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Individuality manifests in the 
dynamic reconfiguration of large-
scale brain networks during movie 
viewing
Changwon Jang1,2, Elizabeth Quattrocki Knight3, Chongwon Pae1,2, Bumhee Park4, 
Shin-Ae Yoon2,5 & Hae-Jeong Park1,2,5

Individuality, the uniqueness that distinguishes one person from another, may manifest as diverse 
rearrangements of functional connectivity during heterogeneous cognitive demands; yet, the 
neurobiological substrates of individuality, reflected in inter-individual variations of large-scale 
functional connectivity, have not been fully evidenced. Accordingly, we explored inter-individual 
variations of functional connectivity dynamics, subnetwork patterns and modular architecture 
while subjects watched identical video clips designed to induce different arousal levels. How inter-
individual variations are manifested in the functional brain networks was examined with respect to 
four contrasting divisions: edges within the anterior versus posterior part of the brain, edges with 
versus without corresponding anatomically-defined structural pathways, inter- versus intra-module 
connections, and rich club edge types. Inter-subject variation in dynamic functional connectivity 
occurred to a greater degree within edges localized to anterior rather than posterior brain regions, 
without adhering to structural connectivity, between modules as opposed to within modules, and 
in weak-tie local edges rather than strong-tie rich-club edges. Arousal level significantly modulates 
inter-subject variability in functional connectivity, edge patterns, and modularity, and particularly 
enhances the synchrony of rich-club edges. These results imply that individuality resides in the dynamic 
reconfiguration of large-scale brain networks in response to a stream of cognitive demands.

Individuality, or individual subjectivity, refers to a compilation of qualities that distinguish people from each 
other, not only in character and temperament, but also in the way they perceive, feel and perform a cognitive task. 
To date, individuality has been studied with regard to individual differences or variability in contrast to a common 
prototype or model. Human individual variability has been recognized at the behavioral level1,2 and with regard 
to brain activations during a specific type of cognitive performance3–5. Recent studies of human variability have 
focused on differences in “resting state” functional connectivity6,7. However, the neurobiological underpinnings 
of individuality, in response to a natural setting that demands diverse cognitive functions, remains to be investi-
gated, particularly with respect to dynamic functional connectivity of brain network systems.

To date, some functional magnetic resonance imaging (fMRI) studies of inter-subject variability in the brain 
have explored the synchrony of regional brain “activity” among individuals while subjects perform the same task 
in a natural setting (mainly watching a movie)8–13. In these studies, neuronal synchrony was measured using 
inter-subject correlation (ISC; temporal) of regional brain activity to a series of stimuli. ISC has been used to 
determine whether the neuronal response in one individual’s brain is similar to the response in a separate indi-
vidual’s brain while the subjects experience identical stimuli9. This approach detects which brain voxels show 
similar time courses (activity) across individuals (high inter-subject correlation) and which brain voxels show 
heterogeneous (and thus individualized) time courses during movie viewing. Therefore, ISC is considered to be a 
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data-driven biomarker for localizing brain regions of high inter-individual similarity or variations. ISC of regional 
brain activity was consistently high in the sensory cortex; whereas, ISC was relatively low in the higher (or later) 
cognitive brain areas9,14–16, implying that higher cognitive brain regions encode individual differences.

Because brain regions do not operate in isolation, but function together to perform a task, identifying brain 
regions across subjects that respond synchronously to identical demands can only partially decipher the essence 
of brain individuality. Recently, the shift toward conceptually viewing the brain as a network system17,18 suggests 
that individual differences may exist in the orchestration of brain regions employed for a certain psychological 
process. Therefore, exploring various interactions among brain regions from the network perspective can better 
elucidate the neurobiological underpinnings of individual variability.

In this study, we investigated how inter-subject variability manifests in the large-scale brain network while 
individuals watched the same set of video clips. Unlike previous studies, which limited their examinations 
of inter-subject variability to assessing asynchrony of regional activation across individuals, we focused on 
inter-regional functional connectivity at each edge (edge strength) and patterns of edge sets (subnetwork archi-
tecture) involved in a perceptual task. In this paper, we use the term “perceptual,” to include not just the basic 
transmission of sensory signal information, but the emotional, cognitive, and attentional processing that gives 
rise to “understanding”.

We detailed inter-subject variability with respect to five aspects of functional connectivity: connectivity within 
the anterior versus posterior areas of the brain, existence of underlying structural connectivity, intra- versus 
inter-modular connectivity, connectivity types in reference to the rich club organization schema and interactions 
between these four contrasts and arousal levels.

Similar to previous studies9,19, we compared connectivity in the anterior brain areas, the regions generally 
responsible for higher order cognitions, to posterior brain areas, the structures essential for sensory/early level 
processing.

How structural brain (anatomic) networks correspond to functional connectivity has become an increasingly 
important framework for comprehending the brain20,21 and understanding of certain brain diseases22–24. In this 
respect, we investigated the effect of structural connectivity on inter-subject variability of functional connectivity.

The brain’s modular architecture segregates brain functions in a hierarchical manner25. To characterize brain 
modularity, researchers have proposed two slightly different schemas to describe modular structures; community 
arrangements26 and rich club organizations27. In a community structure, modules are defined as groups of densely 
interconnected nodes that are only sparsely linked with nodes residing in different modules26. Processing within 
a module, referred to as local integration, occurs primarily via strong short-ranged edges and creates an opera-
tional unit that performs a specialized function. Conversely, global integration in the community modular model 
refers to interactions between modules and most likely utilizes sparse, weak, but long-range edges. Community 
structures prioritize discrete operations over distributed local integration. Whereas, the “rich-club” organization 
emphasizes efficient information flow and thereby optimizes interactions or dense connections between mod-
ules in the network28. In the rich-club organization, a rich-club hub connects not only with many other feeder 
nodes (thus, composing a module via feeder edges), but also provides access to other rich-club hubs with dense 
rich-club edges. While intra-modular edges (or feeders) and rich-club edges may work as “strong ties”, edges not 
connected with any rich club nodes (referred to as local edges) may play as “weak ties”, similar to a framework 
established in social networks29. In this study, we assessed the inter-subject variability of weak versus strong ties, 
using the above structure as a framework, to explore the substrates that might account for individual variability.

