested except for Rat 3 (Figure 17B, Rat 3 included 2 sessions with 12 units total, observed 

slope=-0.011, observed data exceeded 716/1000 perms, perm x=-1.24 x10-4, σ=0.0076). 

This failure to observe robust drift in Rat 3 is perhaps because Rat 3 only contributed a 

total of 12 units over 2 sessions. 

These data replicate previous findings that show drift is observable across 

individual trials. Drift on the order of seconds was observed in the overall code, as well 

as the code for objects, positions, and object-position conjunctions. Thus, reliable 

population drift was observed even across iterations of the same behavior and context, 

and over a scale of seconds. 
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Figure 18: Ensemble correlations within a block reliably fell as trial lag increased. 

 This effect was evident both in the overall population activity (purple line), as well as when we 

controlled for object (blue), position (green), or object, position, and response (yellow). The overall 

correlations across lags were higher after controlling for object, position, and object-position 

conjunctions, revealing a population code for objects and positions. 

 

 

3.4.9 Hippocampal shifts between blocks can be accounted for by time 

We observed robust drift in the hippocampal population occurring both across 

blocks of trials as well as on a trial to trial basis. However, it is possible that in 

conjunction with drift within each block, there exist shifts in population state at the 

transitions between blocks (see Figure 10, Segmented Temporal Context vs. Drifting 
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Temporal Context). This would manifest as an increase in the population drift rate across 

blocks over what was observed within a block. To isolate this possible effect, trial pairs 

within a block (Figure 19 left, blue line) were examined separately from those that 

spanned a block transition (Figure 19 left, red line) after controlling for object and position 

effects. We observed significant drift both within each block as well as across blocks 

(Within block observed slope=-.395, observed data exceeded all 10,000 perms, perm 

mean=-7.66x10-4, σ=0.055. Across block observed slope=-0.279, observed data exceeded 

all 10,000 perms, perm =-5.276 x10-4, σ=0.0543). After controlling for trial lag the block 

transitions induced a separation in representations of contexts as other studies have 

suggested (Baldassano et al., 2017). Because quantification of segmentation is inversely 

related to that of drift in this instance, choosing segmentation as the alternative 

hypothesis leaves drift as the null. Standard statistical testing was therefore problematic, 

as it provides only positive evidence for one alternative hypotheses over the null. 

Therefore, we used a Bayes Factor to directly compare the likelihoods of segmentation 

and drift and find positive evidence for the more likely hypothesis, equally assessing the 

alternative and null. The correlation between trials in the same block was significantly 

greater than that in adjacent blocks after controlling for trial lag (JZS Bayes T-Test 

yielded a Bayes Factor strongly in favor of a difference in means, odds ratio 400:1). This 

suggests that the transition between blocks induced a separation between representations 

of trials that happened in different blocks consistent with event segmentation.  

This could either be because the boundary cue induced a separation in 

hippocampal representations, or that the separation in representations was merely a 
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consequence of the extended time between the two trials spanning the delay. To address 

whether the extended temporal lag fully accounted for the apparent boundary effect on 

the hippocampus, we plotted the correlation between trials by their temporal lag and then 

organized pairs by whether there was a block transition between them (Figure 19 right). 

When we compared trial pairs in the same block with those in adjacent blocks in this 

way, we found that the block break caused no more reduction in the population vector 

correlation than would be expected by elapsed time (JZS Bayes T-Test yielded a Bayes 

factor strongly in favor of a single mean, odds ratio 31:1). Thus the separation of trials 

spanning a block transition observed in the left figure was completely eliminated by 

accounting for elapsed time. This was also true after removing trials at the beginning of 

the block when performance was poor (Trials 4:15 of each block only, JZS Bayes T-Test 

yielded a Bayes Factor strongly in favor of a single mean, odds ratio 15.9:1) removing 

the possibility that the representation of context only shifted after the animal had 

switched behavioral strategy. Thus, even though every animal reliably alternated their 

choices between blocks and no rat perseverated into the next block, there was no 

evidence that hippocampal code segmented experience any more than what would be 

expected from elapsed time. 
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Figure 19: Time fully accounts for shifts in population state across blocks.  

Left. Population vectors within a block (blue) were more similar than those in adjacent blocks (red) 

when trial lag was considered. Alone, this might have been evidence for event segmentation. Right. 

Population vectors within block (blue) were not more similar than those in adjacent blocks (red) 

when time was considered. Population vector correlations were lower in adjacent blocks, but time 

was sufficient to account for this decrease. Thus, there was no evidence for event segmentation 

between blocks above and beyond the change attributable to the temporal delay between blocks. 

Population vectors were constructed in the same manner as Figure 10. 

 

 

 

 

3.5 Discussion 

In this experiment we sought to determine how the hippocampus codes for 

behaviorally-relevant context in a task in which animals were required to segment 

experience in time to distinguish between two rule contingencies. Event segmentation 

predicts that animals would have parcellated experience into discrete episodes based on 

contextual boundaries; temporal context predicts that the hippocampal representation 

should provide a continuous relational metric that progressed consistently across time. 

We provided rats with a temporally blocked task such that an event boundary (removal 
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from the testing chamber) cued a reversal in the reward contingency. Importantly, the 

context boundary was a transient cue that signaled a change in which object was 

rewarded, but was not an explicit cue that would be available to the animals as they made 

the choice.  

 Interestingly, well-trained animals neither perseverated across cued block 

transitions, nor did they anticipate the rule reversal. Instead, every rat tested began every 

block at chance, frequently digging in the first pot he encountered. Thus, while no rat 

learned that there were two alternating rule conditions, they all benefitted from the 

boundary cue by changing their behavior across the block boundaries. Hippocampal units 

showed selectivity for the position, object, and object-position conjunction of sampling 

events while also showing sensitivity to the changing context. Indeed, the ensemble code 

showed strong evidence for temporal drift both across blocks and within each block. 

Conversely, there was no evidence that the ensemble code was more similar for blocks 

that shared a rule contingency. Furthermore, there was no greater separation in the 

hippocampal representation than was expected by the passage of time across the event 

boundaries that marked block transitions. 

 

3.5.1 The methodological design could have prevented a segmented neural 

representation 

The behavioral results suggest that while no rat learned to anticipate the reversal 

of the reward contingency between blocks that nonetheless they all were sensitive to the 

boundaries between blocks. There are multiple interpretations of these curious results. 
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One clue was that the probability of rejecting the first pot encountered was significantly 

lower at the start of each block, suggesting the rats began a block with no a-priori 

preference. Perhaps rats forgot the past rule condition during the block transition and 

entered the box naïve, only remembering that one of the pots contained reward, but not 

which pot. Alternatively, they may have merely grown impatient during the delay, and 

therefore were unwilling to reject either pot. Previous data suggest this behavior may 

reflect a hippocampal dependent cognitive flexibility, rather than mere impatience. 

Numerous studies on blocked alternative choice behaviors revealed that hippocampal 

lesions caused rats to perseverate more after switches in rule contingency or reward 

location (Hsiao & Isaacson, 1971; Kimble & Kimble, 1965). Importantly, each of these 

studies involved behavior that was fixed for a large block of trials followed by an abrupt 

change in reward contingency. Considering our animals showed no consistent 

perseveration across blocks, these results suggest that the dorsal hippocampus might have 

been involved in the small savings the rats exhibited at the beginning of each block. 

Indeed, the drift we observed in the hippocampal representation aligns well with the 

observed behavior as if the dorsal hippocampus played a role in supporting the flexible 

changes in responses across time. 

Further support for this interpretation may be found in studies on the recency 

effect observed in human and animals that also show a moderately hippocampal 

dependent strengthening of memory for recent list items (Kesner et al., 1988). Under this 

interpretation, the long delay caused a weakening of memory that contributed to the rats’ 

uncertainty at the beginning of each block. This uncertainty might have manifested as a 
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reduced rejection rate. These two accounts suggest that even though animals were unable 

to track the two recurring rule conditions, their behavior in this task may have been 

supported by hippocampal processing. 

 

3.5.2 This experiment differed from other context dependent experiments 

Consistent with behavior, we found no support in the activity of hippocampal 

ensembles for a rule-specific code. These data are in stark contrast to previous 

experiments that presented animals with distinct behavioral contexts (e.g. Markus et al., 

1995; McKenzie et al., 2014). However, it is important to note the difference between the 

contextual cues in this experiment and those in previous experiments. Those experiments 

that did observe segmentation used spatially distinguishable contexts (Komorowski et al., 

2013, 2009; McKenzie et al., 2014) or overt external cues to discriminate the context, 

such as an ambient sound, odor, or object (McNaughton et al., 1996; Zaremba et al., 

2017). The task in the present experiment was specifically designed to be devoid of such 

ambient cues, as a neural response to that cue could be mistaken for a new context signal, 

providing false evidence for event segmentation. Other tasks generated contexts 

consisting of separate behavioral tasks or event sequences in the same physical space (M. 

R. Bower, 2005; Ferbinteanu & Shapiro, 2003; Markus et al., 1995). But in those 

paradigms context was designated by overt changes in the physical behavioral sequences, 

and reward locations differed between contexts (Kobayashi et al., 1997; Markus et al., 

1995). Thus, trajectory dependent firing ‘splitting,’ or cue responsivity may have been 

responsible for the context signal in these experiments (Ferbinteanu & Shapiro, 2003; 
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Grieves, Wood, & Dudchenko, 2016). As the spatial layout of this task was held constant 

across the two rule conditions, there were no systematic changes in the animal’s 

trajectory, which could explain the absence of an alternating neural code. 

A previous study found that in rats successfully performing alternation behaviors, 

alternation in the hippocampal code was not always apparent, and was sensitive the 

location of the reward itself (M. R. Bower, 2005). This study suggests that the shaping 

procedure in rodent experiments has a profound effect on context disambiguation in the 

hippocampus (M. R. Bower, 2005). Therefore, we hypothesize that rats may benefit from 

the opportunity to first explicitly learn two alternating rule conditions through training 

with an explicit contextual cue, such as wall color, or ambient sound. Rats might then 

continue to track the alternating context even after the ambient contextual cues are 

removed. This might also reveal a hippocampal representation of the two contexts and 

provide evidence for event segmentation when only boundary cues segment context. On 

the other hand, the hippocampus may code temporal context in a unique manner, and that 

other regions such as the Lateral Entorhinal Cortex may have shown segmentation in this 

task (Tsao et al., 2018).  

