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AIM
The organic cation transporter 1 (OCT1) plays a key role in the cellular
transport of metformin and its subsequent glucose-lowering effect.
A recent non-clinical study reported that metformin uptake into
hepatocytes is regulated via OCT1, and that uptake was strongly
inhibited by verapamil. Therefore, we investigated the effects of
verapamil co-administration on the pharmacokinetics and
pharmacodynamics of metformin in humans.

METHODS
We evaluated the pharmacokinetics and the anti-hyperglycaemic
effects of metformin using an oral glucose tolerance test (OGTT) in 12
healthy participants, before (day 1) and after metformin treatment (day
2), and again on days 15 and 16 after co-administration with verapamil.

RESULTS
Verapamil inhibited the ability of metformin to reduce maximum blood
glucose concentrations (ΔGmax) by 62.5% (P = 0.008) and decreased the
area under the glucose concentration–time curve (ΔAUCgluc) by 238%
(P = 0.015). However, verapamil did not significantly alter the Cmax and
the AUC of metformin, nor its renal clearance.

CONCLUSIONS
Our results suggest that verapamil remarkably decreases the
glucose-lowering effect of metformin, possibly by acting as a
competitive inhibitor of OCT1.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Organic cation transporters (OCTs) are

known to play an important role in the
cellular transport of metformin.

• An in vitro study reported that metformin
uptake into hepatocytes through OCT1 was
inhibited by verapamil.

• To date, there have been no clinical
pharmacokinetic or pharmacodynamic drug
interaction studies of metformin and
verapamil.

WHAT THIS STUDY ADDS
• This study reports a significant

pharmacodynamic drug interaction
between metformin and verapamil.

• Verapamil remarkably decreases the
glucose-lowering effect of metformin,
without altering its pharmacokinetics.

• This is likely mediated by competitive
inhibition of OCT1.

• Our study suggests that
transporter-mediated drug interactions at
the site of action are independent of plasma
exposure.
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Introduction

Metformin, the first line oral antidiabetic drug, is believed
to be the most frequently prescribed drug for the treat-
ment of type 2 diabetes. The primary mechanism of
metformin action is to inhibit glucagon-dependent
increases in cAMP and glucose output in hepatocytes [1]. It
has also been proposed that metformin enhances glucose
uptake in peripheral tissues, thereby decreasing glucose
absorption from the gastrointestinal tract [2]. More than
50% of orally administered metformin is absorbed into the
blood and eliminated unmetabolized in urine [3]. Its renal
clearance is greater than that of creatinine, indicating that
tubular secretion is its major route of elimination [3].
However, the clinical efficacy of metformin is variable,
and some patients do not show any significant anti-
hyperglycaemic effects [4].

Metformin transport into the liver, kidneys and periph-
eral tissues is mediated by organic cation transporters
(OCTs). OCT1 is primarily expressed in hepatocyte
sinusoidal membranes [5], whereas OCT2 is primarily local-
ized in the basolateral membrane of kidney tubules [6].
Metformin uptake by OCTs into the liver and kidney plays
an important role in its pharmacokinetics and pharmaco-
dynamics [7, 8].

Verapamil is an L-type calcium channel inhibitor used
in the treatment of severe supraventricular tachycardia
and hypertension [9]. Verapamil is also a potent inhibitor
of P-glycoprotein (P-gp) function [10]. Interestingly, a
recent non-clinical study reported that metformin uptake
into hepatocytes through OCT1 was strongly inhibited by
verapamil [11, 12]. Moreover, the IC50 value for verapamil
acting on OCT1 was well below the estimated maximal
portal vein concentration of verapamil in the liver directly
after intestinal uptake (Cmax,portal) [12]. These results suggest
that there is a high risk of interaction between metformin
and verapamil in the liver, and that co-administration of
verapamil with metformin may result in a reduced hepatic
uptake of metformin in humans.

In the present study, we hypothesized that the plasma
concentration of metformin and its ability to decrease
glucose concentrations is affected by verapamil, likely
through its ability to inhibit OCT1 competitively. We
therefore investigated the effect of verapamil on
metformin pharmacokinetics (PK) and pharmacodynam-
ics (PD) using the oral glucose tolerance test (OGTT) in 12
healthy subjects.

