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Atrazine (6-chloro-N-ethyl-N' -(1-methylethyl)-1,3,5-triazine-2,4-diamine) is 
a herbicide of the triazine family used for controlling broadleaf and some 
grassy weeds in corn and sorghum. Since its introduction in the late 1950s, 
atrazine has been a popular herbicide because it is relatively inexpensive 
and, in most cases, gives good season-long weed control. It can be applied 
pre- or postemergence and is often tank mixed with grass herbicides, such 
as alachlor (2-chloro-N-(2,6-diethylphenyl-N-(methoxymethyl)acetamide), 
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metolachlor (2-chloro-N- (2-2ethyl-6-methylphenyl)-N -(2-methoxy -1-methyl
ethyl)acetamide), butylate (S-ethyl bis(2-methylpropyl)carbamothioate), or 
EPTC (S-ethyl dipropylcarbamothioate), or with other broadleaf 
herbicides, such as dicamba (3,6-dichloro-2-methoxybenzoic acid), to ob
tain broad-spectrum weed control. Atrazine mixed with nicosuIfuron 
{2-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]suIfonyl]-N,N
dimethyl-3-pyridinecarboxamide} or bromoxynil (3,5-dibromo-4-hydro
xybenzonitrile) is commonly used across the northern Corn Belt; when 
mixed with cyanazine {2-[[4-chloro-6-( ethylamino )-1,3 ,5-triazin-2-yl]amino]-
2-methylpropanenitrile}, it is commonly used in total weed control pro
grams in southern Iowa, Illinois, Indiana, and Ohio. 

From 1987 to 1989, atrazine was the herbicide that had the greatest 
annual use amounts, 29 million kg active ingredient (a.i.), and was applied 
to about 840/0 of the U.S. corn crop (Gianessi and Puffer 1991). About 70 
million ha of corn in the Midwest was treated with atrazine in 1990 (Gi
anessi and Puffer 1991). Recent U.S. Environmental Protection Agency 
(USEP A) data show atrazine as the most heavily used pesticide in the 
U.S. -31-33 million kg a.i. for 1995 (Aspelin 1996). Recommended rates in 
the North Central states had been 2.2 kg a.i. ha- I on coarse-textured soils 
to 3.3 kg a.i. ha- I on fine-textured soils in the 1960s and 1970s to control 
both annual grasses and broadleaf weeds. However, the use rate in the 
1980s and 1990s ranged from 0.8 to 1.5 kg a.i. ha -I, with about 85% of 
the atrazine applied in tank-mix applications (Gianessi and Puffer 1991). 
Tank-mix uses with lower atrazine concentrations increased due to the rec
ognition of triazine-resistant weeds that appeared throughout the United 
States (Bandeen et al. 1982; Ryan 1970) and because of carryover injury to 
rotational broadleaf crops such as soybean. 

Although the majority of the applied atrazine remains in the surface soil, 
where it can control weeds while it degrades, off-site movement has been 
well documented. For instance, atrazine has been found in rainwater (Na
tions and Hallberg 1992; Richards et al. 1987), tile drainage water (Buhler 
et al. 1993; Jayachandran et al. 1994), and wind-eroded sediments (Glot
felty et al. 1989; DeSutter et al. 1995). Atrazine also has been detected in 
groundwater more frequently than any other herbicide (Ritter 1990) and 
has been detected in the groundwater of most Midwestern states. Most of 
these detections are considerably below (Richards et al. 1996) the USEPA 
maximum contamination level (MCL) for atrazine in drinking water of 3 J1.g 
L -I (ppb) (USEPA 1995). Transport of atrazine to groundwater depends 
on combinations of factors, including the chemical properties of atrazine 
(Fig. 1), the soil chemical and physical properties and conditions, and envi
ronmental variables. 

Atrazine movement through the root zone, vadose zone, and into 
groundwater is affected by several soil processes that vary throughout the 
profile. Transformation and retention (sorption) are two major processes 
that affect the amount of atrazine present and available for transport 
through the soil profile. Transformation processes actually reduce or elimi-
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Atrazine 

C.A. name: 6-chloro-N-ethyl-N'-( 1-methylethyll-I,3,5-triazine-2,4-

diamine 

CAS RN: 1912-24-9 

Molecular weight: 21 5.7 pKa: 1.7 

Melting point: 175.8 °C Vapor pressure: 0.039 mPa (25°C) 

Kow log P: 2.5 (25°C) Solubility (water): 33 mg L·' 

Fig. 1. Selected physical and chemical properties of atrazine (from Tomlin 1994). 

nate the amount of atrazine present and available for transport through 
soil. Atrazine can be degraded partially or completely to inorganic products 
by chemical, biochemical, and photochemical means. Plants remove some 
of the atrazine from soil, and uptake is necessary to control weeds. Tolerant 
plants and some microbes have the ability to transform atrazine by N
dealkylation, hydroxylation, or conjugation with glutathione, all of which 
reduce atrazine amounts in soil. Atrazine can volatilize and move into 
the atmosphere, also reducing soil concentrations. On the other hand, the 
sorption process can retain or retard atrazine movement with water. While 
retention processes do not affect the total amount of atrazine present in 
soil, retention can decrease or eliminate the amount available for transport. 

This paper reviews the inherent soil factors and processes that impact 
atrazine movement, with emphasis on groundwater deposition in the North 
Central U.S. Application and soil management practices that influence the 
risk of groundwater contamination by atrazine also are discussed. This 
paper is not a comprehensive literature survey; rather, it focuses on research 
performed in the North Central U.S. 

II. Transformation 

In soil-water systems, atrazine is transformed by abiotic and biotic 
processes. Hydrolysis (hydrolytic dechlorination), N-dealkylation, de
amination, and ring cleavage are the major transformation processes that 
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degrade atrazine. The transformation products of these reactions include 
hydroxyatrazine (HA) (6-hydroxy-N-ethyl-N' -(1-methylethyl)-1,3,5-triazine-
2,4-diamine), deethylatrazine (DEA) (6-chloro-N-(l-methylethyl)-1,3,5-tri
azine-2,4-diamine), deisopropylatrazine (DIA) (6-chloro-N-ethyl-l, 3, 5-tri
azine-2,4-diamine), and deethyldeisopropylatrazine (DEDIA) (6-chloro-l,3,5-
triazine-2,4-diamine) (Fig. 2). Other products, including the hydroxylated 

HOyNYHCH{CH312 

NyN 

NHCH2CH3 

hydroxyatrazine 

deethylatrazine 

N CII( ~NH2 
NyN 

NHCH2CH3 

deisopropylatrazine 

N CIY ~NH2 
NyN 

NH2 

deethyldeisopropylatrazine 

ammeline 

deethylhydroxyatrazine 

deisopropylhydroxyatrazine 

4-amino-2-chloro-1,3,5-triazine 

Fig. 2. Structures of selected atrazine metabolites. 
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analogs of DEA, DIA, and DEDIA, may also be formed. These degradates 
differ from atrazine in their degradation and soil retention characteristics 
(Barrett 1996), which ultimately influence their potential to leach through 
soil. 

A. Abiotic Processes 

Abiotic decomposition to HA (Fig. 3) occurs via sorption-catalyzed chemi
cal hydrolysis (Armstrong and Chesters 1968; Armstrong et al. 1967; Skip
per et al. 1967). The importance of abiotic transformation of atrazine varies 

atrazine 

Fig. 3. Atrazine degradation pathway. 
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with the system conditions and is dependent on several factors such as pH, 
concentration of dissolved organic carbon, and temperature. For instance, 
pH of the soil or water system has the greatest effect on hydrolysis, with 
acidic pH levels promoting atrazine hydrolysis to HA; at pH > 7, first
order rate coefficients in water are more than leY times slower than those 
reported at pH 2 (Widmer et al. 1993). The kinetics of atrazine hydrolysis 
in water also increase when concentrations of dissolved organic carbon 
present in the system and temperature increase. Atrazine can also be chemi
cally decomposed by free radicals in solution (Koskinen et al. 1994). 

B. Biotic Processes 

In soil, atrazine is primarily degraded biologically (Kaufman and Blake 
1970; Wolf and Martin 1975) to a variety of products (Fig. 3). The complete 
biodegradation pathway is available on the Internet (Ellis 1996). N
dealkylation of atrazine, which has been shown to be microbially mediated, 
results in the formation of DEA, DIA, DEDIA, or a combination of these 
metabolites (Behki and Khan 1986, 1994; Behki et al. 1993; Giardi et al. 
1985; Giardina et al. 1980, 1982; Hickey et al. 1994; Masaphy et al. 1993; 
Mougin et al. 1994; Nagy et al. 1995). Although many microorganisms do 
not further metabolize the dealkylated metabolites, additional degradation 
of metabolites can occur (Behki and Khan 1994; Behki et al. 1993; Hickey 
et al. 1994; Masaphyet al. 1993; Mougin et al. 1994; Nagy et al. 1995). For 
instance, DEA can be further degraded to DEDIA (Kruger et al. 1993a). 
Formation of 4-amino-2-chloro-l,3,5-triazine indicates that deamination 
can also occur as well as dealkylation (Giardina et al. 1980). 

