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Abstract

Spatial scan statistics with circular or elliptic scanning windows are commonly used for clus-

ter detection in various applications, such as the identification of geographical disease clus-

ters from epidemiological data. It has been pointed out that the method may have difficulty in

correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated

the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The

Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a crite-

rion measure for optimizing the maximum reported cluster size. Our simulation study results

showed that using the Gini coefficient works better than the original spatial scan statistic for

identifying irregularly shaped clusters, by reporting an optimized and refined collection of

clusters rather than a single larger cluster. We have provided a real data example that

seems to support the simulation results. We think that using the Gini coefficient in spatial

scan statistics can be helpful for the detection of irregularly shaped clusters.

Introduction

Among various statistical methods for spatial cluster detection, the spatial scan statistics [1]

have been extensively used in numerous applications including not only geographical disease

surveillance but also architecture [2], forestry [3,4], astronomy [5], and criminology [6,7]. The

method, based on a likelihood ratio test statistic, evaluates a large number of different and

overlapping scanning windows. The test statistic is formulated based on a probability model

depending on the data type, such as the Poisson model for count data [1] and the ordinal

model for ordered categorical data [8]. Scanning windows are constructed with variable sizes

at each location on a study area, up to a certain maximum limit. For each scanning window, a

likelihood ratio test statistic for comparing inside versus outside the window is calculated and

the scanning window with the maximum likelihood ratio is defined as the most likely cluster.

The procedure of finding significant spatial clusters using the spatial scan statistics can be per-

formed with the freely available software SaTScan™ [9].

An important issue regarding spatial scan statistics is the scanning window shape. The first

proposed spatial scan statistic used circular-shaped scanning windows. The circular spatial

scan statistic works well for compact clusters, but it may have difficulty correctly identifying
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non-circular clusters. Tango [10] and Tango and Takahashi [11] have mentioned that the orig-

inal spatial scan statistic using circular windows tends to detect a larger cluster than the true

cluster by swallowing neighboring areas with non-elevated risk. This phenomenon may occur

more easily when the true cluster is non-circular. Other shapes of scanning windows also have

been proposed such as elliptic [12] and irregular [11,13–17] shapes. Several studies [15–19]

have shown that the methods using irregularly shaped scanning windows have a better power

for detecting irregularly shaped clusters, as expected.

To apply the spatial scan statistics, one should determine the maximum scanning window

size (MSWS) in advance. The MSWS is usually chosen in terms of the percentage of the total

population for the study area, and an MSWS value of 50% of the total population is commonly

used as the default setting for SaTScan™. However, users may choose an arbitrary MSWS and

the results can be affected by the chosen MSWS. Ribeiro and Costa [20] examined the effect of

different values of MSWS via a simulation study and found that the performance of spatial

scan statistics can be sensitive to the choice of MSWS. Their findings do not imply that one

may run the analysis multiple times with different values of MSWS to optimize the cluster

detection results, as discussed by Han et al. [21]. In that case, the results will suffer from the

multiple testing problem. Han et al. [21] proposed a method using a Gini coefficient to opti-

mize the maximum reported cluster size (MRCS). It is statistically valid to rerun the analysis to

report clusters of a certain maximum size while keeping the MSWS fixed at a larger value. Han

et al. [21] mentioned that setting the MRCS at 50% often results in unnecessarily large and less

informative clusters, and the authors concluded that the Gini coefficient can identify a more

refined collection of non-overlapping clusters. This method has been implemented in SaTS-

can™ version 9.3.

In this paper, we have evaluated the use of the Gini coefficient in the spatial scan statistics

for detecting irregularly shaped clusters. From our experience, we also found that using the

Gini coefficient in SaTScan™ tends to result in the identification of multiple smaller clusters

rather than a single larger cluster. The smaller clusters were often connected and located con-

tiguously, in which case we may consider the clusters as a single cluster in a possibly irregular

shape. We think that using the Gini coefficient improves the detection of irregularly shaped

clusters. We do not expect that the use of the Gini coefficient outperforms other cluster detec-

tion methods specifically using irregularly shaped windows for the detection of irregular clus-

ters. The Gini coefficient was developed as an optimizing criterion for MRCS, and if it has an

ability to better detect irregularly shaped clusters than the original method, it certainly offers

an advantage.

