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Introduction
The speckle tracking echocardiography has been introduced 

as an advent to measure myocardial deformation with angle 
independent quantification of left ventricular (LV) twist. This 
technique is based on frame-by-frame tracking of natural 
acoustic markers that are generated by B-mode images. How-
ever there are very few data in pediatrics.

LV rotation, rotation rate, and radial displacement were di-
rectly measured using speckle tracking echocardiographic 
software from short axis views of the LV apex and base. Rota-
tion was defined as circumferential rotation around the long 
axis of the left ventricle during systole, and rotation rate was 
the speed at which rotation occurred.

Traditionally, research in clinical cardiac mechanics involved 
analysis of short axis and long axis LV function and ejection 
fraction, but it has been advanced to three-dimensional ven-
tricular deformation studies, including LV torsion.1)2) LV tor-
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sional deformation, based on helical myocardial fiber architec-
ture, plays an important role with respect to LV ejection and 
filling performance.3-6) During the cardiac cycle, there is a sys-
tolic twisting and an early diastolic untwisting of the LV 
about its long axis due to opposite apical and basal rotations. 
The magnitude and characteristics of this torsional deforma-
tion are well established, and it is known that that LV rotation 
is sensitive to changes in regional and global LV function.7-19)

Therefore, interpretation of LV rotation represents a logical 
approach to quantifying LV function. However, there is no 
comprehensive study describing its normal development dur-
ing childhood with respect to age-related change.

In systole, the LV apex rotates counterclockwise while the 
base rotates clockwise, creating torsional deformation originat-
ing in the dynamic interaction of oppositely wound epicardial 
and endocardial myocardial fiber helices.2) One of the special 
characteristics of static B-scan ultrasound imaging is the ap-
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pearance of speckle patterns within the tissue, which result 
from constructive and destructive interference of ultrasound 
back-scattered from structures smaller than the ultrasound 
wavelength. Motion analysis by speckle tracking has been at-
tempted using block-matching and autocorrelation search algo-
rithms. Speckle motion has also been closely linked to underly-
ing tissue motion when small displacements are involved.20-22)

A recently developed and noninvasive echocardiographic 
speckle tracking imaging (STI) technique, which is a novel ul-
trasound method for quantification of true two-dimensional 
(2D) heart motion independent of borders, Doppler or its 
beam angles, has been used for assessment and quantification 
of LV rotation and torsion.23)

LV torsion and untwisting show age-related increases in 
general, and when normalized by LV length, they demonstrate 
larger values in infancy and middle age. Notomi et al.24) has 
suggested that net LV torsion increases gradually from infancy 
to adulthood, but the determinants of this remain unclear.

The neonatal myocardium develops less force than that of 
the adult, and cardiocytes have been shown to increase both 
myofibrillar and sarcoplasmic reticulum contents after birth.24-26) 
Large changes in hemodynamic load occur during cardiac de-
velopment and are associated with increased contractility re-
sulting from alterations in the relative expression of sarcoplas-
mic protein isoforms.27) The giant sarcoplasmic protein ‘spring’ 
both resists passive stretch and helps the myocyte to recoil af-
ter contraction.28) In addition to these cardiac changes, arterial 
distensibility decreases from childhood to adulthood, which 
represents a stiffening of the arterial tree that increases after-
load even in normotensive individuals.29)30)

In this study, we sought to investigate the alterations in LV 
torsional behavior from preschool age to school age in normal 
children.

Methods

Study participants
The participant children were recruited in the outpatient 

clinic from January to July 2014, when schedules to undergo 
clinically indicated echocardiography and from healthy volun-
teers. They were 2 to 14 years, without heart disease. The chil-
dren with unstable hemodynamics and cardiac arrhythmias 
were excluded. They were divided into two groups: one group 
of twenty preschool-age children (2 to 6 years, mean age 4.5 ± 
1.2) and the other group of twenty school-age children (7 to 14 
years, mean age 10.5 ± 2.7).

