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Analysis of Whole Transcriptome Sequencing Data: 
Workflow and Software 
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RNA is a polymeric molecule implicated in various biological processes, such as the coding, decoding, regulation, and 
expression of genes. Numerous studies have examined RNA features using whole transcriptome sequencing (RNA-seq) 
approaches. RNA-seq is a powerful technique for characterizing and quantifying the transcriptome and accelerates the 
development of bioinformatics software. In this review, we introduce routine RNA-seq workflow together with related 
software, focusing particularly on transcriptome reconstruction and expression quantification.
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Introduction

The transcriptome is the entire set of RNA transcripts in 
a given cell for a specific developmental stage or physio-
logical condition [1]. Understanding the transcriptome is 
necessary for interpreting the functional elements of the 
genome as well as for understanding the underlying 
mechanisms of development and disease. Microarray tech-
nologies have been used for high-throughput large-scale 
RNA-level studies, such as to identify differentially ex-
pressed genes between developmental stages or between 
healthy and diseased groups [2]. However, its hybridi-
zation-based nature limits the ability to catalog and quantify 
RNA molecules expressed under various conditions. 
Advances in massive parallel DNA sequencing technologies 
have enabled transcriptome sequencing (RNA-seq) by 
sequencing of cDNA. RNA-seq has rapidly replaced 
microarray technology because of its better resolution and 
higher reproducibility; this method can be used to extend 
our knowledge of alternative splicing events [3], novel genes 
and transcripts [4], and fusion transcripts [5].

One concern regarding the application of RNA-seq is 
abundance estimation at the gene-level and transcript-level 
differential expression under distinct conditions. Routine 
RNA-seq workflow may consist of the following five steps as 

shown in Fig. 1: (1) preprocessing of raw data, (2) read 
alignment, (3) transcriptome reconstruction, (4) expression 
quantification, and (5) differential expression analysis. As an 
initial step, RNA-seq data may be subjected to quality 
control (QC) of the raw data before data analysis. Similar to 
whole genome or exome sequencing, read alignment can be 
performed to map the reads to the reference genome or 
transcriptome. Clinical samples including formalin-fixed 
paraffin-embedded specimen and cancer tissue biopsies are 
often degraded or exist in limited amount [6]. Thus 
additional QC procedure can be performed to evaluate the 
performance of the RNA-seq experiment itself after read 
alignment. Next, transcriptome reconstruction is carried out 
to identify all transcripts expressed in a specimen based on 
read mapping data. If there is no available reference 
sequence, this procedure can be conducted directly using a de 
novo assembly approach. Once all transcripts are identified, 
their abundances can be estimated using read mapping data. 
Finally, differential expression analysis is conducted using 
currently available programs. In this review, we discuss the 
RNA-seq workflow and its related bioinformatics tools in 
each step (Table 1), focusing on transcriptome reconstruc-
tion and abundance quantification.
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Fig. 1. Typical workflow for RNA sequencing (RNA-seq) data 
analysis. This workflow shows an example for expression quanti-
fication and differential expression analysis at gene and/or transcript
level using RNA-seq, which is typically consisted of five steps as 
following: preprocessing, read alignment, transcriptome reconstruc-
tion, expression quantification and differential expression analysis.
For each step, currently available programs are written in Table 1.
QC, quality control.

Preprocessing of Raw Data

Similarly to whole genome or exome sequencing, RNA- 
seq data is formatted in FASTQ (sequence and base quality). 
Numerous erroneous sequence variants can be introduced 
during the library preparation, sequencing, and imaging 
steps [7], which should be identified and filtered out in the 
data analysis step. Thus, QC of raw data should be performed 
as the initial step of routine RNA-seq workflow. Tools such 
as FastQC [8] and HTQC [9] can be applied in this step to 
assess the quality of raw data, enabling assessment of the 
overall and per-base quality for each read (i.e., read 1 and 2 
in case of paired-end sequencing) in each sample. Depending 
on the RNA-seq library construction strategy, some form of 
read trimming may be advisable prior to aligning the 
RNA-seq data. Two common trimming strategies include 
“adapter trimming” and “quality trimming.” Adapter 
trimming involves removal of the adapter sequence by mas-
king specific sequences used during library construction. 
Quality trimming generally removes the ends of reads where 
base quality scores have decreased to a level such that 
sequence errors and the resulting mismatches prevent reads 

from aligning. The adapter trimming step is typically not 
necessary, as most recent sequencers provide raw data in 
which the adapters are already trimmed. In contrast, quality 
trimming may be an essential step depending on the analysis 
strategy used. The FASTX-Toolkit [10] and FLEXBAR [11] 
are useful for this purpose.

