
Article
Ciliary Phosphoinositide R
egulates Ciliary Protein
Trafficking in Drosophila
Graphical Abstract
Highlights
d Deletion of dInpp5e increases ciliary localization of dTULP

d Deletion of dInpp5e increases PI(4,5)P2 levels in the ciliary

base

d Augmenting PI(4,5)P2 levels disturbs the ciliary distribution of

TRP channels

d dTULP detection of PI(4,5)P2 affects ciliary TRP channel

trafficking
Park et al., 2015, Cell Reports 13, 2808–2816
December 29, 2015 ª2015 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.12.009
Authors

Jina Park, Nayoung Lee, Adriana

Kavoussi, Jeong Taeg Seo, Chul Hoon

Kim, Seok Jun Moon

Correspondence
kimhoon@yuhs.ac (C.H.K.),
sjmoon@yuhs.ac (S.J.M.)

In Brief

Park et al. report that Drosophila INPP5E

regulates PI(4,5)P2 levels in the ciliary

membrane. Loss of dInpp5e increases

PI(4,5)P2 levels in the ciliary base. This, in

turn, causes a ciliary accumulation of

dTULP and consequentmislocalization of

IAV and NOMPC.

mailto:kimhoon@yuhs.ac
mailto:sjmoon@yuhs.ac
http://dx.doi.org/10.1016/j.celrep.2015.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.12.009&domain=pdf


Cell Reports

Article
Ciliary Phosphoinositide Regulates
Ciliary Protein Trafficking in Drosophila
Jina Park,1 Nayoung Lee,1 Adriana Kavoussi,2,3 Jeong Taeg Seo,1 Chul Hoon Kim,2,3,* and Seok Jun Moon1,*
1Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
2Department of Pharmacology, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul

03722, Korea
3Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea

*Correspondence: kimhoon@yuhs.ac (C.H.K.), sjmoon@yuhs.ac (S.J.M.)
http://dx.doi.org/10.1016/j.celrep.2015.12.009

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
SUMMARY

Cilia are highly specialized antennae-like cellular or-
ganelles. Inositol polyphosphate 5-phosphatase E
(INPP5E) converts PI(4,5)P2 into PI4P and is required
for proper ciliary function. Although Inpp5e muta-
tions are associated with ciliopathies in humans
and mice, the precise molecular role INPP5E plays
in cilia remains unclear. Here, we report that
Drosophila INPP5E (dINPP5E) regulates ciliary pro-
tein trafficking by controlling the phosphoinositide
composition of ciliary membranes. Mutations in
dInpp5e lead to hearing deficits due to the mislocal-
ization of dTULP and mechanotransduction chan-
nels, Inactive and NOMPC, in chordotonal cilia.
Both loss of dINPP5E and ectopic expression of
the phosphatidylinositol-4-phosphate 5-kinase Skit-
tles increase PI(4,5)P2 levels in the ciliary base. The
fact that Skittles expression phenocopies the
dInpp5e mutants confirms a central role for PI(4,5)
P2 in the regulation of dTULP, Inactive, and NOMPC
localization. These data suggest that the spatial
localization and levels of PI(4,5)P2 in ciliary mem-
branes are important regulators of ciliary trafficking
and function.
INTRODUCTION

Cilia are specialized organelles that extend from the surface of

many cell types. Cilia are essential for processes as diverse as

developmental signaling and adult homeostasis (Drummond,

2012; Fliegauf et al., 2007). Ciliary dysfunction leads to a range

of diseases called ciliopathies. Examples include polycystic kid-

ney disease, retinitis pigmentosa, Bardet-Biedl syndrome, and

Joubert syndrome (Green et al., 1989; Liu et al., 2002; Pazour

et al., 2000; Valente et al., 2006).

Although the ciliary membrane is continuous with the plasma

membrane, lateral diffusion of membrane components is so

limited that the ciliary membrane represents a distinct membrane

compartment (Chih et al., 2012; Hu et al., 2010; Nachury et al.,

2010). The ciliary membrane holds distinct populations of trans-
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membrane signalingmolecules, including platelet-derivedgrowth

factor receptor, Smoothened, transient receptor potential (TRP)

channels, and G-protein-coupled receptors that participate in

both sensory transduction and developmental signaling (Colbert

et al., 1997; Corbit et al., 2005; Ezratty et al., 2011; Rohatgi

et al., 2007). An elaborate gating mechanism in the transition

zone of the ciliary base establishes and maintains the compart-

mentalization that is necessary for proper ciliary function—it

regulates the entry, localization, and exit of specific signaling

molecules to and from the ciliary compartment (Chih et al.,

2012; Williams et al., 2011).

