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Abstract
Constant alcohol consumption is a major cause of chronic 
liver disease, and there has been a growing concern 
regarding the increased mortality rates worldwide. Al-
coholic liver diseases (ALDs) range from mild to more 
severe conditions, such as steatosis, steatohepatitis, 
fibrosis, cirrhosis, and hepatocellular carcinoma. The 
liver is enriched with innate immune cells (e.g. natural 
killer cells and Kupffer cells) and hepatic stellate cells 
(HSCs), and interestingly, emerging evidence suggests 
that innate immunity contributes to the development 
of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, 
HSCs play a crucial role in alcoholic steatosis via  pro-
duction of endocannabinoid and retinol metabolites. 
This review describes the roles of the innate immunity 
and HSCs in the pathogenesis of ALDs, and suggests 
therapeutic targets and strategies to assist in the re-
duction of ALD. 
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INTRODUCTION
Alcoholic liver disease (ALD) caused by chronic alcohol 
consumption shows increased mortality rates world-
wide[1,2]. As an adverse risk factor of  alcohol abuse, ALD 
includes a broad spectrum of  liver diseases, ranging from 
steatosis (fatty liver), steatohepatitis, fibrosis, and cirrho-
sis to hepatocellular carcinoma[3,4]. Generally, steatosis is 
considered to be a mild or reversible condition, whereas 
steatohepatitis is a pathogenic condition, which has the 
potential to progress into more severe diseases, such as 
liver fibrosis/cirrhosis, insulin resistance, and metabolic 
syndrome in rodents and humans[5-7]. For the past decade, 
evidence has suggested that the innate immune cells of  
liver and hepatic stellate cells (HSCs) play crucial roles in 
ALD. For example, previous studies demonstrated that 
alcoholic liver steatosis was induced by HSC-derived en-
docannabinoid and its hepatic CB1 receptor, and alcoholic 
liver fibrosis was accelerated due to abrogated antifibrotic 
effects of  natural killer (NK) cells/interferon-γ (IFN-γ) 
against activated HSCs via the upregulation of  transform-
ing growth factor-β (TGF-β) and suppressor of  cytokine 
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signaling 1 (SOCS1)[8,9]. However, the molecular and cellu-
lar mechanisms underlying ALD remain controversial[4,6,10]. 
Therefore, in the present review, we briefly describe the in-
nate immunity of  liver and HSCs, summarize the roles of  
these in ALD (with particular emphasis on alcoholic liver 
steatosis, steatohepatitis and liver fibrosis), and provide 
better strategies for the prevention and treatment of  ALD. 

INNATE IMMUNITY AND HSC IN LIVER 
The innate immune system is the first line of  defense 
against pathogenic microbes and other dangerous in-
sults, such as tissue injury, stress, and foreign bodies[11]. 
It consists of  three sub-barriers: physical (e.g. mucous 
membrane and skin), chemical (e.g. secreted enzymes 
for antimicrobial activity and stomach HCL), and cel-
lular barriers (e.g. humoral factors, phagocytic cells, 
lymphocytic cells, etc), which immediately respond to the 
pathogens entering the body. Most body defense cells 
have pattern recognition receptors (PRRs) that recognize 
the overall molecular patterns of  pathogens, known as 
pathogen associated molecular patterns. The examples 
of  PRRs are toll-like receptors (TLR), nucleotide-binding 
oligomerization domain-like receptors, and the retinoic 
acid-induced gene I-like helicases[12].

