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ABSTRACT 

SPRINGS GEOMORPHOLOGY INFLUENCES  

ON PHYSICAL AND VEGETATION ECOSYSTEM CHARACTERISTICS,  

GRAND CANYON ECOREGION, USA 

By David A. Sinclair 

The Grand Canyon Ecoregion (GCE) represents the entire landscape that drains into 

Grand Canyon. This region encompasses a wide array of environments and corresponding plant 

communities of biological interest. Springs are numerous in the GCE and play a multitude of 

roles in this generally arid land. Springs serve as critical sources of water and support many 

endangered and endemic species, many of which are springs-dependent species including 

Flaveria mcdougalii, Epipactis gigantea, and Eleocharis palustris.  I conducted a statistical 

community analysis of 352 springs in the Grand Canyon Ecoregion across four spring types – 

helocrene wet meadows; hanging gardens; rheocrene flowing springs; and hillslope springs – and 

examined their physical traits and floral assemblages. Mann-Whitney tests were used to detect 

differences between spheres of discharge and correlation and multiple regression were used to 

determine relations of physical and geomorphic traits with plant species diversity. An astounding 

species packing was demonstrated with nearly 1000 species recorded across all springs, 

representing over 45% of the region’s entire flora in less than one square kilometer of springs 

habitat area. Geomorphic microhabitat diversity was positively related to springs diversity 

(p<0.00001; multiple linear regression).  

All springs types were distinguished by differences in physical site characters which in 

turn were associated with plant community structure and specific species. Geomorphic features 

including microhabitat features and substrate composition were important in distinguishing 
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springs types. There were also different physical characteristics distinguishing springs types 

including elevation and water chemistry. These features were correlated strongly with plant 

assemblages at springs and sets of indicator species were associated with each spring type.  

Multivariate regression analysis identified suites of variables related to springs 

biodiversity metrics explaining nearly half of the variation in species richness between springs. 

Microhabitat richness, area, and elevation were most important in explaining species richness. 

Grazing intensity did not have any discernable impact on species richness but did have a 

negative relation to the percentage of native species found at springs. 

In this study, I identified key differences between spring types; however, springs are 

highly individualistic and each spring needs to be understood in an individual context. 

Stewardship efforts should aim to protect geomorphic microhabitats and restore them to natural 

conditions.  Their concentrations of biodiversity warrant further conservation and additional 

inventory and study will prove useful in furthering understanding of springs of the GCE. 
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Chapter 1 – Introduction 

1.1 Purpose and Objectives of Study 

This study’s purpose was to conduct a comprehensive investigation of the differences in 

geomorphology of the Grand Canyon Ecoregion (GCE) springs’ ecosystems and examine the 

effects of geomorphic diversity on plant diversity. 

Two main objectives included: (1) differentiating current geomorphic classes of springs 

based on their physical and biological characteristics and (2) identifying key geomorphic and 

physical characteristics of springs related to plant diversity and plant community composition. 

These two objectives were combined to develop an improved understanding of interactions 

between springs geomorphology and ecology.  Results from this study will improve springs 

stewardship and conservation by developing a process to determine which springs provide the 

largest conservation benefit and the potential implications of various management actions on 

springs communities and biodiversity. A better understanding of the geomorphic differences 

between spring types and connections to springs species assemblages can allow for prioritization 

of management needs specific to each spring type and help determine which springs might serve 

as potential habitat for species of concern. 

This study represents a large-scale analysis of springs of the GCE that incorporated both the 

physical traits of springs and their plant communities and is the first of its kind. The large 

number of spring ecosystem inventories with complete data available for analysis combined with 

the known ecological importance of springs in the GCE made it an obvious choice of a region for 

analysis.  
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1.2 Significance of Springs as Ecosystems 

Springs provide important ecological functions and act as paleorefugia, hotspots of 

diversity, and keystone ecosystems (Perla and Stevens 2008, Springer et al 2015, Stevens et al. 

2016b). Despite these functions, springs have been generally understudied and the lack of high-

quality and comprehensive inventory has limited our understanding of springs ecosystems. 

Springs ecosystems are rare (less than 0.01% of the landscape) in arid lands yet they support a 

wide array of life and provide critical functions and have been reported to support much higher 

species densities than surrounding uplands. Springs geomorphology varies widely across the 

landscape although past studies have often ignored the role of geomorphology, focusing only on 

species diversity or water chemistry. It is hypothesized that the high levels of biodiversity at 

springs can be partially attributed to diverse and complex geomorphology at springs that produce 

many microhabitat types and varied niches.  

Springs not only provide a multitude of ecological functions but have been central to 

human development. Springs serve important roles as focus points for culture and human activity 

(Stevens and Meretsky 2008), support recreational activities with significant economic value 

(Bonn and Bell 2003) and provide critical water sources and hydrogeological information about 

the aquifers that supply them (Toth and Katz 2006). Mueller et al. (2017) identified positive 

economic value associated with many functions related to springs of the Grand Canyon including 

habitat for endangered species, places of cultural significance, and backcountry sources of water. 

Not only are these functions important, but the public has demonstrated a willingness-to-pay to 

protect and conserve springs – even when they don’t anticipate visiting any in person. However, 

human uses of springs often threaten their ecological functions. 
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Despite these many important attributes, springs are globally threatened by development, 

overgrazing by livestock and groundwater pumping, climate change and contamination. The 

future of many springs is uncertain with up to 90% showing signs of human impacts and 

degradation (Grand Canyons Wildlands Council 2002).  Due to these threats, the need for better 

spring stewardship has been acknowledged and springs have recently received much attention for 

management and restoration; but a comprehensive understanding of springs ecosystems is still 

lacking. 

 

1.3 Study Area 

The 35,000 km2 Grand Canyon Ecoregion (GCE), defined as the entire physiogeographic 

region draining into the Grand Canyon (Figure 1), was selected for this study because it is a 

topographically diverse landscape that supports a wide array of many springs ecosystem types. 

Although the southern Colorado Plateau is a mega-ecotone, mixing Madrean and Rocky 

Mountain biota (Stevens 2012), the GCE is geographically, hydrologically and latitudinally 

constrained. The springs of the GCE have been relatively intensively mapped and occur from 

350 – 3500 m elevation (Springs Online 2018). The region’s springs have been intensively 

studied in several hydrogeological contexts, including connate and meteoric hydrogeology, karst 

hydrology, and water supplies and contamination studies (Campbell 1968, Huntoon 1974, 

Crossey et al. 2012, Jones et al. 2017, Tobin et al. 2017).  The geology and geomorphology of 

the region are likely important controls on the locations of springs source areas of springs that 

result in spatial patterns of water chemistry and discharge magnitudes. Regional hydrogeology 

(Figure 2) consists of local perched aquifers (often on volcanic units) as well as regional 

Coconino “C” aquifer and Redwall-Muav “R” aquifer (Flynn and Bills 2002).  
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The flora of the GCE has been intensively inventoried (MacDougall 1976, Phillips et al. 

1987, Stevens and Ayers 2002, Rink and Licher 2017), and GCE springs ecosystem ecology also 

has received some attention (e.g., Perla and Stevens 2008, Ledbetter et al. 2016).  The region 

largely consists of wildlands and rangelands and is managed by several federal agencies and 

Native American Tribes and has relatively little private or urban land ownership. Springs 

constitute important riparian and wetland habitats in this generally arid area.  
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Figure 1. Map of the Grand Canyon Ecoregion showing major drainages and physiogeographic 

features; adapted from Stevens (2012)  
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Figure 2. Generalized hydrogeologic cross-section of the Grand Canyon Ecoregion. Major 

geologic units and faults are drawn with recharge areas perched water tables, regional aquifers, 

major springs, and regional groundwater flow (shown in blue); adapted from Bills and Flynn 

(2002). 

  



 

 

1.4 Spheres of Discharge 

Spheres of discharge describe the way a springs source emerges onto the 

landscape. Meizner (1923) proposed nine spheres of discharge that were simplified to 

three (helocrene, rheocrene, limnocrene) by Hynes (1970). However, Springer and 

Stevens (2009) expanded this to 12 active spheres, not counting paleosprings. These have 

been recognized and used by hydrogeologists and ecologists, owing to the complexity 

and diversity of many springs and the need for a common lexicon to compare and 

describe them (e.g., US Forest Service 2012). Classification of springs by sphere of 

discharge is needed to help scientists and managers understand links between springs 

geomorphology and biodiversity. The complex environment around a springs source 

often creates many microhabitats to support a large diversity of life (Stevens and Springer 

2009). They note the classification scheme will become more useful for ecologists and 

resource managers as more data are acquired: 

As additional comprehensive inventories of the physical, biological, and cultural 

characteristics are conducted and analyzed, it will eventually be possible to 

associate spheres of discharge with discrete vegetation and aquatic invertebrate 

assemblages, and better understand the habitat requirements of rare or unique 

springs species. This is an especially important relationship to understand given 

the high number of rare organisms and the intense species packing at springs. 

(Springer and Stevens 2009)  

The 12 spheres of discharge are as follows (1) springs that emerge in caves, (2) 

exposure springs where the water table is exposed on the landscape but water does not 

flow, (3) artesian fountains from confined aquifers, (4) hot water geysers, (5) gushets 
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from cliff walls, (6) hanging gardens emerging from geologic contacts along cliffs, (7) 

helocrene wet meadows, (8) springs emerging on steep hillslopes, (9) hypocrene springs 

buried below the surface, (10) limnocrene lentic pools, (11) mound form springs, and 

(12) rheocrene flowing channels (Springer and Stevens 2009).  Additionally, 

anthropogenic springs may be recognized when springs are so severely altered so that 

their original sphere of discharge is no longer identifiable. A table showing the twelve 

spheres of discharge can be seen in Table 1. 
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Table 1. The twelve spheres of discharge as described by Springer and Stevens (2009). 

Sphere of 

Discharge Emergence Setting 

Cave 

Emerges in a cave in mature to extreme karst with sufficiently large 

conduits 

Exposure 

Cave, rock shelter fractures, or sinkholes where unconfined aquifer is 

exposed near the land surface 

Fountain Artesian fountain with pressurized CO2 in a confined aquifer 

Geyser Explosive flow of hot water from a confined aquifer 

Gushet 

Discrete source flow gushes from a cliff wall of a perched, unconfined 

aquifer 

Hanging 

Garden 

Dripping flow emerges, usually horizontally, along a geologic contact 

along a cliff wall of a perched, unconfined aquifer 

Helocrene 

Emerges from low gradient wetlands; often indistinct or multiple 

sources seeping from shallow, unconfined aquifers 

Hillslope 

Emerges from confined or unconfined aquifers on a hillslope (30-60 

degree slope); often indistinct or multiple sources 

Hypocrene 

A buried spring where flow does not reach the surface; typically due to 

low discharge or high evapotranspiration 

Limnocrene Emergence of confined or unconfined aquifers in pool(s) 

Carbonate 

Mound-form 

Emerges from a mineralized mound, frequently at magmatic or fault 

systems 

Rheocrene Flowing spring, emerges into one or more stream channels 
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However, to ensure sufficient sample sizes for statistical analysis of sphere of 

discharge, a minimum of 30 springs in the GCE were necessary in the analysis. Only four 

spring types occurred over 30 times: hanging gardens, helocrene springs, hillslope 

springs, and rheocrene springs. These spring types all have unique geomorphic and 

hydrogeologic properties that are important to the ecosystems they support. Hanging 

gardens are common in canyons and emerge along geologic contacts in cliff walls (Figure 

3). Helocrene springs form low-gradient wet meadows, are often called cienegas and are 

usually fed by perched aquifers and develop thick organic-rich soils (Figure 4). Hillslope 

springs are often fed by unconfined aquifers where the water table emerges along a steep 

slope often with multiple sources or can emerge along a contact or fracture along a 

hillside (Figure 5). Rheocrene springs are lotic, flowing springs with a defined channel 

and often support riparian areas downstream (Figure 6).  
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Figure 3. Diagram and example of hanging garden springs. Hanging gardens emerge 

along geologic contacts and seep, drip, or pour onto underlying walls. A) Sketch of 

hanging garden spring type courtesy of SSI. A=aquifer; I=impermeable stratum; S=spring 

source. B) Glen Canyon Dam, Hanging Gardens. Photo by Rich Rudow. 

A) 

B) 
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Figure 4. Diagram and example of a helocrene spring. Helocrene springs emerge 

diffusely in a marshy, wet meadow setting rather than having a discrete source. A) Sketch 

of helocrene spring type courtesy of SSI. A=aquifer; I=impermeable stratum; S=spring 

source. B) Helocrene spring, Apache Sitgreaves National Forest, Arizona. Photo courtesy 

of SSI. 

B) 

A) 
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Figure 5. Diagram and example of a hillslope spring. Hillslope springs emerge from 

confined or unconfined aquifers on a hillslope (~30-60 degree slope), often with 

indistinct or multiple sources. A) Sketch of hillslope spring type courtesy of SSI. 

A=aquifer; I=impermeable stratum; S=spring source. B) Fence Fault Garden Spring on 

the bank of the Colorado River, Grand Canyon National Park. Photo courtesy of SSI. 

B) 

A) 
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Figure 6. Diagram and example of a rheocrene springs. Rheocrene springs are where 

flowing water discharges into one or more defined channels. A) Sketch of rheocrene 

spring type. A=aquifer; I=impermeable stratum; S=spring source. B) Buckeye Crossing 

spring in the Apache-Sitgreaves National Forest. Photo courtesy of SSI. 

B) 

A) 
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1.5 Literature Review 

There has long been debate over the sources of biodiversity in the landscape. With 

the theory of island biogeography, MacArthur and Wilson (1967) proposed that 

biodiversity is the result of differential colonization and extinction among habitat patches 

over time and identified species-area relationships that vary depending on rates of 

extinction and colonization. However, researchers have also identified microhabitat 

diversity as an important source of diversity. Hutchinson (1958) in his “Homage to Santa 

Rosalia” stressed the mosaic nature of the environment as the key to biodiverse systems. 

