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The Analysis of Cyanide and its Breakdown Products
in Biological Samples

Brian A. Logue,1 Diane M. Hinkens,1 Steven I. Baskin,2

and Gary A. Rockwood2

1Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota,
USA
2Analytical Toxicology Division, United States Army Medical Research Institute of Chemical Defense,
Aberdeen Proving Ground, Maryland, USA

Cyanide is a toxic chemical that may be introduced into living organisms as a result of natural
processes and/or anthropogenic uses (legal or illicit). Exposure to cyanide can be verified by
analysis of cyanide or one of its breakdown products from biological samples. This verification
may be important for medical, law-enforcement, military, forensic, research, or veterinary
purposes. This review will discuss current bioanalytical techniques used for the verification
of cyanide exposure, identify common problems associated with the analysis of cyanide and
its biological breakdown products, and briefly address the metabolism and toxicokinetics of
cyanide and its breakdown products in biological systems.

Keywords cyanide, thiocyanate, 2-amino-2-thiazoline-4-carboxylic acid (ATCA), chemical
warfare agent, exposure, toxicology, analytical methods

INTRODUCTION
Cyanide is toxic to humans and animals and exposure can

occur in various ways. Many substances are potential sources of
cyanide exposure, including edible and non-edible plants (e.g.,
cassava), industrial operations (e.g., plastics processing), fires,
and cigarette smoke. Although the primary natural source of
cyanide poisoning is from plants (1–7), other natural sources in-
clude volcanoes, bacteria, and fungi (3, 8–12). Anthropogenic
sources include malfunctioning catalytic converters, fires in-
volving the burning of plastics, cigarette smoke, and illicit uses
of cyanide (e.g., terrorist activities) (13). Additionally, over one
million tons of cyanide are manufactured annually worldwide
for industrial uses, including chemical syntheses, electroplat-
ing, plastics processing, paint manufacturing, gold and silver
extraction, tanning, and metallurgy (14). Along with many le-
gal industrial uses of cyanide, multiple illegal uses of cyanide
exist, with terrorist acts garnering the most publicity (15). For
example, in 1982, cyanide was placed in bottles of Tylenol in
the Chicago area, killing seven people (16) and in 1995, cyanide
was found in several Tokyo subway restrooms in the weeks fol-
lowing the release of the nerve agent sarin (17). Another illegal

Address correspondence to Brian A. Logue, Department of Chem-
istry and Biochemistry, South Dakota State University, P. O. Box 2202,
Brookings, SD 57007, USA. E-mail: brian.logue@sdstate.edu

use of cyanide is in the capture of fish for subsequent sale in the
live fish trade (18). This practice involves using cyanide at sub-
lethal doses to temporarily stun fish, making them easier to catch
(19). This practice has been found in a number of countries, and
causes irreversible damage to coral reefs (18) by killing the al-
gae that are necessary for coral to survive. It also produces many
adverse secondary effects, such as killing smaller fish species
(20).

As industrial applications and illicit events involving cyanide
increase, the need for rapid, sensitive, and specific analytical
methods to assess cyanide exposure will be amplified. The goals
for this review are to briefly discuss current bioanalytical tech-
niques used for verification of cyanide exposure and to identify
common problems associated with the analysis of cyanide and
its metabolites in biological samples. Previous reviews dealing
with the analysis of cyanide have also been published and should
be consulted to provide a broad view of subject (8, 18, 21–25).
This review does not include methods to test for cyanide in envi-
ronmental or industrial matrices (e.g., surface waters, minerals,
process streams).

CYANIDE METABOLISM AND TOXICOKINETICS
Although there are other chemical forms of cyanide (e.g.,

cyanide ion), it is hydrogen cyanide (HCN) that is the primary
toxic agent, regardless of its origin. The toxic effects of cyanide

122
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FIG. 1. Human metabolism of cyanide.

can be traced to interference of aerobic metabolism (21, 26,
27). For mammals, fish, and some invertebrates, this occurs
when cyanide blocks terminal electron transfer by binding to cy-
tochrome oxidase. For mammals, cyanide ion (CN−) is acquired
through ingestion, while hydrogen cyanide is acquired through
inhalation or absorption through the skin. For fish, cyanide is ab-
sorbed through the gills or intestine (18), but little else is known
about cyanide metabolism in fish. Because the majority of re-
search in this area has been done based on human metabolism,
the following text summarizes human metabolism of cyanide.

Once absorbed, cyanide is quickly transferred to the blood
and metabolized through a number of processes, as shown in
Figure 1. The major pathway for cyanide metabolism is the
conversion of cyanide to thiocyanate (SCN−) in the presence
of a sulfur donor (e.g., thiosulfate) (28). This reaction is cat-
alyzed by the enzyme rhodanese (21, 29). About 80% of the
initial cyanide dose is converted to thiocyanate (30, 31), which
is subsequently excreted in the urine. Other significant metabolic
pathways are the conversion of cyanide to 2-amino-2-thiazoline-
4-carboxylic acid (ATCA; the tautomeric form of ATCA is 2-
iminothiazolidine-4-carboxylic acid – ITCA; Figure 1) by reac-
tion of cyanide with cystine (21, 29, 32, 33), and the reversible
reaction of cyanide with hydroxocobalamin to form cyanocobal-
amin. (Note: Throughout the text, the ATCA/ITCA tautomeric
pair will be referred to as ATCA.) It is possible that the produc-
tion of ATCA over thiocyanate may predominate when sulfur
donors become depleted, or where rhodanese is sparse. Other
minor pathways for cyanide metabolism include the creation of
one-carbon metabolites and protein adducts (i.e., reaction of a
chemical species with a protein to form a chemical bond that
modifies the parent protein) (21, 34). Each chemical species
in Figure 1 could potentially be used as a marker for cyanide
exposure.

The toxicokinetics and metabolism of an agent must be con-
sidered when an analytical technique is used to determine expo-

TABLE 1
Reported half-lives of cyanide and thiocyanate from acute

exposures of cyanide

Cyanide/Metabolite Species t1/2 (hr) Reference

Cyanide Human 0.34–1.00 (46, 252)
Rat 0.64 (30)
Pig 0.54 (30)
Goat 1.28 (30)

Thiocyanate Human 96–192 (252)
Rat 5.80 (30)
Pig 4.95 (30)
Goat 13.9 (30)

sure to the agent. If the parent toxic agent metabolizes quickly
and immediate analysis of the parent agent is not feasible, an
alternative metabolic product which is more stable should be
chosen as a target for analysis. One consideration for deter-
mining which biomarker to target for confirmation of exposure
is the half-life of that biomarker. Table 1 lists the half-lives of
cyanide and thiocyanate for acute exposures in a number of
mammalian species. The half-life of cyanide is short (t1/2 =
0.34–1.28 hours), making it difficult to determine exposure to
cyanide if significant time has elapsed. Thiocyanate has a longer
half-life than cyanide (t1/2 = 4.95–192 hours). The half-lives of
ATCA and cyanide-protein adducts have not been evaluated,
although for cyanide-protein adducts, a half-life similar to that
of the parent protein should be expected for a stable adduct
(e.g., 20–25 days for human serum albumin) (35, 36). Chronic
exposure to cyanide increases the apparent half-life of cyanide
and thiocyanate (37–41). The increase in cyanide half-life is
likely due to the depletion of sulfur donors (42) because activity
of rhodanese over the course of a long-term exposure does not
decrease; in fact, it has been shown to increase (43, 44).

As seen by the half-lives of cyanide in a number of mam-
malian species in Table 1, the toxicokinetics of cyanide is, to
some extent, species-dependent. Thiocyanate is also species-
dependent, with the estimated half-life of humans being much
higher than that of other animals for acute exposures of
cyanide (Table 1). Therefore, care must be taken in extrapo-
lating toxicokinetic and metabolic behavior of cyanide between
species.

SPECIAL CONSIDERATIONS FOR THE ANALYSIS OF
CYANIDE AND ITS METABOLITES

Multiple factors must be considered when choosing which
analyte to target for verification of cyanide exposure. Analysis
of cyanide or any one of its metabolites has advantages and
disadvantages. Table 2 compares cyanide and its metabolites
in terms of some factors important for verification of cyanide
exposure.

Considering the half-life of cyanide for acute expo-
sure (Table 1), it would be difficult to determine cyanide
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TABLE 2
Comparison of cyanide and its metabolites for verification of cyanide exposure

Cyanide/metabolitea Half-lives
Toxicokinetic

data
Storage
stability

Biological
sampleb Speciesc

CN Minutes-hours Some in a few
species

Low Blood, urine, saliva, tissue,
expired air, rumen

Human, fish, cow,
mouse, rat, guinea
pig, goat, horse

SCN Hours Limited Medium Blood, urine, saliva, tissue,
milk, gastric fluid,
cerebrospinal fluid

Human, fish, rat,
mouse, pig, goat,
horse

ATCA Unknown None High Blood, urine, feces, saliva,
tissue

Human, fish, rat

CN-protein adducts Presumably
days-months

None Unknown Blood Human

aCN—cyanide, SCN—thiocyanate, ATCA—2-amino-2-thiazoline-4-carboxylic acid.
bCyanide or the metabolite has been analyzed from this matrix with an analytical method reported in at least one research article or in the

laboratories of the authors of this review.
cCyanide or the metabolite has been analyzed from this species with an analytical method reported in at least one research article or in the

laboratories of the authors of this review.

concentrations from biological samples once significant time
has elapsed following exposure. Conversely, direct analysis of
cyanide may be the only biomarker capable of indicating ex-
posure to cyanide within the initial minutes following exposure
(30, 45, 46). The issues that limit analysis of cyanide include the
rapid cyanide detoxification processes, the difficulty of estab-
lishing steady state cyanide levels with time, and the volatility
and nucleophilic properties of cyanide (47, 48). Although traces
of cyanide in urine (49–53), saliva (54, 55), and expired air
(56–60) have been found, direct analysis of cyanide from these
matrices is difficult. Therefore, blood and tissues have been the
preferred matrices for cyanide analysis in past studies of cyanide
exposure. In tissues, it is difficult to assess rates of cyanide de-
cay in tissues because levels of rhodanese are variable between
organs (21), and because free cyanide concentrations are gen-
erally low. Although free cyanide may only be available in low
concentrations, cyanide may be bound within tissues. Therefore,
the possibility of extracting bound cyanide should be considered
prior to conducting a specific cyanide analysis technique.

