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ABSTRACT 

 

Transcriptional regulation of AMELX and DSPP genes by MIZ-1 

and ZBTB5 

 

Hee-Jin Noh 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Man-Wook Hur) 

 

Amelogenin (AMELX) is the main component of the developing enamel 

matrix and is essential for enamel thickness and structure. Dentin 

sialophosphoprotein (DSPP) plays an important role in the differentiation of 

odontoblast and mineral deposition. We recently found that POK family 

proteins are expressed during tooth development. To identify which POK 

proteins are potentially involved in tooth development, we investigated 

mRNA expression profiles of POK proteins during odontoblastic 

differentiation of hDPSC (human dental pulp stem cell). The mRNA 

expression pattern is variable depending on the POK gene and temporally 

regulated during odontoblast differentiation. To investigate which POK 

proteins regulate mineralization of differentiated odontoblast cells, hDPSCs 



2 

were transfected with expression vector of various POK proteins and siRNA 

against POK mRNA. Arizarin red staining of the odontoblast (day 11 or 12 

after transfection) showed that MIZ-1, ZBTB2 significantly increased the 

mineral nodules but ZBTB5 decreased. We are in the process of investigating 

how POK family proteins regulate gene expression of AMELX and DSPP. In 

the mice MEF cells transfected with MIZ-1, ZBTB2 or ZBTB5 expression 

vectors, MIZ-1 increased but ZBTB5 repressed gene expression of Amelx and 

Dspp. However, ZBTB2 didn’t affect expression of the two genes. By reporter 

assays, we found that ZBTB5 repressed longer (bp, -485 to +100) and 

minimal promoters (bp, -70 to +100) of Amelx gene. MIZ-1 activated minimal 

promoter of Amelx gene, but repressed longer promoter of Amelx gene. 

ZBTB2 repressed only minimal promoter. Our preliminary data suggest that 

POK proteins regulate AMELX and DSPP gene expression. 

 

 

 

 

 

 

 

 

Key Words: POK, transcription factor, AMELX, DSPP, tooth development 
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Transcriptional regulation of AMELX and DSPP genes by MIZ-1 

and ZBTB5 

 

Hee-Jin Noh 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Man-Wook Hur) 

 

Ⅰ. INTRODUCTION 

 

The tooth development is controlled by a ‘cross-talk’ between epithelium 

and mesenchyme. The cross-talk involves ligand–receptor interactions that 

induce the transcriptional changes necessary to orchestrate the cellular 

processes that are required for the progression of tooth development.
1 
During 

tooth initiation the ectoderm thickens and forms a placode that buds to the 

underlying neural-crestderived mesenchyme. The epithelium signals to the 

mesenchyme, which then condenses around the epithelial bud. After the bud 

stage, the epithelium starts to extend further into the mesenchyme, wrapping 

around the condensing mesenchyme and a structure known as the primary 

enamel knot is created at its center. Enamel knots instruct the patterning of 
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tooth crown and determine the location and height of tooth cups. Cervical 

loops fold around the condensing mesenchyme. At the late-cap to early-bell 

stages, high levels of apoptosis occur within the enamel knot, leading to the 

eventual loss of the structure and silencing of the signaling center. During the 

bell stages, cyto-differentiation occurs. The adjacent layer of epithelial cells 

differentiates into ameloblasts which secrete the enamel matrix, while 

mesenchyme differentiates into odontoblasts producing dentin.
2-9

  

Ameloblasts secrete the key enamel protein amelogenin. Amelogenin 

plays a key role in regulating proper enamel mineralization and is believed to 

regulate its own replacement by the mineral phase to create a woven 

hierarchical architecture that accounts for the unique material properties of 

enamel.
10

 Dental enamel is the hardest tissue in the body and cannot be 

replaced or repaired, because the enamel secreting cells, ameloblasts, are lost 

at tooth eruption. Amelogenin proteins constitute 90% of the extracellular 

matrix secreted by ameloblasts, and these proteins are cleaved in a regulated 

process during enamel maturation.
11,12

 Several mutations in the human X-

chromosomal amelogenin (AMELX) gene have been reported that lead to X-

linked amelogenesis imperfecta (AI)1.
13-18

 AI 1 is an inherited enamel defect 

characterized by phenotypic variability in which patients present with 

hypoplastic defects (thin pitted or grooved enamel) and/or hypomineralization 

where the enamel mineral content is decreased.
11

 Therefore, X-linked AI 

provides strong evidence that amelogenin is critical for normal enamel 

formation.  
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Amelogenin expression is ameloblast specific and developmentally 

regulated at the temporal and spatial level.
19-25

 Also, amelogenin expression is 

regulated at both the transcriptional and post transcriptional levels.
1
 A 2263-

nucleotide proximal promoter element from the mouse X-chromosomal 

amelogenin gene has been demonstrated by transgenic mouse analysis to 

recapitulate the spatiotemporal expression pattern of the endogenous 

amelogenin gene.
22

 Homologies (70% identity) in the 300-nucleotide region 

upstream of the transcription initiation site exist between the murine, bovine, 

and human X-chromosomal amelogenin gene, suggesting that this region is 

likely involved in the transcriptional regulation of tissue-specific amelogenin 

gene expression. The promoter contains a reversed CCAAT box that is four 

base pairs downstream from the C/EBPα binding site. The CCAAT/enhancer-

binding protein α (C/EBPα) plays a key role in the developmentally regulated 

expression of the amelogenin gene at the transcriptional level. Msx2 interferes 

with the binding of C/EBPα to its cognate site in the mouse amelogenin 

minimal promoter by protein-protein interaction, although Msx2 itself does 

not bind to the same promoter fragment.
26

 NF-Y and C/EBPα synergistically 

activate the mouse amelogenin gene in a manner that can contribute to its 

physiological regulation during amelogenesis.
27

 Foxj1 and Dlx2 

independently activate the amelogenin promoter.
28

  