3.5.3 These data add to a growing literature that describes temporal drift 

Hippocampal populations showed robust drift through time both across seconds as 

well as minutes. These data add to a growing body of literature that suggests that 

hippocampal representations change across, and are sensitive to time. Importantly, this 

type of temporal drift has been observed in experiments employing a variety of recording 

methodologies (Cai et al., 2016; Mankin et al., 2015; Manns et al., 2007; Mau et al., 
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2018; Rubin, Geva, Sheintuch, & Ziv, 2015; Ziv et al., 2013). Hippocampal drift has also 

been observed in both hippocampal dependent tasks as well as tasks with no mnemonic 

demand (E. A. Mankin et al., 2012; Manns et al., 2007; see also: Tsao et al., 2018b). This 

experiment is to our knowledge the first direct evidence that population drift is 

uncorrelated with waveform drift in chronic tetrode recording preparations. Further 

suggesting that these time signals are unlikely to be a recording artifact, many units 

observed in the Lateral Entorhinal Cortex by Tsao et al. showed slow changes in spike 

rate that repeated multiple times and were triggered by entry into a new environment 

(Tsao et al., 2018). Because drift is observed with recording techniques ranging from 

tetrode recording to calcium imaging to immediate early gene expression, this reduces the 

possibility that it is simply a measurement artifact - all of the recording methodologies 

would have to have independent artifacts that happen to produce the same results. This 

raises the possibility that population drift reflects a functional correlate of hippocampal 

processing that occurs continually even under no mnemonic demand, or when behavior is 

clamped. 

A drifting representation of context supports the behavioral results in this 

experiment, and suggest that hippocampal processing contributed to the flexible behavior 

that was observed. This representation was supported on the individual unit level through 

firing fields centered on sampling events that were specific to position and object, but 

that peaked around a window of trials over the experimental session. Thus, drift occurred 

both in neurons coding for places and objects as well as in units without obvious place or 

object selectivity. Crucially, while some of these firing fields remained stable, across the 
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population there was a spectrum of drift rates (Figure 15). The drifting representation of 

context is useful, as it provides a continuous dimension for relating experiences and is a 

likely mechanism for tracking the temporal relationships of events across many scales of 

time (Cai et al., 2016; Eichenbaum, 2017). This may have enabled rats to forget past rule 

conditions and learn new ones by providing a mechanism for separating old experiences 

from more recent experiences. Specifically, this drift would enable rats to both associate 

very recent trials occurring in the same block and disassociate distant trials occurring in 

the previous block. Drift in the hippocampus may therefore enable the rapid learning that 

occurred around the beginning of each block. 

3.5.4 Was the hippocampus really insensitive to the event segmenting cues? 

If the animals were generating new contextual representations at the onset of each 

block of trials, one might hypothesize that the boundary cue may have impacted the 

hippocampal code. Recent modeling suggests that event segmentation may occur when 

the actor detects shifts in the latent causes governing the set of rules in a given context, 

and that the hippocampus is necessary to properly assign a new context (Gershman, 

Monfils, Norman, & Niv, 2017; Gershman & Niv, 2010). Indeed the boundary cue, in 

this case the prolonged delay and removal from the task environment, did impact the rats’ 

expectations, as no rat showed response perseveration on the first trial of a block. fMRI 

studies in humans suggest this effect is caused by increased hippocampal activation 

coinciding with recognition of an event boundary (Baldassano et al., 2017; Swallow et 

al., 2011). This boundary effect has been recently replicated in the rodent hippocampus 

during two paradigms where space served to contextualize experience (Bulkin et al., 
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2018; Place et al., 2016). In this experiment, there was an increase in drift between trials 

separated by a block boundary, but the increased separation in representations was 

completely accounted for by the passage of time between blocks. This result suggests that 

removal from the environment had no impact on the hippocampal representation. 

However an alternative explanation is that time was sufficient to separate the 

hippocampal representation of context and promote a change in the rats’ expectations. 

Perhaps the temporal delay between blocks somehow inhibited the identification of a 

discrete change in the latent cause governing the reward contingency. Under this 

interpretation other cues may separate contexts as well if they were only given the right 

opportunity. Future experiments could dissociate the impact of each of these cues by 

imposing either the prolonged delay or the removal from the environment alone, or both 

in combination to observe different levels of separation in the hippocampal representation 

across time. 

3.5.5 A combined model of event segmentation and drift 

  In this study we examined the hippocampus for a neurophysiological signature of 

event segmentation in a behavioral task with a clear event boundary (removal from the 

testing environment). The assumption in designing the experiment was that it would be 

advantageous to map behaviorally-similar blocks of trials onto distinct cognitive maps 

and that the neural code would alternate across blocks of trials. As discussed above, there 

might be some methodological change to the experiment that would have enabled a 

successful event segmentation strategy. But another reason we failed to observe neural 

evidence for event segmentation is that our a priori expectations about how event 
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segmentation would manifest at the resolution of individual neurons in the hippocampus 

may have been incorrect. 

In humans, there is an active literature on how people segment continuous 

experiences, such as movies of real world scenes or radio plays (Zacks, Kurby, 

Eisenberg, & Haroutunian, 2011; Lositsky et al., 2016; Baldassano et al., 2017). 

Participants place event boundaries where they note meaningful changes in the ongoing 

structure of the world. One of the key findings from this literature is that people can 

segment boundaries at a range of time scales (Kurby & Zacks, 2008, 2011). For instance, 

suppose participants identify a segment several minutes long in a scene where a person 

makes a salad. At the same time people can also identify shorter segments within the 

larger segment corresponding to steps such as retrieving ingredients from the refrigerator, 

washing the vegetables, or chopping the vegetables. Indeed different environmental 

inputs in the real world change at many different rates, reflecting the complex multiscale 

structure of our world (Sreekumar, Dennis, Doxas, Zhuang, & Belkin, 2014; Voss & 

Clarke, 1975). Furthermore, fMRI evidence suggests different cortical regions may 

segment continuous experience into event segments at varying timescales (Baldassano et 

al., 2017). How might the hippocampus support the formation of event segments and the 

organization of segments across time?  

One possibility is that hippocampal time cells possess all the properties necessary 

to support behavioral event segmentation. Critically, time cells respond at a wide range of 

delays tiling intervals that have been studied thus far up to at least tens of seconds (Salz 

et al., 2016). Furthermore, time cell sequences may be specific to certain past events, 
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such as presentation of a specific odor (Macdonald et al., 2013; Terada et al., 2017). Time 

cells may also track time at multiple time scales from minutes, to hours, to even days 

(Mau et al., 2018). These properties together suggest time cells may support our ability to 

bridge the gap between events at multiple scales to relate those experiences. A time cell 

sequence could provide a common temporal context that spans any boundary that 

occurred between experiences, thus providing a mechanism to relate those two 

experiences. Conversely, activity of overlapping time cells would also provide specific 

details about before and after a boundary has occurred, providing a mechanism to 

contrast those experiences.  

As has been previously proposed, the hippocampus may provide pointers that 

index past events, rather than storing the content of those events per se (Teyler & 

DiScenna, 1986). At the ensemble level, pointers that drift across time enable the pointer 

system to reflect the temporal organization of events across time. In this way, temporally 

modulated drift coupled with the hippocampal place code enables a spatiotemporal 

scaffold onto which memory for events are stored. 
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Chapter 4. The LEC and vHPC Encode Time Differently than the dHPCc 

 

4.1 Summary 

 Recent literature has focused on the mechanism by which the hippocampus and 

cortex organize experience across time to support episodic memory. Recently discovered 

time cells in the dorsal hippocampus and medial entorhinal cortex present a potential 

mechanism underlying this function. Time cells organize into a sequence of temporally 

circumscribed elevated activity that tile a mnemonic delay and provide an estimate of 

how long ago an event occurred. Time cells may exist in a broad range of cortical and 

hippocampal regions. Recent work has shown units in the LEC track time over the course 

of a day, suggesting a potential role in organizing events across time. We recorded from 

dHPC, vHPC and LEC as rats performed a delayed matching task across an 8 second 

delay. While activity in all three regions was time modulated during the delay, single 

units expressed markedly different activity patterns. Dorsal hippocampal units exhibited 

typical ‘time cell’ firing fields. Although time could be accurately decoded from ventral 

hippocampus and LEC, units did not show clear time fields, and instead exhibited slow 

time modulation during the delay. 

 

 

                                                        
c This chapter was in preparation for submission to an academic journal at the time this dissertation 
was submitted. Contributing authors include; John H. Bladon, Frascesca Marino, Cindy Liu, Joseph 
O’Keefe, and Marc Howard. JHB, FM, CL, & JO acquired and processed data, JHB & MWH analyzed data 
and wrote the manuscript, and JHB & Howard Eichenbaum designed the experiment. 
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4.2 Introduction 

 Episodic memories are characterized by their placement in the unique time and 

place at which they occurred (Tulving, 1972). The hippocampus is necessary for the 

spatial and temporal organization of memory, and accordingly shows spatially and 

temporally structured unit activity (Caparelli et al., 2012; Gill et al., 2011; O’Keefe & 

Burgess, 1996; Pastalkova et al., 2008; Vargha-Khadem et al., 1997).  Place cells fire in 

specific locations in an environment (O’Keefe, 1976), and time cells fire at a specific 

moment during a delay (Macdonald et al., 2011; Pastalkova et al., 2008). Time cells 

contain information about how long ago an event took place, but also contain information 

about the nature of that past event (Macdonald et al., 2013; Otto & Eichenbaum, 1992). 

In this way, time cells are thought to bridge gaps in time, acting as a continuous record 

tracking when past events occurred. Time cells arise even without a mnemonic demand, 

and time cell integrity correlates with memory across a delay (Pastalkova et al., 2008; 

Robinson et al., 2017; Salz et al., 2016). Time cells have been described in multiple 

memory related brain regions, including dorsal CA1, dorsal CA3, and the medial 

entorhinal cortex. The extent of the time cell network remains unclear, and may include 

other cortical and hippocampal regions such as the ventral hippocampus and LEC. 

Furthermore, the mechanism generating time fields is unclear, and competing hypotheses 

suggest they may either be organized by internal hippocampal processes such as 

recurrently connected attractor dynamics, or that they may integrate slowly changing 

cortical inputs (Eichenbaum, 2014).  
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The dorsal hippocampus and MEC have been closely examined for their spatial 

firing characteristics. However, each of these regions is organized in parallel with two 

less well-studied regions, the ventral hippocampus and lateral entorhinal cortex. The LEC 

and MEC provide parallel but segregated inputs to the hippocampus such that the LEC 

projects to more distal dendrites in the dentate and CA3, selectively innervates CA1 units 

residing in more superficial layers, and projects more heavily to the distal region of CA1 

(Amaral, 1993; Danielson et al., 2016). While the MEC and LEC may appear segregated 

in their anatomical connections, there is considerable overlap in firing characteristics 

when animals perform tasks that require episodic-like associations (Keene et al., 2016). 