Local variations in environment, at a range of scales, allow for the development of 

specific niches. By having a multitude of environments no one species can become totally 

dominant and biodiversity ensues.  This relationship has been discussed and investigated 

often in a number of different ecosystems and at varying scales (e.g., Simpson 1948, 

Hutchinson 1953); however, it has seldom, if ever, been investigated at springs 

ecosystems, specifically. 

It is important to note that positive heterogeneity-diversity are not universal and 

other factors play important roles in the development of biodiversity. Some studies have 

failed to discover positive relationships (e.g., Rohde 1992, Lundholm 2009) and debate 

the generality of the relationship. Additional factors such as productivity and disturbance 

(Huston 1979), human influences (Nabhan 2008), resource availability and interspecific 

interactions. 

An investigation by Tews (2004) found that heterogeneity-diversity relationships 

vary depending on taxa and scale. However, a meta-analysis by Stein et al. (2014) claims 

near universality of the positive relationship when studies properly account for other 
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drivers of diversity. They cite three important drivers of the relationship: environmental 

heterogeneity (1) increases environmental gradients creating more niche space, (2) 

creates refuges and shelters from environmental conditions or climate change, and (3) 

separates areas of similar habitat leading to isolation and increased speciation. Springs 

are important to study in this context given their demonstrated values as paleorefugia and 

their high rates of endemism (Perla and Stevens 2008). 

The high biodiversity at springs has been attributed to the co-occurrence of 

multiple geomorphic microhabitats created by the emergence environment and steep 

ecological gradients in moisture, productivity, and nutrient availability (Springer and 

Stevens 2009, Springer et al. 2015). Stevens and Springer’s (2004) conceptual model of 

springs ecosystem ecology recognized several common geomorphic microhabitats (Table 

2) that form heterogeneous habitat mosaics at springs. Many distinct microhabitats can 

occur at each spring and are often associated with specific spheres of discharge. 

Microhabitat diversity is proposed as a significant driver of differences in diversity 

between spring types and strong influences on species assemblages at springs.  
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Table 2. Common geomorphic microhabitats encountered at springs (Stevens et al. 

2016a). 

Microhabitat Surface Abbreviation 

Adjacent Uplands AU 

Backwall BW 

Cave C 

Channel CH 

Colluvial slope CS 

High-gradient cienega HGC 

Low-gradient cienega LGC 

Unfocused madiculous MAD 

Organic ooze ORG 

Pool P 

Plunge Pool PP 

Sloping bedrock SB 

Spring mound SM 

Terrace TE 

Tunnel TU 

Other OTH 
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Figure 7. Springs ecosystems conceptual model adapted from Springer and Stevens 

(2004). Many aspects of springs ecology including physical factors, geomorphology, 

microclimate, productivity, biogeography, disturbance, ecosystem services, and 

microhabitats. The net of all these interactions yields species assemblage and biodiversity 

of a springs ecosystem. 
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The conceptual model of springs recognizes that springs are complex systems 

with many feedbacks. It acknowledges geomorphology as an important control on 

microhabitats and biogeography and eventual driver of springs diversity and species 

assemblages (Figure 7). Not only are springs highly productive ecosystems, but they 

exhibit strong environmental gradients (e.g., moisture, light, temperature), have complex 

biogeographic and climatic histories, create isolated habitat patches, have highly variable 

microhabitats (e.g, substrate, aspect, slope), and distinct patterns of disturbance (floods, 

fire, grazing, human uses). Thus, springs are highly multivariate ecosystems. Only by 

analyzing and controlling for these many interactions can the true link between 

environmental heterogeneity and biodiversity at springs be discovered. 

Several studies have examined the relationship between plant species richness and 

landform heterogeneity, but few have done this at springs specifically. Dufour et al. 

(2006) reported a positive correlation between plant species richness and landform 

diversity in a study in the Swiss Jura Mountains. In a study of deciduous plant 

communities in Rhode Island, Burnett et al. (1998) found species richness of trees and 

shrubs to be higher in areas of higher geomorphic heterogeneity. A review by Lundholm 

(2009) supported the relationship between landscape diversity and species richness at 

scales ranging from less than a square meter to over a square kilometer. These studies 

suggest that geomorphic heterogeneity may be an important indicator of species diversity 

at springs, but little work to test this hypothesis has been completed.  

Geomorphology and plant species can interact with each other in many ways. 

While geomorphic microhabitats provide niches for many plant species, the presence of 

plants can also influence processes at springs to produce additional microhabitats. 
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Woodbury (1933) showed that mosses and algae populating backwalls at hanging garden 

springs can create habitat for ferns whose roots will subsequently erode cracks in the 

backwall providing additional habitats. Furthermore, plants accelerate weathering and 

provide organic matter to develop rich soils that support wider arrays of life (Woodbury 

1933).  

Several studies have examined variations in diversity at springs ecosystems 

specifically. A previous study in Germany, (Martin and Brunke 2012) compared 

macroinvertebrate taxon richness with spring characteristics at four classes of spring 

(helocrene, rheocrene, helo-rheocrene, limnocrene). They found that macroinvertebrate 

richness was most closely associated with water hardness and conductivity. Further, 

limnocrene springs had lower macroinvertebrate richness compared to other spring types. 

Thus, water chemistry was deemed the most important driver of diversity. However, 

environmental heterogeneity was not explicitly included in their analysis. Limnocrene 

springs with their large areas of open water often have lower species richness given their 

area (Springer et al. 2015). This may be related their lower microhabitat diversity. 

Geomorphology is not the only parameter controlling diversity in spring 

ecosystems. Audorff et al. (2011) compared the roles of both water quality and spatial 

factors on plant species richness at springs in central Europe. They found that nutrient 

availability and elevation were the strongest predictors.  Further, they observed a general 

decrease in pH and conductivity with altitude and concluded that hydrochemical factors 

were more influential than spatial or hydrophysical factors in controlling plant 

community composition. However, overall explanation of variation in species richness 

was low and no metric of environmental heterogeneity was included their analysis. 
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Skalicky et al. (2017) examined several springs in the Krokonse Mountains of the 

Czech Republic. They found elevation, slope, and aspect to be important drivers of 

springs community composition and identified springs as diversity hotspots supporting 

many endemic species. This analysis revealed the highest diversity of plant species in 

areas with the highest elevations and steepest slopes. Soil type was also identified as an 

influencing factor; but no metric of microhabitat diversity was included in the analysis. 

There has been some research specific to the springs of the Grand Canyon. 

Ledbetter et al. (2016) examined the springs of the Kaibab National Forest. The study 

focused on analyzing restoration potential of springs on the forest land. A key finding 

was the importance of groundwater flow paths to water quality. Strong relationships were 

identified between total dissolved solids and elevation and were related to groundwater 

flow path length and dissolution of limestone bedrock. More importantly, analysis of 

natural condition, disturbances, and risks associated with each spring was able to 

prioritize springs restoration, using a standardized Spring Ecosystem Assessment 

Protocol (SEAP) (Stevens et al. 2016a).  

 Tobin et al. (2017) conducted a review of springs in the Grand Canyon. Key 

findings included wide variety and density of springs in the Grand Canyon. At least 750 

springs were recorded, representing 10 out 12 recognized spheres of discharge. Further, 

discharges ranged over many orders of magnitude and geochemistry was spatially 

variable. Geologic setting was important in reflecting springs source areas, responses to 

recharge, and vulnerability to risks such as groundwater pumping and wildfire. While no 

analysis of springs ecosystems was included these findings, they do highlight the 

importance of springs in the region and their complexity. 
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A study of spring inventories from Alberta demonstrated dense plant species 

packing at springs and suggested that over 25% of the provincial flora was found in just 

3.8 ha of springs habitat (Springer et al. 2015). They found that microhabitat richness was 

positively related to floral species richness. Water hardness, geomorphic microhabitat 

richness, and anthropogenic impacts were important controls on springs vegetation 

among springs types. Further, large interregional differences were found between springs 

across Alberta. These interregional differences could be attributed to variations in climate 

factors, spheres of discharge, and human uses across regions. The high rate of 

biodiversity and the documentation of human impacts at many springs highlighted the 

need for increased springs conservation efforts. 

 

1.6 Research Thread 

This study is the third in a research thread investigating the relationship between 

springs geomorphology and plant biodiversity at springs. The focus has been on 

identifying if there is a direct link between landscape heterogeneity and springs 

biodiversity and identifying any differences in this relationship between spheres of 

discharge. First, Hallam (2010) focused on a set of spring inventories in the Spring 

Mountains of Nevada. Hallam’s study was limited by its sample size due to confined 

geographic extent. Across 57 springs, she failed to find that geomorphic diversity was 

related to biodiversity at the springs. However, she did find that geomorphic diversity 

was related to overall vegetation cover at springs. Further, she concluded that small 

sample sizes and inadequate geographic extent limited her analysis. 
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Sparks (2014) expanded on Hallam’s work using a larger sample size and greatly 

expanded the geographic extent. The study analyzed relationships between plant diversity 

and geomorphology at 341 springs throughout Western North America, dominantly the 

US Southwest and Alberta, Canada. The study found that a sample of at least 30 springs 

for each sphere of discharge was needed to make any statistical conclusions between the 

role of geomorphology on biodiversity. Analysis was limited to four spheres of discharge 

with sufficient sample sizes for analysis. These were helocrene, rheocrene, limnocrene 

and hillslope springs.  

Sparks’ research highlighted several relationships. Species richness was 

significantly, positively related to geomorphic diversity at helocrene, hillslope, and 

rheocrene springs. Structural diversity was significantly, positively related to geomorphic 

diversity only at hanging garden springs. Functional diversity was significantly, though 

weakly, positively related to geomorphic diversity at hillslope and rheocrene springs. 

Physical and water quality parameters important for predicting plant diversity and 

richness were area, microhabitat richness, latitude, percent solar radiation summer, water 

temperature, flow, and specific conductance. Significant differences of several 

parameters between springs types supports the validity of the classification of hanging 

garden, helocrene, and rheocrene springs. No parameters were significantly different for 

hillslope springs, which suggests the need for further classification of hillslope springs.  

These findings identify potential relationships between geomorphology and 

diversity at springs and support the use of spheres of discharge by distinguishing several 

spheres of discharge by differences in physical parameters. The relationships found were 

partially obscured by strong interregional variations in biodiversity. Alberta springs had 
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much higher diversity probably due to increased moisture availability and the 

convergence of several regional biota. By focusing on a single ecoregion, this study 

better illuminates relationships between geomorphology and plant biodiversity.  

 

1.7 Hypotheses 

This study tackles two key hypotheses with a suite of statistical techniques to better 

understand and identify relationships between springs geomorphology and plant diversity 

while accounting for the highly complex and multivariate nature of springs. I proposed: 

1. Each type of springs has distinct geomorphic, physical, geochemical, floral 

characteristics that distinguish it from the other classes of springs.  

2. Species richness is positively related to geomorphic diversity at springs and varies 

by spring type. 
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Chapter 2 – Manuscript 

2.1 Abstract 

The Canyon Ecoregion (GCE) represents the entire landscape that drains into 

Grand Canyon. This region encompasses a wide array of environments and 

corresponding plant communities of biological interest. Springs are numerous in the GCE 

and play a multitude of roles in this generally arid region. Springs serve as critical 

sources of water, and support endangered and endemic species with over 1000 springs-

dependent species identified in the GCE.  This study conducted a statistical community 

analysis of 352 springs in the GCE among four spring types – helocrene wet meadows; 

hanging gardens; rheocrene flowing springs; and hillslope springs. All springs types were 

distinguished by differences in physical site characters which in turn were associated with 

plant community structure and specific species. Plant species packing was substantial 

with almost 1000 species recorded across all springs. All in all, this assemblage 

represented over 45% of the region’s entire flora in less than square km of habitat area. 

Geomorphic microhabitat diversity was positively related to springs diversity. This study 

identified key differences between springs types, each spring needs to be understood in 

an individual context. Stewardship efforts should aim to protect varied microhabitats. 

Each spring type supported high plant species richness and further different assemblages 

of plants were associated with each spring type. The high concentration of biodiversity at 

springs warrants further conservation, and additional inventory and study will prove 

useful in further understanding of springs of the GCE. 
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2.2 Introduction 

Microhabitat diversity has long been regarded as an important factor contributing 

to biological diversity. Simpson (1948) and Hutchinson (1953) emphasized positive 

relationships between the mosaic nature of the environment and species richness because 

complex habitats provide more niche space and opportunities for resource diversity and 

exploitation. However, positive heterogeneity-biodiversity relationship are not universal, 

varying among taxa and across spatial scale (Tews et al. 2004), in relation to resource 

availability and environmental severity (Yang 2015), disturbance-productivity 

interactions (Huston 1979), and human influences (Nabhan 2008).   

Springs ecosystems provide a wide array of natural and anthropogenic services, 

and critical environmental functions (Kreamer et al. 2015). Springs are paleorefugia, 

hotspots of diversity, and function as keystone ecosystems (Perla and Stevens 2008, 

Springer et al 2015). They are focal points of human cultural and socio-economic 

interest, providing rural and for some communities, urban water supplies, as well as 

recreational activities with significant economic value (Bonn and Bell 2003, Stevens and 

Meretsky 2008, Mueller et al. 2017). Also, springs provide important hydrogeological 

information about aquifer integrity and change (Toth and Katz 2006, Kresic and 

Stevanovic 2009). Despite these many important attributes, springs are globally 

threatened by development, groundwater pumping, climate change, contamination, 

overgrazing, and invasive species (Stevens and Meretsky 2008). Thus springs warrant 

more scientific and stewardship attention.  