In the next section, we briefly review the spatial scan statistic for count data and the Gini

coefficient in the Poisson-based scan statistic. Through a simulation study, we evaluate the per-

formance of the Gini coefficient for detecting irregularly shaped clusters, compared with the

original circular and elliptic scan statistics. Methods that were developed specifically for detect-

ing irregular clusters, such as the flexible spatial scan statistic [11], the circular spatial scan statis-

tic with a restricted likelihood ratio [22], and the flexible spatial scan statistic with a restricted

likelihood ratio [23], are also included in the simulation study for comparison. We illustrate the

different methods using a real data set of liver cancer mortality for males in Seoul and Gyeonggi

province in Korea. Finally, we discuss our findings with some concluding remarks.

Methods

Spatial scan statistic for count data

When we want to detect a cluster of cases compared against the underlying population at risk,

for example, using disease mortality data, we can use the Poisson-based spatial scan statistic.

Gini Coefficient in Spatial Scan Statistics for Irregular Clusters

PLOS ONE | DOI:10.1371/journal.pone.0170736 January 27, 2017 2 / 13



Given a collection of scanning windows Z, the spatial scan statistic for count data is defined as

the maximum of the likelihood ratio test statistics over Z for the following hypotheses.

H0 : p ¼ q for all z 2 Z vs: Ha : p > q ðor p < qÞ for some z 2 Z

where p and q are the event rates inside and outside the scanning window z, respectively. The

null hypothesis indicates no clustering and the alternative can be specified to search for clus-

ters with high (or low) rates. The Poisson-based spatial scan statistic λ is expressed as

l ¼ max
z

LðzÞ
L0

¼ max
Z

cz
nz

� �cz C� cz
N� nz

� �C� cz

C
N

� �c I
cz

nz
>

C � cz

N � nz

� �

where cz and nz denote the observed number of cases and the population within z, respectively,

and C and N are the total number of observed cases and the total population over the whole

area, respectively. I() is the indicator function to indicate a high or low rate. Because the

denominator on the above formula does not depend on z, the term (C/N)c often drops from

the test statistic.

The most likely cluster is defined as the scanning window associated with the value of λ.

The statistical significance of the most likely cluster is often assessed using Monte Carlo

hypothesis testing, by generating random data sets under the null hypothesis and comparing

the test statistic from the original data set with those from the randomly generated data sets.

One may use Gumbel-based p-values by approximating the distribution of the test statistic to

an extreme value distribution [24,25]. The two methods are available on SaTScan™.

Besides the most likely cluster, it can be informative to report secondary clusters with high

likelihood ratios. The statistical significance of the secondary clusters is evaluated in the same

way for the most likely cluster. As thoroughly explained in the paper by Han et al. [21], an ear-

lier version of SaTScan™ reported secondary clusters without overlapping with more signifi-

cant clusters as a default option, which could result in a large most likely cluster hiding several

smaller distinct clusters. They proposed to apply the Gini coefficient as an intuitive and sys-

tematic way to determine the best collection of clusters to report by optimizing the MRCS.

Here we briefly describe the method. The Gini coefficient for a set of clusters is calculated as

two times the area between the reference line of y = x and the Lorenz curve. The Lorenz curve

for a set of clusters is constructed using the cumulative percentages of observed cases and

expected cases on the x- and y-axes, respectively. When there is a single significant cluster, as

the number of observed cases in the cluster gets higher, which means more cases are concen-

trated, the Lorenz curve gets further away from the reference line and the Gini coefficient

value gets higher. When comparing several competing collections of non-overlapping clusters,

the one with the highest Gini coefficient value should be chosen as the cluster collection to

report [21]. Through a simulation study, Han et al. [21] showed that the method identified the

correct clusters and performed well. For more detailed information on the use of the Gini coef-

ficient in the spatial scan statistic, refer to the paper by Han et al. [21]. The method has been

implemented in SaTScan™ and is available for the Poisson and Bernoulli models only.