The analysis of the breakdown products of cyanide is a vi-
able alternative to direct analysis. For example, thiocyanate and
ATCA have been determined in urine, saliva, tissue, and blood
(55, 61–92). Cyanide-protein adducts have been found in human
blood proteins (34). The alternative markers of cyanide expo-
sure may be longer-lived (30, 93) and more stable than cyanide
(91, 92). Also, correlation of some of these markers to cyanide
exposure has been examined (31, 61, 82, 91–96).

The main advantages of analyzing thiocyanate to determine
cyanide exposure include the facts that appreciable concentra-
tions of thiocyanate can be found in biological matrices shortly
following cyanide exposure and that it has a longer half-life

than cyanide (30, 93). However, thiocyanate is naturally found
in biological fluids, and while this is a condition of all cyanide
metabolites, thiocyanate levels are relatively high and can be
inconsistent (55, 82–88). Large variation in background thio-
cyanate concentrations makes it difficult to determine low-level
cyanide exposure. Also, Ballantyne (97) found that concentra-
tions of thiocyanate in blood varied inconsistently during stor-
age at a number of different temperatures and that analytical
recovery of thiocyanate from whole blood was difficult. Large
and variable concentrations may indicate that thiocyanate is in-
volved in a number of biological processes in addition to cyanide
metabolism (28, 98, 99).

ATCA may be used as an alternative for determination of
cyanide exposure. An advantage to using ATCA is that it is sta-
ble in biological samples for months at freezing and ambient
temperatures (91, 92). Also, ATCA does not metabolize further
(21, 31, 100) and therefore, may be a lasting signature of cyanide
exposure. However, relatively few studies have been performed
to develop analysis techniques for ATCA from biological ma-
trices (61, 89–92) or to evaluate the relationship between ATCA
and cyanide exposure (61, 91, 92). It has also been suggested
that ATCA is neurotoxic (101, 102) and therefore may con-
tribute to cyanide toxicity. With a greater understanding of its
behavior with relation to cyanide exposure, the analysis and
characterization of ATCA may prove beneficial.

Recently, cyanide-protein adducts have been discovered (34).
If these adducts are stable, they could serve as long-lived mark-
ers of cyanide exposure. Currently, this analysis technique re-
quires costly instrumentation and lengthy sample preparation.
Even considering these issues, cyanide adducts are extremely
promising for providing a long-lived biomarker of cyanide
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exposure, especially if a less complex and less costly method of
analysis can be developed.

BIOLOGICAL MATRIX CONSIDERATIONS FOR
VERIFICATION OF CYANIDE EXPOSURE

Most published methods for determination of cyanide ex-
posure perform the analysis on blood samples. For humans,
determination of cyanide exposure has been attempted from
blood (34, 37, 45, 49, 51, 55, 59, 82, 95, 103–141), urine
(49–53, 64, 142), saliva (54, 55, 64, 70), expired air (56–60),
and tissue (post-mortem) (51, 129, 140, 143, 144) samples.
Blood may be the most versatile biological sample used to de-
termine exposure to cyanide, because the analyses of cyanide,
thiocyanate, ATCA, and cyanide-protein adducts can each be
performed on blood samples. Saliva, urine, or tissue may be
more appropriate depending on the analytical method and other
factors, including ease of obtaining the sample. If determina-
tion of cyanide exposure is to be done from non-human species,
obviously saliva and urine samples will be difficult to obtain.
Therefore, blood and tissues are the most likely samples to be
analyzed to determine cyanide exposure. The choice of blood
or tissue is determined by a number of factors, including the
size of the species. For example, small mice would not have
sufficient quantities of blood for some analytical techniques,
which makes the analysis of tissue samples indispensable. An-
other consideration is that rates of cyanide metabolism may be
inconsistent between organs because of variable rhodanese and
sulfur donor concentrations (21). Therefore, careful selection
of tissue, depending on the analyte to be determined, can be
extremely important.

THE DETECTION OF CYANIDE AND ITS METABOLITES
IN BIOLOGICAL SAMPLES

The determination of cyanide, thiocyanate, ATCA, and
cyanide-protein adducts in biological fluids and tissues is useful
for forensic, clinical, research, law enforcement, and veterinary
purposes. Methods of analysis include spectrophotometry (37,
59, 62, 74, 78, 81, 89, 90, 93, 105, 120, 130, 133, 139, 141,
143, 145–174), fluorescence (49, 51, 89, 115, 121, 132, 142,
175–181), chemiluminescence (77, 109), electrochemistry (18,
56, 63–65, 68, 69, 73, 75, 79, 80, 106, 129, 138, 153, 182–197),
gas chromatography (GC) (45, 53, 54, 61, 91, 95, 103–105, 107,
108, 111, 113, 114, 117, 119, 121, 125, 126, 128, 131, 135, 137,
152, 198–212), liquid chromatography (LC) (34, 40, 49, 52, 66,
67, 72, 92, 94, 109, 110, 112, 115, 122, 134, 142, 153, 162, 190–
192, 213–228), flow injection analysis (FIA) (64, 109, 191, 193,
215), capillary electrophoresis (CE) (70, 229, 230), and atomic
absorption (AA) (231, 232). Choosing from the many available
types of analytical methods and biomarkers of cyanide expo-
sure, complicated by numerous discrepancies in the literature
between these methods, makes selection of an analytical method
daunting. Factors that will influence the initial choice of which
biomarker and analytical technique to use are cellular absorption

and detoxification kinetics, sampling and analysis time, sample
storage time and conditions, sample matrix, interferences, sen-
sitivity, available instrumentation and equipment, expertise, and
cost. In Table 3, some differences between methods listed above
are presented.

SAMPLE STORAGE AND PREPARATION
Careful sample preparation and storage of biological sam-

ples containing cyanide or its metabolites is a key element to
producing accurate results. A significant problem in the analysis
of cyanide and thiocyanate is their interconversion, which can
occur during sample preparation and storage and leads to inaccu-
rate results (82, 233). The amount of cyanide within the sample
can be altered during storage by up to 66% in 14 days, depend-
ing on the storage temperature (22, 45, 132, 234–237). There
are a number of methods to help prevent artificial formation
of cyanide during storage, and if samples containing cyanide
are to be stored before analysis, methods to prevent cyanide
formation should be considered (see Suggested Procedures for
Delayed Analysis of Biological Samples section). For example,
Seto et al. (121) demonstrated artificial formation of HCN from
thiocyanate in blood and later showed that ascorbic acid pre-
vents artifactual cyanide formation at temperatures below 63◦C
(234, 238). Also, Sano et al. (122) found that pre-treatment of
blood samples with water and methanol was successful in pre-
venting artifactual formation of cyanide from thiocyanate. The
artifactual formation or degradation of ATCA does not appear
to be a problem as the stability of ATCA in biological samples
under a number of storage conditions has been established (91,
92).

Earlier methods of cyanide analysis involved extensive sam-
ple preparation in which the sample was acidified (typically with
sulfuric or phosphoric acid) and HCN was transferred to alka-
line solution by distillation or microdiffusion (37, 49, 82, 95,
110, 132, 139, 147, 168, 173, 179, 239). This served to concen-
trate the cyanide and to separate it from potential interferences.
Buffered hydroxocobalamin (120, 240) or methemoglobin (143)
solutions have also been used to capture liberated HCN. This
pre-treatment method can be used prior to most analytical tech-
niques for the determination of cyanide and allows the use of
analytical techniques that would not normally be useful for bio-
logical samples. For example, separation of cyanide by distilla-
tion has been used prior to ion-selective electrode (ISE) analysis
of cyanide (18). For GC analysis of HCN, the procedure of lib-
erating HCN by acidification (without capture in solution) is
extensively used with headspace analysis (45, 103–105, 108,
119, 121, 125, 128, 135, 137, 152, 198, 200, 203, 204, 206, 207,
241). Maseda et al. (95) added a pre-column derivatization step
to increase the sensitivity of the GC analysis technique. This
technique has also been used prior to headspace solid-phase
microextraction (SPME) in which liberated HCN was concen-
trated on a SPME fiber prior to GC analysis (107, 113). It has also
been used in a similar manner for single-drop microextraction
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FIG. 2. König reaction for the spectrophotometric analysis of cyanide.

(SDME) with in-drop derivatization and subsequent analysis
by CE (229). It should be noted that when using methods that
liberate HCN, rubber septa or stoppers can react with gaseous
HCN. Therefore, polytetrafluoroethylene septa should be used
(48, 95). (Note: It is always necessary to consider the volatility
of HCN when working with samples that may have significant
concentrations of cyanide and the dangers that it may pose to
laboratory personnel.)

Individual pretreatment steps (i.e., derivatizations) are gen-
erally necessary for detection of cyanide by spectrophotometry
or fluorescence. For example, Lundquist and Sörbo (130) used a
modification of the König reaction (Figure 2) for spectrophoto-
metric determination of blood cyanide concentrations by high-
performance liquid chromatography (HPLC). Another example
is the fluorometric derivatization of cyanide produced from the
reaction of cyanide with 2,3-naphthalenedialdehyde (NDA) and
taurine (Figure 3). This reaction has been effectively used with
HPLC-fluorescence or as a stand-alone fluorescence method
to produce highly sensitive methods for the determination of
cyanide (49, 50, 110, 112, 115, 122, 134, 142). The derivatiza-
tion schemes mentioned will be discussed in more depth below
along with other derivatization schemes.

O

O

SO3H

NH2

-CN in 10 mM NaOH
N

CN SO3H

+
Borate phosphate buffer

FIG. 3. Derivatization reaction of cyanide with NDA and taurine.

