
South Dakota State University
Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange

Electronic Theses and Dissertations

2019

A Dynamic Fault Tolerance Model for
Microservices Architecture
Hajar Hameed Addeen
South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/etd
Part of the Systems Architecture Commons

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and
Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE:
Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

Recommended Citation
Addeen, Hajar Hameed, "A Dynamic Fault Tolerance Model for Microservices Architecture" (2019). Electronic Theses and
Dissertations. 3410.
https://openprairie.sdstate.edu/etd/3410

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Public Research Access Institutional Repository and Information Exchange

https://core.ac.uk/display/225500668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openprairie.sdstate.edu/?utm_source=openprairie.sdstate.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/?utm_source=openprairie.sdstate.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=openprairie.sdstate.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/3410?utm_source=openprairie.sdstate.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu

A DYNAMIC FAULT TOLERANCE MODEL FOR MICROSERVICES

ARCHITECTURE

BY

HAJAR HAMEED ADDEEN

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

 Major in Computer Science

South Dakota State University

2019

iii

ACKNOWLEDGEMENTS

I sincerely return all glory to Almighty God for making this thesis a reality

despite the rough and rocky journey. I deeply appreciate God for all his direction,

comfort, and strength that enabled me to continue my education.

My genuine appreciation is directed to my supervisor Dr. Yi Liu for her

moral support, supervision, guidance, motivation, understanding and patience all

along.

Also, I appreciate the entire committee members Dr. Shin and Dr. Won for

their support, constructive comments, and review, all of which led to the successful

completion of this thesis.

My profound gratitude also goes to my parents to support me all through the

program. Also, I am very thankful for my husband Emad for all his efforts and

encouragement.

Finally, I am thankful to my children Fatima, Mohsen, and Hussein for their

love and having them as a great motivation in my life.

iv

CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT ... ix

Chapter 1 Introduction .. 1

1.1 Introduction .. 1

1.2 Objectives ... 2

1.3 Thesis Organization.. 3

Chapter 2 Background .. 4

2.1 Microservices ... 4

2.2 Issues of Microservices .. 6

2.3 Fault tolerance .. 7

2.4 Stability Patterns .. 9

2.4.1 Timeout ... 9

2.4.2 Circuit Breaker .. 10

2.4.3 Retry Pattern ... 12

2.4.4 Cache... 13

2.5 Markov – Chain .. 14

2.6 Related Works .. 16

Chapter 3 DFTM Model ... 18

3.1 Microservice Failures ... 18

3.2 Dynamic Fault Tolerance (DFTM) Model Methodology 19

3.3 Implementation... 23

3.3.1 Markov Chain ... 23

3.3.2 Switch Circuit Breaker .. 32

Chapter 4 Case Study .. 35

4.1 Overview of Pet Clinic Microservices ... 35

4.2 Applying DFTM Model Methodology ... 36

Chapter 5 Evaluation... 40

5.1 Reliability ... 40

5.2 Performance ... 41

v

Chapter 6 Conclusion .. 43

6.1 Conclusion .. 43

6.2 Future work .. 44

6.2.1 Consider determining types of faults .. 44

6.2.2 Consider catching a failed response .. 44

REFERENCES ... 45

vi

LIST OF TABLES

Table 1: Stable State Probability Matrix ... 25

Table 2: Unstable State Probability Matrix .. 25

Table 3: Disable State Probability Matrix .. 25

Table 4: Test Cases Description ... 39

Table 5: Reliability Execution Time Comparison .. 40

Table 6: Performance Execution Time Comparison ... 41

vii

LIST OF FIGURES

Figure 1: Microservices Architecture [13] .. 4

Figure 2: Cascading failures in Microservices Architecture [17] 8

Figure 3: Timeout for Availability and Responsiveness [4] ... 10

Figure 4: Circuit Breaker Pattern [18] .. 12

Figure 5: Retry Mechanism [18] ... 13

Figure 6: Cache [20] ... 14

Figure 7: Markov Chain with Two States ... 15

Figure 8: Transition States of microservices .. 19

Figure 9: DFTM model ... 21

Figure 10: Flow-chart of the DFTM model .. 23

Figure 11: Markov Chain States for DFTM Model .. 24

Figure 12: Markov Chain UML diagram .. 26

Figure 13: Get Response Data Function ... 26

Figure 14: Ascending Order Code .. 27

Figure 15: Find Frequency Function... 27

Figure 16: Cumulative Frequency Function ... 28

Figure 17: Find Range Function ... 28

Figure 18: Find Probability States Function ... 29

Figure 19: Transition State Function .. 29

Figure 20: Find State Count Function ... 30

Figure 21: Find Transition Matrix Function ... 31

Figure 22: Matrix Multiplication Function ... 31

Figure 23: Transition Probability Function... 31

Figure 24: Switch Circuit Breaker UML Diagram ... 32

Figure 25: Retry Code Function ... 33

Figure 26: ServiceExists Function .. 34

Figure 27: Working Architecture of Pet Clinic Microservices [36] 35

Figure 28: Pet Clinic Microservice Homepage ... 36

Figure 29: Monitoring the DOWN microservice .. 37

viii

Figure 30: Test Case of Stable state in DFTM model .. 38

Figure 31: Test Case of Unstable state in DFTM model .. 38

Figure 32: Test Case of Disable state in DFTM model .. 38

Figure 33: Test Case Failure ... 38

ix

ABSTRACT

A DYNAMIC FAULT TOLERANCE MODEL FOR MICROSERVICES

ARCHITECTURE

HAJAR HAMEED ADDEEN

2019

Microservices architecture is popular for its distributive system styles due to the

independent character of each of the services in the architecture. Microservices are built

to be single and each service has its running process and interconnecting with a

lightweight mechanism that called application programming interface (API). The

interaction through microservices needs to communicate internally.

Microservices are a service that is likely to become unreachable to its consumers

because, in any distributed setup, communication will fail on occasions due to the

number of messages passing between services. Failures can occur when the networks are

unreliable, and thus the connections can be latent which may lead to failure or slow

response. This might be a problem for synchronous remote calls actively waiting for a

response. If they do not use a proper timeout mechanism, they may end up waiting for an

extended amount of time. Applications usually set a timeout for all remote calls to avoid

hanging of the whole application due to network failure or component failure. However,

this timeout needs to be set carefully to make the system or microservice application to

work as required. This would prevent further problems because if a remote call is waiting

too long for a reply, it can slow down the system in its entirety, and if a connection

timeout is extremely fast, it may ignore a response that is sent after timeout.

x

This thesis proposes a dynamic fault tolerance (DFTM) Model to improve the

stability and resilience of the microservices architecture. The Model is designed using a

two-states Circuit Breaker called Switch Circuit Breaker with Markov-Chain. In addition,

a modified Circuit Breaker (three states – open, closed, and half-open) to Switch Circuit

Breaker (two states – open and closed) is presented here. The Circuit Breaker uses

timeout to detect fault but timeouts usage hinges on assumptions about the real-time

behavior of the system and awaiting process can be deduced from the occurrence of a

timeout that a failure has occurred. Therefore, DFTM model adopted Markov Chain

based model to detect fault without a timeout. Then, it sends the fault directly to Switch

Circuit Breaker that uses a 2-states to cover the faults. An important finding is that the

DFTM model presents a solution to the problem of transient failures or faults in the inter-

service communication of microservices architecture. Also, it improves the performance

and reliability of microservices architecture.