Although Han et al. [21] conducted a simulation study and showed a good performance of

the Gini coefficient, they only considered compact clusters. Here we want to evaluate the Gini

coefficient for detecting irregularly shaped clusters. As previously mentioned, if multiple small

clusters of circular or elliptic shapes are found and they are located contiguously, they can be

regarded as a single and possibly irregularly shaped cluster. We presumed that using the Gini

coefficient can more precisely identify irregular clusters by reporting several smaller clusters

connected to one another.

Gini Coefficient in Spatial Scan Statistics for Irregular Clusters
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Simulation study

We conducted an extensive simulation study to evaluate the performance of the Gini coeffi-

cient in the Poisson-based spatial scan statistic for detecting irregularly shaped clusters. We

created 7 different cluster models with different shapes and at different locations on a real geo-

graphical map of Seoul and Gyeonggi province in South Korea. The area consists of 69 districts

with mixed urban and rural regions. Seoul is the capital city of South Korea with a highly

dense population and Gyeonggi province is composed of districts in relatively larger sizes with

small populations. Table 1 and Fig 1 show the locations and information of the 7 simulated

cluster models. We tried to create various types of cluster models in irregular shapes and in dif-

ferent locations and sizes. We also included a cluster model of a compact shape.

We generated 1,000 random data sets for each cluster model with relative risks (RRs) of 1.3,

1.5, and 2 for the clusters of high rates. For the population for the study area, we used a half of

the real population for each district of Seoul and Gyeonggi province in 2010 provided by Sta-

tistics Korea. For each randomly generated data set and each cluster model, we conducted a

Table 1. Number of clusters and districts in the clusters of simulated cluster models A–G.

Cluster model Number of clusters Number of districts

A 1 11

B 1 12

C 1 14

D 2 2 / 5

E 2 7 / 11

F 3 2 / 2 / 4

G 1 8

doi:10.1371/journal.pone.0170736.t001

Fig 1. Simulated cluster models A–G.

doi:10.1371/journal.pone.0170736.g001
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spatial cluster detection analysis using 7 different methods: the circular and elliptic spatial scan

statistics with and without the Gini coefficient (denoted by CS, ES, GCS, and GES), the original

flexible spatial scan statistic (OF), the circular spatial scan statistic with a restricted likelihood

ratio (RC), and the flexible spatial scan statistic with a restricted likelihood ratio (RF). Analyses

using CS, ES, GCS, and GES were conducted using SaTScan™ version 9.3 [9] and those using

OF, RC, and RF were conducted using FleXScan version 3.1 [26].

We identified all significant clusters by each of the 7 methods for each simulation and cal-

culated 3 performance measures, namely the usual power, sensitivity, and positive predictive

power (PPV). The usual power indicates the power to reject the null hypothesis of no cluster-

ing (in any way) and was estimated by the number of rejections out of 1,000 replicate simula-

tions. Tango and Takahashi [11] used the expression of the usual power, while they proposed a

bivariate power to better reflect the accuracy of detecting true clusters. Sensitivity is defined as

the number of districts correctly detected divided by the number of districts in the true cluster,

and PPV is defined as the number of districts correctly detected divided by the number of

detected districts. Sensitivity and PPV were estimated as the averages of sensitivity and PPV

for data sets rejected at the 0.05 significance level.

We also estimated the bivariate power distribution proposed by Tango and Takahashi [11].