The lateral entorhinal cortex has also been found to be necessary for memory across a 

delay, and contains firing fields that are selective for individual objects and odors 

(Tanninen, Morrissey, & Takehara-Nishiuchi, 2013; Xu & Wilson, 2012; Young et al., 

1997). Interestingly, there are also units who respond selectivity to the location of past 

objects, and following past odors, suggesting a mnemonic role for the LEC (Tsao et al., 

2013; Young et al., 1997). A recent report examining the LEC found temporally-

modulated activity across lags of minutes and hours (Tsao et al., 2018). Units in the LEC 

tracked time at this minute-to-minute resolution more reliably than hippocampal regions 

and the MEC. However, the LEC activity in that study did not resemble the time fields 

that had previously been observed over shorter timespans. Instead, activity levels either 

slowly fell, or slowly rose as time wore on. Together, these studies suggest that the LEC 

is crucial for memory across time, and that it contains a reliable time signal across 

minutes to hours.  It remains unclear, however, whether this code also exists across 
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seconds, at the resolution at which time cells are observed. Moreover, it remains unclear 

whether the time code in the LEC is similar to time cells observed in the dorsal 

hippocampus. 

Along with the LEC, the vHPC has received little attention in comparison to the 

dorsal hippocampus and MEC. Lesions to the ventral hippocampus, like those to the LEC 

cause impairments in associating objects and odors across time (Hunsaker & Kesner, 

2008; Rogers, Hunsaker, & Kesner, 2006). Both recording and lesion studies suggest the 

hippocampus is stratified along its dorsoventral axis such that spatial memory relies more 

heavily on dorsal regions, whereas stress and emotional memory rely more heavily on 

ventral regions. Accordingly, the dorsal hippocampus contains place fields that cover a 

smaller proportion of the arena, and thus represents space on a finer scale (Kjelstrup et 

al., 2008; Royer, Sirota, Patel, & Buzsáki, 2010). The ventral hippocampus contains a 

greater proportion of units whose activity is modulated by the emotional valence of a 

situation (Jimenez et al., 2018). However, this may be an artifact of larger place fields in 

the ventral hippocampus, or a denser representation of space (Jung, Wiener, & 

McNaughton, 1994). These observations together suggest the ventral hippocampus may 

represent experience more densely, or over a broader scale. Accordingly we hypothesize 

that the ventral hippocampus may contain either a denser representation of time, or may 

represent time across a broader scale. However, the ventral regions of the hippocampus 

are less well studied than dorsal regions, and temporal selectivity of the ventral 

hippocampus has yet to be examined. We explored whether vHPC and LEC contain a 

time code across seconds embodied by ‘time fields’ similar to those observed in the 
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dorsal hippocampus. To do so we recorded simultaneously from the LEC, vHPC, and 

dHPC of rats as they performed a delayed matching task and examined delay period 

firing in each region. 

 4.3 Methods 

Subjects. Subjects were 5 male Long-Evans rats (Charles River) weighing 

between 350 and 450 grams and between the ages of 6 months to 1.5 years for the 

duration of the experiment. Animals were single housed and maintained on a 12 hour 

light-dark cycle (lights on at 8:00 am) for the duration of the experiment. All behavioral 

training and experimentation was performed during the light phase. Animals were given 

ad-libitum water and maintained at a minimum of 85% of their ad libitum feeding body 

weight during all behavioral training and testing. All procedures were conducted in 

accordance with the requirements set by the National Institutes of Health, and were 

approved by the Boston University Institutional Animal Care and Use Committee (BU 

IACUC). 

Behavioral Apparatus: The behavioral apparatus consisted a custom-built 355-

cm long by 7.5 cm wide circular track with an integrated treadmill using commercially 

available parts (Columbus Instruments).  The treadmill had walls funneling into a small 

exit to ensure the animals head position was fixed for the duration of the treadmill run. At 

the end of the treadmill was a 20x20 cm square platform onto which the test objects were 

placed. The track was elevated 95 cm above the floor, positioned at least 20 cm away 

from all walls but in a position in which various distal visual cues were available to the 



 

 

148 

rat. The maze contained two automatic doors, one at the front of the treadmill and one on 

the return arm that were controlled by infrared beam breaks (Adafruit industries). 

Training procedure: Rats were trained in a similar manner to previous 

experiments (Robinson et al., 2017).  Briefly, rats were initially trained to run in one 

direction around the maze for froot-loop (Kelloggs, Battle Creek, MI) reward. Once rats 

reliably looped, they were shaped to retrieve the reward hidden in a flower pot after each 

lap (roughly 4 days).  Then, rats were trained to perform an object-pot matching task that 

involved two object-pot pairs. To do this, rats sampled one of two study objects before 

running through the treadmill platform and then choosing correctly between two terra 

cotta pots discriminable by scent and digging media (Keene et al., 2016). The terra-cotta 

pots were always placed side-by-side on the platform in a pseudorandomized position. A 

choice was determined to be made once the animal disturbed the surface of the media at 

which point the opposite pot was immediately removed at this and all subsequent stages 

of behavior. One crushed froot loop was added to each pot at the beginning of each day, 

and every 7-9 trials neither pot contained a food reward, and reward was given after 1 

second of digging to prevent the possibility of reward scent guiding behavior. This 

shaping was performed by initially running each object-pot pair in large blocks of trials 

(>10 consecutive trials) and progressively weaning down to random presentation over the 

course of 2 weeks. Once animals were performing at >80% discrimination, two new 

objects were added one at a time to the study set using the same progressively shrinking 

block design. Once animals were able to discriminate between the 4 objects to retrieve 

reward from the correct terra-cotta pot of the two with >90% accuracy, a running delay 
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was imposed. Initially, animals were trained to wait for a fraction of a second while the 

treadmill was nudged forward between the study and test phases. Once rats were able to 

perform at ~80% accuracy for at a two second delay, they underwent stereotaxic surgery. 

Following surgery and recovery, an abbreviated training regime was used to return the 

animal to good performance at 2 seconds. The treadmill delay was progressively 

increased until performance fell to between 70 and 80%, or until an 8 second delay was 

reached. Typically, this training schedule took roughly 1.5 months to train animals on the 

first pair of study objects, and then another 1.5 months for rats to perform with 4 study 

objects and with a sufficiently long treadmill delay. Following surgery, tetrodes were 

lowered over a 2-3 week period while the rat relearned the task and reached performance 

criterion at a long delay. 

Surgery: All surgeries were performed using standard aseptic techniques. 

Anesthesia was induced by inhalation of 5% isofluorane (Webster Veterinary Supply) in 

oxygen, and then a stable plane of anesthesia was maintained at 1.5-3% throughout the 

entire surgery. Immediately following induction, animals were injected with the analgesic 

Buprenex (Buprenorphine hydrochloride, 0.03 mg/kg i.m.; Reckitt Benckiser 

Healthcare), antibiotic cefazolin (330 mg/ml i.m.; West-Ward Pharmaceuticals), and the 

NSAID carprofen (Rimadyl,). The rat was then fixed to a stereotaxic frame (kopf). 

Craniotomies then were made above the rostral lateral entorhinal cortex (LEC)/ventral 

hippocampus (vHPC) (AP-6.8, ML 4.5), and in some animals the dorsal hippocampus 

(dHPC) (AP-4.1, ML 3.0mm). Six to eight sterile stainless steel screws were then fixed to 

the skull, and the remaining skull surface was covered with metabond. A hyperdrive 
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consisting of 24 independently moveable tetrodes in a single bundle, or split into two 

preconfigured bundles (bundle tips at the above conformation with the LEC bundle 

angled 16o in the lateral direction) was then lowered into the two craniotomies, and fixed 

to the skull using dental cement. Two ground screws were inserted above the cerebellum, 

and soldered to a ground lead fixed to the electrode interface board prior to surgery. Each 

tetrode was composed of four 12 uM RO 800 wires (Sandvik Kanthal HP Reid Precision 

Fine Tetrode Wire; Sandvik). Tetrodes were plated with non-cyanide gold solutions via 

electrolysis in order to reduce impedance to between 180 and 220 kOhms. At the 

conclusion of surgery, dHPC tetrodes were lowered ~1 mm into dorsal cortex, and 

LEC/vHPC wires were lowered at a minimum of 5 mm into brain tissue. Animals were 

given Buprenex and Cefazolin twice a day as needed for up to three days post-surgery. 

Histology: At the completion of recordings, rats were anesthetized with <5% 

isoflurane in oxygen. The recording site of each tetrode was confirmed by passing 40uA 

of current through the tetrode tip until the connection was severed (generally 2-4 

seconds). Immediately following electrolytic lesions, animals received an interperitoneal 

overdose injection of Euthasol (Virbac AH).  Immediately following cessation of 

breathing animals were transcardially perfused with ice cold 0.5% potassium phosphate 

buffered saline followed by 5% formalin in phosphate buffer (VWR). Brains were then 

extracted and submerged in 5% formalin as above for a minimum of 36 hours.  Brains 

were then submerged in 30% sucrose in phosphate buffer for 36 hours until rapid freezing 

and sectioning into 30-50 um thick sections in a cryostat (CM 3050s: Leica Biosystems).  
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Sections were mounted on gelatin subbed slides and then processed using standard Nissl 

staining protocol to visually confirm tetrode recording sites (Figure 22). 

Data acquisition: All electrophysiological recordings were performed using a 96 

channel multichannel Acquisition Processor (MAP) recording system (Plexon). Each 

spike channel was amplified 1000x, then between 3-10x depending on the region. Spike 

channels were manually referenced to a local tetrode with no apparent unit firing, 

bandpass filtered between 200 and 10 kHz, and digitized at 40 kHz.  LFP signals were 

uniformly referenced to ground, amplified 2000x, and bandpass filtered between 0.5Hz 

and 300 Hz. The animals’ position and behavior were tracked via two LEDs fixed to his 

hyperdrive on one overhead camera, and on one camera positioned behind the two terra-

cotta pots each recording at 30 fps. Tetrodes were moved a minimum of 60uM after each 

recording session to prevent resampling the same units. Tetrodes were lowered a 

minimum of 12 hours before all recording sessions to ensure tetrode stability. IR beam 

crossings and door movements were automatically logged, and behavioral events were 

scored manually using video feeds from the two cameras (CinePlex software, Plexon). 

Spike Sorting and Data preprocessing: Spikes were assigned to individual units 

by offline manual clustering of waveform characteristics (valley amplitude, peak-valley, 

energy, principal components, and waveform width at half max). Tetrode localization 

was performed using histology, and further guided by the LFP theta amplitude and phase, 

and sharp-wave ripple amplitude. Briefly, ventral hippocampal units were acquired from 

tetrodes just exiting the superficial layers of the hippocampus, where a characteristic 

theta-phase reversal, and ripple amplitude change could be found (Buzsáki, 2002). LEC 
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units were only acquired when theta amplitude was low, at depths greater than 6.8 mm 

(24 turns) ventral to the brain surface, or at depths greater than 1.13 mm (4 turns) ventral 

to the identified vHPC cell layer (Deshmukh, Yoganarasimha, Voicu, & Knierim, 2010).  

Standard L-ratios and isolation ratings were calculated from a 17 dimensional 

space that included the valley, peak-valley, full width-half max, and energy from each 

tetrode for each clustered spike, and the first principal component of variance across 

tetrodes for each spike( Schmitzer-Torbert, Jackson, Henze, Harris, & Redish, 2005). 