Read Alignment

There are two strategies in which a genome or trans-
criptome is used as a reference for the read alignment step 
[12]. The transcriptome comprises all transcripts in a given 
specimen and in which splicing has been conducted by 
including the exons and excluding the introns. If a 
transcriptome is used as a reference, unspliced aligners that 
do not allow large gaps may be the proper choice for accurate 
read mapping. Stampy, Mapping and Assembly with Quality 
(MAQ) [13], Burrow-Wheeler Aligner (BWA) [14], and 
Bowtie [15] can be used in this case. This alignment is 
limited to the identification of known exons and junctions 
because it does not identify splicing events involving novel 
exons. However, if the genome is used as a reference, spliced 
aligners that allow a wide range of gaps should be employed 
because reads aligned at exon-exon junctions will be split 
into two fragments. This approach may increase the pro-
bability of identifying novel transcripts generated by 
alternative splicing. Various spliced aligners have been 
developed, including TopHat [16], MapSplice [17], STAR 
[18], and GSNAP [19].

RNA-Seq Specific QC

Several intrinsic biases and limitations including nucle-
otide composition bias, GC bias and polymerase chain 
reaction bias can be introduced to RNA-seq data of clinical 
samples with low quality or quantity. To evaluate the biases 
from RNA-seq data, several metrics may be examined as 
following: percentage of exonic or rRNA reads, accuracy and 
biases in gene expression measurements, GC bias, evenness 
of coverage, 5′-to-3′ coverage bias, and coverage of 5′ and 3′ 
ends [6]. Some programs including RNA-SeQC [20], 
RSeQC [21], and Qualimap 2 [22] are currently available for 
the purposes, which take typically BAM file as input. 

RNA-SeQC [20] provides three types of QC metrics based 
on read count (total, unique and duplicate reads, rRNA 
content, strand specificity, etc.), coverage (mean coverage, 
5′/3′ coverage, GC bias, etc.), and expression correlation 
(reads per kilobase per million mapped reads [RPKM]–based 
estimation of expression levels and correlation matrix by all 
pairwise comparison). The software also provides multi- 
sample evaluation regarding library construction protocols, 
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input materials and other experimental parameters.
RSeQC [21] is a Python-based package program that 

provides several metrics containing sequence quality, GC 
bias, polymerase chain reaction bias, nucleotide composition 
bias, sequencing depth, strand specificity, coverage uni-
formity, and read distribution over the genome structure. Of 
the metrics, sequencing depth is importance, because it 
allows users to determine if current RNA-seq data is suitable 
for such application including expression profiling, alter-
native splicing analysis, novel isoform identification, and 
transcriptome reconstruction by checking whether the 
sequencing depth is saturated or not. 

Qualimap 2 [22] is consisted of four analysis modes: BAM 
QC, Counts QC, RNA-seq QC, and Multi-sample BAM QC. 
Compared to previous release, this version focuses on 
multi-sample QC for high-throughput sequencing data. 
Multi-sample BAM QC mode allows combined QC for 
multiple alignment files, which takes the metrics from the 
single-sample BAM QC mode as input. RNA-seq QC mode is 
added to compute the metrics specific to RNA-seq data, 
which contains per-transcript coverage, junction sequence 
distribution, genomic localization of reads, 5′-3′ bias and 
consistency of the library protocol. Counts QC mode enables 
to estimate the saturation of sequencing depth, read count 
densities, correlation of samples and distribution of counts 
among classes of selected features along with gene ex-
pression estimation based on NOIseq [23].

Transcriptome Reconstruction

Transcriptome reconstruction is the identification of all 
transcripts expressed in a specimen. There are two strategies 
used for transcriptome reconstruction, including the 
reference-guided approach and the reference-independent 
approach. First, the reference-guided approach consists of 
two sequential steps: (1) alignment of raw reads to the 
reference as described in the previous section and (2) 
assembly of overlapping reads for reconstructing transcripts. 
This approach is advantageous when reference annotation 
information is well-known, such as in human and mouse, 
which is employed in Cufflinks [24], Scripture [25], and 
StringTie [26]. Second, the reference-independent approach 
uses a de novo assembly algorithm to directly build con-
sensus transcripts from short reads without reference, 
which is useful when there is no known reference genome or 
transcriptome. Trinity [27], Oases [28], and transABySS 
[29] may be used for this purpose.

Two publications have described RNA-seq protocols: one 
is de novo transcriptome reconstruction without reference 
using the Trinity platform [30] and the other is differential 
expression analysis of a gene and transcript using a 

combination of TopHat and Cufflinks [31]. The latter pro-
tocol also includes a transcriptome reconstruction procedure 
(using Cufflinks) from read mapping data to a reference 
genome (using TopHat). These protocols are good examples 
of different strategies that can be used for transcriptome 
reconstruction according to the presence or absence of a 
reference sequence.