Many studies have examined relationships between plant species richness and 

landform heterogeneity (e.g., Burnett et al 1998, Dufour et al 2006, Lundholm 2009), but 
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few have compared habitat heterogeneity impacts on terrestrial plant species richness 

within and among different springs types. Geomorphology and plant species richness 

may interact reciprocally: while geomorphic microhabitats provide niches for some plant 

species, the presence of cornerstone or keystone plant species, such as trees, can 

influence physical processes (e.g., weathering, rockfall, sediment deposition) and produce 

additional microhabitat heterogeneity (e.g., Woodbury 1933). The development of 

canopy vegetation also can shade understory habitats and potentially reduce understory 

productivity and species richness. Thus, complex physical and biological feedbacks may 

facilitate or reduce plant species richness at springs. 

High levels of biodiversity at springs have been attributed to the co-occurrence of 

multiple geomorphic microhabitats created by the emergence environment and steep 

ecological gradients in moisture, productivity, and nutrient availability (Springer and 

Stevens 2009, Springer et al. 2015). Stevens and Springer’s (2004) conceptual model of 

springs ecosystem ecology recognized 13 common geomorphic microhabitats that can 

form a heterogeneous habitat mosaic. A few studies have explored controls on springs 

plant assemblage structure. Martin and Brunke (2012) compared faunal taxon richness 

with spring characteristics among four spheres of discharge (helocrene, rheocrene, helo-

rheocrene, and limnocrene). They found that aquatic macroinvertebrate species richness 

was most closely associated with water hardness and conductivity and further reported 

reduced faunal diversity at limnocrene springs compared to all others. Audorff et al. 

(2011) compared the roles of water quality and spatial factors on plant species richness at 

springs, finding that nutrient availability and elevation were the strongest predictors of 

richness. They observed a general decrease in pH and conductivity with altitude, 
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concluding that hydrochemical factors were more influential than spatial factors in 

controlling plant community composition. Hallam (2010) studied vegetation at a small set 

of springs in the Spring Mountains of Nevada, reporting a positive relationship between 

geomorphic diversity and species richness. Sparks (2014) examined vegetation at 

hillslope, helocrene, hanging garden, and rheocrene springs across western North 

America. She reported differences among all but hillslope springs, and a positive 

relationship between geomorphic microhabitat diversity and species richness. In addition, 

spring area, latitude, percent solar radiation summer, water temperature, flow, and 

specific conductance were significantly related to floral species richness. A study of 

spring inventories from Alberta demonstrated dense species packing at springs: over 25% 

of the provincial flora was found in just 3.8 ha of springs habitat (Springer et al. 2015). 

They found that microhabitat richness was positively related to floral species richness. 

Water hardness, geomorphic microhabitat richness, and anthropogenic impacts were 

important controls on springs vegetation among springs types. 

This paper presents analyses of relationships among springs types and 

geomorphic variation on plant assemblage composition, structure, and function in the 

GCE. We asked several questions. (1) What physical and biological traits differentiate 

GCE springs by sphere of discharge? (2) What ecosystem variables, such as microhabitat 

diversity and geochemistry, control vascular plant assemblage richness and structure at 

GCE springs? These analyses can be used to identify hot spots of plant species 

concentration, improve understanding of plant assemblage patterns in response to 

ecological gradients and anthropogenic impacts, and inform springs ecosystem inventory 

and management across large landscapes. 



29 

 

2.3 Methods 

 

2.3.1 Springs Classification 

The concept of spheres of discharge was developed to classify and better describe 

springs as hydrogeologic features, and refers to the geomorphological environment where 

groundwater is exposed and often flows onto the Earth’s surface (Meizner 1923). 

Springer and Stevens (2009) updated and expanded this concept, cataloging a 

comprehensive list of 12 distinctive spheres of discharge, including natural and 

anthropogenic types. Their terminology has been adopted by hydrogeologists and 

ecologists, improving description, comparison, and measurement of physical and 

biological attributes among widely varying types and complexity (e.g., USDA Forest 

Service 2012).  This classification scheme will become more useful for ecologists and 

resource managers as more data are acquired and analyzed. Springer and Stevens (2009) 

hypothesize that biological characteristics vary among spheres of discharge to create 

“discrete vegetation and aquatic invertebrate assemblages.” We test that concept here, 

recognizing these if discrete associations are associated with different springs types, such 

information will help the public and the scientific, managerial, and policy communities, 

better understand stewardship needs and options. The information compilation effort 

spearheaded by the Spring Stewardship Institute now allows this hypothesis to be tested. 
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2.3.2 Study Area 

The 35,000 km2 Grand Canyon Ecoregion (GCE) was selected for this study 

because it is a topographically diverse landscape that supports a wide array of many 

springs ecosystem types (Figure 8). Although the southern Colorado Plateau is a mega-

ecotone, mixing Madrean and Rocky Mountain biota (Stevens 2012), the GCE is 

geographically and latitudinally constrained. The springs of the GCE have been 

intensively mapped and occur from 350 – 3500 m elevation (Springs Online 2018, 

springsdata.org). The region’s springs have been intensively studied in several 

hydrogeological contexts, including connate and meteoric hydrogeology, karst 

hydrology, and water supplies and contamination studies (Campbell and Green 1968, 

Huntoon 1974, Crossey et al. 2012, Jones et al. 2017, Tobin et al. 2017). The flora of the 

GCE has been intensively inventoried (MacDougall 1947, Phillips et al. 1987, Stevens 

and Ayers 2002), and GCE springs ecosystem ecology also has received some attention 

(e.g., Perla and Stevens 2008, Ledbetter et al. 2016).  The region largely consists of 

wildlands and rangelands. Management is by several federal agencies and Native 

American Tribes, with relatively little private or urban land ownership. Springs constitute 

important riparian and wetland habitats in this generally arid area, and GCE springs have 

demonstrated positive non-market economic values (Mueller et al. 2017). 
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2.3.3 Data Sources 

This study employed spring inventory data collected following the Level 2 

Springs Inventory Protocol (SIP). This protocol has been adapted and adopted by the U.S. 

Forest Service, the U.S. Fish and Wildlife Service, several National Park Service units, 

and many others. Springs inventory data are archived into an online database 

(SpringsData.org) through the Springs Stewardship Institute (Ledbetter et al. 2014). The 

SSI protocol includes the complete details and sample data collections sheets (Stevens et 

al. 2016a). The Level 2 inventory protocols are comprehensive and designed to be carried 

out by a team of expert scientists over the course of several hours at a site. Data from at 

least 30 springs per type with Level 2 inventory data were analyzed to determine 

vegetation patterns. Permission was obtained from regional land managers for these 

analyses, and care was taken to protect any sensitive data.   

The SSI Level 2 inventory data used for these analyses included both physical site 

characteristics, geomorphic survey data, water chemistry and plant surveys. Physical site 

characteristics included spring sphere of discharge, geology, solar radiation balance, 

location and elevation. Elevation is used as a climate variable because temperature and 

precipitation are closely linked to elevation in the GCE. However, local spring 

topography often influences microclimate at springs. Geomorphic data included detailed 

microhabitat data, as well as evaluation of disturbance regime impacts. Discrete 

geomorphic microhabitats polygons were identified at each springs ecosystem, and 

microhabitats were mapped based on surface types. Polygon dimensions were measured 

and mapped to scale in the field. Aspect, slope, moisture condition and visually estimated 

percent cover (VE%C) of substrate classes were recorded for each microhabitat. Cover 
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measurements included litter, woody debris, chemical precipitate and various grain sizes 

classes (clay, silt, sand, pea gravel, large gravel, small boulders, large boulders, bedrock). 

Water chemistry included field temperature, dissolved oxygen, specific conductance, 

alkalinity, pH, and dissolved oxygen concentration [DO]. Spring discharge was also 

measured using a variety of methods (i.e., volumetric methods, weirs, flumes, current 

meters) depending on site characteristics and discharge. Site-specific monthly solar 

radiation balance was measured with a Solar Pathfinder (Solar Pathfinder 2011) and 

converted to a percentage of the maximum possible for a flat unshaded site in the summer 

(PSRS). PSRS is related the amount of photosynthetically active radiation (PAR) 

available in the growing season. All plant species at the site were identified to species 

level for each survey. The VE%C was visually estimated for species in each microhabitat 

by stratum: aquatic, nonvascular, basal (wood emerging from the ground), deciduous 

ground cover, shrub cover (woody, 0-4 m tall), middle canopy (woody, 4-10 m), and tall 

canopy cover (woody, >10 m). Species nativity and wetland status were taken from SSI’s 

database. Wetland status was refined from the USDA wetland indicator categories 

(USDA 2017), and included aquatic, wetland, wetland-riparian, riparian, facultative, and 

upland categories.  

The Level II inventory is used to inform SSI’s Springs Ecosystem Assessment 

Protocol (SEAP), which was designed to facilitate conversations and inform management 

decisions around springs restoration (Springer et al. 2015, Ledbetter et al. 2016, Paffett et 

al. in press). The SEAP assesses springs condition and risk with 42 questions across six 

categories including aquifer and water quality, geomorphology, habitat, biology, human 

influences, and administrative context (Stevens et al. 2016a). Springs condition are 
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scored between 0 (low condition) and 6 (pristine condition) and risks are assessed 0 (no 

risk) to 6 (high risk). The SEAP has been shown to be an effective management tool with 

springs showing moderate conditions and high risks most responsive to restoration action 

(Paffett et al. in press). 

 

2.3.4 Analyses 

Data were examined for outliers and transcription errors before analysis. When 

suspect data were found they were investigated by reviewing survey notes, crosschecking 

photos, sketches and site or referencing additional surveys of the same spring. If missing 

or suspect data could not be rectified, then that spring site was excluded from further 

analysis. 

Data were imported to R (R Core Team 2017) for analysis and displayed in 

bivariate plots and histograms to examine distributions and relationships between 

variables. Covariance and correlation matrices were calculated to understand linear 

relationships. The Shannon Diversity index, H’, (Shannon and Weaver 1948) was used to 

calculate diversity metrics           

     �� = − ∑ ���	


��� ��     (1) 

where S is total entity richness and pi is relative cover of entity i. Diversity metrics 

included: (1) overall floral diversity using species relative cover, (2) geomorphic 

diversity using the relative area of microhabitats, (3) structural diversity of relative cover 

by stratum level, and (4) functional diversity of relative abundance of functional plant 

groups by wetland status. Summary statistics were calculated for each physical variable 
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by springs type. Significant differences between springs spheres of discharge were 

determined using non-parametric Mann-Whitney Tests using the ‘wilcox.test’ function in 

R, and boxplots were constructed to illustrate the most insightful of these differences. 

Differences were considered significant only if P<0.001 due to the larger number of 

comparisons made. 

A linear discriminant analysis (LDA) was conducted to test if physical springs 

traits could differentiate springs by type using the ‘lda’ function in R from the ‘MASS’ 

package (Venables and Ripley 2002). Variables were transformed prior to analysis if it 

improved normality assumptions and all variables were standardized to a mean of 0 and 

standard deviation of 1. Plots of discriminant axes were compared to interpret results and 

the highly weighted variables along each axis were compared to results of Mann-Whitney 

Tests. 

Indicator species analyses were conducted to determine if specific species were 

associated with specific spring types. The indicator value of each species was calculated 

with ‘indicspecies’ package in R with the ‘multipatt’ function (De Cacares and Jansen 

2016). Combinations of groups were not considered. The indicator value is a combination 

of specificity and sensitivity of a species to a specific group (Dufrene and Legendre 

1997). Significance for each indicator species was assessed with 1000 random 

permutations. 

A multiple linear regression model was applied to predict plant species richness at 

each spring. All physical, geomorphic and water quality parameters were included in 

these analyses. Transformations were applied when indicated by bivariate and histogram 

analysis. Spring type was included as a predictor allow to have different intercepts for 
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each sphere of discharge. A stepwise procedure was performed in R using the “step” 

function inside the “stats” package (R Core Team 2017). Best models were selected 

using the Akaike Information Criterion (AIC), which is based on likelihood and penalizes 

overly complex models (Sakamoto et al. 1986).  Permutation tests were used to assess the 

importance of each variable to overall model accuracy. Covariance of predictors were 

examined for multicollinearity and to aid in interpretation. Residuals were plotted and 

examined to assess model fit and any outliers. 

Non-metric multidimensional scaling was used as a non-parametric technique to 

visualize community structure. NMDS was executed in R with the ‘metaMDS’ function 

from the ‘vegan’ package (Oksanen et al. 2017). NMDS was run with 2 axes and 100 

random trials to ensure a global stress minimum was reached. Species percent covers 

were square root transformed prior to analysis and Bray-Curtis Distance was used as 

distance measure. Rank correlations of axis scores with physical variables were used to 

understand the ecologic gradients related to community structure. Significant differences 

between springs types were assessed through an analysis of similarity using the ‘anosim’ 

function in ‘vegan’ (Oksanen et al. 2017). 

 

2.4 Results 

Three-hundred and fifty-two springs were used in the analyses, including 47 

hanging gardens, 49 helocrene springs, 147 hillslope springs, and 99 rheocrene springs 

(Figure 8). There was an insufficient sample size available for analysis of limnocrene,  
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Figure 8. Map showing the Grand Canyon Ecoregion (GCE) and the 352 springs included 

in this study. The GCE represents the entire region draining into the Grand Canyon with 

over 3,000 meters of relief. All springs in the region with complete Level 2 springs 

inventories were included in analysis. There were 47 hanging gardens, 49 helocrene 

springs, 157 hillslope springs, and 99 rheocrene springs. 
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gushet, or cave springs. The 352 springs encompassed a total habitat area of 0.42 km2 and 

987 distinct taxa were identified to the species level. Current estimates of the total flora 

of the GCE is approximately 2200 species (Stevens 2012). Thus, we documented 

approximately 45% of the regional flora at springs that make up less than 0.01% of the 

regional land area. 

Mann-Whitney tests identified significant differences between physical traits and 

diversity metrics (Figure 9). Complete tables of the data are included in Appendix C. 

Spring types occurred in different elevation ranges with helocrenes occurring at the 

highest elevations followed by rheocrenes, hillslopes, and hanging gardens each at the 

lower elevations, respectively. Helocrene springs had significantly higher wetted areas, 

while hillslope springs had more northern facing aspects. Helocrene springs received 

lower PSRS and helocrenes received higher PSRS than other spring types.  

