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Abstract

Background/Purpose

Acral melanoma is the most common type of melanoma in Asians, and usually results in a

poor prognosis due to late diagnosis. We applied a convolutional neural network to dermo-

scopy images of acral melanoma and benign nevi on the hands and feet and evaluated its

usefulness for the early diagnosis of these conditions.

Methods

A total of 724 dermoscopy images comprising acral melanoma (350 images from 81

patients) and benign nevi (374 images from 194 patients), and confirmed by histopatholog-

ical examination, were analyzed in this study. To perform the 2-fold cross validation, we split

them into two mutually exclusive subsets: half of the total image dataset was selected for

training and the rest for testing, and we calculated the accuracy of diagnosis comparing it

with the dermatologist’s and non-expert’s evaluation.

Results

The accuracy (percentage of true positive and true negative from all images) of the convolu-

tional neural network was 83.51% and 80.23%, which was higher than the non-expert’s

evaluation (67.84%, 62.71%) and close to that of the expert (81.08%, 81.64%). Moreover,

the convolutional neural network showed area-under-the-curve values like 0.8, 0.84 and

Youden’s index like 0.6795, 0.6073, which were similar score with the expert.
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Conclusion

Although further data analysis is necessary to improve their accuracy, convolutional neural

networks would be helpful to detect acral melanoma from dermoscopy images of the hands

and feet.

Introduction

In Asians, melanoma is rare, compared to its prevalence in Caucasians, and usually occurs in

acral areas such as the hands and feet. It can be misrecognized as benign nevi (BN), is occa-

sionally hidden by calluses, and eventually results in late diagnosis at an advanced stage, with a

poor prognosis[1–3]. Since effective anti-cancer agents for treating melanoma have not yet

been developed, early detection and wide excision of the skin lesion is more crucial to the cure

for melanoma.

Recently, to aid the early diagnosis of melanoma and the reduction of unnecessary skin

biopsy, dermoscopy has been widely used[4, 5]. Moreover, because it is difficult for non-

experts to use[6], artificial intelligence and deep-learning models have been applied to help

physicians who are untrained to handle a digital dermoscope[7]; its use is expected to increase

in the field of teledermatology.

A convolutional neural network (CNN) is one of the representative models among the vari-

ous deep-learning models. It has already shown potential for general and highly variable tasks

across many fine-grained object categories[8–12] and has been shown to exceed human per-

formance in object recognition[9]. Recently, it was applied to detect skin cancers in images,

including from dermoscopy, and successfully demonstrated artificial intelligence capable of

classifying skin cancer with a competence level comparable to that of dermatologists[13]. For

the success of CNN models, a large amount of training data labeled with class types to produce

a rich feature hierarchy is necessary, and therefore, its usefulness in the diagnosis of rare dis-

eases with insufficient data has not been fully established.

In this study, we applied an end-to-end CNN framework to detect a rare disease in Asians,

acral melanoma (AM), from the dermoscopy images of pigmentation on the hands and feet.

To overcome the insufficiency of the datasets, we adopted a transfer learning technique to

leverage learned features from a CNN model pre-trained on a large-scale natural image dataset

[14]. Moreover, we also applied a half-training and half-trial method to validate its clinical use-

fulness for the early diagnosis of patients compared with the dermatologist’s and non-expert’s

evaluation.

Methods

1. Dermoscopy images

A total of 724 dermoscopy images were collected from January 2013 to March 2014 at the Sev-

erance Hospital in the Yonsei University Health System, Seoul, Korea, and from March 2015

to April 2016 at the Dongsan Hospital in the Keimyung University Health System, Daegu,

Korea. Among them, 350 dermoscopy images were from 81 patients with AM and 374 images

were from 194 patients with BN of the acral area (Fig 1). A total of 632 dermoscopy images

were captured by the DermLite Cam (3Gen Inc., USA), and 92 images were captured by the

Dermlite hybrid II (3 Gen Inc., USA), connected to a digital camera (Nikon Coolpix P6000,

Japan). All diagnoses were histopathologically confirmed and multiple images were captured
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in cases of large lesions. We provide a STROBE checklist for the study of diagnostic efficacy as

supporting information (S1 Table). Dermoscopy images of BN were divided into nine types,

and AM images into three types according to the reference[15], by two dermatologists. This

study protocol was approved by the Institutional Review Board of Yonsei University, Sever-

ance Hospital and Keimyung University, Dongsan Hospital and was conducted according to

the Declaration of Helsinki Principles. Patient records/information was anonymized and de-

identified prior to analysis.