Expression Quantification

Numerous methods have been developed for expression 
quantification using RNA-seq data. The methods are 
grouped into two according to the target levels: gene- and 
isoform-level quantification. Alternative expression analysis 
by sequencing (ALEXA-seq) [32], enhanced read analysis of 
gene expression (ERANGE) [33], and normalization by 
expected uniquely mappable area (NEUMA) [34] support 
gene-level quantification. Isoform-level quantification 
methods are divided into three groups according to the 
reference type and requirement of alignment results. The 
first group (e.g., RSEM [35]) requires the alignment result of 
reads using the transcriptome as a reference. The second 
group (e.g., Cufflinks [24] and StringTie [26]) also requires 
alignment results of reads using whole genome sequences as 
a reference rather than the transcriptome. The last group 
(e.g., Sailfish [36]) uses an alignment-free method. We 
discuss each isoform-level quantification method in detail in 
the following sections.

RSEM

RSEM is software that quantifies transcript-level 
abundance from RNA-seq data. RSEM is operated in two 
steps: (1) generation and preprocessing of a set of reference 
transcript sequences and (2) alignment of reads to the 
reference transcripts followed by estimation of transcript 
abundances and their credibility intervals. A FASTA 
formatted file of transcript sequences is used to generate the 
reference transcripts, which can be obtained from a reference 
genome database, a de novo transcriptome assembler, or an 
Expressed Sequence Tags (EST) database. Alternatively, a 
gene annotation file in GTF format and the full genome 
sequence in FASTA format may be supplied. RSEM uses the 
Bowtie alignment program [15]. A user-provided aligner can 
be used for mapping RNA-seq reads using reference 
transcripts. RSEM provides gene-level and isoform-level 
estimates as the primary output by computing maximum 
likelihood abundance estimates based on the Expectation- 
Maximization (EM) algorithm after read mapping. Abundance 
estimates are given in terms of two measures: an estimate of 
the number of fragments and the estimated fraction of 
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Table 1. Selected list of RNA-seq analysis programs

Workflow Category Package Reference

Preprocessing of raw data Raw data QC FastQC [8]
　 　 HTQC [9]
　 Read trimming FASTX-Toolkit [10]
　 　 FLEXBAR [11]
Read alignment Unspliced aligner MAQ [13]
　 　 BWA [14]
　 　 Bowtie [15]
　 Spliced aligner TopHat [16]
　 　 MapSplice [17]
　 　 STAR [18]
　 　 GSNAP [19]
RNA-seq specific quality control 　 RNA-SeQC [20]
　 　 RSeQC [21]
　 　 Qualimap 2 [22]
Transcriptome reconstruction Reference-guided Cufflinks [24]
　 　 Scripture [25]
　 　 StringTie [26]
　 Reference-independent Trinity [27]
　 　 Oases [28]
　 　 transABySS [29]
Expression quantification Gene-level quantification ALEXA-seq [32]
　 　 Enhanced read analysis of gene 

 expression (ERANGE)
[33]

　 　 Normalization by expected uniquely 
 mappable area (NEUMA)

[34]

　 Isoform-level quantification Cufflinks [24]
　 　 StringTie [26]
　 　 RSEM [35]
　 　 Sailfish [36]
Differential expression Gene-level NOIseq [23]
　 　 edgeR [39]
　 　 DESeq [40]
　 　 SAMseq [41]
　 Isoform-level Cuffdiff [24]
　 　 EBSeq [42]

Ballgown [45]

RNA-seq, RNA sequencing; MAQ, Mapping and Assembly with Quality; BWA, Burrow-Wheeler Aligner.

transcripts comprising a given isoform or gene. The latter 
estimates can be multiplied by 10−6 to obtain a measure of 
transcripts per million (TPM). RSEM also supports the 
visualization of alignment and read depth using a genome 
browser such as the University of California Santa Cruz 
(UCSC) Genome Browser.

Cufflinks

The Tuxedo package is the most widely used software for 
transcript assembly and quantification using RNA-seq and 
consists of a number of different programs, including TopHat, 
Cufflinks, and Cuffdiff [31]. In the initial step, TopHat is 
employed for mapping raw RNA-seq reads to a reference 

genome, where some reads can be spliced when they were 
aligned on the exon-exon junctions of transcripts. These 
mapped reads are provided as input to Cufflinks for 
transcript assembly and abundance estimation. Transcript 
assembly is achieved by building an overlap graph from the 
mapped reads followed by computing minimal path cover in 
the overlap graph, generating a minimum number of 
transcripts that will explain all reads in the graph. 
Abundance estimation is performed by estimating the 
maximum likelihood abundance based on transcript 
coverage and compatibility together with the use of fragment 
length distribution. Abundances are reported in fragments 
per kilobase per million mapped fragments (FPKM) for 
paired-end and RPKM for a single-end. Cuffdiff, a part of the 
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Cufflinks package, also uses the mapped reads to report 
genes and transcripts that are differentially expressed. 
CummeRbund can produce figures and plots from the 
Cuffdiff outputs.