Furthermore, we investigated how arousal levels differentially modulate inter-subject variability in con-
nectivity, by considering the contribution of arousal to the contrasts described above, similar to the study of 
Nummenmaa, et al.10 that showed arousal effects on the voxel-wise inter-subject synchrony.

To test these hypotheses, we obtained fMRI images while participants watched a set of video clips designed 
to induce either low or high arousal levels. We evaluated the temporal synchronies of nodal activity and func-
tional connectivity using temporal inter-subject correlations (ISC) of blood oxygenation level dependent signal 
(BOLD) changes. We also evaluated inter-subject similarity (ISS) for patterns of active edge sets within various 
modules (anterior/posterior, with/without corresponding structural connectivity, inter/intra modular, and rich 
club/feeder/local edges types) across individuals for each arousal category. In conclusion, we demonstrate that 
individuality resides in the dynamic reconfiguration of large-scale brain networks, modulated by arousal levels, 
in response to a stream of cognitive demands.

Results
Synchrony of nodal activity.  For nodes in the occipital, temporal and parietal lobes, the ISC was high; 
whereas, nodal ISC was low in the frontal lobe (Fig. 1E and F and Supplementary Table 1). High arousal was 
generally associated with a greater number of highly synchronous regions across subjects. In both hemispheres, 
the supra-marginal gyrus, superior occipital gyrus, posterior cingulate cortex, parahippocampal gyrus, middle 
temporal gyrus, precentral gyrus and the fusiform gyrus displayed higher ISC during the high arousal state than 
low arousal state. However, ISC in the bilateral inferior occipital gyri, was significantly higher during the low 
arousal condition (FDR <​ 0.05, Fig. 1F).

Synchrony of edge dynamics.  The ISCs of edges (functional connectivity) are displayed in Fig. 1G and 
H (Supplementary Table 2). The total number of synchronized edges (z value of the ISC >​ 1.96) and the average 
ISC for edges having a z value of greater than 1.96 are significantly higher in the high arousal state than in the low 
arousal state (p =​ 0.052 and p =​ 0.001, respectively).

High arousal tended to increase the ISC in those edges that interconnect high ISC nodes, such as the left 
supramarginal gyrus, right parahippocampal gyrus, right amygdala and bilateral precuneus (Fig. 1H). Whereas, 
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the edges projecting from the visual and auditory areas were higher in the low arousal state than the high arousal 
state (FDR <​ 0.05) (Fig. 1H).

Statistical results for inter-subject synchrony of functional connectivity according to different edge types are 
summarized in Table 1 and Figs 2 and 3.

Three-way repeated measures ANOVA for the arousal condition, anterior/posterior brain condition and 
with/without structural connectivity condition revealed a main effect for the anterior/posterior condition 
(F(1,104) =​ 80.73, p <​ 0.001), demonstrating that the ISC of edges in the posterior brain was higher than in the 
anterior regions (Fig. 2A and B). The interaction between arousal level and anterior/posterior condition was also 
significant (F(1,104) =​ 6.64, p =​ 0.011) (Fig. 2C). The difference between posterior-anterior ISC was higher in 
the low arousal state than the high arousal state. The interaction between arousal condition and structural con-
nectivity (F(1,104) =​ 10.72, p =​ 0.001) was significant (Fig. 2D). Three-way repeated measures ANOVA for the 
inter/intra modular connectivity condition, with/without structural connectivity condition and arousal condition 
(Fig. 2E) showed a main effect for the inter/intra modular edge condition (F(1,104) =​ 17.31, p <​ 0.001) (Fig. 2F) 
and an interaction between inter/intra modular edges and with/without structural connectivity (F(1,104) =​ 7.22, 
p =​ 0.008) (Fig. 2G) and between the arousal condition and the with/without structural connectivity condition 
(F(1,104) =​ 7.12, p =​ 0.009) (Fig. 2H).

Figure 1.  Subnetworks of the brain used in this study. Network node and edge definitions using the Automated 
Anatomical Labeling (AAL) map of the whole brain (A), anterior and posterior areas of the brain (B), modules 
defined by modularity optimization of structural networks for inter/intra-modular connectivity analysis  
(C) and rich-club nodes defined by structural networks (D). Rich-club nodes (node degree >​16, red spheres) 
were found at the anterior cingulate cortex (ACC), caudate (CAU), fusiform gyrus (FFG), hippocampus (HP), 
inferior temporal gyrus (ITG), insula (INS), middle cingulate cortex (MCC), middle frontal gyrus (MFG), middle 
occipital gyrus (MOG), middle temporal gyrus (MTG), precentral gyrus (PrCG), precuneus (PRCU), putamen 
(PUT), superior dorsal frontal Gyrus (SFGdor) and supplementary motor area (SMA). Inter-subject correlation 
(ISC) of nodes and edges. (E) T-maps of ISC for nodal activity at high and low arousal states (HA, and LA) (one 
sample t-test). (F) Statistical difference of nodal synchronization (ISC) across individuals between the high and 
low arousal states (blue depicts greater synchrony in LA and orange represents greater synchrony in HA). FDR 
q <​ 0.05. (G) T-maps of ISC for dynamic functional connectivity in the high and low arousal state (one sample 
t-test). Edges with z-transformed ISC >​ 2 were displayed. (H) Statistical difference of edge synchronization (ISC 
of functional connectivity) across individuals between the high and low arousal states. FDR q <​ 0.05.
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The intra-modular edges demonstrated more ISC than inter-modular edges and were significantly more 
affected by the existence of underlying structural connectivity than were the inter-modular edges.

Three way repeated measured ANOVA for the different rich club edge types condition (RC/feeder/intra-RC 
local/inter-RC local edges), anterior/posterior region condition and arousal condition (Fig. 3A) revealed a main 
effect for the anterior/posterior region condition (F(1,104) =​ 28.66, p <​ 0.001, demonstrating that the ISC of 
edges in the posterior brain was higher. A main effect of rich club edge type (F(3,312) =​ 19.83, p <​ 0.001) and an 
interaction between edge types and regions (F(3,312) =​ 14.84, p <​ 0.001) were significant. There was no signifi-
cant difference between rich-club edge types in the anterior brain, but RC edges had higher ISC than feeder and 
local edges in the posterior brain (F(4,416) =​ 17.66, p <​ 0.001) (Fig. 3B). The interaction between edge type and 
arousal was significant (F(3,312) =​ 7.89, p <​ 0.001). Rich club edges were highly synchronized across subjects 
compared to the other edge types, but only in the high arousal state (F(4,416) =​ 6.06, p <​ 0.001) (Fig. 3C).