Methods

Subjects
Twelve healthy male subjects (age 27 ± 5 years; height
174.5 ± 6.0 cm; weight 70.5 ± 3.9 kg; fasting glucose 87 ±
3 mg dl−1) participated in this study. Exclusion criteria were
anaemia (haemoglobin < 12 g dl−1), history of drug abuse,

symptomatic coronary heart disease, significant elevation
of hepatic enzyme levels (aspartate aminotransferase
[AST] or alanine aminotransferase [ALT] > 60 IU l−1), serum
creatinine > 1.5 mg dl−1 or presentation of any criteria of
metabolic syndrome. Subjects who were consuming more
than two alcoholic drinks (at one time) twice a week,
smoking more than 10 cigarettes per day, or taking any
medication were also excluded.

Clinical study procedures
The study protocol was reviewed and approved by the
Institutional Review Board of Severance Hospital in the
Yonsei University Health System, Seoul, Korea (4–2010-
0417, Clinicaltrial.gov: NCT01274130). All procedures
were carried out in accordance with the International
Conference on the Harmonization of Technical Require-
ments for the Registration of Pharmaceuticals for
Human Use-Good Clinical Practice (ICH-GCP) guidelines.
Written informed consent for participation was obtained
from all subjects before enrolment in the study. The par-
ticipants were asked to maintain normal physical activity
at least 5 days before the study began. Dieticians
instructed the subjects regarding the meal plan, which
was designed to maintain a carbohydrate intake of 200 to
250 g day−1 and instructed them to use a food diary to
record food intake for 3 days before admission. The last
meal before admission was eaten in the Clinical Trials
Centre at Severance Hospital. After an overnight fast, a
3 h oral glucose tolerance test (OGTT) (75 g glucose) was
performed at 10.00 h (day 1). The participants received a
1000 mg oral dose of metformin (Diabex Tab; Daewoong
Pharmaceutical Co., Seoul, Korea) 10 h later. After fasting
overnight, a 750 mg dose of metformin was administered
at 08.00 h on day 2, followed by a second OGTT 2 h later.
Blood and urine samples were collected to determine the
pharmacokinetics of metformin. Carbohydrate-controlled
meals were provided 5 h after the second metformin
dose on day 2. Subjects were discharged on the morning
of day 3. After 11 days without treatment, the subjects
began the verapamil regimen (Isoptin SR Cap.; Ilsung
Pharmaceutical Co., Seoul, Korea) (180 mg day−1) for 3
days (day 14). The subjects were admitted to the
Clinical Trials Centre the following day (day 15) for 2 days,
where they were given verapamil, co-administered with
metformin. Participants were instructed to restart the
carbohydrate diet and maintain a food diary on day
13. The second OGTT tests, metformin and verapamil
administration, and blood and urine collection were
carried out according to the same protocol used from day
1 to day 3.

Blood and urine collection
For OGTT analysis, blood samples were collected before
the ingestion of glucose and at 15, 30, 45, 60, 90, 120, 150
and 180 min after ingestion. To determine metformin con-
centrations in the plasma, blood samples were collected
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before the second dose of metformin and at 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, 6, 8, 10, 12 and 24 h after. After the second
dose of metformin, participants were asked to drink 240 ml
water every 4 h in order to maintain urine flow. The first
portion of urine was voided and the subsequent samples
were collected during the following time intervals: 0–4,
4–8, 8–12 and 12–24 h after the second dose of metformin.
The volume and pH of urine were recorded before analysis.
In order to calculate the creatinine clearance (CLcr), the
serum creatinine concentration was determined from a
blood sample (3 ml) drawn before each of the admission
times.

Metformin concentration analysis
Metformin concentrations in plasma and urine were deter-
mined using the highly specific and sensitive method of
liquid chromatography-tandem mass spectrometry (API
3200; Applied Biosystems Sciex, Ontario, Canada). Samples
were prepared for analysis by mixing an aliquot of the
plasma or urine specimen with acetonitrile in the presence
or absence of the internal standard formoterol. The
mixture was vortexed for 5 min, and then centrifuged for
5 min at 10 000 rev min−1. An aliquot of the supernatant
was transferred to an autosampler vial and 1 μl was
injected onto the column at 10°C. The mobile phase con-
sisted of 75% acetonitrile, 25% double-distilled water and
a 5 mM ammonium formate aqueous solution. The limit of
quantification was 10 ng ml−1 in plasma and 0.5 μg ml−1 in
urine. The intraday and interday coefficients of variation
were <10%.