2. Convolutional neural network to detect melanoma

We have described the CNN architecture we adopted in Section 2. 1 and presented the training

and inference methods for detecting melanoma in Section 2. 2.

2.1 Convolutional neural network. CNNs are composed of several convolutional layers,

each involving linear and nonlinear operators, as well as fully connected layers. The architec-

ture for the state-of-the-art CNN has many parameters; for example, the VGG-16 Model has

138 million parameters, where the parameters are learned from the ImageNet dataset contain-

ing 1.2 million general object images of 1,000 different object categories for training[16]. Deep

neural networks are difficult to train using small datasets (i.e., a few hundred images). To cir-

cumvent this problem, we used the fine-tuning technique, which is one of the regularization

techniques. We fine-tuned a modified VGG model with 16 layers (13 convolutional and three

fully connected layers), which uses the convolution filters of the same size (i.e., 3 × 3) for all

convolution layers, as seen in Table 1. Our network configuration is depicted in Fig 2 and

Table 1. Each layer and feature map in the CNN is represented by a three-dimensional array of

Fig 1. Flowchart of this study.

https://doi.org/10.1371/journal.pone.0193321.g001
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size <h × w × d>, where h and w are spatial dimensions, and d is the number of channels or

feature dimensions. The first layer is the input image patch with pixel size h × w, and d is the

color channel (Fig 2 and Table 1; “conv” represents a convolutional layer and “FC” represents

a fully connected layer).

The input with a fixed-size, 224 × 224, was passed through a stack of convolutional layers,

where each followed a rectified linear unit (ReLU) activation function, and max-pooling was

performed over a 2 × 2 pixel window with a stride of 2. A series of convolutional layers (conv1,

conv2, conv3, conv4, and conv5) were followed by three fully connected layers: the first 2 fully

connected layers (FC6 and FC7) had 4,096 channels each, where each followed a ReLU activa-

tion function, while the last fully connected layer (FC8) had 2 channels since our problem was

a two-way classification problem (melanoma and non-melanoma class). It should be noted

that the number of channels of the last fully connected layer was the same as the number of

classes. Hence, we replaced the original fully connected layer (FC8: FC with 1000 channels)

with a fully connected layer with two channels. The last layer had the soft-max activation func-

tion and predicted whether the input patch was a melanoma or non-melanoma lesion.

Moreover, the VGG-16 model pre-trained on the ImageNet database are used to perform

transfer learning, and the weights of the last convolutional layers (the last two layers of conv5)

and three fully convolutional layers (FC6, FC7, and FC8) are initialized using Xavier weight

initialization[17]. In order to perform fine-tuning, we froze the weights of conv1, conv2,

conv3, conv4, and the first layer of conv5 on pre-trained ImageNet, and trained the initialized

weights on our dermoscopy image dataset. The above procedure is performed to prevent the

large gradient caused by randomly initialized weights from ruining the pre-trained weights.

Table 1. Our CNN configuration with 16 weight layers.

name layer type filter kernel size feature map size

Input 224×224×3

conv1 conv 3×3×64 224×224×64

conv 3×3×64 224×224×64

max-pooling

conv2 conv 3×3×128 112×112×128

conv 3×3×128 112×112×128

max-pooling

conv3 conv 3×3×256 56×56×256

conv 3×3×256 56×56×256

conv 3×3×256 56×56×256

max-pooling

conv4 conv 3×3×512 28×28×512

conv 3×3×512 28×28×512

conv 3×3×512 28×28×512

max-pooling

conv5 conv 3×3×512 14×14×512

conv 3×3×512 14×14×512

conv 3×3×512 14×14×512

max-pooling

FC6 fully-connected 1×1×4096 4096

FC7 fully-connected 1×1×4096 4096

FC8 fully-connected 1×1×2 2

soft-max activation function

https://doi.org/10.1371/journal.pone.0193321.t001
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After several training epochs, we trained the all weights of our network without freezing any

layer.

