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ABSTRACT

Exploration of Myocardial Fiber Array Using Diffusion MR 
Tractography in Small Animal Heart Failure Model: Comparison with 

3D Pathology Using Tissue-Clearing Technique

Sang-Eun Lee

Department of Medicine
The Graduate School, Yonsei University 

(Directed by Professor Hyuk-Jae Chang)

Verifying the microarchitecture of the heart can improve understanding 

of the fundamental heart structure-function relationships both in normal 

development and cardiovascular disease progression. The current study 

demonstrate a novel approach to characterize the microstructural 

response of the myocardium to cardiovascular disease by interrogating 

intact, un-sectioned myocardium with 3-dimensional (3D) histological 

imaging using a tissue-clearing technique and quantifying myocardial 

fiber orientation. In the same samples, diffusion magnetic resonance 

imaging, a clinically translatable non-invasive imaging technique, was 

also applied to demonstrate its potential in yielding a surrogate marker 

for myocardial fiber orientation. Both 3D histological imaging and 

diffusion magnetic resonance imaging were significantly correlated in 

verifying the helical architecture of the normal myocardium and that this 

normal helical structure is perturbed in both ischemic and non-ischemic

heart failure model.

----------------------------------------------------------------------------------------

Key words: myocardial fiber orientation, magnetic resonance imaging
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Exploration of Myocardial Fiber Array Using Diffusion MR 
Tractography in Small Animal Heart Failure Model: Comparison with 

3D Pathology Using Tissue-Clearing Technique

Sang-Eun Lee

Department of Medicine
The Graduate School, Yonsei University 

(Directed by Professor Hyuk-Jae Chang)

I. INTRODUCTION

Myocardial structure is composed of muscle fibers organized in a 

twisting helix structure that can yield efficient pumping. The mammalian heart’s 

largest chamber, left ventricle, was further revealed to contain laminar helical 

structures that continuously span from left-handed (epicardium) to right-handed 

(endocardium) orientation (figure 1).1,2
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Figure 1. Schematic showing myocardial fiber orientation in a given voxel of 

left ventricle

However, this underlying fiber architecture has been implied using 

methods that rely on destructive histological sectioning for conventional 

microscopy to directly visualize heart muscle fibers.1,3 Diffusion magnetic 

resonance (MR) tractography measures the aggregate motility of water 

molecules as they diffuse within a tissue and fundamentally assumes that the 

restriction of this motility reflects underlying microstructures. Diffusion MR 

tractography has been the workhorse in understanding the white matter structure 

of the brain and elucidate novel structural connectivity in humans.4-7 Recent 

technological advances have made it possible for diffusion MRI to be applied in 

a beating human heart allowing for clinical applications.8-10 Currently, the 

ability of diffusion MR tractography to delineate tissue microstructure of heart 

has not been fundamentally validated because there lacks verification from a 

direct comparison with 3-dimensional (3D) non-destructive histology of an 

intact heart. Histologic validation of diffusion MR tractography will enable 

researchers to investigate the microstructural change of myocardium according 

to various diseased by providing solid evidence for integrity of diffusion MR 

tractography, and this will eventually improve understanding of the fundamental 

heart structure-function relationships in both normal development and 

cardiovascular disease progression.
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Tissue-clearing techniques are promising novel technologies capable 

of delivering intact molecular phenotyping imaging that may potentially address 

the current limitations of studying heart microstructure.11,12 These techniques 

clear the intact tissue of light-scattering lipids. However, all previously reported 

tissue-clearing techniques have been optimized for the brain, which differs from 

the heart and therefore requires adjustment for cardiac application.13

Additionally, the heart is typically larger than the brain in small animals, 

increasing the technical challenge of achieving full optical transparency.14 One 

advantage of applying tissue-clearing techniques in the heart compared with the 

brain is the relative homogeneity of the tissue type in which the heart is mostly 

composed of myocytes.15 Because both connective tissue and cardiomyocytes, 

which consists of most of the myocardium component, are aligned with same 

direction making a laminar structure,2 simple auto-fluorescence of non-specific 

proteins in the myocardium could directly reveal the myocardial fiber structures 

of the heart once the tissue is sufficiently cleared. However, tissue-clearing 

techniques cannot be performed in vivo limiting its potential for clinical 

application beyond pathology. Instead, tissue-clearing techniques can be used to 

validate an indirect, non-destructive imaging technology capable of reflecting 

heart structure in a clinical setting such as diffusion MR tractography.