When extraneous molecules enter the human body, 
they have to be processed by the liver, either by metabo-
lism or detoxification. Therefore, the liver is considered 
as a barrier against pathogens, toxins, and nutrients 
absorbed from the gut via the portal circulation system. 
Consequently, the liver is enriched in innate immune 
system including humoral factors (e.g. complement and 
interferon), phagocytic cells (e.g. Kupffer cells and neu-
trophils), and lymphocytes [e.g. NK cells, natural killer 
T (NKT) cells and T cell receptor γδ T cells][11,13-15]. In a 
healthy liver, the principal phagocytic cells, the Kupffer 
cells, representing 20% of  the non-parenchymal cells 
(NPC), assist in the clearance of  wastes via phagocyto-
sis in the body[15,16]. However, when the liver is injured, 
Kupffer cells elicit immune and inflammatory responses 
(e.g. hepatitis, fibrosis, and regeneration) by producing 
several mediators, including tumor necrosis factor-α 
(TNF-α), TGF-β, interleukin-6 (IL-6), and reactive 
oxygen species (ROS)[17-19]. Among these, TGF-β plays 
a crucial role in the transdifferentiation of  quiescent 
HSCs into fibrogenic activated HSCs, via the suppres-
sion of  their degradation and the stimulation of  the 
production of  extracellular matrix (ECM), especially in 
collagen fibers[19-21]. In a healthy liver, liver lymphocytes 
constitute about 25% of  the NPC. Mouse liver lympho-
cytes contain 5%-10% NK cells and 30%-40% NKT 
cells, whereas rat and human liver lymphocytes consist 
of  approximately 30%-50% NK cells and 5%-10% NKT 
cells[11,13,15,16]. These distributions of  NK and NKT cells 
are quite abundant compared with those in peripheral 
blood, which contains 2% of  NKT cells and 13% of  NK 
cells[13]. Previously, NK/NKT cells were regarded to as-
sume a crucial role in mediating the immune responses 
against tumor and microbial pathogens. However, recent 

studies have suggested that they contribute significantly 
to liver injury, regeneration, and fibrosis[22-25]. 

More interestingly, there are enigmatic cells in the 
liver that were previously called Ito cells or sinusoidal 
fat-storing cells, but are now standardized as HSCs[21]. 
HSCs comprise up to 30% of  NPC in the liver and are 
located in specialized spaces called Disse, between he-
patocytes and sinusoidal endothelial cells. In addition, 
quiescent HSCs store retinol (vitamin A) lipid droplets 
and regulate retinoid homeostasis in healthy livers. How-
ever, they become activated and transformed into myo-
fibroblastic cells that have special features with retinol 
(vitamin A) loss and enhanced collagen expression when 
liver injuries occur[19,21,26]. For several decades, activated 
HSCs have been considered to be major cells that induce 
liver fibrosis via the production of  ECM and inflamma-
tory mediators (e.g. TGF-β) in humans and rodents[19-21]. 
However, recent studies have suggested that the novel 
roles of  HSCs are closely associated with other diseases, 
such as alcoholic liver steatosis and immune responses, 
by producing endocannabinoids and presenting antigen 
molecules, respectively[8,27,28]. Moreover, HSCs can directly 
interact with immune cells, such as NK cells, NKT cells 
and T cells, via the expression of  retinoic acid early in-
ducible-1 (RAE1), CD1d, and major histocompatibility 
complex (MHC) Ⅰ and Ⅱ[22,28,29]. During HSC activation, 
they metabolize the retinols into retinaldehyde (retinal) 
via alcohol dehydrogenase (ADH), and the retinal is fur-
ther metabolized into retinoic acid (RA) via retinaldehyde 
dehydrogenase (Raldh)[3,29]. Surprisingly, activated HSCs 
express an NK cell activating ligand known as RAE1; 
however, RAE1 expression is absent in quiescent HSCs. 
This suggests that the activation processes of  HSCs are 
necessary for the expression of  a NK cell activated li-
gand, RAE1. Furthermore, several TLRs have also been 
identified in HSCs[30]. Taken together, HSCs might be 
important not only in liver fibrosis, but also in other liver 
diseases related to immune responses. 