Odontoblasts synthesize and secrete type I collagen and major 

noncollagenous protein, Dentin sialophosphoprotein (Dspp).
29 

DSPP is a 

phosphorylated protein representing a major component, and essential for 

dentinogenesis.
30, 31 

DSPP is expressed predominantly in odontoblasts and 
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transiently in preameloblasts as well as at low levels in bone.
32-34

 The DSPP 

genes of mouse, rat, human, and pig have been cloned.
35-38

 The DSPP gene 

consists of five exons and four introns. The DSP domain is found at the NH2 

terminus (exons 1–4 and the part of exon 5), whereas the DPP sequence is 

located at the COOH region (remainder of exon 5).
38-40

 Dspp processing by 

tolloid-related protein 1 or by bone morphogenic protein 1 yields mature 

dentin sialoprotein (Dsp) and phosphophoryn (pp) proteins,
41

 which are 

critical for dentin mineralization.
42

 The DSPP expression level in rat long 

bone is about one-four hundredth that of rat dentin, suggesting that the 

function of DSPP is involved in tooth formation and mineralization.
34 

Mutations of the human DSPP gene are associated with dentinogenesis 

imperfecta type II and type III.
43,44

 Patients with these diseases present with 

discolored teeth, enlarged pulp chambers that fill in with mineralized matrix, a 

wider predentin zone, decreased dentin width, hypomineralization, and the 

prevalence of pulp exposures. Dspp-deficient mice have teeth that display 

dentin mineralization defects that are similar to those in human dentinogenesis 

imperfecta type III, indicating that Dspp plays a critical role in odontoblast 

differentiation and dentinogenesis.
45,46

 Homologies (88% identity) in the 400 

nucleotide region upstream of the transcription initiation site exist between rat, 

mouse and human DSPP gene and higher homologies identity (94%) was 

found between rat and mouse in the -405 bp sequence region.
39,47-48

 Sequence 

conservation in the proximal promoter region between different species often 

suggests the presence of functional regulatory elements. The DSPP proximal 

promoter region conserved sequences in rat, mouse and human genes are SRE, 
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MSX-1, Inf.1, DRSII, and GRE (glucocorticoid responsive element) sites, as 

well as CCAAT box sequence. Transactivating factors capable of binding to 

some of these known conserved cis-element sites are likely to control DSPP 

gene transcription.
 49

 The human DSPP gene promoter contains TATA and 

CAATT box sequences.
39

 Transcription factors that recognize the CCAAT 

motif have been identified, such as CCAAT/enhancer-binding protein 

(C/EBP), CAAT-box transcription factor (CTF/NF-I), and CP1 (NF-Y/CBF).
50 

Furthermore, C/EBPβ and NF-Y mediate DSPP expression and odontoblast 

differentiation.
51

 Homeoproteins Msx2 and Dlx5 transcriptionally control the 

proximal promoter of DSPP gene and these genes are in opposite direction by 

competing with homeodomain response element (HRE, TAATT).
 52 

There are nearly 200 human BTB/POZ domain-containing proteins. 

BTB/POZ domain proteins having one or more Krüppel-like zinc-fingers are 

classified as the POK family. The N-terminal POZ domain has an important 

role in forming homo- or hetero-dimers and interacting with other proteins, 

while the C-terminal Krüppel-like zinc-finger domain (C2H2) recognizes and 

binds to specific DNA sequences.
53-56

 POK family proteins that have been 

relatively well characterized include B-cell CLL/lymphoma 6 (BCL6), factor 

binding IST protein-1 (FBI-1)/leukemia-/lymphoma-related factor, 

hypermethylated in cancer 1 (HIC1), promyelocytic leukemia zinc-finger 

(PLZF) and Myc-interacting zinc-finger-1 (MIZ-1). Aberrant expression of 

some POK family proteins, including BCL6, FBI-1 and HIC1, has been 

associated with cancers, such as leukemia and various spontaneous malignant 

tumors.
57-60

 PLZF controls the development of invariant natural killer T cell 
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effector function and the maintenance of spermatogonial stem cells.
61,62

 MIZ-

1, a potent transcriptional activator of CDKN1A, interacts with various 

oncoproteins, such as c-MYC, BCL6, ZBTB4 and GFI-1, to repress 

transcription of genes involved in cellular differentiation and metabolism.
58, 63-

65
 Recently, some novel POK family proteins have been characterized as 

transcriptional regulators of genes that control cell proliferation.
66-73

 Although 

POK family proteins appear to play key roles in the various cell regulatory 

progress described above, the functions of many of the abovementioned POK 

family proteins remain largely unknown.
55 

Dentin is a calcified tissue that is characteristically similar in 

composition to bone.
46

 Recently, some of POK proteins were shown to be 

related to bone formation or degradation. FBI-1, also known as 

OCZF(osteoclast derived zinc finger), regulates osteoclastogenesis.
74-76

 

ZBTB16 regulate a Runx2-independent pathway during the dexamethasone 

induced osteogenic differentiation of DFCs.
77,78

 FAZF participates in the 

regulation of osteoblastic differentiation.
79

 ZNF450, FAZF
 
are induced by 

BMP protein that plays regulatory roles in bone or tooth development.
79,80 

Gene expression profile analysis of tooth bud epithelium at initiation stage 

(E10.5) and bell stage (E16.5) showed that Zbtb16, Zbtb7a and Zbtb7b were 

up-regulated by 5, 3.1 and 2.8 fold, respectably at E16.5.
 81

 These results 

potentially suggest that POK proteins may regulate tooth development.
 

I recently found that POK family proteins are expressed in hDPSC 

(human dental pulp stem cell) during odontoblastic differentiation. mRNA 

expression of the tested POK genes is temporally regulated and is variable 
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depending on the POK gene during odontoblastic differentiation of hDPSC. I 

investigated whether POK family proteins regulate AMELX and DSPP 

expression during tooth development. I found that POK family protein 

members such as MIZ-1 and ZBTB5 may regulate odontoblastic 

differentiation by transcriptionally regulating AMLEX and DSPP genes. 
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Ⅱ. METHERIALS AND METHODS 

 

1. Cell culture and transient transfection assays 

HEK293, MEF, LS8, hDPSC (CEFO Research Center, Seoul, Korea) 

cells were maintained in Dulbecco's modified Eagle's medium(DMEM), 

supplemented with 10% fetal bovine serum (FBS), 100 μg/ml streptomycin 

and 100 units/ml penicillin and grown at 37 °C in a humidified, 5% CO2 

incubator.
82

 All cell culture media and supplements were from Gibco-BRL. 