Atrazine hydrolysis to HA had been attributed solely to abiotic pro
cesses. However, hydrolysis of atrazine has been reported to occur in soil 
bacteria (Mandelbaum et al. 1993a). Genes encoding hydrolysis reactions 
are widespread in nature and contribute to the formation of HA in soil (de 
Souza et al. 1995). Deethylhydroxyatrazine (DEHA) and deisopropylhy
droxyatrazine (DIHA) are formed by hydroxylation of DEA or DIA, re
spectively, or by N-dealkylation of HA (Behki and Khan 1986; Giardi et al. 
1985; Khan and Marriage 1977). 

There are only isolated reports of bacterial pure cultures that metabolize 
atrazine to CO2 (e.g., Radosevich et al. 1995), yet complete degradation of 
atrazine to CO2 has been observed (Mandelbaum et al. 1993b). Previously, 
however, mineralization of the triazine ring of atrazine was thought to be 
relatively slow, with less than 20% of applied atrazine mineralized after 180 
d (Skipper and Volk 1972; Winkelmann and Klaine 1991). More recently, 
Assaf and Turco (1994) found 390/0 of applied ring-14C-atrazine was miner
alized to 14C02 in 326 d compared to 60% in 28 d (Stolpe and Shea 1995) in 
silt loam soils. In a clay loam soil, after a 5-wk lag phase, ring- 14C-atrazine 
mineralized to 14C02 rapidly over the next 15-20 wk; at soil concentrations 
from 5 to 500 mg kg-I, an average 64% was mineralized at 20 wk (Gan et 
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al. 1996). Dealkylated metabolites can also be mineralized to CO2. After 
180 d, evolution of 14C02 from radiolabeled DBA and DIA increased to 
25% and 160/0, respectively, of the total 14C added (Winkelman and Klaine 
1991). 

Biochemical alterations by plant and conjugation reactions also repre
sent important mechanisms of atrazine transformation. Several metabolic 
reactions occur in plants, including dechlorination of atrazine to HA and 
conjugation of atrazine with glutathione, a tripeptide, via glutathione-s
transferase (Lamoureux et al. 1972). 

C. Factors Affecting Biodegradation 

Atrazine biodegradation in soil is dependent on a number of factors, most 
importantly the presence and activity of atrazine-degrading microorgan
isms. Therefore, soil and environmental factors that affect soil microbial 
populations often influence atrazine degradation. Soil temperature, oxygen 
and water status, previous soil management and crop practices, and their 
interactions are factors that affect rates of atrazine biodegradation (Table 
1). Generally, as soil temperature increases, as oxygen content increases, 
and as water content nears field capacity, atrazine degradation conditions 
are optimized. 

Oxygen appears to be essential for biodegradation to occur as atrazine 
was not degraded under anaerobic or denitrifying conditions (Topp et al. 
1995). In a laboratory experiment with three Iowa soils, mineralization of 
ring and methylethyl carbons was proportional to soil oxygen and organic 
matter content of the soils (Nair and Schnoor 1994). 

Soil water and temperature also influence atrazine degradation. Ring
carbon mineralization increased with soil water content in three Iowa soils 
(Nair and Schnoor 1994). In a laboratory study with a clay soil, atrazine 
half-life averaged about 62 d at 20°C when soil water ranged from 200/0 to 

Table 1. Factors affecting atrazine biodegradation. 

Factor 

Oxygen status 

Water content 

Soil type, depth 

Temperature 

Atrazine concentration 

Crop and soil management 

References 

Nair and Schnoor 1994; Topp et al. 1995 

Nair and Schnoor 1994; Smith and Walker 1989 

Konopka and Turco 1991; Lavy et al. 1973; 
Stolpe and Shea 1995; Topp et al. 1994, 1995; 
Widmer and Spalding 1995 

Radosevich et al. 1995; Smith and Walker 1989 

Gan et al. 1996 

Anderson et al. 1994; Levanon et al. 1994; Shel
ton et al. 1995; Stolpe and Shea 1995 
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40%; however, at 8%, the half-life increased to 338 d (Smith and Walker 
1989). Decreasing temperature from 30 0 to 5 °C (34Cfo moisture) increased 
the half-life from 44 to 206 d. 

Soil type, as well as atrazine concentration by soil type interactions, has 
been reported to influence its degradation. Half-lives varied from 32 d 
(loam soil) and 30 d (sandy loam soil) to 16 d in clay loam soil (Topp et al. 
1995). In a Webster clay loam, atrazine concentration from 5 to 5000 mg 
kg-I did not influence the degradation rate (t1l2 < 8 wk) (Gan et al. 1996). 
However, in an Estherville sandy loam, the degradation rate decreased 
with increased concentration from 5 (t1l2 = 8 wk) to 5000 mg kg-I (t1l2 = 
13 wk). 

Atrazine degradation has usually been found to be slower in subsurface 
horizons. Rates of degradation decreased with increasing soil depths in a 
silty clay loam (Lavy et al. 1973). Topp et al. (1995) observed rapid degra
dation in concentrated suspended particulates and surface sediments but 
not in subsurface sediments. Konopka and Turco (1991) reported that some 
Indiana subsurface horizons, to a depth of 25 m, had high numbers of 
microorganisms and microbial activity, although both were lower than in 
surface horizons. In spite of the microbial populations and activity, no 
atrazine degradation was observed during a 128-d incubation of atrazine
amended subsurface materials. Stolpe and Shea (1995) concurred with the 
Indiana study and reported that degradation was most rapid in a Hord silt 
loam surface soil taken from three locations in a field in Nebraska and was 
slowest in subsurface materials at all sites. 

A positive correlation between rate of degradation and aqueous-phase 
concentration in incubation experiments at 25 °C suggests that atrazine 
sorption influences mineralization rates (Radosevich et al. 1995). They con
cluded that sorption can limit degradation of weakly sorbed solutes at high 
solid-to-solution ratios and at ambient temperatures if an active degrading 
population is present. The sorption effect was greatly diminished at 10 °C; 
however, under vadose zone and subsurface conditions, low temperature 
and the lack of degrading organisms are likely to be primary factors limiting 
atrazine degradation. 

Once atrazine reaches an aquifer, degradation is relatively slow. When a 
shallow sand and gravel aquifer was monitored for 3 mon after injection of 
atrazine, DEA and DIA showed no detectable loss of the three chemicals 
(Widmer and Spalding 1995). Once in groundwater, estimated atrazine and 
DEA degradation half-lives are > 3400 and > 2700 d, respectively (Levy 
and Chesters 1995). Atrazine also was not degraded in aquifer sediments 
from the Big Sioux aquifer (South Dakota) at 5 p.g L -I, with or without C 
or C + N added to the sediment, after a 112-d incubation at 5 °C (S.A. 
Clay, unpublished data). 

Crop and soil management also influences atrazine degradation rates. 
Degradation was faster in soil from the two sites that had been in continu
ous corn and treated with atrazine for a number of years (t1/2 = 12 d) than 
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in soil from a site planted with alfalfa for 4 yr with no recent application 
(t1/2 = 27 d) (Stolpe and Shea 1995). The corn sites had three to four 
times more atrazine-degrading microorganisms than alfalfa sites. Enhanced 
degradation was probably caused by microbial adaption to atrazine. Rapid 
rates of biodegradation were observed in cornstalk-amended soils shortly 
after rewetting, whereas degradation was not observed in unamended soil 
(Shelton et al. 1995). Higher microbial populations and activity in no-tillage 
than in a plow-based tillage system were associated with higher atrazine 
mineralization rates in the no-tillage soils (Levanon et al. 1994). Enhanced 
degradation was also observed in rhizosphere soils after 14-d incubations 
(Anderson et al. 1994). Microorganisms in the bulk soil also showed the 
ability to degrade atrazine, but not to the extent of the rhizosphere soil. 

Factors that affect atrazine degradation also affect metabolite degrada
tion. For instance, greater DEA degradation was observed in surface soils 
compared to subsurface soils (Baluch et al. 1993). Major degradation prod
ucts from DEA included CO2 and polar metabolites; DEHA and DEDIA 
were only detected in minor amounts. HA degraded more slowly than DEA 
in the same soils, and some DEA, DIHA, and ammeline (4,6-diamino-s
triazine-2-01) were observed in the soils. Under saturated conditions, DIA 
was less persistent in the top 30 cm, and persistence increased with increase 
in depth. DEA was less persistent in saturated soil than in unsaturated soil 
at the 90- to 120-cm depth (Kruger et al. 1993a). 