ALCOHOLIC LIVER STEATOSIS BY 
INNATE IMMUNITY AND HSCS
Alcoholic liver steatosis has long been considered as a 
mild condition; however, increasing evidence suggests that 
it is a potentially pathologic state, which progresses into a 
more severe condition in the presence of  other cofactors, 
such as the sustained consumption of  alcohol, viral hepa-
titis, diabetes, and drug abuse[31,32]. It is believed that fat ac-
cumulation in the hepatocytes is a result of  an imbalanced 
fat metabolism, such as decreased mitochondrial lipid 
oxidation and enhanced synthesis of  triglycerides. Several 
underlying mechanisms of  these processes indicate that it 
might be related to an increased NADH⁄NAD+ ratio[33,34], 
increased sterol regulatory element-binding protein-1 
(SREBP-1) activity[35,36], decreased peroxisome prolifera-
tor-activated receptor-α activity[37,38], and decreased AMP-
activated protein kinase (AMPK) activity[8,36]. 

Moreover, recent studies have suggested the involve-
ment of  innate immune cells, particularly Kupffer cells, 
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in alcoholic liver steatosis[39,40]. Generally, alcohol intake 
increases gut permeabilization, which allows an increased 
uptake of  endotoxin/lipopolysaccharide (LPS) in portal 
circulation[18]. Kupffer cells are then activated in response 
to LPS via TLR4 signaling cascade, leading to the produc-
tion of  several types of  pro-inflammatory mediators such 
as TNF-α, IL-1, IL-6, and ROS[3,4,39]. Of  these media-
tors, the increased expression of  TNF-α and enhanced 
activity of  its receptor (TNF-α R1) have been observed 
in alcoholic liver steatosis in mice[39-42]. In addition, it has 
been reported that TNF-α has the potential to increase 
mRNA expression of  SREBP-1c, a potent transcription 
factor of  fat synthesis, in the liver of  mice and to stimulate 
the maturation of  SREBP-1 in human hepatocytes[43,44]. 
Furthermore, a recent report demonstrated that alcohol-
mediated infiltration of  macrophages decreased the 
amount of  adiponectin (known as anti-steatosis peptide 
hormone) production of  adipocytes, leading to alcoholic 
liver steatosis[45]. Therefore, Kupffer cells/macrophages 
might contribute to the development of  alcoholic liver 
steatosis via the upregulation of  the SREBP1 activity in 
hepatocytes and the downregulation of  the production 
of  adiponectin in adipocytes. In contrast, IL-6 produced 
by Kupffer cells/macrophages is a positive regulator in 
protecting against alcoholic liver steatosis via activation of  
signal transducer and activator of  transcription (STAT)3, 
consequently inhibiting of  SREBP1 gene expression in 
hepatocytes[46-48].

Endocannabinoids, endogenous cannabinoids, are lipid 
mediators that interact with cannabinoid receptors (CB1 
and CB2) to produce effects similar to those of  mari-
juana[49]. There are the two main endocannabinoids, arachi-
donoyl ethanolamide (anandamide) and 2-arachidonoylg-
lycerol (2-AG). Recently, an intriguing report suggested that 
alcoholic liver steatosis is mediated mainly through HSC-
derived endocannabinoid and its hepatocytic receptor[8]. 
The study suggested that chronic alcohol consumption 
stimulated HSC to produce 2-AG, and the interaction with 
the CB1 receptor upregulated the expression of  lipogenic 
genes SREPB1c and fatty acid synthase but downregulated 
the activities of  AMPK and carnitine palmitoyltransferase 
1. Consequently fat is accumulated in the hepatocyte. More 
recently, a related study reported that the increased expres-
sion of  CB1 receptors on hepatocytes because of  alcohol 
consumption was mediated by RA acting via a RA receptor 
(RAR)-γ[27]. This study also showed that 2-AG treatment 
in mouse hepatocytes increased the production of  RA by 
Raldh1, the catalytic enzyme of  retinaldehyde into RA. RA 
then binds with RAR-γ, increasing the expression of  CB1 
receptor mRNA and protein, and consequently exacerbat-
ing the alcohol-mediated fat accumulation via enhanced 
endocannabinoid and lipogenic signaling pathways[27]. 
Reports stating that alcohol consumption simultaneously 
elevated the expression of  RAR and the production of  
retinol metabolites, including RA, in mouse and rat liver, 
supported these findings[50-52]. Moreover, hepatocytes and 
HSCs are major sources of  retinoids, including retinol and 
RA, in the body[26,53]. In contrast to the CB1 receptors, the 
association of  CB2 receptors with the development of  