2.2 Training and inference. Our dataset consisted of 724 images and associated labels,

which were split into two mutually exclusive subsets (group A and B); half of the total image

dataset was selected for training and the rest for testing. The scale and location of a skin lesion

in a captured image were changed according to the capture conditions. To resolve this issue,

we adopted a sliding window strategy and used the cropped patches instead of the full image at

the training and inference time. At the inference time, we extracted about 12 image patches

from each test image on a regularly spaced grid with a partial overlap between neighboring

patches and then each patch was rescaled to the size of 224 × 224 pixels, as seen in Fig 3. In

addition, to increase the robustness of the variation of geometric transformation in our CNN

model, the training dataset was artificially augmented at training. Additional augmented data

were formed by rotating and flipping images from the original training set. We generated

216 image patches from a single image using rotations by 0˚, 45˚, 90˚, and 135˚, as well as left-

right and top-bottom reflections. In addition, the patches that did not contain any melanoma

lesions among the melanoma training images were manually removed and the patches that did

not contain any skin lesions among the non-melanoma training images were assigned to the

non-melanoma class at training time.

We randomly selected 30% of the training dataset as a validation set and the rest as a train-

ing set at the onset of training. The validation data were used to prevent the overfitting of the

training data and to provide guidance on when to stop training the network. The training of

our CNN was stopped when the validation error on the validated dataset stopped decreasing.

We trained the network using an adaptive stochastic sub-gradient method where the batch

Fig 2. Schematic overview of our CNN architecture: The number of output classes was set to 2 (melanoma and non-melanoma classes) for the dermoscopic

images.

https://doi.org/10.1371/journal.pone.0193321.g002
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size is set to 50, and the momentum parameter, learning rate, and weight decay are set to 0.9,

0.0001, and 0.0005, respectively.

Some of the filters learned from our melanoma dataset may be seen in Fig 4. Fig 4(a) shows

64 learned filters at the 1st convolutional layer, where each represents a learned filter with a

3 × 3 kernel size. The input of the first layer is an RGB image with 224x224 pixel size, and it is

convolved with 64 learned filters with 3x3 kernel size as shown in Fig 3(a) and 64 feature maps

with 224x224 size are generated. In addition, the output feature maps are used as the input of

the next layer. Fig 4(b)–4(m) shows 100 filters among the learned filters from the 2nd to the

13th convolution layer, respectively, where each represents a learned filter with a 3 × 3 kernel

size. At the time of inference, we interpreted 12 image patches per test image, and when one or

more images were predicted as containing melanoma, the corresponding test image was inter-

preted as containing melanoma. Each input of the network was an RGB image subtracted

from the average image and calculated over the entire training image dataset. We implemented

our method using MatConvNet, a Matlab-based CNN framework for computer vision applica-

tions[18]. Moreover, we fine-tuned a VGG model with 16 layers downloaded from http://

www.vlfeat.org/matconvnet/pretrained).

3. Comparison of diagnostic rate

To assess the clinical usefulness of the CNN, we compared its diagnostic rate with those of two

dermatologists who had five or more years of clinical experience in dermoscopy (expert

group) and two non-trained general physicians (non-expert group). All images on the com-

puter screen were evaluated simultaneously. If there was a dissensus between two physicians,

they reached a conclusion under the agreement. Since 724 images were randomly and equally

Fig 3. The framework of the melanoma classification showing training (upper) and inference (lower) stages.

https://doi.org/10.1371/journal.pone.0193321.g003
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divided into two groups for the training of the CNN, we evaluated them separately as group A

and B.

Based on the histopathologic results, we calculated the sensitivity, specificity, positive pre-

dictive value (PPV), negative predictive value (NPV), accuracy, Youden’s index, and area

under the curve (AUC) as follows.

Youden’s index ¼ Sensitivity
true positive

true positiveþ false negative

� �

þ

Specificity
true negative

true negativeþ false positive

� �

� 1 ð1Þ

Accuracy ¼
true positiveþ true negative

true positiveþ true negativeþ false positiveþ false negative
� 100ð%Þ ð2Þ

The agreement between the pathologic result and each rater’s diagnosis was measured

using the calculation of Cohen’s kappa coefficient. All statistical analyses were performed with

MedCalc software version 17.9.

