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ABSTRACT 

A DYNAMIC FAULT TOLERANCE MODEL FOR MICROSERVICES 

ARCHITECTURE 

HAJAR HAMEED ADDEEN 

2019 

Microservices architecture is popular for its distributive system styles due to the 

independent character of each of the services in the architecture. Microservices are built 

to be single and each service has its running process and interconnecting with a 

lightweight mechanism that called application programming interface (API). The 

interaction through microservices needs to communicate internally.  

Microservices are a service that is likely to become unreachable to its consumers 

because, in any distributed setup, communication will fail on occasions due to the 

number of messages passing between services. Failures can occur when the networks are 

unreliable, and thus the connections can be latent which may lead to failure or slow 

response. This might be a problem for synchronous remote calls actively waiting for a 

response. If they do not use a proper timeout mechanism, they may end up waiting for an 

extended amount of time. Applications usually set a timeout for all remote calls to avoid 

hanging of the whole application due to network failure or component failure. However, 

this timeout needs to be set carefully to make the system or microservice application to 

work as required. This would prevent further problems because if a remote call is waiting 

too long for a reply, it can slow down the system in its entirety, and if a connection 

timeout is extremely fast, it may ignore a response that is sent after timeout.  
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This thesis proposes a dynamic fault tolerance (DFTM) Model to improve the 

stability and resilience of the microservices architecture. The Model is designed using a 

two-states Circuit Breaker called Switch Circuit Breaker with Markov-Chain. In addition, 

a modified Circuit Breaker (three states – open, closed, and half-open) to Switch Circuit 

Breaker (two states – open and closed) is presented here. The Circuit Breaker uses 

timeout to detect fault but timeouts usage hinges on assumptions about the real-time 

behavior of the system and awaiting process can be deduced from the occurrence of a 

timeout that a failure has occurred. Therefore, DFTM model adopted Markov Chain 

based model to detect fault without a timeout. Then, it sends the fault directly to Switch 

Circuit Breaker that uses a 2-states to cover the faults. An important finding is that the 

DFTM model presents a solution to the problem of transient failures or faults in the inter-

service communication of microservices architecture. Also, it improves the performance 

and reliability of microservices architecture. 
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Chapter 1 Introduction 

1.1 Introduction 

Microservices architecture is popular for its distributive system styles. It describes 

a way of developing applications as suites of small services that are independently 

implemented and deployed. Every service has its own running process and 

interconnecting with lightweight mechanism that is called Application Programming 

Interface (API) [1]. These services intend to perform a specific task around business 

capabilities fully independently because each service has its own database and operations.  

 Microservices allow developers to use heterogenous technologies in a single 

system, which increase their ability to develop the service with advancement tools. In 

addition, it enhances the quality of the application. For example, if there is a problem that 

occurs in a system, the developer will fix promptly due to independent characteristics. In 

addition, it allows reusing the service and adds any required features at low cost [2], [3]. 

However, microservices have some challenges due to the distributive nature that affects 

the efficiency of the architecture including availability, responsiveness, reliability, and 

inter-service communication [4].  

“High availability is one of the major issues of microservice-based application 

design. It is difficult to build an application consisting of hardware and software that 

never fail, or a more feasible strategy is to enable it fault tolerant” [7]. Microservice 

system requires reliability with high availability and ensures that the whole system is not 

fully impacted when there are faults in an individual service. The scheme of 

microservices must be fault-tolerant [8]. However, it is unavoidable in some instances 
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that, a service in a distributed system will fail, and it will not be able to respond in an 

appropriate manner leading to shutdown of the service. There are many reasons that lead 

the system to failure such as heavy loads and bugs inside the code can happen [7].  

As such failures are inevitable [9], they can be mitigated by developing a recovery 

system in case of an error or fault or failure [8],[10]. Due to this fact, fault tolerance 

emerged as one of the sub-areas of microservices architecture to ensure high stability 

[11]. Fault tolerance is a way for microservices to handle the unavailability of a service 

by using different stability patterns. 

There are many stability patterns which have been used to achieve robustness and 

resilience including Circuit Breaker Pattern, Timeout Pattern, and Retry Pattern [9], [12]. 

However, each of these patterns is not singly efficient enough except when it is combined 

with other patterns. 

1.2 Objectives 

This thesis proposes a dynamic fault tolerance (DFTM) Model to improve the 

stability and resilience of the microservices architecture. It provides a solution to the 

problem of transient failures or faults in the inter-service communication of 

microservices architecture. 

The objectives of this thesis are: 

1. To propose a dynamic fault tolerance model (DFTM) that detects, isolates, 

and recovers communication failures in the inter-service communication 

by modifying original Circuit Breaker with Markov Chain model. 
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2. To increase the reliability and performance of microservices architecture 

and compare the results of DFTM model with original Circuit Breaker. 

1.3 Thesis Organization 

This thesis proposes a novel dynamic fault tolerance model to detect failures in 

microservices architecture called DFTM Model. Chapter 1 contains the introduction of 

microservices architecture and objectives. Chapter 2 discusses the general overview of 

Microservices architecture, fault tolerance, stability patterns, and Markov-Chain Model. 

In addition, the chapter deliberates the basic literature review and related works on fault 

tolerance for microservice architecture. Chapter 3 illustrates the major components of 

DFTM Model and its mechanism to detect or predict faults. Moreover, it describes the 

modifications made on original Circuit Breaker in order to convert it to Switch Circuit 

Breaker. Chapter 4 discusses how to apply the DFTM methodology to Pet Clinic as a 

case study. Chapter 5 introduces the results of DFTM model methodology and provides a 

comparison of performance and reliability between the case study and the original Circuit 

Breaker Pattern. Chapter 6 provides the conclusion and future work. 
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Chapter 2 Background 

2.1 Microservices 

Microservices consist of small, isolated processes that communicate with each 

other over network. For example, an E-commerce application can be divided to single 

modules that  are Order service, Inventory service, Shipping Service, and Online Store 

Service as shown in Figure 1 below [13] .The development team has a full freedom to 

build the new module in different language programming without sharing any code with 

other distinct services. Microservices are very easy to scale dynamically in the modern 

cloud-based architecture and container such as Docker. This feature helps to increase the 

performance of the application and make the services distribute their function in multiple 

domains. Also, it provides solution to manage the large complex application easily by 

allowing the developers to deploy, test, maintain separately. 