III. Retention 

Unlike the transformation processes that reduce the total amount of atra
zine present in soil, retention only decreases the amount available for weed 
control and microbial transformations (Anderson et al. 1980) or that may 
be potentially moved in soil. The amount retained or sorbed by soil can 
range from 0 to 100070 of the amount applied, but typically sorption on silt 
loam, loam, or clay loam surface soils ranges from 50% to 80% under 
slurry conditions. Atrazine retention in soil is influenced by several major 
factors, e.g., organic carbon content, soil clay content and type, and soil 
pH. Other factors influencing retention include the amount of atrazine 
applied, the amount of dissolved organic carbon (DOC) in soil solution, 
and atrazine-soil contact time (aging). 

A. Effect of Soil Properties 

Organic Carbon. As organic carbon content increases, sorption of many 
pesticides increases (Calvet 1980; Clay et al. 1988b; Guo et al. 1991b; Ha
maker and Thompson 1972; Koskinen and Harper 1990; Patrick 1989). For 
many years, atrazine sorption has arguably been most correlated to organic 
carbon content in typical agricultural soils. For instance, atrazine sorption 
was correlated to organic carbon (r = 0.82) in 25 Missouri agricultural 
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soils (Talbert and Fletchall 1965), 9 surface and subsurface soils (Stolpe and 
Shea 1995), and in 5 Wisconsin surface soils (Seybold et al. 1994). Sorption 
was greater on the earthworm burrow linings, which are enriched in organic 
carbon and soluble organic carbon relative to bulk soil, than on bulk soil 
(Stehouwer et al. 1993, 1994). Through hydrogen bonds, atrazine can form 
complexes with amide and carboxylic acid functional groups of soil organic 
matter (Welhouse and Bleam 1993a,b) and possibly with phenol- and qui
none-like functional groups. 

However, a simple correlation between organic carbon content and atra
zine sorption does not wholly describe the sorption process. In a literature 
review of data from 1964 to 1984 that included 343 Kd (partition coefficient 
between soil and solution) values from 148 soils, it was shown that atrazine 
Kd = 4.0 ± 4.0 and was not correlated to organic carbon (Koskinen and 
Moorman 1985). Sorption on soils with less than 100/0 organic carbon was 
less strongly correlated to soil organic carbon; ,2 = 0.64 for single variable 
regression (Fig. 4). Correcting the soil Kd for organic carbon actually in
creased variability: Koc :::: 190 ± 279. More recently, no correlation was 
found between atrazine sorption and organic carbon in 15 soil samples 
from surface and subsurface horizons (Sonon and Schwab 1995). 
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Fig. 4. Atrazine sorption on soil as a function of soil organic carbon. 
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Clay. Correlation of atrazine sorption to soil organic carbon is problem
atic because of its sorption on clay. Although organic and inorganic compo
nents comprise 11 % and 890/0 of a clay-sized soil fraction, they contributed 
68% and 32070 of the affinity of the soil clay for atrazine, respectively (Laird 
et al. 1994). Clay-sized fractions have more surface area and exchange sites 
than either the silt- or sand-sized particles. 

The type of clay present in the clay fraction influences atrazine sorption 
(Brown and White 1969). For instance, smectites have a large potential for 
influencing atrazine sorption because they contribute much of the inorganic 
surface area of soils. However, atrazine sorption to smectites is variable. 
For example, sorption of atrazine on 13 clay samples, of which smectite 
was the dominant mineral, ranged from 0 to 100% and was inversely cor
related to the surface charge density of the smectite (Laird et al. 1992) 
(Fig. 5). 

Desorption from 12 smectites was greater than desorption from bulk 
soil, suggesting that atrazine is bound to smectite surfaces by relatively 
weak forces (Barriuso et al. 1994), such as a combination of hydrophobic 
bonding between the alkyl side chains and hydrophobic microsites on the 
smectite surface, and water bridging between electronegative moieties on 
the atrazine molecule and interlayer cations (Laird 1996). 

Because of the low clay and organic matter content of materials below 
the root zone and aquifer sediments, little sorption would be expected. For 
instance, the atrazine Kr in the Bw (silt loam texture) and 2C (sandy loam 

200 r=-;------------, 

- 150 gI 
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E 100 
:t. -
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10 20 30 40 50 
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Fig. 5. Freundlich isotherms for adsorption of atrazine on reference and soil smec
titic clay samples (from Laird et al. 1992, with permission of the Soil Science Society 
of America). 



128 W.C. Koskinen and S.A. Clay 

texture) horizons of a Brandt soil were 1.0 and 0.2, respectively, whereas 
the Ap horizon (silty clay loam texture) had a Kr = 5.4; other soils showed 
similar results (Table 2) (Clay, unpublished data). Monitoring a plume of 
atrazine, DEA, and DIA injected into a shallow sand and gravel aquifer for 
a 3-mon period showed little retention of the three chemicals (Widmer and 
Spalding 1995). 

pH. Numerous reports have shown that soil pH affects atrazine sorption 
to soil. Atrazine is a weakly basic molecule with a pKa of 1.7 and is easily 
protonated at low pH. At soil pH in the range of 4 to 6, more atrazine is 
sorbed to soil compared to the amount sorbed at soil pH 7 or greater (Clay 
and Koskinen 1990b; Clayet aI. 1988b; Goetz et aI. 1988; Liu et aI. 1995b; 
McGlamery and Slife 1966). At low soil pH, cation exchange may be the 
dominant binding mechanism, while at high pH hydrogen bonding (Wel
house and Bleam 1993a,b) and hydrophobic attraction increase in impor
tance (Koskinen and Harper 1990). On smectite surfaces, surface acidity, 
which arises principally from enhanced ionization of water solvated on 
sorbed cations, catalyzes atrazine protonation and hydrolysis (Laird 1996). 

Increasing soil pH with ammonia-based fertilizer decreased sorption by 
50% and increased atrazine desorption from soil (Liu et aI. 1995b). It is 
unclear if the effects were due only to changes in pH. Increasing the pH 
with ammonia also increased the DOC from 60 to 700 ppm in the soil 
solution, which may have affected the atrazine sorption-desorption charac
teristics. Changing the base from ammonia to KOH or NaOH also influ
enced DOC content and affected atrazine sorption (Clay et al. 1996). Very 
high solution pH also promotes the formation of HA, which may influence 
atrazine sorption. 

AtrazinelSoil Aging. The incubation time or aging of atrazine in soil 
influences its retention (Barriuso et aI. 1992; Capriel et aI. 1985; Pignatello 
and Huang 1991). The longer the aging process, the more atrazine is re
tained in soil. Early in the aging process, a portion of the atrazine retained 
during aging can be removed from soil relatively easily. With time, how
ever, larger portions of the amount applied become very slowly desorbable, 
nondesorbable, or bound to soil (Khan 1982; Pignatello and Huang 1991; 
Rao and Davidson 1980; Schiavon 1988a,b; Smith 1981; Winkelmann and 
Klaine 1991). For instance, Pignatello and Huang (1991) found that soils 
collected from a field with a previous atrazine history contain a large frac
tion of atrazine in a slowly reversible sorbed state and that this fraction 
increases with time. The ratio of apparent Kd from aged samples to Kd from 
"fresh" samples varied from 2.3 to 42 and was directly related to the "age" 
of the residue. Also, in column elution studies, freshly injected atrazine was 
more mobile than aged residues (Pignatello et al. 1993). 

In many soils, even freshly added atrazine is not readily desorbed; that 
is, the desorption equilibrium does not match the sorption equilibrium. 
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This phenomenon, known as hysteresis (lIn-sorption "* lin-desorption), 
has been observed for atrazine in several studies (Clay and Koskinen 
1990a,b; Clay et al. 1988a). Several explanations of hysteresis have been 
proposed. Physical and chemical changes in soil solution may influence 
atrazine retention (Clay and Koskinen 1990a; Clay et al. 1988b; Gamer
dinger et al. 1991). It may become incorporated into organic matter com
plexes (Wang et al. 1991, 1992) or become chemically or microbially de
graded (Cook and Hutter 1981; Gamble and Khan 1990; Sirons et al. 1973), 
with the metabolites differentially bound to soil (Capriel et al. 1985; Dao et 
al. 1979; Clay and Koskinen 1990a). Freundlich desorption coefficients 
can be dependent on the sorbed atrazine concentration, with low concentra
tions being retained to a greater extent and more difficult to desorb than 
higher concentrations (Barriuso et al. 1992). Also, in aged field residues, 
desorption Kr values increased slightly with aging (Barriuso et al. 
1992). 

It appears that atrazine binds to soil by several binding mechanisms 
and that the mechanisms or binding strengths change with time (Koskinen 
et al. 1995). For example, supercritical fluid (SF)-C02 extracted 48070 
of that present after 35 d in the field, but only 31% of that present 
after 138 d. Extraction efficiency using SF-C02/5% methanol was 66% of 
the atrazine present in the field after 35 d compared to 50% at 138 d 
(Koskinen et al. 1995). These data indicate that either binding mechanism(s) 
become stronger with time or that there are multiple binding sites with 
different binding energies. In the latter case, atrazine on labile sites may 
have desorbed and been degraded, leaving only that bound to high-energy 
sites. 