These parameters were chosen because they were the dimensions that were used to 

initially sort spike clusters. 

Behavior was monitored from an overhead camera and a second camera with a 

close-up view of the test pots (Supplemental Video).  The rats’ position was tracked via 

two LEDs attached to the implant (one red and one green) and customized MATLAB 

code. Briefly, after removing the average picture, a luminance and color (one red and one 

green) threshold were applied to find groups of contiguous pixels that could correspond 

to LED locations. Then regions were filtered for size and proximity to the previous rat 

location to yield the most likely LED positions at all frames. Door movements, and 

treadmill onset and offset were automatically strobed into the recording amplifier.  Test 

object sampling events were hand coded using CinePlex editor (Plexon) using video 

taken at 30 Hz (See Supplemental Video). All analyses of behavior were performed as 

described in results. 

Spike-Field coherence and Burst Indices: All Spike-local field potential 

relationships were performed using the LFP from the same wire the unit was recorded 
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from. Briefly, 1000 Hz LFP signal was z-scored and filtered in the theta frequency (5:12 

Hz) using a Butterworth filter, and then the instantaneous phase and amplitude were 

extracted using the Hilbert transform. Then the phase of each spike was interpolated 

using a nearest neighbor method. Statistics were performed on the histogram of spike 

phases binned in 12 degree increments (30 bins). The mean vector length and Rayleigh 

test were calculated as previously described (Jones & Wilson, 2005). The burst index was 

calculated from the autocorrellogram generated by binning each spike into 1 ms bins, and 

calculating the correlation at maximum lag of 50 ms. The burst index was calculated as 

the maximum in the autocorrelogram between lags 0 and 10 ms divided by the average in 

the autocorellogram between lags of 10 ms to 50 ms. The burst probability of each unit 

was calculated as the proportion of spikes with a neighboring spike occurring less than 9 

ms away. The theta index in the autocorrelogram was calculated using two methods. The 

first method was calculated form an autocorrelogram sampled at 1000 Hz and at a 

maximum lag of 500 ms. Briefly, the Welch’s power spectral density was estimated using 

ten 50 ms bins at frequencies from 2 to 50 Hz. The power estimate was frequency 

normalized and then the maximum power between 7 to 12 Hz was divided by the average 

power below and above that frequency. 

The second method was adapted from a previous study comparing the dorsal and 

ventral hippocampus (Royer et al., 2010). For each cell an autocorrelogram was 

generated by binning each spike into 10 ms bins and taking the correlation at a maximum 

lag of 700 ms. Only units with at least 100 counts were analyzed, the zero lag was 
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removed and then the autocorrelogram was normalized to the maximum value. A curve 

was then fit to this autocorrelogram with the following form: 

𝒚(𝒕) = (𝒂 ∗ (𝒔𝒊𝒏(𝒇𝒕) + 𝟏) + 𝒃) ∗ 𝒆−
|𝒕|

𝒕𝒂𝒖𝟏 + 𝒄 ∗ 𝒆−
𝒕𝟐

𝒕𝒂𝒖𝟐 

Where a, b, c, f, tau1, and tau2, were all fitted constants with the bounds listed 

(0<a<10, 0<b<10, -10<c<10, .02<f<.07, 300<tau1<inf, 0<tau2<150). The variable a was 

bounded to prevent negative weight to the theta argument, f was bounded such that the 

period of the sine wave was between 7 and 12 Hz, tau2 was bounded such that the decay 

was necessarily slower than the bursting argument, tau1. The fit was performed twelve 

times wherein each parameter started randomly but within its bounds, and each fit was 

halted after 1,000,000 iterations or after a delta fit value was below 1x10-10. The best of 

the twelve fits was chosen as the final fit for each unit, and the theta index was calculated 

as the ratio of a/b.  

Single Unit Information Scores and Temporal Modulation: Information scores 

were calculated as previously reported using 0.2 second bins for the entire delay. The 

standard deviation of the spike rates across time during the delay was performed on the 

same 0.2 second time bins. Significance was determined for each method through a 

bootstrap randomization where spike timestamps during the delay were circularly shifted 

by between 1 and 7 seconds for each trial. This randomization was performed 1000 times 

to generate 1000 random curves on which the above statistics were performed. We 

adopted a threshold for significance of a higher information score or standard deviation 

than 99% of the shuffles. 
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Population Vector Analyses: For all population vector analyses population firing 

rate vectors were generated by gathering the firing rate for each cell during each 0.2 

second bin during each trial at 0.2 second steps relative to delay onset. The resulting x 

cell by y trial by z timestep population matrices were then trial averaged, and then z-

scored across trial time. The Pearson correlation was then calculated between population 

vectors of all time bins to vectors for all other time bins to generate a matrix for each 

session. Each units’ firing rate vector was z-scored across time or across trials to ensure 

each unit contributed equally to the correlation matrix. Mean and SEM estimates were 

calculated across session matrices. 

 Linear Discriminant analysis: Linear discriminant analysis was performed in a 

leave-one-trial out fashion on all sessions in which 4 or more units in a given region were 

recorded. For time decoding, 0.2 second timebins were used at 0.2 second increments 

from the start to the end of the delay. The decoder was trained on all trials except the left 

out trial, and then used to predict all time bins for that left out trial. No normalization was 

performed, as LDA does not benefit from nonlinear data transforms. The posterior 

probability matrices for each time bin were averaged across trials for each session and the 

resulting peaks was calculated as the series of decoded times for that session.  The 

accuracy of the decoder for each session was measured as the absolute difference in the 

decoded time and the actual time and plotted +/- SEM.  The shuffling procedure involved 

shuffling the training matrix across classes (time bins) but not across cells. This null 

decoder was then used to predict the unshuffled left out trial data. 
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4.4 Results 

4.4.1 Rats learned object-trace-object associations across the 8 second delay 

Rats were able to associate objects across the 8 second treadmill running delay 

(Figure 20A). In each session, the rat performed significantly higher than chance (One 

sided Binomial Test against chance, all p<=.01). However, some rats performed better 

overall than others (Mean across rats=78%+/-1%, 1 way ANOVA F(5)=2.98, p<.003). In 

a post-hoc multiple comparisons test, one rat performed significantly worse than one 

other (Students Post-hoc test of multiple comparisons lower rat performance 74%, higher 

rat 83%, Estimated difference in performance=8.6%, p=0.0425). Overall, rats were given 

12.2 +/- 1.2 seconds to study, the overall delay took 8.6+/-0.4 seconds, and the rats 

sampled for 1.48+/-0.3 seconds before making a choice. While there was significant 

variance in the amount of time each rat took to study (1 way ANOVA on study length 

F(5)=33.84, p<10-10), the time of each delay (1 way ANOVA on overall delay length 

F(5)=8.16, p<10-4), and the time each rat sampled the pot before choosing whether to dig 

(Figure 20C 1 way ANOVA on sample length F(5)=46.43, p<10-10), none of these 

parameters interacted with performance across rats (1 way ANOVA on study length, 

F(1)=1.61, 1 way ANOVA on study length, F(1)=0.0007, 1 way ANOVA on study 

length, F(1)=1.74). Within any session, the length of study never impacted performance 

(one way ANOVA, max F(1)=1.65, Bonferonni corrected min(p)=0.2) and neither did the 

delay length (one way ANOVA, max F(1)=4.67, Bonferonni corrected min(p)=0.186). 

However, two rats sampled the test objects for a shorter period of time before making 
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errors (One way ANOA, F(1)=0.27, 0.01, 1.0, 8.1, 13.6, 6.3, 1.8, p=1, 1, 1, 0.028, 0.002, 

0.72, 0.18). This suggests that these rats may have behaved impulsively during error 

trials, acting before testing for a match, and therefore may still have remembered across 

the delay. All rats also tended to make errors in clusters such that the probability of a 

correct response following an error trial was slightly lower (75%), than following a 

correct trial (80%) (Paired T-test, T(47)=2.26, p<0.03). This suggests a potential slow 

waxing and waning of effort or attention on the animals part. 
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Figure 20. Rats Performed a Delayed Matching Task. 

A. Task involved four study items mapped to two response items. B. Example of rats’ behavior 

during a single session. C. The duration of each task phase varied across rats, but differences in 

study length and test length did not impact performance.  Bottom: the treadmill often began before 

the rats’ position was clamped at the end of the treadmill. Thus rats briefly sprinted at the onset of 

treadmill movement. Note: Head speed was rarely zero due to head-bobbling movement both during 

running and rest. 
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4.4.2 Each region exhibited unique intrinsic spiking properties and network interactions 

 Simultaneous recordings were performed in dHPC, vHPC, and LEC as rats 

performed the delayed matching task (Figure 22A). Overall, 552 clusters were isolated 

from LEC tetrodes, 717 clusters from dHPC, and 313 from vHPC. We verified the 

quality of each cluster by calculating the L-distance and isolation rating against all other 

isolated waveforms. There were no differences in mean isolation ratings (one way 

ANOVA, F(2)=2.1), or L-ratio (one way ANOVA, F(2)=2.74, p=0.065), between any 

region (Figure 21). However, to be conservative, we adopted the same threshold as 

previous reports and removed all clusters with an isolation rating below 25 (Schmitzer-

Torbert et al., 2005). These cluster quality metrics were similar despite other differences 

between regions. The average firing rates differed between regions, with the vHPC 

exhibiting significantly higher overall rates than either the dHPC or LEC (vHPC 

mean=3.34 +/-0.40, dHPC mean=1.94+/- 0.25 LEC mean=2.19 +/- 0.16 Hz, ANOVA 

F(3)=4.16, p<0.02). Similarly, tetrodes in dHPC on average had about twice the units per 

tetrode (5.56 +/- .4) than LEC, (2.59 +/- .12) and vHPC (2.79+/-.2, ANOVA, F(2)=45, 

p<10-10).  
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Figure 21: Supplement: Cluster quality was equivalent across regions. 

Left: Histograms show a similar distribution of isolation ratings across regions. Mean isolation rating 

did not differ across regions.  Right: The distribution of L-ratios for units in each region had a 

similar mean. 

