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Abstract 

Evaluation of internal adaptation on resin 

composite using micro-CT and SS-OCT

Seung Hoon Han

Department of Dentistry

The Graduate School, Yonsei University

Directed by Professor Sung-Ho Park

I. Introduction

Internal adaptation, which means how well a restoration adapts to tooth material inside, can

involve the evaluation of a microgap at the pulpal floor of a restoration. As a non-destructive 

method for evaluation of internal adaptation, micro-CT was introduced to evaluate the internal 

adaptation of restorations. For another method, optical coherence tomography (OCT) came to be 

used as a non-invasive cross-sectional imaging method for biological systems. A specific type of 
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OCT is a swept-source optical coherence tomography (SS-OCT).

The theme of this thesis is the evaluation of the internal adaptation on resin composite in 

different cavity configuration. This paper includes three different experiments on internal 

adaptation of resin composite using micro-CT and/or SS-OCT.

II. Materials, methods and results

1. The first experiment of evaluation on internal adaptation

Materials and Methods: Two cylindrical cavities were created on the labial surface of twelve 

bovine incisors. The 24 cavities were randomly assigned to four groups of dentine adhesives; 1) 

three-step etch-and-rinse adhesive, 2) two-step etch-and-rinse adhesive, 3) two-step self-etch 

adhesive, and 4) one-step self-etch adhesive. After application, the cavities were filled with resin 

composite. All restorations underwent a thermo-cycling challenge, and then, eight SS-OCT images 

were taken using a Santec OCT-2000TM (Santec Co., Komaki, Japan). The internal adaptation was 

also evaluated using micro-CT (Skyscan, Aartselaar, Belgium). The image analysis was used to 

calculate the percentage of defective spot (%DS) and compare the results. The groups were 

compared using one-way ANOVA with Duncan analysis at the 95% significance level. The SS-

OCT and micro-CT measurements were compared with a paired t-test, and the relationship was 

analyzed using a Pearson correlation test at the 95% significance level.

Results: After thermo-cycling, the %DS results showed that Group 3 ≤ Group 4 < Group 1 ≤

Group 2 on both SS-OCT and micro-CT images. The %DSs on micro-CT were lower than those of 

SS-OCT (p<0.05) and the Pearson correlation coefficient between SS-OCT and micro-CT was 

r=0.787 (p<0.05).

2. The second experiment of evaluation on internal adaptation
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Materials and Methods: Standardized MOD cavities were prepared in 40 extracted human third

molars. They were randomly divided into five groups (n=8). After being applied by dentin 

adhesive, the teeth were restored with the following resin composites: Group 1- Filtek Z350 (3M); 

Group 2- SDR (Dentsply) + Z350; Group 3- Venus Bulk Fill (Heraeus Kulzer) + Z350; Group 4-

Tetric N-ceram bulkfill (Ivoclar Vivadent); and Group 5- SonicFill (Kerr). After thermo-

mechanical load cycling, micro-CT images were taken cross-sectionally. Internal adaptation was 

measured as imperfect margin percentage (IM%). IM% is the percentage of defective margin 

length to the whole margin length. On the micro-CT images, IM% was measured at five interfaces

to compare the differences. Linear polymerization shrinkage and polymerization stress were 

measured on each composite. To verify the correlation of polymerization stress and IM%, 

regression analysis was used.

Results: IM%s on the cavity floors were higher than those of the cavity walls. IM% showed as 

Groups 4, 5 ≤ Groups 1, 2 ≤ Group 3 (p<0.05). The relationship between polymerization stress and 

IM% was found to be R2=0.636. The relationship between linear polymerization shrinkage and IM% 

turned out to be R2=0.618.

3. The third experiment of evaluation on internal adaptation

Materials and Methods: Cylindrical cavities 3 mm in diameter were prepared in 100 human third 

molars in two depths; 4 mm (high C-factor: H-CF) or 1 mm (low C-factor: L-CF). After adhesive 

application (Clearfil SE One, Kuraray Noritake), the composite was placed in two increments in 3 

subgroups: Filtek Supreme (FS, 3M ESPE); Charisma Diamond (CD, Heraeus Kulzer); Amelogen 

Plus (AP, Ultradent); and as a single increment in 2 subgroups; Tetric EvoCeram Bulk Fill (TB, 

Ivoclar Vivadent) and Venus Bulk Fill (VB, Heraeus Kulzer). After thermo-mechanical load-cycles, 

imperfect margin percentage (%IM) was calculated using optical coherence tomography (SS-OCT) 

imaging. The relationships between %IM and linear shrinkage (LS) and shrinkage stress, measured

under either zero-compliance (PS0) or compliance-allowed (PS) conditions were evaluated.

Results: %IM was significantly different between H-CF and L-CF groups. The %IM in H-CF 
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turned out to be as: groups 2, 1 ≤ group 4 < groups 3, 5. The %IM in L-CF showed as the 

following: groups 2, 4 ≤ groups 1, 3 < group 5. There were significant correlations between 

shrinkage parameters and %IM, except between PS0 and %IM in L-CF.

III. Conclusion

Micro-CT and SS-OCT could be used as non-destructive methods for evaluation on the internal 

adaptation of composite restoration. Measured imperfect margin percentage (%IM) in micro-CT 

showed different values to those of SS-OCT, however, these two methods were relatively highly 

correlated. Self-etching adhesive systems showed fewer defective spots than etch-and-rinse 

adhesive systems in class I cavity.

At the gingival floor of the proximal box and pulpal floor of the cavity, flowable bulk-fill resin 

showed an inferior internal adaptation when compared with non-flowable ones. For Class II resin 

restorations, bulk-filling material of the non-flowable type could be preferable to flowable type 

ones. Polymerization shrinkage and stress, which was measured under the compliance-allowed 

setup, showed some relation to the internal adaptation. 

Within the limitations of the present study, it was shown that a higher imperfect margin

percentage was found in the cavities of the High C-factor group. Internal adaptation was different

depending on the composite material. Internal adaptations both in the High and Low C-factor 

cavities are correlated with polymerization stress measured under the compliance-allowed 

condition. In the Low C-factor cavity group, the polymerization shrinkage stress measured under 

the zero-compliance condition did not show a significant correlation to internal adaptation. 

_______________________________________________________________________________

Keywords

internal adaptation, micro-CT, SS-OCT, optical coherence tomography, C-factor, polymerization 

shrinkage, polymerization stress, compliance, bulk-fill composite, dentin adhesive
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I. Introduction

Internal adaptation, which means how well a restoration adapts to tooth material inside, can

involve the evaluation of a microgap at the pulpal floor of a restoration. It may be in relation to 

hypersensitivity to cold or pain on mastication (Eick and Welch, 1986). If the evaluation could not 
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be done with a non-destructive method, the specimen should be cut to be examined. This might 

lead to the interfacial leakage values becoming too high and may not be able to be evaluated 

repeatedly (Alani and Toh, 1997). The number of sectioned specimens is also very limiting, which 

may not be representative of the whole specimen (Braga et al., 2006; Braga and Ferracane, 2004).

As a non-destructive method for evaluation of internal adaptation, micro-CT was introduced to 

evaluate the internal adaptation of restorations (De Santis et al., 2005; Kim and Park, 2014). For 

another method, optical coherence tomography (OCT) came to be used as a non-invasive cross-

sectional imaging method for biological systems. After a laser source is projected over a 

restoration, the backscattered light is transformed into a signal intensity that can be shown as an 

image. OCT is a non-invasive method that can be used for different purposes such as detecting 

dental caries or cracks. A specific type of OCT is a swept-source optical coherence tomography 

(SS-OCT), which is known to have a better image resolution and scanning speed.

Microfocus X-ray computed tomography (micro-CT) is another useful method to evaluate the 

internal adaptation of restorations (De Santis et al., 2005). Recently, Kwon and Park proposed a 

method in which silver nitrate was penetrated from the pulp space through the dentinal tubules, 

and the amount of silver nitrate penetration was assessed by micro-CT (Kwon and Park, 2012).

The authors reported it as a new measuring method for evaluating the internal adaptation without 

any destruction. In another study, the internal adaptation of dentin-composite was analyzed using 

micro-CT, and the correlation of internal adaptation with polymerization shrinkage was evaluated

(Kim and Park, 2014). Due to the penetrating ability of X-rays, micro-CT enables the evaluation of 

dental hard tissue irrespective of its depth.

The OCT system has been utilized to investigate the cavity floor for the evaluation of internal 

adaptation. On the OCT image, interfacial microgap is observed as bright spot or line with high 

signal intensity (Bakhsh et al., 2011; Senawongse et al., 2011). The change in the signal intensity 

at the interface appears as a white cluster on the image. When light passes the interface between 

two media with different refractive indices, a portion of light is reflected. This is known as the 

Fresnel phenomenon and depends on the incidence angle and refractive index (n). The refractive 

index of air is 1.0 (n) and that of a tooth or resin composite is 1.5-1.6 (n) (Meng et al., 2009). If 
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there is a microgap formed by incomplete adhesion, air or water may exist at the interface. When 

light transverses the air at the interface, a portion of light is reflected and the OCT system shows a 

higher signal intensity. If the microgap is filled with another medium, such as water 1.33 (n), the 

reflection would not be as strong as that of the air. 

In the past few years, new composite resins for the bulk fill technique have been introduced. 

Manufacturers suggested that resin restoration could be built up to 4-5 mm thick increment to be 

cured at one time. Bulk fill resin can be divided into two categories: flowable and non-flowable. 

The first bulk-fill materials on the market, SDR (Dentsply), Venus Bulk Fill (Heraeus Kulzer), x-

tra base (Voco), and Filtek Bulk Fill (3M ESPE) were recommended to finish the restoration by 

adding a capping layer of a conventional composite resin (Ilie et al., 2013). On the other hand, 

other bulk fill resins like SonicFill (Kerr), Tetric EvoCeram Bulk Fill (Ivoclar Vivadent), and x-tra 

fil (Voco) can be placed without a capping layer. SonicFill can be placed with the help of a sonic-

activated handpiece.

Researches have been done to evaluate the microleakage of bulk-fill composite resin 

restorations (Campos et al., 2014; Moorthy et al., 2012; Roggendorf et al., 2011). Moorthy et al. 

evaluated the cuspal deflection and cervical microleakage on the margins of Class II cavities 

which had been incrementally filled with composites or bulk-fill flowable resins (Moorthy et al., 

2012). They found that cuspal deflection was lower in bulk-fill flowable resin, whereas there was

no difference between the two composites in the cervical microleakage. Roggendorf et al. 

evaluated marginal integrity of bonded composite resin fillings on MOD cavities with and without 

a bulk-fill flowable 4 mm base (Roggendorf et al., 2011). They inspected the marginal gap using 

SEM and found that there was no negative influence on the marginal quality when a 4mm layer of 

bulk-fill SDR was used. Campos et al. investigated the marginal adaptation of bulk-fill composite 

restorations on Class II MO cavities (Campos et al., 2014). They concluded that bulk-fill materials 

do not allow better marginal adaptation than a standard composite resin applied by simple layering 

techniques. 

