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Abstract. In the academic world, a large amount of data is handled each day, 

ranging from student´s assessments to their socio-economic data. In order to 

analyze this historical information, an interesting alternative is to implement a 

Data Warehouse. However, Data Warehouses are not able to perform predictive 

analysis by themselves, so machine intelligence techniques can be used for 

sorting, grouping, and predicting based on historical information to improve the 

analysis quality. This work describes a Data Warehouse architecture to carry 

out an academic performance analysis of students.  

Keywords: Intelligent data retrieval; data warehouse; Unique Identification 

Number; Academic Performance.  

1. Introduction 

One of the most commonly used actions in educational institutions to give value to 

information and to support decision-making processes is the design of reports. The 

report designing is an exploratory action where certain crosses of data are made and, 

depending on the results, other criteria are analyzed until reaching a point in which 

the results are enough to make decisions about the organization. Support for the 

decision-making process can be provided by specially designed systems such as [1] 

DSS (Decision Support Systems), which can generate configurable reports on a 

regular, quick, and easy basis, as expressed in [2]. 

On the other hand, Data Warehouses (DW) are electronic data repositories 

specially designed for generating reports and data analyses [3], [4]. The distinctive 

features of DW about systems described above are the following: (i) they are flexible, 

(ii) integrate all points of interest about the organization, (iii) can efficiently handle 

large amounts of data, and (iv) allow the creation and calculation of management 

indicators. In addition, the DW are designed with the aim to be efficient in the 
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analysis requirements for strategic levels in organizations, directly considering the 

organizational strategic objectives [5]. In the same way, DW let efficiently analyze 

historical information and allow to visualize trends in the behavior of management 

indicators over time. However, even though the historical information can provide an 

indication of the historical trend followed by an indicator, it is not enough to certainly 

predict any particular indicator. A DW can certainly provide a solid basis for analysis 

and initial performance in the Machine Intelligence techniques [6] that allow learn the 

patterns of these indicators to predict future patterns. For the latter, the Artificial 

Neural Networks (ANN) are algorithms that can associate or classify patterns, 

compress data, control processes and approximate nonlinear functions [7], [8]. 

In this work, the DW has been designed for the behavior analysis of approval and 

advance in a curriculum with real data of the curricula vitae of students from different 

universities in Colombia that offer the Industrial Engineering career. The DW is not 

focused only on the analysis of historical behaviors of students, but also has been 

thought of as a base architecture for the prediction of future trends through ANN 

techniques. This research proposes the approach of data retrieval from an Intelligent 

Distributed Data Warehouse (IDDW), which is a hierarchical distributed data store of 

N levels. 

2. Theoretical Review 

2.1 Artificial Neural Networks 

 

Artificial Neural Networks (ANN) can learn from data and can be used to construct 

reasonable input-output mapping, with no prior assumptions on the statistical model 

of the input data (Haykin, 2009) [9]. ANN have non-linear modeling capability with a 

data-driven approach so that the model is adaptively formed based on the features 

presented from the data (Zhang 2003) [10]. An introduction to ANN model 

specifications and implementation and their approximation properties has been 

provided from an econometric perspective (Kuan 2008) [11]. Several studies show 

that ANN can solve a variety of challenging computational problems, such as pattern 

classification, clustering or categorization, function approximation, prediction or 

forecasting, optimization (traveling salesman problem), retrieval by content, and 

control (Jain, Mao, and Mohiuddin, 1996) [12]. 

Some studies of ANN application related to financial early warning models have 

been conducted by Sevim et al. (2014) [13], as well as Sekmen and Kurkcu (2014) 

[14] who used ANN as a classifier with a categorical output. Other authors used ANN 

as financial forecasting models with continuous value. Some of them are Singhal and 

Swarup (2011) [15], as well as Mombeini and Yazdani-Chamzini (2015) [16] who 

implemented ANN with a single-step prediction output. A previous study on ANN 

forecasting model was also proposed by Kulkarni and Haidar (2009) [17] for a multi-

step prediction with a direct strategy, so the number of models is equal to the number 

of the prediction horizon. In the context of basic commodity prices, the need for 

prediction is not limited to one-step forward but could be extended to include multi-

step ahead predictions. Three strategies to tackle the multi-step forecasting problem 



can be considered, namely recursive, direct, and multiple output strategies (Bontempi, 

Ben Taieb, and Borgne 2013) [18]. The Multiple Input Multiple Output (MIMO) 

techniques train a single prediction model f that produces vector outputs of future 

prediction values. The study proposes to Multi-Layer Perceptron with Multiple Input 

and Multiple Output (MLP-MIMO) as an agricultural product price prediction model 

coupled with the variation coefficient from the Colombian state price reference to the 

criteria of warning level. 