For odontoblastic induction, hDPSCs were cultured in DMEM supplemented 

with 10% fetal bovine serum, antibiotics, 50 mg/mL ascorbic acid (Sigma-

Aldrich, St-Louis, Mo, USA), 10 mmol/l sodium b-glycerophosphate (Sigma-

Aldrich, St-Louis, Mo, USA), and 10 nmol/l dexamethasone (Sigma-Aldrich, 

St-Louis, Mo, USA).  

Various combinations of the plasmids pGL2-minimal-Amelx-Luc, pGL2-

longer-Amelx-Luc, pcDNA3.1, pcDNA3.1-MIZ-1, pcDNA3-ZBTB2 or 

pcDNA3-ZBTB5 were transiently transfected into HEK293 using 

Lipofectamine Plus reagent (Invitrogen, Carlsbad, CA, USA). After 24 to 36 h 

of incubation, transfected cells were harvested and analyzed for luciferase 

activity using a Microplate LB 96V luminometer (EG&G Berthold). All 

reactions were performed in triplicate. Reporter activity was normalized to co-

transfected β-galactosidase activity, or total cellular protein, to determine 

transfection efficiencies. 
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2. Electroporation 

Electroporation was performed using a Neon Transfection System 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. 

MEF cells were washed with PBS and resuspended in electroporation buffer 

containing plasmid DNA, and the cells then electroporated (condition: volts 

1350 V, pulse width 30 ms, pulse number 1) using a 100 μl tip. After 

electroporation, cells were suspended in DMEM medium and cultured 

 

3. Alizarin Red Staining 

hDPSCs were incubated with odontoblastic induction medium for 14 

days, and mineralization was assessed at 0, 7, and 14 days by staining with 

alizarin red (Sigma-Aldrich, St-Louis, Mo, USA). hDPSCs cultured in 

DMEM supplemented with 10% bovine serum were set as the control. Briefly, 

fix cells 1ml 10% formaldehyde for minutes at room temperature. The cells 

were washed with distilled water. 1% alizarin red (pH 5.5) applied to the cells 

for 30 minutes at room temperature with gentle agitation and then the cells 

were washed with distilled water and allowed to dry. 

 

4. Total RNA isolation and semi-quantitative RT-PCR 

Total RNA was isolated from cells using TRIzol reagent (Invitrogen, 

Carlsbad, CA, USA). cDNA was synthesized using 2 μg of total RNA, 

random hexamers (10 pmol) and Oligo-dT(10 pmol), and Superscript reverse 

transcriptase II (200 units) in a total volume of 20 μl using a reverse 

transcription kit (Invitrogen, Carlsbad, CA, USA). PCR was performed using 
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the following amplification conditions: 94 °C denaturation for 3 min, 25, 30, 

35 or 40 cycles of amplification reaction (94 °C for 30 s, 55 °C for 30 s, 72 °C 

for 30 s), and a final extension reaction at 72 °C for 5 min. The 

oligonucleotide primers sets used in semi-RT-PCR analysis were listed in 

Table1. 

 

5. Quantitative real-time PCR (qPCR) analysis  

Quantitative RT-PCR reactions were conducted with SYBR Green PCR 

Master Mix (Applied Biosystems) using gene-specific primers in an ABI 

PRISM 7300 RT-PCR System. All reactions were performed in triplicate. 18S 

ribosomal RNA was measured as a control. I designed quantitative real time 

PCR primers. The oligonucleotide primers sets of RT-qPCR were used as 

listed in Table2. 

 

6. Knock down of endogenous MIZ-1, ZBTB2 and ZBTB5 expression by 

siRNA 

siRNA against MIZ-1, ZBTB2 and ZBTB5  mRNA were synthesized in 

duplex and purchased from Bioneer (Bioneer, Daejeon, South Korea). siRNA 

(100 pmoles) were transfected into hDPSCs using Lipofectamin RNAiMAX 

Reagent (Invitrogen, Carlsbad, CA, USA). The siRNA were used as listed in 

Table3. 
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7. Western blot analysis 

Cells were harvested and lysed in radioimmunoprecipitation assay (RIPA) 

buffer. Cell extracts (30 mg) were separated using 12% sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), transferred onto 

ImmunBlot Polyvinylidene Difluoride (PVDF) membranes (BioRad, 

Philadelpia, PA, USA) and blocked with 5% skim milk (BD Biosciences, San 

Jose, CA, USA) or bovine serum albumin (Sigma-Aldrich, St-Louis, Mo, 

USA). Membrane blots were incubated with antibody against GAPDH, FLAG, 

or MIZ-1 followed by incubation with anti-mouse or rabbit secondary 

antibodies conjugated to Horseradish peroxidase (Vector Laboratories). 

Protein bands were visualized using an ECL kit (PerkinElmer, Waltham, MA, 

USA). 

 

8. Biotin-Streptavidin oligonucleotide pull-down assay  

Cells were lysed in HKMG (10 mM HEPES, pH 7.9, 100 mM KCl, 5 

mM MgCl2, 10% glycerol, 0.1% NP-40 and 1 mM dithiothreitol) buffer and 

the extracts incubated with 1 g biotinylated double-stranded oligonucleotides 

for 16 hr. Oligonucleotide probes were annealed by heating at 95 ◦C for 5 min, 

cooled slowly to room temperature and pull-down procedures performed as 

reported elsewhere. Oligonucleotides sequences were (only top strands are 

shown): Amelx promoter element #1, 5'-AGA AAG AAC ACC AGC GAT 

TG-3' (20mer); element #2, 5'-CAA GAA TGG GGA TTC AAT CC-3' 

(20mer); element #3, 5'-TTG CTA GAA CTG AGA CGT CG-3' (20mer) ; 

element #4, 5'-CGA CTA TAT GCA CTA ATC AC-3' (20mer); element #5, 5'-
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CAT GAT ATA AAT TGG GGC AC-3' (20mer) ; and putative MRE, 5'-TTT 

CAT TCA GAA ACC TGA TTG GCT GTT CAA-3' (30mer). 