Therefore, the current aims of the study are first, to accomplish the 

first application of the tissue-clearing technique in intact normal mouse hearts 

using tissue-clearing technique-based lipid clearing of hearts combined with a 
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light-sheet based microscopic optical imaging, and second, to confirm the 

histological integrity of cardiac diffusion MR tractography in quantitative 

assessment of myocardial microstructure in both normal and diseased model by 

using the tissue-clearing technique.

II. MATERIALS AND METHODS

1. Mice animal model

8 weeks old male C57/B6 mice were used.

A. Control group

For the control group, male C57/B6 mice (n=7) were sacrificed at 12 

weeks old to match the ischemic model. 

B. Ischemic heart failure model 

Eight-week-old male C57/B6 mice (n=8) were anesthetized with 2% 

isoflurane inhalation using an isoflurane delivery system. After making a small 

skin cut (1.2 cm) over the chest, the major and minor pectoral muscle were

dissected and retracted. The fourth intercostal space was exposed. With a 

mosquito clamp, a small hole was made at the fourth intercostal space to open 

the pericardium. The left coronary artery was located and ligated approximately 

1mm from its origin using a 6-0 silk suture. If the anterior wall of the left 

ventricle turns pale, the ligation was thought to be successful. The heart was 

placed back into the intrathoracic space and muscle and the skin was closed. 

Ischemic model mice were sacked 30 days after the surgery to allow myocardial 
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remodeling. The formation of ischemic heart failure and cardiac remodeling 

was confirmed by echocardiography immediately before sacrifice. 

C. Non-ischemic heart failure model

Non-ischemic heart failure model (n=7) was constructed using 

doxorubicin (DOX) induced chronic cardiac dysfunction. Doxorubicin 9mg/kg 

was intraperitoneally given to C57/B6 mice weighing 25 to 35g every 10 days 

for 3 times (cumulative dose 27mg/kg).16 Mice were sacked after 30 days from 

the initial DOX administration to allow time for cardiac remodeling. The 

formation of heart failure and cardiac remodeling was confirmed by 

echocardiography before sacrificing the animal.

3. Harvesting of the heart and process of tissue-clearing technique

C57BL/6 mice were anaesthetized with zoletil (Virbac, Carros, France) 

and rompun (Bayer, Kansas city, Missouri, USA) and perfused with hydrogel 

monomer solutions, a mixture of 4% (wt.) paraformaldehyde (1.04005.1000, 

Millipore, Darmstadt, Germany), 4% (wt./vol) acrylamide (A8887, 

Sigma-Aldrich, St.Louis, Missouri, USA), 0.25% (wt./vol) VA-044 (017-19362, 

Wako, Tokyo, Japan) and phosphate-buffered saline (PBS). Hearts were 

extracted and incubated in hydrogel monomer solution at 4℃ for 3 days. 

Polymerization reaction was carried out by increasing the temperature to 37℃

for 3 hours using an Easy-Gel system (EG-1001, Live Cell Instrument, Seoul, 

Korea).
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For clearing, clearing buffer, a mixture of sodium borate buffer 

(200mM, pH8.5) containing 4% (wt./vol) SDS (L3771, Sigma-Aldrich, St.Louis, 

Missouri, USA), was circulated. The heart was scanned for with diffusion MR

tractography. After MR scanning, 100V was applied across the heart samples at 

37℃ for 3 days using the Life Canvas (EC-1001, Live Cell Instrument, Seoul, 

Korea). After clearing, heart samples were washed in PBS at 37℃ for 2 days. 

