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ABSTRACT

Purpose: We evaluated the genome-wide gene expres-

sion profiles of various cancer cell lines to identify the

gastrointestinal tract cancer cell–related genes.

Experimental Design: Gene expression profilings of 27

cancer cell lines and 9 tissues using 7.5K human cDNA

microarrays in indirect design with Yonsei reference RNA

composed of 11 cancer cell line RNAs were done. The

significant genes were selected using significant analysis of

microarray in various sets of data. The selected genes were

validated using real-time PCR analysis.

Results: After intensity-dependent, within-print-tip nor-

malization by loess method, we observed that expression

patterns of cell lines and tissues were substantially different,

divided in two discrete clusters. Next, we selected 115 genes

that discriminate gastrointestinal cancer cell lines from

others using significant analysis of microarray. Among the

expression profiles of five gastric cancer cell lines, 66 genes

were identified as differentially expressed genes related to

metastatic phenotype. YCC-16, which was established from

the peripheral blood of one advanced gastric cancer patient,

produced a unique gene expression pattern resembling the

profiles of lymphoid cell lines. Quantitative real-time reverse

transcription-PCR results of selected genes, including PXN ,

KRT8 , and ITGB5 , were correlated to microarray data and

successfully discriminate the gastrointestinal tract cancer cell

lines from hematologic malignant cell lines.

Conclusions: A gene expression database could serve as

a useful source for the further investigation of cancer biology

using the cell lines.

INTRODUCTION

Established cancer cell lines actually differ from their

tissues of origins, which are composed of various cell types in

histologic or biological characters. However, because of the

difficulty in accessing human cancer and normal tissues, cell

lines are still the most useful tools for cancer research. Many

efforts have been made to understand the basic biological and

genetic characteristics of cell lines, which might be useful to

determine the proper cell line model for the study purposes.

Sixty National Cancer Institute (NCI) cancer cell lines have been

used for drug screening for more than four decades, which

significantly contributed to anticancer drug development (1–4).

Based on their biological properties, the NCI’s Developmental

Therapeutics Program did a comprehensive gene expression

analysis of these 60 NCI cell lines, which resulted in the

identification of the genetic characteristics of each cell line (5).

Additional studies suggested that drug sensitivity genes could be

identified by evaluating the correlation between the gene

expression profiles and the drug responsiveness in each cell

line (6, 7).

Recent microarray technology has proven to be useful in

cancer research, including cancer cell line characterization.

Ji et al. (8) used a cDNA microarray to analyze the gene expres-

sion profile of 12 gastric cancer cell lines that were not included

in the NCI studies. This study raised the possibility that RF1 and

RF48 designated as gastric cancer cell lines from the American

Type Culture Collection (Manassas, VA) could be misclassified.

In addition, Sakakura et al. (9) reported on the differential gene

expression profiles in gastric cancer cell lines established from

primary tumor and malignant ascites. Furthermore, Virtanen et al.

(10) showed that gene expression profiling, which is applicable

to both lung cancer cell lines and lung tumors, could provide the

technology to reclassify cell lines.

Although current treatments have significantly improved

patient survival, cancers of the gastrointestinal tract remain the

most common cause of cancer-related deaths in the world.

However, the evaluation of individual molecules failed to

elaborate the complex patterns of carcinogenesis and cancer

progression in gastrointestinal cancer. Recent reports suggest that

the phenotypic diversity of cancer might be related to

corresponding diversity in their gene expression patterns (11–13).

We did a comprehensive gene expression analysis of

various cancer cell lines with different tissue origins using a

high-density cDNA microarray. Our goals in this study were to

identify a subset of classifier genes that distinguish cancer cell

lines of gastrointestinal tract origin from other cell lines and to

identify genes differently expressed in five gastric cancer cell

lines. In addition, because the expression pattern of known

genes can show novel phenotypic aspects of the cell lines and

tissues (11–13), we tried to explore the molecular character-

istics of cancer cell lines with respect to their metastatic

behavior to identify optimal cell lines for given biological

experiments.
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MATERIALS AND METHODS

CellLines andClinical Samples. Twenty cancer cell lines

of various tissue origins (stomach: AGS; breast: MDA-MB-

231, MDA-MB-435, and MCF7; colon: HCT116, COLO 205,

and HT-29; liver: SK-HEP-1 and HepG2; lung: A549 and

NCI-H460; lymphoid organ: HL-60, MOLT-4, and Raji;

cervix: HeLa; fibrosarcoma: HT-1080; kidney: Caki-2; brain:

U-87 MG; melanoma: SK-MEL-2; and pancreas: Capan-2)

were obtained from the American Type Culture Collection.