 

9. Chromatin immunoprecipitation (ChIP) 

Cells were fixed with formaldehyde (final 1%) to crosslink proteins to 

DNA promoters. ChIP procedures were then performed as reported 

elsewhere.
74

 For detection of transcription factor binding, chromatin was 

immunoprecipitated with antibodies against MIZ-1 and FLAG-tag. 

Immunoglobulin G (IgG) and 3’-untranslated region (UTR) were used as 

negative controls. PCR reactions were conducted using the following 

oligonucleotide primer sets designed to amplify the regions of interest: 

element #1 of Amelx promoter (forward, 5'-AAC ACC AGC GAT TGT GGA 

AT-3' ; reverse, 5’- GTC AAG TTT CTC CAG TGT AC-3’), element #4 of 

Amelx promoter (forward, 5'- 5'-AAC ACC AGC GAT TGT GGA AT-3'; 

reverse, 5’- ATT TAT ATC ATG CAG GGC AC-3’), Amelx 3’-UTR (forward, 

5'-AGG AGC AGG CCT TCA AGA AA-3'; reverse, 5’-TCT TTT CCT CTA 

CTC GGT TG-3’)  
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Table 1. Nucleotide sequences of semi-quantitative RT-PCR oligonucleotide 

primers of POK protein genes, AMELX and odontoblastic marker genes, such 

as DSPP and DMP-1 

 

Oligopeptide Sequence 

Kr-pok 
Sense 

Antisense 

5’- GAAGATGATGATGATGAGGAGGA-3’ 

5’- CTCACAGAG AAGGCCTATT CAGA-3’ 

ZBTB5 
Sense 

Antisense 

5’-TTA ATTAAATCAG GGCAGTT-3’ 

5’-TCC TGCAATGAAGGATG-3’ 

FBI-1 
Sense 

Antisense 

5’-TTCA CCAGGCAGGA CAAGCT-3’ 

5’-AAGAACCAC ATGCGCGTG-3’ 

Th-POK 
Sense 

Antisense 

5’-AAGCTGGT GCGCAAACG-3’ 

5’-ACACAGGC GAGAAGCCCTT-3’ 

MIZ-1 
Sense 

Antisense 

5’-CAGC CGTCACTCAG CTCA-3’ 

5’- ATCAGC AAAGCTGTGA AGCAAGT-3’ 

BCL6 
Sense 

Antisense 

5’-AATGAGTGTGACTGCCGCTTCT-3’ 

5’-CAAGACCGTCCATACCGGTG-3’ 

ZNF509 
Sense 

Antisense 

5’-GATCGGATCCGACCCTGTTGCTACCCAC-3’ 

5’-GATCCTCGAGAGAGTGGCGTGATTTTAAAAA-3’ 

KAISO 
Sense 

Antisense 

5’-GATT CTGCCCACAA AGGA-3’ 

5’-A ATCTAACCCA GGCCCTGTT-3’ 

ZBTB2 

Sense 

Antisense 

5’-GATCGGTACCGATTTGGCCAACCATGGACT-3’ 

5’-GATCGCTAGCTCAAACTTGGTCAGGGTGAGA-3’ 
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GAPDH 
Sense 

Antisense 

5’-ACCACAGTCCATGCCATCAC-3’ 

5’-TCCACCACCCTGTTGCTGTA-3’ 

AMELX 
Sense 

Antisense 

5’-TCCCCCAGCAACCAATGAT-3’ 

5’-GAACATCGGAGGCAGAGGTG-3’ 

DSPP 
Sense 

Antisense 

5’-GAGGATAAAGGACAACATGGAAT-3’ 

5’-AAGAAGCATCTCCTCGGC-3’ 

DMP-1 
Sense 

Antisense 

5’-ACAGGCAAATGAAGACCC-3’ 

5’-TTCACTGGCTTGTATGG-3’ 

 

Table 2. Nucleotide sequences of RT-qPCR oligonucleotide primers of Amelx 

and Dspp mRNA 

 

Oligopeptide Sequence 

Amelx 
Sense 

Antisense 

5’-CCCCTGTCCCCCATTCTT-3’ 

5’-TCCCGCTTGGTCTTGTCTGT-3’ 

Dspp 
Sense 

Antisense 

5’-CGAATCTAACGGAAGTGACGAAA-3’ 

5’-CTCCACGGCTGCCACTCT-3’ 

18S 
Sense 

Antisense 

5’-CCCCTTCATTGACCTCAACTAC-3’ 

5’-TCTCGCTCCTGGAAGATGG-3’ 
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Table 3. Nucleotide sequences of siRNA against MIZ-1, ZBTB2 and         

ZBTB5 mRNA 

 

Oligopeptide Sequence 

MIZ-1 
Sense 

Antisense 

5’-GAAGGCCGAGAUCAGCAAA(dTdT)-3’ 

5’-UUUGCUGAUCUCGGCCUUC(dTdT)-3’ 

ZBTB2 
Sense 

Antisense 

5’-CUCCACUCCAAUGAGGUU(dTdT)-3’ 

5’-AACCUCAUUGGGAGUGGAG(dTdT)-3’ 

ZBTB5 
Sense 

Antisense 

5’-GUGUGUACUUGUAGAGAGU(dTdT)-3’ 

5’-ACUCUCUACAAGUACACAC(dTdT)-3’ 
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Ⅲ. RESULTS 

 