1

Chapter 1 Introduction

1.1 Introduction

Microservices architecture is popular for its distributive system styles. It describes

a way of developing applications as suites of small services that are independently

implemented and deployed. Every service has its own running process and

interconnecting with lightweight mechanism that is called Application Programming

Interface (API) [1]. These services intend to perform a specific task around business

capabilities fully independently because each service has its own database and operations.

 Microservices allow developers to use heterogenous technologies in a single

system, which increase their ability to develop the service with advancement tools. In

addition, it enhances the quality of the application. For example, if there is a problem that

occurs in a system, the developer will fix promptly due to independent characteristics. In

addition, it allows reusing the service and adds any required features at low cost [2], [3].

However, microservices have some challenges due to the distributive nature that affects

the efficiency of the architecture including availability, responsiveness, reliability, and

inter-service communication [4].

“High availability is one of the major issues of microservice-based application

design. It is difficult to build an application consisting of hardware and software that

never fail, or a more feasible strategy is to enable it fault tolerant” [7]. Microservice

system requires reliability with high availability and ensures that the whole system is not

fully impacted when there are faults in an individual service. The scheme of

microservices must be fault-tolerant [8]. However, it is unavoidable in some instances

2

that, a service in a distributed system will fail, and it will not be able to respond in an

appropriate manner leading to shutdown of the service. There are many reasons that lead

the system to failure such as heavy loads and bugs inside the code can happen [7].

As such failures are inevitable [9], they can be mitigated by developing a recovery

system in case of an error or fault or failure [8],[10]. Due to this fact, fault tolerance

emerged as one of the sub-areas of microservices architecture to ensure high stability

[11]. Fault tolerance is a way for microservices to handle the unavailability of a service

by using different stability patterns.

There are many stability patterns which have been used to achieve robustness and

resilience including Circuit Breaker Pattern, Timeout Pattern, and Retry Pattern [9], [12].

However, each of these patterns is not singly efficient enough except when it is combined

with other patterns.

1.2 Objectives

This thesis proposes a dynamic fault tolerance (DFTM) Model to improve the

stability and resilience of the microservices architecture. It provides a solution to the

problem of transient failures or faults in the inter-service communication of

microservices architecture.

The objectives of this thesis are:

1. To propose a dynamic fault tolerance model (DFTM) that detects, isolates,

and recovers communication failures in the inter-service communication

by modifying original Circuit Breaker with Markov Chain model.

3

2. To increase the reliability and performance of microservices architecture

and compare the results of DFTM model with original Circuit Breaker.

1.3 Thesis Organization

This thesis proposes a novel dynamic fault tolerance model to detect failures in

microservices architecture called DFTM Model. Chapter 1 contains the introduction of

microservices architecture and objectives. Chapter 2 discusses the general overview of

Microservices architecture, fault tolerance, stability patterns, and Markov-Chain Model.

In addition, the chapter deliberates the basic literature review and related works on fault

tolerance for microservice architecture. Chapter 3 illustrates the major components of

DFTM Model and its mechanism to detect or predict faults. Moreover, it describes the

modifications made on original Circuit Breaker in order to convert it to Switch Circuit

Breaker. Chapter 4 discusses how to apply the DFTM methodology to Pet Clinic as a

case study. Chapter 5 introduces the results of DFTM model methodology and provides a

comparison of performance and reliability between the case study and the original Circuit

Breaker Pattern. Chapter 6 provides the conclusion and future work.

4

Chapter 2 Background

2.1 Microservices

Microservices consist of small, isolated processes that communicate with each

other over network. For example, an E-commerce application can be divided to single

modules that are Order service, Inventory service, Shipping Service, and Online Store

Service as shown in Figure 1 below [13] .The development team has a full freedom to

build the new module in different language programming without sharing any code with

other distinct services. Microservices are very easy to scale dynamically in the modern

cloud-based architecture and container such as Docker. This feature helps to increase the

performance of the application and make the services distribute their function in multiple

domains. Also, it provides solution to manage the large complex application easily by

allowing the developers to deploy, test, maintain separately.

Figure 1: Microservices Architecture [13]

5

The major characteristics of microservices include the following [3]:

• Enhance fault isolation–The system continues working and is not affected in

case a failure occurs in a single microservice.

• Simply Understanding – The developers can understand the basic

functionality and their attributes faster because they act with the small

services.

• Diversity languages – It allows to write code in different programing

languages with different teams of programmer.

• Modularity – Microservices architecture is made up of isolated modules and

each of them gives the overall system performance by contributing their bits.

• Independency – In terms of operations, each of the services in microservice

architecture is self-governing and the single form of interaction between the

services is through their interfaces (API).

• Flexibility – Microservices are flexible by allowing the dynamic business

environment and readily permit all adjustments or modifications important for

the business to remain competitive.

• Deployed service – It enables developers to deploy services without needing

to understand the whole code of application. In addition, it is easily deployed

with open sources tools.

• Efficiency – It works very efficiently with multiple servers such as cloud.

• Evolution – It evolves by adding new features and ensuring maintainability.

6

2.2 Issues of Microservices

Microservices architecture has several challenges that need to be addressed as

explained below:

• Inter-Service Communication: Microservices are built to be single

independently. They communicate with each other to make a complete

system. There are protocols that are commonly used to achieve the connection

between all services inside the application. The protocols include HTTP

request by API channel that has one entry single point and Asynchronous

messaging such as AMQP. The implementation of the actual services is less

irksome than the difficulty of communication. As discussed earlier, using API

that contains smart endpoints and dumb pipes will encourage to have inter-

service communication logic as part of the microservices. Also, each service

has its own database and that leads to multiple databases and transaction data.

All these databases need more efforts to monitor particularly in growing

applications [4]. The goal for each microservice in the infrastructure is to be

available to the client, even if the other services might be unhealthy or

unavailable. However, susceptibilities are high due to the high dispersal and

network complexity. This also poses additional difficulty in debugging,

auditing, and forensic [3], [16].

• Process Availability and Responsiveness: Distributed system has many issues,

one of which is handling isolated process availability and responsiveness.

Service availability means the service was connected and able to send a

7

request while service responsiveness is the time taken for the service to

respond to the request [4]. Service availability and responsiveness are closely

related to service communication.

• Reliability: It refers to a system that can perform the functions well without

halting, according to its requirements, and it is fault tolerant. Reliability is

particularly challenging for distributed microservices, threatened by

integration and message passing mechanisms [5].

2.3 Fault tolerance

Microservice-based system design includes many sub-areas that are partially

related to Integration, Fault Tolerance, Service Discovery, Versioning, and Scalability

and Security [11]. Integration involves making the system seem like a single system to

the end users by ensuring proper communication between the User Interface (UI), Data

Management and intercommunication of the microservices via Application Programming

Interface (API). Service Discovery locates currently running instances. Scalability entails

load balancing and caching. Fault tolerance ensures no failure or unavailability of

microservices while communicating with each other to fulfill their activities. However,

microservices are loosely coupled and communicate over the network. In some cases,

when one of the services becomes unavailable, it affects the whole system and causes

cascading failures [17]. For example, calling of service takes a long time or the service is

not up as shown in Figure 2:

8

Figure 2: Cascading failures in Microservices Architecture [17]

Microservices are susceptible to faults/failures due to the propagation of the

services and their inter-services depending on the network for communications. A

microservice application is an assemblage of fine-grained services, thus, a partial failure

or fault in one or more of those services should not bring down the entire application. In

order to protect the full service from failure, there is a need to apply stability patterns or

resiliency-related abilities, such as circuit breakers, disaster recovery, load-balancing,

fail-over, and dynamic scaling based on traffic patterns [9].