Thiocyanate sample preparation normally involves derivati-
zation that is intended to increase a specific detector’s response
to the ion. While initial sample preparation is not common, ion
exchange columns could be used to separate thiocyanate from
biological sample components. Thiocyanate is weakly spec-
trophotometrically active, and therefore is often derivatized with
a strong absorber or fluorophore prior to analysis. For example,
3-bromomethyl-7-methoxy-1,4-benzoxazin-2-one has been ef-
fectively used (Figure 4) for the fluorometric determination of
thiocyanate by HPLC (217). Others have also used variations
of the König reaction to produce strong spectrophotometric ab-
sorption (157, 162).

Multiple methods have been proposed for the simultaneous
analysis of cyanide and thiocyanate. Methods for simultane-
ous analysis are generally limited to chromatographic methods
which involve derivatization. For example, Kage et al. (117)
used pentafluorobenzyl bromide (PFBBr) as the derivatizing
agent for simultaneous GC-mass spectrometric (MS) analysis
of cyanide and thiocyanate, and Funazo et al. (53) quantita-
tively methylated cyanide and thiocyanate for GC analysis us-
ing a nitrogen-phosphorous detector (NPD). Other authors have
used other derivatization techniques for GC analysis of cyanide
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N

OH3CO

CH2Br

O

-SCN N

OH3CO

CH2SCN

O70 oC, 1 h

FIG. 4. Derivatization of thiocyanate with 3-bromomethyl-7-methoxy-1,4-benzoxazin-2-one.

or thiocyanate in biological samples (111, 205, 208, 209). LC
has also been used for the simultaneous detection of cyanide
and thiocyanate. For example, Chinaka et al. (112) used ion
chromatography and Toida et al. (134) used HPLC to analyze
cyanide and thiocyanate in blood samples.

ATCA has been mainly prepared for analysis using cation
exchange solid-phase extraction (SPE) columns and individ-
ual pre-treatment steps. Lundquist et al. (92) and Logue et al.
(91) both used cation exchange SPE columns to separate ATCA
from components of biological samples. Lundquist et al. (92)
further purified disulfides from samples by reduction and sub-
sequent separation with another SPE column. Both Bradham
et al. (89) and Lundquist et al. (92) heated ATCA in strong ba-
sic solution to open the ring structure of ATCA and produce a
thiol group. Bradham et al. (89) then used hydroxymercuriben-
zoate, and subsequently diphenylthiocarbazone, to produce a
colored product that was analyzed spectrophotometrically. Al-
ternatively, Lundquist et al. (92) derivatized ATCA (after open-
ing the ring) with a coumarin derivative and then analyzed it
by HPLC. After using a cation exchange column (discussed
above), Logue et al. (91) prepared ATCA for GC-MS analy-
sis by derivatizing with a silylating agent, thus eliminating the
ATCA ring-opening step.

Sample preparation for cyanide-protein adducts involved iso-
lation of the protein of interest with subsequent enzymatic di-
gestion. Fasco et al. (34) used this technique to analyze protein
fragments after digestion with trypsin. Although this method
was time-consuming and required powerful instrumentation,
the authors were able to detect protein-cyanide adducts from
the plasma fraction of human blood.

SPECTROPHOTOMETRIC, LUMINESCENCE, AND
ATOMIC ABSORPTION METHODS

Early spectrophotometric methods of cyanide analysis from
biological fluids were often based on the König synthesis
(Figure 2) (60, 168, 169, 171–174, 179, 239). König dye synthe-
sis involves oxidation of cyanide using chloramine-T (139, 147,
157, 160), hypochlorite (130, 133, 176), or bromine water (59,
165, 172, 173) to form a cyanogen halide. The cyanogen halide
is then reacted with an aromatic amine (normally pyridine) to
produce an aldehyde product that is spectrophotometrically ana-
lyzed in the visible region. These methods have adequate sensi-
tivity, but the products are unstable and they lack specificity due
to interferences from other chemical species commonly present
during the analysis of cyanide, especially thiocyanate and thio-
sulfate (175). Therefore, these methods often require microdif-
fusion sample preparation. Modifications have been developed

that yield more stable reagents and increased precision for this
type of reaction (59, 93, 133, 147, 163–166).

Spectrophotometric analysis of thiocyanate is often a varia-
tion of the König reaction described above. Hypochlorite and
thiocyanate react to form the cyanogen chloride, then either
pyridine-malononitrile (161) or barbituric acid-pyridine reagent
(130, 157, 159, 162) can be used as coupling agents. Cyanogen
chloride can also be combined with isonicotinic acid to pro-
duce a glutaconic aldehyde. Condensation of this aldehyde with
two molecules of 1,3-dimethylbarbituric acid produces a dye
which can be analyzed spectrophotometrically (153). Other
early methods of thiocyanate analysis (170) involved oxida-
tion of the thiocyanate to hydrogen cyanide, with aeration into
alkaline solution, permitting the determination of cyanide as
described above for the König reaction. The modified König re-
action was also applied to the simultaneous analysis of cyanide
and thiocyanate (52, 134, 172, 173). Nagashima (160) used the
differences in the rates of the reaction of cyanide and thiocyanate
with chloramine-T and variations in pH dependence for the si-
multaneous spectrophotometric determination of cyanide and
thiocyanate.

ATCA has also been analyzed spectrophotometrically.
Bradham et al. (89) analyzed ATCA from urine as described pre-
viously. Limitations for this method include interference from a
number of species (including cyanide ions) and lengthy sample
preparation.

Fluorescence (49, 51, 115, 132, 175–178, 181) methods have
been applied to the determination of cyanide in biological flu-
ids. As with spectrophotometric methods, fluorescence methods
normally require extraction techniques to isolate cyanide and
eliminate interferences. A number of sensitive fluorometric as-
says to determine cyanide, free of thiosulfate interference, have
been developed with greater sensitivity than spectrophotometric
methods (51, 176, 177). One specific fluorometric method for
the analysis of cyanide is the reaction of cyanide with NDA and
taurine to create a highly fluorescent isoindole (Figure 3) (49,
115). A chemiluminescence method has also been developed for
the analysis of cyanide from whole blood (109). For this method,
acidification and distillation was used to separate cyanide from
interfering whole blood components and a microchip-based re-
actor was used to mix sample preparation reagents and produce
chemiluminescence.

Although non-chromatographic fluorescence methods for the
determination of thiocyanate, ATCA, or cyanide-protein adducts
have not been published, the possibility exists to use such meth-
ods for ATCA and thiocyanate. For instance, 3-bromomethyl-7-
methoxy-1,4-benzoxazin-2-one (Figure 4) and coumarin dyes
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have been used effectively for the HPLC-fluorometric determi-
nation of thiocyanate (217) and ATCA (92), respectively.

AA methods are indirect methods of cyanide or thiocyanate
analysis. A metal complex is formed with the thiocyanate or
cyanide which subsequently precipitates or is extracted into
an organic solvent. This metal complex is then analyzed by AA
spectrometry. For example, cyanide has been analyzed indirectly
by complexing with an iron(II)-phenanthroline, extracting in
chloroform, analyzing iron by AA, and directly relating the iron
concentration to the cyanide concentration (242). Chattaraj and
Das (232) used AA spectrometry for the analysis of thiocyanate
in biological fluids by forming a complex with thiocyanate and
copper and determining the copper signal. This technique has
not been used to determine ATCA or cyanide-protein adducts.

ELECTROCHEMICAL, ION-SELECTIVE ELECTRODE, AND
BIOSENSOR METHODS

Many electrochemical methods for the detection of cyanide
and thiocyanate exist, but relatively few of these methods have
been applied to their analysis in biological samples (18, 56, 63–
65, 68, 69, 73, 75, 79, 80, 106, 129, 138, 153, 182–197, 199,
243). The benefits of using electrochemical methods are high
sensitivity and quick analysis time. However, they can be sub-
ject to multiple interferences from many organic and inorganic
ions, including S2−, ClO−

4 , NO−
2 , N−

3 , and I− (129, 188). Elec-
trochemical methods can also be hampered by narrow working
concentration ranges and may require large sample sizes (185,
187). Westley and Westley (129) used a silver rotating disk elec-
trode and a dropping mercury electrode for the voltammetric
determination of cyanide and thiocyanate in biological samples,
including plasma, tissue, and whole blood. Electrochemical de-
tection can also used with ion chromatography for the analysis
of cyanide and thiocyanate (190).

Polymeric membrane-based ISEs have been developed to
address some of the issues limiting electrochemical analysis of
cyanide and thiocyanate (23, 64, 65, 69, 73, 75, 79, 80, 106,
182–184, 186–189, 194, 243–245). ISEs can exhibit rapid re-
sponse, high sensitivity, wide linear range, low cost, and they
are usually simple to operate. The polymeric membrane in ISEs
contains an ion carrier that interacts selectively with the analyte.
This interaction is often enhanced by the use of a metal in the
ion carrier that strongly interacts with the analyte ion. Although
many ISEs exist, they are somewhat limited for anions com-
pared with cations (188). ISEs have been developed for cyanide
analysis, but few have been used for analysis of cyanide from
biological samples. This is due to the interaction of multiple
ions and biological materials present in biological samples. If
these interferences can be removed, then ISE methods could be
used for the determination of cyanide from biological samples.
In fact, the standard method for the analysis of cyanide from fish
tissues is based on an ISE (245). For this method, tissue samples
are prepared by homogenizing, acidifying, and distilling inter-
nal organs of fish species. Cyanide present in the homogenized
tissue is converted to HCN and captured in an alkaline solution

following distillation. A cyanide ISE is then used to analyze for
cyanide based on its interaction with silver. Another ISE test
using gold disc electrodes coated with a sulfonated tetrafluo-
roethylene copolymer was recently developed by Lindsay and
O’Hare for the analysis of cyanide in blood without sample
pre-treatment (106).