Since flowable resin was introduced to composite resin restorations, it has been questioned if 

the use of flowable resin as a base could be advantageous for resin restoration. The rheology of 
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flowable resin could allow a better adaptation to the cavity walls (Aggarwal et al., 2014). In 

respect to the role of flowable resin, there was a suggestion that a flowable resin layer could act as 

a stress absorbing intermediate layer (Chuang et al., 2004). Kwon and Park reported that 

flowable composites of low modulus of elasticity as the base material could reduce marginal 

defects in overlying composite restorations (Kwon et al., 2010). On the other hand, Braga et al. 

reported that using a flowable resin composite as a restorative material is not likely to reduce the 

effects of polymerization stress (Braga et al., 2003). From this point of view, it has been 

questioned if placing a base with bulk-fill resin of the flowable-type could show better internal

adaptation at the resin-tooth interface or not. 

The magnitude of the polymerization shrinkage stress is influenced by numerous factors. These 

factors can be divided into the cavity configuration factor and the material property factor. The 

cavity configuration factor includes cavity volume, C-factor, and compliance of the cavity wall. 

For the material property factor, there can be filler content of composite, matrix formulation, 

polymerization shrinkage, polymerization stress, elastic modulus, flow of the resin, and adherence 

of the resin to the wall (Braga et al., 2005; Braga and Ferracane, 2004; Goncalves et al., 2011; 

Goncalves et al., 2010). The configuration of cavity walls, which can be represented as C-factor, is 

one variable that should be considered. The compliance of the substrate to be bonded can affect 

stress development. Filler content in composite resin can be one of the factors; if the composite 

has high inorganic filler content, it will show low volumetric shrinkage and high stiffness

(Goncalves et al., 2011; Goncalves et al., 2010). The amount of polymerization shrinkage and 

viscoelastic properties can also be the variables on shrinkage stress. Braga et al. indicated that 

volumetric shrinkage prevails over viscoelastic properties in determining contraction stress (Braga 

et al., 2005). The viscoelastic properties include its flow capacity and elastic modulus, both of 

which can be variable during polymerization (Boaro et al., 2010a). Low elastic modulus and 

viscous flow at the early stage of polymerization can reduce shrinkage stress. In conclusion, the 

interplay among these factors can decide the polymerization shrinkage stress.

The most frequent method of measuring contraction stress is to use the tensilometer, however,

there is some controversy about the tensilometer method. One of the concerns of the tensilometer 
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can be the compliance of the testing system. There are two types of measurement systems: zero 

compliance setup and compliance-allowed (non-rigid) setup. Zero (or near-zero) compliance 

means that a feedback system exists during the polymerization shrinkage measurement. When the 

test system does not have a feedback system, it indicates that the compliance is allowed, where 

composite resin can shrink relatively freely. When contraction force is measured with a non-rigid 

setup, the shrinkage force can be dissipated through the components of the system. There are two 

different reports on the relationship to the C-factor with these two settings. When the rigid (zero or 

near-zero) compliance system was used, there was a direct relationship between the 

polymerization stress and C-factor value (Choi et al., 2000; Feilzer et al., 1987). If the non-rigid 

system was used, an inverse relationship between them could be found (Bouschlicher et al., 1997; 

Watts et al., 2003). These findings raised the questions of why there were two opposite results of 

relationship between the stress and C-factor and which one of the two measurement systems would 

be applicable to evaluating microleakage or internal adaptation. 

C-factor, which is a ratio of non-bonded surfaces to bonded ones, can represent cavity 

configuration. The C-factor concept should be carefully applied to clinical practice. Cavity 

configurations have a much more complex geometry than the specimens used in an experimental 

test. When it comes to C-factor and microleakage, Uno et al. presented that there was no 

relationship between the C-factor and gap dimension in compomer restorations with different C-

factors (Uno et al., 1999). Another report suggested that microleakage seemed to be related to a 

restoration’s volume, but not to its C-factor (Braga et al., 2006). However, in their studies, samples 

of different C-factors, which were set by changing their volumes of composite, were compared to 

find out the difference in microleakage. To evaluate the influence on the microleakage by C-factor, 

it would be more reasonable to set composite restorations’ shape and volume as identical.

  The theme of this thesis is the internal adaptation of resin composite in different cavity 

configuration. This paper includes three different experiments on internal adaptation of resin 

composite. For each experiment, the parts of material-methods and results will be described in 

separate section.
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II. Materials, methods and results

1.1. The first experiment of evaluation on internal adaptation

There are currently no comparative studies evaluating the two methods in the assessment of 

internal adaptation in composite restoration. The purpose of this study was to compare internal 

adaptation from SS-OCT and micro-CT. For this purpose, bovine cavities were restored with resin 

composite using different adhesive systems, and the internal adaptation was evaluated using SS-

OCT and micro-CT. 

The null hypotheses tested in the study were the following:

1) There is no difference in internal adaptation among the restorations in which different dentin 

adhesive systems are used 

2) There is no difference between the internal adaptations measured by SS-OCT and those 

measured by micro-CT.

1.2. Materials and methods of the first experiment

1.2.1. Specimen preparation

This study used twelve extracted bovine mandibular incisors. The labial surface of each tooth 

was flattened with a trimmer and 600-grit sandpaper. Two round cylinder-shaped class I cavities (3 

mm in diameter, 2 mm in depth) were made on the labial surface of each tooth. First, a flat-end 

tapered diamond bur attached to a high-speed air-turbine handpiece and a water coolant was used. 

Then, a cylinder-shaped stone point was used to create a standardized cavity.

The cavities were randomly assigned to four groups, each with six cavities. Two cavities in the 

same tooth were restored using the same adhesive system. The four groups were used to test four 

different materials as the dentin adhesive: Group 1, three-step etch-and-rinse adhesive (Scotch 

Bond Multipurpose, 3M, MN, USA); Group 2, two-step etch-and-rinse adhesive (Single bond 2, 
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3M, MN, USA); Group 3, two-step self-etch adhesive (Clearfil Megabond, known as Clearfil SE 

Bond outside Japan, Kuraray Noritake Dental, Tokyo, Japan); and Group 4, one-step self-etch 

adhesive (Clearfil SE One, Kuraray Noritake Dental, Tokyo, Japan). Each adhesive system was 

used according to the manufacturer’s instructions. The adhesives were applied to the cavity 

surfaces, dried with gentle air and irradiated with a halogen light curing unit (Optilux 501, Kerr, 

CA, USA; 550 mW/cm2) for 10 seconds. The cavities were filled with the resin composite (Estelite 

Sigma Quick, Tokuyama Dental, Tokyo, Japan) using the bulk-filling technique and were light-

cured for 40 seconds. The restorations were stored in 100% humid conditions at room temperature.

1.2.2. Thermo-cycling 

All of the restorations underwent thermo-cycling (n=6 per group). A CS-4.8 chewing simulator 

(SD Mechatronik, Feldkirchen-Westerham, Germany) was used. The restoration underwent 

100,000 thermo-cycles between 5℃ and 55℃, with a dwelling time of 30 seconds in each 

temperature and a transferring time of 10 seconds.

1.2.3. Swept-source optical coherence tomography (SS-OCT)

The SS-OCT used in this study is the Santec OCT-2000TM (Santec Co., Komaki, Japan). It is a 

frequency domain OCT system integrating a high-speed frequency sweeping external cavity. The 

laser probe power is less than 20 mW. The light source in the system sweeps the wavelengths from 

1260 nm to 1360 nm at a rate of 20kHz. The axial resolution of the OCT system is 11 µm in air, 

which is equivalent to 7 µm in a biological structure. A hand-held scanning probe connected to the 

SS-OCT was placed over the occlusal surface of the restorations and was oriented at a right angle 

to the occlusal surface of the restoration. The first SS-OCT image of a restoration was taken 100 

μm from the mesial end of a cavity. Eight OCT images were taken for each restoration at intervals 

of 400 µm along the section of the restoration. 
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1.2.4. Silver nitrate infiltration & micro-CT imaging

All of the teeth were cut at the Cemetoenamel junction (CEJ) to expose the pulp chamber. The 

restorations were soaked in 17% ethylenediamine tetraacetic acid (EDTA) for 5 min to remove the 

smear layer in the pulp chamber. The teeth were then rinsed with distilled water. The teeth were 

immersed in a 25% silver nitrate solution and were placed under 3.75 kPa pressure that was 

applied from the apical towards the pulpal side for 3 days. This step was performed to facilitate 

silver nitrate infiltration beneath the cavity floor. The restorations were then rinsed thoroughly 

with distilled water and stored in saline.

Eight cross-section images of micro-CT were taken for each restoration, and the images were 

extended from the mesial end of the cavity to its distal end at 400 µm pitch intervals. A high-

resolution micro-CT (Model 1076, Skyscan, Aartselaar, Belgium) was used to obtain the images. 

The imaging settings were the following: acceleration voltage: 100 kV, beam current: 100 µA, Al 

filter: 0.5 mm, resolution: 18 µm and rotation: 360° in 0.5° steps. Two-dimensional sagittal images 

were obtained from each restoration. Each tooth was mounted on a special template that was 

exclusively designed for it. This template minimized the changes in the position of the restoration 

during repeated processes. The 2D images were analyzed using image analysis software (ImageJTM

ver. 1.45).
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Fig. 1. Experimental procedure of this study

1.2.5. Image analysis

1.2.5.1. Preliminary study for negative control 

The cavities of the same dimension were prepared on labial surface of bovine teeth as described 

before (n=4). Without priming or adhesive bonding, the same resin composite was filled and light 

cured. SS-OCT and micro-CT images were taken for negative control group (Figs. 4 and 5).

1.2.5.2. SS-OCT images analysis



14

The SS-OCT raw data were imported into the ImageJTM program. The presence of air, which 

indicates a microgap within a defect, is visualized as bright areas in the SS-OCT images. It is 

known that when there is a microgap between two media of different refractive indices, the 

reflections of light at the interface will be dissimilar. The high signal intensity at the resin-dentin 

interface created bright spots or a line (Fig. 2). To measure the size of the bright spots, the image 

was subjected to a median filter to reduce the noise and then cropped to the area including the 

cavity floor. The cropped image of the cavity floor underwent a binarization process to determine 

which brightness level of pixels should be included. The image binarization process changes a

grayscale image into a binary black-and-white image as previously described by Bakhsh et 

al(Bakhsh et al., 2011). The length of each bright spot was calculated after processing to binary 

image. To verify the leakage length of the floor, the function of plot profile in ImageJTM was used. 

It could show signal intensity plot for rectangular selections. Bright spot or cluster was presented 

as high intensity value (Fig. 2 lower window). A part of cavity floor where signal intensity was 

above the threshold was thought to be imperfective margin.