Cohen’s Kappa ¼
Po � Pe
1 � Pe

ð3Þ

(Po = Accuracy, Pe = hypothetical probability of a chance agreement)

Fig 4. Visualization of the learned filters: (a) 64 learned filters at the first layer, (b-m) 100 filters among the learned

filters from the 2nd to 13th layers, respectively.

https://doi.org/10.1371/journal.pone.0193321.g004
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Results

Among 724 dermoscopy images, 71 images were from the hands and fingers, and the others

were from the feet and toes. A total of 350 AM images included homogenous diffuse irregular

pigmented, parallel ridge, and multicomponent patterns, while 374 BN images included paral-

lel furrow, fibrillar, lattice-like, reticular, globular, and homogenous patterns (S1 Table).

In the group A results obtained by the training of Group B images, CNN showed 92.57%

sensitivity and 75.39% specificity, which were similar to those of the expert (94.88% and

68.72%, respectively). However, the non-expert showed lower sensitivity (41.71%) and rela-

tively higher specificity (91.28%, Table 2). For diagnostic accuracy, both the CNN and expert

Table 2. Comparison metrics among CNN, expert, and non-expert.

Value 95% confidential interval

Group A (n = 362) Sensitivity (%) CNN 92.57 87.63–95.96

Expert 94.88 90.46–97.62

Non-expert 41.71 34.32–49.39

Specificity (%) CNN 75.39 68.72–81.26

Expert 68.72 61.71–75.15

Non-expert 91.28 86.41–94.84

PPV (%) CNN 77.14 72.46–81.24

Expert 73.13 68.79–77.07

Non-expert 81.11 72.52–87.48

NPV (%) CNN 91.88 86.95–95.05

Expert 93.71 88.67–96.59

Non-expert 63.57 60.45–66.58

Accuracy (%) CNN 83.51 79.39–96.94

Expert 81.08 76.78–84.74

Non-expert 67.84 62.92–72.40

Cohen’s kappa CNN 0.6727 0.5989–0.7474

Expert 0.6262 0.5504–0.7020

Non-expert 0.3384 0.2526–0.4242

Group B (n = 362) Sensitivity (%) CNN 92.57 87.63–95.99

Expert 98.29 95.07–99.65

Non-expert 48.00 40.40–55.67

Specificity (%) CNN 68.16 60.79–74.91

Expert 65.36 57.90–72.31

Non-expert 77.10 70.24–83.03

PPV (%) CNN 73.97 69.55–77.95

Expert 73.50 69.39–77.25

Non-expert 67.20 60.05–73.64

NPV (%) CNN 90.37 84.64–94.12

Expert 97.50 92.67–99.18

Non-expert 60.26 56.30–64.10

Accuracy (%) CNN 80.23 75.77–84.04

Expert 81.64 77.27–85.33

Non-expert 62.71 57.56–67.59

Cohen’s kappa CNN 0.6056 0.5254–0.6858

Expert 0.6341 0.5583–0.7099

Non-expert 0.2518 0.1550–0.3486

PPV: Positive Predictive Value, NPV: Negative Predictive Value, CNN: Convolutional Neural Network

https://doi.org/10.1371/journal.pone.0193321.t002
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group showed similar scores (83.51% and 81.08%, respectively), which were higher than that

of the non-expert (67.84%, Fig 5). In the result of group B by the training of group A images,

CNN also showed a higher diagnostic accuracy (80.23%) than that of the non-expert (62.71%)

but was similar to that of the expert (81.64%). For validating diagnostic reliability, both the

CNN and expert showed an AUC above 0.8 in group A and B (Fig 5). However, the non-expert

showed a lower AUC (Group A: 0.66, Group B: 0.63). In the calculation of Youden’s index,

CNN showed 0.6795 in group A and 0.6073 in group B, which were similar score with the

expert (group A: 0.6358, group B: 0.6365) and higher than non-expert (group A: 0.3899, group

B: 0.2509).

Regarding the concordance rate between the CNN and expert group, 73 cases (73/362,

20.17%) in Group A (AM: 14 cases, BN: 59 cases) were discordant. Of these, 41 cases (56.16%)

of the CNN and 32 cases (43.84%) of the expert were identical with the pathologic results.

However, in the concordant cases between them, 29 cases (29/362, 8.01%) differed from the

pathology reports. In Group B, 57 cases (AM: 12 cases, BN: 45 cases) showed discordance

between the CNN and expert, and 26 cases (45.61%) of the CNN and 31 cases (54.39%) of the

expert were identical with the pathologic results. Among the concordant cases in group B, 39

cases (39/362, 10.77%) differed from the pathology results. Cohen’s kappa between CNN and

Expert, CNN and Non-expert, Expert and Non-expert is shown in Table 3.