Intraflagellar transport (IFT) is a specialized form of protein

trafficking required not only for the formation and maintenance

of cilia themselves but also for the trafficking of transmembrane

receptors required for ciliary function through the diffusion bar-

rier found at the ciliary base (Crouse et al., 2014; Keady et al.,

2011; Nachury et al., 2010). IFT is primarily accomplished via

multi-protein particles known as IFT-A and IFT-B (Rosenbaum

and Witman, 2002). Some protein cargoes, however, have

been reported to enter cilia independent of the IFT pathway (Bel-

zile et al., 2013). In addition to the proteins classified as IFT com-

ponents, several other proteins participate in the targeting of

transmembrane proteins into the cilia compartment. These

include the components of the BBSome, as well as Arf GTPase,

Rab GTPase, and tubby-like protein 3 (TULP3) (Berbari et al.,

2008; Crouse et al., 2014; Deretic et al., 2005; Keady et al.,

2011; Mukhopadhyay et al., 2010; Nachury et al., 2007; Wang

et al., 2012). Although many of the players have been identified,

the molecular mechanisms that permit the remarkable sorting

specificity of protein cargoes into the ciliary compartment are

still not fully understood.

We and others have previously shown that dTULP, the

Drosophila tubby homolog, and TULP3, a member of the

mammalian tubby-like protein family, regulate ciliary trafficking

of membrane receptors in fruit flies and mammals, respectively

(Mukhopadhyay et al., 2010; Park et al., 2013). dTULP and

TULP3 share the ability to bind to IFT components and to phos-

phoinositides (PIPs), and both of these properties are required for

receptor trafficking to cilia. It is, therefore, tempting to speculate

that PIPs may represent another important regulator of ciliary

protein trafficking, possibly in cooperation with IFT. Indeed,

several recent reports suggest PIPs are critical in normal ciliary

function. Mutation of 5-phosphatase, cil-1 in C. elegans, causes

mislocalization of the ciliary receptors PKD-2 and LOV-1 (Bae
thors
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Figure 1. Modulation of Phosphoinositide Signaling Alters Protein Localization in Chordotonal Neuron Cilia

(A) Schematic showing chordotonal neuron structure. Molecular localization patterns are indicated in various colors. The locations of the cell body (B), ciliary

dilation (CD), and ciliary tip (T) are indicated.

(B) The phosphoinositide (PIP) signaling cascade. The kinases and phosphatases that mediate each lipid conversion in Drosophila are depicted. PIP5K,

phosphatidylinositol-4-phosphate 5-kinase, SKTL, skittles; PI3K, phosphatidylinositol 3-kinase; 5-ptase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase;

OCRL, Oculocerebrorenal syndrome of Lowe; 3-ptase, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase; PTEN, phosphatase and tensin.

(C) RNAi screen of PIP kinases and phosphatases for impairments in IAV localization. RNAi lines were crossed to the UAS-Dcr2;elav-GAL4,Iav-GFP driver line.

The IAV-GFP signal (green) was visualized by immunostaining with GFP antibody. The arrow indicates the enrichment of the IAV signal in proximal cilia.

Orientation of the chordotonal cilia is indicated using the letters B (cell body) and T (tip).

(legend continued on next page)
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et al., 2009). Disruption of the enzymatic activity or the ciliary tar-

geting of INPP5E leads, respectively, to the ciliopathies Joubert

syndrome andMORM (mental retardation, truncal obesity, retinal

dystrophy, and micropenis) syndrome (Bielas et al., 2009; Ja-

coby et al., 2009). Despite this progress, detailed information

regarding the altered distribution of specific PIPs and their result-

ing molecular and physiological effects on ciliary function is still

lacking.

Here, we show that Drosophila INPP5E (hereafter dINPP5E)

regulates membrane protein trafficking in chordotonal sensory

cilia. Inactivation of dINPP5E increases the levels of phosphati-

dylinositol 4,5-bisphosphate (PI(4,5)P2) in the ciliary base and

leads to ciliary accumulation of dTULP and the subsequent mis-

localization of its cargos Inactive (IAV) and NOMPC. Elimination

of dTULP’s PIP-binding ability partially rescues the reduced

sound-evoked potentials andmislocalization of IAV and NOMPC

of dInpp5emutants. Our data, thus, support a role for PIPs in the

ciliary membrane as direct regulators of dTULP, and therefore in-

direct regulators of the trafficking of the mechanotransduction

channels IAV and NOMPC.