While the usual power, sensitivity, and PPV are useful for showing the performance as aver-

aged measures, the bivariate power can reveal more detailed information on the accuracy of

identifying the true cluster. The bivariate power distribution P(l,s) is defined with 2 parameters

of length l, the number of regions of the detected cluster, and s, the number of regions identi-

fied correctly in the true cluster. The usual power can be obtained by summing up the bivariate

power over all possible values of l and s. The bivariate power can indicate the probabilities of

exact detection, under-detection, and over-detection.

Korean male liver cancer mortality data

We analyzed Korean male liver cancer mortality data for 2010–2013 obtained from Statistics

Korea. We used the aggregated mortality data at the “Si-Gun-Gu” (district) level and searched

for clusters with high mortality rates in Seoul and Gyeonggi province using the 7 different

methods. For the population, we used the 2010 Population and Housing Census data from Sta-

tistics Korea. The population and mortality data were grouped into 5-year age intervals and

the analyses were adjusted for the age group.

Results

Simulation results

Tables 2–4 show the estimated usual power, sensitivity, and PPV for each method under clus-

ter models A–G with the RRs of 1.3, 1.5, and 2, respectively. In most cases, the usual power

was estimated as 1 or very close to 1. We included the usual power when it is not exactly equal

to 1. Although none of the methods performed best across all scenarios, the RF method

showed the highest values of sensitivity and PPV in many cases. The OF method performed

relatively well overall. On the other hand, the CS and ES methods had poor performance in all

scenarios except for scenario G of a compact cluster. ES performed very well and even better

than the other methods for scenario G. The RC method showed very low values of sensitivity,

especially when the relative risk was 1.3. The GES method performed reasonably well in gen-

eral and better than CS, ES, and GCS did. The GCS method performed better than CS and ES

overall, but ES seemed to perform better than GCS under some scenarios with RR = 1.3. The

performance of GES was very comparable to those of RF and OF with even higher values of

sensitivity or PPV in some scenarios. For a compact cluster, both the sensitivity and PPV of

Gini Coefficient in Spatial Scan Statistics for Irregular Clusters
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GES were higher than those of RF when the RR = 1.3 although PPV was somewhat lower when

the RR = 1.5 or 2.

The estimated bivariate power distribution for cluster model A with the RR of 1.5 for each

method is shown in Table 5. Cluster model A represents a single irregularly shaped cluster

composed of 11 districts. The usual power for each method was 1000/1000 as indicated in

Table 3. The estimated probability of exact detection P(11,11) was highest for RF and RC. GES

also had a relatively high value of exact detection probability compared to CS, ES, GCS, and

OF. We observed that CS and GCS tended to over-detect (as represented by the large numbers

presented in the rows greater than length l = 11), which led to a relatively low PPV (Table 3).

RC seemed not to over-detect, but rather seemed to under-detect (as represented by the large

numbers presented in the rows less than length l = 11), which led to a relatively low sensitivity.

ES in this scenario also tended to under-detect. For OF and RF, larger numbers were distrib-

uted around the point of exact detection P(11,11). The bivariate power distribution for GES

was comparable to that for OF or RF. Because the results of the bivariate power distribution

for each method under all scenarios would take up too much space, here we only present 1

case as an example. Sensitivity and PPV provide enough information to compare the overall

performance of the 7 methods. The results for the bivariate power distribution under all other

scenarios can be found in S1 File.

Table 2. Sensitivity and PPV for 7 cluster scenarios with RR = 1.3.