 Failures or faults can occur because the networks are unreliable, and the

connections can be latent, which may result in failure or slow response. This might be a

problem for synchronous remote calls actively waiting for a response. Therefore, it was

concluded that fault tolerance mechanisms are required to prevent prompt faults of a

service or of the network from halting the system. If there is no stability design

mechanism, the microservices might end up keeping user or other microservices waiting

for a long time.

9

Handling errors and restarting service are one of the hardest problems to solve in

microservices architectures. It is important to build microservices with a high availability

and resiliency to avoid unexpected failures. Fault tolerance is a way for microservices to

handle the unavailability of a service by using different policies such as Circuit Breaker,

fallback, and timeout [2], [4].

2.4 Stability Patterns

A system is said to be stable when it keeps handling transactions, even when there

are short-lived itches or failures of constituent components upsetting normal processing

[18].

There are total of eight healthy stability design patterns to decrease, remove, or

alleviate the effects of failures in the system such as Timeout, Circuit Breaker, and Retry

Pattern [4].

2.4.1 Timeout

Timeout is a particularly critical method in distributed data structures. Timeout is

a simple pattern that disallows a continual wait for a response from a service. It is used to

determine service availability and responsiveness while preventing slow responses as

shown in figure 3. It works with the Circuit Breaker and retry mechanism to determine

the entire time of service to perform the task. Each service should implement own

operation in limited time. For example, the service will respond in 1 second. If the service

exceeds the determined time, it will call fallback mechanism to handle request. The

fallback mechanism works as an alternative way for covering the non – responding

service such as cache service.

10

Timeout is very important to control the time of service response, otherwise the

consumer will wait for a long period of time to implement his or her service. Timeout can

prevent hanging operations and keep the system responsive [4].

However, using static, fine-tuned timeout in microservices communication are an

anti-pattern as the architecture is a highly dynamic environment where it is almost

impossible to come up with the right timing limitations that work well in every case.

Figure 3: Timeout for Availability and Responsiveness [4]

2.4.2 Circuit Breaker

This pattern works just like a circuit breaker in a residential house. Electric

current flows through the electronic systems once the circuit breaker is flipped on (closed

circuit) and stops the flow immediately it is off (opened circuit). Also, the software

circuit breaker pattern allows communication when it is closed and hinders it when it is

opened [4].

Remote calls of the services are continuously monitored by the circuit breaker.

While the ongoing service is available, the circuit breaker will be closed. Consequently,

the client’s requests are served. It is possible that, if the service is not available, the

circuit breaker opens to isolate the faults until it is available.

11

Circuit breakers protect against integration points, cascading failures, unbalanced

capacities, and slow responses. This pattern along with timeouts averts imminent

cascading failures. It also aids capacity maintenance when the system is under stress

because of partial failures. In case of weakness due to faults, Circuit Breaker Pattern

detects faults and fixes them by using fail fast directly. Also, the client will not know

about the problem because the server will prevent calling function until the problem is

fixed. In addition, the cost of failure can be dropped to the lowest level because the

process of detecting errors was done at an early stage.

As illustrated in figure 4, Circuit Breaker Pattern has three (3) states, that are

closed state, open state and half-open. In the “closed” state, the circuit breaker performs

processes as normal. If the call does not fail, the circuit remains closed. However, if it

fails and the number of failures exceeds a threshold, the circuit breaker trips will “open”

the circuit. After counting a specific amount of time, the circuit breaker goes into the

“half-open” state to check the possibility of the success of the service. Sometimes, the

failure does not have relation to the function operations, but it is occurred by latency in

the network. In case that calling the service in half-state by retry mechanism is

successful, the circuit breaker changes to the “closed” state. In addition, it returns to the

“open” state if the calling service is failed until another timeout is in place. It will repeat

this trip multiple times until the problem is solved. However, there exists an unnecessary

consumption of resources by calling through half-state open repeatedly.

12

Figure 4: Circuit Breaker Pattern [18]

2.4.3 Retry Pattern

Retry Pattern is an effective way to prevent the attack of self-denial and

unbalanced capacities with slow responses as shown in figure 5. It improves the stability

by circumventing slow responses. It can cancel the request of service in case the user

gives wrong information. Moreover, it will try to call the service until calling is passed.

Trying the process of calling service does not work permanently because retry pattern has

counter that contain limited number for trying. In case that the counter reaches the largest

number of attempts, retry mechanism will halt and send message to the service that is not

available.

13

Figure 5: Retry Mechanism [18]

However, responsiveness of an application might be affected due to a fault, which

might take a longer time; therefore, retry pattern might not be useful. The application will

waste time and resources will be consumed unnecessarily to repeat calling a request that

is likely to fail [18].

2.4.4 Cache

Cache mechanism improves the performance of an application by getting data

from cache service rather than calling the database every time to get the same data as

shown in figure 6. The mechanism is useful with a body of static data that does not

change continuously. However, the cache service must refresh data to avoid inconsistent

data problems with data in the database. The application should contain a technique to

update the data in the cache to be as up to date as possible. In addition, it can detect data

when it has stale situations and notify the database to avoid stale data. The way of

refreshing data in caching will depend on the design of application. Refreshing data can

happen in the beginning of application or after updating the special services. Moreover,

14

many caches apply termination rule that nullifies data and eliminates it from the cache list

if it is not retrieved for a definite period. A cache is local to an application instance and

stored in-memory, but most caches have a limited size compared to the original database

of system [20].

Figure 6: Cache [20]

2.5 Markov – Chain

Andrey Markov developed Markov Chain, naming the chain after his name. This

chain is mathematical schemes that change from one “state” to another [21]. “State

space” can be used to generate the chain of Markov model. In addition, with the state

space known, Markov chain determines the probability of transitioning or changing from

one state to any other state.

Markov chain is steady from many arbitrary variables that can transit from one

state to another by means of set of probabilistic rules. These sets of rules satisfy the

Markov characteristic (probability of next transitioning is dependent on the current state

not on previous state). This unique characteristic process renders them memoryless. A

15

Markov chain contains a random process with the Markov characteristics. For instance,

Markov chain consists of a series of random elements X1, X2 that guarantee Markov

property, such that the probability of transiting to the next state is influenced by the

present state and not the previous states. “The probabilistic formula [22]:

Pr (Xn+1 = x | X1 = x1, X2 = x2, …, Xn = xn) = Pr (Xn+1 = x | Xn = xn)

The probabilities produce with movement of state and are called transition

probabilities. Calculation process must compute the transition matrix whose entries in

each row must add up to exactly 1 because each row represents its own probability

distribution” [22].

Figure 7 below shows an example for Markov chain with 2-states, which can

produce four chances to generate different probabilities of states. The four chances are

AA, AB, BB, and BA.

Figure 7: Markov Chain with Two States

As mentioned previously, Markov Chain essentially involves a set of transitions

determined by probability distribution that satisfies the Markov property. This probability

distribution is computed solely by detecting transitions from the current state to the next.

Thus, are demonstrating the Markov property, which forms the unique feature of Markov

procedures that renders them memoryless [23].