 

Figure 1: Microservices Architecture [13]  
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The major characteristics of microservices include the following [3]: 

• Enhance fault isolation–The system continues working and is not affected in 

case a failure occurs in a single microservice. 

• Simply Understanding – The developers can understand the basic 

functionality and their attributes faster because they act with the small 

services. 

• Diversity languages – It allows to write code in different programing 

languages with different teams of programmer. 

• Modularity – Microservices architecture is made up of isolated modules and 

each of them gives the overall system performance by contributing their bits. 

• Independency – In terms of operations, each of the services in microservice 

architecture is self-governing and the single form of interaction between the 

services is through their interfaces (API). 

• Flexibility – Microservices are flexible by allowing the dynamic business 

environment and readily permit all adjustments or modifications important for 

the business to remain competitive. 

• Deployed service – It enables developers to deploy services without needing 

to understand the whole code of application. In addition, it is easily deployed 

with open sources tools. 

• Efficiency – It works very efficiently with multiple servers such as cloud. 

• Evolution – It evolves by adding new features and ensuring maintainability. 
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2.2 Issues of Microservices 

Microservices architecture has several challenges that need to be addressed as 

explained below: 

• Inter-Service Communication: Microservices are built to be single 

independently. They communicate with each other to make a complete 

system. There are protocols that are commonly used to achieve the connection 

between all services inside the application. The protocols include HTTP 

request by API channel that has one entry single point and Asynchronous 

messaging such as AMQP. The implementation of the actual services is less 

irksome than the difficulty of communication. As discussed earlier, using API 

that contains smart endpoints and dumb pipes will encourage to have inter-

service communication logic as part of the microservices. Also, each service 

has its own database and that leads to multiple databases and transaction data. 

All these databases need more efforts to monitor particularly in growing 

applications [4]. The goal for each microservice in the infrastructure is to be 

available to the client, even if the other services might be unhealthy or 

unavailable. However, susceptibilities are high due to the high dispersal and 

network complexity. This also poses additional difficulty in debugging, 

auditing, and forensic [3], [16].  

• Process Availability and Responsiveness: Distributed system has many issues, 

one of which is handling isolated process availability and responsiveness. 

Service availability means the service was connected and able to send a 
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request while service responsiveness is the time taken for the service to 

respond to the request [4]. Service availability and responsiveness are closely 

related to service communication.  

• Reliability: It refers to a system that can perform the functions well without 

halting, according to its requirements, and it is fault tolerant. Reliability is 

particularly challenging for distributed microservices, threatened by 

integration and message passing mechanisms [5]. 

2.3 Fault tolerance 

Microservice-based system design includes many sub-areas that are partially 

related to Integration, Fault Tolerance, Service Discovery, Versioning, and Scalability 

and Security [11]. Integration involves making the system seem like a single system to 

the end users by ensuring proper communication between the User Interface (UI), Data 

Management and intercommunication of the microservices via Application Programming 

Interface (API). Service Discovery locates currently running instances. Scalability entails 

load balancing and caching. Fault tolerance ensures no failure or unavailability of 

microservices while communicating with each other to fulfill their activities. However, 

microservices are loosely coupled and communicate over the network. In some cases, 

when one of the services becomes unavailable, it affects the whole system and causes 

cascading failures [17]. For example, calling of service takes a long time or the service is 

not up as shown in Figure 2: 
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Figure 2: Cascading failures in Microservices Architecture [17] 

 

Microservices are susceptible to faults/failures due to the propagation of the 

services and their inter-services depending on the network for communications. A 

microservice application is an assemblage of fine-grained services, thus, a partial failure 

or fault in one or more of those services should not bring down the entire application. In 

order to protect the full service from failure, there is a need to apply stability patterns or 

resiliency-related abilities, such as circuit breakers, disaster recovery, load-balancing, 

fail-over, and dynamic scaling based on traffic patterns [9]. 

           Failures or faults can occur because the networks are unreliable, and the 

connections can be latent, which may result in failure or slow response. This might be a 

problem for synchronous remote calls actively waiting for a response. Therefore, it was 

concluded that fault tolerance mechanisms are required to prevent prompt faults of a 

service or of the network from halting the system. If there is no stability design 

mechanism, the microservices might end up keeping user or other microservices waiting 

for a long time. 
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Handling errors and restarting service are one of the hardest problems to solve in 

microservices architectures. It is important to build microservices with a high availability 

and resiliency to avoid unexpected failures. Fault tolerance is a way for microservices to 

handle the unavailability of a service by using different policies such as Circuit Breaker, 

fallback, and timeout [2], [4]. 

2.4 Stability Patterns 

A system is said to be stable when it keeps handling transactions, even when there 

are short-lived itches or failures of constituent components upsetting normal processing 

[18]. 

There are total of eight healthy stability design patterns to decrease, remove, or 

alleviate the effects of failures in the system such as Timeout, Circuit Breaker, and Retry 

Pattern [4]. 

2.4.1 Timeout 

Timeout is a particularly critical method in distributed data structures. Timeout is 

a simple pattern that disallows a continual wait for a response from a service. It is used to 

determine service availability and responsiveness while preventing slow responses as 

shown in figure 3. It works with the Circuit Breaker and retry mechanism to determine 

the entire time of service to perform the task. Each service should implement own 

operation in limited time. For example, the service will respond in 1 second. If the service 

exceeds the determined time, it will call fallback mechanism to handle request. The 

fallback mechanism works as an alternative way for covering the non – responding 

service such as cache service. 
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Timeout is very important to control the time of service response, otherwise the 

consumer will wait for a long period of time to implement his or her service. Timeout can 

prevent hanging operations and keep the system responsive [4]. 

However, using static, fine-tuned timeout in microservices communication are an 

anti-pattern as the architecture is a highly dynamic environment where it is almost 

impossible to come up with the right timing limitations that work well in every case. 

 

Figure 3: Timeout for Availability and Responsiveness [4] 

2.4.2 Circuit Breaker 

This pattern works just like a circuit breaker in a residential house. Electric 

current flows through the electronic systems once the circuit breaker is flipped on (closed 

circuit) and stops the flow immediately it is off (opened circuit). Also, the software 

circuit breaker pattern allows communication when it is closed and hinders it when it is 

opened [4].  