The percentage of defective spots on the cavity floor (%DS) equals the sum of the bright spots 

or the cluster length / the length of the floor cavity x 100. 
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Fig. 2. SS-OCT image showing a microgap on the cavity floor

Lower window shows signal intensity plot for rectangular selection

1.2.5.3. Micro-CT images analysis

Eight images were obtained for each restoration at a 400 µm pitch, which was the same interval 

of the SS-OCT. The same evaluation method was used as that of the SS-OCT. The silver nitrate 

penetration into the microgap between the tooth and restorative material was identified by peaks of 

the graph on the plot profile function (Fig. 3 lower window). Using ImageJTM program for each 

restoration, the leakage spot or area was identified and measured as previously described for SS-

OCT. All the leakage spots were summed per sample. The length of the leakage spots relative to 
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the whole cavity floor was calculated as percentage.

Fig. 3. Micro-CT image showing a microgap on the cavity floor after silver nitrate penetration

The white opaque band around pulp shows the dentinal tubules infiltrated by silver nitrate.

Lower window shows signal intensity plot for rectangular selection 
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Fig. 4. Negative control image of SS-OCT
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Fig. 5. Negative control image of micro-CT after silver nitrate penetration

1.2.6. Statistical analysis  

The statistical analysis was conducted by PASW statistics 18 software (SPSS for windows: 

SPSS Inc., Chicago, IL, USA). Groups were compared using one-way ANOVA with Duncan’s 

analysis at the 95% significance level. The SS-OCT %DSs before thermo-cycling was compared 

with the ones after thermo-cycling and the difference between %DSs of SS-OCT and micro-CT 

were also compared with a paired t-test and the relationship was analyzed using a Pearson 

correlation test at the 95% significance level.

1.3. The results of the first experiment
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The results are presented in table 1. There was no difference in %DS among the groups before 

thermo-cycling. After thermo-cycling, %DSs identified by SS-OCT were significantly increased in 

all groups (closed bar with asterisk in table 1, p<0.05). 

After thermo-cycling, the %DS of each group identified on both SS-OCT and micro-CT images 

could be sorted in the following increasing order; Group 3≤Group 4<Group 1≤Group 2.

  The %DSs of the micro-CT imaging was lower than that of the SS-OCT, and the two groups 

were significantly different (table 1, p<0.05). The correlations of the two methods were also 

verified. The Pearson correlation coefficient between SS-OCT and micro-CT was r=0.787 

(p<0.05).

Table 1. Percentages of defective margins (%DS) measured by SS-OCT and micro-CT

SS-OCT Group 1 Group 2 Group 3 Group 4

Before thermo-cycling 35.21(7.6)a  * 30.14(3.5)a * 28.88(5.1)a * 31.18(6.9)a *

After thermo-cycling 57.43(12.2)a,b 61.68(11.6)a 42.57(3.9)c 45.11(5.9)b,c

Micro-CT

After thermo-cycling 30.49(4.7)a,b 31.09(6.6)a 22.46(3.1)c 23.08(4.0)b,c

Closed bar with asterisk indicates statistically significant difference before and after thermo-cycling 
(p<0.05).

Same superscript represents no statistically significant difference (compared in each row, one way 
ANOVA, p<0.05).

Values in the parenthesis represent standard deviations.

2.1. The second experiment of evaluation on internal adaptation

The second purpose of this study is to compare the internal adaptations of Class II resin 

restorations filled with different kinds of bulk-fill resins. This study investigated to see if there 



20

would be any location-dependent differences or material-dependent differences. It also verified 

whether there would be any correlation between internal adaptation and polymerization shrinkage 

or stress.

The null hypotheses of this study were:

1) There was no difference in the internal adaptation of Class II composite restorations at the 

different locations of resin-tooth interfaces.  

2) There was no difference in the internal adaptation of Class II composite restorations using 

different bulk-fill composite materials.  

3) There was no correlation between the internal adaptation and the linear polymerization

shrinkage or polymerization stress of the resin composite.

2.2. Materials and methods of the second experiment

2.2.1. Specimen preparation

Forty caries-free, sound lower third molars which had been extracted within three months were 

collected. The size of the specimen teeth was controlled as much as possible so that the differences 

in the bucco-lingual and mesio-distal length were less than 1 mm. After they were randomly 

divided into five groups, standard MOD cavities were prepared using diamond burs (959 KR 018, 

Komet, Germany). The cavity depth in the central fossa area was 4.5 mm and the bucco-lingual 

isthmus width was 3.5 mm. The proximal box of the cavity was prepared on the mesial side of the 

teeth. The cervical margin of the mesial proximal box was located 1 mm below the cemento-

enamel junction (CEJ), while the cervical margin of the distal proximal surface was placed 1 mm 

above the CEJ. After tooth preparation, all the roots were resected at 2 mm below the CEJ (Fig.6).



21

Fig. 6. Tooth preparation from mesial view

2.2.2. Base and composite filling

Table 2. Compositions of resin composites in this study

Code Product Manufacturer Base resin Filler (wt/vol.%)

Z3 Filtek Z350
3M ESPE, St Paul, 

MN, USA

Bis-GMA/EMA, 

UDMA
78.5/59.5 %

SD SDR
Dentsply Caulk, 

Milford, DE, USA

Modified urethane 

dimethacrylate

EBPADMA/ 

TEGDMA

68/44 %

VB
Venus Bulk 

Fill

Heraeus Kulzer, 

Dormagen, Germany
UDMA, EBPDMA 65/38 %

TB

Tetric N-

Ceram Bulk

Fill

Ivoclar Vivadent, 

Schaan, Liechtenstein

Bis-GMA, UDMA

dimethacrylate co-

monomers

78/55 %

(including 

prepolymer)

SF SonicFill
Kerr, West Collins, 

Orange, CA, USA

Bis-GMA, TEGDMA, 

EBPDMA
83.5/68 %

Composition and filler % were presented from manufacturer’s information.

BIS-GMA: Bisphenol A glycidyl methacrylate.

BIS-EMA: Bisphenol A polyetheylene glycol diether dimethacrylate.

UDMA: urethane dimethacrylate.

TEGDMA: Triethyleneglycol dimethacrylate.
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EBPADMA: ethoxylated Bisphenol A dimethacrylate.

The materials used in this study are shown in Table 2. According to the manufacturer’s 

instructions, enamel margins were etched with 34% phosphoric acid (Caulk, Denstsply) for 15 s, 

irrigated with distilled water then air-dried. After XP bond (Dentsply Caulk, Milford, DE, USA) 

was applied to each cavity, light curing was done on the occlusal, mesial, and distal sides for 20 s 

each by an LED type light source (Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein, 800 

mW/cm2). Resin composite was placed after the adhesive treatment. Five different kinds of resin 

composites were used in this study.

Fig. 7. Bulk-fill resin placement and the locations of micro-CT scanning

BWIM% = Buccal wall imperfect margin %, LWIM% = Lingual wall imperfect margin %, GFIM%

= Gingival floor imperfect margin %, MPFIM% = Mesial pulpal floor imperfect margin %, 

DPFIM% = Distal pulpal floor imperfect margin %, CEJ=Cemento-enamel Junction.
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1) Group 1 (Z3, Control group)

After application of the ivory retainer and matrix to the tooth specimen, Filtek Z350 composite 

resin (A3, 3M, St. Paul, MN, USA) was applied. The first 2 mm increment was placed in the 

mesial proximal box and was light-cured for 20 s from the occlusal side. The second and third 2 

mm increments were placed in the mesial proximal box and onto the pulpal floor, then light-cured 

for 20 s each from the occlusal side. The fourth and fifth increments were placed in the mesial and 

distal half of the remaining cavity and were light-cured for 20 s each from the occlusal side. After 

removing the retainer and the matrix, additional light-curing was applied from the buccal and 

lingual sides of the mesial and distal cavities obliquely from the occlusal surface. Eighty seconds

of additional light-curing (20 s x 2 for mesial side, 20 s x 2 for distal side) was applied in this 

process. 

2) Group 2 (SD, flowable bulk-fill resin) and Group 3 (VB, flowable bulk-fill resin)

After being applied by an ivory retainer and matrix to the specimens, flowable bulk-fill resin 

was filled in each cavity in the base portion of the cavity. For Group 2, SDR (Dentsply Caulk, 

Milford, DE, USA) bulk-fill resin was put onto the mesial proximal box and light-cured. Then the 

resin was placed onto the pulpal floor 3.5 mm thick and light-cured (Fig. 7). For Group 3, Venus 

Bulk Fill (Heraeus Kulzer, Dormagen, Germany) was put and light-cured in the same way as 

Group 2. Light curing was done with an LED type light source for 20 s from the occlusal side. The 

base materials and cavity walls were trimmed with a fine diamond bur to control the thickness of 

the base. Z350 composite was added to the remaining cavity (first onto the mesial proximal, then 

onto the distal proximal, the mesial cusp portion, and the distal cusp portion). Light curing was 

done for 20 s after each application. After removing the retainer and the matrix, additional light-

curing was applied from the buccal and lingual sides of the mesial and distal cavities obliquely 

from the occlusal surface. Eighty seconds of additional light-curing (20 s x 2 for mesial side, 20 s 

x 2 for distal side) was applied in this process. 
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3) Group 4 (TB, non-flowable bulk-fill resin) and Group 5 (SF, non-flowable bulk-fill resin).

After being applied by an ivory retainer and matrix to the specimens, non-flowable bulk-fill 

resin was filled in each cavity of Groups 4 and 5. For Group 4, Tetric N-ceram Bulk Fill (Ivoclar 

vivadent, Schaan, Liechtenstein) was put using hand instruments with the same dimension as that 

of Groups 2 and 3. It was followed by light curing for 20 s. Another layer of Tetric N-ceram Bulk 

Fill composite was added to the remaining cavity and light-cured in the same way as Groups 2 and 

3. For Group 5, SonicFill (Kerr, West Collins, Orange, CA, USA) was filled with a sonically

activated handpiece following the manufacturer’s instruction. After SonicFill resin had been filled 

to the full depth of the cavity, light-curing was done for 20 s. After removing the retainer and the 

matrix, additional light-curing was applied from the buccal and lingual sides of the mesial and 

distal cavities obliquely from the occlusal surface. Eighty seconds of additional light-curing (20 s 

x 2 for mesial side, 20 s x 2 for distal side) was applied in this process. 

2.2.3. Thermo-mechanical load cycling

After 24 h water storage, the specimens were mechanically loaded using chewing simulator CS-

4.8 (SD Mechatronik, Feldkirchen-Westerham, Germany). They were thermo-cycled under 

thermodynamic conditions (5 °C -55 ℃, with a dwell-time of 60 s and a transfer time of 24 s)

and a mechanical load of 5 kgf (49 N) for 600,000 times simultaneously. The conical-shaped 

opposing plunger, which was made of nickel-chromium, was initially positioned at the center of 

the restoration. A 5 kgf load was applied from the top surface and pressed down to the center of the 

tooth. The rod moved 6 mm vertically and 0.3 mm horizontally. The rising speed was 55 mm/s, 

while the descending speed was 30 mm/s. After the thermo-mechanical loading, the samples were 

stored in distilled water at room temperature.
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2.2.4. Silver nitrate infiltration

The specimens were soaked in 17 % ethylenediamine tetraacetic acid (EDTA) for 5 min to 

remove the smear layer in the pulp chamber. Then they were rinsed with distilled water. The teeth 

were immersed in a 25% silver nitrate solution and were placed under 3.75 kPa pressures, upside 

down, for 3 days. This step was carried out to facilitate silver nitrate infiltration from the pulp 

chamber into the cavity floor. The specimens were then rinsed thoroughly with distilled water and 

kept in water at room temperature.