Seven cancer cell lines that were established at Yonsei Cancer

Metastasis Research Center (CMRC, Seoul, Korea), including

YCC-B1, YCC-B2 (from pleural effusion of breast cancer

patients), YCC-2, YCC-3, YCC-7 (from ascites of gastric

cancer patients), YCC-16 (from the blood of gastric cancer

patient), and YCC-P1 (pancreas), were also studied. The cells

were cultured and maintained in MEM with 10% fetal bovine

serum (Life Technologies, Rockville, MD) in 100 units/mL

penicillin and 0.1 mg/mL streptomycin (Life Technologies) at

37jC in a 5% CO2 incubator. Nine tissue samples (three colon

cancer tissues, two normal colon tissues, three liver metastatic

tumor tissues from colon cancer, and a single sample of

normal liver tissue) were collected from patients

who had undergone surgery at the Severance Hospital, Yonsei

University College of Medicine. Tissue samples were

immediately frozen in liquid nitrogen and stored at �80jC
until further use.

RNA Preparation and Purification. Total RNA was

extracted from the tissues and the cell lines using Trizol reagent

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

protocol. In the case of tissue RNA, extracted RNAwas purified

before probe preparation using a RNeasy kit (Qiagen, Hilden,

Germany) based on the supplier’s manuals. The quantity and

quality of RNA were evaluated using a GeneSpec III (Hitachi,

Tokyo, Japan) and a Gel Documentation-Photo System (Vilber

Lourmat, France), respectively.

Probe Preparation. Total RNA (50 Ag) was directly

labeled and transcribed to cDNA. We combined total RNA from

the following 11 cancer cell lines of various tissue origins in

equal quantities to prepare the Yonsei reference RNA (CMRC,

Yonsei University College of Medicine): stomach, breast, colon,

liver, lung, lymphoid and myeloid system, cervix, fibrous tissue,

kidney, and brain cancer cell line. Cell lines were selected from

various organs to ensure that the pooled RNA contained as many

transcripts as possible (see below). Yonsei reference RNA was

labeled with Cy3-dUTP (NEN Co., Boston, MA) and test

samples were labeled with Cy5-dUTP (NEN).

The labeling was done at 42jC for 2 hours in a total volume

of 30 AL containing 400 units SuperScript II (Life Technolo-

gies); 3 AL Cy5-dUTP (or Cy-3 dUTP), 1.5 AL of each of dATP,

dCTP, and dGTP; 0.6 AL dTTP; 300 mmol/L; 6 AL of 5� first-

strand buffer; and 4 Ag of modified oligo(dT) primer.

Unincorporated nucleotide was removed by using a PCR

purification kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions. Eluted probes were then mixed and

supplemented with 20 AL of 1 Ag/AL human Cot1 DNA (Life

Technologies), 2 AL of 10 Ag/AL polyadenylate RNA (Sigma, St.

Louis, MO), and 2 AL of 10 Ag/AL and 288 AL of 1 mol/L TE

buffer. This probe mixture was concentrated using a Microcon-

30 tube (Millipore, Bedford, MA), and the labeled mixture

(48 AL) was mixed with 10.2 AL of 20� SSC and 1.8 AL of 10%

SDS for hybridization.