Significant differences in geochemistry were found among springs types (Figure 

10). Hanging gardens had higher pH, dissolved oxygen and specific conductance while 

helocrenes were significantly lower in these three parameters. Hillslopes had lower water 

temperatures while rheocrene springs had significantly higher water temperatures. 

SEAP ecosystem scores revealed that hanging gardens tended to have the highest 

ecological integrity, with higher scores for aquifer condition, geomorphic functionality, 

biological condition, water quality, and road, fence, and herbivory impacts (Figure 11). 

Rheocrene springs had significantly higher flow naturalness than did other types. 

Helocrene springs had significantly lower aquifer condition, water quality, and fence 

impacts than other spring types.   
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Figure 9. Boxplots showing variations of physical site characteristics by spring type: a) 

spring area; b) microhabitat richness; c) percent solar radiation summer d) percent north; 

e) slope; f) soil moisture. Center line shows median; box shows interquartile range; 

whiskers show an additional 150% of the interquartile range; and points represent 

outliers. Spring types are abbreviated: HG = Hanging Garden; HC = Helocrene; HS = 

Hillslope; RC = Rheocrene 
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Figure 10. Boxplots showing variations of hydrologic parameters by spring type: a) flow; 

b) dissolved oxygen; c) alkalinity; d) pH; e) specific conductance; f) water temperature. 

Center line shows median; box shows interquartile range; whiskers show an additional 

150% of the interquartile range; and points represent outliers. Spring types are 

abbreviated: HG = Hanging Garden; HC = Helocrene; HS = Hillslope; RC = Rheocrene 
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Figure 11. Boxplots showing variations of Springs Ecosystem Assessment Protocol 

(SEAP) condition scores: a) aquifer condition; b) microhabitat condition; c) ungulate 

disturbance condition; d) flow naturalness condition. SEAP scores qualitative and used to 

prioritize management. Scores range 0 through 6 with 6 indicating pristine conditions and 

lower scores indicating increasing disturbance. Center line shows median; box shows 

interquartile range; whiskers show an additional 150% of the interquartile range; and 

points represent outliers. Spring types are abbreviated: HG = Hanging Garden; HC = 

Helocrene; HS = Hillslope; RC = Rheocrene. 
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Substrate composition also helped differentiate spring types (Figure 12).  Hanging 

gardens were characterized by higher proportions of bedrock and carbonate precipitate, as 

well as low proportions of gravel, woody debris, litter, and organic soil.  Helocrene 

springs were dominated by organic soil and litter cover with little bedrock. Hillslope 

springs had significantly higher cover of gravel and woody debris while rheocrene had 

more varied substrates. 

Diversity metrics trends indicated significant differences among some spheres of 

discharge (Figure 13). Hanging gardens had lower species richness (mean = 16 species), 

while other spring types supported an average of 22-24 species. However, hanging 

gardens had higher proportions of native species, averaging 84%, while helocrene springs 

had the lowest percent nativity at 66%. Hanging gardens also had the highest geomorphic 

and structural diversity levels, while helocrene springs had significantly lower structural 

diversity.  

The linear discriminant analysis differentiated among springs types. Using three 

discriminant axes, 245 (70%) of the 352 springs analyzed were correctly classified (Table 

3). The majority of the separation occurred on the first two axes, explaining 86% of 

between group variance (Figure 14). The first axis mostly separated hanging gardens and 

highly weighted elevation (+) and slope (-). The second axis most strongly weighted 

biological condition (-), longitude (+), log wetted area (-), and species richness (+). The 

third axis separated hillslope and rheocrene springs, and weighted lands condition (-), 

woody debris cover (-), geomorphic diversity (-). 
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Figure 12. Boxplots showing variations of substrate composition by springs type: a) fines 

(clay and silt); b) sand; c) gravel and cobbles; d) bedrock; e) organic soil; f) precipitate. 

Center line shows median; box shows interquartile range; whiskers show an additional 

150% of the interquartile range; and points represent outliers. Spring types are 

abbreviated: HG = Hanging Garden; HC = Helocrene; HS = Hillslope; RC = Rheocrene 
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Figure 13. Boxplots showing variations of diversity metrics by spring types: a) floral 

species richness; b) geomorphic diversity; c) structural diversity; d) percent native plant 

species. Center line shows median; box shows interquartile range; whiskers show an 

additional 150% of the interquartile range; and points represent outliers. Spring types are 

abbreviated: HG = Hanging Garden; HC = Helocrene; HS = Hillslope; RC = Rheocrene 
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Figure 14. Plot showing ordination of spring sites based on LDA results. Boxes represent 

means ± standard deviation for each spring type. These first two axes explained 86% of 

variation between springs type and the third axis explained the remaining 14%. Axis 1 

predominantly reflects slope (-), elevation (+) and alkalinity (-). Axis 2 strongly weights 

area (-), longitude, and biologic condition (-). The LDA successfully discriminated 70% 

of the springs. Points are coded by spring type: HG = Hanging Garden; HC = Helocrene; 

HS = Hillslope; RC = Rheocrene 
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Table 3. Results of validation of linear discriminant analysis based on 352 springs. 

Predicted springs type are shown on rows and actual spring types are columns. Diagonal 

shows percent of springs in each class correctly identified.  

    

  

Hanging 

Garden Helocrene Hillslope Rheocrene 

Hanging 

Garden 81% 0% 4% 6% 

Helocrene 0% 57% 4% 8% 

Hillslope 15% 29% 81% 33% 

Rheocrene 4% 14% 11% 53% 

Overall Success = 70% 
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Indicator species analysis identified several species associated with each springs 

type (Appendix F). Hanging garden springs supported the largest group of significant 

indicators: 44 significant indicator species were identified, and 96% of hanging gardens 

had at least one indicator species present. The best indicators were Adiantium capillus- 

veneris, Andropogon glomeratus, and Epipactus gigantea. Helocrene springs had 35 

significant indicator species, of which at least one occurred in 94% of the helocrene 

springs. However, the strongest indicators were non-native Poa pratensis, Taraxacum 

officiniale, Cirsium vulgare, and Ranunculus hydrocharoides. Hillslope springs were 

characterized by 8 indicators species, but only 55% of hillslope springs had at least one 

indicator present. The strongest indicators were Pteridium aquilinum, Veronica 

americana, and Rudbeckia laciniata. Rheocrene springs had 10 significant indicator 

species, with at least one indicator species identified at only 46% of those springs. The 

strongest indicators were native Salix goodingii and Fraxinus velutina as well as non-

native Melilotus officinalis and Carex kellogii. Low values of indicator species arose 

because all species but non-natives have discrete elevation ranges while spring types are 

less constrained by elevation. 

Linear modeling of springs state variables and diversity metrics revealed 

significant correlations. Elevation, wetted area, and geomorphic diversity were 

significantly positively related to species richness (r=0.16, 0.29, and 0.29, respectively) 

and negatively related to specific conductance (r=-0.29) (Figure 15). Water chemistry 

variables (pH, specific conductance, DO, alkalinity) were positively related among 

themselves, and negatively correlated with elevation (Figure 16).  The proportion of 

native species was positively related to the proportion of invasive species (r = 0.37).  
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Figure 15. Scatterplots of physical parameters versus floral species richness with linear 

correlations: a) spring area (r = 0.29); b) elevation (r = 0.14); c) geomorphic diversity (r = 

0.29). All three were significantly positively correlated with species richness.  Points are 

coded by spring type: HG = Hanging Garden; HC = Helocrene; HS = Hillslope; RC = 

Rheocrene 
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Figure 16. Scatterplots of water quality parameters versus elevations with linear 

correlations: a) pH (r = -0.30); b) specific conductance (r = -0.35); c) water temperature (r 

= -0.46). All water quality parameters were negatively correlated with elevation.  Points 

are coded by spring type: HG = Hanging Garden; HC = Helocrene; HS = Hillslope; RC = 

Rheocrene 
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Multiple regression diversity metrics identified key ecological variables 

associated with plant diversity. The best model selected to predict species richness used 9 

predictor variables and achieved an R2 of 0.39. Listed in order of importance to the 

overall model R2, the predictors were: (1) microhabitat richness, (2) wetted area (loge), 

(3) elevation, (4) spring type, (5) pH, (6) soil moisture, (7) woody debris cover, (8) 

PSRS, and (9) limestone bedrock presence. The model had a residual standard error of 8 

species (Table 3).  

Nonmetric multidimensional scaling identified important ecological gradients 

influencing assemblage composition. Successful ordination was achieved with 2 axes of 

assemblage structure (stress = 0.15) (Figure 17). Axis 1 was most closely related to 

elevation, with a negative relationship between elevation and axis score. There also were 

positive relationships of the axis 1 score with microhabitat richness, specific 

conductance, dissolved oxygen, and percent cover of precipitated. Axis 2 was positively 

related to PSRS and negatively related to assessment scores for water quality condition 

and fence condition. Bedrock cover, spring area, structural diversity, and polygon area 

were related to a combination of both axes. Some clustering of spring types by 

assemblage was evident in the NMDS results, and significant differences were identified 

between spring types (ANOSIM R = 0.1011; P = 0.001).  
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Figure 17. Scatterplot of NMDS axes showing differences in plant communities by 

springs. Points reflect individual springs coded by spring type as follows: HG = Hanging 

Garden; HC = Helocrene; HS = Hillslope; RC = Rheocrene. Stress of ordination was 

0.15. Arrows represent direction and strength of Spearman correlation with axis scores 

related to dimensions of community structure; only rank correlations greater than 0.30 are 

shown. Codes for environmental variables as follows (clockwise from left): Elev = 

elevation; PSRS = percent solar radiation summer; WTemp = water temperature; Area = 

spring area; MR = microhabitat richness; SDiv = structural diversity; Prec =  precipitate 

cover; pH = pH; Rock = bedrock cover; Alk = alkalinity; Slope = slope; FC = fence 

condition; WQ = water quality condition; GeomC = geomorphic microhabitat condition; 

BioC = biologic condition; Wood = wood cover; PN = percent north; Org = organic soil 

cover
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Table 4. Multiple linear regression predicting floral species richness at 309 springs. Model was 

chosen with stepwise selection minimizing AIC. Importance column reflects average reduction 

in model R-squared when the values of the parameter were randomly permuted. Bolded P-values 

indicate P<0.05 

    
Parameter Estimate Std. Error t Value P Importance 

Intercept 10.15 6.22 1.63 0.1037 - 

log(Area) (m2) 1.91 0.35 5.39 <0.00001 14.5 

Microhabitat richness 2.43 0.33 7.27 <0.00001 26.7 

log(Woody Debris 

Cover) (%) 0.64 0.21 3.08 0.0023 4.2 

Elevation (m) 0.003 0.001 3.70 0.0003 6.5 

Soil Moisture (1-10) 0.46 0.15 3.19 0.0016 4.8 

pH -2.13 0.67 -3.19 0.0016 4.6 

Spring Type - - - - 4.9 

    Hanging Garden -2.57 1.28 -2.01 0.0450 - 

    Helocrene -1.67 1.21 -1.38 0.1694 - 

    Hillslope 1.73 0.82 2.11 0.0360 - 

    Rheocrene 2.51 0.86 2.90 0.0040 - 

PSRS (%) -0.55 0.23 -2.36 0.0188 2.4 

Limestone 1.55 1.09 1.43 0.1545 0.5 

R2 = 0.39 Res. Std. Error = 8.0       
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2.5 Discussion 

Inventories across the GCE demonstrated remarkably tight packing of plant species at 

springs. Despite the small total area of springs in the region, we detected nearly 50% of the 

regional flora at just 352 springs in 0.48 km2 of springs habitat. This result is consistent with 

estimates from previous studies of springs in other regions (Springer et al. 2015, Ledbetter et al. 

2016), reaffirming the important biologic role played by springs as refugial hotspots of 

biodiversity. The intensity of species packing underscores the conservation significance of 

springs: protection of springs is an important and efficient way to protect a large number of 

species in a small habitat area, including several endemic, rare, or threatened species (e.g., 

Hershler et al. 2014, Kreamer et al. 2015). 

This study identified key habitat and environmental variables associated with springs 

plant diversity. Plant species richness was positively related to springs area (Figure 15), as 

expected in relation to positive species-area relationship in insular habitats (MacArthur and 

Wilson 1967). Geomorphic microhabitat diversity also was positively related to species richness: 

more heterogeneous environments support increased plant species richness and diversity (Figure 

15). Our data confirm results obtained in previous studies (Hallam 2010, Sparks 2014, Springer 

et al. 2015). Interestingly, microhabitat richness rather than geomorphic diversity was a better 

predictor of species richness in the MLR model (Table 4), suggesting that equivalence of area 

among microhabitats may be less important than absolute richness. Each additional microhabitat 

was associated with addition of about two plant species present in the springs ecosystem. 

Elevation was a proxy for climate since elevation is strongly related to temperatures and 

precipitation in the GCE (Sellers et al. 1985). The negative effects of elevation on plant richness 

suggests that water availability, air temperature and growing season length limit biodiversity at 
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springs. Soil moisture also positively influenced plant diversity, suggesting soil water may limit 

plant biodiversity. PSRS had a negative relationship to richness in the model: many springs are 

light-limited ecosystems (Stevens et al. 2016a). PSRS is strongly effected by aspect and slope 

and can lead to interactions exacerbating aridity on south-facing slopes but create refugia for 

boreal species on north facing-slopes. More complex assemblage relationships to climate legacy 

effects also may exist within these patterns (Stevens 2012), but analyses were not pursued.  

Due to complex covariation among variables, interpretation of regression coefficients 

does not necessarily yield a single best model. Inclusion or absence of specific variables in the 

final model should not be over-interpreted due to the observational nature of the study. That 

springs type was an important predictor variable suggests there are remaining differences 

between springs types, even after accounting for the predictors already included in the model. 