A two way repeated measures ANOVA of RC edges by arousal condition and by anterior/posterior condition 
revealed a main effect of the arousal condition on RC edges (F(1,104) =​ 4.98, p =​ 0.028), demonstrating greater 
inter-subject synchrony of RC edges in the high arousal state than the low arousal state. A significant main effect 
of the region condition on RC edges (F(1,104) =​ 18.32, p <​ 0.001) also showed higher ISC of RC edges in the 
posterior brain than in the anterior brain.

Inter-subject similarity of edge involvement patterns (ISS).  The ISS of subnetwork architecture was 
determined by the adjusted rand index (ARI)30, a measure of the degree to which spatial patterns overlap. This 
analysis indicated that the ISS of subnetwork architecture depends on network thresholds. High thresholds indi-
cate that networks are composed primarily of strong functional connections while lower thresholds indicate net-
work composition includes both weak and strong functional connections. A repeated measures ANOVA showed 
main effects for the brain region and arousal conditions (Supplementary Table 3 and Fig. 4A). The ISS was higher 
in the posterior area than the anterior brain for all network thresholds (Fig. 4A). In the posterior brain, the ISS 
during the high arousal state was significantly higher than during the low arousal state, particularly for network 
thresholds of 0, 10, 40~60% (paired t-test, p <​ 0.05). Whereas, the ISS of the anterior edges during the high 
arousal state was significantly higher than in the low arousal state for network thresholds of 0, 10 and 20%, but 
this effect was reversed with network thresholds from 40~90% (Fig. 4A).

A repeated measures ANOVA for the ISS of subnetwork patterns (ARI) showed main effects for the presence 
or absence of underlying structural connectivity and arousal level (Fig. 4B). Connections with corresponding 

3 way repeated measures ANOVA

Anterior or Inter modular edge (z) Posterior or Intra modular edge (z)

Interaction Post-hoc

High Arousal Low Arousal High Arousal Low Arousal

woSC wSC woSC wSC woSC wSC woSC wSC

Arousal Effect N.S.

0.363 
(1.21)

0.276 
(1.19)

0.085 
(0.63)

0.156 
(0.71)

0.914 
(1.37)

0.897 
(1.38)

1.075 
(0.89)

1.232 
(0.81)

Arousal – wSC/woSC 
condition, F(1,104) =​ 10.72, 

p =​ 0.001
Arousal – Anterior/Posterior 

condition F(1,104) =​ 6.64, 
p =​ 0.011

Anterior <​ posterior, 
p =​ 0.000

Anterior/Posterior 
Effect

F(1,104) =​ 80.73, 
p =​ 0.000

wSC/woSC effect N.S.

Arousal Effect N.S.

0.324 
(0.91)

0.280 
(1.08)

0.271 
(0.46)

0.278 
(0.53)

0.459 
(1.03)

0.427 
(0.97)

0.299 
(0.78)

0.583 
(0.54)

Arousal – wSC/woSC 
condition, F(1,104) =​ 7.12, 

p =​ 0.009
wSC/woSC– Inter/Intra 

condition F(1,104) =​ 7.22, 
p =​ 0.008

Inter <​ Intra p =​ 0.000
Inter/Intra module 
edge effect

F(1,104) =​ 17.31, 
p =​ 0.000

wSC/woSC effect N.S.

3 way repeated measures ANOVA

Anterior Interaction Post hoc

High arousal Low arousal

Arousal effect *RC edge 
type effect F(3,312) =​ 7.89, 

p =​ 0.000
Region effect *RC edge type 

effect F(3,312) =​ 14.84, 
p =​ 0.000

Anterior <​ Posterior, 
p =​ 0.008

In Posterior region, 
RC >​ Feeder p =​ 0.008, 

RC >​ Intra local p =​ 0.000, 
RC >​ Inter local p =​ 0.000

Feeder >​ Intra local 
p =​ 0.018, Feeder >​ Inter 

local p =​ 0.018
In high arousal state, 

RC >​ Intra local p =​ 0.004, 
RC >​ Inter local p =​ 0.001

RC Feeder Intra-RC 
local

Inter-RC 
local RC Feeder Intra-RC 

local
Inter-RC 

local

Arousal effect N.S. 0.62 
(1.97)

0.29 
(1.20)

0.32 
(1.14)

0.23 
(1.25)

−​0.04 
(0.31)

0.23 
(0.80)

0.46 
(0.61)

0.31 
(0.63)

Region effect F(1,104) =​ 28.66, 
p =​ 0.000

Posterior

High arousal Low arousal

RC Feeder Intra-RC 
local

Inter-RC 
local RC Feeder Intra-RC 

local
Inter-RC 

local

Rich club edge type 
effect

F(3,312) =​ 19.83, 
p =​ 0.000

1.14 
(2.11)

0.68 
(1.34)

0.27 
(1.24)

0.22 
(1.22)

1.05 
(1.60)

0.69 
(0.80)

0.34 
(0.68)

0.40 
(0.72)

2 way repeated 
measured High arousal Low arousal Interaction Post-hoc

ANOVA of RC edges anterior posterior anterior posterior

Arousal effect F(1,104) =​ 4.98, 
p <​ 0.001

F(1,104) =​ 18.32, 
p <​ 0.001

0.62 (1.97) 1.14 (2.11) −​0.04 (1.30) 1.05 (1.60) N.S.
HA >​ LA in anterior region, 
anterior >​ posterior in low 

arousal stateRegion effect

Table 1.  Statistical results of edge ISC for functional connectivity. *N.S. Not Significant. woSC: without 
structural connectivity, wSC: with structural connectivity. HA: high arousal state, LA: low arousal state. ISC: 
inter-subject correlation.
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structural pathways had higher ISS than those connections without underlying structural connectivity, regardless 
of the network threshold (F >​ 500, p <​ 0.001). The ISS of the connectivity patterns in the high arousal state was 
significantly higher than in the low arousal state when networks were constructed with the low thresholds of 0, 
10% but reversed with high network thresholds (30–90%).