RESULTS

dInpp5e Knockdown Changes Ciliary Localization of IAV
and dTULP
Previously, we demonstrated that dTULP, the Drosophila Tubby

homolog, regulates the ciliary localization of IAV and NOMPC—

TRP channels that are essential for hearing in Drosophila and

are expressed in the antennal chordotonal neurons (Park

et al., 2013). The outer dendritic segments of the chordotonal

neurons are compartmentalized cilia divided into structurally

distinct proximal and distal sections (Figure 1A). IAV is a compo-

nent of the hearing transduction complex and is localized in the

proximal cilia, while NOMPC modulates hearing from its loca-

tion in the distal cilia (Eberl et al., 2000; Gong et al., 2004; Lee

et al., 2010; Lehnert et al., 2013). dTULP is required for IAV to

enter the cilia and is also necessary for the distal ciliary localiza-

tion of NOMPC (NOMPC ciliary entry is independent of dTULP).

Mutations in the dTULP PIP-binding domain reduce the locali-

zation of IAV to the proximal cilia of chordotonal neurons. This

suggests PIPs may be important regulators in ciliary protein

trafficking.

Given that the conservedC-terminal PIP-binding domain of the

tubby-like protein familymembers shows a higher binding affinity

for PI(4,5)P2 over other PIPs (Mukhopadhyay et al., 2010; Santa-

gata et al., 2001), we focused on five PIP-modifying enzymes in

flies that are known to directly regulate PI(4,5)P2 levels (Fig-

ure 1B). These include the PIP5 Kinase Skittles, the PI3 Kinase

PI3K92E, the 5-phophatases OCRL and CG10426 (dINPP5E),
(D) RNAi screen of PIP kinases and phosphatases for impairments in dTULP loc

immunostained with dTULP antibody (red). The arrowhead indicates the ciliary d

(E) A map of the dInpp5e locus indicating the molecular nature of the dInpp5eMI a

the Minos insertion MI02221 (dInpp5eMI). The dInpp5e1 allele was generated usi

depicted with scissors. Gray boxes are coding exons that remain after the deleti

(F) Genomic PCR confirming the insertion of the Minos element and the deletion

(G) Localization of dTULP in the dInpp5e mutants. Immunostaining of dTULP

segments.
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and the 3-phosphatase PTEN. We, therefore, crossed flies car-

rying UAS-RNAi transgenes specific to these PIP-modifying

enzymes to flies carrying the pan-neuronal elav-GAL4 driver

transgene and a UAS-Dcr2 transgene to enhance RNAi effi-

ciency. Although all the enzymes we chose to knock down

should theoretically alter PI(4,5)P2 levels, we looked specifically

for those that significantly affected ciliary protein trafficking in

chordotonal neurons.

Of the five PIP-modifying enzymes tested, knockdown of

CG10426, which we name here dInpp5e, gives the most dra-

matic phenotype. It leads to the accumulation and uneven distri-

bution of IAV at the ciliary base of chordotonal neurons rather

than the proximal cilia as in controls (Figure 1C). dInpp5e en-

codes a 747 amino acid-long phosphatase that is 43% identical

to human INPP5E (Figure S1A). We also visualized the localiza-

tion of dTULP upon knockdown of the same five PIP-modifying

enzymes. Surprisingly, dInpp5e knockdown leads to significant

ciliary accumulation of dTULP with a corresponding reduction

in the level of dTULP in the chordotonal neuron cell bodies.

Knockdown of other PIP-modifying enzymes, however, does

not affect dTULP localization (Figure 1D).

dInpp5e Loss of Function Impairs dTULP, IAV, and
NOMPC Localization
To confirm the role of dINPP5E in the regulation of IAV and

dTULP localization, we obtained a Minos element insertion in

a dInpp5e intron (dInpp5eMI) (Figure 1E). We also generated

another mutant strain, dInpp5e1, using the clustered regularly

interspaced short palindromic repeat-associated nuclease 9

(CRISPR/Cas9) technique (Gratz et al., 2013). dInpp5e1 lacks

the portions of dInpp5e coding exons that code for amino

acids 39 through 661 of dINPP5E, more than 80% of the final

protein (Figure 1E). We confirmed the location of the Minos

element insertion between exons in dInpp5eMI flies and the

location of the genomic deletion of dInpp5e1 by genomic PCR

(Figure 1F). Both mutant alleles are homozygous viable and

fertile. Consistent with our RNAi results, both dInpp5e mutant

strains showed abnormal dTULP accumulation inside chordoto-

nal cilia accompanied by a dramatic decrease in cell body stain-

ing (Figure 1G). This change in ciliary dTULP accumulation in the

dInpp5e mutants cannot be attributed to an increase in dTULP

protein levels, because dTULP protein levels in the dInpp5e

mutant antennae are not different from that in control antennae

(Figure S1B).