 

 The dorsal hippocampus contains complex-burst cells that fire rapid bursts of 

action potentials that tend to occur at specific phases of the local theta rhythm. These 

bursts can be observed in cells’ autocorrelograms as well as in the distribution of inter-

spike-intervals. One report observed less intrinsic theta rhythmicity and burst activity in 
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the vHPC than the dHPC (Royer et al., 2010). Previous reports examining LEC units 

suggest they do not interact with the theta rhythm, seldom have subthreshold membrane 

oscillations and rarely exhibit bursting activity (Canto & Witter, 2012; Deshmukh et al., 

2010; Hamam, Amaral, & Alonso, 2002). To validate our recording locations and in turn 

replicate these previous findings, we examined the different firing properties and network 

interactions of units in each region by constructing autocorrelograms and spike-phase 

histograms for units in all regions (Figure 22B). Consistent with previous reports, there 

was a wide variability in the autocorrelogram shape that appeared related to the region in 

which the unit was recorded. Specifically, hippocampal units appeared to show high 

peaks in the autocorrelogram within a 10 ms lag, whereas LEC units showed a valley 

(Figure 22 B, leftmost unit is from LEC, rightmost unit is from dHPC). Similarly, 

rhythmic peaks in the autocorrelogram were evident in dHPC and vHPC at lags roughly 

correlating to the theta frequency (Figure 22b, right two units are from vHPC and dHPC, 

respectively).   
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Figure 22: Tetrode locations of LEC, dHPC and vHPC units, and characterization of intrinsic 

spiking properties in three example neurons. 
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A. LEC tetrode locations are circled in blue, vHPC tetrode locations are circled in yellow, and dHPC 

tetrode locations are circled in red. The rostral LEC was targeted to prevent contamination of MEC 

units. Distal CA1 was targeted both in the dHPC and vHPC to prevent contamination of CA3 units. 

B. Top: Theta phase distribution of spikes arising from three recorded units. Theta modulation 

strength and p value shown above each plot.  Bottom: Intrinsic theta rhythmicity and burst indices 

were measured for the same three neurons via the autocorrelogram. Intrinsic theta modulation is 

quantified above each plot (methods). The unit to the left showed a low burst index, low theta in the 

autocorrelogram, and low coherence to the theta rhythm. The center unit showed a moderate burst 

index and intrinsic theta rhythmicity, and a high coherence to theta. The unit on the right showed a 

high burst index, high intrinsic theta rhythmicity, and high coherence to the theta rhythm. 

 
 

We quantified these observations by first calculating the burst probability of units 

in each region (Figure 23, left) (Mizuseki, Sirota, Pastalkova, & Buzsáki, 2009). 

Consistent with these previous findings, LEC units showed exceedingly low burst 

probability (mean: 0.085 +/- 0.0048) whereas units in the ventral hippocampus showed a 

range of burst probabilities (mean 0.16 +/- 0.008) and dorsal hippocampus units showed 

high burst probabilities (mean: 0.28 +/- 0.0059). This statistic easily distinguished the 

regions (ANOVA, F(2)=309.5, p<10-10) and a post-hoc comparison revealed each region 

was dissociable from the other two (Tukey’s HSD correction, dHPC-vHPC p<10-10, 

dHPC-LEC p<10-10, & vHPC-LEC p<10-10).  We then examined the intrinsic theta 

rhythmicity of units in each region as it manifested in the autocorrellogram. First, the 

theta power was extracted using Welch’s psd and then its amplitude was normalized to 

the average power from 1:50 Hz. Units in the dorsal hippocampus showed the strongest 

theta power in their autocorrelogram (dHPC mean index: 4.33+/-0.11) followed by vHPC 

(mean index=2.75+/-0.15) and finally the LEC showed uniformly low theta modulation 

(LEC mean index: 0.89+/-0.03). This metric easily discriminated regions (Tukey’s hsd 

correction for multiple comparisons, dHPC-LEC p<10-8 vHPC-LEC p<10-8, dHPC-vHPC 
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p<10-8). We confirmed these results by using a previously published curve fitting method 

(Royer et al., 2010) (Tukeys HSD correction for multiple comparisons, all p<10-8). 

Finally, we examined the magnitude of coherence of units in each region to the local 

theta rhythm. Units in the dorsal hippocampus showed slightly stronger theta coherence 

than units in vHPC, (mean Rayleigh vector length, dHPC= 0.17+/-0.004 vHPC 

mean=0.15+/- 0.007, p<0.02) but hippocampal units were much more strongly modulated 

than units in the LEC (mean Rayleigh vector length=0.05+/- 0.002, LEC-dHPC p<10-10, 

LEC-vHPC p<10-10). As theta power is significantly different between dHPC, vHPC, and 

LEC, these effects may have been driven by differences in the LFP itself, rather than in 

its interaction with units. Therefore, we confirmed these analyses by referencing spikes to 

the theta rhythm in the dorsal hippocampus and found similar results. The dorsal and 

ventral hippocampus showed equally strong coherence to local theta, (mean Rayleigh 

vector length, dorsal HPC= 0.19+/-0.004 vHPC mean=0.18+/- 0.009, p=0.67) and both 

were more strongly modulated than units in the LEC (mean Rayleigh vector 

length=0.05+/- 0.002, LEC-dHPC p<10-10, LEC-vHPC p<10-10). Consistent with 

previous reports, these data show drastically differing intrinsic firing properties of units 

in dHPC, vHPC, and LEC and confirm the recording locations in our experiment. These 

results suggest that units each region exhibits a unique landscape of intracellular and 

network properties that likely shapes the manner in which they convey information. 
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Figure 23: Each region exhibited a unique distribution of intrinsic firing characteristics that was 

consistent with prior work.  

The LEC exhibited low theta coherence, low burst indices, and low intrinsic theta rhythmicity.  The 

dHPC exhibited high theta coherence, burst indices and intrinsic theta rhythmicity.  The vHPC 

exhibited high theta coherence, high burst indices, but low intrinsic theta rhythmicity.  

 

4.4.4 Delay activity differed between regions 

We then examined time-locked delay activity from units in each region during the 

running delay. To do this, we examined peri-event rasters, and trial averaged histograms 

of each cells’ activity during the delay. We then ordered example units in each region by 

their center of mass, and examined their standard deviation, and temporal information 

content (Skaggs & McNaughton, 1998). Upon close examination of the activity patterns 

of temporally modulated cells, stereotypical time cells were evident in dHPC whose 

peaks tiled the delay (Figure 25, A through E).  These cells often showed sparse activity 
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patterns that included narrowly circumscribed increases in activity that were centered on 

a moment during the delay (Figure 25). Many units showed a narrow peak early in the 

delay but were otherwise silent (Figure 25, unit A-E). Similarly, some cells peaked 

towards the end of the delay, but the peak was less narrow (Figure 25, units I, J, K, L). 

Overall units in dHPC appeared to generate firing fields that tiled the delay, and became 

progressively wider as the delay progressed. These observations are consistent with 

previous reports describing time cells (Kraus, Robinson, White, Eichenbaum, & 

Hasselmo, 2013; Macdonald et al., 2011). 

Units in the vHPC showed what appeared to be time cell responses through the 

delay as well, however these patterns were less punctate (Figure 26). Much like the dHPC, 

there were many units with peaks early in the delay, however these peaks appeared 

broader than those in dHPC (Figure 26, units B, C, D, & E). While a few units exhibited 

peaks towards the middle or end of the delay, more often cells exhibited decaying rates 

that fell from the onset of the delay (Figure 26, C, D, E, I). Many units with activity peaks 

early in the delay also exhibited broader peaks later in the delay (Figure 26, units F, & H). 

We also observed many vHPC units whose firing rate slowly ramped from delay onset, 

(Figure 26, units J, K, & L). While some units appeared to have time cell properties, many 

of those units were locked to delay onset, or had multi—peaked activity patterns. Instead, 

many vHPC units exhibited slowly decaying or ramping firing rates that changed slowly 

across the delay.  

LEC units showed temporally modulated responses during the delay that appeared 

to be different than those in the hippocampus and did not appear to center on specific 
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moments in the delay (Figure 24, units A, B, & D). Very few units in the LEC exhibited a 

peak firing rate at moments into the delay with a rapid decay in rate from that peak. 

Those that did appear to have narrowly circumscribed elevations in activity did so early 

in the delay, potentially coincided with the beginning of the delay (Figure 24, units A-E). 

These cells with peaks within the first second of the delay exhibited a wide spectrum of 

activity decay rates moving forward into the delay (units A, B, & D exhibited more rapid 

decay than units E, G, H & I, even though their peaks were at similar times, Figure 24). 

Conversely, many units showed a dip in firing rate at delay onset, and slowly ramped up 

(increased) their firing rate as the delay progressed (Figure 24, units J & K). Overall, LEC 

units changed their rates much more slowly across the delay than those in dHPC, but 

exhibited similar activity to units in vHPC. 
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Figure 24: Temporally Selective units in the LEC. 

Twelve temporally selective units recorded from the LEC. Units are ordered by center of mass. Top: 

rastergram of spikes during each trial ordered by the identity of the study object. Bottom: Histogram 

of average firing rate for each trial type (mean +/- SEM). Many units exhibited a peak early in the 

delay with a spectrum of decay rates (left two columns). Some units exhibited slow ramping activity 
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towards the end of the delay (right column). C=center of mass in seconds, Std=Standard Deviation in 

seconds, Info=Temporal information in bits per spike). 

 

Figure 25: Temporally Selective Units in the dHPC 

Twelve temporally selective units recorded from the LEC. Units are ordered by center of mass to 

show tiling across the delay. Top: rastergram of spikes during each trial ordered by the identity of 
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the study object. Bottom: Histogram of average firing rate for each trial type (mean +/- SEM). dHPC 

units exhibited typical time cell activity, with narrowly circumscribed activity centered on a specific 

moment during the delay. Similar to previous reports, many units exhibited peak rates early in the 

delay, and fewer units peaked later in the delay. C=center of mass in seconds, Std=Standard 

Deviation in seconds, Info=Temporal information in bits per spike). 

 
Figure 26: Temporally Selective units in the vHPC.  
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Twelve temporally selective units recorded from the LEC. Units are ordered by center of mass. Top: 

rastergram of spikes during each trial ordered by the identity of the study object. Bottom: Histogram 

of average firing rate for each trial type (mean +/- SEM). Some units exhibited peaks early in the 

delay with varying decay rates. Others had multi-peaked activity, with a narrow peak early and a 

wide peak later in the delay. Finally, some units slowly ramped in firing rate towards the end of the 

delay (right column bottom two). C=center of mass in seconds, Std=Standard Deviation in seconds, 

Info=Temporal information in bits per spike).  