Finally, heart samples were incubated in EZ-index (EI-Z1001, Live Cell 

Instrument, Seoul, Korea) for matching refractory index.

4. Diffusion MR tractography acquisition

After initial perfusion and polymerization, each heart was placed in a 

15ml tube filled with the clearing buffer solution. A collection of twelve 

diffusion-weighted (b=1000s/mm2) and one non-diffusion-weighted (b=0s/mm2) 

single spin echo MRI16 images was acquired on a 9.4T small animal scanner 

(BioSpec 94/20 USR, Bruker BioSpin, Rheinstetten, Germany) with the same 

imaging parameters (repetition time (TR)=8750ms, echo time (TE)=36ms, 

number of excitations (NEX)=5, spatial resolution=125㎛ x 125㎛ x 300㎛, 

scan time=14hours).

5. Diffusion MR tractography image analysis

Diffusion MR tractography tensor analysis17,18 was performed on the 

acquired diffusion dataset at each voxel using software developed on Matlab 

(Mathworks, Natick, Massachusetts, USA). Briefly, a log-linear least squares fit 

was used to yield the apparent diffusion coefficients (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) 
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of the self-diffusion tensor defined below: 

�

��� ��� ���
��� ��� ���
��� ��� ���

�

Eigenvalue decomposition was performed to yield the eigenvectors and 

eigenvalues. The eigenvector associated with the larges eigenvalue (primary 

eigenvector) of the estimated self-diffusion tensor at each voxel was assumed to 

be parallel to the myocardial fiber orientation.19-21 Helix angle (HA) was 

calculated using the same geometric definition as Streeter, et al,1 with local 

tangent vector being defined from the center of mass of the left ventricular 

blood pool to the voxel of interest for each short axis plane. For 3D 

visualization, diffusion MR tractography was performed using a FACT 

algorithm.22

6. Optical imaging of cleared mouse heart

Optical images of clarified intact mouse hearts were mounted with the 

apex facing the objective lens. The hearts were imaged using a light-sheet 

fluorescence microscope (Lightsheet Z.1,Carl Zeiss Microscopy Co, Ltd. , 

Oberkochen, Germany; stack size, 4.823mm; 2.283㎛ x 2.283㎛ in-plane 

resolution; step size 7.67㎛) equipped with the x5 objective (EC Plan-Neofluar 

5x, Carl Zeiss Microscopy Co, Ltd., Oberkochen, Germany) at 638-nm 

excitation. 

7. Optical image analysis

Raw 3D optical images were filtered to remove any residual stripe-like 
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shadow artifacts.23 Conventional 3D structure tensor analysis was performed on 

the filtered images to calculate myocardial fiber orientation at each voxel.24-26

Briefly, image gradients (fx, fy, fz) of the optical images were calculated in three 

dimensions using a Sobel filter and populating the following structure tensor:

�

���� ���� ����
���� ���� ����
���� ���� ����

�

Eigenvalue decomposition can be performed on the structure tensor to yield a 

primary eigenvector, which reflects the myocardial fiber orientation.  

8. Comparison of myocardial fiber architecture between cleared 3D optical 

imaging and diffusion MRI 

HA maps were used to compare cleared 3D optical imaging and 

diffusion MR tractography. For each heart sample, the 3D optical images were 

down-sampled to match the resolution of the diffusion MR tractography. Binary 

masks were created for both optical and MR tractography-based HA maps using 

simple thresholding to identify the myocardium from background. 

Co-registration was performed on the binary masks using conventional 

non-rigid, intensity-based mutual information algorithm27 to obtain the 

transform matrix that maps the optical binary mask to the MR tractography 

binary mask. The transform matrix was applied to the HA maps and voxel-wise 

comparison was performed only including voxels with myocardium (i.e. 

excluding collagenous scar tissue). The global HA transmurality (HAT) was 

calculated for each heart defined as the mean of the fitted slopes of HA against 
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transmural depth along 20 equidistant radial projections (areas of scar tissue 

excluded) in the short axis plane for all slices. The global HAT is a reflection of 

the degree of helical microstructure present with lower absolute HAT indicating 

less helical winding.