Hybridization of Fluorescence-Labeled cDNA. We used

the 7.5K human cDNA microarray (GenomicTree Co.,

Daejon, Korea), which contains 6,360 known genes and 152

expressed sequence tags. Before the hybridization, slides were

preblocked in 10 mg/mL bovine serum albumin, 3.5� SSC,

0.1% SDS solution to prevent nonspecific hybridization, and

probe mixtures were heated at 95jC for 2 minutes and

centrifuged at 13,000 rpm for 2 minutes. After applying the

probe to the slides, the slides were hybridized in hybridization

chambers (GenomicTree) at 65jC for 16 hours. After the

hybridization, slides were washed in 2� SSC for 10 minutes,

transferred to 0.1� SSC and 0.1% SDS for 10 minutes, and

rinsed twice with 0.1� SSC for 10 minutes. After washing,

slides were spun at 600 rpm for 5 minutes (Hanil Science

Industrial Co., Incheon, Korea). Hybridized slides were

scanned using a GenePix 4000B (Axon Instruments, Union

City, CA) and the images were analyzed using GenePix

Pro3.0 (Axon Instruments).

Data Analysis. All the array data were normalized by

intensity-dependent, within-print-tip normalization with lowest

fit (14, 15). We then selected genes with <20% missing values

among the 27 experiments, leaving 3,658 genes for further

analysis. Of the remaining genes, we determined a subset of

classifier genes to distinguish gastrointestinal origin from other

cell lines using three steps (Fig. 1). First, we chose a subset of

genes to classify such origin of cell lines using multiclass

significant analysis of microarray (SAM; refs. 16, 17)

algorithm (origin classifier genes; Fig. 1A). For group 1 of

gastrointestinal tract origin cell lines, we used four gastric

cancer (AGS, YCC-2, YCC-3, and YCC-7) and three colorectal

cancer (HCT116, COLO 205, and HT-29) cell lines. YCC-16

cell line was not used in any of gene selection procedure, as

the cell line was established from the blood of the gastric

cancer patient. Group 3 was the hematologic cells, including

Raji, HL-60, and MOLT-4, and the group 2 was consisted of

the residual 16 cell lines. Next, we selected a subset of

classifier genes specific to cell lines by using two-class SAM

(genes related to the cell line establishment; Fig. 1B).

Thereafter, by using our Difference Program (CMRC, Yonsei

College of Medicine, Korea), we removed a subset of genes

specific for cell lines from a subset of classifier genes specific

for tissue origin (Fig. 1C). The Difference Program based on

Python (http://www.python.org) was developed by CMRC to

easily and rapidly obtain the complement set of genes, which

only belong to the specific group of the samples. Using

Pearson correlation, we did two-way hierarchical clustering of

selected genes and samples. TreeView was used to visualize the

results using the GeneSpring program (Silicon Genetics, Inc.,

Redwood City, CA). Functional annotation is based on

Stanford Web site (http://genome-wwws.stanford.edu/cgi-bin/

source/sourceSearch).

Real-time Reverse Transcription-PCR Analysis. For

validation of microarray data, we did real-time reverse

transcription-PCR (RT-PCR) using 16 cell line RNAs, which

were used for microarray experiment. Sixteen cell lines tested

were YCC-B2, MDA-MB-231, MCF7, HCT116, COLO 205,

HT-29, SK-HEP-1, HepG2, HL-60, MOLT-4, Raji, AGS,
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YCC-2, YCC-3, YCC-7, and YCC-16. Six genes were

randomly chosen from the selected gene set: dystroglycan 1

(DAG1 , AA496691), integrin h5 (ITGB5 , AA434397), keratin

8 (KRT8 , AA598517), neuregulin 1 (NRG1 , R72075), paxillin

(PXN , AA430574), and suppression of tumorigenicity 14

(ST14 , AA489246). The primer sequences of six genes and b-
actin were as follows as in forward/reverse sequences: DAG1

(268 bp) AGTATCCACACCAAAACCAG/CTTCACCT-

CAAAGTAGGTGC, ITGB5 (244 bp) CTGTCCATGAAG-

GATGACTT/TGTCCACTCTGTCTGTGAGA, KRT8 (259 bp)

ACAAGTTTGCCTCCTTCATA/CGCTTATTGATCT-

CATCCTC, NRG1 (275 bp) AGTATCCACAGAAGGAG-

CAA/ATTCAACATGATGCAACAAA, PXN (159 bp)

CGCTCTGTTTATAGTGACCC/AATCACAGGAATT-

GAAATGG, ST14 (145 bp) CTCCACTGAGTTTGTAAGCC/

AGACCAGTAGTAGGCGATGA, and b-actin (98 bp)

GGGAATTCAAAACTGGAACGGTGAAGG/GGAAGCTTAT-

CAAAGTCCTCGGCCACA.