Children were recruited from a group of pediatric patients 
referred for electrocardiography (ECG) or echocardiography to 
evaluate cardiac murmur, chest pain, and syncope. All subjects 
were normotensive and clinically well from a cardiovascular 
standpoint. Additionally, they showed normal sinus rhythm 
with a normal surface ECG and no structural or functional ab-
normalities on transthoracic echocardiography. They were free 

of past or present systemic disease.

Echocardiography
The main echocardiographic examinations were performed 

by one expert with Vivid 7 scanner (GE Vingmed Ultrasound, 
Horten, Norway) equipped with a phased-array transducer. 
Transducer frequencies, sampling rates, and sector width were 
adjusted for optimal speckle quality of the recordings, and LV 
short axis recordings were acquired. A 2D ultrasound STI ana-
lyzing software packages (Echopac PC, version 6.0, GE 
Healthcare, Horten, Norway) provided by the manufacture 
was used for offline analysis.

In this study, the proper short axis levels were defined at the 
basal level by the presence of the mitral valve and at the apical 
level by the LV cavity alone with no papillary muscles. The LV 
cross section was made as circular as possible. In each child, 3 
consecutive cardiac cycles were acquired, and the data at end-
expiration on the respiratory trace were selected.

The analyses were performed on a computer with custom-
ized software within the EchoPac platform (GE Medical Sys-
tems, Milwaukee, WI, USA).

Conventional echocardiograms were evaluated for LV systol-
ic and diastolic function. After completion of standard com-
prehensive examinations to assess LV longitudinal myocardial 
motion, tissue Doppler imaging (TDI) analysis was performed 
offline, and the myocardial tissue velocity profile was obtained 
from an optimal measuring position set at the basal segment 
of the septum and LV lateral wall from apical four chamber 
projections. The mean frame rate was 150–180 frames per sec-
ond, and the velocity range was 12–20 cm/sec to avoid aliasing 
for TDI acquisition. The measurements of maximal systolic 
and early diastolic velocities were obtained.

In addition, at the basal and apical short axis levels, radial 
transverse and circumferential strain values were obtained us-
ing the EchoPac program (GE Medical Systems).

LV rotation and torsion
Spectral tracking echocardiography was performed for of-

fline analysis, and LV rotation was then defined as angular dis-
placement of the left ventricle about its central axis in the 
short-axis image (Fig. 1). These data were measured in degrees.

LV torsion was defined as the net difference of global LV ro-
tation between apical and basal short axis planes at each time 
point and was calculated by the following equation:31)32)

Global torsion = apical global rotation - basal global rotation
Peak global torsion was defined as the maximal value of glob-

al torsion during the cardiac cycle.

Statistical analysis
All data were expressed as mean ± SD. Statistical analysis 

was performed by Student’s t-test. Relationships were consid-
ered statistically significant when p was less than 0.05.
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Results
We divided the study population into 2 groups: twenty pre-

school-age children (2–6 years) and the other twenty school-
age children (7–14 years). From conventional echocardiograph-
ic measures, LV ejection fraction (67.0 ± 2.0% vs. 66.5 ± 
5.4%, p = NS) was not different between two groups.

LV rotation pattern
Apical rotation, which is consistently counterclockwise and 

is presented as a positive value, changed slightly from preschool 
age to school age without statistical significance, whereas basal 
rotation, which occurs in a clockwise direction and is repre-
sented by a negative value, changed significantly with aging (p 
< 0.05), especially at the inferior and septal segments (p < 0.02).

Global mean value of basal rotation was greater in preschool-
age than in school-age children (-6.3 ± 3.0° vs. -4.4 ± 2.3°, p < 
0.05). All of the six observed segments on short axis images, 
antero-septal, anterior, lateral, and posterior segments demon-
strated a tendency of higher rotation in preschool-age children 
(antero-septal: -3.6 ± 2.5° vs. -2.6 ± 2.2°, anterior: -4.4 ± 2.4° 
vs. -3.4 ± 3.4°, lateral: -6.5 ± 2.8° vs. -5.6 ± 3.3°, posterior: 
-7.7 ± 4.0° vs. -5.9 ± 3.6°, p = NS, respectively), and inferior 
and septal segments exhibited statistically significant higher 
rotation in preschool-age children (inferior: -9.2 ± 3.5° vs. 
-6.6 ± 3.0°, septal: -8.0 ± 3.1° vs. -5.3 ± 3.6°, p < 0.02, re-
spectively) (Table 1, Fig. 2).