hepatic steatosis has not yet been studied in depth. One 
study showed that the expression of  CB2 receptors was 
increased in the livers of  patients with non-alcoholic fatty 
liver disease[54]. In an animal model, however, feeding of  
high-fat diet for 15 wk induced severe fatty liver in wild-
type mice, but not in hepatic CB2 knockout mice[55]. The 
involvement of  endocannabinoid, RA, and their receptors 
has been integrated in Figure 1.

Interestingly, in contrast with previous reports that 
endocannabinoids activated HSCs to induce liver fibrosis 
and alcoholic liver steatosis[8,56], Siegmund et al reported 
that HSCs’ sensitivity to anandamide (AEA)-induced cell 
death was because of  low expression of  fatty acid amide 
hydrolase and that 2-AG also induced apoptotic death 
of  HSCs via ROS induction[57-59]. These data indicated 
that endocannabinoids might play negative roles in liver 
fibrosis. Therefore, the functions of  endocannabinoids to 
HSCs are still unclear and need to be studied further. 

ALCOHOLIC STEATOHEPATITIS BY 
INNATE IMMUNITY AND HSCS
Alcoholic steatohepatitis has a mixed status with fat accu-
mulation and inflammation in the liver, which has the po-
tential to progress into more severe pathologic states such 
as alcoholic liver fibrosis, cirrhosis, and hepatocellular 
carcinoma. In response to alcohol uptake, many hepatic 
cells participate in the pathogenesis of  alcoholic steato-
hepatitis. However, as described above, mainly Kupffer 
cells and HSCs initiate and maintain hepatic inflammation 
and steatosis[4,8,60-63]. Considering their specific location at 
the interface between the portal and systemic circulation, 
Kupffer cells are the central players in orchestrating the 
immune response against endotoxin (LPS) via TLR4 sig-
naling pathways[62,64]. TLR4 initiates two main pathways, 
and when TLR4 binds LPS, TIR domain-containing adap-
tor protein and myeloid differentiation factor 88 (MyD88) 
are recruited, resulting in the early-phase activation of  nu-
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Figure 1  Regulatory mechanisms of the hepatic lipogenesis and CB1 re-
ceptor expression via hepatic stellate cell-derived endocannabinoids/CB1 
receptors and retinoic acid/retinoic acid receptor-γ in hepatocytes, re-
spectively. CB1 R: CB1 receptor; AMPK: AMP-activated protein kinase; HSC: 
Hepatic stellate cell; 2-AG: 2-arachidonoylglycerol; SREBP-1: Sterol regulatory 
element-binding protein-1; FAS: Fatty acid synthase; RA: Retinoic acid; RAR: 
Retinoic acid receptor.
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clear factor-κB (NF-κB). The activation of  NF-κB leads 
to the production of  pro-inflammatory cytokines, includ-
ing TNF-α, IL-6, and monocyte chemotatic protein-1 
(MCP-1). Meanwhile, TIR-domain containing adaptor in-
ducing IFN-β (TRIF) and TRIF-related adaptor molecule 
activate interferon regulatory factor 3 (IRF3), leading to 
the production of  type I IFN and late activation of  NF-
κB[62,65]. Recent studies reported that alcohol-mediated 
liver injury and inflammation were primarily induced by 
in a TLR4-dependent, but MyD88-independent, manner 
in NPCs (Kupffer cells and macrophages), whereas IRF3 
activation in parenchymal cells (hepatocytes) rendered 
protective effects to ALD[66,67]. In addition, the importance 
of  gut-derived endotoxin/LPS in ALD was suggested by 
experiments where animals were treated with either antibi-
otics or lactobacilli to remove or reduce the gut microflora 
provided protection from the features of  ALD[68]. Among 
pro-inflammatory cytokines, TNF-α primarily contributes 
to the development of  ALD, and its levels are increased in 
patients with alcoholic steatohepatitis[39] and in the liver of  
alcohol-fed animals[40,69]. Moreover, Kupffer cells secrete 
other important cytokines, including IL-8, IL-12, and 
IFNs, which contribute to the intrahepatic recruitment 
and activation of  granulocytes that are characteristically 
found in severe ALD, and influence immune system po-
larization[70]. Interestingly, TLR4 is expressed not only on 
innate immune cells, such as Kupffer cells and recruited 
macrophages, but also on hepatocytes, sinusoidal endo-
thelial cells, and HSCs in the liver[30]. 