CS ES GCS GES OF RC RF

Scenario A

Sensitivity 0.543 0.661 0.546 0.690 0.676 0.450 0.698

PPV 0.793 0.904 0.794 0.906 0.830 0.968 0.876

Power 0.982 0.998 0.982 0.998 0.998 0.999 0.999

Scenario B

Sensitivity 0.640 0.638 0.719 0.810 0.824 0.688 0.837

PPV 0.707 0.807 0.827 0.877 0.937 0.973 0.952

Scenario C

Sensitivity 0.510 0.709 0.570 0.766 0.782 0.495 0.756

PPV 0.798 0.946 0.830 0.918 0.913 0.958 0.947

Scenario D

Sensitivity 0.672 0.603 0.695 0.755 0.763 0.567 0.786

PPV 0.610 0.783 0.639 0.788 0.825 0.938 0.896

Scenario E

Sensitivity 0.702 0.732 0.731 0.793 0.757 0.708 0.784

PPV 0.832 0.869 0.914 0.934 0.867 0.983 0.963

Scenario F

Sensitivity 0.698 0.756 0.714 0.830 0.949 0.663 0.879

PPV 0.727 0.831 0.766 0.851 0.742 0.941 0.878

Power 0.999 0.999 0.999 0.999 1.000 0.998 1.000

Scenario G

Sensitivity 0.871 0.960 0.873 0.959 0.945 0.832 0.942

PPV 0.958 0.988 0.945 0.979 0.958 0.989 0.961

The usual power = 1 for each method under scenarios B, C, D, and E. CS: Circular spatial scan statistic, ES: Elliptic spatial scan statistic, GCS: Circular

spatial scan statistic using Gini coefficient, GES: Elliptic spatial scan statistic using Gini coefficient, OF: Flexible spatial scan statistic, RC: Circular spatial

scan statistic with a restricted likelihood ratio. RF: Flexible spatial scan statistic with a restricted likelihood ratio.

doi:10.1371/journal.pone.0170736.t002
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Analysis results for Korean male liver cancer mortality data

Fig 2 shows the detected clusters with high rates of Korean male liver cancer mortality in Seoul

and Gyeonggi province for 2010–2013, using the 7 different methods. Table 6 includes infor-

mation on the RR, p-value, and number of districts of the detected clusters. Overall, the results

were similar for each method. On closer examination, however, the clusters detected by GES

were almost identical to those detected by RF. The optimal MRCS for GES was found as small

as 3% and still, ES (using 50% for MRCS) detected exactly the same clusters as GES. We think

that this was due to the detected clusters having very high RRs and low populations. GES, and

ES did not include only 2 small districts among the regions in the clusters detected by RF,

while CS, GCS, OF, and RC identified more districts as significant clusters than RF. Although

we do not know the true clusters in the real data, we assumed that the clusters detected by RF

would be close to the true ones because the simulation studies in this paper and the paper by

Tango [23] showed that RF has a very good performance for accurately identifying clusters.

Discussion

In this paper, we evaluated the use of the Gini coefficient in the Poisson-based spatial scan sta-

tistic for detecting irregularly shaped clusters. The simulation study showed that using the

Gini coefficient in the elliptic spatial scan statistic had a reasonably good performance com-

pared to the other methods for detecting irregular clusters. We think that the analysis results

for Korean male liver cancer mortality data also support that the elliptic spatial scan statistic

Table 3. Sensitivity and PPV for 7 cluster scenarios with RR = 1.5.

CS ES GCS GES OF RC RF

Scenario A

Sensitivity 0.883 0.791 0.886 0.916 0.947 0.845 0.928

PPV 0.776 0.950 0.807 0.912 0.905 0.986 0.948

Scenario B

Sensitivity 0.713 0.667 0.911 0.924 0.977 0.939 0.982

PPV 0.709 0.829 0.978 0.886 0.992 0.993 0.992

Scenario C

Sensitivity 0.643 0.800 0.839 0.878 0.935 0.782 0.907

PPV 0.793 0.936 0.902 0.919 0.943 0.984 0.982

Scenario D

Sensitivity 0.791 0.584 0.871 0.978 0.922 0.885 0.902

PPV 0.628 0.899 0.853 0.898 0.918 0.983 0.974

Scenario E

Sensitivity 0.893 0.770 0.944 0.886 0.905 0.943 0.932

PPV 0.883 0.870 0.984 0.972 0.902 0.996 0.993

Scenario F

Sensitivity 0.881 0.855 0.945 0.957 0.998 0.963 0.995

PPV 0.765 0.871 0.905 0.927 0.801 0.976 0.968

Scenario G

Sensitivity 0.888 0.992 0.939 0.986 0.989 0.965 0.989

PPV 0.967 0.999 0.922 0.962 0.997 0.996 0.997

The usual power = 1 for each method under all scenarios. CS: Circular spatial scan statistic, ES: Elliptic spatial scan statistic, GCS: Circular spatial scan