16

2.6 Related Works

 Haselbock et.al in [24] presented the creation and validation of a decision

guidance metamodel, and of the specific decision guidance models for the different areas

of microservice system design. It presented fault tolerant guidance models without any

implementation.

Circuit breaker, discovery, and API gateways were discussed by Montesi &

Weber in [2]. Circuit breaker was discussed as a solution to the problem of

communications among microservices through message passing, which causes

communication failures, and timeouts among components and congestion of service.

 Toffetti et.al proposed an architecture that leverages on the concepts of service

orchestration and distributed configuration management with consensus algorithms to

enable self-management of cloud-based microservices [25].

A methodology for reliability and fault-tolerance by Choreographic Design of

distributed applications was proposed by Cassar in [26]. They integrated the run-time

monitoring and local adaptation of distributed components with the top-down

decomposition approach brought about by choreographic development.

 Tang et.al presented the design of high availability service discovery for

microservices architecture by improving RAFT consensus algorithm. However, the

leader takes absolute dominance of the whole process, if the leader is not saved, the

system can be controlled maliciously [28].

 A Self-Healing Microservices Architecture with Docker as a case study was

published in [29]. It offers continuous monitoring and detection of anomalous behavior

17

and provides the architecture with dynamic decision-making based on the employment of

the multidimensional utility-based model.

 Hystrix library as developed by Preuveneers et.al controls the networks

connection between distributed services by including two types of tolerance logic;

latency and fault. This library utilizes Bulkhead, Swim Lane, and Circuit Breaker patterns

as isolation techniques to reduce the influence of any service that is dependent on another

service. Moreover, it shields against failures not only in the network traffic [30] but also

in the whole dependency client performance. However, the three states of Circuit Breaker

Pattern, that are open state, closed state, half-open state can lead to overhead cost. Circuit

Breaker Pattern will detect fault and open state to call the service with computing a

specific time. If the call fails, half-open state will try calling again and compute another

limited time. However, DFTM model detects faults with Markov Chain based model

without computing timeout. Then, it sends the faults directly to Switch Circuit Breaker

that uses a 2-state to cover the faults. There is no need to have the third state to repeat the

calling of service, so, DFTM model removed the half-open state and exchanged it by

adding Markov Chain based model.

18

Chapter 3 DFTM Model

Microservices are designed to run in a highly distributed environment. This

environment brings not only several benefits but also brings challenges in terms of

failures or faults due to the network communication of the services. Therefore, this poses

a need to address the failures to software architect/designers [32]. Several Stability

Patterns (Timeout, Circuit Breaker, Retry Pattern) as mentioned in chapter 2 have been

created to minimize the impact of failures in distributed systems such as microservices.

3.1 Microservice Failures

Failures can occur when the networks are unreliable or the connections are latent,

which might lead to failure or slow response. This might be a problem for synchronous

remote calls actively waiting for a response. If they do not use any timeout mechanism,

they may end up waiting for a long period of time. Applications usually set a timeout for

all remote calls to avoid hanging of the entire application due to network failure or a

component failure. However, this timeout needs to be set carefully to make the system or

microservice application work as required. This would prevent further problems because

if a remote call is waiting too long for a reply, it can slow down the whole system.

Similarly, if a connection timeout is excessively fast, it may ignore a response that is sent

after timeout [33]. Meanwhile, Circuit Breaker depends on the timeout to determine the

switching or tripping from one state to another. Therefore, there is need for Switch

Circuit Breaker using Markov Chain.

As stated previously, microservice application is an assemblage of fine-grained

services, thus, a failure or fault in one or more of those services should not bring down

the entire application. Therefore, a given failure of microservices should be handled

19

properly so that a failure has minimum effects on the functionalities of the application.

The other feature of failure tolerance is the ability to detect the behavior of the

microservices running. Identifying or forecasting or predicting failures in a service and

reinstating such services are important [9].

3.2 Dynamic Fault Tolerance (DFTM) Model Methodology

This research proposes a dynamic fault tolerance (DFTM) Model using a two-

states Circuit Breaker called Switch Circuit Breaker with Markov Chain. This research

modified Circuit Breaker (three states – open, closed and half-open) to Switch Circuit

Breaker (two states – open and closed). The Circuit Breaker uses timeout to detect fault

[2], but timeouts usage hinges on assumptions about the real-time behavior of the system,

and a waiting process can be deduced from the occurrence of a timeout that a failure has

occurred [27]. Therefore, we adopted Markov Chain based model to detect fault without

timeout.

Figure 8: Transition States of microservices

20

Figure 8 shows the Transition States of microservices. There are two basic levels: Upper

level - Fault detection / Discovery level and Lower level- Fault Isolation and Recovery.

The Upper level that includes Markov Chain is used to drive the lower level while the

lower level that includes the Switch Circuit Breaker is used to drive the availability of the

microservice.

Upper level – this level detects faults or attempt to discover fault. It is based on the

Markov Chain model. This level consists of three (3) states:

1. Stable state – at this state, the microservice is available for the client with no fault.

2. Unstable state – the microservice has either detected fault or attempted to repair.

3. Disable state – the microservice has failed after trial and it is now unavailable.

Lower level – this level is also called the fault isolation level and Recovery level. It

isolates the fault microservice by employing a switch circuit breaker. It has two (2) states:

1. Closed state – the Switch Circuit Breaker is closed when the microservice is

available for operations, that is, the microservice is in a stable state. Therefore,

circuit grants user requests.

2. Open state – the Switch Circuit Breaker is opened when their fault, and it allows

automatic repair.

21

Figure 9: DFTM model

Figure 9 shows the overall DFTM model with highlighted components and

mechanisms of the model with their interactions. The main components include Clients,

Switch Circuit Breaker, Markov Chain Model, Retry mechanism, Cache and

Microservices. The Client sends request(s) that passes through the Switch Circuit Breaker

or inter-microservices communication. The Switch Circuit Breaker controls the

communication of the microservices by getting the predetermined/predicted state of the

microservices through Markov Chain. The Switch Breaker will close if Markov Chain

returns to “Stable State”, and it will open if Markov Chain returns to “Unstable State” or

“Disable State”. The Switch Circuit Breaker sends to retry pattern in case of an error.

Retry patterns enables an application to handle momentary or transient failures (including

the momentary loss of network connectivity to components and services, the temporary

22

unavailability of a service) when it tries to connect to a service or network resource by

transparently retrying a failed operation. This helps to increase the stability of the

application. Markov Chain sends to Cache if the state is not favorable for the successful

running of the microservices.

Figure 10 further breaks down the internal working principles of each of the

components represented with a flow-chart diagram. When the microservices are started, it

is checked if it is in the Stable State or not, which is determined by the Markov Chain

model implemented. If microservices are in the Stable State, the Switch Circuit Breaker

is closed to grant the client’s requests and send the response appropriately back to the

client. If the microservices are in the Unstable state, the Switch Circuit Breaker is open

and sends to Retry mechanism for recovering in case the fault is a transient fault. Retry

mechanism also checks if the service is available and the number of retry has not been

exceeded. If there is a ‘Yes’, the Switch Circuit Breaker is closed, otherwise, the

microservices then become Disable. At this point, if the Cache is available, the client is

served from the Cache or a failed response is sent back to the client. They are achieving

the major aim of DFTM model, which is to ensure fault tolerance, using Stability Patterns

and Markov Chain based model.