2.2.5. Micro-CT imaging

Thirty micro-CT images were taken cross-sectionally of each specimen. Ten micro-CT images 

for the proximal box were taken extending from the mesial end of the bulk-filled base to the axial 

wall of the proximal box at 90 μm pitch intervals. Another ten micro-CT images were taken at the 

mesial end of the bulk-filled cavity floor. The last ten micro-CT images were taken from the distal 

end of the bulk-filled base toward the center of the cavity at the same intervals (Fig. 7). High-

resolution micro-CT (Model 1076, Skyscan, Aartselaar, Belgium) was used to obtain the images. 

The imaging settings were as follows: acceleration voltage, 100 kV; beam current, 100 µA; Al 

filter, 0.5 mm; resolution, 18 µm; and rotation, 360° in 0.5° steps. Each tooth was mounted on a 

special template exclusively designed for it. The 2D images were analyzed using image analysis 

software (ImageJTM ver. 1.46).

2.2.6. Evaluation of internal adaptation

To evaluate the internal adaptation of the specimens, the silver spots which were present 

between tooth and restoration were measured on the micro-CT images. All the images were taken 

from the mesial point of view.  Fig. 8 shows one of the images at the mesial proximal box and Fig. 

9 shows another image taken at a non-proximal box portion of the cavity
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The imperfect margin percentage (IM%) was calculated by dividing the sum of the portions 

where the silver nitrate had penetrated into the microgap by the entire length of a wall or floor. The 

local IM% was calculated for each image. On the proximal box images, the buccal wall imperfect 

margin % (BWIM%), lingual wall imperfect margin % (LWIM%), and gingival floor imperfect 

margin % (GFIM%) were measured (Figs. 7, 8). Mesial pulpal floor imperfect margin % 

(MPFIM%) was measured on the micro-CT images taken from mesial end of pulpal floor toward 

1mm the center of the cavity (Figs. 7, 9). Distal pulpal floor imperfect margin % (DPFIM%) was 

measured on those taken from distal end of bulk-filled base.

To verify correlation of polymerization stress and the imperfect margin, the total imperfect 

margin % (TIM%) was calculated. TIM% was defined as the percentage calculated by dividing the 

sum of imperfect margins on the buccal wall, lingual wall, gingival floor, mesial pulpal floor, and 

distal pulpal floor by the sum of all the internal margins. 

Fig. 8. Measurement of imperfect margin for BWIM%, LWIM%, and GFIM% on the micro-CT

BWIM% = Buccal wall imperfect margin %, LWIM% = Lingual wall imperfect margin %, GFIM%

= Gingival floor imperfect margin %.
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The plot profile shows the intensities of the pixels along the horizontal axis. The function of the 

plot profile in the ImageJ software shows gray density of the selected line or area. Dentin showed 

gray density at the 20-40 levels, the 40-70 levels in bulk-fill resin, and higher than the 80 level

when silver nitrate infiltrated into the gap (right upper and lower windows). Intensity over 80 was 

regarded as a critical value to determine the imperfect area.

Fig. 9. Measurement of imperfect margin for MPFIM% and DPFIM% on the pulpal floor of the 

cavity

MPFIM% = Mesial pulpal floor imperfect margin %, DPFIM% = Distal pulpal floor imperfect 

margin %.

The plot profile shows the intensities of the pixels along the horizontal axis. Intensity over 80 was 

regarded as a critical value to determine the imperfect area.

The definitions of the terms are as follows:
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BWIM% (Buccal wall imperfect margin %) = (the length of the buccal wall of the proximal box 

that was penetrated by silver nitrate/ the height of buccal wall of the proximal box) x 100

LWIM% (Lingual wall imperfect margin %) = (the length of the lingual wall of the proximal box 

that was penetrated by silver nitrate/ the height of lingual wall of the proximal box) x 100

GFIM% (Gingival floor imperfect margin %) = (the length of the gingival floor of the proximal 

box that was penetrated by silver nitrate/ the width of gingival floor of proximal box) x 100

MPFIM% (Mesial pulpal floor imperfect margin %) = (the length of the mesial pulpal floor of the 

occlusal cavity that was penetrated by silver nitrate/ the width of pulpal floor of the cavity) x 100

DPFIM% (Distal pulpal floor imperfect margin %) = (the length of the distal pulpal floor of the 

occlusal cavity that was penetrated by silver nitrate/ the width of pulpal floor of the cavity) x 100

TIM% (Total imperfect margin %) = (the sum of the imperfect margin measurements on the 

buccal wall, lingual wall, gingival floor, mesial pulpal floor, distal pulpal floor/ the total length of 

all internal margins) x100

2.2.7. Measuring polymerization linear shrinkage of resin composite

Polymerization shrinkage strain was measured using a custom-made Linometer (R&B Inc., 

Daejon, Korea). Glycerin gel was applied to a metallic disc and a portion of a glass slide to prevent 

adhesion to the resin. Resin composites were measured in a custom Teflon mold to ensure that the 

same amount of composite resin (29.45 mm2; 5 mm diameter x 1.5 mm high disc) was used for 

each linometer sample. Then it was transferred onto the thin metallic discs, covered with a glass

slide, and positioned into place under constant pressure using a screw. An LED type light-curing 

unit (Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) with a power density of 800 mW/cm2

was placed 1 mm above the glass slide, and the material was light-cured for 30 s. As the resin 

composite under the glass slide was cured, it moved the aluminum disk upward. The amount of 

disc displacement, which was caused by the linear shrinkage of the resin composite, was measured 
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using an eddy current sensor every 0.5 s for a period of 180 s. This measurement was repeated five 

times for each material and the average was calculated (Table 3). 

2.2.8. Measurement of the polymerization shrinkage force under a compliance-allowed condition

The polymerization shrinkage force of the resin composite was measured using a custom-made 

device and software (R&B Inc., Daejon, Korea). The instrument was driven by a motor and was 

devised to move a load bar up and down. The polymerization shrinkage force applied to the bar

was measured by a load cell (Model: UM-K100, capacity 100kgf, Dacell, Chungcheongbuk-do, 

South Korea) connected to the bar. The composite was placed between an acrylic disc, which was 

screwed into the load bar, and a transparent cylinder. The light to polymerize the resin composite 

was projected from beneath the transparent cylinder. The entire process was controlled by the

software made by R&B Inc. 

The surface of the acrylic disk was roughened with sandpaper before screwing it to the load bar. 

Then the surface was applied with adhesive resin (Bond, Clearfil SE Bond, Kuraray Noritake 

Dental, Okayama, Japan), and light-cured for 20 s. For the measurement of polymerization stress, 

a Teflon mold was used to measure the consistent amount of resin composite (7.07 mm2; 3 mm 

diameter x 1 mm high disc) The composite was placed onto the acrylic disc, and the load bar into 

which the disk was screwed was moved so that the dimension of the composite specimen was a 1 

mm thick disk with a 3 mm diameter. Before measurements, the setup was switched to 

compliance-allowed mode in which the feedback system to control the original position of the load 

bar was not activated and the compliance of the system was 0.3 µm/N. The force between the 

tension rod and the resin composite was set to zero before light curing. Then the resin composite

was light-cured with a light-curing unit (Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein, 800

mW/cm2) through the transparent disc for 20 s. Along with the load-cell signal, the displacement 

was continuously recorded to the computer every 0.1 s for a period of 180 s. This measurement 

was repeated five times for each material and calculated for an average value (Table 3).
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2.2.9. Statistical analysis

1) Comparison of IM%

Statistical analysis was done by PASW Statistics 18 software (SPSS for Windows: SPSS Inc., 

Chicago, IL, USA). To compare the internal adaptation, two-way ANOVA with Scheffe analysis 

was applied first. To compare the internal adaptations of different groups and those of different 

locations, one-way ANOVA with Scheffe analysis was used. 

2) Analysis of relationship between polymerization shrinkage, stress, and IM%

TIM% was calculated per each specimen. All of the imperfect margin lengths were summed up. 

Then it was divided by all the internal margin lengths and multiplied by 100. 

The following relationships between the measurement of polymerization stress and IM% were 

analyzed by regression analysis:

2-1) Polymerization stress versus TIM%

2-2) Linear polymerization shrinkage versus TIM%

2.3. The results of the second experiment

Table 3 shows flexural modulus, linear polymerization shrinkage, and polymerization shrinkage 

stress of resin composite in the study.
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Table 3. Physical properties of resin composite in this study

Code
Flexural modulus

(GPa)*

Linear 

polymerization 

shrinkage (%)

Polymerization 

shrinkage stress 

(MPa)

Z3 6.32 (0.65)d 1.36 (0.10)a 2.19 (0.12)a,b

SD 3.04 (0.63)c 1.78 (0.12)b 3.02 (0.17)c

VB 1.10 (0.15)a 2.27 (0.11)c 3.46 (0.18)d

TB 5.33 (0.43)c 1.20 (0.09)a 2.03 (0.12)a,b

SF 6.03 (0.45)c,d 1.21 (0.12)a 1.86 (0.15)a

Polymerization stress was calculated under compliance-allowed condition.

Identical letters within each column indicate no statistically significant difference 

between the groups, p=0.05.

*Flexural modulus measurements were adopted from the reference.(Jeong and Park, 

2014)

Two-way ANOVA results showed that there was no interaction between filling materials and 

locations (Table 4, p>0.05). The results of groups compared by one-way ANOVA are presented in 

Tables 5 and 6. The results in Table 7 were compared by one-way ANOVA, horizontally (among 

different filling materials) and vertically (among different locations).

Table 4. Two-way ANOVA results : Tests of Between-Subjects Effects

Source Type III Sum 

of Squares df Mean Square F Sig.