StringTie

StringTie is software used for transcriptome recon-
struction and abundance estimation. Similarly to other tools, 
including Cufflinks, spliced aligners such as TopHat2 [37] or 
GSNAP [19] are used to directly align RNA-seq reads or 
subsequent alignment after generating pre-assembled contigs 
from the reads using a de novo assembler such as MaSurCa 
[38]. StringTie can perform transcriptome reconstruction 
and abundance estimation simultaneously by building a flow 
network for the path of the heaviest coverage and computing 
the maximum flow to estimate abundance. StringTie reports 
estimated abundance in FPKM for paired-end and RPKM for 
single-end.

Sailfish

Sailfish is unique software adopting an alignment-free 
approach for isoform quantification. An index is built from a 
set of reference transcripts and a specific choice of k-mer 
length, which consists of data structures that maps each 
k-mer in the reference transcripts to a unique integer 
identifier, enabling to count k-mers in a set of reads and to 
resolve their origin in the set of transcripts. Until the set of 
reference transcripts or the k-mer length is changed, it is not 
necessary to rebuild the index. Sailfish computes an estimate 
of the relative abundance of each transcript in the reference 
by employing an EM algorithm similar to that used in RSEM. 
Because Sailfish avoids read alignment entirely, the running 
time for quantification is much lower than for other existing 
methods. Sailfish reports terms of abundance measures, 
including (1) RPKM, (2) k-mers per kilobase per million 
mapped k-mers (KPKM), and (3) TPM.

We described four programs, RSEM, Cufflinks, StringTie, 
and Sailfish in detail. In addition to the use of specific 
algorithm, a major difference between these programs may 
be the reference type used. A set of transcript sequences is 
used as a reference in RSEM and Sailfish, indicating that the 
programs may be suitable for estimating the abundance of 
known transcripts. In contrast, a reference genome is em-
ployed in Cufflinks and StringTie, making it possible to 
present the estimated abundance of novel transcripts as well 
as already known transcripts, as spliced read mapping data 
can reveal known and novel splice junction information 
simultaneously.

Differential Expression using RNA-seq

For differential expression analysis, a number of software 
packages and pipelines have been developed including 
edgeR [39], DESeq [40], NOIseq [23], SAMseq [41], 
Cuffdiff [24], and EBSeq [42]. Unlike edgeR and DESeq, 
which adopt negative binomial models, and NOIseq and 
SAMseq, which are non-parametric, Cuffdiff and EBSeq can 
be used to compare differentially expressed genes by 
employing transcript-based detection methods. Many of the 
programs accept read count data as input, which can be 
produced by using HTSeq [43] or BEDTools [44]. Similarly 
to Cuffdiff, Ballgown program [45] is employed for 
differential expression analysis using read mapping data 
from StringTie [26] (https://ccb.jhu.edu/software/stringtie/ 
index.shtml?t=manual). The above programs adopt one or 
more of the several available normalization methods (total 
count, upper quartile, median, DESeq normalization, 
trimmed mean of M values, quantile and RPKM nor-
malization) to correct biases that may appear between 
samples (sequencing depth [33]) or within sample (gene 
length [46] and GC contents [45]).

Although many programs have been developed, one 
research group reported that there may be large differences 
between these programs and that no single method may be 
optimal under all experimental conditions [48]. Thus, it may 
be difficult for most of users with no or weak statistical 
background to select a proper method. However, because 
RNA-seq data sets are rapidly accumulating, we expect that 
new bioinformatics tools for differential expression will be 
developed, which will function robustly under a wide range 
of conditions.

Conclusion

Numerous bioinformatics programs have been developed 
for RNA-seq data analysis. Even tools developed for a same 
purpose are based on distinct approaches using different 
algorithms and models. The diversity of the methodology 
makes it possible to customize analysis protocols by 
choosing a program that provides the best fit to each specific 
goal. In this review, we described the routine RNA-seq 
analysis workflow, focusing on transcriptome reconstruc-
tion and expression quantification, and also introduced its 
related bioinformatics programs. Therefore, we expect that 
this review will be helpful for preparing a specific pipeline for 
RNA-seq data analysis, enabling to design new biological 
experiments.
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