1. Odontoblastic differentiation of hDPSCs 

DPSCs are mesenchymal stem cells (MSC) that are present in the core 

region of the pulp.
86

 These cells can differentiate into odontoblast-like cells, 

pulpal fibroblasts, adipocytes, and neural-like cells. hDPSCs abundantly 

express AMELX and DSPP proteins in differentiating odontoblasts. To test 

odontoblastic differentiation capability of hDPSCs, hDPSCs were cultured 

with induction medium(DMEM supplemented with 10% FBS, antibiotics, 50 

μg/ml ascorbic acid, 10 mmol/l sodium β-glycerophosphate, and 10 nmol/l 

dexamethasone) for 14 days. Alizarin red staining was used to evaluate 

calcium-rich deposits in the cell cultured with normal medium or induction 

medium on day 0, 7 and 14 post induction. The early hDPSCs show flat, 

spindle-shape, fibroblast-like morphology. At day 0, there was no difference 

in staning of the hDPSCs grown in normal medium and odontoblasic 

induction medium. At day 7, the hDPSCs cultured in normal growth medium, 

are elongated and proliferate. But the hDPSCs grown in odontoblasic 

induction medium are polygonal in shape with more regular dimensions and 

the cells show mild in alizarin red staining, indicating an initiation of mineral 

deposit. The mineral deposit was markedly increased on 14 day of culture in 

odontoblastic differentiation medium (Figure 1A, B).  
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Figure 1. Odontoblastic differentiation of hDPSCs and mineralization. (A) 

The microscopic images of the hDPSCs cultured with normal growth 

medium(DMEM supplemented with 10% FBS, antibiotics) or with 

odontoblasic induction medium(DMEM supplemented with 10% FBS, 

antibiotics, 50 μg/ml ascorbic acid, 10 mmol/l sodium β-glycerophosphate, 

and 10 nmol/l dexamethasone) for 14 days. The microscopic images were 

taken at day 0, 7 and 14. (scale bar, 50 μm) (B) The mineralization of hDPSC 

was analyzed by alizarin red S staining of the cells at day 0, 7 and 14, post 

induction.  
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2. mRNA expression of POK, AMELX and DSPP genes during 

odontoblastic differentiation of hDPSCs 

To examine mRNA expression profiles of POK, AMELX and 

odontoblastic marker gene, such as DSPP and DMP-1 during odontoblastic 

differentiation of hDPSCs, hDPSCs were cultured in odontoblasic induction 

medium for 20 days. Total RNA was isolated daily and mRNA level was 

measured by semi-quantitative RT-PCR. Consistently, the expression of 

AMELX and odontoblast-related genes, such as DMP-1 and DSPP, was 

significantly enhanced by culturing the cell in the odontoblasic induction 

medium (Figure 2A). Interestingly, I found that POK proteins were highly 

expressed during odontoblast differentiation. The mRNA expression pattern is 

variable depending on the POK gene and expression is temporally regulated 

during odontoblast differentiation. Also, the expression patterns of POK genes 

were largely similar to AMELX and DSPP genes (Figure 2B). The data 

suggested that POK proteins may regulate expression of the AMELX and 

DSPP genes.  
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Figure 2. The mRNA expression pattern of POK family genes, AMELX, 

DSPP and DMP-1 during odontoblastic differentiation. Messenger RNA 

expression was analyzed by semi-quantitative RT-PCR. (A) The mRNA 

expression of AMELX, DSPP and odontoblastic marker gene (DMP-1) in 

hDPSCs over 20 days of odontoblastic differentiation. The mRNA transcript 

levels of AMELX, DSPP and DMP-1 genes were quantified. (B) The mRNA 

expression of POK proteins in hDPSCs during odontoblastic differentiation 

for 20 days. GAPDH was used as internal control. mRNA level normalized 

with GAPDH mRNA. 
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3. MIZ-1, ZBTB2 and ZBTB5 regulate mineralization in hDPSCs 

The above data showed that POK proteins may regulate mRNA 

expression of AMELX and DSPP genes, and thereby may also regulate 

odontoblast differentiation and mineralization. I investigated the possibility by 

gain or loss of function of POK proteins experiments. hDPSCs were 

transfected with expression vector of various POK proteins and siRNA against 

POK mRNA. At day 11, the hDPSCs cultured in odontoblast differentiation 

medium only were not stained by alizarin red, but ectopic MIZ-1 significantly 

increased mineral deposit compared to control, ectopic ZBTB2 or ZBTB5 

(Figure 3A). At day 12, the hDPSCs grown with odontoblast differentiation 

medium only were significantly stained by alizarin red, but knock down of 

MIZ-1 or ZBTB2 decreased mineral deposit. Interestingly, loss of ZBTB5 

highly increased the mineral deposit (Figure 3B). These results suggested that 

MIZ-1, ZBTB2 and ZBTB5 may affect differentiation of hDPSCs and 

mineralization. MIZ-1 may be a key protein promoting odontoblast 

differentiation. And ZBTB5 may be a protein inhibiting odontoblast 

diffentiation.   
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Figure 3. The POK proteins regulate mineralization of differentiated hDPSCs. 