In addition to LPS, oxidative stress-mediated cellular 
responses also play an important role in activations of  in-
nate immune cells and HSCs. Furthermore, Kupffer cells 
represent a major source of  ROS in response to chronic 
alcohol exposure[71,72]. One important ROS is the superox-
ide ion, which is mainly generated by the enzyme complex 
NADPH oxidase. Underlining the important role of  ROS 
in mediating ethanol damage, treatment with antioxidants 
and deletion of  the p47phox subunit of  NADPH oxidase 
in ethanol-fed animals reduced oxidative stress, activa-
tion of  NF-κB, and TNF-α release in Kupffer cells, thus 
preventing liver injury[71,73]. Moreover, NADPH oxidase 
induces TLR2 and TLR4 expression in human mono-
cytic cells[74], and direct interaction of  NADPH oxidase 
isozyme 4 with TLR4 is involved in LPS-mediated ROS 
generation and NF-κB activation in neutrophils[75].

Besides Kupffer cells, HSCs also contribute to alco-
holic steatohepatitis by producing endocannabinoids and 
releasing proinflammatory cytokines and chemokines, 
such as TNF-α, IL-6, MCP-1, and macrophage inflam-
matory protein-2[63,76-78]. Moreover, Kupffer cells activated 
by alcohol stimulate the proliferation and activation of  
HSCs via IL-6 and ROS-dependent mechanisms in a co-
culturing system[17,79]. Furthermore, retinol metabolites 
of  HSCs activate latent TGF-β, leading to suppression 
of  apoptosis of  HSCs[80-82]. Recently, an intriguing review 
provided novel roles for HSCs in liver immunology, where 
HSCs, depending on their activation status, can produce 
several mediators, including TGF-β, IL-6, and RA, which 
are important components in naïve T cell differentiation 

into regulatory T cells (Treg cells) or IL-17 producing T 
cells (Th-17 cells)[83]. Based on this review, it can be hy-
pothesized that HSCs regulate hepatic inflammation via 
modulation of  T cell differentiation into Treg or Th-17 
cell under certain circumstances. However, this remains an 
unclear proposition; therefore, further studies on the role 
of  HSCs in hepatic inflammatory diseases, including alco-
holic steatohepatitis and viral hepatitis, are necessary.

ALCOHOLIC LIVER FIBROSIS BY INNATE 
IMMUNITY AND HSCS
Chronic alcohol drinking is one of  major causes of  liver 
fibrosis, which is characterized by the excessive accumula-
tion of  ECM components because an imbalanced ECM 
degradation and production[6]. However, only 10%-40% of  
heavy drinkers develop alcoholic liver fibrosis[1,3]. Although 
the underlying mechanisms of  alcoholic liver fibrosis are 
not yet completely understood, several suggestions have 
been made in the literature. First, acetaldehyde and ROS 
generated by hepatic alcohol metabolism activate the 
production of  collagen and TGF-β1 in HSCs through a 
paracrine mechanism[84,85]. Secondly, hepatocyte apoptotic 
bodies induced by alcohol are phagocytosed in Kupffer 
cells and HSCs, resulting in the production of  TGF-β1 
and subsequently activating HSCs[86,87]. Thirdly, alcohol-
mediated activation of  Kupffer cells, such as LPS/TLR4 
signaling, also activates HSCs via release of  cytokines, che-
mokines, and ROS[17,63,88]. Moreover, TLR4/MyD88 sig-
naling in HSCs enhances TGF-β signaling, inducing liver 
fibrosis via down-regulation of  a transmembrane TGF-β 
receptor inhibitor, Bambi[89]. Furthermore, it is reported 
that NADPH oxidase–mediated ROS production contrib-
utes to liver fibrosis[90]. However, recent studies have in-
ferred another possibility - that chronic alcohol consump-
tion predisposes NK/NKT cells to decrease in function, 
which accelerates the development of  liver fibrosis[9,91].