After the cDNA production from 5 Ag of total RNA in

reaction with oligo(dT) primer and 40 IU Moloney murine

leukemia virus reverse transcriptase (MBI Fermentas Hanover,

MD), 2 AL of cDNA of each cell line were used for the real-

time PCR assay. The total volume of the reaction mixture

was 20 AL, which contained HotstarTaq DNA polymerase,

QuantiTect SYBR Green PCR buffer, deoxynucleotide triphos-

phate mix, including dUTP, SYBR Green, 10 AL of QuantiTect

SYBR Green PCR kit including 2.5 mmol/L MgCl2 (Qiagen,

Valencia, CA), 2 AL of the cDNA, and 20 pmol of each primer

in distilled water. PCR was done at 95jC for 15 minutes to

activate the HotstarTaq DNA polymerase and then for 35

cycles of amplification at 95jC for 20 seconds, 50jC for 30

seconds, 72jC for 45 seconds on a Rotor Gene 2072D real-

time PCR machine (Corbett Research, New South Wales,

Sydney, Australia). The amplified fluorescence signal in each

specimen was measured at the late extension step of each

cycle.

To quantify the level of gene expression, we evaluated

the b-actin gene expression in 10-fold serially diluted human

genomic DNA (Promega, Madison, WI). The standard curve

was drawn by plotting the measured threshold cycle versus the

arbitrary unit of the copies/reaction according to the b-actin
gene expression of diluted genomic DNA. The threshold cycle

(C t) value was determined as the cycle number at which the

fluorescence exceeded the threshold value. In the negative

control, there was no fluorescent signal when the cycle

number was increased to 35. To compare with microarray

result, the calculated copies of each gene were divided with

the copies of b-actin and then were log converted. Pearson

correlation coefficient was evaluated using S-PLUS 2000

(MathSoft, Inc., Seattle, WA) and the plotting was done using

SigmaPlot 8.0 (SPSS, Inc., Chicago, IL).

RESULTS
Analysis of Global Gene Expression Patterns of

Cancer Cell Lines. We did cDNA microarray testing with

7,500 cDNA spots, representingf6,512 genes to investigate the

comprehensive gene expression patterns within 27 cancer cell

lines and 9 tissues. First, we used a hierarchical clustering

algorithm to group genes as well as cell lines and tissue samples

according to similarities in their expression patterns by simply

filtered 7,128 spots. Hierarchical clustering showed that the

samples were grouped into two major branches, tissue samples

and cell lines (data not shown). We observed the distinct clusters

including cell lines with common tissue origin clustered

together: lymphoid organs, the gastrointestinal tract, and

remaining cell lines with only a few exceptions. In addition,

the interesting features were that the differences of gene

expression patterns among the 27 cell lines were much greater

than those between normal and tumor tissues. However, normal

tissues were separated from the tumor tissues.

Fig. 1 Scheme of finding a subset of differentially expressed genes in
gastrointestinal cancer cell lines from other cell lines derived from the
other tissue origins. A, selection of a subset of origin classifier genes
unique to groups 1, 2, and 3. (group 1, cell lines of gastrointestinal tract
origin, including AGS, YCC-2, YCC-3, YCC-7, HCT116, COLO 205,
and HT-29; group 2, other 16 cell lines, except groups 1 and 3 among 27
cell lines; group 3, hematologic cells, including Raji, HL-60, and MOLT-
4). YCC-16 cell line was not used in any of gene selection procedure, as
the cell line was established from the blood of the gastric cancer patient.
B, selection of a subset of genes unique to cell lines (group T, three colon
cancer tissues; group C , colon cancer cell lines HCT116, COLO205, and
HT-29). C, selection of gastrointestinal tract origin cell line classifier
genes, a subset of genes that distinguish gastrointestinal cancer cell lines
from other cancer cell lines with different origins. Difference program
was developed at the CMRC, Yonsei University College of Medicine.
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Selection of a Subset of Genes That Discriminate Cancer