(A) Alizarin Red-S (AR-S) staining for the mineralization of hDPSCs 

overexpressing MIZ-1, ZBTB2 or ZBTB5. hDPSCs transfected with 

expression vector of MIZ-1, ZBTB2 or ZBTB5 were cultured with 

odontoblastic induction medium (DMEM supplemented with 10% fetal 

bovine serum, antibiotics, 50 μg/ml ascorbic acid, 10 mmol/l sodium β-

glycerophosphate, and 10 nmol/l dexamethasone) for 11 days, and then the 

cells were fixed and stained with AR-S. Control, cells was transfected with 

pcDNA3.1. (B) Alizarin Red-S (AR-S) staining of hDPSCs transfected with  

siRNA against MIZ-1, ZBTB2 or ZBTB5 mRNA. The cells were cultured 

with odontoblastic induction medium for 12 days, fixed and stained with AR-

S. 
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4. MIZ-1 and ZBTB5 regulate Amelx and Dspp gene 

I found that MIZ-1 and ZBTB5 affect mineralization of hDPSCs and 

expression of MIZ-1 and ZBTB5 tend to increase 1-3 days prior to expression 

of Amelx and Dspp genes. I suggested that MIZ-1, ZBTB2 and ZBTB5 might 

regulate odontoblast differentiation by regulating transcription of AMELX and 

DSPP genes. I investigated whether MIZ-1, ZBTB2, and ZBTB5 regulate 

Amelx and Dspp genes. MEF cells were transfected with MIZ-1, ZBTB2 or 

ZBTB5 expression vectors and isolated mRNA after 48 hr. By qRT-PCR 

(quantitative real-time PCR) analysis, I found that MIZ-1 increased but 

ZBTB5 repressed endogenous Amelx gene expression (Figure 4A). But 

ZBTB5 repressed endogenous Dspp gene expression (Figure 4B). ZBTB2 

didn’t affect expression of the Amelx and Dspp (Figure 4A, B). ZBTB2 may 

influence the two genes expression by other regulatory mechanism or the 

assay MEF system I am using may be inappropriate for this study, MEF, and 

may lack of certain regulation factor. These data suggested that MIZ-1 and 

ZBTB5 regulate the mRNA expression of Amelx and Dspp genes and thereby 

mineralization of hDPSCs. 
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Figure 4. MIZ-1 and ZBTB5 regulate endogenous Amelx and Dspp mRNA 

expression. (A, B) RT-qPCR analysis. MEF cells were transfected with the 

expression vector of MIZ-1, ZBTB2 or ZBTB5 by electroporation. Total 

mRNA was isolated from the cells. The endogenous mRNA expression of 

Amelx (A), Dspp(B) were measured by RT-qPCR at 48 hr post transcription. 

Normalized to 18S ribosomal RNA.  
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5. ZBTB5 represses Amelx promoter via -485 to -71 bp region, and MIZ-1 

activates Amelx promoter by acting on the -70 to +100 bp region  

AMELX is necessary for tooth development and matrix mineralization. 

The above data showed that MIZ-1 and ZBTB5 regulated mRNA expression 

of Amelx. To explore the regulatory mechanism of Amelx by the two POK 

proteins, I analyzed potential transcription factor binding sites on the Amelx 

promoter and then examined the effects of MIZ-1, ZBTB2 or ZBTB5 on 

Amelx promoter activity. Promoter analysis using the MacVector program 

revealed binding element for MIZ-1 (bp, -472 to -454 and -406 to -401), Sp1 

(bp, -472 to -463, -443 to -434, -160 to -151, -11 to -2 and +6 to +15), p53 (bp, 

-343 to -334 and +9 to +18) and CCAAT box (bp, -58 to -54). Previously, 

deletion analysis of mouse Amelx promoter has shown that the bp, -70 to +51 

region functions as a minimal promoter.
50

 I prepared two different Amelx 

promoter reporter fusion constructs with long 5’ upstream regulatory region 

(bp, -485 to +100) or minimal promoter (bp, -70 to +100) (Figure 5A). 

ZBTB5 significantly repressed repoter transcription with long 5’ upstream 

regulatory region, but not so effctively on the minimal promoter (Figure 5B). 

MIZ-1 activated the minimal promoter of Amelx gene, but repressed Amelx 

gene promoter with long 5’ upstream regulatory region (Figure 5C). ZBTB2 

repressed only the promoter with long 5’ upstream region (Figure 5D). These 

results suggested that the sequence located between bp, -485 to -70 region 

may be involved in repression of transcription by ZBTB5 and -70 to +100 

region may be involved in activation of transcription by MIZ-1. 
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Figure 5. Transcriptional regulation of Amelx by MIZ-1, ZBTB2 and ZBTB5. 

(A) Diagram of the Amelx promoter–luciferase gene fusion reporter constructs 

tested. +1 (Tsp), transcription start point. , MIZ-1; , p53; , Sp1; , CAAT 

Box; , E-Box. (B-D) Transient transcription assays. The reporter plasmid and 

the expression vector of ZBTB5 (B), MIZ-1 (C), or ZBTB2 (D) were 

transiently co-transfected into MEF cells and analyzed for luciferase activity. 

Luciferase activity was measured 48 hr after transfection and normalized with 

co-expressed -galactosidase activity. Data presented are the average of three 

independent assays. Error bars represent standard deviations.
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6. Oligonucleotide pull-down assays of MIZ-1 binding on Amelx promoter 

To study how MIZ-1 regulate the transcription of Amelx, I divided the 5’ 

upstream regulatory region of Amelx promoter (bp, - 485 to +100) into 5 

regions, based on putative transcriptional factor binding sites. #1 element (bp, 

-471 to -334) included MIZ-1, Sp1 and p53 binding sites. #2 element (bp, -

422 to -276) included MIZ-1 and p53 binding sites. #3 element (bp, - 301 to -

155). #4 element (bp, -170 to -25) lncluded Sp1 and CCAAT box. #5 element 

(bp, -36 to +100) included E-box, Sp1 and p53 binding sites (Figure 6A). I 

examined which regulatory elements of the Amelx promoter were important 

for MIZ-1 binding using oligonucleotide pull down assays in HEK293A cells. 

MIZ-1stongly bound to #1 (bp, -471 to -334) and #4 (bp, -170 to -25) 

elements (Figure 6B). Although overall homology between #1 (bp, -471 to -

334) and #4 (bp, -170 to -25) is only 40%, there are highly homologous region 

overlapping with each other #1; bp, -380 to -359, #4; bp, -70 to -49. The #4 

highly homologous region (called MRE) is bound by MIZ-1 and may 

potentially important in transcription activation of Amelx gene (Figure 6C). 

Oligonucleotide pull down assays showed that MIZ-1 bound to MRE, which 

may be critical in transcriptional activator of Amelx gene (Figure 6D, E).  