Remote calls of the services are continuously monitored by the circuit breaker.  

While the ongoing service is available, the circuit breaker will be closed. Consequently, 

the client’s requests are served. It is possible that, if the service is not available, the 

circuit breaker opens to isolate the faults until it is available. 
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Circuit breakers protect against integration points, cascading failures, unbalanced 

capacities, and slow responses. This pattern along with timeouts averts imminent 

cascading failures. It also aids capacity maintenance when the system is under stress 

because of partial failures. In case of weakness due to faults, Circuit Breaker Pattern 

detects faults and fixes them by using fail fast directly. Also, the client will not know 

about the problem because the server will prevent calling function until the problem is 

fixed. In addition, the cost of failure can be dropped to the lowest level because the 

process of detecting errors was done at an early stage. 

As illustrated in figure 4, Circuit Breaker Pattern has three (3) states, that are 

closed state, open state and half-open. In the “closed” state, the circuit breaker performs 

processes as normal. If the call does not fail, the circuit remains closed. However, if it 

fails and the number of failures exceeds a threshold, the circuit breaker trips will “open” 

the circuit. After counting a specific amount of time, the circuit breaker goes into the 

“half-open” state to check the possibility of the success of the service. Sometimes, the 

failure does not have relation to the function operations, but it is occurred by latency in 

the network. In case that calling the service in half-state by retry mechanism is 

successful, the circuit breaker changes to the “closed” state. In addition, it returns to the 

“open” state if the calling service is failed until another timeout is in place. It will repeat 

this trip multiple times until the problem is solved. However, there exists an unnecessary 

consumption of resources by calling through half-state open repeatedly. 
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Figure 4: Circuit Breaker Pattern [18] 

2.4.3 Retry Pattern 

Retry Pattern is an effective way to prevent the attack of self-denial and 

unbalanced capacities with slow responses as shown in figure 5. It improves the stability 

by circumventing slow responses. It can cancel the request of service in case the user 

gives wrong information. Moreover, it will try to call the service until calling is passed. 

Trying the process of calling service does not work permanently because retry pattern has 

counter that contain limited number for trying. In case that the counter reaches the largest 

number of attempts, retry mechanism will halt and send message to the service that is not 

available. 
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Figure 5: Retry Mechanism [18] 

However, responsiveness of an application might be affected due to a fault, which 

might take a longer time; therefore, retry pattern might not be useful. The application will 

waste time and resources will be consumed unnecessarily to repeat calling a request that 

is likely to fail [18]. 

2.4.4 Cache 

Cache mechanism improves the performance of an application by getting data 

from cache service rather than calling the database every time to get the same data as 

shown in figure 6. The mechanism is useful with a body of static data that does not 

change continuously. However, the cache service must refresh data to avoid inconsistent 

data problems with data in the database. The application should contain a technique to 

update the data in the cache to be as up to date as possible. In addition, it can detect data 

when it has stale situations and notify the database to avoid stale data. The way of 

refreshing data in caching will depend on the design of application. Refreshing data can 

happen in the beginning of application or after updating the special services. Moreover, 
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many caches apply termination rule that nullifies data and eliminates it from the cache list 

if it is not retrieved for a definite period. A cache is local to an application instance and 

stored in-memory, but most caches have a limited size compared to the original database 

of system [20]. 

 

Figure 6: Cache [20] 

2.5 Markov – Chain  

Andrey Markov developed Markov Chain, naming the chain after his name. This 

chain is mathematical schemes that change from one “state” to another [21]. “State 

space” can be used to generate the chain of Markov model. In addition, with the state 

space known, Markov chain determines the probability of transitioning or changing from 

one state to any other state. 

Markov chain is steady from many arbitrary variables that can transit from one 

state to another by means of set of probabilistic rules. These sets of rules satisfy the 

Markov characteristic (probability of next transitioning is dependent on the current state 

not on previous state). This unique characteristic process renders them memoryless. A 
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Markov chain contains a random process with the Markov characteristics. For instance, 

Markov chain consists of a series of random elements X1, X2 that guarantee Markov 

property, such that the probability of transiting to the next state is influenced by the 

present state and not the previous states. “The probabilistic formula [22]: 

Pr (Xn+1 = x | X1 = x1, X2 = x2, …, Xn = xn) = Pr (Xn+1 = x | Xn = xn)  

The probabilities produce with movement of state and are called transition 

probabilities. Calculation process must compute the transition matrix whose entries in 

each row must add up to exactly 1 because each row represents its own probability 

distribution” [22]. 

Figure 7 below shows an example for Markov chain with 2-states, which can 

produce four chances to generate different probabilities of states. The four chances are 

AA, AB, BB, and BA.  

 

Figure 7: Markov Chain with Two States 

As mentioned previously, Markov Chain essentially involves a set of transitions 

determined by probability distribution that satisfies the Markov property. This probability 

distribution is computed solely by detecting transitions from the current state to the next. 

Thus, are demonstrating the Markov property, which forms the unique feature of Markov 

procedures that renders them memoryless [23]. 
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2.6 Related Works 

 Haselbock et.al in [24] presented the creation and validation of a decision 

guidance metamodel, and of the specific decision guidance models for the different areas 

of microservice system design. It presented fault tolerant guidance models without any 

implementation.  

Circuit breaker, discovery, and API gateways were discussed by Montesi & 

Weber in [2]. Circuit breaker was discussed as a solution to the problem of 

communications among microservices through message passing, which causes 

communication failures, and timeouts among components and congestion of service. 

 Toffetti et.al proposed an architecture that leverages on the concepts of service 

orchestration and distributed configuration management with consensus algorithms to 

enable self-management of cloud-based microservices [25]. 

A methodology for reliability and fault-tolerance by Choreographic Design of 

distributed applications was proposed by Cassar in [26]. They integrated the run-time 

monitoring and local adaptation of distributed components with the top-down 

decomposition approach brought about by choreographic development. 

 Tang et.al presented the design of high availability service discovery for 

microservices architecture by improving RAFT consensus algorithm. However, the 

leader takes absolute dominance of the whole process, if the leader is not saved, the 

system can be controlled maliciously [28]. 

  A Self-Healing Microservices Architecture with Docker as a case study was 

published in [29]. It offers continuous monitoring and detection of anomalous behavior 
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and provides the architecture with dynamic decision-making based on the employment of 

the multidimensional utility-based model.  