A repeated measures ANOVA demonstrated main effects of edge type (intra- versus inter-modular) and 
arousal level on the ISS of the functional connectivity patterns (ARI) (Supplementary Table 4 and Fig. 4C). The 
intra-modular connectivity had higher ISS than inter-modular connectivity, regardless of the network threshold 
(F >​ 1000, p <​ 0.001). The ISS of the functional connectivity patterns in the high arousal state was significantly 
higher than in the low arousal state with low network thresholds (0~20%) but reversed with high network thresh-
olds (40 ~ 90%). The post-hoc t-test showed significantly higher ISS during the high arousal state than during the 
low arousal state with network thresholds of 10% and 20% for the intra-modular edges and with thresholds of 0 
and 10% for the inter-modular edges, but reversed with thresholds 80 ~ 90% and 40~90% for the two edge types 
respectively (p <​ 0.05).

Repeated measures ANOVA of ISS showed main effects for rich-club edge types and arousal levels 
(Supplementary Table 5 and Fig. 4D). The ISS of the RC edges was significantly higher than those of feeder, 
intra-RC local and inter-RC local edges for most network thresholds (Supplementary Table 6A and B). In most 
cases, the ISS of edges are higher at the high arousal state than low arousal state, except for the inter-RC local edges.

Inter-subject similarity of modular patterns of functional networks.  The number of modular struc-
tures was higher in the high arousal state than in the low arousal state, for most resolution parameters (Fig. 4H). 
The ISS of modular patterns in the high arousal state was higher than in the low arousal state except for very low 
resolution (g =​ 1.0 and 1.2) (Fig. 4I).

Discussion
Studies of resting-state and task-free networks have implied that large-scale brain networks encode individual 
characteristics such as maturity7, character31, finger printing32 and task performance33. Individual differences 
with regard to connectivity19, cognitive function34, cognition35 and clinical symptoms36 have also been explored.

Figure 2.  Statistical results for inter-subject correlation (ISC) of functional connectivity. (A) Three-way 
repeated measures ANOVA for arousal condition, anterior/posterior region condition and with/without 
structural connectivity (SC) condition showed main effects (B) of with/without SC condition (F(1,104) =​ 90.73, 
p =​ 0.000), (C) an interaction effect (F(1,104) =​ 10.72, p =​ 0.001) between arousal condition and anterior/
posterior condition and (D) an interaction effect (F(1,104) =​ 6.64, p =​ 0.011) between arousal condition and 
with/without SC condition. (E) Three-way repeated measures ANOVA for arousal condition, inter/intra 
modular connectivity condition and with/without SC condition showed a main effect of (F) inter/intra modular 
condition (F(1,104) =​ 17.31, p =​ 0.000), (G) and interaction effect (F(1,104) =​ 7.12, p =​ 0.009) between arousal 
condition and with/without SC condition. (H) an interaction effect between inter/intra modular connectivity 
condition and with/without SC condition (F(1,104) =​ 7.22, p =​ 0.008)
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In this study, we further investigated the manifestations of individual variability by assessing functional 
networks while subjects engaged in the same series of perceptual tasks that, according to previous studies37–39, 
demand dynamic reconfiguration of brain networks. How inter-individual variability in perceiving, feeling and 
performing a perceptual task is embedded in the whole brain network was examined with respect to inter-subject 
synchrony (ISC) of dynamic functional connectivity and inter-subject similarity (ISS) of connectivity patterns 
during high and low arousal levels in four contrasting divisions of network edges: edges within the anterior versus 
posterior part of the brain, with versus without structural connectivity, inter- versus intra-module and rich-club 
(strong) edges (and feeders) versus local (weak) edges.

The results of the current study can be summarized as follows: (1) greater inter-individual functional con-
nectivity variability exists within high level cognitive regions compared to sensory brain regions, (2) deviations 
from structural connectivity contributes to inter-individual variability, (3) inter-modular connectivity encodes 
more inter-individual variability than intra-modular connectivity, (4) rich-club edges display similar dynamics 
and patterns of edge involvement across subjects for an identical task stream compared to local edges, suggesting 
weaker ties are largely responsible for inter-subject variability, and (5) arousal level modulates inter-individual 
differences in the functional network when performing perceptual tasks.

Various studies have implicated the anterior part of the brain, including the frontal lobe and anterior and 
medial temporal lobe, as a center for individuality5,31,40–42 argues that variability in functional connectivity within 
the prefrontal cortex reflects individual differences in cognitive flexibility and attentional capabilities. Our find-
ings concur with this assertion; both nodal activity and functional connectivity in the anterior brain demon-
strated high inter-individual variation during a perceptual task. The ISC results of nodal (regional) activity in the 
current study agree with previous studies that illustrated highly synchronous voxel-wise activity across subjects 
in the sensory cortices during a series of applied stimuli43–45. The synchronous responses in the sensory brain 
areas to the same stimuli indicate high commonality across individuals in processing sensations while watching 
a movie.

Using connectivity analysis, we further found that anterior functional connectivity, largely responsible for the 
higher brain functions, encodes individuality more than posterior connectivity. This encoding is reflected in the 
lower ISC of edge dynamics and lower ISS for patterns of contributing edges in anterior connectivity compared 
to posterior connectivity. Diverse combinations (patterns) of functional connectivity with variable connectivity 
strengths across participants in the anterior brain may account for the individualized experience fundamental to 

Figure 3.  Statistical results for inter-subject correlation (ISC) of functional connectivity in the rich-club 
organization. The anterior/posterior rich-club edges were determined by the location of rich-club nodes in 
the anterior or posterior brain regions. (A) Three way repeated measures ANOVA for rich-club edge type 
condition, anterior/posterior region condition and arousal condition showed significant main effects of regions 
and rich-club edge types. (B) The interaction effect between region and edge type conditions (F(3,312) =​ 14.84, 
p =​ 0.000) and the rich-club edge type effect was significant in the posterior region (F(4,416) =​ 17.66, p <​ 0.001). 
(C) A significant interaction effect was found between arousal condition and rich-club edge type condition 
(F(3,312) =​ 14.84, p <​ 0.001) showing the edge type effect only in the high arousal (F(4,416) =​ 6.06, p <​ 0.001). 
Two way repeated measures ANOVA of rich-club edges for arousal level condition and anterior/posterior 
region condition showed significant main effects of arousal condition (F(1,104) =​ 4.98, p =​ 0.028) and anterior/
posterior condition (F(1,104) =​ 18.32, p <​ 0.001).
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watching a movie. This cognitive-level-dependent (or anterior-posterior) gradient of ISC and ISS is consistent 
with a previous resting state study19, which associated high individual differences with variable responsivity in the 
frontal cortex of the brain. From this analysis, we can conclude that individual variability resides in the anterior 
brain.