  



31 

   



32 

Figure 6. MIZ-1 binds to the MRE of Amelx promoter. (A) Diagram of the 

Amelx promoter structure. Key regulatory elements such as MIZ-1 binding 

element, p53-binding elements, Sp1-binding CCAAT box and E-box are 

indicated. , MIZ-1; , p53; , Sp1; , CAAT Box; , E-Box. (B) 

Oligonucleotide pull-down assays of MIZ-1 binding on 5 regulatory elements 

of Amelx promoter. Streptavidin agarose beads linked to biotinylated 

oligonucleotides probes (#1 to #5) were incubated with the HEK293 cell 

lysates with ectopic MIZ-1 expression. The precipitates were analyzed by 

western blotting using anti-Miz-1 antibody (C) Nucleotide alignment of 

homology of #1; bp, -380 to -359, #4; bp, -70 to -49 elements nucleotide 

sequence by MacVoctor program. (D) Diagram of the Amelx promoter 

structure. MRE, MIZ-1 binding element (bp, -70 to -46). (E) Oligonucleotide 

pull-down assays of the MRE of Amelx promoter. The oligonucleotide pull-

down assay is described above.  
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7. MIZ-1 activates transcription of Amelx by binding to the MRE  

The above data showed that MIZ-1 activates transcription of Amelx 

promoter and binds to the MRE (Figure 5, 6). Nucleotide sequence aligment 

of mammalian of Amelx genes showed that the MREs are highly conserved, 

which suggest that the MRE may be critical element in transcription of 

mammalian Amelx genes. The MRE also contains highly conserved CCAAT 

box (Figure 7A). To test presence of an element critical in transcription 

regulation, I divided the 5’ upstream regulatory region of Amelx promoter (bp, 

- 485 to +100) into 5 regions, based on putative transcriptional factor binding 

sites. #1 element (bp, -471 to -334) included MIZ-1, Sp1 and p53 binding 

sites. #2 element (bp, -422 to -276) included MIZ-1 and p53 binding sites. #3 

element (bp, - 301 to -155). #4 element (bp, -170 to -25) included Sp1 and 

CCAAT box. #5 element (bp, -36 to +100) included E-box, Sp1 and p53 

binding sites. Oligonucleotide pull down assays showed that MIZ-1 strongly 

bound to #1 (bp, -471 to -334) and #4 (bp, -170 to -25) elements of Amelx 

promoter. To identify MIZ-1 binding site in #4 elements, I analyzed DNA 

sequences of #1 and #4 for highly homologous sites. The -380 to -359 bp 

region of #1 element was similar to the -75 to -46 bp region of #4 element, 

which was a MRE. To test the fuction of MRE – like element of #1 region and 

MRE element of #4 region, I introduced mutations into #1 or MRE region of 

the reporter constructs. To test whether MIZ-1 acts as transcriptional activator 

by binding to #1 region or MRE, I made promoter and reporter gene fusion 

constructs with mutation introduced at #1 (TGGAGAACCTTAAGTGA to 

TTTTTTTTGGATCCTTT) and MRE (TTCAGAAACCTGATTGG to 
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TTTTTTTTGGATCCTTT) (Figure 7B). LS8 cells, mouse ameloblast-like 

cells, were transfected with the reporter plasmids (pGL2-Amelx-Luc -485 bp, 

pGL2-Amelx -Luc-70 bp, pGL2-Amelx-Mt#1-Luc-485 bp, pGL2-Amelx-Mt 

#MRE-Luc-485 bp and pGL2-Amelx-Mt #1 & #MRE-Luc-485 bp) and the 

expression vector of pcDNA3.1 or MIZ-1. Transient transcription assays 

showed that transcription of Amelx-485bp promoter was up-regulated by 

ectopic MIZ-1in LS8 cells. Interestingly, MIZ-1 activate transcription of 

Amelx-70 bp promoter was potently (2.5 fold). Although the mutation of #1 

region does not affect transcriptional activation by ectopic MIZ-1, the 

mutation of MRE promoter showed markedly decreased transcription and was 

not up-regulated by ectopic MIZ-1 (Figure 7C, D). The MRE is critical in 

transcriptional activation of Amelx gene by MIZ-1.  
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Figure 7. MIZ-1 directly binds to the MRE to activate Amelx gene expression. 

(A) Nucleotide sequence alignment analysis the Amelx genes of mammalian 

MREs using MacVoctor program. (B) Schematic representation of the Amelx 

promoter (bp, -485 to +100) and luciferase gene fusion reporter constructs. #1 

region and MRE contatin potential binding sites for MIZ-1. Mutated 

nucleotides are shown in red. Tsp, +1, Transcription start point. (C, D) 

Transient transcription assays. The reporter plasmids and the expression 

vector of pcDNA3.1 or MIZ-1 were transiently co-transfected into LS8 cells 

and analyzed for luciferase activity. Luciferase activity was measured 48 hr 

after transfection and normalized with co-expressed -galactosidase activity. 

Data presented are the average of three independent assays. Error bars 

represent standard deviations. (C) Raw luciferase activity of the cell extracts 

(D) relative luciferase activity of the reporter constructs.  
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Ⅳ. DISCUSSION 

 

AMELX and DSPP are two essential genes for odontogenesis and matrix 

mineralization. Several evidences suggested that some of POK proteins may 

regulate odontogenesis. I found that some of the POK proteins were highly 

expressed during odontoblast differentiation. However, which or how POK 

proteins regulate AMELX and DSPP gene expression and influence 

odontogenesis was unknown. In this study, I found that POK gene mRNA 

expression pattern is variable depending on the POK gene and mRNA 

expression is temporally regulated during odontoblast differentiation. The 

AMELX and DSPP gene mRNA expression patterns were largely similar to 

those of POK genes. During hDPSCs differentiation into odontoblast, ectopic 

MIZ-1 or knock-down of ZBTB5 expression increased mineral deposit. In 

contrast, knock-down of MIZ-1 expression decreased mineral deposit. Also, 

other like Th-POk and Kr-pok increased mineral deposit during odontoblast 

differentiation (data not shown). 

Because several lines of evidences suggested that MIZ-1, ZBTB2 and 

ZBTB5 may regulate differentiation of hDPSCs and mineralization. I 

investigated how AMELX and DSPP gene were regulated by the above POK 

proteins, I used hDPSCs for transient transcription assays. But unfortunately I 

was unable to get enough luciferase activity to show that the MIZ-1 and 

ZBTB5 regulate the two genes. Instead, I used MEF cells which could be 

inappropriate for the study. The MEF cells may lack certain regulatory factor 



38 

to regulate the two genes. Circumvent this potential problem, I also used LS8 

cells, mouse ameloblast-like cells. 