Corrected 

Model

1.283a 24 .053 32.118 .000

Intercept 24.204 1 24.204 14538.199 .000

Group .951 4 .238 142.795 .000

Location .287 4 .072 43.132 .000

Group * 

location

.045 16 .003 1.696 .051

Error .291 175 .002

Total 25.779 200

Corrected 

Total

1.575 199

a. R Squared = .815 (Adjusted R Squared = .790)
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Table 5. Internal adaptation depending on its cavity location

Result of one-way ANOVA

Location of 

interface
N

Subset

1 2

Lingual wall 40 26.2175

Buccal wall 40 26.6197

Distal pulpal 

floor
40 38.8276

Gingival floor 40 40.5827

Mesial pulpal 

floor
40 41.6917

Table 6. Internal adaptation of depending on its group

Result of one-way ANOVA (TIM%)

Group N
Subset

1 2 3

5 (SF) 40 30.1221

1 (Z3) 40 32.8954 32.8954

4 (TB) 40 32.9378 32.9378

2 (SD) 40 37.0317 37.0317

3 (VB) 40 40.9522

Table 7. Mean percentage of measured imperfect margin of each cavity wall or floor

Z3 SD VB TB SF

BWIM% 27.8 a,A,B(4.24) 28.3 a,B,C(4.07) 29.9 a,C (4.52) 24.4 a,A,B (5.03) 23.4 a,A (4.24)

LWIM% 25.2 a,A,B(5.94) 27.0 a,B,C(4.02) 29.7 a,C (3.48) 25.3 a,A,B (5.90) 23.9 a,A (3.6)

GFIM% 37.7 b,A,B(4.98) 43.4 b,B,C (3.33) 48.5 b,C (3.28) 38.9 b,A,B (5.29) 34.5 b,A (3.51)

MPFIM% 38.0 b,A,B(3.22) 45.1 b,B,C(3.11) 50.2 b,C (2.97) 40.1 b,A,B (2.85) 35.1 b,A (2.74)

DPFIM% 36.5 b,A,B(3.77) 41.3 b,B,C(4.14) 46.4 b,C (5.06) 36.2 b,A,B (3.30) 33.7 b,A (2.73)

BWIM% = Buccal wall imperfect margin %, LWIM% = Lingual wall imperfect margin %, GFIM% = 

Gingival floor imperfect margin %, MPFIM% = Mesial pulpal floor imperfect margin %, DPFIM% = Distal 

pulpal floor imperfect margin %.

Standard deviation in parentheses.
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Lower case superscripts represent differences in IM% among the locations where the imperfect margin was 

measured in each group at p<0.05 level (compared vertically).

Capital superscripts represent differences in IM% among the groups in each location at p<0.05 level 

(compared horizontally).

Identical letters represent no statistical difference at p<0.05 significance.

In all the groups, GFIM% (Gingival floor), MPFIM%, and DPFIM% (Pulpal floor) were 

significantly higher than BWIM% and LWIM% (p<0.05). There was no significant differences 

among GFIM%, MPFIM%, and DPFIM% (p>0.05) (Table 5). IM%s of different groups were 

Groups 5, 1 ≤ Groups 4, 2 ≤ Group 3 (Table 6). The R2 was 0.636 for polymerization stress versus 

TIM%, and it was 0.618 for linear polymerization shrinkage versus TIM% (Figs. 10 and 11). 

Fig. 10. Linear regression analysis of polymerization stress and TIM% 
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Fig. 11. Linear regression analysis of polymerization shrinkage and TIM%

3.1. The third experiment of evaluation on internal adaptation

The third purpose of this study was to compare the internal adaptations of different resin 

composites in two cavity configurations (High and Low C-factors) and to find out the relationship 

between the internal adaptation and polymerization shrinkage or shrinkage stress. The shrinkage 

stress was evaluated under zero-compliance and compliance-allowed conditions. In the present 

study, two cavities of different C-factors with the same volume and shape were prepared and 

restored with different composite resins. Then the internal adaptations were compared in two ways.

The null hypotheses were:

y = 8.0304x + 19.499
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1. There was no difference in internal adaptation between High and Low C-factor cavities; and

2. There was no difference in internal adaptation among the different composite restorations in 

each High and Low C-factor cavity.

Additionally, the regression analysis between internal adaptation and linear polymerization 

shrinkage or polymerization stress was done in two different C-factors (High and Low C-factor 

cavities). The polymerization stress was measured both under a zero-compliance and a 

compliance-allowed condition.

3.2. Materials and methods of the third experiment

3.2.1. Experimental setup

The setup of this study is schematically illustrated in Fig. 12.

Fig. 12. Experimental procedure of this study

3.2.2. Specimen preparation

One hundred non-carious human third molars were used in this study. They were stored in 0.5 % 

chloramine solution for up to 2 months after extraction. The occlusal surface of each tooth was 

flattened with a trimmer and 320-grit sandpaper. All the teeth were randomly divided in two 

groups: High C-factor cylindrical cavity group and Low C-factor cylindrical cavity group. For the 
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High C-factor cylindrical cavity, round cylinder-shaped Class I cavities (3 mm in diameter, 4 mm 

in depth) were made on the occlusal surface of each tooth using a high-speed air-turbine handpiece 

with a flat-end tapered diamond bur (959 KR 018, Komet, Germany) under water coolant. Then 

the irregularities and cavity dimension were finely tuned using a low speed handpiece with a 

cylinder-shaped stone point (040 Dura green stone, Shofu, Japan) and hand instruments. For the 

Low C-factor cylindrical cavity, all the teeth were reduced 3 mm in height to the same depth of 

dentin as the High C-factor cavity before tooth preparation. The cavity bottom dentin in all the 

specimens was mid-coronal to make sure that the effects of regional variability would be 

negligible. Then round cylinder-shaped Class I cavities (3 mm in diameter, 1 mm in depth) were 

made on the occlusal surface of each tooth by the same methods as in the High C-factor cavity. 

3.2.3. Resin composite filling 

The High C-factor cavity group was divided into five subgroups (n=10) according to the 

composite used. A one-step self-etch adhesive (Clearfil SE One, Kuraray Noritake Dental, Tokyo, 

Japan) was used for dentin bonding. Following the manufacturer’s instruction, the cavities were 

treated and light-cured. Composite filling materials included three kinds of hybrid composites and 

two bulk-fill types. The five subgroups of the High C-factor group were the following: Group H-

CF-FS, which was filled with Filtek Supreme (3M, St. Paul, MN, USA); Group H-CF-CD with 

Charisma Diamond (Heraeus Kulzer, Dormagen, Germany); Group H-CF-AP with Amelogen Plus 

(Ultradent, South Jordan, UT, USA); Group H-CF-TB with Tetric Evoceram Bulk Fill (Ivoclar 

Vivadent, Schaan, Liechtenstein); and Group H-CF-VB with Venus Bulk Fill (Heraeus Kulzer, 

Dormagen, Germany). These cavities were filled either in bulk (H-CF-VB and H-CH-TB) or two 

equal increments of 2 mm as horizontal layers (H-CF-FS, H-CF-CD, and H-CF-AP). For the bulk 

filling groups, light-curing was done for 40 s with an LED curing device (Bluephase, Ivoclar 

Vivadent, Schaan, Liechtenstein; 800mW/cm2). For the incremental filling groups, light-curing 

was done twice for 20 s after each placement of hybrid composite. The resulting C-factor of the 

High C-factor cavity group was 6.33. The restorations were stored in distilled water at room 

temperature.
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The Low C-factor cavity group was also divided into five subgroups (n=10). The same adhesive 

was applied to each specimen, dried, and light-cured. To make the specimens of equal volume, a 

custom silicone mold was used. The silicone mold has a hollow cylinder inside of which the 

internal dimension is 3 mm in diameter and 3 mm in height. After the mold was placed on the top 

of the occlusal surface, the same five subgroups as Group High C-factor were made. The Low C-

factor group cavities were filled with composite either in bulk (L-CF-VB and L-CF-TB) or two 

equal increments of 2-mm horizontal layers (L-CF-FS, L-CF-CD, and L-CF-AP). For the bulk 

filling groups, light-curing was done for 40 s with the same LED curing device as in the High C-

factor group. For incremental filling groups, light-curing was done twice for 20 s each after each 

placement of composite. After light-curing, the same dimension (3 mm in diameter, 4 mm in 

height cylinder) of restoration was obtained as that of the High C-factor cavity group. The 

resulting C-factor of the Low C-factor cavity group was 0.467. The restorations were stored in 

distilled water at room temperature.

Table 8. Compositions of composite resins used in this study

Code Product Manufacturer Base resin Filler (wt/vol.%)

FS Filtek Supreme
3M ESPE, St Paul, 

MN, USA

Bis-GMA/EMA, 

UDMA
78.5/59.5%

CD Charisma Diamond
Heraeus Kulzer, 

Dormagen, Germany
Bis-GMA N.A/58%

AP Amelogen Plus
Ultradent, South 

Jordan, UT, USA

Bis-GMA, 

TEGDMA
76/61%

TB
Tetric N-ceram 

bulkfill

Ivoclar Vivadent, 

Schaan, Liechtenstein

Bis-GMA, UDMA

dimethacrylate co-

monomers

78/55%

(including 

prepolymer)

VB Venus Bulk Fill
Heraeus Kulzer, 

Dormagen, Germany

UDMA, 

EBPDMA
65/38%

Base resin composition and filler % are the information from the manufactures.

3.2.4. Thermo-mechanical load cycling

After 24h water storage, the specimens were mechanically loaded using a chewing simulator 
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CS-4.8 (SD Mechatronik, Feldkirchen-Westerham, Germany). They were thermo-cycled under 

thermodynamic condition (5 °C -55 °C, with a dwell-time of 60 s and a transfer time of 24 s and

mechanical load of 5 kgf (49 N) for 120,000 times simultaneously. The conical-shaped opposing 

plunger, which was made of nickel-chromium, was initially positioned at the buccal surface. No 

direct contact was made to the resin restoration. A 5 kgf load was applied to press down on the 

buccal surface of the tooth. The rod moved 6 mm vertically and 0.3 mm horizontally. The rising 

speed was 55 mm/s, while the descending speed was 30 mm/s. After the thermo-mechanical 

loading, the samples were stored in distilled water at room temperature.

3.2.5. SS-OCT imaging

The SS-OCT used in this study was the Santec OCT-2000 (Santec Co., Komaki, Japan). It is a 

frequency domain OCT system, integrating a high-speed frequency sweeping external cavity. The 

laser probe power is less than 20 mW. The light source in the system sweeps the wavelengths from 

1260 nm to 1360 nm at a scan rate of 20 kHz. The system relies on analyzing the frequency 

components of backscattered light from the internal structure of an object, thus it creates real-time 

2D images. The photo-detected signal is amplified and sent to the computer. The axial resolution 

of the OCT system is 11 µm in air, which is equivalent to 8 µm in soft tissue and 7 µm in oral hard 

tissue and resin composite, assuming refractive indices of about n = 1.5. The lateral resolution is 

about 17 µm and the output is an image of 512x1024 pixels (Bakhsh et al., 2011; Makishi et al., 

2011).

The imaging depth of the SS-OCT laser through the majority of dental composites is known to 

be less than 3 mm. Before taking SS-OCT images, the upper 2 mm part of the tooth or composite 

material was cut off of all the specimens. All the specimens were cut at the top 2 mm of the 

restoration with a diamond disc (Fig. 12). The hand-held scanning probe connected to the SS-OCT 

was placed over the top of the restorations and was oriented at a right angle to the occlusal surface 

of the restoration. The light beam was projected onto the resin restoration and scanned across the 

area. The first SS-OCT image of the restoration was taken parallel to the bucco-lingual plane of 
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the cavity at the center of the restoration. After the image was taken, the platform holding the 

specimen was rotated 15° clockwise, then the next image was taken. Twelve images were taken 

per each sample (Fig. 12, right end). 