Thiocyanate, due to its lipophilicity, is well-suited for ISE
analysis and has been successfully analyzed by ISEs (23). ISEs
have been developed that exhibit good agreement with ion chro-
matography (194) and spectrophotometry (186–189), and have
been used to analyze thiocyanate from plasma (194), urine
(64, 65, 68, 69, 73, 79, 80, 184, 186–189, 243), and saliva
(64, 66, 68, 69, 73, 79, 80, 182, 183, 186–188). For example,
ISEs based on crystal violet or methylene blue and a selec-
tive polymeric membrane containing a nickel(II)-azamacrocycle
complex showed excellent selectivity and sensitivity and were
successfully used for the analysis of thiocyanate in urine
and saliva (187, 194). Other electrodes which have shown
good selectivity for thiocyanate in biological samples include
a polyvinyl chloride (PVC) membrane electrode based on a
nickel-hexaazacyclotetradecane derivative (186), a PVC mem-
brane electrode with an unsymmetrical nickel(II) macrocyclic
complex as an ion carrier (188), and a graphite electrode based
on iron phthalocyanine membranes (189).

Many biosensors (small detection devices normally based
on biological activity toward an analyte) exist for the determi-
nation of cyanide, including microbial cyanide sensors, sensors
based on the enzyme inhibition of cyanide, and sensors based on
cyanide degrading enzymes. Most biosensors have the advan-
tage of being portable, inexpensive, easy to use, and can have
high selectivity. Limitations of biosensors include degradation
of biological components that make up these sensors, incon-
sistent electrochemical signals, and difficulty producing suffi-
cient quantities and activities of enzymes or microorganisms on
which these sensors depend. Most of the biosensors developed
for cyanide analysis have not been applied to the analysis of
biological samples, although a biosensor system for the deter-
mination of cyanide in fish was recently described (146). For
this method, cyanide hydrolase was used to convert cyanide into
formate and ammonia. The formate was detected and converted
to CO2 with a formate biosensor, which produced NADH from
NAD+. A Clark electrode was used to monitor the consumption
of oxygen from the oxidation of NADH back to NAD+ (18).

Currently, biosensors have not been applied to thiocyanate
detection from biological samples. Also, electrochemical and
biosensor methods have not been used to analyze for ATCA and
cyanide-protein adducts from biological samples.

LIQUID CHROMATOGRAPHY, CAPILLARY
ELECTROPHORESIS, AND FLOW INJECTION ANALYSIS

The complex nature of biological matrices, the small con-
centrations of cyanide and its metabolites, and the high number
of species that interfere with spectrophotometric, luminescent,
and electrochemical methods have often necessitated analysis
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of cyanide and its metabolites by more powerful methods. LC
techniques can determine trace amounts of an analyte and can
efficiently separate analytes from interfering components in the
matrix. Chromatographic techniques, both liquid and gas, also
have the ability to simultaneously analyze for cyanide and thio-
cyanate. For these reasons, LC methods have gained popularity
in analysis of cyanide and its markers in biological samples.

Two types of LC have been used to analyze cyanide: reverse-
phase high-performance liquid chromatography (RP-HPLC)
(34, 40, 50, 52, 92, 94, 110, 115, 122, 134, 142, 217, 221, 225,
228) and ion chromatography (IC) (112, 162, 190–192, 213,
216, 218–220, 222–224, 226). RP-HPLC methods are com-
mon, but generally require pre-treatment steps for each anion
or multiple post-column reagents. IC methods are common for
thiocyanate analysis but cyanide is not normally analyzed with
this technique. Some common detectors used in the LC analysis
of cyanide or its metabolites include spectrophotometric (52,
72, 94, 153, 162, 223), fluorescence (40, 49, 115, 122, 134, 142,
217, 225), electrochemical (193, 215, 219, 228), and MS (34,
110) detection. CE (230) is a related method of analysis that
involves initial separation of a sample and subsequent analysis.

Several groups have adapted the spectrophotometric detec-
tion of cyanide and thiocyanate in blood and urine based on the
König reaction (Figure 2) to RP-HPLC (153, 162, 223, 227).
This reaction has also been used for HPLC with fluorometric
detection. Toida et al. (134) analyzed cyanide in blood at pico-
mole levels with HPLC and fluorometric detection by using a
variant of the König reaction, replacing pyridine with pyridine-
barbituric acid. Fluorescence detection was also used for the
determination of cyanide in human erythrocytes, whole blood,
and urine using RP-HPLC and pre-column derivatization with
NDA and taurine (Figure 3) (50, 122). A number of other fluo-
rometric HPLC methods have been developed for the analysis
of cyanide and its metabolites from biological fluids (112, 115,
217, 225).

Detection of thiocyanate and simultaneous detection of
cyanide and thiocyanate have been accomplished using RP-
HPLC with fluorometric detection. Tanabe et al. (225) used
HPLC with fluorometric detection to determine thiocyanate
in saliva and serum based on the reduction of cerium (IV)
to fluorescent cerium (III). Using pentafluorobenzylbromide as
derivatizing agent, Liu and Yun (94) simultaneously determined
cyanide and thiocyanate in blood and milk. Tracqui et al. (110)
used microdiffusion sample preparation followed by derivatiza-
tion with NDA and taurine for HPLC-MS analysis of cyanide
in blood.

ATCA and cyanide-protein adducts have also been analyzed
with RP-HPLC (34, 92). Lundquist et al. (92) used HPLC with
fluorometric detection for the determination of ATCA in urine.
Although this method was time consuming, ATCA was detected
in the urine of smokers. Fasco et al. (34) used RP-HPLC with
tandem MS detection to analyze cyanide-adducted proteins from
human plasma. The method involved isolation and enzymatic
digestion of cyanide-adducted human serum albumin.

A limited number of IC methods have been developed for
analysis of cyanide (112). Conversely, multiple IC methods have
been used to analyze biological fluids for thiocyanate (72, 112,
162, 190–192, 213, 216, 218–220, 222–224, 226). Chinaka et al.
(112) used NDA derivatization of cyanide with an ion exchange
column for the simultaneous determination of cyanide and thio-
cyanate. Lundquist et al. (162) used an ion exchange column
with visible spectrophotometric detection for the determination
of thiocyanate in serum and urine. Connolly et al. (213) used
ion interaction LC with UV detection to analyze thiocyanate in
urine. ISEs have also been used to detect thiocyanate in urine
following IC (190).

Another type of LC that involves both RP and ionic interac-
tions is called ion-pairing chromatography. With ion-pairing
chromatography a column modifier is added to the mobile
phase to create an ionic stationary phase. Authors using this
type of chromatography have coated RP-HPLC columns with
ion-pairing agents to mainly analyze thiocyanate. Examples of
this type of analysis include RP-HPLC columns coated with
cetyldimethylamine (222, 224), a zwitterionic micelle (192), and
bovine serum albumin (216). Brown et al. (40) used a cetylpyri-
dinium coated RP column to create an ion-exchange column
for the analysis of thiocyanate from rainbow trout plasma in a
pharmacokinetic study of thiocyanate exposure.

CE and FIA are not chromatographic methods because they
do not utilize a stationary phase but they are similar in that
small precise volumes of sample are added to a continuously
flowing carrier stream. Moreover, CE is also used to separate
the components of a sample prior to detection and both CE and
FIA normally use LC detectors. CE has been used successfully
for the analysis of cyanide (229) and thiocyanate (70, 230) in
biological fluids. Glatz et al. (230) analyzed blood, urine, and
saliva samples for thiocyanate with CE and spectrophotomet-
ric detection, with no sample preparation aside from dilution.
Jermak et al. (229) used CE for determination of cyanide af-
ter headspace SDME with in-drop derivatization. CE methods
for cyanide, ATCA, and cyanide-protein adducts have not been
suggested. A number of FIA methods have been proposed to
analyze for cyanide biomarkers in biological samples (64, 109,
191, 193, 215). For example, Cookeas and Efstathiou (193) suc-
cessfully determined thiocyanate in saliva with FIA and ISE
detection using a cobalt-phthalocyanine modified carbon paste
electrode.

GAS CHROMATOGRAPHY
One of the most common methods for analysis of cyanide,

thiocyanate, and more recently ATCA is gas chromatography.
Common detectors used for analysis of cyanide or its metabo-
lites are the electron capture detector (ECD) (95, 103, 119, 125,
128, 200, 205, 211, 212, 241, 246), nitrogen-phosphorus detec-
tor (NPD) (45, 53, 65, 105, 113, 114, 117, 121, 126, 131, 135,
137, 152, 202, 207–209), and MS detector (61, 91, 107, 108,
111, 117, 199, 210). Although most of these methods are used
for detection of cyanide in blood, some groups have applied GC
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techniques for other biological matrices and for the detection of
thiocyanate and ATCA.

For the detection of cyanide from biological matrices, no spe-
cific derivatization is necessary as HCN is volatile. Therefore,
the most common pre-analysis step in GC analysis of cyanide
is sampling of cyanide from the sampling of the headspace
following acidification of the sample. Either equilibrium or dy-
namic headspace methods can be used to prepare a sample for
GC analysis (45, 103–105, 108, 113, 119, 121, 125, 128, 135,
137, 152, 199, 203, 204, 206, 207, 241). Another pre-analysis
step for cyanide analysis is cryogenic oven trapping, which has
been used to trap liberated HCN and produce high resolution
and sensitivity (114, 202). Because thiocyanate and ATCA are
non-volatile, they require chemical modification (i.e., derivati-
zation) to allow analysis by GC. Also, chemical modification is
necessary for analysis of cyanide by ECD (because of its poor re-
sponse to underivatized cyanide) or for simultaneous analysis of
cyanide and thiocyanate. Therefore, a number of pre-treatment
steps have been developed to facilitate the analysis of cyanide,
thiocyanate, and ATCA by GC.

In GC analysis, the NPD permits the sensitive and specific
detection of nitrogen- or phosphorous-containing compounds,
and has been used for the detection of cyanide and thiocyanate
in blood, plasma, urine, and saliva (45, 53, 105, 113, 114, 117,
121, 126, 131, 135, 137, 152, 198, 202, 207–209). However,
this detector may be unstable at times, and is less sensitive than
some other types of GC detectors. This has led to the creation
of analytical methods that take advantage of more stable and
sensitive detectors such as the ECD and MS. PFBBr is most
commonly used for the derivatization of cyanide, especially for
ECD detection (117, 118, 247, 248). The conversion of HCN
into cyanogen chloride by choramine-T oxidation (Figure 2) has
also been used for GC-ECD analysis (95, 103, 119, 212).