To verify the performance of CNN architecture for the discrimination of acral melanoma,

we perform the deep learning architecture, Inception-V3, in [13], the state-of-the-art publica-

tion for the classification of skin cancer. In [13], a single image was used for learning. Mean-

while, we applied multiple images for learning. Thus, we compared Inception-V3 with a single

image and Inception-V3 with multiple images to CNN with multiple images. The results are

shown in Table 4.

Discussion and conclusions

Although non-invasive and automated diagnostic techniques have been introduced for the

early detection of melanoma, they are still not easy to apply in the acral type[7, 19]. This may

be due to the overall low occurrence rate of melanoma in Asians, depending on the ethnic

Fig 5. Comparison of diagnostic reliability based on the area under the curve (AUC).

https://doi.org/10.1371/journal.pone.0193321.g005
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differences, which need a longer time to provide a sufficient dataset to improve diagnostic

accuracy.

To overcome the problem of an insufficient dataset, we adopt a 2-fold cross validation

method, for the training and test groups. In addition, capturing images at different places for

one lesion helps to construct a robust CNN. Similarly, data augmentation generating virtual

images using rotation, translation, different angle positioning from one image also helps for a

robust CNN. These procedures are necessary to construct an automated diagnosis system

from small datasets due to the low occurrence rate of acral melanoma. For the effective screen-

ing of melanoma, higher sensitivity is required. Thus, if there is a small compartment corre-

sponding to the melanoma in one image, our system considers it as melanoma. Also, our

system recognizes one image as one patient.

From the results, the accuracy of the CNN was above 80%, which was similar in both groups

and was close to that of the expert. The CNN and expert also showed AUC values above 0.8,

indicating good discrimination. Generally, higher AUC values are considered to demonstrate

better discriminatory abilities as follows: excellent discrimination, AUC of�0.90; good dis-

crimination, 0.80� AUC< 0.90; fair discrimination, 0.70� AUC< 0.80; and poor discrimi-

nation, AUC of<0.70[20]. Since the AUC of the non-expert was lower than 0.7, CNN can be a

useful tool for the early detection of AM by the physicians who are not familiar with the der-

moscopic images. Moreover, additional datasets of AM images can improve the diagnostic

accuracy of CNN[21], making it a more reliable tool for the evaluation of the need for skin

biopsy for hand and feet pigmentation.

There were several auto-classification methods independent of the size of training data

using dermatologists’ checklist, such as the ABCD rule and 7-point scale[22–25]. This method

used particular features such as color, shape, size, the boundary of the skin lesion, and statisti-

cal features of wavelength, which showed 91.26% of accuracy and 0.937 AUC value[25]. How-

ever, these cannot be directly applied to acral melanoma due to the different morphologic

features such as ridge or furrow patterns. Although there was a new dermoscopic algorithm

reflecting these characteristics for diagnosing acral melanoma: BRAAFF[26], it has not yet

been applied to the automated diagnosis. In addition, although there is a state-of-art auto-

mated classification method for acral melanoma, these methods cannot be generalized and

only work well for a particular pattern of acral melanoma, which is a ridge-and-furrow pattern

[27]. Automated diagnosis methods using particular features are able to reflect experts’ percep-

tion and the speed of performance is fast. However, it is not easy to catch experts’ perception,

although we are trying to reach the goal with significant features. On the other hand, deep

learning does not require specific features as inputs. It automatically finds the most correlated

features with expert’s perception by learning. Thus the accuracy is higher than feature-based

methods. However, a large database is critical for the successful completion of deep learning.

Recently, the melanoma classification performance of CNN using 1,010 dermoscopy

images was reported as having an AUC of 0.94 [13], which was higher than noted in our results

(0.84, 0.8). Our inferior results may be due to the characteristics of AM; it occurs on the pres-

sure area, thick skin, callus, etc., which can hinder and transform the classic pigmented lesion

into an atypical case. Because of this, experts in our experiment also showed an AUC of 0.82.

Table 3. Cohen’s kappa between CNN and expert, CNN and non-expert, expert and non-expert.