Cell Lines of a Gastrointestinal Origin from Other Cancer

Cell Lines of a Different Origin. Following the scheme of

the gene selection in Fig. 1, we selected the significant genes

with filtered 3,658 genes. Firstly, we used multiclass SAM to

choose a subset of 199 cell origin classifier genes, which were

assumed to differentiate cancer cell lines according to their

origins, such as gastrointestinal tract, lymphoid organs, and

remaining cell lines (false discovery rate 1%, d = 0.5751; Fig.

1A). Next, by using two-class SAM, we selected a subset of

1,158 genes that expressed only in cell lines compared with

tissues (false discovery rate 10%, d = 0.9765; Fig. 1B). Then,

to identify the subset of genes specific for gastrointestinal tract

cell lines, we filtered off a subset of genes related to cell line

establishment from 199 origin classifier genes using our

Difference Program. Therefore, we could select 115 genes that

might discriminate gastrointestinal cancer cell lines, including

colon and stomach cancer cell lines, from others (Fig. 1C).

Gene Expression Patterns Related to Tissue Origins in

Various Cancer Cell Lines. Hierarchical clustering analysis

with the selected 115 genes related to gastrointestinal tract tissue

origins showed that the cell lines were generally classified based

on tissue origin with a few exceptions, such as MCF7, YCC-B1,

and NCI-H460, which clustered in the gastrointestinal branch

(Fig. 2A). We observed that the gastric cancer cell lines YCC-2,

YCC-3, and YCC-7 established at Yonsei CMRC were grouped

with other gastrointestinal tract cancer cells, such as AGS, HT-

29, COLO 205, and HCT116 obtained from American Type

Culture Collection (Fig. 2A). In addition, when the selected

subset of genes was used for the clustering analysis, we observed

that tissues of gastrointestinal origin completely integrated into

gastrointestinal cell lines (Fig. 2A). However, in case of colon

cancer cell lines, including COLO 205, HT-29, and HCT116,

each cell line showed a unique expression pattern, suggesting

different biological phenotype in each cell line.

Gene Expression Patterns According to Metastatic

Pattern in Gastric Cancer. By comparing gene expression

profiles of five gastric cancer cell lines with different metastatic

patterns (18), we discovered a subset of differentially regulated

66 genes in YCC-16, a cell line isolated from the blood of a

gastric cancer patient (Tables 1 and 2), suggesting the subset of

genes with more hematogenous metastatic potentials. Gastric

cancer cell lines were divided into independent branches

according to metastatic character: AGS (primary), YCC-2,

Fig. 2 Two-way hierarchical
clustering with selected 115
genes related to gastrointestinal
tract cancer cell lines. A, clus-
tering with all samples showing
that the 115 genes distinguish
gastrointestinal samples from
other cell lines of different
origins; B, clustering among
the gastric cancer cell lines; C,
clustering among the gastric and
lymphoid cancer cell lines. CT,
colon tumor tissue; CN, colon
normal tissue; LT, liver tumor
tissue; LN, liver normal tissue;
GI, gastrointestinal. Red, high
relative levels of expression;
blue, low relative levels of
expression.
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YCC-3, and YCC-7 in one branch (peritoneal) and YCC-16 in

another (hematogenous), as shown in TreeView (Fig. 2B).

Among 66 genes, 40 were down-regulated (Table 1) and 26

were up-regulated (Table 2) in blood-borne YCC-16 cell line

compared with the other four gastric cancer cell lines

established from the peritoneal ascites of advanced gastric

cancer patients. In addition, based on Pearson correlation, we

observed that cancer cell lines of a lymphoid origin were

closely clustered with YCC-16, which was originated in blood-

borne cancer cells of the gastric cancer patient (Fig. 2C).