The most stable bound residues are associated with humified organic 
matter, especially in the clay size fraction (0.2-2 I'm). The largest propor
tion of total bound atrazine residues in the whole soil was in the clay size 
(0.2-2 I'm) fraction, which also contained 50% of the total soil organic 
carbon (Barriuso and Koskinen 1996). The ratio of bound residues to OC 
content decreased with the particle size and was highest in the fraction of 
particles greater than 50 I'm, which is rich in nonhumified matter. 

Bound atrazine residues are very resistant to decomposition. Nine years 
after application of 14C-atrazine to soil, - 50% of the 14C was still present 
in the bound form in humic materials (Capriel et al. 1985). Of this 14C, 
atrazine, HA, DEHA, and DIHA could be detected in measurable quanti
ties. However, it appears that some soil microorganisms can release bound 
14C residues from soil treated with 14C-atrazine. The bound 14C residues 
released from soil by Pseudomonas species were identified as atrazine, HA, 
DEA, DIA, DEHA, and DIHA (Khan and Behki 1990). Therefore, while 
bound atrazine residues are difficult or impossible to extract by laboratory 
methods, some of these bound residues are still bioavailable to plants and 
soil microorganisms. 
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B. Effect of Solution Composition 

Dissolved Organic Carbon. Dissolved organic carbon present in soil solu
tion has been shown to increase, decrease, or have little or no measurable 
effect on the initial binding of atrazine to soil. However, DOC content 
appears to influence atrazine release from soil (Clay and Koskinen 1990a; 
Liu et al. 1995b), with more released in the presence of DOC. Fulvic acid in 
solution may form a complex with atrazine (Gamble et al. 1986; Haniff et 
al. 1985) or cause its hydrolysis to the hydroxy species (Gamble and Khan 
1985; Khan 1978). Wang et al. (1990) reported that small molecular weight 
fractions of the fulvic acid complex compete with atrazine for binding sites 
on larger molecules. 

Atrazine Concentration. The amount of atrazine applied also has been 
shown to influence retention to soil. In most cases, the percentage sorbed 
to soil decreases as atrazine concentration increases (Brouwer et al. 1990; 
Clay and Koskinen 1990a,b; Clay et al. 1988a; Gaber et al. 1995; Liu et al. 
1995b; Pignatello and Huang 1991; Rochette and Koskinen 1996; Sonon 
and Schwab 1995; Stehouwer et al. 1993; Stolpe and Shea 1995), as indi
cated by slopes of Freundlich isotherms (lIn) < 1.0. The average value for 
lin for 43 soils from references cited in this section was 0.85. In contrast, 
atrazine sorption has been shown to be concentration independent in a 
number of soils (Gamerdinger et al. 1991; Guo et al. 1991b; Roy and 
Krapac 1994; Sonon and Schwab 1995). 

The cause of the concentration dependence is not known. Using the data 
from 62 isotherms from the references just cited, there was no correlation 
of lin to organic carbon content, clay content, or pH. It appears that the 
heterogeneity of the soils results in a continuum of sorption sites with 
differing amounts of low- and high-energy sites in different soils. 

Water Content. Methods commonly used to obtain sorption coefficients 
require that the soils be above field capacity moisture so that the aqueous 
phase containing the test pesticide can be separated from the soil. Rochette 
and Koskinen (1996) have developed a system using supercritical CO2 that 
can remove the pesticide from a soil solution of unsaturated soil without 
first requiring the separation of the solution from soil. Sorption coefficients 
increased with increasing soil organic carbon and clay contents for three 
field-moist soils (Koskinen and Rochette 1996). Moreover, sorption signifi
cantly increased in a sand as gravimetric moisture content increased from 
4.00/0 to 16% and in a silt loam as moisture increased from 9.6% to 27% 
(Table 3). 

Isosteric heats of sorption, ranging from -10 to -12 kcal mol-I, were 
easily determined with the supercritical fluid system and were correlated to 
organic carbon and clay contents (Koskinen and Rochette 1996). Sorption 
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Table 3. Effect of water content and potential on atrazine sorption-
desorption. 

Water content Water potential 
Soil (Ofo) (bars) Kd (L kg-I) 

Zimmerman 16 0.025 7.67 ::I:: 0.08 
9.6 0.15 5.82 ::I:: 0.Q7 
5.6 0.95 2.92 ::I:: 0.03 
4.0 2.94 1.21 ::I:: 0.04 

Verndale 9.6 0.95 12.4 ::I:: 1.1 

Waukegan 26.7 0.95 53.3 ::I:: 1.4 
9.6 3600 20.6 ::I:: 1.9 

From Rochette and Koskinen (1996) and Koskinen and Rochette (1996). 

coefficients in field-moist soils were much greater than are typically ob
tained with the batch slurry system, while heats of sorption were much 
more negative, indicating greater sorption at low moisture contents. 

C. Sorption-Desorption of Metabolites 

Each of the atrazine metabolites (Le., HA, DEA, DIA, and S-glutathione
atrazine) have different properties known to influence their strength of 
retention to soil. DIA and DEA are less sorbed to soil than atrazine; DEA 
is the metabolite least retained by soil (Bowman 1990; Brouwer et aI. 1990). 
DEA had a lower affinity than atrazine for low organic carbon sands and 
sediments, and sorption did not correlate to organic carbon, clay content, 
or pH (Roy and Krapac 1994). Unlike atrazine sorption, DEA sorption was 
reversible. 

HA and S-glutathione-atrazine are sorbed to soil to a greater extent than 
atrazine (Brouwer et aI. 1990; Clay and Koskinen 1990b; Clayet al. 1996). 
Soil pH of two silt loam soils influenced sorption, with more of the S
glutathione-and hydroxy metabolites sorbed at pH 4.0-4.5 than at pH 6.1 
(Clay and Koskinen 1990b). HA also was more strongly sorbed to soil 
amended with ammonia than to unamended soil (Clay et al. 1996). HA 
and S-glutathione-atrazine are strongly retained by soil, with little if any 
desorption occurring over a 6-d period (Clay and Koskinen 1990b). 

Soil thin-layer chromatography (TLC) was developed to evaluate pesti
cide mobility by using soil as the sorbent in a TLC system (Helling, 1968; 
Helling and Turner 1968). The ratio of the distance that the pesticide moves 
to the distance that the solvent (water) moves (Rr) is inversely proportional 
to sorption on the soil. Based on Rr values, Kruger et aI. (l996b) identified 
three mobility groups for atrazine and selected metabolites in five Iowa 
soils: most mobile, DEA; intermediate mobility, atrazine, DIA, and 
DEDIA; nearly immobile, HA and ammeline. 
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IV. Transport 

Although the downward transport of atrazine by water is of ultimate con
cern in evaluating the potential of groundwater contamination, other 
modes of transport should also be taken into consideration. These include 
upward transport to the soil surface by water, volatilization from the soil 
surface, spray drift during application, movement on wind-eroded parti
cles, plant uptake, and transport in surface runoff water and sediment. 

A. Movement to Atmosphere 

Volatilization involves two stages: upward movement to the soil surface and 
escape from the soil surface. Volatilization is affected by vapor pressure of 
atrazine, Henry's constant, concentration in soil solution, soil water con
tent, sorption to soil, diffusion rate in soil, air and soil temperature, and air 
movement. Although atrazine has a relatively low vapor pressure of 0.039 
mPa (Tomlin 1994), it does volatilize. Whang et al. (1993) measured volatil
ization of 1070-2% of applied atrazine over a 26-d period. Atrazine can also 
enter the atmosphere by spray drift during and immediately after applica
tion. Another potential mechanism of atmospheric loading is thought to be 
atrazine retention on suspended sediments that are removed from treated 
fields during wind events (DeSutter et al. 1995; Glotfelty et al. 1989). 

Once in the atmosphere, atrazine can be deposited off-site in dust or 
rainfall (Ciba-Geigy 1993; Richards et al. 1987). For instance, 39% of 325 
rainwater samples collected in Iowa contained atrazine in concentrations 
ranging from 0.10 to 40 p.g L -1 with a detection mean of 0.91 p.g L -1 and 
median of 0.34 p.g L -1 (Nations and Hallberg 1992). In a later Iowa study, 
Hatfield et al. (1996) reported that 28% of rainfall samples contained atra
zine with a detection mean of 0.7 p,g L -\ and maximum concentration of 
154 p.g L -1. Both of these studies had the greatest number of detects in the 
first 3 mon directly following normal spring application periods, possibly 
because of volatilization of atrazine (Nations and Hallberg 1992) or deposi
tion of spray drift directly into the atmosphere (Hatfield et al. 1996). High
est concentrations were also observed during the start of the rainfall event. 

More than 50% of wind-eroded sediments collected from ditch areas of 
eastern South Dakota in early spring prior to atrazine application contained 
atrazine, DEA, DIA, or all three compounds (DeSutter et al. 1995) One day 
after application, soil aggregates < 1.0 mm (those most subject to wind 
erosion) had concentrations ranging from 51 to 76 p.g g-l, whereas sedi
ments greater than 1 mm had concentrations from 29 to 38 p.g g-l. 