23

Figure 10: Flow-chart of the DFTM model

3.3 Implementation

In this study, DFTM model was implemented using PHP (Laravel/Lumen framework).

Markov Chain, Switch Circuit Breaker, Retry and Cache patterns were developed using

PHP (Laravel/Lumen framework).

3.3.1 Markov Chain

This research proposes to detect faults using Markov Chain with three states

(Stable, Unstable and Disable) with Switch circuit breaker with two states (Open and

Closed) as explained previously.

In Markov Chain, a random variable Xk at the time instant k is measured, and it

can attain several sets of values (X1, X2, ... Xn). The probability that a random variable

can attain a state (xi) at a specific time instant depends on the present state at the time

24

instant according to the Markov property. The initial state of the microservices is

received from the response time of the microservices.

Markov Chain detects the states of the microservices using stochastic probability.

The probability states of the microservices are determined using response time. The

transition states are derived with the probability states generated previously as shown in

figure 11 below. In order to derive the state space of Markov chain, the states are counted

using the function below with the probability states and transition states previously

calculated. The transition matrix is generated using the state space. This matrix gives the

overall state position of the systems. In order to determine the probability of each of the

states, it is needed to compute the matrix multiplication of the present matrix and

transition matrix in the generic matrix multiplication function. Finally, it is required to

calculate the transition probabilities using the transition matrix previously calculated.

These probabilities consequently give the probability of the states.

Figure 11: Markov Chain States for DFTM Model

Table 1 shows the tabulated probability matrix to be in Stable State. Table 2 shows

the tabulated probability matrix to be in Unstable State, and table 3 shows the tabulated

probability matrix to be in Disable State.

25

Table 1: Stable State Probability Matrix

 Stable Unstable Disable

Stable 1 0 0

Unstable 1 0 0

Disable 1 0 0

Table 2: Unstable State Probability Matrix

 Stable Unstable Disable

Stable 0 1 0

Unstable 0 1 0

Disable 0 1 0

Table 3: Disable State Probability Matrix

 Stable Unstable Disable

Stable 0 0 1

Unstable 0 0 1

Disable 0 0 1

Figure 12 shows the class UML (Unified Modelling Language) of the Markov

chain class. This class – Markov has (12) methods/functions to detect the states of the

microservices.

26

Figure 12: Markov Chain UML diagram

Markov-chain was achieved with twelve interacting methods as shown in the

figure above. These functions are explained briefly below:

i. Get Response Time Data: This function automates the data generation for driving

the Markov chain processes. The response time of the microservice is measured

using CURL. The remaining functions depends on this function. This data is been

processed to determine the state of the microservices. Figure 13 below briefly

shows the snapshot of the code.

$response_time = [];

 for ($i = 0; $i<10; $i++){

 $ch = curl_init('http://localhost:3000/test');

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

 curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);

 curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 5);

 curl_setopt($ch, CURLOPT_TIMEOUT, 5);

 curl_setopt($ch, CURLOPT_HTTPHEADER, array('Accept:

application/json'));

 curl_exec($ch);

 $info = curl_getinfo($ch);

 curl_close($ch);

 array_push($response_time, $info['total_time']);

 }

 return $response_time;

 }

Figure 13: Get Response Data Function

27

ii. Find bin: This method arranges the response time in ascending order as shown in

figure 14 below.

function find_bin($response_time){

 $bin = [];

 $count = count($response_time);

 $k = sqrt($count);

 $max = max($response_time);

 $min = min($response_time);

 $h = ($max-$min)/$k;

 $bin[] = $min;

 while ($min<=$max) {

 array_push($bin, $min + $h);

 $min += $h;

 }

 return $bin;

 }

Figure 14: Ascending Order Code

iii. Find frequency: This method calculates the frequency of occurrence of each of the

response time gotten from the first function (get_responsetime_data). This method

combines the output of the two previous functions as shown in figure 15 below.

 function find_freq($response_time, $bin){

 $count = count($response_time);

 $freq = array_fill(0, count($bin), 0);

 $diff = $response_time;

 for ($i=0; $i < $count; $i++) {

 for ($j=0; $j < count($bin) ; $j++) {

 if($bin[$j] <= $diff[$i] && $diff[$i] < $bin[$j+1]){

 $freq[$j]++;

 }

 }

 }

 return $freq;

}

Figure 15: Find Frequency Function

iv. Find Cumulative Frequency: The function below calculates the cumulative

frequency of the response time data as shown in the figure 15 below by using the

frequency gotten from the previous functions.

28

 function find_cum_freq($freq){

 $cum_freq = array_fill(0, count($freq), 0);

 for ($i=0; $i < count($freq) ; $i++) {

 for ($j=0; $j <= $i; $j++) {

 $cum_freq[$i] += $freq[$j];

 }

 }

 return $cum_freq;

 }

Figure 16: Cumulative Frequency Function

v. Find Quartile Range: The function below finds the quartile range of the set of the

response time by dividing the cumulative frequency calculated previously into a

group of four as seen in figure 17 below. The difference is calculated using the

bin and frequency variable over the span of the data.

 function find_quartile_range($bin, $freq, $cum_freq){

 $n = end($cum_freq);

 $n1 = $n/4; $n2 = $n/2;

 $n3 = ($n*3)/4;

 $range[] = $bin[0];

 for ($i=0; $i < count($cum_freq) ; $i++) {

 if ($cum_freq[$i]<=$n1 && $n1<$cum_freq[$i+1]) {

 $range[] = ($n1-$cum_freq[$i])<($cum_freq[$i+1]-$n1) ?

$bin[$i] : $bin[$i+1];

 }

 if ($cum_freq[$i]<=$n2 && $n2<$cum_freq[$i+1]) {

 $range[] = ($n2-$cum_freq[$i])<($cum_freq[$i+1]-$n2) ?

$bin[$i] : $bin[$i+1];

 }

 if ($cum_freq[$i]<=$n3 && $n3<$cum_freq[$i+1]) {

 $range[] = ($n3-$cum_freq[$i])<($cum_freq[$i+1]-$n3) ?

$bin[$i] : $bin[$i+1];

 }

 }

 $range[]=end($bin);

 return $range;

 }

Figure 17: Find Range Function

vi. Find Probability State (find_p_states): The function shown in figure 18 below

calculates the probabilities of the states using the response time and the range

determined previously.

29

 function find_p_states($response_time, $range){

 $p_states = [];

 $diff = $response_time;

 foreach ($diff as $key => $value) {

 if ($range[0] <= $value && $value < $range[1]) {

 $p_states[$key] = "P1";

 }elseif ($range[1] <= $value && $value < $range[2]) {

 $p_states[$key] = "P2";

 }elseif ($range[2] <= $value && $value < $range[3]) {

 $p_states[$key] = "P3";

 }else{

 $p_states[$key] = null;

 }

 }

 return $p_states;

 }

Figure 18: Find Probability States Function

vii. Find transition states (find_transition_states): The transition state is calculated

with the probabilities generated earlier as shown in figure 19 below. This aids the

generation and computation of the transition matrix.

function find_transition_states($p_states){

 $count = count($p_states)-1;

 for($key=0; $key < $count; $key++) {

 for ($i=1; $i <= 3; $i++) {

 for ($j=1; $j <= 3 ; $j++) {

 if (($p_states[$key] == "P" . $i) && ($p_states[$key+1] ==

"P" . $j)) {

 $transition_states[$key+1] = "P_" . $i . $j;

 }

 }

 }

 }

 return $transition_states;

 }

Figure 19: Transition State Function

viii. Find State Count: The number of the states is determined with the code in figure

20 below using the probability states and the transition states.