Among 66 genes, 26 showed the similar expression with

hematogenously metastasized YCC-16 gastric cancer cell and

three lymphoid origin cells with 22 down-regulated and 4 up-

regulated genes (Tables 1 and 2).

Comparison of Gene Expression between Real-time RT-

PCR and Microarray Analysis. Among the 66 selected genes,

we randomly selected 6 genes for validation using real-time RT-

PCR, including PXN , ITGB5 , DAG1 , KRT8, ST14 , and NRG1 .

Sixteen cell lines of breast, gastric, colorectal, and liver cancer

and lymphoid origin cell lines were chosen. First, we eval-

uated the correlation between real-time RT-PCR and

microarray. Pearson correlation coefficient of each gene was

PXN 0.86, KRT8 0.94, ITGB5 0.65, DAG1 0.45, ST14 0.5, and

NRG1 �0.13. The comparison of PXN and KRT8 RNA

expression levels between two methods is displayed in Fig. 3A

and B with good correlation (PXN r2 = 0.73, KRT8 r2 = 0.84).

Then, we clustered five gastric, three colorectal cancer, and three

lymphoid origin cells according to real-time RT-PCR result with

two genes of higher correlation between two methods, PXN and

KRT8 (Fig. 3C). It showed significant discrimination of three

lymphoid origin cell lines from gastrointestinal tract cell lines.

Especially, YCC-16, which resembles the lymphoid cell line

characters in microarray data (Fig. 2B), was closely related to

lymphoid cells (Fig. 3C). Next, to evaluate the performance of

these gene expression results from real-time RT-PCR in

discrimination of gastrointestinal cancer types, we grouped the

cell lines with the same origin of tumors of colorectal, gastric,

and hematologic malignant cells. When we compared the mean

expression level of six genes based on the detection method, we

observed that the expression patterns of gastrointestinal tract cell

Table 2 Among 66 genes differently expressed among five gastric cell
lines based on their metastatic potential, 26 up-regulated genes in

blood-borne YCC-16 cell line

Name Genbank accession no.

peptidase b* N29844
lysylhydrogenase 2 AA136707
microtubule-associated protein s AA199717
sequestosome 1 AW074995
glutamic-oxaloacetic transaminase A H22856
trinucleotide repeat containing 3 N57754
NRG1 R72075
protein kinase MUK* AA053674
casein kinase A2 AA054996
polymerase RNA III (DNA directed) AA282063
cyclin-dependent kinase inhibitor 3 AA284072
CD151 antigen AA443118
paraoxonase 2 AA446028
zinc finger protein 131 AA448919
lactate dehydrogenase C AA453467
PTD017 protein* AA464612
cartilage-associated protein AA486278
thyroid receptor interacting protein 15 AA625651
BCL2-associated athanogene* AI017240
cyclin-dependent kinase inhibitor 1A AI952615
acetyl-CoA acyltransferase 2 H07926
leptin receptor gene–related protein H51066
replication factor C (activator 1) 3 N39611
integrin b-like 1 N52533
TNFR1 W02761
integrin b1 W67174

*Indicates four genes in which YCC-16 and lymphoid cancer cell
lines show the similar gene expression patterns.

Table 1 Among 66 genes differently expressed among five gastric cell lines based on their metastatic potential, 40 down-regulated genes in
blood-borne YCC-16 cell line

Name Genbank accession no. Name Genbank accession no.

myosin IC* AA029956 myosin VI AA625890
zinc finger protein 38 AA088434 LCA homologue* AA598513
vaccinia-related kinase-1 AA112979 pleiomorphic adenoma gene-like 2 AA704187
major vault protein* AA158991 serine/threonine kinase 18 AA732873
KDEL receptor* AA181085 KIAA1594 protein AA876039
butyrate response factor 1* AA424743 myocilin* AI971049
destrin (actin-depolymerizing factor)* AA424824 keratin 14 H44051
PXN* AA430574 hypothetical protein MGA 20576* H51645
ankyrin repeat-containing protein AA434117 crystallin f (quinone reductase)* R40946
ITGB5 AA434397 neuronal protein 4.1* R71689
syntaxin 3A* AA436871 topoisomerase DNA IIb (180 kDa) T59934
E74-like factor 2 AA447783 splicing factor, arginine/serine-rich, 4 W87714
ribosome binding protein 1 AA447804 tetraspan 3* AA284492
coronin, actin-binding protein 1C* AA456063 malate dehydrogenase 1, NAD* AA403295
HTOM34P* AA457118 hydroxysteroid dehydrogenase 4 AA487914
cyclin D1 (PRAD1)* AA487486 copine III* AA505111
ST14 AA489246 ribosomal protein S9 AW074994
DAG1* AA496691 EST* H57136
heat shock protein 75* AA497020 arfaptin 1 T52363
KRT8* AA598517 keratin 13 W60057