            Hystrix library as developed by Preuveneers et.al controls the networks 

connection between distributed services by including two types of tolerance logic; 

latency and fault. This library utilizes Bulkhead, Swim Lane, and Circuit Breaker patterns 

as isolation techniques to reduce the influence of any service that is dependent on another 

service. Moreover, it shields against failures not only in the network traffic [30] but also 

in the whole dependency client performance. However, the three states of Circuit Breaker 

Pattern, that are open state, closed state, half-open state can lead to overhead cost. Circuit 

Breaker Pattern will detect fault and open state to call the service with computing a 

specific time. If the call fails, half-open state will try calling again and compute another 

limited time. However, DFTM model detects faults with Markov Chain based model 

without computing timeout. Then, it sends the faults directly to Switch Circuit Breaker 

that uses a 2-state to cover the faults. There is no need to have the third state to repeat the 

calling of service, so, DFTM model removed the half-open state and exchanged it by 

adding Markov Chain based model. 
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Chapter 3 DFTM Model 

Microservices are designed to run in a highly distributed environment. This 

environment brings not only several benefits but also brings challenges in terms of 

failures or faults due to the network communication of the services. Therefore, this poses 

a need to address the failures to software architect/designers [32]. Several Stability 

Patterns (Timeout, Circuit Breaker, Retry Pattern) as mentioned in chapter 2 have been 

created to minimize the impact of failures in distributed systems such as microservices. 

3.1 Microservice Failures 

Failures can occur when the networks are unreliable or the connections are latent, 

which might lead to failure or slow response. This might be a problem for synchronous 

remote calls actively waiting for a response. If they do not use any timeout mechanism, 

they may end up waiting for a long period of time. Applications usually set a timeout for 

all remote calls to avoid hanging of the entire application due to network failure or a 

component failure. However, this timeout needs to be set carefully to make the system or 

microservice application work as required. This would prevent further problems because 

if a remote call is waiting too long for a reply, it can slow down the whole system. 

Similarly, if a connection timeout is excessively fast, it may ignore a response that is sent 

after timeout [33]. Meanwhile, Circuit Breaker depends on the timeout to determine the 

switching or tripping from one state to another. Therefore, there is need for Switch 

Circuit Breaker using Markov Chain. 

As stated previously, microservice application is an assemblage of fine-grained 

services, thus, a failure or fault in one or more of those services should not bring down 

the entire application. Therefore, a given failure of microservices should be handled 
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properly so that a failure has minimum effects on the functionalities of the application. 

The other feature of failure tolerance is the ability to detect the behavior of the 

microservices running. Identifying or forecasting or predicting failures in a service and 

reinstating such services are important [9]. 

3.2 Dynamic Fault Tolerance (DFTM) Model Methodology 

This research proposes a dynamic fault tolerance (DFTM) Model using a two-

states Circuit Breaker called Switch Circuit Breaker with Markov Chain. This research 

modified Circuit Breaker (three states – open, closed and half-open) to Switch Circuit 

Breaker (two states – open and closed). The Circuit Breaker uses timeout to detect fault 

[2], but timeouts usage hinges on assumptions about the real-time behavior of the system, 

and a waiting process can be deduced from the occurrence of a timeout that a failure has 

occurred [27]. Therefore, we adopted Markov Chain based model to detect fault without 

timeout. 

 

Figure 8: Transition States of microservices 
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Figure 8 shows the Transition States of microservices. There are two basic levels: Upper 

level - Fault detection / Discovery level and Lower level- Fault Isolation and Recovery. 

The Upper level that includes Markov Chain is used to drive the lower level while the 

lower level that includes the Switch Circuit Breaker is used to drive the availability of the 

microservice. 

Upper level – this level detects faults or attempt to discover fault. It is based on the 

Markov Chain model. This level consists of three (3) states: 

1. Stable state – at this state, the microservice is available for the client with no fault. 

2. Unstable state – the microservice has either detected fault or attempted to repair. 

3. Disable state – the microservice has failed after trial and it is now unavailable. 

Lower level – this level is also called the fault isolation level and Recovery level. It 

isolates the fault microservice by employing a switch circuit breaker. It has two (2) states: 

1. Closed state – the Switch Circuit Breaker is closed when the microservice is 

available for operations, that is, the microservice is in a stable state. Therefore, 

circuit grants user requests. 

2. Open state – the Switch Circuit Breaker is opened when their fault, and it allows 

automatic repair. 
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Figure 9: DFTM model 

Figure 9 shows the overall DFTM model with highlighted components and 

mechanisms of the model with their interactions. The main components include Clients, 

Switch Circuit Breaker, Markov Chain Model, Retry mechanism, Cache and 

Microservices. The Client sends request(s) that passes through the Switch Circuit Breaker 

or inter-microservices communication. The Switch Circuit Breaker controls the 

communication of the microservices by getting the predetermined/predicted state of the 

microservices through Markov Chain. The Switch Breaker will close if Markov Chain 

returns to “Stable State”, and it will open if Markov Chain returns to “Unstable State” or 

“Disable State”. The Switch Circuit Breaker sends to retry pattern in case of an error. 

Retry patterns enables an application to handle momentary or transient failures (including 

the momentary loss of network connectivity to components and services, the temporary 
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unavailability of a service) when it tries to connect to a service or network resource by 

transparently retrying a failed operation. This helps to increase the stability of the 

application. Markov Chain sends to Cache if the state is not favorable for the successful 

running of the microservices. 

Figure 10 further breaks down the internal working principles of each of the 

components represented with a flow-chart diagram. When the microservices are started, it 

is checked if it is in the Stable State or not, which is determined by the Markov Chain 

model implemented. If microservices are in the Stable State, the Switch Circuit Breaker 

is closed to grant the client’s requests and send the response appropriately back to the 

client. If the microservices are in the Unstable state, the Switch Circuit Breaker is open 

and sends to Retry mechanism for recovering in case the fault is a transient fault. Retry 

mechanism also checks if the service is available and the number of retry has not been 

exceeded. If there is a ‘Yes’, the Switch Circuit Breaker is closed, otherwise, the 

microservices then become Disable. At this point, if the Cache is available, the client is 

served from the Cache or a failed response is sent back to the client. They are achieving 

the major aim of DFTM model, which is to ensure fault tolerance, using Stability Patterns 

and Markov Chain based model. 
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Figure 10: Flow-chart of the DFTM model 

 

3.3 Implementation 

In this study, DFTM model was implemented using PHP (Laravel/Lumen framework). 