B. Movement to Surface Water 

Many studies have shown atrazine movement from the point of application 
in runoff water (see Nelson and Jones 1994, and references cited therein) 
(Table 4). Amounts detected for surface runoff studies range from < 0.1 010 
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to 7.20/0 of applied atrazine (Gaynor et al. 1992, 1995). Atrazine is carried 
on sediments and as free molecules in surface runoff (Gaynor et al. 1992; 
Hall et al. 1991; Kolpin and Kalkhoff 1993; Pantone et al. 1992; Sauer and 
Daniel 1987; Triplett et al. 1978; Wu 1980; Wu et al. 1983) to nontarget 
areas, such as surface waters and riparian zones (paterson and Schnoor 
1992). 

In monitoring studies ranging from small streams to large agricultural 
river systems covering the entire Midwest, atrazine concentrations up to 10 
p.g kg-I have been reported (Ciba-Geigy 1992a,b; Frank et al. 1990b; Gools
by and Battaglia 1995; Kolpin and Kalkhoff 1993; Schottler et al. 1994; 
Thurman et al. 1991, 1992), but most detections are below the MCL of 3.0 
p.g L -I. However, the cumulative effects of many small runoff events (see 
Table 4) can result in a large absolute amount of atrazine entering a surface 
water body. For instance, total annual loading of atrazine into the Minne
sota River was 1-2 t (Schottler et al. 1994). 

The highest atrazine concentrations in surface water have been detected 
in the first 2 months after application, in early summer, with decreasing 
concentrations during the fall and winter months (Frank et al. 1990b; Thur
man et al. 1991, 1992). High residue levels also have been observed after 
fall applications that are generally applied in September (a practice now 
prohibited by the atrazine label) (Frank et al. 1990b). 

Atrazine metabolites also have been found in surface runoff and surface 
waters. Mills and Thurman (1994) found more DEA than DIA in shallow 
unsaturated surface water runoff from Eudora silt loam soil. Dissolved 
atrazine, DEA, and DIA concentrations in water samples from two closely 
spaced lakes indicated large differences in input from watershed nonpoint 
sources. Levels of these chemicals increased in response to spring and early 
summer runoff events (Spalding et al. 1994). DEA was found in all surface 
runoff samples that contained atrazine (Gaynor et al. 1992, 1995). HA, 
DEHA, and DlHA have also been identified in surface water (Lerch et al. 
1995). 

C. Movement to Groundwater 

Atrazine can move through soil and has been found in groundwater in 
numerous areas of the Midwest through monitoring studies. For instance, 
in a 1970s study of water in the Central Platte region of Nebraska, all 14 
locations sampled contained atrazine (Spalding et al. 1980). Concentrations 
ranged from 0.06 to 3.1 p.g L -I and were correlated to NO; concentrations. 
In a Wisconsin survey of 2177 rural well water samples, approximately 
270/0 gave an immunoassay response of ~0.10 ppb atrazine equivalents; 
however, only 0.6% had levels greater than 3.0 p.g L -I MCL (Bradyet al. 
1995). In a survey of more than 12,000 wells in five Midwestern states, 
triazines were detected in 4.9%, while the atrazine MCL was exceeded in 
0.1 % of samples (Richards et al. 1996). In a monitoring study across the 
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Midwest, atrazine was detected (>0.05 p.g L -I) in 22070, and atrazine, DEA, 
or DIA was detected in 26% of 303 wells sampled; the median detectable 
atrazine concentration was almost half that of the total residue (atrazine 
plus two metabolites) detected (Kolpin et al. 1996). 

Results from groundwater monitoring studies in eastern Canada are sim
ilar to those for the Midwest. Atrazine, DEA, and DIA were also found in 
groundwater under two agricultural soils in eastern Canada over a 3-yr 
monitoring period (Masse et al. 1994). Frequency of detections decreased 
with depth in the alluvial aquifer (Kalkhoff et al. 1992). For instance, 
atrazine was detected in 18070 of the samples from the upper 1.6 m of the 
alluvial aquifer and was not detected in samples taken below 3.4 m. 

The results of Wehtje et al. (1984) support direct downward leaching as 
the major source for low-level atrazine contamination detected in ground
water throughout the irrigated corn production areas of the Platte River 
valley of central Nebraska. Current contamination levels probably reflect a 
steady-state situation between the yearly amount that enters into the aquifer 
and the partial degradation that occurs within it (Wehtje et al. 1983). How
ever, contamination of groundwater is probably the result of both point 
and nonpoint-source pollution. Of wells on 172 farms, 24 were contami
nated with atrazine, 14 from spills from mixing or loading and 10 from 
leaching or runoff (Frank et al. 1987, 1990a). 

Water Movement. Downward movement of atrazine may occur from per
colating water carrying it to lower soil depths. Well-structured soils have 
been reported to have more chemical movement to deeper depths when 
compared to nonstructured soil as the result of water flow through macro
pores in structured soils. Increased permeability, percolation, and solute 
movement can result from increased porosity, especially in no-tillage sys
tems where there is pore connectivity at the soil surface (Barley 1954; Qui
senberry and Phillips 1976; Thomas and Phillips 1979). 

Plant roots are important in the creation and stabilization of soil macro
pores (Barley 1954). Preferential flow through root-mediated soil pores has 
been demonstrated for chloride, nitrate, and other ions, which are not 
sorbed onto soil organic matter and clays. Although atrazine is sorbed on 
soil organic carbon and clay, its movement through soil columns has been 
shown to be influenced by roots. The greatest difference in distribution of 
atrazine in l00-cm soil columns was at the 15- to 30-cm depth. More was 
present at these depths in columns with roots than without roots, presum
ably due to greater movement through channels created as roots decayed 
(Zins et al. 1991). 

Earthworm burrows can function as preferential flow conduits. How
ever, it is unclear if earthworm burrows actually increase the atrazine leach
ing because many factors influence these potential routes. First, the total 
organic carbon in the burrow lining is two to three times greater than in 
bulk soil. This increase in organic carbon has been attributed to result in 
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increased atrazine sorption to the burrow lining (Stehouwer et al. 1993, 
1994). In fact, water and atrazine mixtures poured through earthworm 
burrows showed that these linings greatly reduced the concentration of 
atrazine (Edwards et al. 1992b). 

A second important consideration in determining whether these macro
pores contribute to atrazine movement is that movement depends on rain
fall amount, intensity, and antecedent soil water content with percolate 
volume dominating the movement mechanism (Edwards et al. 1992a). For 
instance, high-intensity rains on relatively dry no-till soils shortly after atra
zine application produced the greatest amounts of preferential flow and 
movement (Edwards et al. 1993). However, leaching was reduced if rainfall 
was delayed or if low-intensity rains occurred prior to high-percolate
producing events (Edwards et al. 1993). After the first rainfall, surface
applied atrazine leached less in subsequent high-percolate high-volume 
storms, regardless of intensity or volume of percolate produced by the first 
storm. Shipitalo et al. (1990) reported that the first storm after application 
moved atrazine into the soil matrix, thereby reducing the potential for 
transport in macropores during subsequent rainfalls. 

Along with movement through earthworm and root macropores, atra
zine can also be vertically transported via irrigation return flows. Junk et 
al. (1980) reported a significant correlation between atrazine and N03-N 
concentrations in wells down gradient from irrigated croplands with the 
occurrence of peak atrazine levels in the fall immediately after the irrigation 
season. 

Movement of atrazine through the plant root zone of soil is a function 
of water availability. Crop canopy plays a significant role in asymmetrical 
distribution of incoming precipitation that reaches the soil surface, causing 
a potential differential movement of atrazine. For instance, the least 
throughfall of precipitation occurs within 20 cm of the row in corn and 
soybean (Dowdy et al. 1995). Atrazine movement was reduced by applying 
it as a band over the row and using corn foliage as a shelter from incoming 
precipitation. Essentially all atrazine remained in the top 7 cm of a loamy 
sand soil during the first 22 d after application with very little lateral move
ment into the interrow beyond the spray band. Dowdy et al. also found that 
some moved from the soil surface into the top 30 cm of soil but not deeper. 

Column Leaching Studies. Differences in atrazine leaching between soils 
have been attributed to differences in physical and chemical properties 
of the soils, which affect retention and transformation processes, leach
ing volumes and velocities, presence of macropores, and field manage
ment including crop residues, fertilizer, and herbicide practices. To illus
trate the influence of these variables on atrazine movement through the 
profile, numerous studies have been conducted using disturbed and undis
turbed soil columns of different sizes in the laboratory, greenhouse, and 
field (Table 5). 
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In most of these studies, the bulk of atrazine remained near the soil 
surface as a result of sorption processes. In intact soil cores containing a silt 
loam soil, its leaching was primarily influenced by sorption-related non
equilibrium at low pore water velocities and by a combination of both 
transport-related and sorption-related nonequilibrium at high pore water 
velocities (Gaber et al. 1995). However, a portion does leach; the depth and 
amount depends on soil type, amount of water, soil horizons, crop residues, 
and fertilizer placement. For instance, small amounts (approximately 3% 
of applied) of 14C from 14C-atrazine leached to the 60- to l00-cm-depth 
increment within 35 wk in sand and silt loam columns, with most remaining 
in the top 15 cm (Alhajjar et al. 1990). Wietersen et al. (1993a) determined 
14C-atrazine movement using intact soil columns of two sandy Wisconsin 
soils. Its mobility in a Sparta sand was greater than in a Plainfield sand as 
the result of higher hydraulic conductivity, smaller water-holding capacity, 
and less sorption from lower organic carbon and clay contents. 