3.2.6. Measuring internal adaptation of the specimens on the SS-OCT image

The SS-OCT images were imported into the ImageJ program. It is known that when there is a 

microgap between two media of different refractive indices, the reflections of light at the interface 

will be dissimilar (Sadr et al., 2011). The presence of air, which means a microgap between the 

tooth material and restorative material, is visualized as bright spot on the SS-OCT image. The high 

signal intensity at the resin-dentin interface created bright spots or clusters (Figs.13 and 14). To 

measure the imperfect margins of the cavity floor, the length of the bright spots on the cavity floor 

was measured. The cavity floor part where signal intensity was above the threshold was thought to 

be imperfect margins. The percentage of imperfect margin (%IM) was defined as the percentage 

from dividing the sum of portions where signal intensities were above the threshold by the entire 

length of a floor. If %IM increases, it means that composite restoration has poor internal 

adaptation. GapAnalyzer, which is a plug-in software for ImageJ, was used to verify the imperfect 

margin and was the same method used by Bista et al.(Bista et al., 2013). It can show a spot or 

cluster where the signal intensity was above the threshold as white dots (lower right windows in 

Figs. 13 and 14). 
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Fig. 13. SS-OCT image of High C-factor cavity with the inset of GapAnalyzer image (Bista et al., 

2013)
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Fig. 14. SS-OCT image of Low C-factor cavity with the inset of GapAnalyzer image

3.2.7. Measuring the linear polymerization shrinkage of resin composite

Polymerization shrinkage strain was measured using a custom-made Linometer (R&B Inc., 

Daejon, Korea). Glycerin gel was applied to a metallic disc and a piece of glass slide to prevent 

adhesion to the resin. Then, 18.85 mm2 of resin composite was placed on the thin metallic disc, 

covered with a glass slide, and positioned into place under constant pressure using a screw. An 

LED type light-curing unit (Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) with a power 

density of 800 mW/cm2 was placed 1 mm above the glass slide, and the material was light-cured

for 30 s. As the resin composite under the glass slide was cured, it moved the aluminum disk 

downward. The amount of disk displacement was measured using an eddy current sensor every 0.5

s for a period of 180 s. This measurement was repeated five times for each material and the

average was calculated. 
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3.2.8. Measurement of the polymerization shrinkage force

The polymerization shrinkage force of the resin composite was measured using a custom-made 

device and software (R&B Inc., Daejon, Korea). The instrument was driven by a motor and was 

devised to move a metal bar up and down. The polymerization shrinkage force applied to the 

acrylic tension rod was measured by a load cell (100 kgf) connected to the bar. The light to 

polymerize the resin composite sample was projected from beneath the transparent disc. The entire 

process was controlled by the software made by R&B Inc. 

Before connecting the acrylic rod, its surface was roughened with sandpaper (180 grit), treated

by adhesive resin (bonding agent, Clearfil SE bond, Kuraray Noritake Dental, Okayama, Japan) 

and light-cured. For the measurement of the polymerization stress under a zero-compliance 

condition, 7.07 mm2 of resin composite was placed onto an acrylic disc, and the upper acrylic rod 

was positioned to ensure that the thickness of the specimen was 1 mm and its diameter was 3 mm. 

Thus, the C-factor (d/2h, d; diameter, h: height) was 1.5. The force measurement between the 

tension rod and the resin composite was set to zero before light curing. Then, the resin composite

was light-cured with a light-curing unit (Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein, 800 

mW/cm2) for 20 s through the transparent disc. While shrinkage force developed, the displacement 

of the acrylic tension rod from resin polymerization was restricted for the zero-compliance 

measurement. In this mode, as soon as the sensor detected the linear displacement of more than 

1µm during the polymerization process, the program in the machine made opposing rod move 

backward to keep the same distance which had been set at the very beginning. Along with the 

load-cell signal, the displacement was continuously recorded to the computer every 0.1 s for a 

period of 180 s. This measurement was repeated five times for each material and calculated for 

average value.

The polymerization stress under the compliance-allowed condition, using the same amount of 

resin composite, was also gauged. Before measurements, the setup was switched to compliance-

allowed mode in which the acrylic rod could be moved freely according to the resin 

polymerization. The compliance of the system was 0.3 µm/N when the acrylic road was used. 



43

After 7.07 mm2 of resin composite was placed onto an acrylic disc, the upper acrylic rod was 

positioned to ensure that the thickness of specimen was 1 mm and its diameter was 3 mm. During

the light-curing, shrinkage force caused displacement of the acrylic tension rod which was 

connected to the load cell. Along with the load-cell signal, the displacement and stress was 

continuously recorded to the computer every 0.1 s for a period of 180 s. This measurement was 

repeated five times for each material and calculated for average value.

3.2.9. Statistic analysis 

To compare the %IM results between High C-factor and Low C-factor groups, two way ANOVA 

with Scheffe post hoc test was used. For the comparison of subgroups within each High and Low 

C-factor group, one way ANOVA with Scheffe analysis was applied. Finally, Pearson correlation 

test was done among the variables: LS, PS0, PS, %IM of H-CF, %IM of L-CF.

3.3. The results of the third experiment

The percentages of imperfect margin measured by SS-OCT are presented in Table 10. The High 

C-factor cavity group showed significantly higher %IM than the Low C-factor cavity group 

(p<0.05). The %IM in the High C-factor cavity turned out to be the following: group 2, group 1 ≤

group 4 < group 3, group 5. The %IM in the Low C-factor cavity showed as the following order: 

group 2, group 4 ≤ group 1, group 3 < group 5. The relationships between internal adaptation and 

polymerization stress or linear polymerization shrinkage are presented in Table 11.
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Table 9. Measurements of polymerization shrinkage and stress on resin composites used in 

this study

Code
Linear polymerization 

shrinkage (LS, %)

Polymerization stress 

under the zero-

compliance (PS0, MPa)

Polymerization stress 

under the compliance-

allowed (PS, MPa)

FS 1.36 (0.10)b 4.70 (0.22)a 2.19 (0.12)b

CD 1.12 (0.09)a 4.20 (0.30)a 1.74 (0.15)a

AP 2.00 (0.12)c 9.47 (0.27)c 3.23 (0.22)c

TB 1.21 (0.09)a,b 5.86 (0.22)b 2.03 (0.12)a,b

VB 2.27 (0.11)d 8.94 (0.29)c 3.46 (0.18)c

Polymerization linear shrinkage and polymerization stress are the averaged value of five-time 

measurements.

Numbers in parenthesis are standard deviations.

Identical superscript represents no statistically significant difference among groups (p<0.05).

Table 10. Percentages of imperfect margin for each group

FS CD AP TB VB

High C-

factor cavity 

(H-CF)

30.88(3.74)a,b 

*

26.97(7.41)a

*

47.69(4.74)c 

*

38.02(8.48)b 

*

52.81(7.84)c 

*

Low C-

factor cavity 

(L-CF)

26.70(2.33)a 21.79(2.69)b 29.78(3.83)a 25.59(3.37)a,b 38.17(3.13)c

Closed bar with asterisk indicates statistically significant difference between High C-factor and Low C-

factor (two way ANOVA, p<0.05).

Identical superscript represents no statistically significant difference among groups (compared in each 

row, one way ANOVA, p<0.05).

Values in the parenthesis represent standard deviations.

Table 11. Pearson Correlations Among Variables

LS PS0 PS

%IM in H-CF group .932 .963 .947

Sig. 0.021 0.009 0.015

%IM in L-CF group .933 .801 .915

Sig. 0.021 N.S. 0.03

Numbers in the table are r-values.

N.S.: no significant correlation (p > 0.05).
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III. Discussion

In the first experiment, the 1st null hypothesis was rejected by the results of post thermo-cycling.

The 2nd null hypothesis was also rejected because higher values were found for micro-CT than 

SS-OCT. However, there was a correlation (r=0.787) between SS-OCT and micro-CT.

The %DS measurements of micro-CT were lower than those of SS-OCT. It was after thermo-

cycling that the results of SS-OCT and micro-CT were compared. That’s because it was not known 

whether silver nitrate infiltration could have an effect on the image of SS-OCT. After thermo-

cycling, once all the images of SS-OCT had been taken, silver nitrate could be infiltrated. Silver 

nitrate was used as the tracer to fill the microgaps and to be detected on X-ray images (De Santis 

et al., 2005). One of the reasons for this different leakage% of SS-OCT with micro-CT would be 

silver ions might not infiltrate sufficiently into all of the microgaps between the resin composite

and tooth. In the TEM evaluation of nanoleakge, silver nitrate infiltrated very thin tooth specimens  

(Sano et al., 1995b). For evaluation of marginal leakage, it infiltrated the gap between the cavity 

and restoration from outside (Sano et al., 1995a). However in our experiment, silver nitrate 

infiltrated from the pulp space through about 0.5-1mm length of dentinal tubules into the gap 

under the restoration. It could be trapped in the dentinal tubules in the course of infiltration. This 

might lower the sensitivity of the identifying microgaps on micro-CT images. 

Another cause could be different setting of the threshold for SS-OCT and micro-CT. If the 

threshold had been set lower, higher leakage % would have been presented. Also, it could be 

possible reason that the matching images of micro-CT and SS-OCT had not been taken at the same 

corresponding location. It was not proved that SS-OCT and micro-CT had the same ability to 

evaluate the internal adaptation. However, the Pearson correlation showed a significant correlation 

between the two imaging methods (correlation coefficient r=0.787, p<0.01). Both systems may be 

used not for the absolute measurement on the imperfections of restorations, but for relative 

comparison of the restorations.

The %DS was found to be Group 3 ≤ Group 4 < Group 1 ≤ Group 2 in both SS-OCT and micro-

CT. This result shows that two-step etch-and-rinse adhesives demonstrate inferior durability after 
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the aging process. This result was consistent with a previous report on the effects of acid etching 

on dentin (Shirai et al., 2005). All of the margins and cavity floors were located on the dentin in 

our experiments. Etching on the dentin surface may have left dissolved calcium phosphates that 

were not rinsed away. These embedded calcium phosphates are very unstable (Yoshida et al., 

2001). Moreover, excessive etching clears away hydroxyapatite crystals from the collagen fibrils. 

The exposed dentinal collagen is known to be very vulnerable to internal hydrolytic degradation

(Van Meerbeek et al., 2011). Thus, excessive etching might have happened during the process.

Technical difficulties are another pitfall associated with the proper handling of etch-and-rinse 

adhesive systems (Pashley et al., 2011). As all the cavity margins were located on the dentin, 

peripheral sealing by enamel etching would not have worked (Hashimoto et al., 2002). In addition, 

groups 1 and 2 showed relatively higher standard deviations than groups 3 and 4. The observed 

higher standard deviation could also be attributed to the different degrees of wetness on the dentin 

surface. 