Originally, as we depicted in Figure 2, NK cells have 
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anti-fibrotic effects via several mechanisms. First, NK cells 
can directly kill activated HSCs by NKG2D- and TNF-
related apoptosis, dependent on the induction TRAIL 
ligand, whereas NK cells cannot induce apoptosis of  
quiescent HSCs[24,92]. This is because early activated HSCs 
express NK cell-activating ligand RAE-1, which is an acti-
vating ligand of  NKG2D on NK cells, by RA and TRAIL 
receptors, but they express decreased MHC-Ⅰ, an NK 
cell-inhibitory ligand[29,92]. Second, NK cells can suppress 
liver fibrosis via production of  IFN-γ, which can induce 
HSC cell cycle arrest and apoptosis in a STAT1-dependant 
manner and induce autocrine activation of  NK cells[93,94]. 
Similar to NK cells, NKT cells (invariant NKT cells) can 
also suppress HSC activation via direct killing and IFN-γ 
production; however, the anti-fibrotic effects of  NKT 
cells are beneficial only at the onset stage of  liver fibro-
sis because of  iNKT depletion tolerance[22]. In contrast, 
strong activation of  iNKT cells by a single injection of  
α-galactosylceramide adversely enhanced liver fibrosis via 
highly increased IFN-γ-mediated hepatocyte apoptosis[22]. 
However, in alcoholic liver fibrosis, it is now accepted 
that chronic alcohol consumption accelerates liver fibrosis 
because of  the suppressed activity of  NK cells (as shown 
in patients and mice)[9,91,95]. In patients with alcoholic liver 
cirrhosis, the number and cytolytic activity of  peripheral 
blood NK cells were significantly decreased compared to 
those of  patients without liver disease[95]. In parallel with 
this report, decreased numbers and cytotoxicity of  liver 
NK cells against HSCs and tumor cells were observed in 
chronically alcohol-fed mice[9,91]. In addition, direct IFN-γ 
treatment failed to increase activities of  NK cells and to 
suppress activated HSCs in chronically alcohol-fed mice, 
showing no beneficial effects of  IFN-γ in alcoholic liver 
fibrosis[9]. These results are possibly due to increased ex-
pression and production of  TGF-β and SOCS1 by mono-
cytes and activated HSCs[9,96]. We have integrated these 

findings in Figure 3, and in the case of  NKT cells, they 
seem to contribute to alcoholic liver injury because the 
activation of  NKT cells accelerate alcoholic liver injury 
while NKT deficiency delays the process[97,98]. Neverthe-
less, reports on the effects of  alcohol on NK/NKT cell 
functions are still controversial. Therefore, further studies 
of  the effect of  alcohol on NK/NKT functions are nec-
essary. 

Although the underlying mechanisms of  liver fibrosis 
are not clear, alcohol consumption in patients with hepa-
titis C virus (HCV) infection may accelerate the process. 
This is because HCV triggers dysfunction and apoptosis 
of  lymphocytes, such as T cells, NK cells, and NKT cells, 
via NADPH oxidase-derived oxygen radicals, which might 
be enhanced by alcohol-mediated apoptosis of  hepatocyte 
and ROS production, and subsequently accelerating liver 
fibrosis[99,100]. In addition, HCV core and nonstructural 
proteins either induce TLR4 expression in hepatocytes 
and B cells, leading to enhanced production of  IFN-β 
and IL-6, or enhance the secretion of  TGF-β1 and the 
expressions of  procollagen α(I) or α-smooth muscle ac-
tin in human-activated HSCs and LX-2 cells[101,102]. There-
fore, all these factors and findings may be promoting the 
effect of  alcohol on liver fibrosis in patients with HCV 
infection. 