Markov Chain, Switch Circuit Breaker, Retry and Cache patterns were developed using 

PHP (Laravel/Lumen framework). 

3.3.1 Markov Chain 

This research proposes to detect faults using Markov Chain with three states 

(Stable, Unstable and Disable) with Switch circuit breaker with two states (Open and 

Closed) as explained previously. 

In Markov Chain, a random variable Xk at the time instant k is measured, and it 

can attain several sets of values (X1, X2, ... Xn). The probability that a random variable 

can attain a state (xi) at a specific time instant depends on the present state at the time 
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instant according to the Markov property. The initial state of the microservices is 

received from the response time of the microservices.  

Markov Chain detects the states of the microservices using stochastic probability. 

The probability states of the microservices are determined using response time. The 

transition states are derived with the probability states generated previously as shown in 

figure 11 below. In order to derive the state space of Markov chain, the states are counted 

using the function below with the probability states and transition states previously 

calculated. The transition matrix is generated using the state space. This matrix gives the 

overall state position of the systems. In order to determine the probability of each of the 

states, it is needed to compute the matrix multiplication of the present matrix and 

transition matrix in the generic matrix multiplication function. Finally, it is required to 

calculate the transition probabilities using the transition matrix previously calculated. 

These probabilities consequently give the probability of the states. 

 

Figure 11: Markov Chain States for DFTM Model 

Table 1 shows the tabulated probability matrix to be in Stable State. Table 2 shows 

the tabulated probability matrix to be in Unstable State, and table 3 shows the tabulated 

probability matrix to be in Disable State. 
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Table 1: Stable State Probability Matrix 

 Stable Unstable Disable 

Stable 1 0 0 

Unstable 1 0 0 

Disable 1 0 0 

 

Table 2: Unstable State Probability Matrix 

 Stable Unstable Disable 

Stable 0 1 0 

Unstable 0 1 0 

Disable 0 1 0 

 

Table 3: Disable State Probability Matrix 

 Stable Unstable Disable 

Stable 0 0 1 

Unstable 0 0 1 

Disable 0 0 1 

 

Figure 12 shows the class UML (Unified Modelling Language) of the Markov 

chain class. This  class – Markov has (12) methods/functions to detect the states of the 

microservices. 
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Figure 12: Markov Chain UML diagram 

Markov-chain was achieved with twelve interacting methods as shown in the 

figure above. These functions are explained briefly below: 

i. Get Response Time Data: This function automates the data generation for driving 

the Markov chain processes. The response time of the microservice is measured 

using CURL. The remaining functions depends on this function. This data is been 

processed to determine the state of the microservices. Figure 13 below briefly 

shows the snapshot of the code. 

$response_time = []; 

        for ($i = 0; $i<10; $i++){ 

        $ch =  curl_init('http://localhost:3000/test'); 

        curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); 

        curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0); 

        curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC); 

        curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 5); 

        curl_setopt($ch, CURLOPT_TIMEOUT, 5); 

        curl_setopt($ch, CURLOPT_HTTPHEADER, array('Accept: 

application/json')); 

        curl_exec($ch); 

       

            $info = curl_getinfo($ch); 

            curl_close($ch); 

            array_push($response_time, $info['total_time']); 

        } 

        return $response_time; 

    } 

Figure 13: Get Response Data Function 
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ii. Find bin: This method arranges the response time in ascending order as shown in 

figure 14 below. 

function find_bin($response_time){ 

    $bin = []; 

    $count = count($response_time); 

    $k = sqrt($count); 

    $max = max($response_time); 

    $min = min($response_time); 

    $h = ($max-$min)/$k; 

    $bin[] = $min; 

    while ($min<=$max) { 

      array_push($bin, $min + $h); 

      $min += $h; 

    } 

    return $bin; 

  } 

Figure 14: Ascending Order Code 

iii. Find frequency: This method calculates the frequency of occurrence of each of the 

response time gotten from the first function (get_responsetime_data). This method 

combines the output of the two previous functions as shown in figure 15 below. 

  function find_freq($response_time, $bin){ 

    $count = count($response_time); 

    $freq = array_fill(0, count($bin), 0); 

    $diff = $response_time; 

    for ($i=0; $i < $count; $i++) {  

      for ($j=0; $j < count($bin) ; $j++) {  

        if($bin[$j] <= $diff[$i] && $diff[$i] < $bin[$j+1]){ 

          $freq[$j]++; 

        } 

      } 

    } 

    return $freq; 

} 

Figure 15: Find Frequency Function 

iv. Find Cumulative Frequency: The function below calculates the cumulative 

frequency of the response time data as shown in the figure 15 below by using the 

frequency gotten from the previous functions. 
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   function find_cum_freq($freq){ 

    $cum_freq = array_fill(0, count($freq), 0); 

    for ($i=0; $i < count($freq) ; $i++) {  

      for ($j=0; $j <= $i; $j++) {  

        $cum_freq[$i] += $freq[$j]; 

      } 

    } 

    return $cum_freq; 

  } 

Figure 16: Cumulative Frequency Function 

v. Find Quartile Range: The function below finds the quartile range of the set of the 

response time by dividing the cumulative frequency calculated previously into a 

group of four as seen in figure 17 below. The difference is calculated using the 

bin and frequency variable over the span of the data. 

    function find_quartile_range($bin, $freq, $cum_freq){ 

    $n = end($cum_freq); 

    $n1 = $n/4; $n2 = $n/2; 

    $n3 = ($n*3)/4; 

    $range[] = $bin[0]; 

    for ($i=0; $i < count($cum_freq) ; $i++) {  

      if ($cum_freq[$i]<=$n1 && $n1<$cum_freq[$i+1]) { 

        $range[] = ($n1-$cum_freq[$i])<($cum_freq[$i+1]-$n1) ? 

$bin[$i] : $bin[$i+1]; 

      } 

      if ($cum_freq[$i]<=$n2 && $n2<$cum_freq[$i+1]) { 

        $range[] = ($n2-$cum_freq[$i])<($cum_freq[$i+1]-$n2) ? 