Functional connectivity is constrained by structural connectivity, but not entirely46. The divergence of func-
tional connectivity from the underlying structural connectivity has been used as a biomarker for brain dis-
eases22–24. This study demonstrates that the divergence of function from the structure in the brain network can be 
an important feature in characterizing individual differences. Our examinations of both functional connectivity 
synchrony (ISC) and pattern similarity of functional connectivity (ISS) revealed high inter-subject variability in 
the edges that lacked well defined structural connections, suggesting that individual variability is expressed more 
by functional connectivity diverged from strong structural basis among brain regions.

Figure 4.  The inter-subject similarity (ISS) of subnetwork patterns with various network thresholds (0–90%) 
with respect to arousal level and subnetworks of (A) anterior/posterior connectivity, (B) with/without 
structural connectivity (SC), (C) inter/intra-modular connectivity, (D) rich-club(RC)/feeder/intra-RC local/
inter-RC local edges in the rich-club organization. *indicates significant difference between low arousal (LA) 
and high arousal (HA) (p <​ 0.05, Bonferroni corrected). (E) The community structure for modules in Fig. 1C 
is composed of strong ties which link nodes in the same module (intra-modular edges) and weak ties which 
connect nodes in different modules (inter-modular edges). (F) Rich-club nodes are interconnected with each 
other by rich club edges. Rich club nodes and non-rich club nodes (or feeder nodes) are connected with feeder 
edges. Edges that do not connect with rich club nodes are local edges. Local edges are further subdivided into 
the intra-RC local edges which link feeder nodes in a rich club module and inter-RC local edges which link 
feeder nodes in different rich club modules. Functional modular structures depending on the arousal level. 
Exemplary display of modular structures in 6 subjects (S1~S6) at high and low arousal states after modularity 
optimization are displayed in (G). (H) The number of modules and (I) inter-subject similarity (ISS) of modular 
patterns within the whole brain was evaluated using normalized mutual information (NMI) with modularity 
resolution parameter gamma values from 1 to 2.0. Continuous and dotted lines indicate high and low arousal 
level. *indicates significant difference according to the arousal levels (paired t-test, p <​ 0.05, Bonferroni 
corrected).



www.nature.com/scientificreports/

8Scientific Reports | 7:41414 | DOI: 10.1038/srep41414

When performing a brain function, similarly functioning nodes may reside in close proximity to each 
other, creating a module with strongly-tied interactions (edges). This module may then interact globally with 
other modules in a context-dependent manner, which is the case for topological properties of the structural 
brain18,27,47,48. In this study, we subdivided global integration among modules into two conceptual frameworks 
of modularity; modules defined within a community structure26 and rich-clubs (a hub for a local community or 
module) in the rich club organization27. Rich-club edges, although they interconnect rich-club modules (global 
integration), are different from the inter-modular edges defined in the community structure, where dense edges 
congregate together to compose a module and sparse inter-modular edges remain afterwards.

In both network structures, the hierarchical architecture of the brain follows a general property of modular 
systems, where strong ties (strong interaction) construct modules, while weak ties (weak interaction) bridge the 
strongly-bound modules to each other. Intra-modular edges in the community structure and possibly feeder 
edges have strong structural basis and play as “strong ties”. Intra-modular edges exhibit similar dynamics and 
subnetwork patterns across individuals. Rich-club edges can also be “strong ties,” particularly within the posterior 
brain due to their strong anatomical basis.

High inter-subject similarity is found in rich-club edges, implying that individuals conduct a similar profile of 
global integration during an identical stream of tasks. Meanwhile, high inter-subject variability, thus conceived 
as the manifestation of individuality, originates mainly from the utilization of inter-modular edges in the com-
munity structure or local edges in the rich club organization. Asynchronous dynamics of edge strengths and 
variable patterns of edge involvements were prominent in the edges spanning between modules compared to 
those edges within a module. In the rich club framework, local edges show low inter-subject synchrony and low 
pattern similarity across subjects. More specifically, inter-rich club local edges have lower inter-subject similarity 
than intra-rich club local edges. These edges can be called “weak ties”. The importance of weak ties (inter-modular 
connectivity), noted in the sociology as, “the strength of weak ties”29, may stem from the inherent flexibility built 
into weak connections, that other whole brain network studies have recognized49. In this study, the strength of 
weak ties generates high inter-subject variability.

The inter-subject similarity of patterns within subnetworks depends on the network threshold (i.e., functional 
connectivity level) employed to divide active from inactive edges (Fig. 4). For higher network thresholds, only a 
small number of edges with strong functional connectivity were contained in the subnetwork while low network 
thresholds tended to include a wide range of edges, from weak to strong functional connectivity. The inter-subject 
similarity of most subnetworks, except for subnetworks composed of edges without structural connectivity and 
inter-modular edges, decreased when network thresholds increased. This implies that edge involvement patterns 
of strong functional connectivity (high network threshold) are diverse across subjects; whereas, these same net-
works appear similar when they include weak connectivity as well.

The ISS of subnetworks with inter-modular edges and edges without structural connectivity exhibited a 
complex dependency on the network threshold; ISS decreased until reaching a threshold of 40%, but increased 
beyond this threshold (Fig. 4B and C). The patterns of subnetworks composed of edges with strong functional 
connectivity (above 50%) become more similar across subjects. Explaining the significance of the ISS network 
threshold dependency on these edges is an intriguing area for future research.

As Nummenmaa, et al.10 reported, arousal levels differentially modulate the variability of local activity in 
individual brain networks. In this study, a greater number of edges displayed increased synchronization across 
participants when arousal levels were high compared to a low arousal state. The association of arousal level with 
synchronized edges across individuals can be further divided into two network systems, i.e., the attentional net-
work and the sensory network.