Next, we examined the localization of other ciliary membrane

proteins in dInpp5e mutant flies. Also consistent with our RNAi

results from Figure 1, IAV is enriched in the ciliary base of

dInpp5emutant flies compared to controls (Figure 2A). Although

NOMPC is normally found in the distal cilia of chordotonal
alization. RNAi lines were crossed to the elav-GAL4,UAS-Dcr2 driver line and

ilation.

nd dInpp5e1 mutant alleles. The open inverted triangle indicates the location of

ng the CRISPR/Cas9 technique. Locations of the RNA-guided target sites are

on. Filled arrowheads indicate the primers used for mutant verification.

of dInpp5e using primer pair indicated in Figure 1E.

counterstained with 22C10, which marks all neurons except for outer ciliary

thors



Figure 2. dInpp5e Loss of Function Causes

Mislocalization of Ciliary Proteins and Re-

duces Sound-Evoked Potentials

(A) IAV localization in dInpp5e mutants. IAV-GFP

(green) counterstained with 22C10 (red). Arrows

indicate the junction between the inner segment

and outer ciliary segments. Schematic shows IAV

localization.

(B) Immunostaining of NOMPC and SPAM in

dInpp5e mutants. Schematic shows NOMPC

localization.

(C) REMPA localization in dInpp5e mutants. Im-

munostaining of REMPA-YFP (anti-GFP) counter-

stained with phalloidin, which specifically stains

the actin-rich scolopales.

(D) NOMPB localization in dInpp5e mutants. Im-

munostaining of NOMPB-GFP (anti-GFP) coun-

terstained with 22C10.

(E) Representative traces of sound-evoked po-

tentials recorded from the antennal nerves from

flies of the indicated genotypes. Rescue flies

indicate a BAC-derived genomic rescue transgene

introduced into the dInpp5eMI background.

(F) Quantification of sound-evoked potentials. The

medians and quartiles are indicated by horizontal

lines. p values were calculated using the Kruskal-

Wallis test and Mann-Whitney U post hoc tests

(**p < 0.01).

All scale bars represent 50 mm.
neurons, it is reduced and slightly mislocalized toward the prox-

imal cilia in dInpp5emutants (Figure 2B). Spacemaker (Spam) is

an extracellular protein that protects cilia from osmotic stress

(Cook et al., 2008). It is typically localized in the luminal space

of the scolopale, with one large accumulation in the proximal

cilia close to the ciliary dilation and another small accumulation

close to the ciliary base. Mutations in most IFT-A components

and in dTulp are known to cause a mislocalization of Spam

(Lee et al., 2010; Park et al., 2013). Interestingly, Spam localiza-

tion is unaltered in dInpp5e mutants (Figure 2B). Localization of

RempA/IFT140 and NOMPB/IFT88, components of the IFT-A

and IFT-B complexes, respectively, are similarly unaltered in

dInpp5e mutant antennae (Figures 2C and 2D). This suggests

dINPP5E regulates the trafficking of only a subset of ciliary

proteins.

dInpp5e Loss of Function Impairs Sound-Evoked
Potentials
Previously, we showed that mislocalization of NOMPC and IAV

disrupts hearing (Park et al., 2013). We, therefore, recorded

extracellular sound-evoked potentials to determine whether

the observed mislocalizations of ciliary proteins also disrupt

the function of chordotonal neurons in the two dInpp5e mutant

strains. The median amplitude of sound-evoked potentials is

reduced from 466 mV in control flies (n = 7) to 217 mV in dInpp5eMI

(n = 8) and 271 mV in dInpp5e1 (n = 5) (Figures 2E and 2F).
Cell Reports 13, 2808–2816, De
Concurrent expression of a wild-type

dInpp5e+ transgene rescues the reduc-

tion of sound-evoked potentials of

dInpp5emutants (dInpp5eMI), suggesting
their hearing defects are attributable to the mutation in dInpp5e

(Figures 2E and 2F).

dInpp5e Loss of Function Increases PI(4,5)P2 in the
Ciliary Base
INPP5E is an enzyme that hydrolyzes either PI(3,4,5)P3 to PI(3,4)

P2 or PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI4P) (Bielas

et al., 2009). Although mutations in INPP5E are associated with

ciliopathy, it is unclear which PIPs, if any, are present in ciliary

membranes (Conduit et al., 2012). Thus, we examined whether

dINPP5E loss of function increases PI(4,5)P2 in the cilia of chor-

dontonal neurons. Using PI(4,5)P2-specific antibodies, we were

able to detect PI(4,5)P2 in the ciliary base of control chordotonal

neurons (Figure S2A). Loss of dINPP5E leads to further accumu-

lation of PI(4,5)P2 in the ciliary base (Figure 3A). To verify the

identity of this signal, we expressed in chordotonal cilia the

Drosophila phosphatidylinositol- 4-phosphate 5-kinase Skittles,

which converts PI4P to PI(4,5)P2 (Hassan et al., 1998). We

observed increases in the immunofluorescent signals in the

same location when Skittles was expressed in cilia (Figure 3C).