$bin[$i] : $bin[$i+1]; 

      } 

      if ($cum_freq[$i]<=$n3 && $n3<$cum_freq[$i+1]) { 

        $range[] = ($n3-$cum_freq[$i])<($cum_freq[$i+1]-$n3) ? 

$bin[$i] : $bin[$i+1]; 

      } 

    } 

    $range[]=end($bin); 

    return $range; 

  } 

Figure 17: Find Range Function 

vi. Find Probability State (find_p_states): The function shown in figure 18 below 

calculates the probabilities of the states using the response time and the range 

determined previously. 
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    function find_p_states($response_time,  $range){ 

    $p_states = []; 

    $diff = $response_time; 

    foreach ($diff as $key => $value) { 

      if ($range[0] <= $value && $value < $range[1]) { 

        $p_states[$key] = "P1"; 

      }elseif ($range[1] <= $value && $value < $range[2]) { 

        $p_states[$key] = "P2"; 

      }elseif ($range[2] <= $value && $value < $range[3]) { 

        $p_states[$key] = "P3"; 

      }else{ 

        $p_states[$key] = null; 

      } 

    } 

    return $p_states; 

  } 

Figure 18: Find Probability States Function 

vii. Find transition states (find_transition_states): The transition state is calculated 

with the probabilities generated earlier as shown in figure 19 below. This aids the 

generation and computation of the transition matrix. 

function find_transition_states($p_states){ 

      $count = count($p_states)-1; 

    for($key=0; $key < $count; $key++) { 

      for ($i=1; $i <= 3; $i++) {  

        for ($j=1; $j <= 3 ; $j++) {  

          if (($p_states[$key] == "P" . $i) && ($p_states[$key+1] == 

"P" . $j) ) { 

            $transition_states[$key+1] = "P_" . $i . $j; 

          } 

        } 

      } 

    } 

    return $transition_states; 

  } 

Figure 19: Transition State Function 

viii. Find State Count: The number of the states is determined with the code in figure 

20 below using the probability states and the transition states. 
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    function find_state_count($p_states, $transition_states){ 

    $state_count = array( 

      'P1' => 0 ,'P2' => 0 ,'P3' => 0 , 

      'P_11' => 0 ,'P_12' => 0 ,'P_13' => 0 , 

      'P_21' => 0 ,'P_22' => 0 ,'P_23' => 0 , 

      'P_31' => 0 ,'P_32' => 0 ,'P_33' => 0  

      ); 

    foreach ($p_states as $key => $value) { 

      if ($value == "P1") { 

        $state_count["P1"]++;  

      }elseif ($value == "P2") { 

        $state_count["P2"]++; 

      }elseif ($value == "P3") { 

        $state_count["P3"]++; 

      } 

    } 

    foreach ($transition_states as $key => $value) { 

      for ($i=1; $i <= 3; $i++) {  

        for ($j=1; $j <= 3 ; $j++) {  

          if ( $value == "P_" . $i . $j) { 

            $state_count["P_" . $i . $j]++; 

          } 

        } 

      } 

    } 

    return $state_count; 

  } 

Figure 20: Find State Count Function 

ix. Create Transition Matrix: Since Markov Chain is memoryless, transition matrix is 

determined as shown below in figure 21 with the state count generated in the 

previous function. 

  function create_transition_matrix($state_count){ 

    $transition_matrix = array( 

        array(  $state_count['P1'] == 0 ? 0 : 

$state_count["P_11"]/$state_count["P1"] ,  

                $state_count['P1'] == 0 ? 0 : 

$state_count["P_12"]/$state_count["P1"],  

                $state_count['P1'] == 0 ? 0 : 

$state_count["P_13"]/$state_count["P1"]), 

        array(  $state_count['P2'] == 0 ? 0 : 

$state_count["P_21"]/$state_count["P2"] ,  

                $state_count['P2'] == 0 ? 0 : 

$state_count["P_22"]/$state_count["P2"],  

                $state_count['P2'] == 0 ? 0 : 

$state_count["P_23"]/$state_count["P2"]),  

        array(  $state_count['P3'] == 0 ? 0 : 

$state_count["P_31"]/$state_count["P3"] , 
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                $state_count['P3'] == 0 ? 0 : 

$state_count["P_32"]/$state_count["P3"],  

                $state_count['P3'] == 0 ? 0 : 

$state_count["P_33"]/$state_count["P3"]) 

         

      ); 

    return $transition_matrix; 

  } 

Figure 21: Find Transition Matrix Function 

x. Matrix multiplication (matric_mul_3_3): There are three states Markov chain.  

The transitional matrix and the state count are multiplied in a 3 by 3 matrix to 

generate leading matrix to determine the current state of the microservice. 

    function matrix_mult_3_3($m1,$m2){ 

    for($row = 0; $row < 3; $row++){  

      for($column = 0; $column < 3; $column++){   

         $sum = 0; 

         for($ctr = 0; $ctr < 3; $ctr++){ 

            

          $sum = $sum + ($m1[$row][$ctr] * $m2[$ctr][$column]);           

          

         } 

         $sol[$row][$column] = $sum;                           

      }                 

    } 

    return $sol; 

  } 

Figure 22: Matrix Multiplication Function 

xi. Find Transition Probabilities: This is the last major function to determine the 

probability of the present state of the microservice. This function uses transition 

matrix along with the matrix multiplication of the present state to determine the 

probability of the state change as shown in figure 23 below. 

  function find_transition_probabilities($transition_matrix){ 

    $q[1] = $transition_matrix; 

    for ($i=2; $i < 9; $i++) {  

      $q[$i] = $this->matrix_mult_3_3($q[$i-1], $transition_matrix); 

    } 

    $probabilities = array($q[8][0][0], $q[8][0][1], $q[8][0][2]); 

    return $probabilities; 

  } 

} 

Figure 23: Transition Probability Function 
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xii. Predict State: This is the main matrix that calls all the methods according to their 

usage. In order to determine the state of the microservices. 