30

 function find_state_count($p_states, $transition_states){

 $state_count = array(

 'P1' => 0 ,'P2' => 0 ,'P3' => 0 ,

 'P_11' => 0 ,'P_12' => 0 ,'P_13' => 0 ,

 'P_21' => 0 ,'P_22' => 0 ,'P_23' => 0 ,

 'P_31' => 0 ,'P_32' => 0 ,'P_33' => 0

);

 foreach ($p_states as $key => $value) {

 if ($value == "P1") {

 $state_count["P1"]++;

 }elseif ($value == "P2") {

 $state_count["P2"]++;

 }elseif ($value == "P3") {

 $state_count["P3"]++;

 }

 }

 foreach ($transition_states as $key => $value) {

 for ($i=1; $i <= 3; $i++) {

 for ($j=1; $j <= 3 ; $j++) {

 if ($value == "P_" . $i . $j) {

 $state_count["P_" . $i . $j]++;

 }

 }

 }

 }

 return $state_count;

 }

Figure 20: Find State Count Function

ix. Create Transition Matrix: Since Markov Chain is memoryless, transition matrix is

determined as shown below in figure 21 with the state count generated in the

previous function.

 function create_transition_matrix($state_count){

 $transition_matrix = array(

 array($state_count['P1'] == 0 ? 0 :

$state_count["P_11"]/$state_count["P1"] ,

 $state_count['P1'] == 0 ? 0 :

$state_count["P_12"]/$state_count["P1"],

 $state_count['P1'] == 0 ? 0 :

$state_count["P_13"]/$state_count["P1"]),

 array($state_count['P2'] == 0 ? 0 :

$state_count["P_21"]/$state_count["P2"] ,

 $state_count['P2'] == 0 ? 0 :

$state_count["P_22"]/$state_count["P2"],

 $state_count['P2'] == 0 ? 0 :

$state_count["P_23"]/$state_count["P2"]),

 array($state_count['P3'] == 0 ? 0 :

$state_count["P_31"]/$state_count["P3"] ,

31

 $state_count['P3'] == 0 ? 0 :

$state_count["P_32"]/$state_count["P3"],

 $state_count['P3'] == 0 ? 0 :

$state_count["P_33"]/$state_count["P3"])

);

 return $transition_matrix;

 }

Figure 21: Find Transition Matrix Function

x. Matrix multiplication (matric_mul_3_3): There are three states Markov chain.

The transitional matrix and the state count are multiplied in a 3 by 3 matrix to

generate leading matrix to determine the current state of the microservice.

 function matrix_mult_3_3($m1,$m2){

 for($row = 0; $row < 3; $row++){

 for($column = 0; $column < 3; $column++){

 $sum = 0;

 for($ctr = 0; $ctr < 3; $ctr++){

 $sum = $sum + ($m1[$row][$ctr] * $m2[$ctr][$column]);

 }

 $sol[$row][$column] = $sum;

 }

 }

 return $sol;

 }

Figure 22: Matrix Multiplication Function

xi. Find Transition Probabilities: This is the last major function to determine the

probability of the present state of the microservice. This function uses transition

matrix along with the matrix multiplication of the present state to determine the

probability of the state change as shown in figure 23 below.

 function find_transition_probabilities($transition_matrix){

 $q[1] = $transition_matrix;

 for ($i=2; $i < 9; $i++) {

 $q[$i] = $this->matrix_mult_3_3($q[$i-1], $transition_matrix);

 }

 $probabilities = array($q[8][0][0], $q[8][0][1], $q[8][0][2]);

 return $probabilities;

 }

}

Figure 23: Transition Probability Function

32

xii. Predict State: This is the main matrix that calls all the methods according to their

usage. In order to determine the state of the microservices.

3.3.2 Switch Circuit Breaker

Switch Circuit Breaker operates the same as the electric switch where current does not

flow when the switch is open, but current flows when the switch is closed. Meanwhile,

the flipping of this switch is dependent on an external force. The same applies to the

Switch Circuit Breaker where it either opens or closes based on the states detected by the

Markov Chain. If the state is Stable, it closes the Switch Circuit Breaker, and the

microservice is processed while it opens the Switch Circuit Breaker if the state is

Unstable or Disable. If the microservice is Unstable or Disable, retry mechanism recovers

the system. It is also possible that, if the retry fails continuously, the microservice will go

to Cache server. In case that Caching server does not resolve fault, the client receives a

failed response. Figure 24 shows the class UML of Switch Circuit Breaker.

Figure 24: Switch Circuit Breaker UML Diagram

33

• IsCircuitClose:

This function checks the state of the microservices as reported from Markov

chain. If Markov returns a value that is equal to “Stable”, this function returns true

and continues execution of the microservices. Otherwise, the process sequence

will send to retry function as described below.

• Retry function:

This function gets the predicted state of the microservices from Markov chain and

sets the maximum number of retry to three (3). It checks if the state is still

unstable and the maximum number has not been exceeded. It retries the service if

it returns true but enters cache if it returns false. The system is delayed for one

second between each retry. Figure 25 below explains the code implementation as

follows:

 public function retry(){

 $markov = new Markov();

 $state = $markov->predict_state();

 $max_retries = 3;

 $retry_count = 0;

 while(($state == 'Unstable') && ($retry_count <

$max_retries))

 {

 parent::retry();

 sleep(1);

 $retry_count ++;

 }

 return true;

 }

Figure 25: Retry Code Function

• Cache:

This function calls the service cache if the retry failed to get a “Stable” response

from Markov Chain. If the cache fails, the system returns a failed response.

• Settings Related Functions:

These functions include serviceExists, getServiceSettings and setServiceSettings.

34

These functions are meant to get the major settings to keep the microservices in

the correct configuration. Function serviceExists checks for the existence of the

route in the service list. GetService Settings function gets the settings of the

microservices while setServiceSettings function sets the microservices settings.

/**

 * Function serviceExists

 *

 * Checks either service is configured in config.php or not

 *

 */

 private function serviceExists() {

 $index = 0;

 foreach ($this->servicesconfig as $config) {

 //($config);

 if($config['servicename']===$this->servicename) {

 // Service is configured so return true

 $this->arrayindex = $index;

 return true;

 break;

 }

 $index++;

 }

 // Service is not configured so return false

 return false;

 }

Figure 26: Service Exists Function

35

Chapter 4 Case Study

This chapter demonstrates how to apply the dynamic fault tolerance (DFTM)

model that is presented in chapter 3 to Pet Clinic microservices, which is a spring-boot

based microservice.

4.1 Overview of Pet Clinic Microservices

Spring Boot creates individual and production-grade Spring based applications

easily [35]. It evolves from Spring framework written in Java. It is bootstrap that is

described in the following reference: - Spring Initializer (https://start.spring.io).

Spring Pet Clinic Microservices obtained from GitHub at

https://github.com/spring-petclinic/spring-petclinic-microservices was built around small

independent running in their own JVM and communicating over HTTP via REST API.