statistic using Gini coefficient, GES: Elliptic spatial scan statistic using Gini coefficient, OF: Flexible spatial scan statistic, RC: Circular spatial scan statistic

with a restricted likelihood ratio. RF: Flexible spatial scan statistic with a restricted likelihood ratio.

doi:10.1371/journal.pone.0170736.t003
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using the Gini coefficient might work well for detecting irregularly shaped clusters. Despite

their popular usage in various applications, it has been pointed out that the spatial scan statis-

tics with circular and elliptic shaped scanning windows may have difficulty in correctly identi-

fying non-compact, arbitrarily shaped spatial clusters [13–19,22,23,27]. However, based on

our simulation study, using the Gini coefficient in the elliptic spatial scan statistic can resolve

the issue to a certain extent. We do not insist that the Gini coefficient can work better than

other spatial cluster detection methods specifically using irregularly shaped windows for

detecting arbitrarily shaped clusters. By reporting an optimized and refined collection of clus-

ters, using the Gini coefficient can better identify irregularly shaped clusters than the original

spatial scan statistic without using it. Also, its performance can be almost as good as the flexible

spatial scan statistic with a restricted likelihood ratio. A major advantage of using the Gini

coefficient over the flexible spatial scan statistic is efficiency in computation time. We found

that running FleXScan with the RF method took two to three times longer than running SaTS-

can for our simulation study. Also, it could be a very tedious job to create a matrix definition

file representing adjacency for each location, which is additionally required for FleXScan, for a

data set having a very large number of locations.

The Gini coefficient has been already implemented in SaTScan™ for the Poisson and Ber-

noulli models. Spatial scan statistics are available for other probability models such as ordinal

[8,28], multinomial [29], normal [30], and exponential [31]. It will be very useful to develop

the Gini coefficient or another criterion for optimizing the MRCS for such models as well.

Table 4. Sensitivity and PPV for 7 cluster scenarios with RR = 2.

CS ES GCS GES OF RC RF

Scenario A

Sensitivity 0.931 0.805 0.941 0.999 1.000 1.000 1.000

PPV 0.772 0.947 0.924 0.847 0.928 0.997 0.983

Scenario B

Sensitivity 0.740 0.641 0.999 0.985 1.000 0.999 1.000

PPV 0.691 0.878 0.997 0.858 1.000 1.000 1.000

Scenario C

Sensitivity 0.700 0.847 0.989 0.926 0.995 0.989 0.995

PPV 0.777 0.915 0.931 0.888 0.937 0.998 0.997

Scenario D

Sensitivity 0.838 0.573 0.999 1.000 0.996 0.999 0.998

PPV 0.606 0.979 0.981 0.872 0.940 0.997 0.996

Scenario E

Sensitivity 0.935 0.787 0.999 0.927 0.960 0.999 0.998

PPV 0.880 0.845 0.996 0.954 0.902 1.000 1.000

Scenario F

Sensitivity 0.934 0.855 1.000 1.000 1.000 1.000 1.000

PPV 0.782 0.871 0.965 0.938 0.802 0.996 0.999

Scenario G

Sensitivity 0.918 1.000 0.998 1.000 1.000 1.000 1.000

PPV 0.955 1.000 0.865 0.930 1.000 0.999 1.000

The usual power = 1 for each method under all scenarios. CS: Circular spatial scan statistic, ES: Elliptic spatial scan statistic, GCS: Circular spatial scan

statistic using Gini coefficient, GES: Elliptic spatial scan statistic using Gini coefficient, OF: Flexible spatial scan statistic, RC: Circular spatial scan statistic

with a restricted likelihood ratio. RF: Flexible spatial scan statistic with a restricted likelihood ratio.

doi:10.1371/journal.pone.0170736.t004
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Table 5. Estimated bivariate power distributions P(l,s) × 1,000 of the 7 methods for cluster model A (RR = 1.5).