Increased ISC during the high arousal state was prominent in the edges connecting the parietal lobe, frontal 
lobe and limbic system (hippocampus, amygdala, posterior cingulate cortex). Nummenmaa, et al.10 demonstrated 
positive associations between arousal levels and the ISC of regional activity in both the visual area and dorsal 
attention network, thereby arguing that attention-related mechanisms are arousal-contingent. The high arousal 
state induced by watching a series of emotionally charged video clips would presumably recruit limbic, attentional 
and emotional processing modules, as well as episodic memory processing substrates. During high arousal states, 
attentional modulation of cognitive functions is reflected in the enhanced synchrony of brain connectivity from 
the dorsal attention network to higher sensory cortices and the frontal cortex found in this study (Fig. 1H). We 
also observed that connectivity within limbic circuits (hippocampus, parahippocampus, amygdala and posterior 
cingulate cortex) is time locked across individuals to a greater extent during the high arousal state than the low 
arousal state.

In contrast to attentional and limbic edges, the edges projecting from the primary visual and auditory cortices 
exhibited significantly higher synchronization in the low arousal state than high arousal state. At low arousal 
levels, individuals may minimally utilize higher perceptual and cognitive systems to watch a movie and thereby 
may restrict their processing functions to low-level areas, generating predictable responses to the audio-visual 
features. Without neuromodulatory feedback from higher lever cortical areas, sensory cortical responses become 
essentially time-locked across individuals.

Nodes with higher synchrony, however, did not necessarily generate synchronized edges during the high 
arousal state. For example, the fusiform gyrus, an area with higher nodal ISC, showed greater ISC of functional 
connectivity with the supramarginal gyrus but lower ISC of functional connectivity with the inferior occipital 
gyrus during the high arousal state compared to the low arousal state. Furthermore, this apparent decreased 
synchronization of functional connectivity between a highly synchronized node is inconsistent with increased 
synchronization of nodal activity at high arousal levels, particularly between the auditory and visual systems. 
For example, the left superior temporal gyrus and middle occipital gyrus showed higher inter-subject nodal syn-
chrony during the high arousal state, but the inter-subject synchrony of functional connectivity between the 
two nodes is greater during the low arousal state compared to the high arousal state. These results suggest that 
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previous studies examining inter-individual differences by simply exploring the synchrony of nodal activity 
would not reveal the defining aspect of individual variability. Instead, synchronized interactions between brain 
regions must be investigated to unravel the elements of individual variability, or differences in individual aspects 
of subjective perceptual experiences.

At the subnetwork level, arousal states affect the average ISC of edges differentially when comparing edges 
with, versus without, corresponding structural connectivity and edges in anterior, versus posterior, brain regions. 
Increased arousal levels strengthen the ISC of the edges within the anterior brain and the edges without struc-
tural connectivity but this pattern reverses in the posterior portion of the brain and for the edges with structural 
connectivity; instead, high arousal states diminish edge strength within posterior brain regions and weaken edges 
with clearly defined structural substrates (Fig. 2C).

Arousal levels modulate ISS patterns as well, but this dependency is also complex and varies according to 
network construction thresholds and whether weak connectivity is included in the network model (Fig. 4A,B and 
C). Heightened arousal promotes high inter-individual similarity of the edge patterns with both weak and strong 
connectivity (weak network threshold) in contrast to the higher similarity of edge patterns with strong connec-
tivity in the low arousal state compared to the high arousal state.

It should be noted that high arousal induces a significant increase of the inter-subject synchrony at rich club 
edges compared to the low arousal state and enhances the differentiation of inter-subject synchrony of rich club 
edges from those of local edges (Fig. 3C and D). Since rich-club edges play an essential role in the global integra-
tion of distributed subnetworks, differentiated and increased inter-subject synchrony at rich-club edges during 
a high arousal state imply that subjects follow a similar stream of global integration during the processing of 
arousing scenes. This was also evidenced in the inter-subject pattern similarity of edge involvements (or subnet-
work) measured using ISS (Fig. 4D). Regardless of arousal levels, the subnetworks with rich-club edges exhibit the 
highest pattern similarity across subjects, followed by those with feeder edges, intra-rich club local and inter-rich 
club local edges. Although high arousal induces increased subnetwork pattern similarity across subjects in feeder 
edges and intra-rich club local edges, the arousal level effect was prominent in subnetwork patterns with rich-club 
edges. Note that inter-subject pattern similarity of subnetworks with weak ties (inter-modular edges or inter-rich 
club locals) are lower than those with strong ties (intra-modular or rich-club edges), implicating the strength of 
the weak ties in the characterization of individual differences.

Arousal modulates individual variability not only in the node, edge and subnetwork patterns but also with 
respect to the modularity of the brain. A greater number of functional sub-modules emerged during the high 
arousal state than the low arousal state. This result indicates that the high arousal state promotes a whole brain 
reorganization towards more refined processing as reflected by the greater differentiation of functional subnet-
works. Furthermore, the finely differentiated functional subdivisions (modular patterns) were more similar across 
subjects during high arousal than low arousal.

In summary, this study was the first to evaluate how individual variability (in the cognitive processing involved 
in perceiving a series of video clips) manifests in the brain network through inter-individual variation of “func-
tional connectivity” and “functional modular architectures”. The evaluation was performed with respect to tem-
poral synchrony of the nodal activity and edge dynamics, pattern similarity of subnetworks, and modularity in 
the whole brain network during high arousal and low arousal epochs. Individual differences mainly exist in the 
connectivity between regions responsible for higher-level cognitive processing and in the connectivity without 
adhering to structural pathways. Inter-modular connectivity in the community structure and local connectivity 
in the rich club organization had high variations across individuals in both edge dynamics and patterns of edge 
involvement. We also showed that arousal diversely modulates the individual variability of edge synchrony, edge 
patterns and the modularity of the whole brain networks. The strength of weak ties is clear in the emergence of 
individual variation. Although weak ties are not based on strong structural connectivity, they are strong in dif-
ferentiating oneself from others. In conclusion, individual variability, particularly differences in individualized 
perceptual experiences, may reside in the variable and flexible connectivity contained within the large-scale brain 
network.

Material and Methods
Subjects.  This study included 15 healthy, right-handed participants (9 males and 6 females, mean age: 
25.6 ±​ 2.82 years). None of the participants had a history of neurological illness or psychiatric disorders. This 
study followed the human subject guidelines approved by the Institutional Review Board of Severance Hospital, 
Yonsei University College of Medicine and all participants provided informed consent before the experiment.