TREATMENT STRATEGY FOR ALD 
In alcoholic patients, the best therapeutic is to reduce 
ethanol intake significantly, subsequently avoiding fur-
ther liver injury[1]. However, abstinence is very difficult 
to achieve. The alternative option is liver transplanta-
tion, but donors are relatively scarce[2]. For these reasons, 
many studies have been performed to determine targets 
or strategies for treating ALD. Regarding the critical role 
of  TNF-α and ROS in animal models with ALD, several 
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drugs have been developed and are currently available 
for clinical trial. To suppress the inflammatory responses, 
phosphodiesterase inhibitor (Pentoxifylline) and cortico-
steroid therapies were also administered and resulted in 
reductions of  TNF-α, IL-8, and soluble and membra-
nous forms of  intracellular adhesion molecule 1 in pa-
tients with ALD, via inhibition of  activator protein 1 and 
NF-κB[103-106]. Even though treatments with antioxidants 
have shown inhibitory effects on alcohol-mediated oxida-
tive stress in animal models, studies of  treatment with 
antioxidants (S-adenosylmethionine, vitamin E, and sily-
marin, the active element in milk thistle) had no beneficial 
effects in either patients with alcoholic hepatitis or those 
with alcoholic cirrhosis[107,108]. In addition, other treat-
ments, such as antifibrotics (colchicines) and nutritional 
therapies, have been tried, but the effects were minimal. 
Based on this discrepancy between animal studies and 
clinical trials, therapeutic strategies should be reconsti-
tuted to overcome ALD. For example, treatments for the 
amelioration of  ALD should be targeted simultaneously 
to HSCs and innate immune cells (e.g. Kupffer cells and 
NK cells), because these cells can produce endocannabi-
noid (e.g. 2-AG), inflammatory mediators (e.g. TNF-α, 
ROS), pro-fibrotic cytokines (e.g. TGF-β), and negative 
regulators against NK cells (e.g. TGF-β, SOCS1) concur-
rently in response to chronic alcohol consumption. Thus, 
we need novel orchestrated strategies, which are capable 
of  enhancing NK cell cytotoxicity while simultaneously 
suppressing the activation of  HSCs and Kupffer cells.

CONCLUSION
The present review summarized the pathogenesis of  
ALD, in which NK cells, Kupffer cells and HSCs are 
highly involved. Alcohol-mediated activation of  Kupffer 
cells appears to be required for the development of  alco-
holic steatohepatitis via LPS-TLR4 signaling pathways. In 
addition, alcohol-induced paracrine activation of  HSC-
derived endocannabinoid in hepatocytes might be a 
major factor in the induction of  alcoholic steatosis. Fur-
thermore, both Kupffer cells and HSCs play important 
roles in alcoholic liver fibrosis via the suppression of  the 
antifibrotic effects of  NK cells. Therefore, the interac-
tions among them should be simultaneously considered 
when developing therapeutics for ALD. For example, 
even though Kupffer cells are appropriately suppressed 
by a certain drug, alcohol-activated HSCs still might 
enhance the accumulation of  fat in the liver, leading to 
lipotoxicity, which in turn generates oxidative stress and 
inflammation, subsequently restoring steatohepatitis. Be-
sides, functions of  NK cells are abrogated or suppressed 
by alcohol-induced ROS and high levels of  TGF-β in 
the liver. Thus, additional antioxidant and neutralizing 
TGF-β1 antibody treatment may have beneficial effects 
in slowing down ALD. Conclusively, further studies to 
elucidate the roles of  innate immunity and HSCs might 
aid in the development of  novel therapeutic targets for 
the treatment of  ALD. 
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