CS ES

Included s hot-spot districts Included s hot-spot districts

l 5 6 7 8 9 10 11# Total l 5 6 7 8 9 10 11# Total

5 2 0 0 0 0 0 0 2 5 1 0 0 0 0 0 0 1

6 0 5 0 0 0 0 0 5 6 0 7 0 0 0 0 0 7

7 0 0 20 0 0 0 0 20 7 0 1 63 0 0 0 0 64

8 0 0 0 24 0 0 0 24 8 0 0 11 409 0 0 0 420

9 0 0 3 1 6 0 0 10 9 0 0 0 111 41 0 0 152

10 0 1 2 14 0 0 0 17 10 0 0 2 15 46 71 0 134

11# 0 0 1 14 33 1 0 49 11# 0 0 0 5 14 17 52 88

12 0 0 0 1 170 8 0 179 12 0 0 0 0 3 7 79 89

13 0 0 0 0 2 522 1 525 13 0 0 0 0 2 4 3 9

14 0 0 0 0 1 7 114 122 14 0 0 0 0 1 2 5 8

15 0 0 0 0 2 1 1 4 15 0 0 0 0 2 0 0 2

16 0 0 0 1 1 8 2 12 16 0 0 0 0 0 9 10 19

17 0 0 0 0 0 5 24 29 17 0 0 0 0 0 3 3 6

18 0 0 0 0 0 0 2 2 18 0 0 0 0 0 0 1 1

Total* 2 6 26 55 215 552 144 1000 Total* 1 8 76 540 109 113 153 1000

GCS GES

Included s hot-spot districts Included s hot-spot districts

l 5 6 7 8 9 10 11# Total l 5 6 7 8 9 10 11# Total

5 2 0 0 0 0 0 0 2 5 0 0 0 0 0 0 0 0

6 0 4 0 0 0 0 0 4 6 0 0 0 0 0 0 0 0

7 0 0 19 0 0 0 0 19 7 0 1 4 0 0 0 0 5

8 0 0 0 23 0 0 0 23 8 0 0 2 41 0 0 0 43

9 0 0 3 3 31 0 0 37 9 0 0 0 11 168 0 0 179

10 0 0 2 12 4 44 0 62 10 0 0 0 4 56 86 0 146

11# 0 0 1 7 61 4 7 80 11# 0 0 0 0 19 88 71 178

12 0 0 0 0 117 131 1 249 12 0 0 0 0 2 35 161 198

13 0 0 0 0 1 352 33 386 13 0 0 0 0 3 12 147 162

14 0 0 0 0 1 7 84 92 14 0 0 0 0 0 4 57 61

15 0 0 0 0 2 1 1 4 15 0 0 0 0 1 0 8 9

16 0 0 0 0 1 7 2 10 16 0 0 0 0 0 2 11 13

17 0 0 0 0 0 5 25 30 17 0 0 0 0 0 2 3 5

18 0 0 0 0 0 0 2 2 18 0 0 0 0 0 0 1 1

Total* 2 4 25 45 218 551 155 1000 Total* 0 1 6 56 249 229 459 1000

OF RC

Included s hot-spot districts Included s hot-spot districts

l 5 6 7 8 9 10 11# Total l 5 6 7 8 9 10 11# Total

5 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 6 0 7 0 0 0 0 0 7

7 0 0 4 0 0 0 0 4 7 0 1 47 0 0 0 0 48

8 0 0 2 3 0 0 0 5 8 0 0 1 158 0 0 0 159

9 0 0 0 26 39 0 0 65 9 0 0 0 12 277 0 0 289

10 0 0 0 5 19 118 0 142 10 0 0 0 1 28 269 0 298

11# 0 0 0 2 5 148 17 172 11# 0 0 0 0 2 53 110 165

12 0 0 0 0 1 36 364 401 12 0 0 0 0 1 13 13 27

13 0 0 0 0 0 12 154 166 13 0 0 0 0 0 2 4 6

(Continued )
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Table 5. (Continued)