Although there was no statistical significance, global mean 
apical rotation was also higher in preschool-age children (7.7 
± 5.1° vs. 6.8 ± 7.0°, p = NS). For the same six segments on 
short axis images, apical rotation data showed tendency of 
larger measurement in preschool-age children than in school-
age children (antero-septal: 9.5 ± 4.5° vs. 8.0 ± 6.2°, anterior: 
9.6 ± 5.1° vs. 8.1 ± 6.6°, lateral: 9.1 ± 5.6° vs. 7.7 ± 7.6°, 
posterior: 8.2 ± 5.3° vs. 6.5 ± 7.9°, inferior: 6.6 ± 5.5° vs. 6.1 
± 7.3°, septal: 8.4 ± 4.0° vs. 7.2 ± 7.0°, p = NS, respectively) 
(Table 1, Fig. 2).

Fig. 1. Measurement process of left ventricular rotation by two-
dimensional speckle tracking echocardiographic imaging.

Fig. 2. Rotation data were acquired with speckle tracking echocardiography for (A) basal clockwise rotation, and (B) apical counterclockwise 
rotation, offline analysis at two-dimensional short axis view.

Table 1. Rotation data comparison with speckle tracking echocardiography at basal and apical view between preschool and school age children

     Rotation (°) Mean Antero-septal Anterior Lateral Posterior Inferior Septal

Basal rotation

Preschool age -6.3 ± 3.0 -3.6 ± 2.5 -4.4 ± 2.4 -6.5 ± 2.8 -7.7 ± 4.0 -9.2 ± 3.5 -8.0 ± 3.1

School age -4.4 ± 2.3 -2.6 ± 2.2 -3.4 ± 3.4 -5.6 ± 3.3 -5.9 ± 3.6 -6.6 ± 3.0 -5.3 ± 3.6

p-value < 0.05 NS NS NS NS < 0.02 < 0.02

Apical rotation

Preschool age -7.7 ± 5.1 -9.5 ± 4.5 -9.6 ± 5.1 -9.1 ± 5.6 -8.2 ± 5.3 -6.6 ± 5.5 -8.4 ± 4.0

School age -6.8 ± 7.0 -8.0 ± 6.2 -8.1 ± 6.6 -7.7 ± 7.6 -6.5 ± 7.9 -6.1 ± 7.3 -7.2 ± 7.0

p-value NS NS NS NS NS NS NS

A B
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Radial strain and circumferential strain with 
speckle tracking echocardiography

Basal radial strain was not different between segments (an-
tero-septal: 31.5 ± 11.7% vs. 36.5 ± 18.6%, anterior: 40.3 ± 
17.2% vs. 44.1 ± 19.8%, lateral: 54.1 ± 15.2% vs. 50.2 ± 
20.5%, posterior: 58.7 ± 18.0% vs. 52.4 ± 23.7%, inferior: 53.3 
± 20.5% vs. 47.2 ± 24.4%, septal: 39.8 ± 18.3% vs. 32.2 ± 
21.9%, p = NS, respectively). Apical radial strain showed sta-
tistically significant higher values in preschool-age children, 
especially at the anterior (52.8 ± 17.4% vs. 34.7 ± 23.2%, p < 
0.02), lateral (55.8 ± 20.4% vs. 36.1 ± 22.7%, p < 0.02), and 
posterior segments (57.1 ± 17.6% vs. 38.5 ± 21.7%, p < 0.01) 
(Table 2).

Meanwhile, differences in basal circumferential strain were 
not statistically significant between segments (antero-septal: 
-26.7 ± 6.7% vs. -25.7 ± 8.2%, anterior: -13.9 ± 6.8% vs. 
-16.6 ± 5.7%, lateral: -17.4 ± 8.2% vs. -14.7 ± 5.7%, posteri-
or: -18.3 ± 9.0% vs. -17.0 ± 6.3%, inferior: -24.6 ± 5.4% vs. 
-21.5 ± 7.2%, septal: -29.1 ± 6.2% vs. -25.9 ± 8.0%, p = NS). 