*Indicates 22 genes in which YCC-16 and lymphoid cancer cell lines show the similar gene expression patterns.
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lines were different from hematologic malignant cells in both

microarray (Fig. 4A) and real-time RT-PCR (Fig. 4B).

DISCUSSION

cDNA microarray technologies allow us to comprehensive-

ly investigate cancer in various aspects at the RNA level (4–7).

To understand cancer biology, the gene expression patterns

measured in cell lines using microarray can help to distinguish

them at a molecular level in histologically complex cancer

specimens (19). Although the laser microdissection has made it

possible to analyze the expression patterns of only cancer cells

from clinical tumor tissues (20), tumor heterogeneity and

significant role of stromal tissues are not negligible to draw

the conclusion. Hence, to identify the ‘‘molecular portrait’’ of the

tissues from which the cell lines were derived, we evaluated the

genome-wide expression profilings with 9 tissues and 27 cell

lines. First, we confirmed that the tissues and the cell lines were

clustered separately regardless of tissue origin (data not shown).

Many reports suggested that a given cell line differs from its

original tissue both biologically and genetically (5, 10, 21).

Possible reasons are (a) the cell line is established from a

selected clone among various cells in the tissue; (b) tissues are

composed of a variety of cell origins, such as fibroblasts, blood

vessel cells, immune system cells, and fat cells; and (c) in vitro

system cells continuously change to adjust to the artificial

environment.

We specifically focused on genes significantly expressed in

cell lines derived from gastrointestinal tract because gastric and

colon cancers are the leading cause of cancer death in Asia.

Many suggestions have been made concerning the selection of

specific gene sets from a variety of data sets. In our study, to

determine the subset of genes related to the gastrointestinal tract

cell lines, we first used direct two-class SAM comparing

Fig. 3 Comparison of microarray data with quantitative real-time RT-
PCR. A, a plot comparing the expression of PXN transcript in 16 cell
lines using microarray and real-time RT-PCR. B, a plot of KRT8 . X axis,
log R/G ratio from microarray; Y axis, adjusted log (test sample copies/h-
actin copies). C, clustering of five gastric, three colorectal cancer, and
three lymphoid cell lines with PXN and KRT8 .

Fig. 4 Different expression of six selected genes in various tumor types
based on different detection method. Mean expression level of six genes
in three gastric cancer cells, three colorectal cancer cells, and three
lymphoid cells were. A, microarray results; B, real-time RT-PCR results.
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gastrointestinal cells with other cell lines (with or without

lymphoid cells). However, the selected genes (93 genes with

lymphoid cells and 45 genes without lymphoid cells, respec-

tively) failed to distinguish the gastrointestinal tract cancer cells

from others (data not shown). Therefore, we introduced our

current indirect data analysis scheme (Fig. 1) and found that 115

genes successfully categorized the cells based on their origins,

especially in the case of gastrointestinal tract cells (Fig. 2).

Using 115 selected genes, we observed the MDA-MB-231,

YCC-B1 breast cancer, and NCI-H460 lung cancer cells lay

inside the gastrointestinal tract cluster. This may be because

those cancer cell lines are more heterogeneous than others (5,

10), and the 115 genes were selected to differentiate primarily

the gastrointestinal tract cancer cells. Even if there are still some

arguments about the best false discovery rate, d , optimal gene

numbers, and grouping for gene selection, we showed the

specific gene sets selected by using SAM might be useful for

understanding and categorizing the cancer cell lines based on

their origins.