9. Statistical analysis

Continuous variables are presented as mean ± standard error. 

Non-parametric Wilcoxon test was performed to compare means. Analysis of 

Bland-Altman was performed to quantify the agreement between diffusion MRI 

and optical, and linear regression analysis was used to examine the relationship 

between helix angle calculated from diffusion MRI and optical imaging. All 

comparisons were two sided and p<0.05 was considered statistically significant, 

with 95% confidence interval. Statistical analyses were performed using SPSS 

version 23 (SPSS, Inc., Chicago, IL) and MedCalc version 16.4.3 software 

(MedCalc Software, Ostend, Belgium).

III. RESULTS

1. Intact adult mouse heart 3D optical imaging 

The tissue-clearing technique was applied in 7 normal, 8 ischemic and 

7 non-ischemic adult mouse hearts. Figure 2 reveals the effectiveness of 

applying the tissue-clearing technique to murine heart tissue in removing light 

scattering lipids.
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Figure 2. Mouse heart before (left) and after (right) tissue-clearing

Myocardial fiber laminar structures of about 15-20㎛ in size can 

directly be visualized with the endogenous auto-fluorescence of the myocardial 

tissue . Further image processing of the raw optical images using Sobel filters to 

accentuate edges and image intensity gradients increased the contrast of the 

myocardial fiber structure. These image intensity gradient processed images 

served as inputs to 3D structure tensor analysis to quantitatively calculate fiber 

orientation. Fiber orientation represented in red, green, and blue (RGB) color 

map (Figure 3) show fibers twisting around the blood pool in the short axis 

plane with epicardium and endocardium having a significant through-plane 

component consistent with the helical structure. 
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Figure 3. Quantitative fiber orientation mapping after structure tensor analysis 

map represents primary fiber orientation in red, green, and blue (RGB) color 

map. RGB is mapped to left-right, up-down, and in-out orientations, 

respectively.

This is also confirmed by a transmural virtual sectioning of the same 

optical image (Figure 4) that reveals the presence of right handed helical 

oriented layers smoothly transitioning to left handed helical orientation from 

endocardium to epicardium, respectively. 

Figure 4. Helical rotation of fiber axis from epicardium to endocardium 

revealed by virtual transmural sectioning. 
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Helix angles were quantified and plotted against transmural depth to 

further demonstrate the transmural transition of right handed to left handed 

helical orientation.  

2. Intact adult mouse heart diffusion MRI imaging

After extraction and before clearing, all hearts were scanned with MR 

to obtain diffusion MR tractography images. At each voxel, the diffusion MRI 

images were reconstructed to model the self-diffusion tensor and myocardial 

fiber orientation was assumed to be parallel to the primary eigenvector of the 

tensor. Similar to optical imaging of the cleared myocardium, diffusion MR

tractography qualitatively also revealed twisting of fibers around the blood pool 

in the short axis plane with significant through-plane directionality in the 

endocardium and epicardium layers (Figure 5).

Figure 5. Short axis plane of diffusion MR tractography
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To compensate for the coarse (1/2600 worse) resolution of diffusion 

MRI (125x125x300㎛3) compared with the 3D optical imaging (2.28x2.28x7.67

㎛3), 3D tractography of the diffusion tensor data which subdivided each voxel 

into 1000 sub-voxels was used to further qualitatively visualize the helical 

twisting of the fibers from apex to base. 

3. Comparison of 3D optical-based and diffusion MR tractography-based helix 

angle

Down-sampling and co-registration were applied to the myocardial 

fiber orientation maps generated by 3D optical imaging to myocardial fiber 

orientation maps generated by diffusion MR tractography. The HA was 

calculated using the myocardial fiber orientation at each voxel for all subjects 

and both imaging modalities. 