One of the most sensitive methods for analysis of cyanide,
thiocyanate, and ATCA is GC-MS (54, 61, 91, 107, 108, 111,
199, 201, 203, 210). With MS detection, stable isotope internal
standards (e.g., 13CN, C15N, or 13C15N) can be used to correct
for matrix effects common to cyanide and cyanide metabo-
lites. This can eliminate the need for standard addition tech-
niques and matrix matching. Murphy et al. (199) and Dumas
et al. (108) used a stable isotope internal standard with GC-MS
and head space analysis to analyze cyanide concentrations from
blood. GC-MS has also been used to analyze cyanide and thio-
cyanate simultaneously (54, 117). Logue et al. (61, 91) analyzed
ATCA by GC-MS in plasma and urine by first converting the
non-volatile metabolite into a volatile form using trimethylsilyl-
trifluoroacetamide. Cyanide-protein adducts have not been an-
alyzed by GC-MS.

SUGGESTED PROCEDURES FOR DELAYED ANALYSIS
OF BIOLOGICAL SAMPLES

As discussed earlier, because of the rapid detoxification
of cyanide from blood samples, a sample for cyanide anal-
ysis should be collected quickly after exposure and analysis

should be performed as soon as possible. However, if analysis
of cyanide cannot be performed quickly and storage of biologi-
cal samples is necessary, the following should be considered:

1. Volatility and nucleophilicity of cyanide. HCN is volatile
and the cyanide ion is nucleophilic. Tightly sealed vials, low
temperatures, high pH (i.e., pH > 10.5), and the addition
of preserving agents are common procedures that have been
used to prevent loss of cyanide. Storing samples at low tem-
peratures is extremely important to reduce evaporative loss
and slow biochemical reactions. However, there are many
discrepancies in the literature when evaluating the stabil-
ity of cyanide in biological fluids under various conditions
(82, 133, 175, 237, 249). Generally, nucleophilic losses are
reduced by adding sequestering agents (e.g., hydroxocobal-
amin) or chemicals that produce sequestering agents (e.g.
sodium nitrite to produce methemoglobin) (130, 133, 250).
One method found to improve cyanide stability is the addi-
tion of silver ions to biological samples (133).

2. Cyanide concentration varies in biological components.
Cyanide in blood primarily resides in erythrocytes (red
blood cells) (48, 133, 139, 236, 251) by binding to methe-
moglobin, forming cyanomethemoglobin. Cyanide may also
be present in plasma, especially if cyanide concentrations ex-
ceed hemoglobin concentrations (133, 139). To ensure accu-
rate cyanide concentrations when analyzing blood, collection
containers that contain anti-coagulants (e.g., heparin) should
be used to prevent clotting, and analysis of whole blood
or both plasma and red blood cells should be performed.
Analysis of cyanide from tissues requires knowledge of the
behavior of cyanide in specific organs since the enzyme that
catalyzes conversion of cyanide to thiocyanate has highly
variable concentrations depending on the organ. Therefore,
in specific organs, there will be little to no cyanide because
of extremely fast metabolism to thiocyanate.

3. Potential for cyanide formation during storage. Artifactual
formation of cyanide may also occur in biological samples
depending on storage conditions (132, 235–237). It has been
suggested that oxyhemoglobin (234), thiocyanate oxidase
(235, 236), and white blood cells (132) may oxidize thio-
cyanate to cyanide and these reactions are dependent on the
temperature and pH of the sample. Microorganisms may also
be responsible for cyanide production and low temperature
storage will help to eliminate their growth (235).

These considerations are common to all the analytical meth-
ods for analysis of cyanide from biological samples and certainly
contribute to discrepancies in similar studies in the literature.
Additionally, production and transformation of cyanide must be
considered when interpreting results for post-mortem cyanide
analysis (140, 252–255).

Some of the same issues must also be considered for thio-
cyanate, as a number of problems with storage of thiocyanate
samples have been found (97). This may be due to the intercon-
version of thiocyanate and cyanide over time and the removal
and production of thiocyanate by biological processes other than
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TABLE 4
Concentrations of cyanide found for smokers vs. nonsmokers

Biological
matrix

Non-smoker
(µM)

Smoker
(µM)

Analytical
methoda Referenceb Notesc

Blood 0.518 ± 0.037 (7) 0.597 ± 0.062 (6) IC-FLD (112) Whole blood
2.1 (6) 6.6 (11) GC-ECD (136) Whole blood

0.13 ± 0.08 (10) 0.33 ± 0.12 (5) UV-Vis (133) Whole blood
0.24 ± 0.22 (10) 0.68 ± 0.20 (5) UV-Vis (133) Red blood cells
0.02 ± 0.02 (10) 0.03 ± 0.02 (5) UV-Vis (133) Plasma

1.2 (10) 1.8 (10) UV-Vis (259) Whole blood
0.098 ± 0.036 (8) 0.125 ± 0.035 (5) Fluorescence (132) Whole blood; study separated

by time post-smoking;
concentration reported here
is referred to as “basal”

0.14 ± 0.01 (3) 0.35 ± 0.09 (4) RP-HPLC-FLD (134) Red blood cells
0.466 ± 0.072 (10) 0.705± 0.112 (10) RP-HPLC-FLD (122) Red blood cells

Not detected (5) 0.058 ± 0.030 (5) Fluorescence (49) Whole blood
0.02 (1) 0.06 ± 0.03 (5) IC-ED (49) Whole blood; only one value

reported above detection
limit for non-smokers

0.59 ± 0.23 (10) 1.5 ± 0.6 (14) UV-Vis (237) Whole blood; standard
deviations reported here are
calculated from standard
errors

2.9 ± 2.4 (29) 6.8 ± 4.2 (27) GC-ECD and UV-Vis (260) Whole blood; the cyanide
concentrations reported
were not separated by
analytical method

0.17 ± 0.04 (20) 0.27 ± 0.07 (20) GC-NPD (55) Whole blood
0.335 ± 0.008 (31) 0.548 ± 0.123 (15) RP-HPLC-FLD (88) Whole blood; measured as

mol/g of hemoglobin and
estimated whole blood
concentration

Urine 0.084 ± 0.032 (8) 0.215 ± 0.084 (8) RP-HPLC-FLD (50)
0.80 (10) 1.2 (10) UV-Vis (259) Average concentration over a

twenty-four hour period
0.050 ± 0.022 (4) 0.28 ± 0.02 (5) Fluorescence (49) Non-smoker value reported

here is for the four cyanide
concentrations reported

0.054 ± 0.023 (5) 0.30 ± 0.02 (5) IC-ED (49)
Saliva 11.8 ± 7.2 (10) No Data GC-MS (54)

0.38 ± 0.26 (20) 0.66 ± 0.52 (20) GC-NPD (55)

aSee method notes in Table 3.
bExcluded Pettigrew and Fell (82) because concentrations of cyanide in smoker blood were below non-smoker blood and relative errors were

very large.
cThe term “plasma” refers to serum or plasma.

cyanide detoxification (28, 99). It has been suggested that ATCA
is not involved in other biological processes and has been found
to be stable during storage (21, 31, 91, 92, 100). While ATCA
may not have the storage issues of cyanide and thiocyanate, there
is little known about its toxicokinetics, which currently limits

its use as a biomarker for cyanide exposure. Cyanide-protein
adducts have only recently been discovered. Therefore, little is
known about the toxicokinetics and stability of these adducts,
and only one analytical technique has been developed to analyze
these adducts (34).
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TABLE 5
Concentrations of thiocyanate found for smokers vs. nonsmokers

Biological matrix Non-smoker (µM) Smoker (µM) Analytical methoda Reference Notesb

Blood 7.5 ± 3.3 (13) 26 ± 9 (18) UV-Vis (97) Whole blood
33 ± 13 (13) 116 ± 39 (18) UV-Vis (97) Plasma

25.2 ± 10.8 (7) No Data UV-Vis (170) Plasma
6.9 (10) 17.2 (10) UV-Vis (259) Whole blood; no standard

deviations were reported
33.8 (6) 122 (8) UV-Vis (86) Plasma; no standard deviations

were reported
55.3 ± 12.0 (20) 94.7 ± 36.2 (24) UV-Vis (261) Plasma; The averages and standard

deviations were combined for
light and heavy smokers

21.6 ± 6.2 (107) 145.5 ± 50.1 (108) UV-Vis (87) Plasma; values are for non-smoker
and an average of the two
“inhaling smoker” groups
reported

50.7 (100) 122.9 (94) UV-Vis (85) Plasma; averaged a number of
passive smoke exposure groups
for non-smoker value

42.5 ± 17.1 (20) No Data UV-Vis (162) Plasma
36.2 ± 7.4 (100) 62.6 ± 19.3 (86) UV-Vis (84) Plasma
33.5 ± 25.4 (20) 111.2 ± 92.1 (20) UV-Vis (55) Plasma

33 ± 26 (101) 158 ± 51 (92) GC-NPD (208) Plasma
87.5 ± 33.2 (3) 196.4 ± 44.9 (3) CE (230) Plasma

4.83 ± 0.47 (31) 8.94 ± 1.04 (15) RP-HPLC-UV (88) Plasma
33 ± 15 (181) 109 ± 47 (187) IC-UV (262) Plasma
62 ± 19 (24) 161 ± 43 (26) FIA (263) Plasma