Micro-CT and SS-OCT have their own characteristics as a tool for evaluation. Micro-CT has no 

limitation for evaluating the restoration in terms of cavity depth. However, SS-OCT has depth 

limitations. Even though SS-OCT shows very clear images within the penetrating depth of the 

laser, it cannot be used in deep cavities and fillings. The cavity depth in our experiment was 2 mm 

because the imaging depth of SS-OCT systems had been reported to be in the range of 2-3 mm

(Shimada et al., 2010). SS-OCT images were generally clear and the high-intensity white spots or 

clusters could easily be identified on the image. In some cases, imprecise spots and indistinct parts 

were observed. It would be ideal to evaluate the images with a predefined signal intensity 

threshold for the defect. However, defining a SS-OCT threshold for the microgap was very 

complicated because the signal intensity was affected by the light intensity, scattering, attenuation 

and transmittance properties of the material. When light passes through a material such as resin 

composite, the light is scattered and attenuated with depth. The light transmittance is different for 

resin composite depending on its composition. Therefore, it was impossible to compare OCT 

signal intensity levels using a single constant threshold (Bakhsh et al., 2011). A relative 

comparison was possible depending on the experimental conditions. Bista et al. suggested that an 

automated signal analysis algorithm could be utilized to detect the high signal intensity at the 
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interface (Bista et al., 2013).

In the second experiment, GFIM%, MPFIM%, and DPFIM% turned out to be significantly 

higher than BWIM% and LWIM%. TIM% was different among groups. These findings indicated 

that the first and second null hypotheses were rejected.

GFIM% was recorded relatively higher than BWIM% and LWIM% in the proximal box. It 

might be due to the following reasons. First, the occluso-gingival dimension of the proximal box 

was larger than the bucco-lingual dimension of the box. The dimensions were approximately 6 mm 

for the occluso-gingival height and 3.5 mm for the bucco-lingual width. As the bulk resin 

polymerized, polymerization shrinkage could be greater in the direction of the occluso-gingival 

axis than that of the bucco-lingual axis. This could lead to a higher IM% at the interface of the 

gingival floor. While measuring imperfect margins at the restoration interfaces, imperfections were 

often found around the axiofaciogingival or axiolinguogingival point-angles of the proximal box. 

This would be because these two point-angles were the places where two directional vectors of 

force were exerted: toward the occlusal surface and toward the buccal/lingual surface. Second, the 

buccal and lingual walls had their own portion of the enamel margin. There could be stronger 

bonding with the enamel part of the cavity where little microleakage along the enamel margin was 

found on the micro-CT images. After resin polymerization, the composite restoration might have 

ended up with a strong bond at the occlusal margin and a weak bond at the cervical margin. Intact 

enamel margins could help to lessen the IM% of the buccal and lingual wall. Third, dentinal 

tubules on a deep cavity floor have different characteristics from those of outer superficial dentin. 

The tubule diameters near the pulpo-dentinal junction (PDJ) are larger, the distance between tubule 

centers is half that between tubule centers at the DEJ, and peritubular dentin is either diminished in 

thickness or absent (Fosse et al., 1992). At the PDJ, the volume of the fluid filled tubule lumens 

approaches 80% (Pashley et al., 2002). Therefore, the dentin at this area is known to be more 

permeable and wetter than the dentin at the DEJ (Pashley, 1996). This is a poor condition to 

achieve good dentin bonding, especially with an etch-and-rinse system like XP-bond used in this 

experiment (Moll and Haller, 2000). For this reason, the gingival and pulpal floors of the cavity 

could be more unfavorable to dentin bonding than the occlusal portion of the buccal and lingual 
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walls. 

The polymerization shrinkage and stress are thought to be a major factor for the different IM% 

of the groups. The different resin composites have their own characteristics of polymerization 

shrinkage. Groups 2 and 3, where flowable bulk-fill composite resins were used, showed greater 

IM% on the gingival and pulpal floors. Linear polymerization shrinkages were shown to be in the 

increasing order of TB, SF, Z3 < SD < VB. The result of polymerization shrinkage stress turned 

out to be in the increasing order of SF, TB ≤ Z3 < SD < VB. Both VB and SD, which showed high 

linear polymerization shrinkage and stress, led to higher IM%.

The non-flowable bulk-fill resins, TB and SF, showed better internal adaptation than the 

flowable bulk-fill resins. The manufacturer of TB insisted that TB include an initiator named 

Ivocerin that works as a polymerization booster. TB also contains low elastic modulus fillers that 

work as a shrinkage stress reliever. SF uses sonic energy for placement of the composite. It is 

known that SF has a special modifier which can be activated by sonic wave. Once activated by 

sonic energy, the viscosity of SF can be reduced to have a rheological property for adaptation. 

When the polymerization shrinkage is similar, it is known that the material with a low viscosity 

shows better marginal adaptation (Peutzfeldt and Asmussen, 2004). What had been observed in 

samples of the SF group were, however, small bubbles inside the resin restoration. That could be 

due to the vibration of the resin composite by sonic energy. The bubbles may act as pros and cons. 

They may act as a stress reliever. However, the bubbles may increase IM% if they happened to 

occur at the interface between the composite and tooth. 

In the third experiment, higher %IM (inferior internal adaptation) was found in the High C-

factor cavity than in the Low C-factor cavity (Table 10). Internal adaptation was different among 

some groups in both the High C-factor and the Low C-factor cavities (Table 10). Therefore the 

first and second hypotheses were rejected. Internal adaptation (%IM) was also different depending 

on the composite materials in High and Low C-factor groups. A non-flowable bulk-filled

composite (TB) showed comparable results with those of a hybrid resin composite resin placed in 

increments. The latest generations of the flowable bulk-fill composite have claimed to have higher 

filler content and increased mechanical properties. In this study, however, a flowable bulk-fill 
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composite (VB) did not show low polymerization shrinkage and stress. It was also found that VB

showed relatively high %IM in the High C-factor and Low C-factor cavities. Among the two 

composites investigated in this study, the non-flowable bulk fill composite may be preferable to 

the flowable bulk fill. Nonetheless, it appears that for a high C-factor large cavity, incremental 

placement of conventional composite has advantage over the bulk placement of a bulk fill 

composite.

There was no significant correlation between internal adaptation and polymerization stress in the 

Low C-factor cavity under the zero-compliance condition (Table 11), therefore the third null 

hypotheses was partially rejected. While resin composite can shrink relatively freely in a low C-

factor cavity, its shrinkage in a high C-factor cavity is more restricted by adhesion to the cavity 

walls and can have a stronger effect on internal adaptation. In other words, polymerization stress 

has different vectors and force depending on its cavity form (Witzel et al., 2007). The 

polymerization shrinkage stress under the zero-compliance condition was higher than that under 

the compliance-allowed condition (Table 9). The most frequently used setup for measuring 

polymerization stress is composed of placing the resin composite between two flat surfaces of a 

universal testing machine. To make a zero (near-zero) compliance condition, the height of the 

composite disc is constantly monitored and kept by a feedback system. If any displacement of the 

disc is detected, the cross-head will counteract in the opposite direction, keeping the height 

constant (Choi et al., 2000; Feilzer et al., 1987). However, it should be considered that if the 

compliance were absolutely restricted, the stress would theoretically increase to infinity. So, the 

term of “near-zero compliance system” would be more appropriate. In terms of the compliance, 

the concern was the compliance of the tooth specimen and that of the measuring system. 

Considering that the elastic modulus of dentin ranges between 6 and 17 GPa, it is thought that 

there is some compliance in the dental structure (Miura et al., 2009). In the experiment with the 

non-feedback system, the stress values were lower than those with a feedback system, which is in 

line with previous reports (Bouschlicher et al., 1997; Braga and Ferracane, 2004; Miguel and de la 

Macorra, 2001). However, as with any method, measuring contraction stress by a universal testing 

machine (UTM) can have limitations. The main shortcoming is that the stress can be recorded only

in the long axis of the specimen, rather than under a tri-axial condition (Laughlin et al., 2002).
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The correlation between internal adaptation in the Low C-factor cavity and polymerization 

stress under the zero-compliance condition was not significant (Table 11). It could be due to the 

mismatch between the compliance of the stress measuring system (UTM) and that of the tooth 

cavity. While the polymerization stress under a zero-compliance condition meant that the stress 

was measured under a condition where no compliance or composite strain was allowed in the 

system, the composite in the Low C-factor cavity could more freely strain. Laughlin et al. 

indicated that the system compliance and sample geometry had a profound effect on the 

polymerization stress (Laughlin et al., 2002). In other studies, the compliance of the tooth structure 

was shown to be much higher than that of some rigid testing systems (Alster et al., 1997; Feilzer et 

al., 1987). There was a chance that the polymerization stress value measured under the zero-

compliance condition could be much higher than the actual stress developed in the low C-factor 

cavity. In line with this assumption, other works also reported that the polymerization stress under 

a zero-compliance condition could be higher than the actual polymerization stress (Braga et al., 

2005; Laughlin et al., 2002; Lee et al., 2007). On the other hand, in the High C-factor cavity, 

polymerization stress in zero-compliance could be a predictive factor for internal adaptation. It 

should be considered that polymerization stress under the zero-compliance condition increased 

exponentially as the C-factor of a cavity increased (Feilzer et al., 1987, 1993; Witzel et al., 2007).

A more interesting finding in this study was that polymerization stress under the compliance-

allowed condition could be applicable to both High and Low C-factor cavities. Previous researches 

showed various compliance values in tensilometer and teeth (Goncalves et al., 2008; Laughlin et 

al., 2002; Lee et al., 2007). Recently, Rodrigues et al. calculated the compliance of Class I cavities

using the finite element method (Rodrigues et al., 2014). They showed diverse compliances of

prepared tooth cavities depending on different shapes and dimensions. The results of the paper 

indicated that the calculated compliance in a Class I cavity turned out to be 0.204~0.863 µm/N. In 

another study, the cuspal compliance of an MOD cavity was 3.34 µm/N (Lee et al., 2007). This 

could be one of the reasons that the polymerization stress under the compliance-allowed condition 

showed relationship with internal adaptation under both C-factor conditions. Other studies 

utilizing the compliance-allowed system reported a direct relationship between polymerization 

stress and the volume (Bouschlicher et al., 1997; Miguel and de la Macorra, 2001; Watts et al., 
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2003; Watts and Satterthwaite, 2008). Witzel et al. explained that there was not any correlation 

between stress and specimen volume when polymerization stress under a zero-compliance was 

adopted (Witzel et al., 2007).

Linear polymerization shrinkage was measured with a linometer using the same method as

reported by de Gee et al. (de Gee et al., 1993). The shrinkage value should be considered as a 

relative comparison depending on the volume of the specimen, not an absolute measurement. In 

this experiment, it was interesting that the linear polymerization shrinkage percentage showed a 

similar trend as that of polymerization stress under the compliance-allowed condition. It was also 

noticeable that a significant relationship was found between %IM and linear polymerization 

shrinkage under both C-factor conditions (Table 11). It is known that a low volumetric shrinkage 

does not necessarily correspond to a low polymerization stress development (Boaro et al., 2010b).