Apical circumferential strain did not show the significant dif-
ference between segments (antero-septal: -24.9 ± 4.7% vs. 
-25.5 ± 7.7%, anterior: -20.4 ± 6.8% vs. -20.8 ± 9.6%, later-
al: -17.9 ± 7.2% vs. -18.4 ± 6.6%, posterior: -16.7 ± 6.4% vs. 
-18.4 ± 7.0%, inferior: -19.8 ± 4.3% vs. -21.0 ± 7.6%, septal: 
-23.1 ± 9.0% vs. -25.3 ± 7.8%, p = NS) (Table 3).

LV torsion pattern
With the torsion calculation from these basal and apical ro-

tation data, LV torsion did not show the statistical difference 
between preschool-age children and school-age children. 
However, the preschool-age children had the larger measure-
ments (12.6 ± 5.8°/cm vs. 9.5 ± 6.9°/cm, p = NS) (Table 4).

 
Discussion

Modulation of LV torsion appears to reflect myocardial me-
chanical maturation in childhood, which is influenced by con-
tractility, loading conditions, and possible myogenetic changes 
through children’s growth in life.

Table 2. Radial strain data comparison with speckle tracking echocardiography at basal and apical view between preschool and school age 
children

Radial strain (%) Antero-septal Anterior Lateral Posterior Inferior Septal

Basal 

Preschool age 31.5 ± 11.7 40.3 ± 17.2 54.1 ± 15.2 58.7 ± 18.0 53.3 ± 20.5 39.8 ± 18.3

School age 36.5 ± 18.6 44.1 ± 19.8 50.2 ± 20.5 52.4 ± 23.7 47.2 ± 24.4 32.2 ± 21.9

p-value NS NS NS NS NS NS

Apical 

Preschool age 45.9 ± 20.9 52.8 ± 17.4 55.8 ± 20.4 57.1 ± 17.6 52.6 ± 17.2 38.3 ± 21.1

School age 35.7 ± 24.3 34.7 ± 23.2 36.1 ± 22.7 38.5 ± 21.7 41.7 ± 21.6 37.7 ± 20.6

p-value NS < 0.02 < 0.02 < 0.01 NS NS

Table 3. Circumferential strain data comparison with speckle tracking echocardiography at basal and apical view between preschool and school 
age children

Circumferential strain (%) Antero-septal Anterior Lateral Posterior Inferior Septal

Basal 

Preschool age -26.7 ± 6.7 -13.9 ± 6.8 -17.4 ± 8.2 -18.3 ± 9.0 -24.6 ± 5.4 -29.1 ± 6.2

School age -25.7 ± 8.2 -16.6 ± 5.7 -14.7 ± 5.7 -17.0 ± 6.3 -21.5 ± 7.2 -25.9 ± 8.0

p-value NS NS NS NS NS NS

Apical 

Preschool age -24.9 ± 4.7 -20.4 ± 6.8 -17.9 ± 7.2 -16.7 ± 6.4 -19.8 ± 4.3 -23.1 ± 9.0

School age -25.5 ± 7.7 -20.8 ± 9.6 -18.4 ± 6.6 -18.4 ± 7.0 -21.0 ± 7.6 -25.3 ± 7.8

p-value NS NS NS NS NS NS

Table 4. Torsion data comparison from basal and apical rotation data with speckle tracking echocardiography between preschool and school 
age children

Torsion (°/cm) Mean Antero-septal Anterior Lateral Posterior Inferior Septal

Preschool age 12.6 ± 5.8 9.9 ± 7.1 11.0 ± 7.6 12.0 ± 8.8 13.1 ± 8.4 13.0 ± 7.1 13.0 ± 6.5