This suggests that dINPP5E hydrolyzes PI(4,5)P2 to PI4P and

prevents the accumulation of PI(4,5)P2 in the ciliary base.

To determine the localization of dINPP5E, we examined chor-

dotonal neurons expressing functional EGFP-tagged dINPP5E;

this rescues the dTULP localization defect in dInpp5e1 flies (Fig-

ure S2B). The resulting EGFP-dINPP5E signal is limited to a
cember 29, 2015 ª2015 The Authors 2811



Figure 3. Elevated PI(4,5)P2 in the Ciliary Base Alters Ciliary Protein Localization

(A) Level and localization of ciliary PI(4,5)P2 induced by loss of dINPP5E. Immunostaining of PI(4,5)P2 and dTULP in chordotonal neurons of the indicated ge-

notypes. Arrows indicate the junction between the inner and outer ciliary segments.

(B) Subcellular dINPP5E localization. Immunostaining of EGFP-dINPP5E (anti-GFP, green) in chordotonal neurons counterstained with 22C10 (red) to show

nonciliary structures and phalloidin to show the actin-rich scolopales (blue). The white box indicates the location of the higher magnification image to the right of

the merged image. Arrows indicate the junction between the inner and outer ciliary segments. dINPP5E localization is also schematized in the lower right.

(C) Ectopic expression of the phosphatidylinositol-4-phosphate 5-kinase Sktl increases PI(4,5)P2. Sktl was expressed in all neurons using the pan-neuronal elav-

GAL4 driver. Immunostaining of PI(4,5)P2, dTULP, IAV-GFP (anti-GFP), and NOMPC are shown. Arrows indicate the junction between the inner segment and

outer ciliary segments and arrowheads indicate the ciliary dilation.
single, well-defined focus in the ciliary base of chordotonal neu-

rons, presumably in the transition zone (Figure 3B). In control

flies, this dINPP5E staining is also surrounded by a region of rela-

tively high concentration PI(4,5)P2 (Figure S2C).

Artificial Elevation of PI(4,5)P2 Mimics the dInpp5e

Mutant Phenotype
The altered ciliary protein localization observed in the dInpp5e

mutants may be caused by increases in PI(4,5)P2 in the ciliary

base, or it could instead be due to some other effects (e.g., an

unknown scaffolding property of dINPP5E). To distinguish these

possibilities, we ectopically expressed the phosphatidylinositol-

4-phosphate 5-kinase Skittles as another mean of elevating

PI(4,5)P2 levels (Hassan et al., 1998). As expected, ectopic

expression of Skittles increases PI(4,5)P2 in ciliary base and
2812 Cell Reports 13, 2808–2816, December 29, 2015 ª2015 The Au
causes dTULP accumulation in the chordotonal cilia (Figure 3C).

In addition, elevated PI(4,5)P2 also causes mislocalization of IAV

and NOMPC in patterns similar to those of the dInpp5e mutants

(Figure 3C). These results strongly suggest that changes in

PI(4,5)P2 levels account for these dInpp5e mutant phenotypes.

Mutation of dTULP’s PIP-Binding Domain Partially
Rescues dInpp5e Phenotypes
To further explore the relationship between PI(4,5)P2 and dTULP

trafficking and function, we investigated the effects of a simple

mutation of the dTULP PIP-binding domain in dINPP5E loss-

of-function mutants. Wild-type dTULP (dTULPwt) and dTULP

with amutation in its PIP-binding domain (dTULPPIP�) expressed
in the dTulp1 mutant background using the chordotonal neuron

driver F-GAL4 (Kim et al., 2003) show similar levels of ciliary
thors



Figure 4. The dTULP PIP-Binding Domain Contributes to the Localization and Function of dTULP, IAV, and NOMPC

(A) (Top) Immunostaining of dTULPwt or dTULPPIP� expressed in the dInpp5e+/+, dTulp1, or dInpp5e�/� dTulp1 backgrounds. Arrows indicate the location of the

junction between the inner and outer ciliary segments, and the arrowheads indicate the location of the ciliary dilation. (Bottom) Intensity profile of dTULP signal

along the cilia. The dotted line indicates dTULP signal intensity at the ciliary dilation of the dTULPwt rescue.

(B) (Top) Immunostaining of IAV-GFP in the same genotypes as in (A) along with a 22C10 counterstain for non-ciliary structures. (Bottom) Intensity profile of IAV-

GFP signal along the cilia.

(C) (Top) Immunostaining of NOMPC in the same genotypes as in (A). (Bottom) Intensity profile of NOMPC signal along the cilia.