Stimuli presentation and fMRI scanning.  We presented a set of popular video clips to all participants 
during fMRI scanning. The stimuli consisted of video clips from 4 different genres: a dance singer’s music video 
(0 s ~1 min 41 s), a sad movie (1 min 41 s ~6 min 13 s), a singer’s music video “Gang-nam style” (6 min 13 s ~7 min 
13 s) and a horror movie (7 min 13 s ~12 min 13 s) for a total duration of 12 min 14 s (Fig. 5A).

Data acquisition.  All participants underwent fMRI scanning with a 3.0 Tesla MRI scanner (Achieva; Philips 
Medical System, Best, The Netherlands) to obtain T2* weight single shot echo planar imaging (EPI) sequences. 
Each participant was axially scanned with four dummy scans using the following parameters: 30 ms TE, 2000 
ms TR, 90° flip angle, 3.5 mm slice thickness, 0.5 mm slice gap, 36 slices acquired in an ascending interleaved 
sequence, 80 ×​ 80 matrix, 220 ×​ 220 mm field of view, and a 2.75 ×​ 2.75 ×​ 3.5 mm voxel unit and 0.5 mm slice 
gap. During presentation of the video clips, a total of 367 scans were acquired. The first five scans were discarded 
during subsequent preprocessing to eliminate possible MRI transient effects.
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We also obtained a high-resolution T1-weighted MRI volume dataset for each subject using a 3D T1-TFE 
sequence configured with the following acquisition parameters: axial acquisition with a 256 ×​ 256 matrix, 
220 mm field of view, 0.86 ×​ 0.86 ×​ 1.2 mm voxel unit, 4.6 ms TE, 9.6 ms TR, 8° flip angle, and 0 mm slice gap.

Diffusion tensor images were obtained using single-shot echo-planar acquisition from 45 non-collinear, 
non-coplanar diffusion encoded gradient directions with the following parameters: 128 ×​ 128 acquisition matrix 
with 70 slices, 220-mm field of view, 1.72 ×​ 1.72 ×​ 2 mm3 voxels, TE 60 ms, TR 7.9 sec, b-factor of 600 s/mm2, 
without cardiac gating.

Post-hoc rating of arousal levels.  We evaluated arousal levels based on Nummenmaa, et al.10. After scan-
ning, all participants watched the same movie again outside the MRI scanner and reported their subjective levels 
of arousal on a 10-point scale. Participants reported their levels of arousal every 30 s, guided by a regular beep 
tone while watching the film. The low and high arousal states were divided according to the mean arousal score, 
resulting in 169 and 193 scans, respectively.

Construction of functional networks.  Figure 5 summarizes all the evaluation processes conducted in 
this study.

Figure 5.  Experimental and analysis procedures. (A) Natural movie stimulus composed of 4 types of video 
clips. Based on the average arousal level of all participants, arousal states were divided into high and low.  
(B) inter-subject correlation (ISC) of nodal activity was defined by average Pearson correlation coefficient 
between the time series of a region in pairs of participants. (C) ISC of dynamic functional connectivity and 
inter-subject similarity (ISS) of connectivity pattern among the participants. Dynamic functional connectivity 
was calculated using correlation coefficients of the time series at each sliding window. The ISC of edges, or 
dynamic functional connectivity, was evaluated by averaging the correlation coefficients (adjacency matrix) of 
the dynamic functional connectivity (between two nodes) across individuals. The ISS of connectivity patterns 
was evaluated using the Adjusted Rand Index (ARI) for binarized functional networks across individuals at each 
arousal state. These measures were evaluated with respect to anterior/poster areas of the brain, with/without 
structural connectivity, inter/intra-modular edges and edges in the rich-club organization. (D) The ISS of the 
modular structure of functional networks was evaluated using normalized mutual information of modules after 
the application of modularity optimization.
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To construct networks, we used a parcellation map based on Automated Anatomical Labeling (AAL) map50, 
which partitioned a whole brain into 116 regions. We excluded the cerebellum and used the 92 regions (90 AAL 
cortical and subcortical regions plus the left and right nucleus accumbens regions, which we manually added 
to the label map) for network analysis. Preprocessing of fMRI data was conducted using statistical parametric 
mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/, Wellcome Trust Centre for Neuroimaging, London, UK)51. 
All EPI data underwent standard preprocessing steps, including correction of acquisition time delays between 
different slices, correction for head motion by linearly realigning all consecutive volumes to the first image of the 
session, and co-registration of T1-weighted images to the first EPI data using the non-linear registration algo-
rithm. Co-registered T1-images was used to spatially normalize functional EPI into MNI template space using 
nonlinear transformation in SPM12.

fMRI time series for 92 cerebral regions out of the modified AAL map were extracted from the normalized 
fMRI data in the MNI template space. Time series of eigenvalues corresponding to the first eigenvector, i.e., the 
mode (derived by applying principal component analysis to time series of voxels in each region), was used as a 
representative activity for the region (Fig. 1A). The signal fluctuations at each node underwent linear regression 
analysis to remove rigid motion artifacts (using 12 motion regressors composed of six rigid motion parameters 
and their derivatives) and global signal changes. The three principal components derived from the signal con-
tained in the white matter and cerebrospinal fluid, followed by high-pass filtering (0.009 Hz), were also used as 
parameters in the linear regression to remove potential artifacts stemming from these sources. An assessment of 
individual head motion, using framewise displacement (FD)52,53 of six motion parameters, demonstrates that the 
quality of the current data is well within generally acceptable standards in terms of motion artifacts (See more 
detail about head motion artifacts in the Supplementary Information). To further minimize motion-induced 
artifacts in the connectivity analysis52,53, we conducted despiking, a censoring algorithm designed to remove out-
liers beyond the limit of three standard deviations of the signal52. A functional network (adjacency matrix) for a 
participant was composed of functional connectivity for all pairs of brain regions. Functional connectivity in this 
study was defined by the Pearson correlation coefficient between the time-series of two brain regions, followed by 
Fisher’s r-to-z transformation.