45.8 ± 17.1 (9) 86.4 ± 32.5 (11) UV-Vis (82) Plasma
36 ± 28 (10) 65 ± 74 (20) UV-Vis (93) Plasma; standard deviation

reported here is calculated from
reported standard error of the
mean

10.6 ± 5.0 (7) 55.8 ± 22.3 (6) IC-UV (112) Whole blood
11.7 ± 5.5 (40) 83.1 ± 51.7 (13) IC-UV (224) Plasma; value reported for

non-smokers is average of
individual data reported

14.1 ± 4.6 (3) 52.1 ± 37.1 (4) RP-HPLC-FLD (134) Red blood cells
19.8 ± 7.9 (3) 57.3 ± 36.2 (4) RP-HPLC-FLD (134) Plasma
8.1 ± 3.3 (10) 27 ± 9 (14) UV-Vis (237) Whole blood; standard deviations

reported here are calculated
from standard errors

Urine 24.1 (6) 141 (8) UV-Vis (86) No standard deviations were
reported

28.7 ± 14.7 (20) No data (20) UV-Vis (162) Reported in mg/24 hr; Value
reported here calculated from
normal human urine output (ca.
1.5 L/24 hr)

262 ± 105 (3) No data UV-Vis (170)
75.1 (100) 154.9 (94) UV-Vis (85) Averaged a number of passive

smoke exposure groups for
non-smoker value

(Continued on next page)
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TABLE 5
Concentrations of thiocyanate found for smokers vs. nonsmokers (Continued)

Biological matrix Non-smoker (µM) Smoker (µM) Analytical methoda Reference Notesb

240 ± 35 (4) 660 ± 162 (4) UV-Vis (243)
233 ± 36 (4) 650 ± 157 (4) ISE (243)
250 ± 50 (1) 760 ± 80 (1) UV-Vis (186) Averaged analysis of 5 urine

samples from one smoker and
one non-smoker

230 ± 40 (1) 770 ± 50 (1) ISE (186) Averaged analysis of 5 urine
samples from one smoker and
one non-smoker

41–48 170–4,500 ISE (264) 1 non-smoker group and 4 smoker
groups; no data given on number
of participants in each group;
range and not average reported

14 (211) 16 (305) UV-Vis (84) Numerical data for urine not
reported; estimated
concentration from Figure 5

14 (10) 71 (10) UV-Vis (259) Average concentration over a
24-hr period

24 ± 25 (29) 65.3 ± 40 (15) GC-MS (201) Only reported concentration
ranges in paper; Estimated
median values and standard
deviation from Figure 3 and
ranges reported for value
reported here

No data 430 (1) IC-ED (190) Only 1 smoker sample used for
analysis

260 ± 60 (1) 730 ± 60 (1) ISE (187) The standard deviation reported is
for replicate measurements on
the same sample

84.0 ± 39.9 (3) 216.5 ± 49.2 (3) CE (230)
32 (1) 240 ± 71 (2) UV-Vis (188) Only 1 non-smoker tested; the

smoker value reported here
excludes a diabetic smoker

30 (1) 240 ± 56 (2) ISE (188) Only 1 non-smoker tested; the
smoker value reported here
excludes a diabetic smoker

60.4 ± 17.4 (6) 171.0 ± 42.1 (6) HPLC-UV (52)
112 (1) 338 ± 165 (3) IC-UV (213) Average of reported “medium”

and “heavy” smokers; only 1
non-smoker tested

360 ± 30 (1) 770 ± 30 (1) ISE (75) Appears to be 1 smoker and 1
non-smoker with 5 replicates
each.

340 ± 30 (1) 730 ± 40 (1) UV-Vis (75) Appears to be 1 smoker and 1
non-smoker with 5 replicates
each.

125 ± 100 (10) 1433 ± 300 (30) UV-Vis (64) Only concentration ranges given;
combined 3 test groups for the
smokers and averaged

(Continued on next page)
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TABLE 5
Concentrations of thiocyanate found for smokers vs. nonsmokers (Continued)

Biological matrix Non-smoker (µM) Smoker (µM) Analytical methoda Reference Notesb

138 ± 200 (10) 1473 ± 283 (60) ISE (64) Only concentration ranges given;
combined 6 test groups (both
batch and FIA) for the smokers
and averaged

42.9 ± 42 (7) 219 ± 172 (9) IC-UV (222) Values reported here are for male
and female non-smokers
combined; standard deviations
estimated from relative
deviations in the reference

Saliva 350 (6) 1304 (8) UV-Vis (86) No standard deviations were
reported

15.5 ± 6.9 (211) 17.2 ± 5.2 (305) UV-Vis (84)
1550 (135) 2550 (12) UV-Vis (149) Reported data in terms of

concentration ranges for
smokers and non-smokers;
estimated median concentration
reported here

560 ± 50 (1) 1710 ± 70 (1) UV-Vis (186) Averaged analysis of 5 saliva
samples from 1 smoker and 1
non-smoker

580 ± 40 (1) 1690 ± 50 (1) ISE (186) Averaged analysis of 5 saliva
samples from 1 smoker and 1
non-smoker

620 ± 50 (1) 1820 ± 80 (1) ISE (187) The standard deviation reported is
for replicate measurements on
the same sample

1,330 (100) 2,450 (94) UV-Vis (85) Averaged a number of passive
smoke exposure groups for
non-smoker value

643 ± 213 (10) No Data GC-MS (54)
542 ± 406 (20) 1655 ± 841 (20) UV-Vis (55)
344 ± 86 (15) 926 ± 361 (10) IC-UV (222) Values reported here are for male

and female non-smokers
combined; standard deviations
estimated from relative
deviations

76 (1) 1090 ± 546 (3) UV-Vis (188)
77 (1) 1050 ± 516 (3) ISE (188)

1050 ± 350 (3) 2050 ± 450 (3) CE (230)
344 ± 89 (10) 1610 ± 622 (10) Electrochemistry (195) Also reported ranges for

non-smokers (100) and smokers
(100) of 200–500 µM and
700–3000 µM, respectively

612 ± 133 (6) 2830 ± 265 (8) UV-Vis (193) “Former smoker” not included in
the values reported here

632 ± 150 (6) 3000 ± 356 (8) FIA (193) “Former smoker” not included in
the values reported here

(Continued on next page)
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TABLE 5
Concentrations of thiocyanate found for smokers vs. nonsmokers (Continued)

Biological matrix Non-smoker (µM) Smoker (µM) Analytical methoda Reference Notesb

66–76 (5) 270–4,600 (5) ISE (264) 1 non-smoker group and 4 smoker
groups; no data given on number
of participants in each group;
range and not average reported

1040 ± 238 (5) 3620 ± 1720 (5) FIA (265)
670 ± 80 (No data) 830 ± 280 (No data) UV-Vis (71) No data given for number of

smokers and non-smokers, but
authors indicate that the
difference was significant

530 ± 30 (1) 1350 ± 40 (1) ISE (75) No data given for number of
smokers and non-smokers, but
appears to be 1

560 ± 30 (1) 1410 ± 40 (1) UV-Vis (75) No data given for number of
smokers and non-smokers, but
appears to be 1

442 ± 11 (1) 706 ± 13 (1) UV-Vis (74) No data given for number of
smokers and non-smokers, but
appears to be 1

1721 (No data) 3424 ± 1875 (45) IC (66) No data given for the number of
non-smokers, estimated
individual SCN concentrations
from a figure combining passive,
moderate, and heavy smokers

442 ± 200 (10) 1958 ± 230 (30) UV-Vis (64) Only concentration ranges given,
combined three test groups for
the smokers and averaged

488 ± 200 (10) 2425 ± 283 (60) ISE (64) Only concentration ranges given,
combined 6 test groups (both
batch and FIA) for the smokers
and averaged

393 ± 312 (6) 1600 ± 1150 (5) IC (67) Calculated average and standard
deviation from individual data
points

528.4 ± 30.5 (2) 3878 ± 675 (2) UV-Vis (81) 2 methods used, both optical
1400 (1) 9000 (1) IC-UV (216)

aSee method notes in Table 3.
bThe term “plasma” refers to serum or plasma.

ENDOGENOUS CONCENTRATIONS OF CYANIDE AND
ITS BREAKDOWN PRODUCTS

When analyzing for cyanide exposure, it is important to note
that all biological samples will contain endogenous levels of
cyanide (and its biological markers). Therefore, baseline levels
of the analyte (cyanide, thiocyanate, ATCA, or cyanide-protein
adducts) should be known prior to concluding the occurrence of
a cyanide exposure. Table 4 lists reported endogenous concen-
trations of cyanide in various biological samples from human
smokers and non-smokers. Tables 5 and 6 report similar infor-
mation for thiocyanate and ATCA, respectively (no information

is available for cyanide-protein adducts). The concentrations
listed give an idea of background concentrations of cyanide and
its breakdown products that may be encountered when determin-
ing cyanide exposure. Figures 5–7 illustrate the relationships of
cyanide (Figure 5), thiocyanate (Figure 6), and ATCA (Figure 7)
concentrations in various biological fluids of smokers and non-
smokers (developed from the information reported in Tables 4–
6). The figures also contain the intra-study concentration ratios
of smokers and non-smokers (e.g., the ratio of the mean cyanide
concentration in the urine of smokers to the mean cyanide con-
centration in the urine of non-smokers in a specific study).
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TABLE 6
Concentrations of ATCA found for smokers vs. nonsmokers

Biological
matrix

Non-smoker
(µM)

Smoker
(µM)

Analytical
methoda Reference Notesb

Blood 0.0808 ± 0.0308 (3) 0.122 ± 0.036 (3) GC-MS (61) Plasma; 27 plasma samples
each from 3 smokers and 3
non-smokers

Urine 0.582 ± 0.322 (21) 1.596 ± 1.623 (19) GC-MS (91)
Not detected (10) 0.680 ± 0.332 (4) HPLC-FLD (92) Average and standard

deviation calculated from
individual data reported;
data below detection limit
not included

aSee method notes in Table 3.
bThe term “plasma” refers to serum or plasma.