Thus, there likely are additional fundamental geomorphological differences among spheres of 

discharge and unexplained assemblage responses to those differences. 

Strong relationships were identified between elevation and water chemistry in the dataset. 

In the largely karstic GCE, regional groundwater generally flows from high elevations, where 

there is increased precipitation and infiltration to springs inside Grand Canyon or in adjacent low 

elevation terrains (Kreamer and Springer 2008, Ledbetter et al. 2016, Tobin et al 2017). 

Therefore, springs at low elevations generally are fed by regional groundwater systems with 

longer flow paths; while springs at high elevations often are fed by perched groundwater with 

relatively short flow paths (Springer et al 2017).  Longer flow paths and travel times allow 

increased dissolution of carbonates and other minerals, resulting in higher pH, specific 

conductance, and alkalinity (Ledbetter et al. 2016). 
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We successfully differentiated among several major springs types in the GCE both on the 

basis of physical characteristics and biological characteristics. This affirms that those springs 

types have different underlying morphologies that influences their physical characteristics, 

components of their distribution, and the composition, structure, and function of their biological 

assemblages. The wide array of springs types and associated microhabitats across elevation, 

aspect, and slope in the GCE is related to springs biodiversity through niche heterogeneity. The 

focused geographic area and large sample size in our study helps elucidate those relationships, 

and many of the differences between spring types were expected and are readily understood. For 

example, hanging gardens are geomorphically unique but highly productive vertical wall 

ecosystems, conditions that favor unique adaptations and biotic interactions. For example, P.K. 

Dayton (personal communication) observed that the seeds of rare wall-hanging plant 

populations, such as Primula specuicola are captured in the webs of Tetragnatha spiders, and 

thus are able to germinate and maintain their position on vertical or over-hung hanging garden 

backwalls. 

NMDS results indicated that substantial variation in plant assemblages can be described 

along two multidimensional gradients of physical factors (Figure 17).  The strong correlation 

between the first NMDS axis and elevation indicates that variation in climate related to 

temperature, precipitation, and moisture availability exert dominant control over species 

composition and structure. However, variation in substrata (especially bedrock vs substrate) and 

water chemistry (pH, alkalinity, specific conductance and water temperature) also are closely 

aligned with this axis, making it difficult to distinguish the relative effects of substrate, water 

chemistry, and climate. Nonetheless, all play large roles in shaping springs assemblages. The 

second NMDS axis was most strongly related to ecological integrity assessment scores. Most of 
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those assessment condition scores were mutually positively intercorrelated, and collectively 

indicate the overall degree of ecological impairment of the springs ecosystem. Variation among 

those variables influences plant assemblage composition and structure at springs. Three other 

variables (PSRS, slope and percent north) also were identified as being strongly related to 

assemblage structure. These also are related to photosynthetically active radiation (PAR) 

availability, and are expected to further influence plant assemblages. 

Springs plant assemblages generally clustered by springs type, although there was 

substantial variation and overlap among spring types (Figure 17). This is to be expected because 

the niche requirements of many plant species are met in many different springs types (but not in 

adjacent, non-springs uplands). The analysis of similarity test showed that assemblage groupings 

are significant (R=0.1011; P=0.001). However, R statistics for that test range from 0 (random) to 

1 (perfect clustering), so and R statistic of 0.1011 indicates considerable overlap in assemblage 

composition among spheres of discharge. Hanging garden and helocrene springs had particularly 

distinctive plant assemblages, while rheocrenes had moderately large variation, and hillslope 

springs were the most variable. 

 Hanging gardens were the most distinctive springs ecosystem type in our study. Hanging 

gardens tended to occur at low-moderate elevations, below the rim of Grand Canyon. This was 

expected because hanging gardens are defined by emergence along geologic contacts in cliffs, 

which are numerous in canyons. Hanging gardens had high slopes due to their emergence on 

near-vertical to over-hanging cliff faces. They also had distinct water quality parameters, such as 

high pH, specific conductance, and alkalinity, which were generally attributed to long 

groundwater flow paths and travel times through aquifers, and increasing dissolution of the 

predominantly limestone bedrock in the region. The extent of precipitate cover at hanging garden 



56 

 

springs related to elevated alkalinity. Hanging gardens also tended to have higher ecological 

integrity assessment scores. This may be related to their geographic isolation in canyons, limiting 

the extent of anthropogenic disturbance. The high percentage (84%) of native species at hanging 

gardens reflects their unique geomorphology, limited accessibility and lesser extent of 

anthropogenic disturbance. Hanging gardens had lower overall species richness, but had higher 

structural diversity and microhabitat richness (Figure 13). Low species richness reflects slope 

and microclimate severity, and PAR limitation, all of which strongly influence these ecosystems 

(Woodbury 1933, Malanson 1980, Welsh and Toft 1981, Spence 2008).  Hanging gardens also 

had the most indicator species, including native Adiantum capillus- veneris, Mimulus cardinalus, 

and Epipactus gigantea, which are restricted to low –medium elevations in the Grand Canyon, 

and are tightly associated with springs, seeps, and wet cliff faces. Interestingly, both Adiantum 

capillus- veneris and Epipactus gigantean disperse through anemochorously, occur nearly 

exclusively at springs, and were among the first colonizers of anthropogenically created hanging 

gardens downstream of Glen Canyon Dam (Figure 3; Larry Stevens personal communication). 

Helocrenes were distinctive in terms of physical and biological attributes. While low 

elevation helocrenes, or cienegas, occur in the Sonoran Desert, they are nearly absent in the GCE 

due to the limited area of low desert habitat and no low elevation helocrenes were included in 

this analysis. They are characterized by organic-rich to peat soils underlying low-gradient 

wetlands or cienegas and often occur in the GCE as wet meadows fed by perched water tables 

(Figure 12). These observations are supported by the generally high elevations, low slopes and 

high PSRS, high organic soil cover, and low specific conductance signifying this spring type 

(Figure 10). Many helocrenes are known to be open to grazing or other human disturbances 

including nearby roads and flow alterations and this may be responsible for the for the generally 
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lower SEAP scores in some categories and related to the lower percentage of native species 

present at springs (Figure 11). In fact, a few of the best of the many indicator species associated 

with helocrene springs were exotic such as Taraxacum officiniale, Poa pratensis and Achillea 

millefolium. The higher disturbance levels among helocrenes by livestock grazing may increase 

potential for invasion by exotic species. 

Rheocrene springs also had a set of properties that distinguished them from the other 

spheres of discharge. They occurred at moderate elevations and had moderate slopes (Figure 9). 

Rheocrene springs also had significantly higher scores for flow naturalness (Figure 11). 

Rheocrene springs emerge directly into channels and many rheocrenes are naturally subjected to 

scouring flows as a regular disturbance (Griffiths et al. 2008). As a result, their natural state is 

inherently less fragile. Rheocrene springs also had higher water temperatures than other spring 

types (Figure 10). This can be interpreted as their greater connection to regional (not local) 

groundwater systems. Additionally, rheocrene springs may reemerge below their true source 

leading to warmer measured water temperatures. Rheocrene springs also had distinctive flora. 

Many of these are known to be associated with perennial riparian systems such as Salix 

gooddingii, Fraxinus velutina, and Juglans major. However, a majority of rheocrene springs 

(54%) did not actually have an indicator species present indicating considerable variability in 

plant communities at rheocrene springs. 

Springer and Stevens (2009) hillslope category type has been the most complex springs 

type to differentiate on the basis of vegetation (Sparks 2014, Springer et al. 2015). Hillslope 

springs assemblages were less distinctive in our study as well, but several distinguishing 

characteristics were identified. Hillslope springs were the most numerous and accounted for 45% 

of springs included in the study. They occurred at moderate elevations, had moderate areas, and 
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had lower water temperatures (Figure 9). By definition, hillslope springs emerge onto gently to 

steeply sloping terrain, and thus had significantly higher slopes than did helocrene and rheocrene 

springs, but had significantly lower slopes than did hanging gardens. Substrata were most useful 

in distinguishing hillslope springs: they had much higher cover of gravel and woody debris 

(Figure 12). This may be related to position on hillsides causing fine material to be winnowed 

away and trapping woody debris in springbrooks. Hillslope springs also supported a suite of 

indicator species mostly restricted to higher elevations and mesic or shaded sites. These 

indicators included Rudbeckia laciniata, Veratrum californicum, Abies concolor, and 

Pseudotsuga menziesii var glauca; all of which are native species and with the latter two being 

tree species generally reflecting mesic, sloping landscapes and perennial site shading. However, 

many low elevation hillslopes springs do not support those indicator species, contributing to the 

high variability in hillslope springs flora. This is reflected by their scatter in the NMDS plot 

(Figure 17). Hillslope springs had significantly more north-facing slopes than did other spring 

types (Figure 9). While this may be a sampling artifact, the dataset included both rims of Grand 

Canyon, and it may be that physical processes related to shading or weathering causes hillslope 

springs to occur more on northerly aspects.  

The LDA affirmed many of the observed physical characteristics differentiating springs 

types. The characteristics were detected by the LDA and generally weighted much higher along 

discriminant axes. The majority of springs of each type were correctly classified by the LDA, 

with a success rate of 70%. This indicates substantial physical differences among spring types. 

Further, those physical differences were directly related to plant assemblage composition and 

structure, and resulted in distinctive associations in different springs ecosystem types. 

Nonetheless, a great deal of unexplained variation exists in botanical attributes among these 
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different spheres of discharge. While spring types have overarching characteristics, the history 

and legacy of local physical conditions, relationships to adjacent uplands, as well as differential 

biogeographic colonization, extinction, and anthropogenic alteration confer high levels of 

individuality to springs ecosystems (Stevens and Springer 2004). Every spring has its own 

unique geomorphology and biogeographic history, an ecosystem individuality that limits 

synthetic statistical integration. 

 Our analyses can help managers improve and enhance stewardship of springs 

ecosystems; however, management needs to be considered at local, as well as landscape scales. 

Inventory knowledge of the array of springs within the management area is important to 

understanding rare springs types and the likelihood of occurrence of rare springs-dependent 

species. Inventories also are needed to understand the diversity, distribution, and conservation 

status of springs-dependent (crenobiontic) species. For example, wetland plants, hydrobiid and 

other Mollusca, nepomorph water bugs, dryopoid beetles, cyprinodontid and other fish, and a 

broad array of other known and undescribed biota are critically restricted to Southwestern desert 

springs. Such species warrant concerted conservation attention by collaborating neighbors to 

achieve sustainable aquifer, habitat and biodiversity management (e.g., Shepard 1993, Unmack 

and Minckley 2008, Stevens and Polhemus 2008, Hershler et al.  2014). This approach has been 

adopted in the European Union for protection of travertine-depositing springs, which host an 

array of endemic plant and invertebrate species (Council of European Communities 1992), and 

restoration guidelines have been proposed for southwestern desert springs (Stevens et al. 2016b). 

Our results indicate that restoration planning should include consideration of rare springs types, 

wetted area, and protection of fragile microhabitats and rare species. Incorporation of these 



60 

 

springs characteristics into restoration activity, coupled with detailed monitoring can provide 

invaluable experimental insight into gradient effect analyses.   

Disturbances to springs including grazing, development, exotic species introduction and 

alteration of hydrology and water quality all affect the ecological integrity of the associated 

assemblage. Qualitative SSI ecological assessment metrics provide a simple and effective way of 

describing these disturbances (Paffett et al. in press).  

Inventory and monitoring efforts should be continued because the majority of GCE 

springs have not been surveyed and trend data are limited. There are additional concerns over the 

identification of all springs across the GCE landscape, as demonstrated for the Death Valley 

region (Junghans et al. 2016) and in the GCE by Ledbetter et al. (2016). Further, additional 

attention should be focused on information management to ensure that data assembled thus far 

remain available to the public and the scientific and managerial communities. The critical status 

of aridland springs, their high biodiversity and remarkably dense species packing, as well as their 

cultural and economic significance affirm the need for iincreased scientific attention and 

improved stewardship for these remarkably unique and threatened ecosystems.  
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Chapter 3 – Methods 

3.1 Data Acquisition 

The data used in this study was obtained through Spring Stewardship Institute’s Springs 

Online Database. SSI has been instrumental in promoting springs conservation, improving 

awareness for springs ecosystems, creating standardized springs inventory practices, and creating 

a flexible data repository. The Springs Stewardship Institute developed the Springs Inventory 

Protocol (SIP) and Springs Online database to facilitate improved management through 

improved consistency of the springs ecosystem lexicon, data collection and compilation, 

synthesis, and reporting. The SIP created three standardized levels of spring inventories that can 

be selected based on management needs.  

The protocol has been adapted and adopted by the U.S. Forest Service, the U.S. Fish and 

Wildlife Service, several National Park Service units, and many others. Springs inventory data 

are archived into an online database (springsdata.org) through the Springs Stewardship Institute 

(Ledbetter et al. 2014). The SSI protocol includes the complete details and sample data 

collections sheets (Stevens et al. 2016a). The database allows for efficient, flexible, and 

centralized cataloguing and maintenance of springs data. Land or project managers control 

permissions to access inventories securing sensitive data. Further, the database structure allows 

for multiple surveys to be linked to each unique spring entry making adding additional surveys, 

updating data, and long-term monitoring simple. The widespread adoption of the Spring Online 

Database by land managers in the GCE and use of the SIP make data collection uniform and led 

to a large quantity of high quality and directly comparable spring inventories, facilitating the 

analyses in this study. 
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The study data were collected following the Level II inventory. The data have been 

collected by teams of experts in biology, hydrogeology, and socio-cultural resources (Stevens et 

al. 2016a). The inventory data are archived in an online database through the Springs 

Stewardship Institute (SSI). The structure of the database and methods of data collection are 

outlined below. 

SSI has developed detailed methods for inventorying springs. Their document entitled, 

Inventory and Monitoring Protocols for Springs Ecosystems, includes the details and sample data 

collections sheets (Stevens et al. 2016a). Springs inventory falls into three levels depending on 

the level of data collection. Level I springs inventories are primarily for reconnaissance and 

intended as quick preliminary investigations followed up by more detailed Level II inventories. 