Glucose concentration analysis using an oral
glucose tolerance test
Participants were on a carbohydrate-controlled diet (200–
250 g day−1) for 3 days prior to admission. Before conduct-
ing the first OGTT (10.00 h on day 1), all subjects had fasted
for more than 14 h. Metformin lowers glucose production
in patients with diabetes [13] and exerts the same effect in
healthy subjects if their serum glucose concentrations are
increased by glucose ingestion [7]. The OGTT was con-
ducted four times: before and after metformin treatments,
prior to the first verapamil administration (day 1 and
day 2), and after verapamil administration (day 15 and day
16). The maximum glucose concentration (Gmax) was
determined and the area under the serum glucose
concentration−time curve (AUCgluc) was calculated using
the trapezoidal rule. AUCgluc60 was defined as the area
under the glucose curve from 0 to 60 min after glucose
ingestion, which was the period during which plasma
glucose concentration increased. The difference between
Gmax and AUCgluc before and after metformin administra-
tion (ΔGmax and ΔAUCgluc) is considered to be the glucose
lowering action of metformin [14]. The effect of verapamil
on the glucose-lowering action of metformin was calcu-
lated as the differences in ΔGmax and ΔAUCgluc values

(ΔGmax, ΔAUCgluc60, and ΔAUCgluc) before and after vera-
pamil administration (on days 1 and 2 and again on days
15 and16) in each subject.

Pharmacokinetics
The pharmacokinetic parameters were calculated by non-
compartmental analysis using Phoenix WinNonlin 6.1
(Pharsight Corporation, Mountain View, CA, USA). The
maximum metformin concentration (Cmax) and the time
required to reach the maximum concentration (tmax)
were determined. The area under the plasma metformin
concentration−time curves (AUCmet) from 0 to 24 h was
calculated using the linear trapezoidal rule. The elimina-
tion rate constant (ke) was estimated from the slope of the
best-fit line determined by linear regression analysis of the
log-transformed concentration−time curve. The elimina-
tion half-life (t1/2) was then calculated from the equation t1/2

= ln(2)/ke. The apparent volume of distribution, Vz/F, was
calculated using the formula dose/λz*AUC(0,∞). The clear-
ance of metformin (CLR) was calculated as the total amount
of metformin excreted in urine over 24 h divided by
AUCmet. The clearance of creatinine (CLcr) was calculated
from the Cockcroft−Gault equation ([140–age] × (body
weight, kg) × (0.85 if female)/(72 × serum creatinine).
Metformin secretion clearance (SrCLR) was calculated by
subtracting CLcr from CLR.

Statistical analysis
Measurements from the same subjects before and after
verapamil treatment were compared using the Wilcoxon
signed-rank test. The data were analyzed using SPSS v.20.0
(IMB Corp., Armonk, NY, USA). Data were expressed as
mean values ± standard deviation (SD). P < 0.05 was con-
sidered significant. The general linear model was used to
evaluate the effects of metformin, verapamil and their
interaction on the glucose parameters.

Results

Glucose-lowering effect of metformin
Before the first metformin dose, verapamil did not alter
the baseline serum glucose concentration. In the absence
of metformin administration, Gmax and AUCgluc were not
significantly affected by verapamil treatment (147 ±
17 mg dl−1 and 141 ± 11 mg dl−1 before and after vera-
pamil treatment, respectively, P = 0.158; 18 791 ±
1521 mg dl−1 min and 18 381 ± 1768 mg dl−1 min, P =
0.347). However, the glucose-lowering effect of metformin
was considerably reduced by co-administration of vera-
pamil (Figure 1). The ability of metformin to reduce
ΔAUCgluc60 and AUCgluc was compared with and without
verapamil co-treatment (Table 1). Verapamil treatment
decreased ΔGmax by 62.5% (16 mg dl−1 and 6 mg dl−1 with
or without verapamil co-administration, P = 0.010) and

S. K. Cho et al.

1428 / 78:6 / Br J Clin Pharmacol



the ΔAUCgluc60 by 101% (594 ± 500 mg dl−1 min and −6 ±
556 mg dl−1·min, P = 0.008). Verapamil also decreased the
ΔAUCgluc by 238% (509 ± 1224 mg dl−1 min vs. −702 ±
1103 mg dl−1 min, P = 0.015). Based on the difference in the
glucose lowering effect of the two groups, the power was
calculated above 90% (93% and 97% for ΔGmax and
ΔAUCgluc, respectively). By general linear model analysis,
the interacting effects of metformin and verapamil
appeared to be significant or close to significance (P values
for Gmax, AUCgluc, and AUCgluc60 were 0.06, 0.054, and 0.015,
respectively), while the effects of verapamil were not sig-
nificant, and those of metformin were significant for Gmax

(P = 0.0003) and AUCgluc60 (P = 0.017).