 

2.2 Data Retrieval 

 

Initially, the data retrieval techniques were restricted only to the centralized 

processing, as discussed by Duan L. et al. (2009) [19]. But, according to Abhay K. et 

al. (2015) [20], the data retrieval from the distributed data warehouse refers to the 

implementation of the classic procedure for retrieving data in a distributed computing 

environment that seeks to maximize the use of available resources (communication 

networks, computers, and databases). Some algorithms and systems used for the 

distributed retrieval of databases are the following: the partition algorithm of Savasere 

A. et al. (1995) [21]; Multiagent system based on JAVA JAM by Stolfo S. et al. 

(1997) [22] and Prodromidis A. et al. (2000) [23]; Parthasarathy S. et al. (2000) [24] 

in D-DOALL uses the primitive distributed do-all to easily program the task of 

independent retrieval in a workstations network; Grossman R. L. et al. (1999) [25] 

proposed the Papyrus, a JAVA-based system which aims to wide-area distributed data 

on clusters and meta-clusters; and the system based on Java for distributed enterprises 

by Chattratichat J. et al. (1999) [26]. 

The data retrieval in a highly parallel environment on multiple processors was 

explained by Wang L. et.al. (2013) [27]. There are two commonly used parallel 

programming models: Subprocesses (POSIX subprocesses by Butenhof D. R. (1997) 

[28]) and message passing (OpenMP by Duan L. et al. (2009)) [19]. Modern 

programming languages are also structured to efficiently use innovative architectures. 

There are parallel programming paradigms focusing on parallelizing the algorithms 

on multiprocessor systems and networks. OPENMP and MPI are used to achieve the 

parallelization of shared and distributed memory. CUDA is a programming language 

that is designed for parallel programming used by Garciarena U. et al. (2015) [29]. In 

CUDA, the threads access different memories of the GPU. CUDA offers a model of 

data parallel programming which is incomplete without discussing the more recent 

approach called MapReduce that can process large amounts of data in a highly 

parallel way, as shown by Bhaduri K. et al. (2008) [30]. Several data recovery 

algorithms have been modified for parallel processing architectures as discussed in 

Parthasarathy S. et al. (2000) [24]. 

3. Material and Methods  

3.1 Data  

 

The databases were obtained from the Ministry of Higher Education in Colombia, the 



Colombian Institute for the Promotion of Higher Education (ICFES - Instituto 

Colombiano para el Fomento de la Educación Superior) [31] and four (4) private 

universities of this country. Such data consisted of the reports described in Table 1.  

 
Table 1. Database of the study sample.   

 

DataBase Description 

Student Personal data of students and their status.  

Subject Data of the subjects taught, and entry conditions 

of universities under study.  

Region Regions and cities where students come from.  

Opportunity Data on possible opportunities to study the 

subjects.  

Advance time Permanence time of a student in the career, based 

on semesters.  

Geographical Area Geographical area where the student is located.  

Cohort Cohort to which students belong. 

 

 

3.2 Methods  

 

3.2.1 Implementation of the Data Warehouse 

 

A DW system can be implemented under Molap approach (MultidimensionalOlap), 

Rolap (RelacionalOlap) or by using the hybrid Holap (allows both Molap and Rolap) 

[32]. In this study, Rolap approach was used. Independently from the approach, the 

main processes carried out in the development of a DW are as follows. 

The process of conceptual modeling: The conceptual model is independent from 

technology and is essential for specifying the analysis requirements and information 

availability. When talking about DW conceptual models, there is no consensus in the 

scientific community about a standard model type for the representation of a DW. 

However, there are various proposals presented in [33], [34], [35]. During the process 

of conceptual modeling, a DW conceptual scheme is generated. In this study, the 

MCMD conceptual model was used [3] due to its notation simplicity and because its 

objective is precisely the conceptual specification of a DW. 

Logical modeling process and physical implementation: The logical model 

formally specifies the multidimensional scheme, its restrictions, and capabilities. In 

the same way, the logical scheme is implemented directly in a database engine, 

becoming physical tables. In the case of DW schemes with logical design, they are the 

star scheme and snowflake scheme [32]. At the stage of physical implementation, 

dimension tables and fact tables are created depending on the type of scheme, whether 

star or snowflake. 



ETL data load process: The ETL (Extraction, Transformation, Load) process is 

responsible for extracting, transforming, and loading the data from the original 

databases into the DW. The data retrieval approach is proposed from the Intelligent 

Distributed Data Warehouse (IDDW), which is a hierarchical distributed data store of 

N levels. Based on Abhay K. et al. (2017) [36], the data retrieval approach begins 

when the user enters the UIN (Unique Identification Number) corresponding to the 

data store located in IDDW. Once the data store is located, the desired data are 

retrieved. A flowchart of the IDDW data retrieval approach is shown in Figure 1. 

 

Fig. 1. Flowchart of the data retrieval approach from the IDDW [36].  

 

The ETL process in Figure 1 consists of extracting data from the system database 

of the university student´s curriculum information, which is not supported by a 

relational engine and works through files (legacy systems). This system is accessible 

only through a user interface over the network via a console application inherited 



from the COBOL language. To remove this information, the manual process of 

extraction was simulated by means of an application specially designed for this 

purpose, after which, the curriculum of each student was extracted in text format. 

These text files were transformed using a custom software and loaded to a relational 

database. Then, the files were transformed again by another application for loading 

them to the DW. 