First, it is apparent that for cyanide and thiocyanate, the
endogenous concentrations for smokers and non-smokers are
inconsistent between studies. This may be due to variations in
method robustness, differences in the environment or diet of
the study populations used, or difficulties in delayed analysis of
cyanide biomarkers addressed above. Inconsistent endogenous
concentrations make it difficult to determine cyanide exposure
from biological fluids. As seen in Figure 5, blood cyanide con-
centrations are especially inconsistent, most likely because of
differences in storage conditions. For urine cyanide concentra-
tions, most of the smoker concentrations are higher than the
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FIG. 5. Compilation of reported cyanide concentrations from
biological fluids of human smokers and non-smokers. The ratio
illustrated is the intra-study ratio of smoker to non-smoker con-
centrations of the analyte of interest. The data used to create the
figure are reported in Table 4.

non-smoker concentrations, although there are not enough data
to establish the consistency of that relationship. Also, there are
not enough data to establish the consistency of cyanide concen-
trations from saliva. It is important to note that cyanide mainly
resides in the red blood cells, so it would be expected that
plasma cyanide concentrations reported would be relatively low.
Lundquist et al. (133) reported plasma cyanide concentrations
of 0.02 and 0.03 µM for smokers and nonsmokers, respec-
tively. These concentrations are two of the lowest in Figure 5,
but even if these values were removed, inconsistency in blood
cyanide concentrations would remain evident. For thiocyanate,
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FIG. 6. Compilation of reported thiocyanate concentrations
from biological fluids of human smokers and non-smokers. The
ratio illustrated is the intra-study ratio of smoker to non-smoker
concentrations of the analyte of interest. The data used to create
the figure are reported in Table 5.
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FIG. 7. Compilation of reported ATCA concentrations from bi-
ological fluids of human smokers and non-smokers. The ratio
illustrated is the intra-study ratio of smoker to non-smoker con-
centrations of the analyte of interest. The data used to create the
figure are reported in Table 6.

there are a large number of studies that report concentrations for
each of the biological matrices (Figure 6). From the figure, it
appears that plasma offers the best differentiation between thio-
cyanate concentrations found from smokers and non-smokers.
While there is more overlap for both urine and saliva thio-
cyanate concentrations, the majority of smoker concentrations
are above non-smoker concentrations. For ATCA, there is not
enough data to derive any conclusions about the consistency of
the concentrations in these fluids. Although, for urine, both of
the mean concentrations found for ATCA in smokers are higher
than those found for non-smokers. It should be noted that the
error in urinary analysis of ATCA by GCMS was very large
(Table 6) and that a number of individual concentrations for
smokers and non-smokers overlapped (91). Therefore, urinary
endogenous concentrations of ATCA between studies would
be expected to be inconsistent as well. Plasma ATCA analysis
of individual smokers and non-smokers was found to be more
consistent than urinary analysis (61).

Concentration ratios of smoker to non-smoker are also plot-
ted for cyanide, thiocyanate, and ATCA. While the absolute
blood concentrations of cyanide are inconsistent, the intra-study
concentration ratios are relatively consistent, ranging from 1.2–
3.1. For urine and saliva, these ratios range from 1.5–5.6 for
urine and 1.7 for saliva. Overall, these ratios range from 1.2–
5.6, and give an indication that the relative ratios of cyanide
found in smokers and non-smokers are quite consistent, even
if the absolute concentrations are inconsistent. This provides
further evidence that the variability in absolute concentrations
for cyanide is an artifact of storage conditions (i.e., time and

temperature) and differences in the accuracy of cyanide anal-
ysis methods. While the analysis of cyanide concentrations by
different methods may contribute to the variability of endoge-
nous concentrations of cyanide reported, Sano et al. (49) found
that cyanide concentrations in whole blood for smokers were
consistent when comparing IC and fluorescence methods. This
example indicates that the major factors contributing to incon-
sistent cyanide concentrations are associated with storage con-
ditions. For thiocyanate, the intra-study ratios are inconsistent,
with ranges of 1.7–7.1, 1.1–44, and 1.1–30 for blood, urine, and
saliva, respectively. Each of these ranges is larger than those
found for cyanide. This may indicate that thiocyanate is pro-
duced or depleted by processes other than cyanide exposure. For
ATCA, there is limited data, but it appears that the intra-study
ratios (1.5 for plasma and 2.7 for urine) are in good agreement
with the ratios found for cyanide. This may indicate that ATCA
is produced mainly from cyanide exposure and little is used or
produced in other biological processes.

CONCLUSIONS
The analytical determination of biological markers of

cyanide exposure is not an easy task due to chemical properties,
biological activities, and limited published research (for certain
markers of cyanide exposure). Numerous methods have been
developed and each has its own advantages and disadvantages.
However, they have all provided insight into the verification of
cyanide exposure from analysis of biological samples. Table 3
provides a comparison of analytical techniques for analysis of
cyanide or its metabolites based on sensitivity, specificity, sam-
ple size, capacity, expertise necessary to perform the method,
and cost. Some other key pieces of information should also be
considered prior to choosing a method to perform:

1. Was preservation of cyanide and its metabolites during stor-
age addressed?

2. Were typical interferences for the biological matrix of interest
removed?

3. Were analysis procedures that could result in the loss of
cyanide or its metabolites used (i.e., heating or acidification)?

For the analysis of cyanide, the largest inconsistency in the
literature is analysis with different preservation techniques. For
cyanide analysis, biological samples should be collected and
analyzed as soon as possible and regardless of the analytical
method, a preserving technique needs to be considered so that
accurate concentrations of cyanide can be found (130, 133, 150,
181, 254–258). It should also be considered that all biologi-
cal samples will contain endogenous levels of cyanide (and its
biological markers). Therefore, baseline levels of the analyte
measured should be known prior to concluding occurrence of
a cyanide exposure. Problems with direct analysis of cyanide,
including short half-lives, artifactual formation of cyanide, and
interconversion of cyanide and thiocyanate, contribute to dif-
ficulties in the analysis of cyanide for all analytical methods
designed to determine cyanide in biological samples.
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While cyanide is most often analyzed to determine cyanide
exposure, analytical techniques that analyze for breakdown
products of cyanide as well as those that analyze for cyanide
directly should be considered. Although cyanide metabolites
may offer longer half-lives, they also have a number of draw-
backs. For thiocyanate, the main drawback is large and variable
background concentrations in biological samples. Other disad-
vantages include the conversion of cyanide and thiocyanate and
the use of thiocyanate by other biological processes not directly
related to cyanide metabolism. For ATCA and cyanide-protein
adducts, the main drawback is the limited amount of research
available on toxicokinetics and relationships of these metabo-
lites to cyanide exposure. Care should be taken when choosing
an analytical method to consider not just the parameters of the
analytical method but also the toxicokinetics of cyanide and its
metabolites.
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Lundquist, L. Nilsson, T. Tylleskär, and H. Rosling, Cyanide
detoxification in rats exposed to acetonitrile and fed a low protein
diet. Toxicological Sciences 32 (1996):66–71.

45. A. M. Calafat and S. B. Stanfill, Rapid quantitation of cyanide
in whole blood by automated headspace gas chromatography.
Journal of Chromatography B 772 (2002):131–137.

46. R. Hartung, Cyanides and nitriles, in Patty’s Industrial Hygiene
and Toxicology, Vol. 2C eds. G. D. Clayton and E. Clayton (John
Wiley & Sons, New York, NY, 1982), 4845–4900.

47. F. Moriya and Y. Hashimoto, Potential for error when assessing
blood cyanide concentrations in fire victims. Journal of Forensic
Sciences 46 (2001):1421–1425.

48. F. L. Rodkey and R. F. Robertson, Analytical precautions in mea-
surement of blood cyanide. Clinical Chemistry 24 (1978):2184–
2185.

49. A. Sano, M. Takezawa, and S. Takitani, Spectrofluorometric de-
termination of cyanide in blood and urine with naphthalene-2,3-
dialdehyde and taurine. Analytica Chimica Acta 225 (1989):351–
358.

50. A. Sano, M. Takezawa, and S. Takitani, High performance liq-
uid chromatography determination of cyanide in urine by pre-
column fluorescence derivatization. Biomedical Chromatography
3 (1989):209–212.

51. O. Suzuki, H. Hattori, M. Oya, and Y. Katsumata, Direct fluo-
rometric determination of cyanide in human materials. Forensic
Science International 19 (1982):189–195.

52. T. Imanari, S. Tanabe, and T. Toida, Simultaneous determi-
nation of cyanide and thiocyanate by high-performance liq-
uid chromatography. Chemical & Pharmaceutical Bulletin 30
(1982):3800–3802.

53. K. Funazo, M. Tanaka, and T. Shono, Determination of cyanide or
thiocyanate at trace levels by derivatization and gas chromatog-
raphy with flame thermionic detection. Analytical Chemistry 53
(1981):1377–1380.

54. B. D. Paul and M. L. Smith, Cyanide and thiocyanate in hu-
man saliva by gas chromatography-mass spectrometry. Journal
of Analytical Toxicology 30 (2006):511–515.

55. K. Tsuge, M. Kataoka, and Y. Seto, Cyanide and thiocyanate
levels in blood and saliva of healthy adult volunteers. Journal of
Health Science 46 (2000):343–350.

56. K. Stamyr, P. Nord, and G. Johanson, Washout kinetics of inhaled
hydrogen cyanide in breath. Toxicology Letters 179 (2008):59–
62.

57. J. Raju and V. K. Gupta, Spectrophotometric determination of
hydrogen cyanide in air and its application in biological samples.
Asian Environment 11 (1989):66–72.

58. P. Lundquist, H. Rosling, and B. Sörbo, The origin of hydrogen
cyanide in breath. Archives of Toxicology 61 (1988):270–274.

59. P. Kaur, S. Upadhyay, and V. K. Gupta, Spectrophotometric deter-
mination of hydrogen cyanide in air and biological fluids. Analyst
112 (1987):1681–1683.



CYANIDE ANALYSIS REVIEW 141

60. G. E. Boxer and J. C. Rickards, Determination of traces of hy-
drogen cyanide in respiratory air. Archives of Biochemistry and
Biophysics 39 (1952):287–291.

61. B. A. Logue, W. K. Maserek, G. A. Rockwood, M. W.
Keebaugh, and S. I. Baskin, The analysis of 2-amino-2-
thiazoline-4-carboxylic acid in the plasma of smokers and non-
smokers. Toxicology Mechanisms and Methods 19 (2009):202–
208.