According to the linear elastic model, the increment in shrinkage stress would be proportional to 

the product of the increase in volumetric shrinkage by the increment in the material’s elastic 

modulus (Feilzer et al., 1990). Polymerization stress was reported to have shown a strong direct 

correlation with shrinkage and an inverse correlation with elastic modulus (Goncalves et al., 2010).

When there is more systemic compliance, polymerization shrinkage stress could be much more 

governed by polymerization shrinkage than elastic modulus (Goncalves et al., 2010; Lee et al., 

2007). On the other hand, the reduced compliance of the tooth substrate in a High C-factor cavity 

could intensify the influence of the composite’s elastic modulus on polymerization stress 

(Goncalves et al., 2010; Goncalves et al., 2008). It would mean that modulus of elasticity of the

resin composite would have more effect on the polymerization stress in a High C-factor cavity 

than in a Low C-factor cavity. Boaro et al. found in their experiment that a low compliance system 

increases the influence of composite stiffness on polymerization stress development (Boaro et al., 

2010a).

Flow, which may be one of the factors that affect the polymerization stress, can result in a relief 

of internal stresses to reduce polymerization stress (Davidson and de Gee, 1984). Flow was known 

to be influenced by the structure of the individual molecules, cross-linking of the molecules, the 

filler/matrix interfacial characteristics, reaction kinetics, and cavity configuration. It was reported 



52

that the stress relaxation caused by flow is sufficient to maintain the consistency if the C-factor of

a restoration is less than one (Miguel and de la Macorra, 2001). The choice of composite 

material and cavity form determined the flow features of composite restoration. In this experiment, 

flow could not be measured during the polymerization process. The polymerization stress under 

the compliance-allowed condition showed lower shrinkage stress, which reflected the effect of 

flow.

To identify leakages on digitalized image, a threshold should be set up. How to set a threshold 

level can be somewhat subjective. However, once it was set, imperfective margin percentage on 

each sample could be calculated objectively. These methods made it possible to compare internal 

adaptations relatively. Internal adaptation was thought to be different depending on the dentin 

adhesive, filling material, cavity configuration and the location of the interface between the 

composite and tooth cavity. 

IV. Conclusion

Micro-CT and SS-OCT could be useful non-destructive methods for evaluation of internal 

adaptation. Measured imperfective margins% in micro-CT showed different values to those of SS-

OCT, however, these two methods were relatively highly correlated. Self-etching adhesive systems 

showed fewer defective spots than etch-and-rinse adhesive systems in class I cavity.

At the gingival floor of the proximal box and pulpal floor of the cavity, flowable bulk-fill resin 

showed an inferior internal adaptation when compared with non-flowable ones. For Class II resin 

restorations, bulk-filling material of the non-flowable type could be preferable to flowable type 

ones. Polymerization shrinkage and stress, which was measured under the compliance-allowed 

setup, showed some relation to the internal adaptation. 

Within the limitations of the present study, it was shown that a higher imperfect margin

percentage was found in the cavities of the High C-factor group. Internal adaptation was different

depending on the composite material. Internal adaptations both in the High and Low C-factor 
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cavities are correlated with polymerization stress measured under the compliance-allowed 

condition. In the Low C-factor cavity group, the polymerization shrinkage stress measured under 

the zero-compliance condition did not show a significant correlation to internal adaptation. 
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국문요약

micro-CT와 SS-OCT를 이용한 복합 레진에서의 내부 적합성

평가

연세대학교 대학원 치의학과

지도교수 박성호

한승훈

I. 서론

내부 적합성은 치아 내면에서 수복물이 치아에 얼마나 잘 적합되어 있느냐를

의미하며, 수복물의 pulpal floor에서 미세간근을 측정하여 평가할 수 있다. 

내부적합성의 비파괴적 검사 방법으로 micro-CT로 치아단면을 촬영하여, 수복물의

내면적합성 평가를 할 수 있다. 다른 방법으로, OCT (optical coherence tomography)를

생체내 단면촬영을 위해 사용하기 시작했다. 이 논문의 주제는 여러 가지 다른

모양의 와동에서, 여러가지 종류의 복합레진의 내부적합성의 평가이다. 이 논문은

micro-CT와 SS-OCT를 사용하여 복합레진의 내부적합성을 평가하는 세가지 다른

실험으로 구성되어 있다. 
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II. 재료, 방법 및 결과

실험 1

재료 및 방법

12개의 우치의 순면에 각각 2개의 디스크 모양의 와동을 형성하였다. 24개의 와동은

상아질 접착제에 따라 4개의 그룹으로 나누었다: 1) 3단계 etch-and-rinse 접착제, 2) 

2단계 etch-and-rinse 접착제, 3) 2단계 self-etch 접착제, 그리고 4) one-step self-etch 

adhesive. 상아질 접착제의 적용 후에, 각 와동은 복합레진으로 충전하였다. 모든

수복물은 thermo-cycling 과정을 거친 후에, 수복물 마다 Santec OCT-2000TM (Santec Co., 

Komaki, Japan)을 이용하여, 8장의 SS-OCT 이미지를 촬영하였다. 내부적합성은 micro-

CT (Skyscan, Aartselaar, Belgium)를 통해서도 평가 되었다. 이미지 분석은 각

이미지에서 defectivce spot의 백분율 (%DS)를 계산하여 결과를 비교하였다. 각 그룹의

결과는 one way ANOVA와 Duncan analysis 로 95% 유의수준에서 검정하였다. SS-OCT와

micro-CT의 측정값은 paired t-test로 비교하고, 결과의 연관성은 Pearson correlation test로

95% 신뢰수준에서 평가하였다. 

결과

Thermo-cycling 후에 %DS 는 SS-OCT 와 micro-CT 결과 모두에서 Group 3 ≤ Group 4 < 

Group 1 ≤ Group 2 으로 나타났다. micro-CT 의 %DS 가 SS-OCT 의 %DS 보다 낮은 값을

보였다 (p<0.05). SS-OCT 와 micro-CT 의 Pearson correlation coefficient 는 r=0.787 

(p<0.05)로 나타났다. 

실험 2

재료 및 방법
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40개의 발치된 영구치에 MOD 와동을 형성한 후, 8개씩 5개의 그룹으로 나누었다. 

같은 한가지 상아질 접착제를 바른 후 다음 복합레진으로 수복하였다: Group 1- Filtek 

Z350 (3M); Group 2- SDR (Dentsply) + Z350; Group 3- Venus Bulk Fill (Heraeus Kulzer) + Z350; 

Group 4- Tetric N-ceram bulkfill (Ivoclar Vivadent); and Group 5- SonicFill (Kerr). Thermo-

mechanical load cycling후, micro-CT 이미지를 촬영하였다. 내부적합성을 imperfect margin 

백분율(IM%)로 측정하였다. IM%는 전체 변연길이에 대한 결함부위의 백분율로

정의하였다. micro-CT 이미지에서, 5군데 변연의 IM%를 측정하여 비교하였다. 

선수축율과 중합수축력을 각각의 복합레진에서 측정하였다. 중합수축력과 IM%와의

관련성을 확인하기 위해, 선형 회기분석을 사용하였다. 

결과

와동 floor에서 IM%는 와동 wall의 IM% 보다 높게 나타났다. IM%은 Groups 4, 5 ≤

Groups 1, 2 ≤ Group 3 으로 나타났다 (p<0.05). 선형 회기분석에서, 중합수축력과 IM%는

R2=0.636로, 선수축률과 IM% 사이에서는 R2=0.618으로 나타났다.

실험 3

재료 및 방법

100개의 건전한 사랑니에 3mm직경의 원통형 와동을 2가지 깊이로 형성하였다; 4mm

(High C-factor: H-CF) 혹은 1mm (Low C-factor: L-CF). 상아질 접착제 (Clearfil SE One, 

Kuraray Noritake, Japan) 를 바른 후에, 복합레진을 2층의 적층법으로 다음 세가지

서브그룹에서 적용하였다: Filtek Supreme (FS, 3M ESPE); Charisma Diamond (CD, Heraeus 

Kulzer); Amelogen Plus (AP, Ultradent). 다음 두가지 서브그룹은 한번에 충전하였다: 

Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Venus Bulk Fill (VB, Heraeus Kulzer). 

Thermo-mechanical load-cycles 후에 imperfect margin 백분율 (%IM)을 SS-OCT 이미지를
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촬영하여 계산하고 그룹별로 비교하였다. %IM는 선수축율(LS) 과의 관련성, zero-

compliance 조건 하에서의 중합수축력 (PS0)과의 관련성, compliance-allowed 조건하의

중합수축력 (PS)과의 관련성을 평가하였다.

결과

H-CF의 %IM와 L-CF의 %IM는 유의성 있게 다르게 나타났다. H-CF의 %IM는 groups 

2, 1 ≤ group 4 < groups 3, 5으로, L-CF의 %IM는 groups 2, 4 ≤ groups 1, 3 < group 5으로

나타났다. PS0 와 L-CF의 %IM 경우만 제외하고, 중합수축율과 중합수축력은 %IM과

유의성있는 상관관계를 나타내었다.

III. 결론

Micro-CT와 SS-OCT는 복합레진 수복물의 내부적합성을 평가하는데 비파괴적

방법으로 사용 될 수 있다. Micro-CT로 측정한 imperfect margin 백분율은 SS-OCT의

백분율과 다른 값을 보였다. 하지만 이들 두 가지 방법은 높은 상관관계가 있었다. I급

와동에서 self-etching 상아질 접착제는 etch-and-rinse 접착제보다 defective spot이 적게

나타났다. 

Proximal box의 gingival floor와 와동의 pulpal floor에서 flowable bulk-fill 레진은 non-

flowable bulk-fill 레진보다 낮은 내부적합성을 보였다. II급 와동에서 복합레진 수복 시

non-flowable bulk-fill 레진으로 수복한 경우에 flowable bulk-fill 레진으로 수복한

경우보다 내부적합성에서 더 나은 결과를 보였다. 중합수축량 및 compliance-allowed 

조건하에서 측정한 중합수축력은 내부적합성과 관련성을 보여주었다. 

이번 실험조건에서, 높은 C-factor 와동에서 낮은 C-factor 와동에서 보다 낮은

내부적합성을 보여주었다. 내부적합성은 복합레진에 따라 다르게 나타났다. 높은 C-

factor와 낮은 C-factor 에서의 내부적합성은 compliance-allowed 조건하에서의

중합수축력과 관련성을 보였다. 낮은 C-factor 에서, 내부적합성은 zero-compliance 
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조건하에서의 중합수축력과 관련성을 나타내지 않았다. 

_______________________________________________________________________________

핵심 되는 말

내부적합성, micro-CT, SS-OCT, optical coherence tomography, C-factor, 중합수축량, 

중합수축력, compliance, bulk-fill 복합레진, 상아질 접착제