School age 09.5 ± 6.9 9.0 ± 7.0 09.7 ± 7.2 10.9 ± 7.5 10.8 ± 6.9 11.0 ± 6.8 10.8 ± 8.1

p-value NS NS NS NS NS NS NS
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In this study, all forty enrolled children (2- to 14-year-old) 
showed no significant difference in LV ejection fraction. Basal 
rotations in inferior and septal wall significantly increased in 
preschool-age children. Otherwise, without statistical signifi-
cance, basal and apical rotations of preschool-age children were 
higher than those of school-age children. From these rotation 
data, calculated LV torsion was larger in preschool-age chil-
dren, without statistical difference. These results can suggest 
that myocardial activity might be more dynamic with the larg-
er rotation and torsion in younger preschool-age children in 
comparison to older school-age children. Notomi et al.24) sug-
gested that LV torsion was higher in infants (n = 9, 9 ± 11 
month, < 2 year) than in older children (n = 8, 7 ± 3 year), ad-
olescents (n = 8, 16 ± 2 year), and young adults (n = 10, 28 ± 
3 year), which correlates with the finding that contractility is 
higher in children under 2 years of age due to higher metabol-
ic demand in comparison to older children.33) Although we 
did not include infants in this study, it is possible that younger 
preschool-age children demonstrated higher torsion for the 
same reasons that infants exhibit higher contractility. Mean-
while, the right ventricles of newborn infants are hypertrophied 
compared with those of older school-age children and adults 
due to the systemic pressure and resistance of the right ventri-
cle. Infants may have relative LV hypertrophy as well, as previ-
ously presented by Harada et al.34) This hypertrophy recedes 
with a concomitant change in myofibril architecture with 
growth and aging, which may yield the lesser ventricular rota-
tion. 

This is the foremost study to measure rotation and short axis 
radial and circumferential strain together at the base and apex 
in order to observe how these parameters interact in children.

Strain measure for myocardial deformation in radial and cir-
cumferential directions showed no statistical difference at the 
base with increase of age, which correlates well with the report 
that LV geometry and systolic ejection fraction are constant 
from infancy to adulthood.33)35) However, the basal rotation 
was greater at the inferior and septal segments in younger pre-
school-age children (Table 1), which was caused from notice-
able tendency of higher strain at the exact inferior and septal 
segments in radial and circumferential directions (Table 2 and 
3). Perhaps at base level, both of the radial and circumferential 
myocardial fibril may affect LV rotation and torsion with 
equivalent importance.

Meanwhile, the apical radial strain at anterior, lateral, and 
posterior segments were significantly higher in preschool-age 
children (Table 2); however, apical circumferential strain was 
not different between the two groups at anteroseptal, anterior, 
lateral, posterior, inferior, or septal segments on short axis im-
ages (Table 3). Even though the higher apical rotation values 
seen in preschool-age children were not statistically significant, 
these values might be affected much more by circumferential 
deformation rather than radial deformation (Table 1). The fact 
that apical circumferential strain was found to be greater than 

radial deformation may have an impact on apical rotation and 
torsion. At the apex, circumferential myocardial deformation 
may be more important for myocardial performance.

We observed that rotation did not change much between 2 
to 14 years old, while the age-related decrease in LV torsion 
during childhood resulted from a subtle change in radial and 
circumferential strain of basal and apical segment myocardial 
deformation.

In terms of future clinical impacts, having normal control 
reference values for children’s LV torsion could be useful for as-
sessing the status of various myocardial diseases. LV torsion 
might be a useful measurement of cardiac performance, which 
may allow for better understanding of the myocardium in the 
following conditions: cardiomyopathy, hypertension, postop-
erative congenital heart disease, and other myocardial changes. 
Furthermore, this systolic torsion study may provide new in-
sight into the mechanistic manifestation of diastolic character-
istics in childhood growth.

The limitation of this study is very small sample size, and 
including some of subclinical patient group for normal chil-
dren with reasonable ejection fraction, such as chest pain group 
and syncope.

In conclusion, rotation values were found to be higher ten-
dency in preschool-age children than in school-age children. 
We observed a decreasing trend in rotation and torsion values 
with increasing age from 2 to 14 years old. Although there 
was no statistically significant age-related change in LV rota-
tion between these two groups, the decreasing trend in rota-
tion and torsion twist values during childhood warrants fur-
ther investigation.
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