This gene set might be applied for the identification of the

origin of cancer cells when presented with cells of an ambiguous

origin, especially when the gastrointestinal tract origin is

suspicious. Although it may not be conclusive for the exact

diagnosis, it could be helpful as complementary information.

Gene expression profiles of cancer cell lines could reflect novel

aspects of the phenotype (11–13). Based on previous biological

studies (18), including the cell doubling time, tumorigenicity in

soft agar, or the xenograft model and motility assay, YCC-16 was

the most aggressive cell line among the five gastric cancer cell

lines used in the present study. This explains why YCC-16 is not

clustered with the other gastric cancer cells. In addition, this cell

line was established from the bloodstream in contrast to other cell

lines established form primary (AGS) and ascites (YCC series),

which might explain why its gene expression is tightly clustered

with blood cells. In other words, if the tumor cells show the same

expression pattern as YCC-16 with this subset of genes, one

might presume that those tumors may survive in the bloodstream

and can metastasize to distant organs. Our data may be consistent

with the idea that some primary tumors may be preprogrammed

to spread to other organs and that this propensity could be

detectable at the time of initial diagnosis and therefore be used as

a prognostic indicator (22, 23).

It is well known that the alteration in adhesion molecules

and apoptosis-related genes facilitate cell escape from the primary

site, induce the resistance to cell death, and finally lead to

metastasis (24–30). Among selected genes, PXN , ITGB5 ,

coronin, actin-binding protein 1C , BAG family molecular

chaperone regulator-1 , cyclin-dependent kinase inhibitor 1A

(p21), and fibronectin receptor (integrin b1) are involved in cell

adhesion or apoptosis. Members of coronin family are involved in

apoptosis, whereas BAG family molecular chaperone regulator-1

has antiapoptotic activity and increases the anti–cell death

function of bcl-2 (http://genome-www5.stanford.edu/cgi-bin/

source/sourceSearch). In addition, p21 was known to inhibit

apoptosis (25, 26). In YCC-16, the expression of coronin was

down-regulated, whereas BAG family molecular chaperone

regulator-1 and p21 were up-regulated. The decreased apoptosis

could provide the opportunity for cancer cells to spread to distant

organs with high survival rate. Consistent with our data, increased

expression of integrin b1 was reported to correlate with increased

invasion and metastasis in some cancers (24, 29, 30).

Usually, the microarray data results had required the

validation of gene expression using other methods such as RT-

PCR or real-time PCR. It started when the quality of microarray

was not satisfactory from clone preparation, chip production,

variations from hybridization, or inadequate data analysis.

However, with the improved chip quality and hybridization

technique, recent microarray data showed good correlation with

RT-PCR method with reliable biological meanings (17, 21, 22).

We did real-time PCR analysis for evaluating not only the

technical validation of microarray result but also the potential

biological validation of the selected genes. In this study, we

confirmed that the gene expression levels of two methods were

well correlated, especially with PAX and KRT8 , and relatively

well with ITGB5, DAG1 , and ST14 . However, NRG1 showed

the significantly low correlation, which might be related that the

several cell lines did not expressed NRG1 in real-time RT-PCR.

As the basic difference in the technology between microarray

and real-time RT-PCR is the simultaneous competitive hybrid-

ization of microarray. Moreover, we used the reference RNA

with 11 cancer cell lines, resulting in any relative expression data

of each sample in microarray. Meanwhile, the real-time RT-PCR

detects the expression level of sample itself. Until now, direct

integration of two data sets is not settled down yet. Regardless of

various correlation between microarray and real-time RT-PCR

analysis, we observed the expression patterns based on RT-PCR

of selected six genes successfully discriminate gastrointestinal

tract from lymphoid origin cells, suggesting that the genes were

properly selected.

In conclusion, evaluation of genome-wide gene expression

profiles of various cancer cell lines provides the significant

genetic information to understand the cancer biology, character-

istics of tumor types, and specific characters of each cell line. It

may be helpful for identifying and categorizing optimal cell lines

for a given experimental purpose.
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