 

A number of descriptive statistics were used to quantify the differences in how 

individual unit activity was modulated by time in each region. The center of mass has 

been used previously to characterize place field activity, and can discriminate between 

place fields in different brain regions (Roth, Yu, Rao, & Knierim, 2012). When the center 

of mass of the trial averaged tuning curve for temporally modulated cells was measured 

in each region, cells in the dHPC showed earlier centers than those in vHPC or LEC 

(Figure 27 B: LEC: 3.8+/- 0.46 sec, dHPC: 2.97+/-0.99, vHPC:3.6 +/-0.81 ANOVA 

F(2)=46.48, p<10-13, students-t post-hoc: LEC:dHPC p<10-9, dHPC:vHPC p<10-6, LEC-

vHPC p=0.27). The standard deviation of the spike indices quantifies how tightly locked 

a units’ activity is to one moment in the delay across trials. When the standard deviation 

was measured for each temporally modulated unit, dHPC activity patterns showed a 

much smaller standard deviation than those in vHPC or LEC (Figure 27 B: LEC mean: 

2.239+/-0.013, dHPC mean: 1.776+/-0.37, vHPC: 2.17+/-.022, ANOVA F(2)=81, p<10-

30). Finally, sparsity has been used as measure of the proportion of a sampling area in 

which a cell fires, and has previously discriminated unit activity in the dorsal from the 

ventral hippocampus. We observed a large difference in sparsity between regions overall 

(Figure 27 B, ANOVA, F(2)=147, p<10-50). Each region exhibited a different mean 

sparsity than each of the others (LEC: mean=0.843 +/-0.01, dHPC: mean=0.51 +/-0.02, 
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vHPC: mean=0.78 +/-0.02, Students multiple comparisons, LEC v dHPC p=10-10, LEC v 

vHPC p=0.02, vHPC v dHPC=10-10). Overall these data show significant differences in 

the way that units in the dHPC, vHPC and LEC code for time. dHPC activity was sparse, 

exhibiting narrow firing fields whose centers tended to occur earlier, but that tiled the 

delay. Conversely, activity patterns in vHPC and LEC were less sparse, covering a larger 

proportion of the delay without a single clear peak. 

Previous studies examining time cells in dHPC and MEC show that fields that 

occurring earlier in a delay are often more narrow than those occurring later (Kraus et al., 

2015, 2013). Consistent with these results, the standard deviation of the spike times was 

highly correlated to the mean spike time in dHPC. Importantly, this effect was absent in 

both vHPC or LEC, and the slope of the relationship was significantly steeper in dHPC 

than either vHPC or LEC (Linear Regression, dHPC r2=0.55, p<10-15, vHPC r2=0.22, 

p<10-8, LEC r2=0.02 p>0.05, Comparison of slopes: dHPC vs. LEC p=10-5, dHPC vs. 

vHPC p<10-9,  LEC vs vHPC p=0.21). Thus, typical time cell properties of dHPC 

replicated in this experiment did not extend to firing fields in vHPC or LEC. These data 

therefore suggest that the individual units in vHPC and LEC that track time during the 

delay do so through a different mechanism than canonical time fields.  
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Figure 27: Temporally selective units in dHPC exhibited sparse, narrow peaks that became 

progressively wider across the delay, whereas those in vHPC and LEC did not. 

A: dHPC exhibited a distribution of field center of mass and field standard deviation with a greater 

skew towards narrower fields earlier in the delay that were characteristic of time fields. dHPC units 

also showed sparser activity patterns then either vHPC or LEC. LEC and vHPC units showed a 

narrow distribution of center of mass and large standard deviation of activty across time even though 

their firing fields varied widely across the delay. B: Consistent with previous descriptions of time 

cells, dHPC units showed a tight relationship between the center of mass and field width. This effect 

was weaker in vHPC, and absent in LEC. LEC average center of mass: 3.62 +/- 0.7, dHPC: 2.68 +/-

1.62, vHPC: 3.41 +/- 0.98. LEC average Standard Deviation: 2.28 +/- 0.19, dHPC:1.73+/- 0.65, vHPC: 

2.18+/- 0.31. LEC average sparsity: 0.82+/- 0.18, dHPC: 0.45+/- 0.3, vHPC: 0.75+/- 0.18 
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4.4.3 Units in all three regions contained information about time 

Units with temporally modulated activity during the delay were immediately 

apparent in all three regions (Figure 24, Figure 25, and Figure 26). Many units in all regions 

contained high levels of temporal information during the delay (Figure 24, Figure 25, and 

Figure 26 Information indicated above plots, all are significantly above chance). To 

determine cells with significant temporal information, a shuffling procedure was used 

wherein the spike train of individual trials was circularly shifted around a random point. 

After filtering for significance, units in dHPC exhibited more temporal information than 

inuts in vHPC or LEC (Bootstrap shuffle on Skaggs information score, methods, LEC: 

213/505, 42%, mean bits/spike=0.27 +/- 0.03, dHPC: 255/425, 60%, mean 

bits/spike=0.91 +/- 0.06, vHPC: 151/282, 53% mean bits/spike=0.46 +/- 0.05, ANOVA 

on information scores, F(1)=49.96, p<10-10). To complement these analyses, we 

measured the standard deviation of the trial averaged tuning curve across time against a 

bootstrap shuffle. This method revealed a highly overlapping population of units whose 

firing rate varied across the delay (Methods, LEC: 163/505, 32%, dHPC: 256/425, 60%, 

vHPC: 122/282, 43%). The proportion of units that passed both thresholds was only 

slightly lower than each threshold individually, so we used both criterion for subsequent 

analyses (LEC cells passing both thresholds: 132/505, 26%, dHPC: 208/425, 49%, vHPC 

110/282, 39%). This method revealed a significant proportion of time-modulated units in 

all three regions, however it revealed a higher proportion of temporally modulated units 

in dHPC than in vHPC and LEC (Chi square test, χ2(2)=23.94, p<10-6 ). Finally, vHPC 
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units exhibited a marginally higher mean firing rate during the delay than both dHPC and 

LEC, but there were no differences between dHPC and LEC (LEC: 3.365 +/-0.28, dHPC: 

2.51 +/-0.36, vHPC: 4.9+/- 0.62, ANOVA F(2)=4.6, p=0.01, Students Post-Hoc: 

LEC:dHPC p=0.83, LEC:vHPC p=0.05, dHPC v vHPC: p<0.01). 

 

4.4.5 Ensemble activity was similarly sensitive to the evolution of time across regions 

 We observed a higher proportion of temporally selective units in the dHPC than 

in the vHPC and LEC. Notwithstanding, there was a significant proportion of units 

coding time in all three regions. This suggests that the dHPC ensembles may contain 

temporal information than those in vHPC or LEC. Population vector analyses were used 

to compare the overall temporal specificity of ensembles in each region. To do this, 

ensemble firing rate vectors were generated from each units’ trial averaged tuning curve 

relative to delay start for all consecutive 200 millisecond bins during the delay. Then, the 

average Spearman correlation of the population vector between each time bin during the 

trial was calculated for each region and each session (Figure 28). The resulting cross-

temporal correlation matrix for each region revealed how ensembles in each region 

changed as the delay progressed. When these matrices were examined, it was clear that 

the populations in each region evolved across time (Figure 28). High correlation values 

clustered towards the diagonal of the matrix for each region, indicating that populations 

in all three regions evolved across the delay. Indeed, when correlation values were 

aggregated based on their temporal lag, population vector correlations reliably fell in all 

regions and sessions as the temporal lag between sample times grew (Figure 28 center 
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column). However, there was no considerable differences in the rate of drift between 

each region, such that differences between slope of the correlation values against 

temporal lag between regions was not significantly different (Figure 28 E) ( LEC slope -

0.088 +/- 0.013, dHPC slope -0.073 +/-0.012, vHPC slope -0.056 +/- 0.013, one way 

ANOVA, F(3)=1.6, p=0.205). As there was considerable variability in the drift rate 

across sessions within each region, this effect could have been masked (Figure 28 C). 

While it reduced the size of the dataset, we were able to test this hypothesis within 

sessions with simultaneously recorded units in multiple regions. When session variability 

was controlled, there was still no significant difference in slopes (Bonferonni corrected 

Signrank test, z=1.64). These results suggest that despite major differences in individual 

unit characteristics, the overall ensemble activity in each of these regions are similarly 

sensitive to the evolution of time during the delay.  
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Figure 28: Correlation Matrices of LEC, dHPC and vHPC ensembles suggest comparable temporal 

specificity. 

A. Cross temporal correlation matrices in LEC, dHPC and vHPC for the delay period. B. 

Correlation values fell between time-bins as their temporal lag grew in all regions, however there was 

considerable heterogeneity in the slopes within each region. C: Top: the mean slope from each region 

in B. Middle: the slopes from the above plot were greater than zero for all regions, however the 

slopes were not significantly different between regions. 

 

 To test the trial-to-trial reliability of the time code in each region, we used linear 

discriminant analysis to decoded time using out-of-sample data. This analysis allows for 

the prediction of time using individual trial activity, and therefore is good measure of 



 

 

178 

reliability on a trial-to-trial basis. Indeed time could be accurately decoded better than 

chance in all three regions for the majority of the delay (Figure 29, colored bars below 

figure in C signify significant accuracy). Interestingly, decoders trained on LEC and 

vHPC failed to accurately predict times towards the center of the delay. Indeed we rarely 

found individual units in either region that exhibited elevated firing towards the middle of 

the delay and not at the beginning or end. Conversely, numerous units in the dHPC fired 

selectively during moments towards the middle of the delay, and may have contributed to 

the accuracy of the decoder at these time points. 
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Figure 29: Linear Discriminant decoding of time is similarly accurate for dHPC, vHPC and LEC 

ensembles.  

A: Cross temporal decoder performance for LEC, dHPC and vHPC ensembles. Decoders trained on 

each region could accurately predict time during the delay. B: Decoders from all three regions were 

more accurate at the onset of the delay and became less accurate as the delay wore on. Colored lines 

below errorbars indicate significance from chance for each region. C: Decoders from all regions were 

more accurate than chance, and we failed to observe differences in decoder accuracy between 

regions. Dotted line at top represents lower margin for chance levels. 
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4.5 Discussion 

4.5.1 The LEC, dHPC and vHPC exhibit different intrinsic activity patterns 

In this study, we performed simultaneous recordings in dorsal hippocampus, 

ventral hippocampus and LEC to directly compare the coding properties of these regions 

during a mnemonic delay. Before examining behaviorally dependent firing, we observed 

differences in the intrinsic temporal organization of spiking in units across the three 

regions. Confirming previous results, we found that both the dHPC and vHPCs contain 

units that fire in rapid bursts that are nested in the theta frequency (7-12 Hz) (Kjelstrup et 

al., 2008; Patel, Fujisawa, Berényi, Royer, & Buzsáki, 2012; Royer et al., 2010). 

However, the intrinsic theta rhythmicity was stronger in the dorsal hippocampus than in 

either the ventral hippocampus or LEC (Royer et al., 2010). While previous reports have 

shown the LEC to contain units with much lower theta rhythmicity than MEC, none have 

directly compared the LEC to the hippocampus in the same preparation (Deshmukh et al., 

2010). Here we observed much lower levels of bursting activity and intrinsic theta 

rhythmicity in LEC than in either region of the hippocampus. Furthermore, while vHPC 

units show reduced theta coherence when compared to dHPC, they still exhibit higher 

coherence than units in LEC. This may suggests that the theta nested computations 

occurring in MEC and the dHPC could be less prevalent in the vHPC and may even 

exclude the LEC. It is likely that units in the LEC engage in oscillatory coupling at other 

frequencies, as others have observed strong oscillations in the beta (~15-35 Hz), and 

gamma (~40-80 Hz) bands in the LEC (Xu & Wilson, 2012). 
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4.5.2 Time was coded differently in LEC and vHPC than in dHPC 

 Units in each region exhibited temporally selective firing during the delay that 

differed in a number of properties. Primarily, dHPC units showed properties of canonical 

time cells including sparse delay activity, with transient activation increases that showed 

a small standard deviation. Furthermore, time cell activity in dHPC showed a reliable 

relationship between center of mass and standard deviation. These activity patterns were 

consistent with previous reports using a range of preparations that describe ‘time fields.’ 