CNN and Expert

(95% confidential interval)

CNN and Non-expert

(95% confidential interval)

Expert and Non-expert

(95% confidential interval)

Group A 0.5929 (0.5099–0.6760) 0.2620 (0.1868–0.3373) 0.2496 (0.1808–0.3185)

Group B 0.6513 (0.5692–0.7335) 0.1972 (0.1109–0.2836) 0.1999 (0.1189–0.2811)

https://doi.org/10.1371/journal.pone.0193321.t003
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Table 4. Comparison metrics among CNN, Inception-V3 with a single image, and Inception-V3 with multiple images. Inception-V3 (s) corresponds to Inception-V3

with a single image and Inception-V3 (m) corresponds to Inception-V3 with multiple images.

Value (%) 95% confidential interval (%)

Group A (n = 362) Sensitivity CNN 92.57 87.63–95.96

Inception-V3 (s) 80.57 73.92–86.15

Inception-V3 (m) 86.29 80.29–91.01

Specificity CNN 75.39 68.72–81.26

Inception-V3 (s) 77.84 71.33–83.47

Inception-V3 (m) 75.77 69.12–81.62

PPV CNN 77.14 72.46–81.24

Inception-V3 (s) 76.63 71.38–81.17

Inception-V3 (m) 76.26 71.33–80.58

NPV CNN 91.88 86.95–95.05

Inception-V3 (s) 81.62 76.49–85.84

Inception-V3 (m) 85.96 80.72–89.95

Accuracy CNN 83.51 79.39–96.94

Inception-V3 (s) 79.13 74.69–82.97

Inception-V3 (m) 80.76 76.43–84.46

Kappa CNN 67.27 59.89–74.74

Inception-V3 (s) 58.26 49.98–66.54

Inception-V3 (m) 61.66 53.70–69.62

AUC CNN 0.84

Inception-V3 (s) 0.79

Inception-V3 (m) 0.81

Youden’s J CNN 0.6795

Inception-V3 (s) 0.5841

Inception-V3 (m) 0.6206

Group B (n = 362) Sensitivity CNN 92.57 87.63–95.99

Inception-V3 (s) 81.71 75.17–87.14

Inception-V3 (m) 90.28 84.90–94.23

Specificity CNN 68.16 60.79–74.91

Inception-V3 (s) 88.52 82.99–92.75

Inception-V3 (m) 79.23 72.63–84.86

PPV CNN 73.97 69.55–77.95

Inception-V3 (s) 87.19 81.90–91.11

Inception-V3 (m) 80.61 75.72–84.71

NPV CNN 90.37 84.64–94.12

Inception-V3 (s) 83.50 78.65–87.42

Inception-V3 (m) 89.50 84.36–93.09

Accuracy CNN 80.23 75.77–84.04

Inception-V3 (s) 85.19 81.15–88.50

Inception-V3 (m) 84.63 80.54–88.01

Kappa CNN 60.56 52.54–68.58

Inception-V3 (s) 70.33 62.97–77.69

Inception-V3 (m) 69.33 61.93–76.74

AUC CNN 0.8

Inception-V3 (s) 0.851

Inception-V3 (m) 0.848

Youden’s J CNN 0.6073

Inception-V3 (s) 0.7024

Inception-V3 (m) 0.6952

PPV: Positive Predictive Value, NPV: Negative Predictive Value, CNN: Convolutional Neural Network

https://doi.org/10.1371/journal.pone.0193321.t004
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Therefore, if the datasets are analyzed separately considering these anatomic characters, CNN

may perform a more precise discrimination. Furthermore, if combined with images from non-

invasive devices for melanoma diagnosis, which may overcome the problems presented by a

thick skin, the accuracy of CNN can be markedly improved.

Several non-invasive devices such as confocal and photon microscopy are being introduced

to provide convenient ways to diagnose melanoma early[28]. However, they require much

effort and time for a physician to gain expertise. An automated diagnostic system using a

CNN, even with a small dataset, may alleviate the difficulty of learning how to use these newly

developed devices.

In conclusion, a half-training and half-trial method were useful for creating a comparatively

accurate deep-learning model from a relatively small dataset. Although further data analysis is

necessary to improve its accuracy, CNN would be helpful for the early detection of AM, which

is usually associated with delayed diagnosis and poor prognosis.
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