(D) Representative sound-evoked potentials from w1118 control flies or the same genotypes as in (A).

(E) Quantification of the sound-evoked potentials. The medians and quartiles are indicated by horizontal lines. p values were calculated using the Kruskal-Wallis

test and Mann-Whitney U post hoc tests (**p < 0.01). dInpp5e�/� indicates the dInpp5eMI strain.
accumulation (FdTulpwt;dTulp1 and FdTulpPIP�;dTulp1; Fig-

ure 4A). When expressed in the dTulp1 and dInpp5e�/�

(dInpp5eMI) double-mutant background, however, dTULPwt
Cell Rep
showed significantly more ciliary enrichment around the ciliary

dilation than dTULPPIP� (Figure 4A). In dInpp5e�/�, antennae ex-
pressing wild-type dTULP had slightly elevated levels of IAV. In
orts 13, 2808–2816, December 29, 2015 ª2015 The Authors 2813



addition, the localization of both IAV and NOMPC is skewed to-

ward the ciliary base. These phenotypes, however, are partially

rescued by an alternative expression of the PIP-binding domain

mutant dTULPPIP� (Figures 4B and 4C). In addition to these

changes in protein localization, dINPP5E loss of function and

the mutation of the dTULP PIP-binding domain similarly reduce

antennal sound-evoked potentials (Figures 4D and 4E). Surpris-

ingly, the combination of the two (FdTulpPIP� and dInpp5e�/�)
partially rescues sound-evoked potentials. These data suggest

that the interaction of PI(4,5)P2 with dTULP is crucial for the

appropriate localization and function of dTULP-regulated ciliary

membrane proteins.

DISCUSSION

In this study,wepresent evidence thatPI(4,5)P2 in the ciliarymem-

brane is an important regulator of ciliary membrane protein traf-

ficking.Specifically, thePI(4,5)P2 in theciliarybase, itself regulated

by the 5-phosphatase dINPP5E, binds to and regulates the func-

tionof dTULP, another regulator of ciliary protein trafficking.Muta-

tions in dInpp5e elevate PI(4,5)P2 levels and lead to ciliary accu-

mulation of dTULP and mislocalization of IAV and NOMPC

(Figures 1G, 2A, and 2B). In addition, ectopic expression of Skit-

tles, a kinase that phosphorylatesPI4P toPI(4,5)P2, also increases

ciliary PI(4,5)P2 and phenocopies the ciliary dInpp5e phenotypes

(Figure 3C). These results confirm that thedInpp5emutant pheno-

type is caused primarily by an increase in ciliary PI(4,5)P2.

InDrosophila chordotonal neurons, dINPP5E is localized in the

ciliary compartment known as the transition zone, which marks

the boundary between the plasma membrane and the ciliary

membrane. This highly specific localization is consistent with a

role for dINPP5E in controlling the entry and exit of ciliary pro-

teins via its regulation of PIP levels. We thus propose that

dINPP5E acts as a gate keeper for membrane PIPs preventing

diffusion of PI(4,5)P2 into the ciliary membrane from the plasma

membrane by continuously hydrolyzing PI(4,5)P2 to PI4P.

Previously, we suggested dTULP may deliver to IFT particles

in the ciliary base pre-ciliary vesicles containing specific types

of membrane proteins (e.g., IAV); vesicles perhaps ‘‘tagged’’ by

the presence of PI(4,5)P2. In this study, we report that increasing

PI(4,5)P2 in the ciliary base, either by mutation of dInpp5e (Fig-

ure3A)orbyectopicexpressionof theSkittles (Figure3C),dramat-

ically enhances the ciliary accumulation of both IAV and dTULP.

Mutationof thedTULPPIP-bindingdomain, however,partially res-

cues the abnormal ciliary IAV accumulation caused by elevated

PI(4,5)P2 as well as the resulting hearing defects. Together, these

data suggest that the level of interaction between dTULP and

PI(4,5)P2 in the ciliary base is a determining factor in IAV and

dTULP trafficking. One possibility is that the PIP- and IFT-binding

domains of dTULP work cooperatively such that the binding of

dTULP to PI(4,5)P2 alters the affinity of the IFT-binding domain

for the IFT machinery. This could explain the enhanced ciliary

accumulation of dTULP under conditions of elevated PI(4,5)P2.

IAV and NOMPC are TRP channels that are present in chordo-

tonal organs and are essential for hearing. Each channel has a

characteristic localization in the cilia of chordotonal neurons,

and the preservation of this distribution is important for normal

sound transduction. However, little is known about the cis-acting
2814 Cell Reports 13, 2808–2816, December 29, 2015 ª2015 The Au
and trans-acting factors that affect their ciliary trafficking. dTULP

is one trans-acting factor required for ciliary delivery of IAV (Park

et al., 2013). NOMPC, in contrast, is only redistributed from distal

to proximal cilia in the absence of dTULP (Park et al., 2013).