(Gill et al., 2011; Howard et al., 2014; Kraus et al., 2015; Y. Liu, Tiganj, Hasselmo, & 

Howard, 2019; Macdonald et al., 2013; Villette et al., 2015). In contrast, vHPC and LEC 

units exhibited significantly less sparse delay activity, and activity increases were 

significantly broader with a large standard deviation (Jung et al., 1994). Thus, in this 

preparation we found weak evidence for time cells in either vHPC or LEC. These data are 

consistent with previous reports showing sparser activity across space in the dHPC when 

compared to the vHPC (Jung et al., 1994). While it is broadly accepted that units in the 

dorsal hippocampus organize into firing fields that center on points along a continuous 

delay, this study makes clear that units in the ventral hippocampus and LEC organize 

their firing across time in a different manner.   

 

4.5.3 All three regions coded for time 

Despite differences in the way individual units represented time between regions, 

we found significant temporal modulation in all three regions both in single unit activity 

as well as in populations. Indeed population vector analysis showed significant change in 
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ensemble activity across time in each region, and the rate of change across the delay was 

similar across regions. Considering the interconnectedness of these three regions, 

temporal information may be transferred from one of these regions to the others. 

Alternatively, the temporal specificity we observed may arise in the interactions between 

these regions, rather than in the activity of units from one region alone. Interestingly, one 

previous report employed similar population vector analyses to reveal significant 

differences in ensemble drift rates between the dHPC and LEC. However, this 

experiment observed time modulated activity across hours to days (Tsao et al., 2018). 

Moreover, in Tsao et al, behavior was loosely clamped, and animals were continually 

experiencing different environmental enclosures. In the current experiment, time was 

isolated from changing sensorimotor experiences as the animal was fixed spatially and 

ran at a constant speed as time wore on. Here, we failed to observe gross differences in 

the ensemble code of time across dHPC, vHPC and LEC. 

The delay activity we observed in individual units in both the vHPC and LEC 

often showed peaks at the onset or offset of the delay that gradually decayed as time 

progressed. These characteristics are similar to those observed in Tsao et al. who 

observed units slowly decay or rise across time (Tsao et al., 2018). Our observations add 

to those from this previous work and indicate that the LEC and vHPC may code for time 

in a similar manner across different time scales from seconds to hours via slowly 

decaying and rising firing rates. 
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4.5.4 The differences in temporal processing between dHPC and LEC and vHPC might 

be consistent with a more general framework. 

These two cellular properties may coincide with differences in the cognitive 

processes that the LEC and each segment of the hippocampus support. A prominent 

theory suggests that the hippocampus can be divided into separate structures, with a 

dorsal region supporting spatial and relational memory and cognition, and a ventral zone 

supporting emotional and abstract memory and cognition (Aggleton, 2012; Fanselow & 

Dong, 2010; Kheirbek et al., 2013). A number of studies have confirmed this duality, 

showing a shift in gene expression, and biochemical and electrophysiological properties 

along the dorsal-ventral axis of the hippocampus (for a review see: Fanselow & Dong, 

2010). Indeed the spatial scale of place fields increases from dorsal to ventral 

hippocampus, coinciding with an increase in sensitivity to anxiety state (Jimenez et al., 

2018; Kjelstrup et al., 2008; Royer et al., 2010). The high spatial acuity of the dHPC 

observed in other studies is consistent with the high temporal acuity observed in this 

experiment. During running, animals change location rapidly across time and this may 

require a region to maintain high temporal acuity to accurately discriminate changing 

location. Conversely, the ventral hippocampus and LEC are both thought to process non-

spatial and potentially emotionally relevant information, which may coincide with a 

greater role in integration rather than discrimination across time. The defining features of 

objects and companions may change over a slower or less predictable rate, and interact 

with each other in a less temporally rigid manner. As such, this may require a brain 

region to smooth the representation of these features across time and across modalities to 



 

 

184 

capture their relationships. The gradual changes in firing rate we observed across the 

delay in both the LEC and vHPC might suggest that these regions generate 

representations that may fade slowly as time progresses. 
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Chapter 5. General Discussion 

 
Observations from the first experiment of this dissertation challenge the 

notion of segregated information streams entering the hippocampus, by showing 

associative item-place information coded in the both the medial and lateral 

entorhinal cortex as well as the perirhinal cortex. These data implicate the 

entorhinal cortex and perirhinal cortex in the processing of item-place conjunctions 

that were initially thought to form only in the hippocampus. The third chapter of 

this dissertation explored how the hippocampal representation of item-place 

conjunctions changes across time in a task where the time frame was behaviorally 

relevant. These conjunctive units coded for time by exhibiting a spectrum of 

temporal drift rates, some changing rapidly across trials, and some changing more 

slowly. These results suggest that event and place information are organized onto a 

timeline in the hippocampus by units that code time at a variety of resolutions. The 

fourth chapter of this dissertation examined whether temporal selectivity exhibited 

in the dorsal hippocampus is found more broadly in the medial temporal lobe. While 

time could be decoded from ensembles in dHPC, vHPC and LEC, a qualitatively 

different time code was observed in the LEC and ventral hippocampus at the unit 

level. Together these observations suggest a model wherein item, place, and time 

information are shared throughout medial temporal lobe structures to support 

declarative memory.  
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5.1 A reorganization of the dual stream hypothesis 

A large number of recording studies support the dual stream hypothesis, 

showing spatially modulated firing in the medial entorhinal cortex, and weak spatial 

modulation in the lateral entorhinal cortex (Hafting et al., 2005; Hargreaves et al., 

2005). Lateral entorhinal cells respond to non-spatial features such as odors and 

locally placed objects (Deshmukh & Knierim, 2011; Young et al., 1997). In chapter 2 

we observed a striking contrast to this model, finding object-selectivity in the medial 

entorhinal cortex, and position selectivity in the lateral entorhinal and perirhinal 

cortices. When animals were required to make object-place associations, we 

observed engagement of units in both regions that were selective to objects and 

positions together. 

 These observations appear to conflict with the dominant model, but they do 

not directly conflict with other experimental observations. Primarily, no other 

studies have directly examined object-selectivity in the MEC. However, a number of 

studies have shown an extended role of the MEC beyond purely space, by observing 

route and time selective firing (Heys & Dombeck, 2018; Kraus et al., 2015; Lipton, 

White, & Eichenbaum, 2007). Kraus et al. (2015) found that MEC neurons generated 

firing fields during running in place, and that these fields were not purely coding for 

distance. Similarly, Lipton et al. (2007) observed cells whose firing fields selected 

for upcoming right or left turns. Finally Heys and Dombeck (2018) reported 

sequences of cells in the MEC that tiled time as mice stopped running to wait for 

reward. Interestingly, the unit firing related to the animals’ estimation of elapsed 
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time. Together, these studies corroborate our findings and suggest MEC units may 

generate firing fields that organize across non-spatial dimensions such as time. 

Similarly, experiments observing a stark contrast in spatial selectivity 

between the MEC and LEC have done so under exclusively passive behaviors; mainly 

random foraging in open fields containing scarce local landmarks. When objects 

were placed in the arena, one group observed lateral entorhinal cells that appeared 

spatially selective for objects, but also after those objects had been removed 

(Deshmukh & Knierim, 2011; Knierim et al., 2013; Tsao et al., 2013). The results in 

Chapter 2 are consistent with these findings and suggest that the LEC may express 

spatially selective firing, but only in locations where there is relevant non-spatial 

information. 

While our observations are consistent with previous studies, they suggest a 

revision to the dual stream model. Specifically, they invalidate a version of memory 

processing wherein associative memory is contained exclusively within the 

hippocampus. Instead, these data support a role for the entorhinal and perirhinal 

cortices in holding schematic representations that transcend the spatial/non-spatial 

boundary. Specifically, item and spatial information may dominate in LEC/PRC and 

MEC respectively, but when specific item-place conjunctions are relevant task 

dimensions, all three regions incorporate item-place conjunctive information.  

 

Previous studies have examined the development of conjunctive item-place 

representations in the dorsal hippocampus, and context dependent representations 
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in the ventral hippocampus as rats learn these associations (Komorowski et al., 

2013, 2009). One model of hippocampal-entorhinal interactions describes a ‘semantic’ 

memory store residing in cortical regions that is modified by hippocampal processing of 

episodic experiences. Applying this model to the present experience, information enters 

the hippocampus as a lexicon of already-learned semantic representations (items, places 

separately) and the hippocampus updates these representations to incorporate common or 

meaningful item-place conjunctions  (Schacter et al., 1978). This theory suggests that 

conjunctive coding in the MEC, LEC and PRC may develop with learning, and may 

require the hippocampus to organize. Future experiments examining the 

development of conjunctive selectivity in the rhinal cortices might could test 

whether this process is facilitated through hippocampal interactions. 

  

5.2 Gradual temporal drift accommodates events and boundaries  

In Chapter 3 we observed that the hippocampal representation of items in a 

particular place evolve continuously through time. Others have observed a similar 

phenomenon during a variety of behaviors, including free foraging and during a 

temporal ordering task (Deuker et al., 2016; Mankin et al., 2012; Manns et al., 2007). 

Other experimental configurations have argued that contextual boundaries induce 

discrete remapping events in the hippocampal code (Bulkin et al., 2018; Kobayashi 

et al., 1997; Swallow et al., 2011).  From these studies it was unclear whether the 

addition or removal of novel stimuli was responsible for the apparent ‘time’ code. 

The experiment in chapter 3 was conceived with the goal of clamping behavior and 



 

 

189 

stimuli across time in order to resolve this question. We hypothesized that 

hippocampal representations would change at the transitions between blocks, but 

activity would remain stable within a block of time.   

Contrary to our hypothesis, the hippocampal code did not alternate with the 

task demands, and instead drifted across time continuously.  Even though 

temporally defined contexts repeated, this code reflected time in a continuous 

manner. Admittedly, rats may not have realized there was an alternating block 

structure to the task, even though each block transition was signaled by removal 

from the testing environment for 1 minute. All rats showed sensitivity to the 

boundary event by not perseverating at the onset of each segment. The hippocampal 

code, however was not modulated by boundaries and did not separate experiences 

across these boundaries any more than chance. Instead, individual units exhibited a 

spectrum of temporal drift rates, such that cells activity changed at varying rates 

across time.  