Level I surveys collect data on site location, access directions, name, description, and 

photographs and can be carried out by one or two individuals with only minor training. The 

Level II inventories are comprehensive and designed to be conducted by a team of expert 

scientists over the course of several hours. Inventory data fall into the categories of Site 

Description, Biotic Inventory, Geomorphology, Flow, Water Quality, and Cultural Resources. 

The inventory usually consists of the Level II Springs Inventory Protocol (SIP), which includes 

the quantitative spring properties, as well as the Springs Ecosystem Assessment Protocol 

(SEAP), which is a qualitative assessment of the spring’s health to inform management and 

restoration decisions. Finally, the Level III inventory is designed for long-term monitoring and 

involves repeated measurements of many data collected in Level II surveys. This study’s analysis 

requires detailed information on geomorphology and biotic inventory, so only springs with 

complete Level II inventories were included in the analysis. 
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The inventory data are located on the SSI’s Springs Online Database (Springs Online; 

springsdata.org). This database was originally developed as a Microsoft Access Database, but 

has since migrated to an online SQL format to facilitate its large size and data accessibility for 

land managers. The data are structured so individual surveys are linked to both a specific spring 

and project with one-to-many relationships. Each geo-referenced springs can have many 

different surveys with different data variables collected on each survey data. Each survey is 

further linked to a larger inventory project. Thus, surveys can be found by searching by spring 

name, Project, or location. Further permission is required to access surveys to protect sensitive 

data. Permission is granted by administrators to all springs in either a Project or Land Unit 

(Ledbetter et al. 2014). 

Due to the limited search functionality of the online-interface a SQL Query was 

developed to gather data on all springs with Level II inventories. The query grouped springs by 

their spheres of discharge, and required surveys to include geomorphology microhabitat data, 

and full plant biota inventories to limit the later statistical analysis to springs with sufficient 

quantity and quality of data. Due to the database structure which stores general site information, 

survey geomorphic data, water chemistry data, flow data, and plant data as separate tables 

(Ledbetter et al. 2014), separate queries had to be developed for each table. These queries were 

then combined into a single entry per springs using spring and survey identification numbers. 

Further, for springs with multiple inventories, only the most recent or complete analysis was 

considered. The survey data were exported as .csv files for further statistical analysis in the 

Statistical Program R (2016).  

Detailed methods of all data measured in a Level II inventory are in the SIP manual. Key 

methods for data collection are repeated here from the protocol manual (Stevens et al. 2016a).                           
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Site-specific geographic information was recorded at each springs site. Global 

Positioning System (GPS) coordinates and elevation were measured using varying techniques 

and were recorded in the Springs and Springs-Dependent Species Database (Ledbetter et al. 

2014). The azimuth aspect of polygon A (the springs orifice), was recorded and later converted 

to percent north. Solar radiation was measured using a solar pathfinder (Solar Pathfinder 2013) at 

the springs orifice. The solar pathfinder measures mean monthly sunrise and sunset times for a 

given range of latitudes at a spring’s source, a point that may be locally shaded by surrounding 

topography. Those data are used to calculate the mean monthly solar radiation flux and the 

percent monthly radiation budget at the site. The ratio of actual solar radiation a site receives to 

the maximum potential solar radiation a site could receive during the months of July, August, 

and September is defined as “percent solar radiation summer,” and is abbreviated as PSRS. This 

value is used instead of total solar radiation because it focuses on the important growing months 

for vegetation. 

Discharge measurement technique varied depending on the magnitude and concentration 

of flow. Standard flow measurement techniques included a weir plate, flume, volumetric, and 

current meter procedures.  

The weir plate method is useful for flows of shallow depth and low velocity in channels 

consisting of loose substrate (Buchanan and Somers 1969). The weir plate itself consists of 10 to 

16-gage galvanized sheet iron with a v-notch ranging from 45º to 90º angle. The plate is placed 

into loose substrate with the top surface horizontal to land surface. Once the flow stabilizes 

behind the weir plate, the gage height is read 5-6 times within three minutes and the mean value 

is recorded. The gage height is then converted to discharge using a rating table corresponding to 

the angle of the weir plate.  
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The portable flume is another method useful for flows of shallow depth and low velocity 

(Buchanan and Somers 1969). A flume is preferred over a weir plate in wider channels (>30 cm). 

Also, the throat of a flume is interchangeable to accommodate a range of flows. A 1-inch throat 

can read flows of 0.2 to 2.5 L/s while an 8-inch throat can read flows of 2 to 21 L/s. To install a 

portable flume, the flume is placed in the channel with the top horizontal, and the flume sides are 

sealed to minimize water escaping. The stage height through the flume must be allowed to 

stabilize before reading the gage height. The gage height is read multiple times within 5-15 

minutes to assure flow stabilization. The gage height is then converted to discharge using a rating 

table corresponding to the width of the flume throat. In this study, either a 1-inch or 8-inch 

cutthroat flume was used, when necessary.  

Volumetric measurement is used when the flow is concentrated or can be concentrated 

and diverted into a container (Buchanan and Somers 1969). This is the most accurate technique 

to measure small discharges. To take a volumetric measurement, flow must be concentrated such 

that it can be collected in a volumetric container. Once the maximum amount of flow possible 

has been concentrated, the time required to fill a container of known volume is recorded several 

times until three consistent measurements are obtained.  

A current meter is used for relatively large flows from approximately 0.10 to >1,000 m3/s 

(Buchanan and Somers 1969). It is useful in channels of sufficient depth (approximately >20 cm) 

that are too wide (approximately >1 m) to use a portable flume or weir plate. The current meter 

consists of a rod connected to rotating cups or a sensor that, when submerged, rotate as a result 

of the stream discharge. Discharge is calculated by counting the number of revolutions in a given 

time. For optimal results, the cups of the current meter should be placed at 60 percent depth of 
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flow. Measurements should be taken at frequent and regular intervals along a given cross-section 

of a channel.  

Field water quality parameters are measured as close to the springs orifice as possible. A 

multi-parameter water quality probe is used for temperature, dissolved oxygen, specific 

conductance, and pH. The multiprobe is calibrated with standard reference solutions for pH and 

specific conductance daily. Alkalinity is measured using an alkalinity drop count kit.  

Discrete geomorphic microhabitats are identified at each springs ecosystem, and 

microhabitats are mapped based on surface types (Table 5). Polygon dimensions are measured 

and mapped to scale in the field on a sketch map (Figure 18) or by walking the perimeter of the 

site with a GPS unit. Substrate (Table 6) visually estimated percent cover (VE%C), aspect and 

slope, soil moisture condition, litter depth were recorded for each microhabitat polygon. 

Table 5. Substrate cover classes recorded for each microhabitat. Substrate is hypothesized as an 

important aspect of environmental heterogeneity. 

Substrate Description 

Clay Fine sediment <0.2mm in diameter 

Silt Fine sediment 0.02 to 0.1 mm in diameter 

Sand Sediment 0.1 to 1 mm in diameter 

Pea Gravel Sediment 1 to 10 mm in diameter 

Coarse Gravel Sediment 1 to 10 cm in diameter 

Small Boulders Boulders 10 to 100 m in diameter 

Large Boulders Boulders >1 m in diameter 

Bedrock Intact geologic units 

Organic Fine organic matter or peat 

Litter Leaves and twigs <1 cm thick 

Wood Branch and logs >1 cm thick  

Precipitate Chemical precipitate such as travertine 
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 The botanist surveys the entire site and makes a plant species list. Unidentified specimens 

are collected for later identification. Species names are verified with the USDA PLANTS 

Database then entered into the Springs and Springs-Dependent Species Database (USDA, the 

PLANTS Database, 2014; Ledbetter et al., 2014). The visually estimated percent cover VE%C 

was visually estimated for species in each microhabitat by stratum: aquatic, nonvascular, basal, 

deciduous ground cover, shrub cover, middle canopy, and tall canopy cover (Table 6). Species 

nativity and wetland status were taken from SSI’s database. Wetland status was refined from the 

USDA wetland indicator categories (USDA 2017), and included aquatic, wetland, wetland-

riparian, riparian, facultative, and upland categories (Table 7).  
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Table 6. Wetland Indicator Statuses used for spring inventories. This varies slightly from USDA 

nomenclature recognizing riparian species as separate wetland species. 

Wetland Indicator 

Status 

Abbreviatio

n Description 

Aquatic A Grows directly in the water 

Wetland W Occurs almost always in wetland; hydrophyte 

Riparian R Occurs almost always in riparian areas; hydrophyte 

Wetland-Riparian WR 

Occurs in almost always in either wetlands or riparian 

areas; hydrophyte 

Facultative F Occurs in both wetland and upland habitats; hydrophyte 

Upland U Occurs rarely in wetlands; nonhydrophyte 
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Table 7. Stratum levels used when recording springs vegetation. VE%C is determined for each 

plant species in each microhabitat by stratum.  

Cover Stratum Abbreviation Description 

Ground Cover GC 0-2 m tall, graminoid/herb/non-woody 

Shrub Cover SC 0-4 m tall, woody perennial 

Middle Canopy MC 4 - 10 m tall, woody perennial 

Tall Canopy TC >10 m tall, woody perennial 

Aquatic AQ Grows in or on water 

Nonvascular NV Moss 

Basal Vegetation BV The portion of the plant that extends into the water 
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Figure 18. The site sketch map for Winter Cabin Spring. Two microhabitats were identified, the 

springbrook channel and the surrounding terrace. Each habitat forms distinct habitats for various 

species of plants depending aspect, slope, moisture availability and substrate 
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 After completing the Level II survey a management focused semi-quantitative Springs 

Ecosystem Assessment Protocol (SEAP) is followed. It was designed to facilitate conversations 

and inform management decisions around springs restoration (Springer et al. 2015, Ledbetter et 

al. 2015, Paffett et al. in press). The SEAP assesses springs condition and risk with 42 questions 

across six categories including aquifer and water quality, geomorphology, habitat, biology, 

human influences, and administrative context (Stevens et al. 2016a). Springs condition are 

scored between 0 (low condition) and 6 (pristine condition) and risks are assessed 0 (no risk) to 6 

(high risk). The SEAP has been shown to be an effective management tool with springs showing 

moderate conditions and high risks most responsive to restoration action (Paffett et al. in press). 

The SEAP helps translate inventory data into risk and condition scores which are often more 

pertinent for management decisions. SEAP scores were used in several statistical analyses to 

understand how disturbance varies between spring types and influences geomorphology and 

springs plant assemblages. 

 

3.2 Diversity Metrics 

To complete the analyses of the study, a metric is needed for calculating diversity. A 

simple diversity metric often used is entity richness.  Species richness is often used for 

biodiversity studies but ignores differences in evenness (common vs. rare species) which may be 

important or desired in many contexts. The Shannon Diversity metric is commonly used to 

calculate a single metric of diversity. It is well-suited to spring survey data since springs are 

divided into polygons. The index depends on percent-cover rather than simply total species and 

number of individuals of that species as many other diversity indexes do. The Shannon Diversity 
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index comes from information theory and incorporates both evenness and abundance into a 

single diversity metric (Shannon and Weaver 1949): 

                                                              �′ = − ∑ ���	


��� ��                                                       (2) 

Where S is quantity richness or total number of elements, and pi is the proportional contribution 

of each of the i elements in a sample. The incorporation of evenness and richness makes the 

Shannon diversity index an effective, quantitative metric of informational diversity.  

 Both the richness and Shannon diversity metrics are used to represent diversity in this 

study. Species richness is used for floral diversity since it is a common and easily interpretable 

metric and total number of species present is often more important for conservation efforts and 

management decisions. Both Shannon Diversity and richness are used for microhabitats as a 

measure of environmental heterogeneity and allow explore relative importance of abundance and 

evenness in heterogeneity relationships. Shannon Diversity is used to calculate a functional 

diversity of wetland indicator statuses and structural diversity of plant cover across strata. 
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3.3 Analyses 

Data were examined for outliers and transcription errors before analysis. When suspect 

data were found they were investigated by reviewing survey notes, crosschecking photos, 

sketches and site or referencing additional surveys of the same spring. If missing or suspect data 

could not be rectified, then that spring site was excluded from further analysis. 

A spatial of analysis of the distribution of springs was conducted. The spring types, water 

quality, species richness, and geology were all mapped to understand spatial distribution of 

springs and patterns related to their distribution. The springs were not randomly selected and 

spatial correlation of variables was a concern with many statistical analyses. Spatial analysis of 

springs was used to address distribution selection. 

The source microhabitats of each spring type were also summarized. The frequency of 

each common microhabitat at each sphere of discharge was summarized. The identification of 

microhabitats associated with spring types helps determine underlying geomorphic differences 

between spring types that might be associated with physical and ecological differences between 

spring types. The types and attributes of microhabitats associated with each sphere of discharge 

may be an important aspect of relationships between environmental heterogeneity. 

A linear mixed model was constructed to predict percentage of native species present at 

springs. All physical, geomorphic and water quality parameters were included as candidate 

model predictors. Transformations were applied when indicated by bivariate and histogram 

analysis. Spring type was included as a candidate predictor allowing have different intercepts for 

each sphere of discharge. A stepwise procedure was performed in R using the “step” function 

inside the “stats” package (R Core Team 2017). Best models were selected using the Akaike 
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Information Criterion (AIC), which is based on likelihood and penalizes overly complex models 

(Sakamoto et al. 1986).  Permutation tests were used to assess the importance of each variable to 

overall model accuracy. Covariance of the selected predictors were examined for 

multicollinearity and to aid in interpretation. Residuals were plotted and examined to assess 

model fit and any outliers. 

Effects of grazing disturbance on biodiversity were also investigated. One of the scores 

assessed during the SEAP describes negative ungulate impacts including overgrazing, 

hummocking, and trampling. The effects of grazing were assessed by their impact on residuals 

from mixed models for floral species richness and percentage of native plants. The grazing effect 

was allowed to vary by condition level and between spring types. The results were inspected 

visually with 95% confidence intervals and an F test between models with and without grazing. 