 

3.3.2 Switch Circuit Breaker 

Switch Circuit Breaker operates the same as the electric switch where current does not 

flow when the switch is open, but current flows when the switch is closed. Meanwhile, 

the flipping of this switch is dependent on an external force. The same applies to the 

Switch Circuit Breaker where it either opens or closes based on the states detected by the 

Markov Chain. If the state is Stable, it closes the Switch Circuit Breaker, and the 

microservice is processed while it opens the Switch Circuit Breaker if the state is 

Unstable or Disable. If the microservice is Unstable or Disable, retry mechanism recovers 

the system. It is also possible that, if the retry fails continuously, the microservice will go 

to Cache server. In case that Caching server does not resolve fault, the client receives a 

failed response. Figure 24 shows the class UML of Switch Circuit Breaker. 

 
Figure 24: Switch Circuit Breaker UML Diagram 
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• IsCircuitClose:  

This function checks the state of the microservices as reported from Markov 

chain. If Markov returns a value that is equal to “Stable”, this function returns true 

and continues execution of the microservices. Otherwise, the process sequence 

will send to retry function as described below. 

• Retry function:  

This function gets the predicted state of the microservices from Markov chain and 

sets the maximum number of retry to three (3). It checks if the state is still 

unstable and the maximum number has not been exceeded.  It retries the service if 

it returns true but enters cache if it returns false. The system is delayed for one 

second between each retry. Figure 25 below explains the code implementation as 

follows: 

  public function retry(){ 

   $markov = new Markov(); 

   $state = $markov->predict_state(); 

   $max_retries = 3; 

    $retry_count = 0; 

    while(($state == 'Unstable') && ($retry_count < 

$max_retries)) 

    { 

     parent::retry(); 

     sleep(1); 

     $retry_count ++; 

    } 

    return true; 

   } 

Figure 25: Retry Code Function 

• Cache:  

This function calls the service cache if the retry failed to get a “Stable” response 

from Markov Chain. If the cache fails, the system returns a failed response. 

• Settings Related Functions:  

These functions include serviceExists, getServiceSettings and setServiceSettings. 
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These functions are meant to get the major settings to keep the microservices in 

the correct configuration. Function serviceExists checks for the existence of the 

route in the service list. GetService Settings function gets the settings of the 

microservices while setServiceSettings function sets the microservices settings. 

/** 

  * Function serviceExists 

  * 

  * Checks either service is configured in config.php or not 

  * 

  */ 

 private function serviceExists() { 

  $index = 0; 

  foreach ($this->servicesconfig as $config) { 

   //($config); 

   if($config['servicename']===$this->servicename) { 

    // Service is configured so return true 

    $this->arrayindex = $index; 

    return true; 

    break; 

   } 

   $index++; 

  } 

  // Service is not configured so return false 

  return false;  

 } 

 

Figure 26: Service Exists Function 
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Chapter 4 Case Study 

This chapter demonstrates how to apply the dynamic fault tolerance (DFTM) 

model that is presented in chapter 3 to Pet Clinic microservices, which is a spring-boot 

based microservice. 

4.1 Overview of Pet Clinic Microservices 

Spring Boot creates individual and production-grade Spring based applications 

easily [35]. It evolves from Spring framework written in Java. It is bootstrap that is 

described in the following reference: - Spring Initializer (https://start.spring.io).  

Spring Pet Clinic Microservices obtained from GitHub at  

https://github.com/spring-petclinic/spring-petclinic-microservices was built around small 

independent running in their own JVM and communicating over HTTP via REST API. 

These microservices are all written in Java. It has three (3) functional microservices: 

customers, vets and, visits. The working of the internal structure of the application is 

shown in figure 26: 

 
Figure 27: Working Architecture of Pet Clinic Microservices [36] 

https://start.spring.io/
https://github.com/spring-petclinic/spring-petclinic-microservices
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As shown in figure 26, the 3 microservices – customers-service, vets-service and 

visits-service expose the functionality of the application through a REST API. Each of 

these 3 microservices is an application in the sense of Spring Boot with its own Maven 

module containing certain Java classes and configuration files. 

The API-gateway controls and coordinates the remaining services. Customers-

service microservice enables the customers to get for pets’ details, pets request and the 

owners’ details. The vets-service microservice allows to receive the vet details and vets’ 

expertise. Visits-service microservice provides information about the pets visit and the 

owner visits. 

4.2 Applying DFTM Model Methodology 

The microservice is started and the admin board for monitoring the UP or DOWN 

service is monitored as provided by the Pet Clinic Developer. Figure 27 below shows the 

homepage of the microservices when it is started. 

 
Figure 28: Pet Clinic Microservice Homepage 
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In this study, the fault tolerance DFTM model was tested by using two arbitrary 

tests, delaying response for a few seconds and shutting down of one of the running 

servers of the microservices as shown in figure 28 - admin dashboard (showing the 

information about the microservices).  

 
Figure 29: Monitoring the DOWN microservice 

The retry and cache patterns of the model provided additional resilience to Pet 

Clinic. The retry mechanism is dependent on the number of retry manually added and the 

number of seconds of delay between each retry. The cache reports the cached information 

if it exists or returned a failure response. 

In order to illustrate the results for each test case described in chapter 3, this study 

allowed the microservice to run without any form of error, which means the state is 

“Stable”. Figure 29 displays the state of the microservices and the running time for 

DFTM model while it is on stable state detected by Markov Chain. 



38 

 

 
Figure 30: Test Case of Stable state in DFTM model 

Moreover, a JSON parsing error was introduced to the microservice to trigger a 

change of state. This parsing error changed the state to “Unstable” as shown in figure 30. 

 
Figure 31: Test Case of Unstable state in DFTM model 

Moreover, there was a change in state to “Disable” after retry failure. The 

outcome of this is shown in figure 31. 

 
Figure 32: Test Case of Disable state in DFTM model 

 

Finally, the test case for the failed cache is shown in figure 32 below. 

 

 
Figure 33: Test Case Failure 
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Table 4 below summarizes the test case with the test data and the result for each 

of the cases – stable, unstable and disable states.  

Table 4: Test Cases Description 
TEST 

CASE ID 

TEST CASE 

Description 

TEST DATA EXPECTED 

OUTPUT 

ACTUAL 

OUTPUT 

T_1 Stable when the 

microservices 

run perfectly 

without any 

form of error, 

which means 

the state is 

“Stable”. 

Response time: 

dynamically generated, 

URL: 

http://localhost:4000/test, 

Response time: 

dynamically generated 

DFTM model 

will displayed 

the state of the 

microservices 

and the running 

time for DFTM 

model while it 

is on stable 

state as detected 

by Markov 

Chain. 