In lysimeters packed with Plainfield sand, the maximum movement of 
atrazine after 21 wk under natural rainfall was 30 cm, compared to 70 cm 
when supplemental irrigation was supplied (Bowman 1989, 1991). The 
length of time for half of the atrazine to dissipate (DTso) was 2.5 wk under 
rainfall and 3.5 wk under supplementary watering. The difference in DTso 
between the two treatments was attributed to greater movement away from 
the surface soil, where most degradation would have occurred. 

Kruger et al. (1993b) found that approximately 1.20/0 of the 14C-atrazine 
was recovered in leachate during a 12-wk period from a 6O-cm-Iong column 
of an Iowa soil that was taken from a field with no previous pesticide 
history. However, by the end of the experiment, 77% of the 14C applied 
remained in the upper 10 cm, of which bound residue was the primary 
component. Degradation products found in the surface 10 cm of soil were 
DIA > HA > DEDIA > DEHA > DIHA. 

Metabolites of atrazine may leach from upper layers or be formed at 
lower soil depths. Metabolites most likely to leach are DEA and DIA be
cause their retention by soil is lower (Barriuso et al. 1992; Bowman 1990; 
Muir and Baker 1978; Schiavon 1988a,b). For instance, in a study by Kru
ger et al. (1993b), atrazine, DEA, and DIA were found at all depths, 
whereas other metabolites leached to a lesser extent. In a 13-wk leaching 
study with 60-cm intact soil columns, the percentage of 14C_DEA recovered 
was greatest in the first leaching event (1.3% of applied 14C), suggesting 
preferential flow (Kruger et al. 1996a). The total DEA loss from leaching 
was 3.6% of applied 14C_DEA. 

More DEA also has been found in soil water at deeper depths than 
atrazine or DIA (Adams and Thurman 1991). HA does not readily leach 
through soil (Schiavon 1988a,b) because it is tightly bound (see previous 
section). Therefore, HA detected deep in the profile is the result of degrada
tion or hydrolysis at depths (Sorensen et al. 1993, 1994, 1995). Relative 
mobilities in a Honeywood silt loam were DEA > atrazine, but relative 
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mobilities were about the same in Plainfield sand (Bowman 1990). Maxi
mum movement of DEA and atrazine in the sand occurred at about 40 cm 
after 8 wk. In field lysimeters receiving supplemental water, DEA was more 
mobile than atrazine. DT so for both chemicals in both soils was about 4 wk. 
The difference in persistence in the two Plainfield sand experiments was 
attributed to spatial variability of texture and organic carbon in the Plain
field sand. DTso of 4.3-4.9 wk has also been reported for this soil (Bowman 
1991). In another leaching study with the Plainfield sand, no detectable 
atrazine leached through a 70-cm lysimeter (Bowman 1993). 

The influence of crop residues on atrazine leaching is unclear. In one 
study using undisturbed soil columns, greater amounts were recovered with 
the first 5 cm of leachate in 100070 surface residue columns than from 
zero-residue columns with high and medium saturated hydraulic conductivi
ties (Green et al. 1995). Also, the time to peak atrazine concentration in 
leachate decreased as residue levels increased for columns with high satu
rated conductivities. In contrast, covering soil cores with 200 or 2000 kg 
ha- 1 of crop residue reduced leaching by 26% and 37%, respectively, com
pared to soil cores without crop residue (Sigua et al. 1993). Sigua et al. 
(1993) also reported that the age of the residue may influence its movement; 
soil cores covered with recently harvested vegetation reduced leaching by 
39% compared with cores covered with aged residue. 

In undisturbed soil columns, higher atrazine concentrations occurred in 
the leachates of the plow-tillage columns than in the no-tillage columns 
(Levanon et al. 1993). However, more atrazine has been reported to leach 
through untilled cores than tilled cores, and increasing the number of earth
worms in soil cores increased the amount leached through both untilled 
cores and tilled cores (Sigua et al' 1995). 

Changing soil surface pH with fertilizer also may influence atrazine's 
leaching potential. For instance, application of NH40H increased surface 
soil and leachate pH and resulted in increased amounts in leachates from 
columns containing silty clay loam and clay loam soils (Liu et al. 1995a). 

Field Leaching Studies. There are numerous reports that atrazine leaches 
into the vadose zone (Adams and Thurman 1991; Clay et al. 1994; Helling 
et al. 1988; Wehtje et al. 1984), into tile drains (Buhler et al. 1993; Kladivko 
et al' 1991; Muir and Baker 1976), or into groundwater (Frank et al. 1991; 
Isensee et al. 1988, 1990; Pionke and Glotfelty 1990; Starr and Glotfelty 
1990; Verstraeten et al. 1995). Most of the field leaching studies are limited 
to depths < 2 m. In most studies, the majority is bound and degraded in the 
surface 50 cm, similar to what has been observed in column leaching stud
ies. However, small amounts of atrazine or atrazine degradates are consis
tently found at lower depths in the soil profile. For example, an estimated 
minimum of 3.2%-6.5% leached below 15 cm and was detected to a depth 
of 60 cm (Frank et aI. 1991). Atrazine applied at 2.2 and 4.5 kg ha- 1 was 
detected in a silty clay loam and a clay loam to a depth of 76 cm approxi-
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mately 2 mon after application; however, most remained in the surface 30 
cm of soil (Hall and Hartwig 1978). Hall et al. (1989) detected atrazine at 
all soil depths down to 122 cm. Differences in the yearly extent and magni
tude of leaching losses were strongly correlated to rainfall distribution and 
number of leaching events proximal to application. 

Two months after application of 14C-atrazine to a sandy loam soil, 14C 
was detected at the 30- to 40-cm depth but was not found deeper (Sorenson 
et al. 1993). At 30- to 4O-cm depth, 14C was identified as 14C-labeled atra
zine, DEA, DIA, and HA. Twelve months after application of 14C-atrazine 
to a silt loam soil, 14C had leached to the 70- to 80-cm depth (Sorenson et 
al. 1995) and was identified as 14C-labeled atrazine, DEA, DIA, and HA. 
Only one month after application of 14C-atrazine to a clay loam soil, 14C 
was detected at the 70- to 80-cm depth (Sorenson et al. 1994) and was 
identified as 14C-Iabeled atrazine and HA. DEA was not observed at this 
depth until 16 mon after application, while DIA was never detected. 

In a loam soil, atrazine levels in conventional and no-till treatments were 
similar for a given depth and sampling time after application. Most was 
present in the upper 5 cm of the profile, and only a trace was found at the 
4O-cm depth (Ghadiri et al. 1984). Distribution patterns through field soil 
under plow-tilled and conservation-tilled corn were quite similar. The bulk 
was in the surface soil, but some was found at the deepest sampling depth 
(90 cm) (Starr and Glotfelty 1990). Atrazine appeared to move by both 
one-dimensional movement through the soil matrix and by rapid downward 
movement through macropores, bypassing most of the soil matrix. How
ever, Gish et al. (1995b) obtained slightly different results when water sam
ples (rather than soil samples) were analyzed. Movement was less under 
no-till than under tilled conditions. Under no-tillage, it was detected in 
< 28010 of the water samples obtained from suction lysimeters at 1.5- and 
1.8-m depths, with < 13010 exceeding the MeL of 3 p.g L -I (Gish et al. 
1995b). In contrast, under tilled conditions, atrazine was detected in 53010 
of the water samples obtained from suction lysimeters at 1.5- and 1.8-m 
depths, with 35010 exceeding 3 p.g L -I. 

Tile drains, placed between 1 and 2 m below the soil surface to help drain 
wet areas, are effective tools to determine leaching in the field. Monitoring 
the drainage outflow for atrazine can determine timing of fluxes and cumu
lative atrazine loss through leaching over a large area (Table 6). Water 
discharge from tiles into surface waters normally occurs in spring and early 
summer, both before and after spring applications. Because atrazine is 
mobile and tiles are near the surface, it is not surprising that numerous 
studies have reported atrazine detected in subsurface tile drainage water. 