The individual unit activity we observed across time potentially incorporated 

abrupt changes in experience into an ensemble code. The spectrum of activity drift 

rates across units that we observed could provide a substrate to encode both the 

changes between and similarities across boundary conditions. Non-overlapping 

ensembles of rapidly changing units represented events in the earlier context before 

and those in the later context after the boundary independently via their separation 

in time. Conversely, slowly changing units that were active before and after the 

delay captured the similarities in events across the boundary as a unified context. 
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Indeed the hippocampus is necessary to accurately capture hidden similarities 

between experiences, but to also discriminate between similar experiences across 

time (DeVito et al., 2009; Fortin et al., 2002; Schapiro et al., 2016). This property, 

wherein some hippocampal units exhibit a spectrum of change rates from fast to 

slow across time may be the mechanism by which the hippocampus supports 

behavioral and cognitive flexibility (Kimble & Kimble, 1965; Kosaki & Watanabe, 

2012; Preston et al., 2004).  

An alternative coding scheme has been proposed that incorporates multiple 

timescales of experience. Mau et al. (2018) observed temporally ordered 

hippocampal sequences that nested within multiple time scales. In this experiment, 

they observed cell sequences appearing within a given trial that also exhibited drift 

across trials. Importantly, the within trial sequences were observed during a 

treadmill delay, when no changes in behavior or stimuli were occurring.  Chapter 3 

involved six similarly nested blocks into a single recording session. However, we did 

not observe sequences playing out in each block that repeated during subsequent 

blocks. Instead we observed a continuous representation of time that was supported 

by some rapidly changing units and other more slowly changing units. These two 

observations appear in conflict; do individual hippocampal neurons code time at 

one timescale, or do they code time at multiple scales via nested sequences? One 

possibility is that the short sequences observed in Mau et al. are qualitatively 

different than those we observed, and only exist at very short time scales (Mau et al., 

2018). Future studies could either extend the duration of a single trial, or 
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alternatively incorporate a time delay into a blocked experiment similar to that in 

chapter 3. These studies might reveal a maximum trial duration for which sequences 

can persist. On the other hand, given a more explicit cue to chunk experience, 

hippocampal units may shift to representing multiple timescales in a nested fashion. 

The data from chapter 3 contribute to a growing literature that show 

hippocampal firing fields organize along a timeline. Complementary studies have 

observed time coding across seconds, hours and days (Mankin et al., 2012; Manns et 

al., 2007; Mau et al., 2018).  Interestingly, while Mankin observed this drift under 

the backdrop of spatial coding, Manns observed this under the backdrop of object 

coding, and we observed drift in cells coding objects and place together. Together, 

these studies show that hippocampal ensembles can represent item-time 

information, place-time information, and finally item-place-time information which 

together underlie episodic memory.  

 

5.3 Temporal selectivity was observed throughout the medial temporal lobe 

In Chapter 4 we examined whether timing signals like the one observed 

above can be found in the LEC and vHPC during a mnemonic delay.  While a variety 

of studies have reported slow changes in population activity, it remains unclear how 

this phenomenon may occur on an individual cell basis (Mankin et al., 2012; Tsao et 

al., 2018). Tsao et al. observed a time signal in the lateral entorhinal cortex that 

changed across hours, that contained greater temporal information than the dorsal 

hippocampus (2018). In that experiment, they reported slowly rising or slowly 
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decaying firing rates across minutes spent in a chamber, or across hours exploring 

multiple chambers. This result was surprising, as this code appeared different than 

time cells in the dorsal hippocampus and MEC that have been observed in a variety 

of preparations. Time cells provide a precise estimate of elapsed time via punctate 

temporal firing fields rather than continuous ramping or delay (Heys & Dombeck, 

2018; Kraus et al., 2015; Mau et al., 2018; Pastalkova et al., 2008). Before chapter 4 

it was unclear whether the LEC coded time during mnemonic delays, and how this 

activity compared to canonical time cell signals in the hippocampus and MEC. In 

order to address this question, we recorded from LEC and vHPC units 

simultaneously with those in dHPC across a mnemonic delay and observed their 

temporal modulation.  Simultaneous recordings enabled the direct comparison of 

the timing properties between these regions in the same animals. 

When we examined time-modulated activity in the dHPC, vHPC and LEC 

during a mnemonic delay, time cells were evident in dHPC, but they were 

conspicuously absent in vHPC and in LEC. Despite these differences, many units in 

all three regions coded for time, and time was predicted from ensemble activity in 

each region with similar precision. Studies that have examined timing signals across 

mnemonic delays describe time fields and liken their characteristics to place fields 

(Macdonald et al., 2011; Pastalkova et al., 2008). Both time and space are coded in 

the dorsal hippocampus by the organization of cell sequences that span these 

dimensions. This analogy is similarly useful when examining spatial and temporal 

coding in the MEC. One prominent feature of these MEC units was their multi-
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peaked firing patterns that previously distinguished the MEC from other regions 

such as the hippocampus (e.g. grid cells: Hafting et al., 2005).  These studies suggest 

that the dorsal hippocampus and MEC code for time in a similar manner to how they 

code space. 

 Extrapolating these space-time similarities to the LEC, units may express 

time but only with regard to specific objects or events, in an analogous manner to 

object-cells and object trace cells (Tsao et al., 2013). Over longer delays, a separate 

study by Tsao et al. (2018) observed LEC units who peaked at either the beginning 

or end of an experience. Indeed we observed units whose firing rate could be 

interpreted as peaking during specific events (initiation of the delay) and whose 

firing rate slowly diminished thereafter. Conversely, we observed other LEC units 

whose firing rate slowly ramped in anticipation of a separate event; the termination 

of the delay. This activity may be more similar to spatially modulated border cells 

also found in the MEC (Solstad et al., 2008). One interesting feature of cells in the 

LEC was that they appeared to exhibit a spectrum of decay rates following the onset 

of the delay.  This characteristic is computationally relevant, as it provides a 

mechanism for the generation of time field like units in downstream structures 

(Howard et al., 2014).  

 Interestingly, the ventral hippocampus did not appear to have time cells in 

this experiment. This study was the first to examine ventral hippocampal activity 

during a mnemonic delay, so it was previously unclear whether the ventral 

hippocampal units code time at any scale. Nonetheless, a range of experiments 
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implicate the vHPC in bridging the gap between temporally discontinuous events 

(Esclassan, Coutureau, Di Scala, & Marchand, 2009; Hunsaker & Kesner, 2008; 

Rogers et al., 2006). Studies examining the spatial firing characteristics of vHPC can 

be extrapolated to make strong predictions about its organization across time. The 

ventral hippocampus is thought to contain a less sparse code for space, wherein 

individual firing fields are active over larger proportions of the environment (Jung 

et al., 1994; Royer et al., 2010). This may suggest that vHPC ensembles may code 

time via larger time fields. Incongruent with this model, evidence from previous 

studies, including Chapter 3, suggest that dHPC units vary with time across a wide 

spectrum of scales, from seconds, to minutes and even hours (Mankin et al., 2012; 

Manns et al., 2007; Mau et al., 2018; Chapter 3). These conflicting data points result 

in an unclear prediction of how the vHPC codes time. 

 The time code we observed in the vHPC resembled that in LEC with 

individual units exhibiting slowly changing firing rates across the delay. Units in 

vHPC had a significantly higher mean firing rate during the delay than either dHPC 

or LEC, which may indicate a denser representation of time. Accordingly, the 

sparsity of vHPC was significantly less than that in the dHPC (Jung et al., 1994; 

Komorowski et al., 2013). Together these data points might indicate that individual 

units in the vHPC code time on a broader scale. We hypothesize that the vHPC may 

contain a reliable time code across minutes or hours similar to the code observed in 

Chapter 3, or similar to that observed in the LEC (Tsao et al., 2018).  
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The connections between these regions suggest that the time code in some 

regions may inform that of others, but the direction of causality remains unclear. 

Modeling work hypothesizes that the pointer-like representations exemplified by 

time cells may receive temporal information from regions representing elapsed time 

via ensembles with rising and decaying firing rates (Howard et al., 2014; Y. Liu et al., 

2019).  These results predict that LEC or vHPC ensemble activity may contribute to 

the temporal specificity observed in individual dHPC units. However, the 

hippocampus and entorhinal cortex normally exist in a loop, so it may be difficult to 

ascribe the true source of temporal information in this anatomical system. The 

question of directionality may be resolved by observing the development of these 

temporal signals to discern which may develop first. Alternatively, chemogenetically 

or optogenetically severing either feedforward or feedback connections between 

the dHPC, vHPC and LEC may result in an uneven loss of temporal information 

across those regions. Other studies have already examined the dependence of the 

time code in some regions on the integrity of the others. Indeed one report already 

examining this question concluded that hippocampal time cells require organized 

input from the MEC (Robinson et al., 2017).  Given the overlap in firing properties of 

MEC and LEC observed in chapter 2, we hypothesize that lesions of either MEC or 

LEC are sufficient to impair memory across a delay and to abolish time modulation 

in hippocampal units. 
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5.4 Concluding remarks 

The studies above advance our understanding of memory and the neural 

mechanisms supporting it in two important ways.  First, these studies observed 

information content related to the content of experience in memory related regions 

that were either thought not to, or that had yet to be interrogated. Primarily, the 

first study observed associative item-place representations previously thought to 

only exist within the hippocampus. This study revised the model of information flow 

into and out of the hippocampus by revealing that item and place information are 

merged outside of the hippocampus. Furthermore, these studies are the first to 

observe time coding in individual units in both the LEC and vHPC specifically during 

a mnemonic delay. In these regions we observed a time code different from the 

previously described ‘time cells.’ Finally, these studies broadened our 

understanding of how time is represented in the hippocampus by revealing a time 

code that encompassed, but was not impacted by boundaries imposed upon 

experience. This time code was comprised of individual units whose activity was 

conjunctively selective to objects, places and time. These units coded for time with a 

spectrum of sensitivities such that some coded for small time windows, and others 

more broadly. 

We also observed striking evidence of convergence and divergence in the 

coding of episodic associations across different MTL regions. In Chapter 2 we 

observed convergence in the coding of items, places, and item-place associations in 

the single unit activity within MEC and LEC. Conversely, population analyses 
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revealed divergent organization of information such that overall the MEC prioritized 

space, whereas the LEC prioritized items.  Interestingly, in chapter 4 we observed 

the inverse result when examining unit and population activity in LEC, vHPC, and 

dHPC. This study revealed divergence in how the dHPC, vHPC and LEC coded time 

on a single cell basis. While dHPC units exhibited firing fields centered on moments 

during the delay, vHPC and LEC units exhibited progressive rate changes throughout 

the delay. At the population level, however, we observed convergence via similar 

predictability of time from activity in all regions. The observations from the 

experiments above lay bare the advantage of complementary single unit and 

population level analyses to neural data analysis. Furthermore, they reveal novel 

coding features in a number of medial temporal lobe structures that are relevant the 

organization and coding of episodic memory.  
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