3.2.2 Implementation of the ANN architecture. 

At this stage, the ANN architecture was created to be fed with some data obtained by 

means of the DW. After uploading the DW, an ANN architecture was designed for 

predicting student´s performance using MATLAB algorithms. In this case, the ANN 

was used to estimate the behavior of a student in next semester. The neural network 

was trained with backpropagation algorithm and the sigmoid logarithmic function was 

used on both layers of the network [7]. 

The obtained results were validated using performance measures that indicate the 

generalization degree of the used model. Among the indices used are [8]: The Mean 

Square Error (MSE), the Residual Standard Error (RSE) and the Index of Adequacy 

(IA), shown in equations (1), (2), and (3) respectively, where oi and pi are observed 

and predicted values respectively, in the time i, and N is the total number of data. In 

addition, pi'= pi - om and oi'= oi - om, om representing the average value of the 

observations. 

The IA indicates the adjustment degree that the estimated values present with the 

actual values of a variable. A value close to 1 indicates a good estimate. On the other 

hand, MSE and RSE close to zero indicate a good adjustment quality [8]. 
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4. Analysis and Results  

This section analyzes the behavior of certain indicators over time through the DW 

architecture implemented and the prediction of any of these indicators through an 

ANN. 



4.1 DW analysis 

In order to validate the IDDW operation when integrating the generated profiles, 

1.500 queries were carried out, with a limit of 860 records to be retrieved for each by 

executing the data retrieval processes mentioned in Figure 1. The effectiveness of the 

IDDW was evaluated in three aspects: (a) the storage of the links to the profiles, (b) 

the retrieval of the entity data, and c) the registry of the relationships between the 

entities retrieved from the same document [36]. The results obtained can be seen in 

Table 2. 

Table 2. Validation Results  

Metrics Value 

Number of profiles to generate 750 

Effectiveness of persistence 90%  

Effectiveness of retrieval 76%  

Effectiveness of the relationship generation between entities 95%  

 

Initially, the UIN "13302010410520017" is entered through the developed form 

(Abhay K. et al., 2017) [36]. The first identifier calculated by the identifier search 

engine for this UIN is "1330201041052001". The data store locator searches for the 

address of the machine, corresponding to this identifier in the Central Look-Up data 

store tables. For levels of hierarchy see Table 3.  

Table 3. The percentage of correctly retrieved data from the Common table of the data store 

located at different levels of hierarchy.  

Level in hierarchy  Percentage (%) 

1 90 

2 91 

3 93 

4 94 

5 95 

6 98 

7 99 

 

Table 3 shows the correctly retrieved data (in percentage) from the data warehouse 

located in various levels of hierarchy. The correct data are the data that must be 

retrieved for the entered UIN. From the values in Table 2, it may be seen that as the 

data warehouse is placed at lower levels of hierarchy, the percentage of correct data 

retrieved increases. It is because the number of times the Identifier is calculated are 

less, and chances of error are less too. 



4.2 Results of the prediction using ANN.  

The number of subjects enrolled by a student was estimated, analyzing the 760 

recovered data, taking only one semester toward the future (number of courses 

approved). With respect to the foregoing, Table 4 shows the values of the indices 

obtained for estimating both variables. 

 
Table 4. Indices of adequacy and errors in test data estimation. 

 

Indices Estimation of quantity of 

enrolled subjects 

Estimation of quantity of 

approved subjects 

IA 0.8714 0.8124 

RMS 0.3001 0.3492 

RSD 0.0899 0.1199 

 

The results confirm that the prediction is adjusted to the DW historical trend. So, 

the complement between DW and ANN is a powerful tool to predict the future 

behavior of a management indicator. 

5. Conclusions  

The implementation of a Data Warehouse and the Artificial Neural Network 

architecture has been carried out for the analysis and prediction of academic 

performance in students of Industrial Engineering at a group of Colombian private 

universities. The main advantage of using a DW lies in the possibility of crossing 

different analysis dimensions in a simple and fast way to perform an exploratory 

analysis of data for the creation of reports. It can be noted that the process of ETL 

(Extraction, Transformation, and Loading) is the one that more time and resources 

demanded, mainly since the information should be cross-posted from different 

sources. Additionally, operational systems are not designed to analyze data, and the 

heterogeneity of the platforms where the information is located adds a greater 

difficulty that requires the creation of specific applications and systems to draw on 

historical data. The use of a multidimensional conceptual model to generate the 

IDDW conceptual scheme with UIN becomes a great tool that, independently from 

the platforms, allows to narrow down the analysis and give clarity to the ETL 

subsequent process. 

To obtain summaries and reports using DW as a product of the historical analysis 

of data, a solid database can be created for the ANN architecture and the prediction of 

future behavior. Based on the above, the use of DW combined with the use of 

estimation or prediction techniques (in our case, the ANN), provides a complement to 

substantiate more extensive analyzes because, as shown in this study, it is possible to 

predict the management indicators obtained from the DW. This allows the institution 

to take steps to analyze, modify, and validate the management indicators or, perhaps, 

to generate new strategies to improve and/or optimize the management process, since 



knowledge is extracted from the same databases, thus giving value to the management 

information that is logged but that is not always considered. 
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