Metformin pharmacokinetics
The metformin plasma concentration profiles before and
after verapamil treatment are shown in Figure 2. The AUC
from the period 0–24 h (AUCmet) and the maximum
metformin concentration (Cmax) were consistent with pre-
vious studies [7, 14–16].

After verapamil treatment, the pharmacokinetic
parameters of metformin were not significantly altered as

shown in Table 2. Verapamil did not significantly alter the
t1/2 of metformin, and did not significantly decrease its
renal clearance (CLR), or its net tubular secretion (SrCLR).
Overall, the pharmacokinetics of metformin were not
affected by verapamil co-administration.

Discussion

In the present study, we found that verapamil consider-
ably inhibited the glucose-lowering effect of metformin.
Verapamil may inhibit metformin action and/or increase
glucose concentrations through its own pharmacological
action. Verapamil could increase glucose concentrations at
high doses by blocking pancreatic L-type calcium channels
and by increasing insulin resistance at the cellular level
[17]. However, when comparing the baseline glucose con-
centrations before and after verapamil treatment (Gmax and
AUCgluc on day 1 vs. day 15 before metformin administra-
tion), we did not observe any verapamil-induced hypergly-
caemia. These results suggest that verapamil inhibited the
glucose-lowering effect of metformin. To our knowledge,
this is the first study to report a substantial pharmaco-
dynamic drug interaction between verapamil and
metformin in humans.

Verapamil significantly inhibited the pharmaco-
dynamic effects of metformin, but had no effect on the
pharmacokinetics, which is consistent with our hypothesis
that verapamil may act as a competitive inhibitor of OCT1-
mediated metformin transport [11]. Five amino acids in the
innermost cavity of OCT1 constitute the substrate binding
cleft [18] and cysteine is critical for binding and subse-
quent transport [19]. We hypothesize that when these two
organic cationic drugs are administered simultaneously,
the binding of verapamil to OCT1 prevents metformin
binding and transport.

The plasma concentration of metformin was not
altered after verapamil treatment. The concentration of
metformin in the liver is relatively lower than the concen-
tration in blood [14], which is consistent with our results
showing that the verapamil interaction with OCT1 in the
liver does not affect the systemic exposure of metformin
and its renal clearance. Wang et al. showed that the sys-
temic exposure to metformin was not altered in an OCT1
knockout mouse, as compared with a WT mouse, even
though the urinary excretion and the volume of distribu-
tion were significantly different [20]. A change in absorp-
tion or in the kinetics of elimination is unlikely, as there
is no evidence that verapamil is a substrate for OCT2 or
any other absorption transporter, such as the plasma
monoamine transporter (PMAT) [21]. Although not signifi-
cant in this study, the apparent volume of distribution
(Vz/F) of metformin decreased after verapamil treatment
(243.6 ± 76.2 l vs. 188.1 ± 74.2 l). We therefore postulate
that verapamil may decrease the distribution of metformin
or increase its bioavailability by limiting its distribution
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Figure 1
Serum glucose concentrations were determined by OGTT before and
after metformin administration. (A) Serum glucose profile without vera-
pamil administration (B) Serum glucose profile with verapamil adminis-
tration. Data are expressed as mean ± SD (n = 12). ( ) before metformin;
( ) after metformin
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into central compartments, such as the liver, or by reduc-
ing its hepatic extraction. Both mechanisms could be the
result from inhibition of OCT1-mediated hepatic transport.
Other transporters such as OATP1A2 [22] or OCTN1 [23]
may be involved, but the affinity of these transporters for
metformin is relatively small and the IC50 of these trans-
ports for verapamil is relatively large compared with OCT1
[22]. Thus, the contribution of these transporters is not
likely to be involved in verapamil-mediated inhibition
of metformin activity. Our previous study showed the
positive effect of rifampicin on OCT1 expression and
metformin-mediated decreases in glucose [14]. Combined
with our present study, these data suggest OCT1-
mediated transport is critical for metformin action.
Patients with diabetes may also take probiotics or other
medications, such as antihypertensive drugs. These drugs
may affect the clinical efficacy of metformin. Moreover, it
has been shown that the metformin-mediated decrease
in glucose is impaired in individuals expressing genetic
variants of OCT1 [7]. Therefore, further study is needed
to characterize the effect of transporters polymor-
phism (OCT1, OCT2, MATE1, and MATE2-K), as well as

other co-administrated drugs, on metformin-mediated
decreases in glucose [24–26].