Species area effects were also evaluated. Hypothesized models including both 

logarithmic and semi-logarithmic models and assessed by total variation explained. Both have 

been argued for in the literature (e.g., Gleason 1922, Wilson and MacArthur 1967). The 

logarithmic model is  

������ = � + � ������    (3) 

and the semi-logarithmic model is 

 � = � + � ������     (4) 
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where S is species richness, A is spring area (m2), and a and c are intercept and slope 

coefficients, respectively. Single models for all GCE springs were also contrasted with mixed 

models allowing slope and intercept coefficients to vary with spring sphere of discharge. 

Species richness was also compared with elevation as an ecological gradient analysis. 

Elevation is often used as a proxy for climate in ecological studies (see Korner 2007) and 

elevation strongly influences air temperature and precipitation in the GCE (Sellers et al. 1985) 

and subsequently potential evapotranspiration and growing season length. It would be best to 

model these climate variables directly but due to limited available data and the fact springs often 

create their own microclimate (Springer and Stevens 2004) this was beyond the scope of this 

study. Species richness was expected to increase with elevation throughout most of the elevation 

ranges with CGE do to cooling temperatures (less ET) and increased precipitation (increased 

water availability) but eventually decline at (very) high elevations due to shortened growing 

seasons (Larry Stevens personal communication). Both linear and quadratic models were tested 

and evaluated by proportion of variation explained to assess this relationship. 

Species richness environmental heterogeneity relationships were investigated by 

themselves. Linear mixed models were used to evaluate the effect between environmental 

heterogeneity using both microhabitat richness and Shannon diversity. Slopes and intercepts 

were allowed to vary between spring types and the significance of differences between spring 

type were assessed with F tests. Because the universality of positive heterogeneity-richness 

relationships may depend on controlling for area (Stein et al. 2014), the species density metric 

was also compared with microhabitat diversity. Species density was represented: 

� =  



������
       (5) 
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where D is the species density, S is richness, and A is spring area (m2). 

 Correlograms were constructed to explore complex relationships at springs that can make 

bivariate relationships difficult to interpret. Spearman rank correlation between environmental 

variables and diversity metrics included in models as well as SEAP condition scores were 

compared. These results were used to assess previous model results and identify possible lurking 

or confounding variables that were not considered directly in models. 

 Since previous studies have often found hillslope springs highly variable and difficult to 

differentiate from other spheres of discharge (Sparks 2014, Springer et al. 2014). Possible sub-

classifications of hillslope springs were considered in this study. Classification methods included 

separation of hillslope springs into forested and unforested subclasses. Forested springs were 

hypothesized to have additional shading, litter and woody material influencing springs plant 

assemblages (Larry Stevens personal communication).  This classification was accomplished by 

flagging springs with any tall canopy cover as forested. Other hypotheses on the high variation 

reclassification into hillslope-helocrene or helocrene-hillslope depending secondary sphere of 

discharge (Sparks 2014).  An additional possibility included reclassification based on proximity 

to nearby streams (by elevation or distance) which could strongly impact microhabitats 

availability and presence or absence of many riparian species (Larry Stevens personal 

communication). 
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Chapter 4 – Results and Discussion 

4.1 Spatial Analysis 

Spatial analysis indicated some clustering of springs types. There were spatial patterns to 

the distribution of springs included in the datasets. Springs used in the analysis occurred mostly 

inside the rims of the Grand Canyon, on the Kaibab Plateau, and along the Mogollon Rim. This 

clustering likely reflects both sampling and actual distribution areas. Springs are likely more 

common in these areas. Further, due to their locations on NPS or USFS land, increased levels of 

funding is available leading to more high-quality in these areas. Despite this potential bias, the 

dataset represents a large sample of the springs of the GCE with a broad spatial distribution 

throughout the area. 

There were distinct patterns in the lithology of the GCE springs (Figure 19). Patterns in 

springs water chemistry often reflects the geology (Figure 20). Springs dominantly discharged 

from limestone, sandstones or volcanic units (basalts or rhyolite). Springs along the Mogollon 

Rim often discharged from basalt or rhyolite. This lithology of discharge reflects the widespread 

volcanic cover in the region which often forms perched aquifers with local flow systems 

(Springer et al 2017). Most of the local springs also had low specific conductance. Springs along 

the Kaibab Plateau mostly occurred in limestone with some springs occurring in sandstone or 

shale.  The water chemistry of springs on the Kaibab Plateau seems to vary strongly with 

elevation. The elevation correlation with chemistry in this study is similar to the results of 

Ledbetter et al. (2014) and probably reflects flow path length since groundwater tends to 

recharge at high elevations (Springer et al 2017). Springs inside the Grand Canyon mostly issued 

from limestones and sandstones with springs discharging from metamorphic or intrusive igneous 

rock rare.  Specific conductance values of water discharging from springs appears more variable 



78 

 

throughout the canyon but tended to be higher than the high elevation springs on the Kaibab 

Plateau or Mogollon Rim. 

Species richness at springs varied widely among springs (Figure 21). There appear to be 

few spatial relationships between species richness at springs with nearby springs often exhibiting 

widely different floral species richness. This indicates that each spring is a unique entity with its 

own biogeographic history and geomorphic characteristics separate from its neighbors. While 

there are likely spatial patterns in the distribution of each individual species patterns of overall 

floral species richness don’t seem to reflect this strongly. 
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Figure 19. Geology at springs sources throughout the GCE. The source geology reflects the 

regional geology and the majority of springs issued from sandstone, limestone, or volcanic units. 
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Figure 20. Specific conductance at springs sources in the GCE. The conductance of springs water 

reflects the total dissolved solids load. Nearby springs tended to have similar conductance and 

tended to be related closely to elevation reflecting flow path lengths and source aquifers.  
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Figure 21. Floral species richness at springs in the GCE. No distinct spatial patterns are readily 

apparent.  
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4.2 Microhabitat Differences Between Spheres of Discharge 

Differences were found between the types of microhabitats associated with each sphere 

of discharge. The frequency of occurrence of each microhabitat was tabulated for each sphere of 

discharge (Table 8). Certain microhabitats were common across all springs types but others were 

associated specifically with certain spheres of discharge. Backwalls were specifically associated 

with hanging garden spheres, occurring 81% of the time and only occasionally with hillslope and 

rheocrene springs, and never at helocrene springs. Channel microhabitats were common at all 

springs but more so at hillslope and rheocrene springs than helocrene and hanging gardens. 

Colluvial slopes were found at all spring types but most commonly at hanging gardens. 

Madicolous microhabitas were rare and mostly constrained to hanging gardens, while plunge 

pools were only found at hanging gardens. Low-gradient cienegas were most common at 

helocrene springs. High gradient cienegas were rare but occurred most frequently as helocrene 

springs. The tendency of specific types of microhabitats to occur with each sphere of discharge 

indicates the emergence environment of a spring is directly related to the microhabitats that 

form. Associations of microhabitats with specific spheres of discharge suggests that sphere of 

discharge is an important geomorphic consideration that will influence the microhabitats 

available and thus the species assemblages that occur at each spring. The large variety of 

microhabitats occurring at springs may be the fundamental reason springs serve as hotspots of 

biodiversity and such a large proportion of the GCE’s floral diversity can be found at springs. 
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Table 8. Frequency of common geomorphic microhabitats by sphere of discharge. Values 

indicate percentage of springs of that sphere of discharge containing each microhabitat. Bolded 

values show most common microhabitat at each sphere of discharge. 

Sphere of 

Discharge 

Hanging 

Garden Helocrene Hillslope Rheocrene 

BW 81% 0% 18% 12% 

C 4% 0% 3% 3% 

CH 53% 55% 78% 70% 

CS 30% 12% 20% 6% 

HGC 6% 8% 7% 2% 

LGC 6% 59% 17% 7% 

MAD 4% 0% 1% 0% 

OTH 6% 8% 4% 3% 

P 17% 10% 18% 17% 

PM 0% 4% 2% 0% 

PP 6% 0% 0% 0% 

SB 23% 0% 4% 5% 

SM 2% 0% 1% 0% 

TE 36% 39% 46% 58% 

UPL 2% 0% 1% 1% 
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4.3 Species Area Relationships 

There was evidence that floral species richness increased with increasing spring area. A 

semi-logarithmic model was preferred when analyzing all springs with one group rather than a 

fully logarithmic model (R2 0.078 vs. 0.049, respectively). Both models showed significant, 

albeit weak trends. There was evidence that species area trends varied significantly by sphere of 

discharge. A model incorporating separate intercepts for each sphere of discharge was preferred 

to a single-group semi-logarithmic model based on an F-test between models (P<0.0001, F-stat = 

7.96). A model analyzing different slopes between spheres of discharge was preferred to both 

previous models based on an F-test (P=0.0013, F-stat = 5.3). This model (R2 = 0.17) is shown in 

Figure 22 and indicates that species area effects vary between spring types.  

 Relationships between area and floral species richness depended on spring type. 

Helocrene springs showed a slight negative (95% CI overlapping 0) floral richness–species area 

relationship while all other springs had positive species area relationships. This result was 

strongly influenced by several helocrene springs with extremely large areas but relatively low 

floral species richnesses. It is possible that floral richness doesn’t increase with spring area in 

helocrene springs due to low heterogeneity of large wet meadows. Alternatively, sample effects 

may be important because it is very difficult to detect all floral species in a large wet meadow 

during a brief survey and some species may be missed. Hanging garden, hillslope, and rheocrene 

springs all showed clear increases in species richness with elevation. The estimates for the slopes 

ranged from an increase of 10 plant species for a 10-fold increase in area at hillslope springs to a 

5 plant species increase per 10-fold increase in area for rheocrene springs (Table 9).  
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Springs area reflects the area where vegetation is distinct from the surrounding upland 

due to moisture related to the springs. It was interesting that wetted area was related to plant 

species richness while no significant relationships were found between spring discharge plant 

species richness. It is possible that different effects would be discovered for macroinvertebrate 

species, but this study suggests wetted area may be more important than springs discharge to 

land managers from a plant species biodiversity perspective.  

 

Table 9. Estimates of slopes of species-area relationships for plant species by sphere of 

discharge. Values represent increase in plant species richness for a 10-fold increase in area using 

a semi-logarithmic model. Lower CI and Upper CI show the 95% confidence limits on the 

estimate. 

 

 

  

Sphere of Discharge Mean Lower CI 

Upper 

CI 

Hanging Garden 9.9 5.4 14.3 

Helocrene -1.0 -4.8 2.7 

Hillslope 6.4 4.0 8.7 

Rheocrene 5.4 1.8 9.1 
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4.4 Species Elevation Relationship 

There were only weak trends between elevation and species richness. A simple model 

with all spheres of discharge grouped together showed a very weak positive linear relationship 

between elevation and species richness (R2 = 0.02). There was no evidence for a quadratic effect 

of elevation on area based on comparison of models with and without quadratic terms (P=0.76, F 

= 0.09). There was evidence that elevation richness relationships varied by sphere of discharge. 

A model with different intercepts for each spring type was preferred to a model that did not 

consider spheres of discharge (P=0.02, F = 3.2). Additionally, a model allowing slopes to vary 

by sphere of discharge was preferred to a single slope model (R2=0.10; P<0.0001, F = 7.3, Figure 

23).  

Magnitude and direction of elevation-richness relationships varied significantly between 

spheres of discharge. This relationship is not surprising given that spheres of discharge were 

found to have significant differences in the elevations where they occur and the types of plant 

species that occur there. The abundance of each species will respond to a changing elevation 

gradient differently. The species elevation gradient is the combination of responses of all plant 

species responding to the gradient and thus likely not a linear relationship and our model poorly 

represents the true relationship. Further, since different assemblages of plant species are 

associated with each sphere of discharge there are different relationships with biodiversity 

between spring types. At hanging garden springs, floral richness decreases with elevation. This 

may be related to the many hanging gardens that occur at lower elevations in the GCE. Hillslope 

and rheocrene springs show positive relationships that may be related to increased productivity 

with increased moisture availability at moderate and high elevations. Finally, helocrene springs 

showed limited trends with elevation but are mostly limited to high elevation sites in the GCE. 
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Estimates and confidence intervals for the slope of species richness elevation relationships were 

calculated (Table 10). All spheres of discharge show wide 95% confidence intervals indicating 

weak relationships between elevation and floral richness. Additional complexity is added to 

elevation richness relationships because of various changes that occur with altitude. Elevation 

primarily influences air temperatures but secondary effects related to elevation include moisture 

availability, geology, spring water chemistry, solar radiation budgets, and growing season. These 

complications may responsible for the non-uniform variations of species richness with elevation 

across spheres of discharge. 
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Table 10. Slope of elevation floral richness relationships by sphere of discharge. Values 

represent expected change in floral richness for a 100-meter increase in elevation. Upper and 

Lower CI show bounds of 95% confidence intervals. 

Sphere of Discharge Mean Lower CI 

Upper 

CI 

Hanging Garden -0.64 -1.1 -0.21 

Helocrene -0.16 -0.9 0.59 

Hillslope 0.23 -0.02 0.49 

Rheocrene 0.71 0.32 1.1 
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Figure 22. Wetted area versus floral species richness by springs type using a semi-logarithmic 

model with varying slopes. Lines show best fit for each sphere of discharge. Model fit for all 

points combined was relatively poor with an R2 of 0.17. 
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Figure 23. Elevation versus floral species richness by springs type. All relationships were weak 

and indicated elevation by itself is a poor predictor of floral species richness at springs. The 

model achieved an overall R2 of 0.10 although 95% confidence intervals for the slope of the 

relationship at hillslope and rheocrene springs overlapped with no effect. 
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4.5 Species Richness-Heterogeneity Relationships 

There was evidence of positive relationships between floral species richness and both 

microhabitat diversity and microhabitat richness. Both geomorphic microhabitat diversity and 

microhabitat richness were positively related to floral species richness indicating landscape 

heterogeneity is associated with increased species richness. The relationship was stronger with 

microhabitat richness rather than microhabitat diversity (R2 = 0.10 vs. 0.075). This indicates that 

abundance of microhabitats is more important and evenness of microhabitats is less important for 

floral species richness. It was estimated that each additional microhabitat was associated with an 

increase of 2.2 plant species (95% confidence interval [1.5, 2.9]). 