Amounts detected in tile drainage water are typically low, but atrazine 
can be detected over long time periods. For instance, about 0.15010 of that 
applied was found in tile drains either as atrazine or as DEA. DEA was 
detected in concentration equal to or greater than atrazine (Muir and Baker 
1976). In Ontario, atrazine and DBA were found in all samples of tile 
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drainage water collected from a I-m depth, with about 1.9070 lost in tile 
drainage following a fall application and as much as 0.2% following spring 
application (Frank et al. 1991). In Indiana, small amounts were detected in 
subsurface tile flow within 3 wk of application after less than 2 cm net tile 
flow from a poorly structured silt loam soil with low organic matter (Kladi
vko et al. 1991). The rapid appearance of atrazine indicated the possibility 
of preferential flow. Atrazine, DBA, and DIA were also found in subsur
face drainage water in Iowa. The order of concentration was atrazine > 
DBA> DIA (Jayachandran et al. 1994). Levels in tile drains ranged from 
0.1 to 29 ILg L -J, with concentrations declining after application (Milburn 
et al. 1995). A spill on one of these plots, followed by 71 mm of rainfall 
within a few days, resulted in tile drain concentrations of 150 ILg L -J , 

which decreased to less than the MeL, 3.0 ILg L -J, within 6 d of the ini
tiation of tile flow. 

Atrazine has also been found in subsurface tile drainage years after the 
last application. The average concentration in tile water, 24-30 mon after 
the last application, was O.4lLg L -I, and dropped to 0.31Lg L -19 mon later 
(Buhler et al. 1993). 

V. Persistence 

Atrazine persistence is usually characterized by assuming first-order dissi
pation kinetics and calculating a half-life (tI12) or time for 50% dissipation 
(DTso). Half-life values range from 14 to 109 d (Table 7). However, in 
reality, its persistence in the field appears to be biphasic. When applied in 
spring, initial rapid degradation occurs during the first 2 mon after applica
tion, followed by slower degradation in the dry summer and cold fall and 
winter of the Midwestern states. For example, in one experiment the tl/2 is 
55 d if only growing season data are used in the calculation, compared to 
134 d if all data for the year are used (Weed et al. 1995). 

While the degradation pattern can be generalized, soil type, initial and 
seasonal water content, and other variables have been shown to influence 
the rate of both the rapid and slow degradation phases. For example, 2 mon 
after application only 32070 of the applied atrazine remained in a silt loam 
(Sorenson et al. 1995), whereas 45% remained in a clay loam (Sorenson et 
al. 1994) and 35% remained in a sandy loam (Sorenson et al. 1993). How
ever, degradation then slowed down, with 16% still remaining in the silt 
loam 16 mon after application (Sorenson et al. 1995) compared to 20% in 
the clay loam (Sorenson et al. 1994) and 22% in the sandy loam (Sorenson 
et al. 1993). In a 2-yr study on the same soils a year later, dissipation was 
initially much slower. Averaged over both years, at 21 d after application 
93%, 56%, and 85% of applied atrazine still remained in the sandy loam, 
silt loam, and clay loam soils, respectively, with >95% of the amount 
present still in the surface soil (Koskinen et al. 1993). 

Dissipation half-life in surface soil after spring application at a number 
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of sites in Ontario, Canada, ranged from 2.4 to 3.0 mon, with rapid break
down the first 5 mon after application compared to slow dissipation during 
fall, winter, and early spring (Frank and Sirons 1985). Dissipation half-life 
was 37 d if calculated over the growing season but 125 d if winter months 
were included (Frank et al. 1991). When applied in fall, dissipation half-life 
was 198 d. 

In a 2-yr field study in Ohio, atrazine did not move out of the 0- to 
15-cm soil depth, and calculated dissipation half-life was 35 d in both years 
(Workman et al. 1995). Atrazine half-life in the 0- tol5-cm depth was 46 d 
in a Nebraska sandy loam soil (Brejda et al. 1988). At 30 d after application 
of 1.1 kg a.i. ha- I to a sandy loam soil in Minnesota, the majority of the 
remaining atrazine, 161 p.g kg-I, was in the top 15 em of soil. About 2 p.g 
kg-I had leached to the 45- to 6O-cm depth. By 60 d after application, only 
5 p.g kg-I remained in the surface 15 cm (Buhler et al. 1994). Levels in a 
loam soil in Nebraska decreased to 75010 of the application level in both 
conventional and no-till tillage plots by 61 d after application (Ghadiri et 
al. 1984). In a similar study the next year, only trace amounts remained 80 
d after application. 

It is difficult to generalize the effects of tillage on atrazine persistence 
because tillage influences so many soil characteristics. In general, tillage 
does not appear to strongly influence its persistence. By the end of the 
growing season, any initial effects due to tillage on persistence during the 
first months after application (see Section VI.A) become insignificant. For 
example, at the end of the growing season <2% of the spring applied 
atrazine still remained in a clay loam soil under ridge, conventional, and 
zero-tillage systems (Gaynor et al. 1987). While tillage may not influence 
atrazine persistence, the initial application rate has been shown to affect 
persistence, with higher rates having slower dissipation. By the end of the 
growing season, 3%-21010 of atrazine applied at rates of 2.2 and 4.5 kg ha- I 
to a silty clay loam and a clay loam still remained (Hall and Hartwig 
1978). Climatic conditions mayor may not influence atrazine persistence. 
Residues in a number of Michigan soils after a severe drought during a 
growing season were similar to those following a more normal growing 
season (Leavitt et al. 1991). 

Atrazine persistence has been shown to be affected by concentration. 
Persistence increased significantly at high concentrations compared to nor
mal concentrations (Davidson et al. 1980). In clay loam and sandy loam 
soils, persistence (based on percentage of applied) was greater in high-rate 
than normal-rate treatments during the first 6 mon in the field (Gan et al. 
1996). On an absolute basis, however, the amount dissipated from the 
high-rate was greater than the low-rate treatment. Atrazine can also persist 
for long periods after application at low levels (Buhler et al. 1993). It was 
applied to a clay loam soil for 3 yr, and 4 yr after the final application 
atrazine (16 p.g kg-I), DEA (3.7 p.g kg-I), DIA (0.7 p.g kg-I), and HA (5.4 
p.g kg-I) were still detected (Raju et al. 1993). 
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VI. Management Practices 

Specific management practices influence atrazine movement. Tillage, atra
zine formulation and placement, fertilizer type, application, and place
ment, previous crop history, and crop residues are some of the variables 
that change the characteristics of atrazine movement (Baker and Mickelson 
1994). These practices affect transformation, retention, and transport pro
cesses in soil. For instance, tillage systems affect various soil properties 
such as soil moisture, temperature, pH, organic matter, water flow charac
teristics, and microbial populations, which in turn can affect all three pro
cesses. Atrazine movement is usually studied under one management prac
tice at a time; however, interactions of these practices challenge our ability 
to predict the net effect on its persistence and movement in soil. In the 
following section, the effect of single management variables is discussed. 

A. Tillage 

Effect on Persistence. It is difficult to generalize the effects of tillage on 
atrazine persistence, dissipation, and movement because tillage influences 
so many soil characteristics. Differences in tillage practices have been re
ported to decrease, increase, or have no effect on its persistence in soil. 
Several studies have reported no effect on atrazine dissipation. For exam
ple, in a sandy loam soil, persistence was not significantly different in fields 
under no-tillage and conventional tillage management (Gish et al. 1994). In 
another study, similar dissipation in both no-till and conventional tillage 
systems was attributed to the low pH of the soil resulting from long-term 
application of NH4N03, which catalyzed hydrolysis to HA (Ghadiri et al. 
1984). Although the moldboard tillage soil profile had consistently higher 
atrazine concentrations, only in one instance was it significantly different 
than in the no-till system (Sauer et al. 1990). Also, in soils under no-till and 
moldboard tillages, it was never detected at quantifiable levels below the 
15-cm depth at four sampling times during the growing season. Tillage had 
little significant effect on the overall distribution and dissipation of atrazine 
in soil, although moldboard-plow plots usually had the largest amounts at 
a given sampling time (Weed et al. 1995). 

In contrast, other studies have reported differences in dissipation due to 
tillage. Dissipation was faster in reduced tillage systems than in conven
tional tillage systems, as evidenced by reduced carryover under reduced 
tillage (Burnside and Wicks 1980). Residues in the surface 10 cm of soil in 
conventional tillage plots averaged 2.6 times more atrazine than in no
tillage plots, regardless of the difference in the rainfall patterns (Sadeghi 
and Isensee 1992, 1994). Total atrazine from the 0- to 50-cm depth was also 
generally lower under no-till than under conventional till treatments (Isen
see and Sadeghi 1994). 

Persistence also has been reported to increase when volatilization losses 
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decrease. A 50010 reduction in atrazine volatilization losses was observed 
under no-tillage relative to tilled fields (Weinhold and Gish 1994). This 
decrease was attributed to the protection of the soil surface by mulch, which 
decreased volatilization losses by half (Gish et al. 1995a). 