There are some limitations in the present study. First,
verapamil is a strong inhibitor of other transporters,
including P-glycoprotein (P-gp) and the multidrug and
toxin extrusion (MATE) transporter [10, 27, 28]. There is no
evidence to suggest that metformin is a substrate for P-gp
or that P-gp-inhibits the metformin-mediated decrease in
glucose. Metformin is a substrate for the MATE transporter,
and inhibition by verapamil may affect its glucose-
lowering action [29, 30]. However, since MATE is expressed
in the apical membrane of hepatocytes, the enhanced
glucose lowering effect of metformin is likely due to inhi-
bition of MATE. These data support our hypothesis that the
uptake of metformin into hepatocytes could be decreased
due to OCT1 inhibition and suggests that inhibition of
transport to the bile duct does not occur. Further, as vera-
pamil does not affect the pharmacokinetics of metformin,
it is less likely that it interacts with other metformin trans-
porters. A second limitation is that the results obtained
from healthy volunteers may differ from those in the
general population or diabetic patients. This prospective
study was designed to minimize the effect of confounding
factors and clearly shows that, although verapamil does
not affect basal serum glucose concentrations, it consider-
ably inhibits metformin action. Since metformin was
recently proposed to be an inhibitor of glucagon-
dependent glucose production [1], the effect of verapamil
on metformin in diabetic patients may differ, based on the
status of glucagon. However, the action of metformin is
mediated after the uptake of metformin into intracellular
components of the hepatocyte. Since the effect of vera-
pamil on OCT1 takes place at the cellular membrane level,
we assume that there will not be a difference in the
drug−drug interactions between healthy people and dia-
betic patients, unless the hepatic expression level of OCT1
is different. A small scale study in diabetic patients is
needed to evaluate this interaction mechanism. Finally,
further investigation is needed to correlate our results
with verapamil binding to OCT1 in vivo and its subsequent
inhibition of OCT1-mediated metformin transport into

Table 1
The glucose-lowering effect parameters of metformin with and without verapamil treatment in healthy participants (n = 12)

Without verapamil With verapamil
Difference mean (95%
confidence interval) P

ΔGmax (mg dl−1) 16 ± 13 6 ± 10 10 (3, 18) 0.010
ΔAUCgluc60 (mg dl−1 min) 594 ± 500 −6 ± 556 600 (248, 952) 0.008

ΔAUCgluc (mg dl−1 min) 509 ± 1224 −702 ± 1103 1211 (399, 2024) 0.015
Gmax (mg dl−1) before metformin 147 ± 17 141 ± 11 6 (−3, 15) 0.158

AUCgluc (mg dl−1 min) before metformin 18,791 ± 1521 18,381 ± 1768 410 (−621, 1439) 0.347

Data were evaluated using a Wilcoxon signed-rank test and expressed as mean ± SD. ΔGmax, difference in maximum glucose concentration before and after metformin treatment;
ΔAUCgluc60, difference in partial glucose AUC (0 to 60 min after ingestion, during which glucose concentration increases) before and after metformin treatment; ΔAUCgluc, difference
in total AUCgluc before and after metformin treatment.
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Figure 2
The plasma concentration−time curve of metformin on day 2 (without
verapamil treatment) and day 15 (with verapamil treatment). Metformin
concentrations were measured after the second dose of metformin. ,
without verapamil; , with verapamil
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hepatocytes. Intra-hepatocyte molecular imaging or
measuring portal vein concentrations will be considered in
future studies.

In conclusion, we found that verapamil decreased the
ability of metformin to lower glucose concentrations,
without affecting its pharmacokinetics. Verapamil most
likely acts as a competitive inhibitor of OCT1, preventing
the transport of metformin into the liver. Verapamil−
metformin interactions in patients with hypertension
and type 2 diabetes may affect the efficacy and safety of
the drugs. This drug−drug interaction may also alter
metformin pharmacokinetics and pharmacodynamics in
individuals expressing OCT1 genetic variants. A clinical
study is necessary to assess OCT-based drug interactions
and related genetic polymorphisms in patients with type 2
diabetes receiving metformin.
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