62. S. Ershad, L. A. Sagathforoush, and G. Karim-Nezhad, A se-
lective optical chemosensor based on a thia-containing Schiff-
base iron(III) complex for thiocyanate ion. Analytical Sciences
25 (2009):665–668.

63. B. Patel, A. Kumar, and S. K. Menon, Thiocyanate: selective
membrane electrode based on macrotricyclic binuclear Cu(II)-
Schiff base complex. Journal of Inclusion Phenomena and
Macrocyclic Chemistry 64 (2009):239–247.

64. S. S. M. Hassan, I. H. A. Badr, A. H. Kamel, and M. S. Mohamed,
A novel poly(vinyl chloride) matrix membrane sensor for batch
and flow-injection determinations of thiocyanate, cyanide and
some metal ions. Analytical Sciences 25 (2009):911–917.

65. Y. Y. Dong, C. Y. Li, X. B. Zhang, R. Q. Yu, and G. L.
Shen, A novel potentiometric sensor for thiocyanate based on
an amide-linked manganese diporphyrin xanthene. Electroanal-
ysis 20 (2008):1769–1774.

66. I. Demkowska, Z. Polkowska, and J. Namiesnik, Application of
ion chromatography for the determination of inorganic ions, es-
pecially thiocyanates in human saliva samples as biomarkers of
environmental tobacco smoke exposure. Journal of Chromatog-
raphy B-Analytical Technologies in the Biomedical and Life Sci-
ences 875 (2008):419–426.

67. M. Mori, T. Iwata, T. Satori, S. I. Ohira, H. Itabashi, and K.
Tanaka, Ion-exclusion/cation-exchange chromatographic deter-
mination of common inorganic ions in human saliva by using an
eluent containing zwitterionic surfactant. Journal of Chromatog-
raphy A 1213 (2008):125–129.

68. M. Mazloum-Ardakani, M. A. S. Mohseni, and M. Salavati-
Niasari, Novel thiocyanate-selective electrode based on binu-
clear molybdenum complex of bis-N,O-bidentate Schiff base.
Canadian Journal of Analytical Sciences and Spectroscopy 53
(2008):179–188.

69. A. Shokrollahi, M. Ghaedi, H. Ghaedi, and A. H. Kianfar,
Thiocyanate-selective membrane electrode based on cobalt(III)
Schiff base as a charge carrier. International Journal of Environ-
mental Analytical Chemistry 88 (2008):841–856.

70. Z. Q. Xu, T. Doi, A. R. Timerbaev, and T. Hirokawa, Sensitive
determination of anions in saliva using capillary electrophore-
sis after transient isotachophoretic preconcentration. Talanta 77
(2008):278–281.

71. L. Minarowski, D. Sands, A. Minarowska, A. Karwowska, A.
Sulewska, M. Gacko, and E. Chyczewska, Thiocyanate concen-
tration in saliva of cystic fibrosis patients. Folia Histochemica Et
Cytobiologica 46 (2008):245–246.

72. E. Saussereau, J. P. Goulle, and C. Lacroix, Determination of
thiocyanate in plasma by ion chromatography and ultravio-
let detection. Journal of Analytical Toxicology 31 (2007):383–
387.

73. M. M. Ardakani, M. A. Karimi, R. Mazidi, H. Naeimi, and
K. Rabiei, A selective membrane electrode for thiocyanate ion
based on N,N′-1,1-isobutanebis-(salicylaldimidiminato) uranyl

(II). Canadian Journal of Analytical Sciences and Spectroscopy
52 (2007):233–242.

74. S. Rastegarzadeh and Z. Moradpour, A novel optical sensor for
determination of thiocyanate. Analytical Letters 40 (2007):2993–
3001.

75. P. H. Yang, W. Z. Wei, and C. Y. Tao, Determination of trace thio-
cyanate with nano-silver coated multi-walled carbon nanotubes
modified glassy carbon electrode. Analytica Chimica Acta 585
(2007):331–336.

76. K. V. Yablotskiy, O. V. Radhul, I. A. Veselova, and T. N.
Shekhovtsova, Determination of fluoride, cyanide, and thio-
cyanate using horseradish peroxidase immobilized on modified
silica gel. Analytical Letters 40 (2007):1521–1539.

77. N. Goi, K. Takagi, Y. Hirai, H. Harada, A. Kari, Y. Terashima,
N. Kinae, M. Hiramatsu, K. Nakamura, and T. Ono, Effect of
psychologic stress on peroxidase and thiocyanate levels in hu-
man saliva detected by ultraweak chemiluminescence. Journal of
Health Science 53 (2007):161–169.

78. A. S. Bashammakh, S. O. Bahaffi, A. A. Al-Sibaai, H. O. Al-Wael,
and M. S. El-Shahawi, Extractive liquid-liquid spectrophotomet-
ric procedure for the determination of thiocyanate ions employ-
ing the ion pair reagent amiloride monohydrochloride. Analytica
Chimica Acta 592 (2007):16–23.

79. F. C. Wang, Y. Q. Chai, and R. Yuan, Thiocyanate-selective elec-
trode based on N-salicylidene-benzylamineato copper(II) com-
plex. Russian Journal of Electrochemistry 44 (2008):272–277.

80. M. M. Ardakani, M. Jamshidpour, H. Naeimi, and L. Moradi,
Thiocyanate ion-selective PVC membrane electrode based on
N,N’-ethylene-bis(4-methylsalicylidineiminato)nickel(II). Ana-
lytical Sciences 22 (2006):1221–1226.

81. M. S. Garcia, J. A. Ortuno, C. Sanchez-Pedreno, M. I. Albero,
and M. J. Fernandez, Flow-through bulk optode for spectropho-
tometric determination of thiocyanate and its application to water
and saliva analysis. Sensors 6 (2006):1224–1233.

82. A. R. Pettigrew and G. S. Fell, Microdiffusion method for esti-
mation of cyanide in whole blood and its application to the study
of conversion of cyanide to thiocyanate. Clinical Chemistry 19
(1973):466–471.

83. K. Diem and C. Lentner, Geigy Scientific Tables, 7th ed. (Geigy
Pharmacueticals, Ardsley, NY, 1975).

84. S. Yamanaka, S. Takaku, Y. Takaesu, and M. Nishimura, Valid-
ity of salivary thiocyanate as an indicator of cyanide exposure
from smoking. Bulletin of Tokyo Dental College 32 (1991):157–
163.

85. M. J. Jarvis, Application of biochemical intake markers to passive
smoking measurement and risk estimation. Mutation Research
222 (1989):101–110.

86. T. F. Maliszewski and B. D.E., True and apparent thiocyanate
in body fluids of smokers and nonsmokers. Journal of applied
Physiology 8 (1955):289–291.

87. J. Pre and R. Vassy, Plasma thiocyanate and cigarette-smoking
status. Medical Science Research 20 (1992):2.

88. Y. Hasuike, T. Nakanishi, R. Moriguchi, Y. Otaki, M. Nanami, Y.
Hama, M. Naka, K. Miyagawa, M. Izumi, and Y. Takamitsu, Ac-
cumulation of cyanide and thiocyanate in haemodialysis patients.
Nephrology Dialysis Transplantation 19 (2004):1474–1479.

89. L. S. Bradham, N. Catsimpoolas, and J. L. Wood, Determination
of 2-iminothiazolidine-4-carboxylic acid. Analytical Biochem-
istry 11 (1965):230–232, discussion 232–237.



142 B. A. LOGUE ET AL.

90. S. I. Baskin, I. Petrikovics, G. E. Platoff, G. A. Rockwood,
and B. A. Logue, Spectrophotometric analysis of the cyanide
metabolite 2-aminothiazoline-4-carboxylic acid (ATCA). Toxi-
cology Mechanisms and Methods 16 (2006):339–345.

91. B. A. Logue, N. P. Kirschten, I. Petrikovics, M. A. Moser,
G. A. Rockwood, and S. I. Baskin, Determination of the cyanide
metabolite 2-aminothiazoline-4-carboxylic acid in urine and
plasma by gas chromatography-mass spectrometry. Journal of
Chromatography B 819 (2005):237–244.
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153. P. Lundquist, B. Kågedal, and L. Nilsson, An improved method
for determination of thiocyanate in plasma and urine. Euro-
pean Journal of Clinical Chemistry and Clinical Biochemistry
33 (1995):343–349.



144 B. A. LOGUE ET AL.

154. H. Z. Li, G. Bai, R. M. Sun, and L. K. Du, Determination of
thiocyanate metabolite of sodium nitroprusside in serum by spec-
trophotometry. Yao Xue Xue Bao 28 (1993):854–858.

155. F. Olea and P. Parras, Determination of serum levels of dietary
thiocyanate. Journal of Analytical Toxicology 16 (1992):258–
260.

156. W. A. Dunn and T. J. Siek, A rapid, sensitive, and specific screen-
ing technique for the determination of cyanide. Journal of Ana-
lytical Toxicology 14 (1990):256.

157. M. Falkensson, P. Lundquist, H. Rosling, and B. Sorbo, A sim-
ple method for determination of plasma thiocyanate. Annals of
Clinical Biochemistry 25 (1988):422–423.

158. M. Holzbecher and H. A. Ellenberger, An evaluation and mod-
ification of a microdiffusion method for the emergency deter-
mination of blood cyanide. Journal of Analytical Toxicology 9
(1985):251–253.

159. C. J. Vesey and P. V. Cole, Blood cyanide and thiocyanate con-
centrations produced by long-term therapy with sodium nitro-
prusside. British Journal of Anaesthesia 57 (1985):148–155.

160. S. Nagashima, Simultaneous reaction rate spectrophotometric de-
termination of cyanide and thiocyanate by use of the pyridine-
barbituric acid method. Analytical Chemistry 56 (1984):1944–
1947.

161. N. Grgurinovich, A colourimetric procedure for the determina-
tion of thiocyanate in plasma. Journal of Analytical Toxicology 6
(1982):53–55.

162. P. Lundquist, J. Maartensson, B. Sörbo, and S. Öehman, Method
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