Figure 6. Representative short axis HA maps of control, ischemic and 
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non-ischemic heart failure model mice hearts

For both imaging modalities, smooth transmural transition of the HA 

from epicardium to endocardium was observed in controls and perturbed 

transition in ischemic hearts near the infarct area and non-ischemic hearts

(Figure 6).

Control hearts (Diffusion MR: 1.3±0.2°/% transmural depth and 

optical: 1.4±0.3°/% transmural depth) exhibited more helical microstructure 

with a significantly higher magnitude of global HAT than either ischemic 

(Diffusion MRI: 0.8±0.1°/% transmural depth and optical: 0.8±0.2°/% 

transmural depth) or non-ischemic (Diffusion MRI: 0.8±0.1°/% transmural 

depth and optical: 0.9±0.2°/% transmural depth) hearts (all p<0.001). Note for 

ischemic hearts, scarred infarcted lesions were excluded from the comparison 

analysis due to low auto-fluorescence signal, which resulted in unreliable 

structure tensor analysis compared to the remote myocardium.  

Comparing between optical-based and diffusion-MR tractography 

based global HAT, significant agreement (R2 = 0.803, p<0.001) can be observed 

across all heart samples. Within each group significant agreement (R2 = 0.809, 

R2 = 0.702, and R2 = 0.540 for control, ischemic, and non-ischemic groups, 

respectively, all p<0.05) was also found between optical-based and 

diffusion-MR tractography based HAT.

The Bland-Altman limits of agreement (95% CI) for the HAT by 
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diffusion MRI and 3D histology were 0.60 to 1.38 for all samples (-0.29 to 0.21 

for controls, -0.38 to 0.28 for ischemics, and -0.31 to 0.44 for non-ischemics), 

which can be considered acceptable for the validation of diffusion MR 

tractography (Figure 7).

Figure 7. Bland-Altman and correlation plots demonstrating the similarity 

between the optical-based and diffusion MR tractography-based myocardial 

fiber helix angle transmurality estimation

IV. DISCUSSION

The result of current study supports the existence of a multi-layered 

helical structure in the left ventricle of the mammalian heart, which was directly 

visualized by the 3D histology with the use of the tissue-clearing technique. The 

intact 3D microstructure of the myocardium by diffusion MR tractography was 

also successfully constructed. The complex 3D microstructure of the heart have 

never been directly visualized before, largely due to the complex architecture of 

myocardial tissue, technical limitations of previous imaging modality, and more 
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importantly, the destructive techniques which traditionally have been used to 

examine it. Identification of true 3D myocardial fiber orientation using 

conventional approaches such as 2D histology is fundamentally flawed because 

the 3D data had to be reconstructed from images of thin slices, in which the 

preparation using destructive sectioning can disrupt the myocardial 

microstructure. In addition, quantification of 3D fiber-orientation with 2D 

histology is laborious and limited with fiber angles only being identified in 

tangential sections.28 As a result, it has been extraordinarily challenging to 

perform histologic assessment without dissecting and thus compromising intact 

fiber orientation of the heart. However with the use of a tissue clearing 

technique, the myocardial fiber architecture was visualized in its intact form, 

without destructive tissue sectioning. 

As shown in the comparison of three different study models, the 

myocardial fiber architecture is perturbed in the presence of ischemic and 

non-ischemic disease. Because myocardial tissue structure is intimately linked 

to heart function, both changes considerably as disease progresses. However, to 

date, there was no optimal imaging modality to prove the complete and 

consistent description of myocardial structure, and its deformation during the 

progression of disease. Consequently, the disruption in myocardial structure has 

been indirectly assessed through detection of scar tissue manifested in 

myocardial thinning or late gadolinium enhancement in MRI.29,30 The present 

study illustrated both 3D histology and diffusion MR tractography were able to 
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directly characterize the myocardial fiber architecture of a diseased myocardium 

as opposed to indirectly focusing on the scar region. Both imaging modalities 

were in agreement in demonstrating the loss of transmural helical myocardial 

fiber architecture in the presence of disease. 