These microservices are all written in Java. It has three (3) functional microservices:

customers, vets and, visits. The working of the internal structure of the application is

shown in figure 26:

Figure 27: Working Architecture of Pet Clinic Microservices [36]

https://start.spring.io/
https://github.com/spring-petclinic/spring-petclinic-microservices

36

As shown in figure 26, the 3 microservices – customers-service, vets-service and

visits-service expose the functionality of the application through a REST API. Each of

these 3 microservices is an application in the sense of Spring Boot with its own Maven

module containing certain Java classes and configuration files.

The API-gateway controls and coordinates the remaining services. Customers-

service microservice enables the customers to get for pets’ details, pets request and the

owners’ details. The vets-service microservice allows to receive the vet details and vets’

expertise. Visits-service microservice provides information about the pets visit and the

owner visits.

4.2 Applying DFTM Model Methodology

The microservice is started and the admin board for monitoring the UP or DOWN

service is monitored as provided by the Pet Clinic Developer. Figure 27 below shows the

homepage of the microservices when it is started.

Figure 28: Pet Clinic Microservice Homepage

37

In this study, the fault tolerance DFTM model was tested by using two arbitrary

tests, delaying response for a few seconds and shutting down of one of the running

servers of the microservices as shown in figure 28 - admin dashboard (showing the

information about the microservices).

Figure 29: Monitoring the DOWN microservice

The retry and cache patterns of the model provided additional resilience to Pet

Clinic. The retry mechanism is dependent on the number of retry manually added and the

number of seconds of delay between each retry. The cache reports the cached information

if it exists or returned a failure response.

In order to illustrate the results for each test case described in chapter 3, this study

allowed the microservice to run without any form of error, which means the state is

“Stable”. Figure 29 displays the state of the microservices and the running time for

DFTM model while it is on stable state detected by Markov Chain.

38

Figure 30: Test Case of Stable state in DFTM model

Moreover, a JSON parsing error was introduced to the microservice to trigger a

change of state. This parsing error changed the state to “Unstable” as shown in figure 30.

Figure 31: Test Case of Unstable state in DFTM model

Moreover, there was a change in state to “Disable” after retry failure. The

outcome of this is shown in figure 31.

Figure 32: Test Case of Disable state in DFTM model

Finally, the test case for the failed cache is shown in figure 32 below.

Figure 33: Test Case Failure

39

Table 4 below summarizes the test case with the test data and the result for each

of the cases – stable, unstable and disable states.

Table 4: Test Cases Description
TEST

CASE ID

TEST CASE

Description

TEST DATA EXPECTED

OUTPUT

ACTUAL

OUTPUT

T_1 Stable when the

microservices

run perfectly

without any

form of error,

which means

the state is

“Stable”.

Response time:

dynamically generated,

URL:

http://localhost:4000/test,

Response time:

dynamically generated

DFTM model

will displayed

the state of the

microservices

and the running

time for DFTM

model while it

is on stable

state as detected

by Markov

Chain.

Figure 29

T_2 Unstable when

a JSON parsing

error was

introduced to

the

microservice to

trigger a change

of state. This

parsing error

changed the

state from

Stable to

“Unstable”

URL:

http://localhost:4000/test,

Response time:

dynamically generated,

Jason response: false

DFTM model

detect fault and

retry

mechanism will

cover the fault.

Figure 30

T_3 Disable when

there was a

change in state

to “Disable”

after retry

failure.

URL:

http://localhost:4000/test,

Response time:

dynamically generated,

Jason response: false,

Number of retries: 3

DFTM will

determine the

state as disable

and retry will

send it to cache

to recover

Figure 31

T_4 Cache has a

failure.

 A failed

response will

appear

Figure 32

http://localhost:4000/test
http://localhost:4000/test
http://localhost:4000/test

40

Chapter 5 Evaluation

This chapter evaluates the dynamic fault tolerant model for the microservice. As

stated previously, this research aimed for achieving a stable microservices architecture

using the Stability Patterns with Markov Chain. Also, it intended to increase the

performance and reliability of microservices architecture. For that, the evaluation of the

reliability and performance was performed as follows:

5.1 Reliability

The reliability of DFTM was compared with a Circuit breaker after a failure is

detected. The circuit breaker will open and wait until manually set timeout has elapsed.

However, DFTM Model responded at an almost negligible microsecond after the failure

has been detected and recovered as seen in table 5 below. DFTM eliminates the usage of

timeout by dynamically continuing the execution after detecting a fault. The + in the table

shows the additional time it took the DFTM to run after fault detection while the circuit

breaker did not execute which made the execution time of circuit breaker zero for all the

number of times of trial as shown in the table below.

Table 5: Reliability Execution Time Comparison

N DFTM Model (s) Circuit breaker (s)

1 +0.71924614 0

2 +0.764889917 0

3 +0.705334139 0

4 +0.774148216 0

5 +0.768445978 0

41

The circuit breaker was observed to timeout at the set time while DTFM delivered

the response at negligible additional time ranging from 0.72s to 0.77. The reliability of

DFTM model is better than the circuit breaker.

5.2 Performance

The performance of DFTM was evaluated by generating the execution time of

DFTM model in comparison with the circuit breaker. The evaluation steps are as follows:

• Generation of execution time of circuit breaker.

• Generation of execution time of DFTM Model.

• Repetition of steps 1 and 2 for ten (10) times as shown in table 6 below.

• Calculation of average execution time of DFTM model.

• Calculation of average execution time of Circuit Breaker.

• Calculation and comparison of Percentage Performance of DFTM and Circuit

breaker.

Table 6: Performance Execution Time Comparison

N DFTM Model (s) Circuit breaker (s)

1 0.72924614 2.351104021

2 0.804889917 1.343371868

3 1.005334139 2.295579195

4 0.784148216 2.155514002

5 0.758445978 0.734778166

6 0.876322985 0.817534924

7 0.986773014 2.21852994

42

N DFTM Model (s) Circuit breaker (s)

8 0.771557808 0.853736877

9 0.816271973 0.83048296

10 0.756757021 1.05091095

Average (s) 0.833974719 1.46515429

Percentage Difference of the DFTM Model and the Circuit breaker is thus

calculated:

 % 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1.46515429− 0.833974719

1.46515429
∗ 100%

% 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 43%

DFTM Model was observed faster 43% than the circuit breaker.

43

Chapter 6 Conclusion

Dynamic Fault Tolerance (DFTM) model is designed to solve the inherent

problem of fault tolerance in the microservices architecture. This chapter is divided into

two sections; conclusion which summarizes the thesis with a general overview of the

presented study and future works which provides the summary of important

considerations that can be taken into to enhance the research.

6.1 Conclusion

Microservices architecture is an autonomy service architecture with the sole aim

of making application development and deployment very easy. Microservices

architecture has several influential advantages, which makes its acceptance level on an

exponential growth across the world.

However, one of the major challenges of this architecture is failures or faults in

one of the microservices leading to the breaking down of the whole system. Therefore,

fault tolerance emerges as a sub-area of microservices, which tends to provide stability,

reliability, robustness, and resiliency to the architecture by using stability patterns.

 There are many Stability patterns (Circuit breaker, Timeout, Bulkhead, Fail Fast,

and Retry) to achieve fault tolerance. However, in order to achieve a better performance

and reliability, this study modified circuit breaker, which uses manually set timeout in a

dynamic environment of microservices, which may affect the effectiveness and reliability

of the architecture. This thesis modified the circuit breaker to create DFTM (Dynamic

Fault Tolerance Model) using Switch Circuit Breaker with Markov Chain to dynamically

determine the state of the microservices, retry pattern and cache. DFTM was found to be

44

faster and better than the original Circuit Breaker. DFTM has a better performance and

reliability while achieving the architecture’s stability.