Thus, we expect that other trans-acting factors are required for

its ciliary localization. Further studies of the ciliary localization se-

quences in channels themselves and of the trans-acting factors

that detect them will clarify our understanding of TRP channel

ciliary trafficking.

Just before we submitted this study, two other groups re-

ported on the role mammalian INPP5E plays in regulating ciliary

membrane composition (Chávez et al., 2015; Garcia-Gonzalo

et al., 2015). Mutations in Inpp5e increase ciliary accumulation

of TULP3 and GPR161, and ciliary GRP161 antagonizes hedge-

hog signaling during development. These parallels in a mamma-

lian system with our results in Drosophila are clear evidence that

the role of ciliary INPP5Ewe report here is well conserved across

species. There are, however, a few key points of difference be-

tween these studies and our own. First, PI4P is the main PIP

found in the primary cilia of mammalian cells, and INPP5E inac-

tivation leads to an extension of the localization of PI(4,5)P2 all

the way to the ciliary tip. In Drosophila chordotonal cilia, PI4P

levels are very low (data not shown), and the loss of dINPP5E in-

creases the level of PI(4,5)P2 only in a well-defined patch near the

ciliary base. This is presumably due to the tight localization of

dINPP5E near the ciliary base. We expect that this new spatial

information from Drosophila will help sort out any distinctions

in ciliary subdomains where PIPs function in ciliary protein traf-

ficking. Second, in mammals, TULP3 interacts with the IFT-A

core complex (i.e., WDR19, IFT122, and IFT140) (Mukhopadhyay

et al., 2010), and the ciliary TULP3 accumulation that occurs

upon INPP5E inactivation also leads to ciliary IFT122 accumula-

tion. We previously reported, however, that ciliary trafficking of

dTULP is independent of IFT-A. In fact, even the extreme accu-

mulation of dTULP in the dInpp5e mutants fails to cause ciliary

RempA/IFT140 accumulation (Figure 2C). These results suggest

that although some IFT components are essential for the dTULP-

regulated ciliary trafficking of various membrane receptors,

dTULP’s interaction with PIPs is more important than its interac-

tion with the IFT machinery for its own ciliary localization, at least

in the chordotonal neurons. Third, here we demonstrate that

changes in the PIP concentration can lead to physiological

changes at the level of organ function—in this case, the chordo-

tonal organ that allows Drosophila to hear. As far as we know,

ours is the first report linking distinct changes in ciliary PIPs to

phenotypic changes in vivo.

The present study raises several interesting questions for

further study. Although INPP5E clearly plays a role in ciliary regu-

lation, it is unclear whether it and other PIP-modifying enzymes

are being actively regulated in cilia themselves. Any relevant con-

ditions that modulate the level or activity of INPP5E could alter

the sensitivity of cilia to external stimuli or even the context of

signaling pathways activated by cilia-specific receptors (Plotni-

kova et al., 2015). Since our study uncovered differences in the re-

lationships of various cilia-specific proteins to the PIP-modulated

traffickingprotein dTULP, it will be interesting to seewhethermol-

ecules other than dTULP/TULP3 that also have PIP-binding do-

mains regulate complementary subsets of cilia-specific proteins.
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If so, the role of various PIPs in the regulation of ciliary functions

under normal and disease conditions will expand.

EXPERIMENTAL PROCEDURES

Fly Stocks

dTulp1, UAS-dTulpwt, and UAS-dTulpPIP� were previously described (Park

et al., 2013). Iav-GFP, RempA-YFP, and NompB-GFP were gifts from M. Ker-

nan (Han et al., 2003; Kim et al., 2003; Lee et al., 2008). We obtained dInpp5eMI

(MI02221;BL33177), UAS-Sktl, F-GAL4, elav-GAL4, UAS-mCD8:GFP, nos-

Cas9, and UAS-Dcr2 from the Bloomington Stock Center. We obtained RNAi

lines specific to skittles (BL27715), Pi3K92E (BL27690), Ocrl (BL34722),

dInpp5e (BL34037, v16048), and Pten (BL25841) from the Vienna Drosophila

RNAi Center and the Bloomington Stock Center. w1118 was used as a control.

All knockout alleles and transgenic lines except the RNAi lines were back-

crossed for five generations to the w1118 control genotype.