Most importantly, the accuracy of diffusion MR tractography in 

assessing the myocardial microstructure was validated. The histologic 

validation of diffusion MR tractography has been limited because since 

diffusion MR tractography-based fiber orientations reflect the 3D 

microstructure and conventional histology requires destructive sectioning to 

acquire 2D optical images.31 All prior research has been based on inherently 

tissue-destructive conventional techniques, such as serial histological sections, 

which limit analysis to small volumes of heart.32 Furthermore, the process of 

destructive sectioning may modify or damage the myocardial fiber 

microstructure fundamentally casting doubt on whether conventional 2D 

histology is appropriate ground truth reference for diffusion MR

tractography.33,34 By comparing the diffusion MRI with tissue-clearing 

technique prepared 3D histology, the ability of diffusion MR tractography in 

yielding myocardial fiber orientations reflective of the myocardial architecture 

in an intact myocardium was demonstrated. Although a certain degree of tissue 

swelling is unavoidable during the process of polymerization, the myocardial 

fiber orientation is maintained enabling direct comparison of fiber orientations 

between 3D histology and diffusion MR tractography across the entire 
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myocardium. More importantly, established image analysis tools such as 

non-rigid co-registration can be reliably and efficiently used to compare the 

acquired 3D volumes acquired by 3D histology and diffusion MR tractography

across millions of pixels. 

Although there has been effort to non-invasively describe the tissue 

characterization over disease progression,35-37 the clinical use of computed 

tomography, echocardiography, and even conventional cardiac MR tractography

have been confined due to the limitations including requirement of contrast, low 

spatial resolution, long acquisition time, or risk of radiation exposure. Cardiac 

diffusion MR tractography has already become an established method for the 

characterization of myocardial microstructure in animal models.38 In this 

context, diffusion MR tractography may be an alternative or supplemental 

method to T1 mapping for the detection and quantification of diffuse fibrosis. 

V. CONCLUSION

In this study, the tissue-clearing technique, novel 3D histology 

technique, was successfully accomplished using mice cardiac tissue, which 

revealed helical myocardial structure of the myocardium. Furthermore, this 

same helical myocardial architecture can also be ascertained with diffusion MRI, 

a non-invasive medical imaging modality capable of in vivo imaging. By 

establishing concordance between 3D histology and diffusion MRI in yielding 

myocardial fiber architecture, diffusion MRI-based myocardial fiber orientation 
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characterization provides a promising tool for in vivo interrogation of the 

microstructural response of the myocardium in various cardiac diseases. 
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ABSTRACT (IN KOREAN)

심장의 자기공명영상 소견과 투명화된 생체 밖 마우스 심장의

비교를 통한 자기공명영상의 심근 주행 방향 감별의 정확도

평가

<지도교수 장혁재 >

연세대학교 대학원 의학과

이상은

심근은 일정한 방향성을 가지고 배열되어 있으며, 이는

질병의 진행에 따라 변화할 것으로 예측되나, 이를

비침습적으로 평가할 수 있는 방법은 없었다. 본 연구는, 새로

개발된 자기공명영상 기법이 심근의 주행방향을 정확히 측정할

수 있는 지에 대하여 심근의 투명화 기법을 사용하여

자기공명영상의 정확도를 평가하고자 한다. 7마리의 대조군, 

8마리의 허혈성 심부전 모델, 7마리의 비허혈성 심부전 모델

마이스를 대상으로 실험을 진행하였으며, 자기공명영상으로

획득한 심근의 주행방향이 병리학적으로 처리된 투명화된

심장에서 얻은 심근의 주행방향과 일치함을 밝혔다. 본 연구를

통하여 심장 자기공명영상이 심근 주행 방향을 정확히 감별할

수 있음이 밝혀졌으며, 추후 임상에 응용될 수 있는 증거로서

제시될 수 있을 것으로 기대한다.

----------------------------------------------------------------------------------------

핵심되는 말 : 심장 자기공명 영상, 심근 주행 방향