6.2 Future work

This thesis provides stability through Markov chain, thereby eliminating the use

of static timeout in circuit breaker. This thesis can be further improved as future work as

stated in the following sub-sections.

6.2.1 Consider determining types of faults

As a future work, Machine Learning techniques can be used to determine various

types of faults and apply the corresponding recovery stability pattern(s). Each of the

stability patterns has its own inherent strengths, and the use of ML will decide the

appropriate stability pattern for the type of the faults or failure. This will prevent the

usage of multiple hybrid stability patterns. Thereby, developing a data-driven fault

tolerance microservices architecture to ensure the autonomous fault tolerance in the

microservices architecture and a higher reliability and performance.

6.2.2 Consider catching a failed response

The major aim of dynamic fault tolerant DFTM model is to ensure there is high

availability of the microservices, so other forms of stability patterns can be explored.

Failover can be used to protect cache system from returning a failed response. In

addition, Fail-fast pattern can be used with bulkhead pattern to achieve a better fault

isolation.

45

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in

microservice architecture,” Proc. - 2016 IEEE 9th Int. Conf. Serv. Comput. Appl.

SOCA 2016, pp. 44–51, 2016.

[2] F. Montesi and J. Weber, “Circuit Breakers, Discovery, and API Gateways in

Microservices,” Sep. 2016.

[3] N. Dragoni et al., “Microservices : Yesterday , Today , and Tomorrow,” Springer

Int. Publ. Cham, pp. 195–216, 2017.

[4] M. Richards, Microservices AntiPatterns and Pitfalls. O’Reilly Media, Inc., 1005

Gravenstein Highway North, Sebastopol, CA 95472, 2016.

[5] M. Garriga, “Towards a taxonomy of microservices architectures,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 10729 LNCS, pp.

203–218.

[6] I. Mistrík, R. Soley, N. Ali, J. Grundy, and B. Tekinerdogan, Software quality

assurance: In large scale and complex software-intensive systems, 1st ed. {San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2015.

[7] N. Wu, D. Zuo, and Z. Zhang, “An extensible fault tolerance testing framework for

microservice-based cloud applications,” 2019, pp. 38–42.

[8] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges When Moving from

Monolith to Microservice Architecture,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2018, vol. 10544 LNCS, pp. 32–47.

46

[9] K. Indrasiri and P. Siriwardena, Microservices for the Enterprise. 2018.

[10] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices The

Journey So Far and Challenges Ahead,” 2018.

[11] S. Haselb, R. Weinreich, and G. Buchgeher, “An Expert Interview Study on Areas

of Microservice Design,” 2018.

[12] T. Hunter II, Advanced Microservices. 2017.

[13] M. Ima, “Microservices vs. SOA.” [Online]. Available:

https://dzone.com/articles/microservices-vs-soa-2. [Accessed: 18-March-2019].

[14] J. Fowler, M. and Lewis, “Microservices,” Microservices, 2014. [Online].

Available: https://martinfowler.com/articles/microservices.html. [Accessed: 20-

May-2019].

[15] L. Florio, E. Di Nitto, D. Elettronica, I. Bioingegneria, P. Milano, and A.

Microservices, “Gru : an Approach to Introduce Decentralized Autonomic

Behavior in Microservices Architectures,” 2016.

[16] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-Service for Microservices-Based

Cloud Applications,” in Proceedings of the 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom), 2015, pp.

50–57.

[17] C. E. de Oliveira, Spring 5.0 By Example. Packt Publishing, 2018.

[18] M. T. Nygard, Release It!, vol. 5, no. 9. 2014.

[19] N. Mashashi, B. Alex, W. Mike, W. Mar, and F. Sam, “Retry pattern.” [Online].

Available: https://docs.microsoft.com/en-us/azure/architecture/patterns/retry.

[Accessed: 15-March-2019].

47

[20] N. Mashashi, B. Alex, W. Mike, W. Mar, and F. Sam, “Cache-Aside Pattern,”

2018. [Online]. Available: https://docs.microsoft.com/en-

us/azure/architecture/patterns/cache-aside. [Accessed: 12-Jan-2019].

[21] P. Victor and L. Lewis, “Markov Chains,” 2014. [Online]. Available:

http://setosa.io/ev/markov-chains/. [Accessed: 12-May-2019].

[22] J. Sejal, “Markov Chains in Python: Beginner Tutorial,” 2018. [Online]. Available:

https://www.datacamp.com/community/tutorials/markov-chains-python-tutorial.

[Accessed: 29-April-2019].

[23] S. Devin, “Introduction to Markov Chains,” 2018. [Online]. Available:

https://towardsdatascience.com/introduction-to-markov-chains-50da3645a50d.

[Accessed: 2-May-2019].

[24] S. Haselbock, R. Weinreich, and G. Buchgeher, “Decision guidance models for

microservice monitoring,” in Proceedings - 2017 IEEE International Conference

on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings, 2017,

pp. 54–61.

[25] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds, “An

architecture for self-managing microservices,” 2015, pp. 19–24.

[26] I. Cassar, A. Francalanza, C. A. Mezzina, and E. Tuosto, “Reliability and Fault-

Tolerance by Choreographic Design,” Electron. Proc. Theor. Comput. Sci., vol.

254, pp. 69–80, Aug. 2017.

[27] W. Tang, L. Wang, and G. Xue, “Design of High Availability Service Discovery

for Microservices Architecture,” pp. 253–257.

[28] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A Review on

48

Consensus Algorithm of Blockchain,” pp. 2567–2572, 2017.

[29] B. M. B and M. Almiani, Advanced Information Networking and Applications, vol.

926, no. i. Springer International Publishing, 2020.

[30] D. Preuveneers and W. Joosen, “QoC Breaker: intelligent software circuit breakers

for fault-tolerant distributed context-aware applications,” J. Reliab. Intell.

Environ., vol. 3, no. 1, pp. 5–20, Apr. 2017.

[31] Matt Jacobs, “Hystrix Defend Your app,” 2017. [Online]. Available:

https://github.com/Netflix/Hystrix/wiki. [Accessed: 26-Apr-2019].

[32] A. Rotem-Gal-Oz, “Fallacies of Distributed Computing Explained (The more

things change the more they stay the same),” p. 20, 2016.

[33] N. Sam, Building Microservices. O’Reilly Media, 2015.

[34] L. Lamport, “Using Time Instead of Timeout for Fault-Tolerant Distributed

Systems.,” ACM Trans. Program. Lang. Syst., vol. 6, no. 2, pp. 254–280, Oct.

2014.

[35] Pivotal, “Spring Boot,” 2015. [Online]. Available: https://spring.io/projects/spring-

boot. [Accessed: 10-Jun-2019].

[36] Pivotal, “PetClinic,” 2016. [Online]. Available: https://github.com/spring-

petclinic/spring-petclinic-microservices. [Accessed: 20-May-2019].

	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2019

	A Dynamic Fault Tolerance Model for Microservices Architecture
	Hajar Hameed Addeen
	Recommended Citation

	tmp.1565278928.pdf.sw5TY