Figure 29 

T_2 Unstable when 

a JSON parsing 

error was 

introduced to 

the 

microservice to 

trigger a change 

of state. This 

parsing error 

changed the 

state from 

Stable to 

“Unstable” 

URL: 

http://localhost:4000/test, 

Response time: 

dynamically generated, 

Jason response: false 

DFTM model 

detect fault and 

retry 

mechanism will 

cover the fault. 

Figure 30 

T_3 Disable when 

there was a 

change in state 

to “Disable” 

after retry 

failure. 

URL: 

http://localhost:4000/test, 

Response time: 

dynamically generated, 

Jason response: false, 

Number of retries: 3 

DFTM will 

determine the 

state as disable 

and retry will 

send it to cache 

to recover 

Figure 31 

T_4 Cache has a 

failure. 

 A failed 

response will 

appear 

Figure 32 

 

  

http://localhost:4000/test
http://localhost:4000/test
http://localhost:4000/test
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Chapter 5 Evaluation 

This chapter evaluates the dynamic fault tolerant model for the microservice. As 

stated previously, this research aimed for achieving a stable microservices architecture 

using the Stability Patterns with Markov Chain. Also, it intended to increase the 

performance and reliability of microservices architecture. For that, the evaluation of the 

reliability and performance was performed as follows: 

5.1 Reliability 

The reliability of DFTM was compared with a Circuit breaker after a failure is 

detected. The circuit breaker will open and wait until manually set timeout has elapsed. 

However, DFTM Model responded at an almost negligible microsecond after the failure 

has been detected and recovered as seen in table 5 below. DFTM eliminates the usage of 

timeout by dynamically continuing the execution after detecting a fault. The + in the table 

shows the additional time it took the DFTM to run after fault detection while the circuit 

breaker did not execute which made the execution time of circuit breaker zero for all the 

number of times of trial as shown in the table below. 

Table 5: Reliability Execution Time Comparison 

N DFTM Model (s) Circuit breaker (s) 

1 +0.71924614 0 

2 +0.764889917 0 

3 +0.705334139 0 

4 +0.774148216 0 

5 +0.768445978 0 
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The circuit breaker was observed to timeout at the set time while DTFM delivered 

the response at negligible additional time ranging from 0.72s to 0.77. The reliability of 

DFTM model is better than the circuit breaker. 

5.2 Performance 

The performance of DFTM was evaluated by generating the execution time of 

DFTM model in comparison with the circuit breaker. The evaluation steps are as follows: 

• Generation of execution time of circuit breaker. 

• Generation of execution time of DFTM Model. 

• Repetition of steps 1 and 2 for ten (10) times as shown in table 6 below. 

• Calculation of average execution time of DFTM model. 

• Calculation of average execution time of Circuit Breaker. 

• Calculation and comparison of Percentage Performance of DFTM and Circuit 

breaker. 

Table 6: Performance Execution Time Comparison 

N DFTM Model (s) Circuit breaker (s) 

1 0.72924614 2.351104021 

2 0.804889917 1.343371868 

3 1.005334139 2.295579195 

4 0.784148216 2.155514002 

5 0.758445978 0.734778166 

6 0.876322985 0.817534924 

7 0.986773014 2.21852994 
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N DFTM Model (s) Circuit breaker (s) 

8 0.771557808 0.853736877 

9 0.816271973 0.83048296 

10 0.756757021 1.05091095 

Average (s) 0.833974719 1.46515429 

 

Percentage Difference of the DFTM Model and the Circuit breaker is thus 

calculated: 

 % 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1.46515429− 0.833974719

1.46515429
∗ 100% 

% 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  43% 

DFTM Model was observed faster 43% than the circuit breaker.  
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Chapter 6 Conclusion 

Dynamic Fault Tolerance (DFTM) model is designed to solve the inherent 

problem of fault tolerance in the microservices architecture. This chapter is divided into 

two sections; conclusion which summarizes the thesis with a general overview of the 

presented study and future works which provides the summary of important 

considerations that can be taken into to enhance the research. 

6.1 Conclusion 

Microservices architecture is an autonomy service architecture with the sole aim 

of making application development and deployment very easy. Microservices 

architecture has several influential advantages, which makes its acceptance level on an 

exponential growth across the world. 

However, one of the major challenges of this architecture is failures or faults in 

one of the microservices leading to the breaking down of the whole system. Therefore, 

fault tolerance emerges as a sub-area of microservices, which tends to provide stability, 

reliability, robustness, and resiliency to the architecture by using stability patterns.  

 There are many Stability patterns (Circuit breaker, Timeout, Bulkhead, Fail Fast, 

and Retry) to achieve fault tolerance. However, in order to achieve a better performance 

and reliability, this study modified circuit breaker, which uses manually set timeout in a 

dynamic environment of microservices, which may affect the effectiveness and reliability 

of the architecture. This thesis modified the circuit breaker to create DFTM (Dynamic 

Fault Tolerance Model) using Switch Circuit Breaker with Markov Chain to dynamically 

determine the state of the microservices, retry pattern and cache. DFTM was found to be 
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faster and better than the original Circuit Breaker. DFTM has a better performance and 

reliability while achieving the architecture’s stability. 

6.2 Future work 

This thesis provides stability through Markov chain, thereby eliminating the use 

of static timeout in circuit breaker. This thesis can be further improved as future work as 

stated in the following sub-sections. 

6.2.1 Consider determining types of faults 

As a future work, Machine Learning techniques can be used to determine various 

types of faults and apply the corresponding recovery stability pattern(s). Each of the 

stability patterns has its own inherent strengths, and the use of ML will decide the 

appropriate stability pattern for the type of the faults or failure. This will prevent the 

usage of multiple hybrid stability patterns. Thereby, developing a data-driven fault 

tolerance microservices architecture to ensure the autonomous fault tolerance in the 

microservices architecture and a higher reliability and performance. 

6.2.2 Consider catching a failed response 

The major aim of dynamic fault tolerant DFTM model is to ensure there is high 

availability of the microservices, so other forms of stability patterns can be explored. 

Failover can be used to protect cache system from returning a failed response. In 

addition, Fail-fast pattern can be used with bulkhead pattern to achieve a better fault 

isolation. 
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