14 0 0 0 0 1 2 32 35 14 0 0 0 0 0 0 0 0

15 0 0 0 0 0 2 7 9 15 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 1 1 17 0 0 0 0 0 0 0 0

Total* 0 0 6 36 65 318 575 1000 Total* 1 8 48 171 308 337 127 1000

RF

Included s hot-spot districts

l 5 6 7 8 9 10 11# Total

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 4 0 0 0 0 4

8 0 0 2 6 0 0 0 8

9 0 0 0 7 60 0 0 67

10 0 0 0 2 24 343 0 369

11# 0 0 0 1 2 161 115 279

12 0 0 0 0 0 30 162 192

13 0 0 0 0 0 8 59 67

14 0 0 0 0 1 1 10 12

15 0 0 0 0 0 1 1 2

Total* 0 0 6 16 87 544 347 1000

CS: Circular spatial scan statistic, ES: Elliptic spatial scan statistic, GCS: Circular spatial scan statistic using Gini coefficient, GES: Elliptic spatial scan

statistic using Gini coefficient, OF: Flexible spatial scan statistic, RC: Circular spatial scan statistic with a restricted likelihood ratio. RF: Flexible spatial scan

statistic with a restricted likelihood ratio. 1000 trials were carried out.

*The usual power is 1000/1000.
#The number of districts in the true cluster for model A is 11.

doi:10.1371/journal.pone.0170736.t005

Fig 2. Spatial clusters with high mortality rates of male liver cancer in Seoul and Gyeonggi province in Korea

for 2010–2013, detected by the 7 methods.

doi:10.1371/journal.pone.0170736.g002
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While it is expected that such criterion measures may work well for detecting irregular clusters,

a careful evaluation will be needed.

Supporting Information

S1 File. Results for bivariate power distributions.

(PDF)
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Table 6. Most likely and secondary clusters of high rates of male liver cancer mortality in Seoul and Gyeonggi province in Korea for 2010–2013,

detected by the 7 methods.

Cluster CS ES GCS GES OF RC RF

1 RR 4.56 4.53 4.56 4.53 4.37 4.32 4.32

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

# Districts 4 6 4 6 4 4 4

2 RR 2.00 2.18 4.02 2.18 1.89 3.92 3.92

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

# Districts 6 3 2 3 9 2 2

3 RR 4.72 2.00 4.72 2.00 2.98 4.66 2.14

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

# Districts 1 3 1 3 2 1 5

4 RR 1.64 1.64 1.95 1.77 1.95

p-value 0.0042 <0.001 <0.001 0.003 <0.001

# Districts 4 4 3 2 3

5 RR 1.8 1.84

p-value <0.001 0.01

# Districts 2 2

6 RR 1.61 1.59

p-value 0.012 0.015

# Districts 3 3

7 RR 2.23 2.21

p-value 0.019 0.02

# Districts 1 1

8 RR 2.21 2.21

p-value 0.029 0.025

# Districts 1 1

9 RR 2.19

p-value 0.029

# Districts 1

RR: Relative risk. CS: Circular spatial scan statistic, ES: Elliptic spatial scan statistic, GCS: Circular spatial scan statistic using Gini coefficient, GES: Elliptic

spatial scan statistic using Gini coefficient, OF: Flexible spatial scan statistic, RC: Circular spatial scan statistic with a restricted likelihood ratio. RF: Flexible

spatial scan statistic with a restricted likelihood ratio. Cluster 1 is the most likely cluster and the others are secondary by the order of statistical significance.

doi:10.1371/journal.pone.0170736.t006
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