Construction of structural network, modules and rich-clubs.  To construct a structural network for 
an individual, we followed the approach that combines whole brain fiber tractography and structural label on the 
high-resolution MRI54. First, we conducted automated fiber tracking of DTI using DoDTI (Yonsei University, 
http://neuroimage.yonsei.ac.kr/dodti), with the fourth order Runge-Kutta method. To extract structural net-
works, whole white matter fiber bundles were reconstructed at approximately 400,000 seed points in the white 
matter, which was segmented using SPM. The stopping criteria for fiber tracking were a low FA (<​0.2) and a rapid 
change of direction (>​60 degree per 1 mm).

In order to construct structural networks, we used 92 cerebral nodes in the individual diffusion tensor space. 
For this purpose, we co-registered T1-weighted images to DTI using a nonlinear registration algorithm between 
the T1-weighted images and the non-diffusion-weighted b0-images in DTI for each individual. The AAL map in 
the template space was transformed into the individual T1-weighted MRI space by applying the inverse nonlinear 
transformation from individual T1-weighted MRI to the template T1-weighted MRI using the DARTEL toolbox 
in SPM1255. The label map in the individual T1-space was transformed to individual DTI space by applying 
co-registration function from T1-weighted images to DTI described above.

From whole brain fibers, fiber bundles crossing pairs of regions in the modified AAL map in the individual 
space were extracted. A structural network (adjacency matrix) for an individual is composed of number of fibers 
that interconnect every pairs of 92 brain regions in each participant.

The anterior and posterior areas of the brain were defined based on the AAL map including frontal lobe, 
medial temporal lobe (such as hippocampus, parahippocampal gyrus and amygdala) and temporal pole for the 
anterior brain and occipital lobe, temporal lobe and parietal lobe for the posterior brain. The cingulate, sensori-
motor cortex and subcortical areas were not included in the present study. Since the temporal poles are associated 
with high-level cognitive processing, we assigned the temporal pole to the anterior brain (Fig. 1B).

From the average structural adjacency matrices of the 15 participants, we divided 92 nodes of the whole brain 
into 15 modules using the modularity optimization algorithm by Newman26. Modularity Q was 0.46 indicating 
the fraction of the edges that fall within the given groups compared to a null model with random edges (Fig. 1C). 
We defined the inter/intra-modular edges based on the following modular structure: the intra-modular edge 
was defined as 2 nodes of the edge existing in a same module and the inter-modular edge between the 2 nodes 
(Fig. 4E).

We categorized structural edges according to types in the rich-club organization27. Rich club nodes (hubs) 
were identified as nodes with a significant k degree on group-averaging structural connectivity (satisfying the 
criteria that the fibers were present for at least 50% of the subjects). The edges were then categorized into rich-club 
(RC) edges, feeder edges, and local edges27. We further subdivided local edges into the intra-RC local edges, 
which link feeder nodes within a module, and inter-RC local edges, which link feeder nodes belonging to different 
modules (Fig. 4F). For the nodal degree threshold of k >​ 16, the current network showed significant normalized 
rich club coefficients φnorm(k) >​ 1 (See Supplementary Material) after a permutation testing with 1,000 random 
networks (P <​ 0.05, Bonferroni corrected)27. The rich club nodes included the bilateral precuneus, hippocampus, 
putamen, middle occipital cortex, superior frontal cortex, and inferior temporal cortex (Fig. 1D).

ISC of nodal activity.  The inter-subject correlation (ISC) for a node, a measure of brain synchrony between 
two individuals, was defined as a Fisher’s z-transformed cross-correlation coefficient between the node’s 
time-series in two participants. We statistically evaluated ISCs for 105 inter-subject pairs (92 nodes for 15 partic-
ipants during both the high and low arousal states).

http://www.fil.ion.ucl.ac.uk/spm/
http://neuroimage.yonsei.ac.kr/dodti
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ISC of edge dynamics.  The ISC of functional connectivity at a given edge was defined as the average of 
the Fisher’s z-transformed cross-correlation coefficients of the edge’s time series across all pairs of participants. 
The edge time series for pairs of regions was calculated at each scan with a window size of 30 scans (60 s) using a 
sliding window method56, which has been demonstrated to reliably detect slow changes in the underlying con-
nectivity from rs-fMRI data57.

At each arousal level, we evaluated the ISC of functional connectivity for edges in all subnetworks according to 
the following four contrasts: (1) brain region (anterior versus posterior); (2) edges with versus without underlying 
structural connectivity; (3) intra- versus inter- modular as defined by structural network analysis; and, (4) edge 
type as defined by the rich club schema (RC, Feeder, inter-RC local, intra-RC local).

ISS of subnetworks.  We also evaluated the inter-subject similarity (ISS) of functional connectivity patterns 
within subnetworks with the above four contrasts. Edges with non-zero functional connectivity (i.e., edges where 
functional connectivity is higher than a network threshold) within each contrast compose a functional subnet-
work; for example, edges having non-zero functional connectivity within the anterior brain or within the pos-
terior brain compose anterior and posterior subnetworks. Network thresholds were defined by order percentile 
from 0 to 90% of all positive functional connectivity. For example, for a network threshold with 90%, edges with 
the top 10% of positive functional connectivity within a subregion (e.g., anterior brain) compose a subnetwork. 
The similarity of functional subnetworks from two subjects was measured using the ARI. The 105 pairwise com-
parisons of ARI set for the 15 subjects were statistically compared for each contrast.

ISS of the functional modular structure.  To evaluate the individual variability of modular structures of 
functional networks, we conducted modularity optimization for functional connectivity matrices with various 
resolution parameters58. The resolution parameters γ​ from 1.0 (low resolution, i.e., small number of modules) to 
2.0 (high resolution and many modules) were added to the null model of random edges to control the resolution 
of the modularity. We compared modular structures of every two subjects using Normalized Mutual Information 
(NMI)59. All functional networks were created after thresholding the connectivity matrix with the false discovery 
rate (FDR) criterion of FDR <​ 0.0560.

Statistical analysis of network properties.  We compared ISC and ISS results (mostly 105 pairs from 15 
subjects) according to contrasts described above using two-way analysis of variance (ANOVA). In the post-hoc 
analysis of ANOVA, a Bonferroni correction method was used. In the analyses of nodes and edges, an FDR cor-
rection for multiple comparisons (FDR <​ 0.05) was applied to assess the significance level of the nodes and edges 
in the network.
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