A positive relationship was also found between microhabitat richness and species density. 

This relationship was not as strong as the relationship with species richness (R2 = 0.015 vs 0.10). 

This suggests microhabitat richness is more closely related to overall floral richness than floral 

species density. Microhabitat richness was found to be positively correlated with springs area. 

Very small springs may be less likely to contain multiple microhabitats. 
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Figure 24. Microhabitat richness versus floral species richness relationships by springs type. All 

spheres of discharge exhibited positive relationships with trends stronger at hanging garden and 

hillslope springs. Model fit adequately well with R2 = 0.19 although. 
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There was evidence that the microhabitat richness, floral richness varied by sphere of 

discharge. A model allowing different intercepts between spheres of discharge performed 

significantly better than model that did not include spheres of discharge (P<0.001, F = 9.3). 

Additionally, there was evidence that the slope of the relationship varied by spring type. This 

model was preferred over the single-slope model (P=0.01, F = 3.8). This model is shown in 

Figure 24. The model fit adequately well explaining 20% of the total variation in floral species 

richness amongst all GCE springs. This indicates that microhabitats have a strong relationship 

with species richness but are not sufficient to explain species richness alone. Environmental 

heterogeneity, expressed as microhabitat richness, may be a fundamental source of biodiversity 

at springs but other processes must also be considered important. Hillslope and hanging garden 

springs showed stronger positive relationships than helocrene and rheocrene springs. This 

suggests differences in the types of microhabitats associated may affect the relationship. The 

abundance of microhabitats and the specific nature of each individual microhabitat may both be 

important. However, the relationship appears to be universally positive at springs in the GCE 

(Table 11).  
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Table 11. Slope of microhabitat richness vs. floral richness relationships by sphere of discharge. 

Values represent expected increase in species richness for each additional microhabitat. Lower 

and upper CI indicate 95% confidence intervals for estimate. 

Sphere of 

Discharge Mean 

Lower 

CI Upper CI 

Hanging Garden 2.7 1.0 4.3 

Helocrene 0.6 -1.3 2.5 

Hillslope 3.5 2.5 4.4 

Rheocrene 1.2 -0.2 2.6 
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4.6 Nativity Model 

The best model selected to predict the percent of native species present at various spheres 

of discharge achieved an R2 of 0.37 and a residual standard error of 10% (Table 12). The suite of 

predictors in order of importance to model accuracy included: (1) dissolved oxygen, (2) slope, 

(3) pH, (4) log(flow + 1), (5) alkalinity, (6) soil moisture, (7) PSRW, (8) organic soil cover, (9) 

elevation, (10) litter cover, (11) log(Litter Depth + 1), (12) microhabitat richness. After 

accounting for these predictors, there were no longer significant differences between springs 

types (P=0.65; F = 0.54).  Water quality parameters tended to be most related to the percentage 

of native species. Dissolved oxygen and pH had especially strong effects. This may reflect 

intolerance of some invasive species to extreme conditions. However, due to the correlation of 

many water quality parameters among themselves and with other factors including sphere of 

discharge and elevation, interpretation 

 is difficult. Slope was also important an important factor of analysis in the model. Slope 

may be important because of the remote locations and difficult access to many springs on steep 

terrain. PSRS may have been important for similar reasons although it is possible exotic species 

are less tolerant of these low light habitats. Exotic species may tend to be isolated from invasive 

species or have less human activity and lower disturbance (which also correlates strongly with 

percentage of native species).  
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Table 12. Multiple linear regression predicting percent of native plant species present at 309 

springs. Model was chosen with stepwise selection minimizing AIC. Importance reflects average 

reduction in model R-squared when the values of the parameter were randomly permuted. 

Bolded P-values indicate P<0.05 

     

Parameter Estimate Std. Error 

t 

Value P Importance 

Intercept 109.90 7.49 14.68 <0.00001 - 

Alkalinity (mg/L) 0.05 0.01 5.08 <0.00001 14.4 

Slope (0) 0.17 0.03 6.23 <0.00001 22.0 

pH -6.81 1.12 -6.11 <0.00001 21.0 

Dissolved Oxygen (mg/L) 1.60 0.23 7.00 <0.00001 27.9 

log(Flow) (L/s) 1.28 0.24 5.40 <0.00001 16.3 

Microhabitat Richness -0.85 0.41 -2.08 0.0389 1.9 

Elevation (m) 0.0035 0.0013 2.65 0.00856 3.5 

Soil Moisture (1-10) -0.88 0.23 -3.80 0.00018 7.8 

PSRS (%) -1.17 0.32 -3.61 0.000356 7.0 

Litter Cover (%) -0.05 0.02 -2.23 0.026573 2.3 

Organic Soil Cover (%) 0.07 0.02 3.11 0.000204 5.1 

log(Litter Depth) (cm) -1.06 0.51 -2.08 0.038169 2.0 

R2 = 0.37 Res. Std. Error = 10.1   Df = 296   
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4.7 Correlograms 

Correlograms illustrated significant correlations important to understanding covariance 

between springs state variables that need to be considered. Effect estimates in multiple linear 

regressions represent effects while holding all other parameters constant. However, at springs 

this seldom occurs because of interrelationships between variables (i.e. alkalinity and pH). Thus 

interpretation can be confusing and unintuitive for highly correlated variables and can create a 

multicollinearity problem. Figure 25 shows the correlations of variables included in the models. 

Many of the water chemistry parameters and elevation were strongly correlated, as well as the 

percent cover for woody debris, organic matter and litter depth. Because many of these indicators 

were included in the model for plant nativity results should be interpreted with some caution. It 

is possible external factors not quantified or included in model selection are important. 

SEAP Condition scores all showed high correlation values (Figure 26). This indicates 

that if that a spring is in good or bad condition for one indicator, it is likely to be in similar 

condition for other indicators. This suggests degradation and disturbance of springs manifests 

itself in multiple ways. Thus SEAP scores are good indicators of overall disturbance level of 

springs. Few of these condition scores correlated well with species richness. This combined with 

NMDS results (see Chapter 2) indicate conditions scores measured with SEAP differentiates 

springs plant communities but does not differentiate overall species richness. However, many of 

the SEAP condition scores were positively correlated with the percentage of native species. This 

indicates these disturbances and degradations of spring condition does result in invasion of 

exotic species. 
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Figure 26. Correlation of Springs Ecosystem Assessement Protocol (SEAP) condition scores as 

well as species richness and percentage of native species. Values indicate Spearman rank 

correlation. Asterisks indicate level of significance: * indicates P<0.05; ** indicates P<0.01; *** 

indicates P<0.001. Key to variable names: Spec R = species richness; Native % = percent of 

species with native status; Graze Cond = grazing disturbance impacts level; Geom Cond = 

geomorphic microhabitat condition level; WQ Cond = water quality impacts condition; AQ 

Cond = aquifer impacts condition; Flow Cond = flow naturalness impacts condition; Lands Cond 

= lands impact condition; Hab Cond = habitat impacts condition; Fence Cond = fence impacts 

condition. See SEAP document for specific definitions of categories and condition levels. 
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4.8 Grazing Effects Analysis 

Grazing effects were examined by adding SEAP scores for grazing impacts to best 

models for species richness and percentage of native species. Grazing effects did not 

significantly improve the model for species richness based on an F-test (P=0.16, F=1.6). 

However, analysis of estimated effects of each level of grazing disturbance still provides 

suggestive insights to management worthy of further study. Only the estimate for “Slight 

Grazing Impacts” was significantly different for zero (Figure 27). Further, there was no 

discernible pattern to the effects, such as decreasing richness with increased grazing impacts. 

However, grazing impacts did significantly improve the model for percent of native species. 

Based on an F-test comparing the models with and without grazing impact levels the model with 

grazing impacts included was preferred (P=0.03, F=3.7). Effects of grazing monotonically 

increased with better grazing condition corresponding to a higher percentage of native species 

(Figure 28). However, the confidence intervals for all but “no grazing impacts” included no 

effect. These results are suggestive but more data are needed. Together these results suggest that 

grazing doesn’t have an impact on species richness but it may increase the likelihood of invasion 

by invasive species. Understanding could be improved by examining relationship of grazing 

intensity and total cover of exotic versus native species. 
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Figure 27. Effects of grazing disturbance level on expected species richness after controlling for 

other predictors of species richness. Bars show mean and 90% confidence interval of estimate. 

Model was not significantly improved by the addition of grazing condition and only effect of 

“slight impacts” was significantly different from zero. 
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Figure 28. Grazing impacts on percentage of native species after accounting for other important 

predictors. Bars indicate mean effect estimate and 90% confidence interval. While most 

individual effects weren’t significant, together they significantly improved the model. 
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4.9 Hillslope Springs Reclassification 

 Subclassification of hillslope springs by unforested and forested identified clear 

differences between each subclass of hillslope springs. Hillslopes springs were split relatively 

even into each group with 90 springs identified as unforested and 67 springs as forested allowing 

for statistical differentiation of the subgroups. The forested springs tended to occur at higher 

elevation (average 2130 meters vs 1815 meters) and had higher species richness (25.0 plant 

species vs 21.7 species). This suggests that forested springs mostly occur at higher elevations 

where moisture is more plentiful to support trees. Trees may in turn alter microhabitats with 

additional shading and by providing litter and woody matter which provide niche space for 

specific species. These differences are illustrated in Figure 29. However, due to fundamental 

differences between hillslope springs and other spheres of discharge, including different 

relationships between elevation and species richness, microhabitat richness and species richness, 

and different types of microhabitats associated with them (more woody matter and dominantly 

north facing slopes) reclassification may not be needed. Still, hillslope springs tend to exhibit 

higher variability that other spheres of discharge. Classification into forested and unforested 

categories seems to help reduce the variability within the hillslope classification. Skalicky et al. 

(2017) also suggested differentiating forested and unforested springs and analyze them 

separately. Classification based on secondary sphere of discharge characteristics or locations 

relative to stream channels still remains promising, but unexplored. 
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Figure 29. Subclassification of hillslope springs into forested and unforested subtypes show 

differences in floral species richness and elevation that help resolve the high variation found at 

hillslope springs and difficulty differentiating them as spheres of discharge. 
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Chapter 5 – Conclusions 

The results of this study highlight the significance of springs ecosystems in the GCE. 

Springs in the GCE are hotspots of biodiversity and support a large portion of the biota (45%) of 

the GCE on a small fraction of its land surface. Statistical analyses demonstrate the 

heterogeneous geomorphology of springs in the GCE as a fundamental source of the high 

biodiversity and intense species packing at GCE springs. Floral species richness was positively 

related to geomorphic microhabitat richness across all spring types. Additionally, plant 

assemblages varied between spheres of discharge. The differences in species richness reflects the 

geomorphic characteristics associated with each sphere of discharge. Differences in substrate and 

microhabitat types may be especially important. However, many springs in the GCE show signs 

of human disturbance with geomorphic microhabitats often degraded or obliterated.  

SEAP condition scores were shown to be a simple and useful way to measure disturbance 

levels at springs. Although SEAP condition scores were not related to floral species richness, low 

SEAP condition scores were associated with increased occurrence of exotic species. 

Disturbances such as heavy grazing, flow alterations, and degradation of geomorphic 

microhabitats may increase the likelihood of invasion by exotic species. 

Hanging garden and helocrene springs are particularly unique ecosystems with distinct 

characteristics related to their plant assemblages. While hillslope and helocrene springs were 

more variable, they, too, had distinct geomorphic characteristics that differentiated them. All 

spheres of discharge had sets of indicator species that tended to occur commonly at those 

springs. These findings emphasize spheres of discharge represent distinct geomorphic spring 

types that effect the types of species that occur. Continued research on spheres of discharge and 

use of the terminology will enhance the description and understanding of springs ecosystems. 
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The study of springs ecosystems highlight their importance as ecosystems. They are 

highly multivariate which makes statistical analyses difficult. Complex interactions at springs 

makes straightforward analysis of springs ecosystems difficult. However, despite the 

inconclusiveness of some analyses, the evidence highlights springs as diverse and critical 

ecosystems in the GCE. The history and legacy of local physical conditions, relationships to 

adjacent uplands, as well as differential colonization, extinction, and anthropogenic alteration 

confer high levels of individuality to springs ecosystems. Every spring has its own unique 

geomorphology and biogeographic history, an ecosystem individuality that limits synthetic 

statistical integration. 

 These analyses can help managers improve and enhance stewardship of springs 

ecosystems; however, management needs to be considered at local, as well as landscape scales. 

Inventory knowledge of the array of springs within the management area is important to 

understanding rare springs types and the likelihood of occurrence of rare springs-dependent 

species. Inventories also are needed to understand the diversity, distribution, and conservation 

status of springs-dependent (crenobiontic) species. My results indicate that restoration planning 

should include consideration of the springs wetted area, protection of fragile microhabitats, and 

occurrence of rare species. Incorporation of these springs characteristics into restoration activity, 

coupled with detailed monitoring will provide invaluable experimental insight into springs 

ecosystems. 

Inventory and monitoring efforts should be continued because the majority of GCE 

springs have not been surveyed and trend data are limited. Additional attention should be 

focused on information management to ensure that data assembled thus far remain available to 

the public and the scientific and managerial communities. Because of the observational nature of 
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the study, future research would benefit from experimental design include study effects of direct 

manipulation of microhabitats or grazing disturbance at a random subset of springs. The critical 

status of aridland springs, their high biodiversity and remarkably dense species packing, as well 

as their cultural and economic significance affirm the need for increased scientific attention and 

improved stewardship for these remarkably unique and threatened ecosystems.  
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