Surface Runoff and Leaching. The effect of tillage on the amount of 
atrazine detected in surface runoff and leachate also is difficult to general
ize. In most cases, environmental conditions during the study playa more 
important role in the losses than tillage. For example, in a study by Logan 
et al. (1994), tillage had little effect on water flow or atrazine losses in 
runoff and tile drainage; however, loss was greatly influenced by crop 
type and weather. Tillage (conventional, zero, and ridge tillage) had no 
significant effect on runoff volume, distribution between surface and sub
surface runoff, herbicide concentration, or herbicide loss (Gaynor et al. 
1992). Concentration and loss in tile drainage water was minimal (less than 
0.13010 of applied) but ranged from 0.01 in moldboard-plow to 0.13010 in 
no-tillage systems (Buhler et al. 1993). In contrast, conservation tillage 
(ridge tillage and zero tillage) increased surface runoff 42010 and decreased 
tile drainage discharge 15010 compared with conventional tillage, but total 
field runoff was the same from all tillages. Conservation tillage altered 
the mechanism of atrazine loss compared with conventional tillage, but 
environmental factors after its application were more important than tillage 
in determining total loss (Gaynor and van Wesenbeeck 1995). 

In a Wisconsin study, conservation tillage systems reduced both runoff 
and soil loss; however, atrazine concentrations in runoff water and sedi
ment in these systems were at times greater than with conventional tillage 
(Sauer and Daniel 1987). Reduced runoff volumes and erosion with conser
vation tillage systems usually offset higher pesticide concentrations in run
off, resulting in little difference in tillage with respect to total atrazine loss. 
Maximum loss was 5.8010 of applied. 

In areas with high amounts of summer precipitation, losses in no-till 
systems were generally greater than in plowed systems, perhaps due to more 
structured soils with less exposed sorption sites and more macropores. In 
general, maximum atrazine concentrations and mean amounts in pan lysim
eter percolates collected at a depth of 122 cm were greater under no-tillage, 
where more leachate was collected than under conventional tillage (Hall et 
al. 1989). In another study, Hall et al. (1991) reported that percentage losses 
in root zone leachates were greater under no-tillage than under conventional 
tillage corn. However, the opposite was true for runoff losses, and the 
magnitude of loss was less for runoff than for leaching. Isensee and Sadeghi 
(1994) also reported greater leaching below 10 cm under no-till than under 
conventional till. 

A moldboard-plow treatment in the fall reduced atrazine residues in the 
soil in the spring because plowing resulted in some soil dilution of the 
residues and also moved the residues below the sampling depth. Ridge 
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tillage systems had higher spring residues than zero tillage, apparently be
cause of reduced atrazine dissipation on the drier ridge tops (Gaynor et al. 
1987). 

Over a 4-yr period, there was twice as much runoff volume from conven
tional tillage compared to chisel-plow and no-tillage (Blevins et al. 1990). 
Atrazine loss in runoff was least in chisel plow, while conventional tillage 
and no-till losses were about the same. During a 2-yr period, < 10,10 of 
applied atrazine was lost in runoff, and most of this occurred between 
application and corn canopy closure. Less runoff and atrazine loss occurred 
from areas planted in continuous corn in no-tillage areas than in conven
tional tillage areas (Triplett et al. 1978). 

B. Formulation and Amendments 

Controlled-release formulations of atrazine have been proposed as a 
method to reduce its mobility in soil. Ideally, such formulations would only 
release the amount of chemical into soil solution necessary to control 
weeds, with the remaining atrazine unavailable for leaching. Starch encap
sulation has been shown to reduce atrazine leaching in sand using intact soil 
cores (Mervosh et al. 1995). In a column study, atrazine leached less as a 
starch encapsulation than when applied as an acrylic polymer formulation. 
Effectiveness of acrylic polymers to reduce leaching decreased with water 
volume and time compared to conventional formulations (Fleming et al. 
1992). In a field study, Gish et al. (1994) found starch-encapsulated atrazine 
less mobile than the conventional formulation. 

In contrast, in a 3-d laboratory column study, acrylic polymers slightly 
reduced atrazine leaching but had no effect in a 92-d field study (Lee and 
Weber 1993). Addition of 2% polymer by volume to a conventional formu
lation resulted in no difference in atrazine mobility compared to the COD

ventional formulation but did decrease the movement of metolachlor 
through sandy soils (Wietersen et al. 1993b). 

Controlled release can make atrazine more persistent, thereby increasing 
the time it is available for leaching. Starch encapsulation greatly increased 
persistence in the surface 15 cm of soil compared to the dry flowable formu
lation (Buhler et al. 1994). Increased persistence of atrazine resulted in 
increased leaching in the soil at 120 d after application compared to conven
tional formulations. In a field study, Gish et al. (1994) found starch
encapsulated atrazine more persistent than the conventional formulation. 

Volatilization of atrazine contributes significantly to environmental con
tamination. Starch encapsulation decreased atrazine volatilization com
pared with conventional formulations (Wienhold and Gish 1994; Wienhold 
et al. 1993). Surface mulch and a starch-encapsulated formulation de
creased volatilization losses by a factor of 4 compared to conventional 
formulation on bare soil, whereas surface mulch decreased volatilization 
losses by half (Gish et al. 1995a). 
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Numerous other amendments have been used to control atrazine persis
tence and movement. For instance, while pig manure slurry and cow ma
nure did not affect leaching through soil, they both increased the soil half
life by 50070 (Rouchaud et al. 1994). Addition of dairy manure increased the 
rate of atrazine mineralization, whereas corn meal decreased and (NH4k 
HP04 inhibited mineralization (Gan et al. 1996). Amendments applied at 
2.1 t total carbon per ha to a sandy, coarse-textured soil reduced atrazine 
leaching in this order: waste-activated carbon ~ digested municipal sewage 
sludge> animal manure; under saturated flow conditions 0.3%,57%, and 
67% of applied atrazine was in the leachate, respectively, compared to 77% 
in the untreated soil (Guo et al. 1991b). These amendments also reduced 
atrazine phytotoxicity (Guo et al.1991a). 

C. Other Management Practices 

Application methods can affect atrazine persistence and movement. Runoff 
of atrazine, when applied in 50-cm-wide bands, was reduced 69% compared 
with a broadcast application. The greater reduction in loss by runoff associ
ated with reduced application was attributed to movement into the soil 
profile (Gaynor and van Wesenbeeck 1995). Banding over 50% of a corn 
row reduced atrazine concentrations in lysimeter leachate by 43% (from 1.6 
to 0.9 p.g L- 1) compared with broadcast applications (S.A. Clay, unpub
lished data). Greater amounts were lost in runoff 1, 7, and 30 dafter 
preemergence compared to that applied postemergence applications (Pan
tone et al. 1992). The greatest amount in runoff was <2% of the applied. 
The injection slot created by fertilizer application increased atrazine move
ment when atrazine application and the fertilizer injection slot overlapped 
(Clay et al. 1994). The increased movement resulted from the physical 
disturbance of the soil and from reduction of atrazine sorption to soil by 
the fertilizer. 

Vegetative buffer strips appear to hold promise for protecting water 
supplies. A 6-m-wide strip of oat (A vena sativa L.) at the slope base reduced 
runoff loss by greater than 64% when atrazine was applied either preemer
gence or preplant incorporated at 2.2 or 4.5 kg ha- I in corn plots (Hall et 
al. 1983). Deep rooted poplar trees also appear to hold promise for protect
ing water supplies (Paterson and Schnoor 1992). 

Summary 

Atrazine persistence and fate are influenced by many factors, the interac
tions of which are difficult to predict. Several models, such as LEACHP 
(Wagenet and Hutson 1989), have been used as tools to estimate losses and 
identify variables that will impact the magnitude of loss. The LEACHP 
model was evaluated for predicting atrazine movement in sandy loam, silt 
loam, and clay loam soils during three consecutive years (two dry and one 
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wet) in Minnesota (Khakural et al. 1995). Considering the broad range in 
soil properties and climatic conditions used in testing, the model performed 
well. However, these are only estimates, and additional field studies need to 
be conducted to verify model results. 

In a report by Fausey et al. (1995), the amount of atrazine found in 
groundwater throughout the Midwestern region was reported to be much 
below the MCL. However, specific sites in the Midwest may struggle with 
atrazine problems from both point and nonpoint sources of contamination. 
Some states, such as South Dakota, have created groundwater protection 
areas that alert growers and the public to sensitive areas where contamina
tion may occur because of soil type, depth to groundwater, and distance to 
public wellheads. Wisconsin has developed a tiered managerial strategy, or 
zoning approach, in which restrictions are matched to pollution detections 
(Wolf and Nowak 1996). The USEPA has mandates for states to implement 
generic management plans to prevent pesticide contamination of groundwa
ter. Chemical-specific plans by states will be required for at least five pesti
cides, one of which will be atrazine. 

Best management practices have been and are continuing to be developed 
to aid the grower in lessening the adverse impacts of atrazine. With continu
ing research into understanding the problem and developing solutions, and 
with adaptation of these recommendations by growers, the use of effective, 
inexpensive herbicides may continue with minimal off-site environmental 
effects. 
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