Generation of dInpp5e Mutants and Transgenic Flies

Weused theCRISPR/Cas9system togenerate thedInpp5e1mutantallele (Gratz

et al., 2013). Briefly, we selected two gRNAs specific to dInpp5e using

TargetFinder (http://tools.flycrispr.molbio.wisc.edu/targetFinder): GGATGTGG

CTCCACCTTACTAGG (+109 to +131) and GGATGACTAGTCCCTGCATTTGG

(+2,034 to +2,056), where protospacer-adjacent motifs are underlined. These

two dInpp5e-specific sequences were synthesized and cloned into the BbsI

sites of PU6-BbsI-chiRNA to drive expression of a chimeric RNA (chiRNA) under

the control of the Drosophila small nuclear RNA:U6:96Ab promoter. Two pU6-

chiRNA targeting constructs were injected into nos-Cas9 embryos at 250 ng/

ml each to make larger defined deletions rather than small indels. Deletion lines

were screened using PCR on genomic DNA isolated from the G0 generation.

To make a genomic rescue line for use with the dInpp5e mutants, we ob-

tained BAC clone CH322-17A13 from the BACPAC Resource Center. We

then generated transgenic flies using PhiC31 integrase-mediated transgenesis

on the II chromosome (Bloomington stock number 9723).

To make the EGFP-dINPP5E line, we subcloned from BAC clone CH322-

17A13 a 7.1 kbp XbaI/SacII genomic DNA fragment encompassing the

dInpp5e coding region (�3,178 to +3,969) into pBluescriptKSII+. This EGFP

coding sequence was inserted in-frame into the first coding exon of dInpp5e.

This EGFP tagged dINPP5E genomic fragment was inserted into the XbaI and

SacII sites of the pCasper4 vector. The resulting construct was injected into

Drosophila embryos, and resulting transgenics were selected according to

standard techniques.

Electrophysiology

Sound-evoked potentials were recorded as described by Eberl et al. (Eberl

et al., 2000). Briefly, the fly was immobilized in a trimmed pipette tip. The

fly’s antennal sound receivers were stimulated by computer-generated pulse

songs delivered to the fly through Tygon tubing. Neuronal responses were de-

tected using a recording electrode inserted into the junction between the first

and second antennal segments, and a reference electrode was inserted into

the dorsal head cuticle. The resulting signals were amplified with a DAM50 dif-

ferential amplifier (World Precision Instruments) and digitized using a virtual in-

strument designed in LabVIEW (National Instruments). Each trace represents

an average response to ten stimuli.

Immunohistochemistry

For whole-mount staining, antennae were dissected from late stage pupae

(i.e., 36-48 hr after puparium formation). Dissected antennae were fixed for

15 min with 4% paraformaldehyde in 1X PBS containing 0.2% Triton X-100

(PBS-T) and washed three times with PBS-T. The fixed samples were blocked

for 30 min with 5% heat-inactivated goat serum in PBS-T and incubated over-

night at 4�C in primary antibodies diluted in the same blocking solution. The

tissues were then washed three times for 10 min each with PBS-T and incu-

bated for 1 hr at room temperature in secondary antibodies diluted 1:500 in

blocking solutions. Following three washes in PBS-T, the samples were then

mounted in Vectashield (Vector Laboratories) and examined using a Zeiss

LSM700 confocal microscope (Jena).
Cell Rep
When comparing localization and expression levels of ciliary proteins be-

tween control and experimental antennae, all samples were prepared at the

same time and all confocal images were obtained under the same conditions.

For quantification of ciliary protein levels, the pixel intensity corresponding to

each protein was measured using Zen Software (Jena) and the mean pixel in-

tensities from multiple scolopidia of several different samples are shown.

The following primary antibodies were used for immunohistochemistry at the

following dilutions: rabbit anti-dTULP, 1:400; 22C10, 1:200 (Hybridoma Bank,

University of Iowa); 21A6, 1:200 (Hybridoma Bank); rabbit anti-NOMPC, 1:400;

rabbit anti-GFP, 1:1000 (Molecular Probes, Eugene, OR); mouse anti-GFP,

1:500 (Molecular Probes); mouse anti-PI(4,5)P2, 1:100 (Abcam). The second-

ary antibodies were Alexa 488-, Alexa Fluor 568-, and Alexa Fluor 633-conju-

gated anti-mouse or anti-rabbit immunoglobulin G (Molecular Probes; 1:500).

Actin was visualized with Alexa Fluor 633 Phalloidin (Molecular Probes).

Western Blot

Fly antennal lysates from each genotype were subjected to western blot anal-

ysis as previously described (Park et al., 2013). Rabbit anti-dTULP, 1:1000:

anti-a-tubulin (Hybridoma Bank; 1:2,000).

Statistical Analyses

Plots in Figures 2F and 4E show the median ± interquartile range. Kruskal-

Wallis tests with Mann-Whitney U post hoc tests was calculated in GraphPad

Prism 5. Asterisks indicate statistical significance (**p < 0.01).
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