ZBTB5 significantly repressed transcription of Amelx -485 bp promoter, 

but did not so effectively that of Amelx -70 bp promoter (Figure 5B). ZBTB5 

may regulate the gene promoter by acting on 5’ upstream regulatory region 

(bp, -485 to -70). MIZ-1 activated transcription of the Amelx -70 bp promoter 

of Amelx gene, but repressed transcription of Amelx-485 bp promoter of 

Amelx gene in MEFs. However, MIZ-1 activated transcription of the Amelx-

70 bp promoter and Amelx-485 bp promoter of Amelx gene in LS8 cells. I 

suspect that there could be LS8 cells specific transcription factors that could 

bind to the 5’ regulatory region (bp, -485 to -71) and play an activator role on 

Amelx promoter or lack repressor that bind the region. 

 MIZ-1 activates transcription mainly by acting on the -70 bp to +100 bp 

region. To find how MIZ-1 regulates Amelx promoter, the sequence from bp, -

485 to +100 of Amelx was analyzed to find MIZ-1 binding site (5’-

CCCACTCTCTGC-3’ and 5’-ATCGAT-3’) and p53 binding site
 
which was 

also shown to be bound by MIZ-1 using MAC vector program.
83

 Distal 5’ 

regulatory element contains two MIZ-1 binding sites and the proximal -70 bp 

to +100 bp region has no putative MIZ-1 binding site. However, MIZ-1 

activated transcription activity on Amelx -70 bp promoter, suggesting the 

presence of element important in transcription activation by MIZ-1. 

To test presence of an element critical in transcription regulation, I 

divided the 5’ upstream regulatory region of Amelx promoter (bp, - 485 to 

+100) into 5 regions, based on putative transcriptional factor binding sites. #1 



39 

element (bp, -471 to -334) included MIZ-1, Sp1 and p53 binding sites. #2 

element (bp, -422 to -276) included MIZ-1 and p53 binding sites. #3 element 

(bp, - 301 to -155). #4 element (bp, -170 to -25) included Sp1 and CCAAT 

box. #5 element (bp, -36 to +100) included E-box, Sp1 and p53 binding sites. 

Oligonucleotide pull down assays showed that MIZ-1 strongly bound to #1 

(bp, -471 to -334) and #4 (bp, -170 to -25) elements of Amelx promoter. To 

identify MIZ-1 binding site in #4 elements, I analyzed DNA sequences of #1 

and #4 for highly homologous sites. The -380 to -359 bp region of #1 element 

was similar to the -75 to -46 bp region of #4 element, which was a MRE. To 

test the fuction of MRE – like element of #1 region and MRE element of #4 

region, I introduced mutations into #1 or #4 region of the reporter constructs. 

Transient transcription assay showed that MIZ-1 regulate transcription of 

Amelx by binding MRE. 

MRE includes CCAAT box, which is important element for transcription 

regulation by C/EBP. Because the MRE is juxtaposed to MRE, affect 

transcriptional regulator by C/EBP positively or negatively. ZBTB5 

represses transcription of pGL2-Amelx -485 bp promoter, weakly and 

probabliy inhibit on the pGL2-Amelx -70 bp promoter. MIZ-1 activates 

transcription of Amelx gene expression by binding to the proximal Amelx 

promoter. Considering that MIZ-1 and ZBTB5 are interacted with each other, 

their interaction in transcriptional regulation of Amelx can be interesting. 

Some of POK family proteins have been reported to play critical roles in 

various biological processes, including embryonic development, cell 

differentiation, inflammation, proliferation, and apoptosis. I found that some 
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of POK proteins may play critical rule in tooth development. After tooth 

injury, the dentin-pulp complex may need to undergo complete regeneration, 

including the differentiation of various cell types and the induction of new 

protein shch as AMELX and DSPP. MIZ-1 and ZBTB5 might play a critical 

role in Amelx and Dspp expressions and reparative regeneration.  
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Ⅴ. CONCLUSION 

This study revealed that POK family proteins such as MIZ-1 and ZBTB5 

may regulate odontogenic differentiation by transcriptionally regulating 

AMLEX and DSPP genes. 

1. The POK proteins mRNA expression is temporally regulated during 

odontoblast differentiation and the expression patterns were largely 

similar for both AMELX and DSPP genes. 

2. MIZ-1, ZBTB2 and ZBTB5 may regulate differentiation of hDPSCs and 

mineralization. 

3. MIZ-1 and ZBTB5 regulate endogenous Amelx and Dspp gene expression 

in MEF cells. 

4. MIZ-1 binds to Amelx promoter, #1 (bp, -471 to -334) and #4 (bp, -170 to -

25) elements, and the MRE of #4 element (bp, -70 to -46) is more critical 

in transcriptional activation of Amelx gene. 
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ABSTRACT (in Korean) 

MIZ-1과 ZBTB5에 의한 AMELX와 DSPP 유전자의 발현조절 

<지도교수 허 만 욱> 

 

연세대학교 대학원 의과학과 

 

노 희 진 

   

AMELX 와 DSPP 는 각각 법랑질과 상아질의 형성과정에서 

중요한 유전자이다. 최근에 POK 계 단백질들이 치아형성 과정 

동안에 발현됨을 발견되었다. 따라서 본 연구자는 어떤 POK 계 

단백질이 치아형성과정에서의 관여하는지 알아보고자, 인간치수줄기세포 

(human dental pulp stem cell)에서 상아모세포로의 분화과정 동안의 

POK 계 단백질의 mRNA 발현을 살펴보았다. POK 계 mRNA 발현 패턴이 

POK 계 유전자에 따라서 다양한 발현을 나타났다. 어느 POK 계 

유전자의 발현이 hDPSCs 의 분화과정에서 중요한 역할을 하는 지를 

알아보기 위해, MIZ-1, ZBTB2 그리고 ZBTB5 를 과발현하거나, 

발현을 낮춘 후 분화의 지표인 미네랄 축적을 alizarin red S 로 
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염색하여 확인하였다. MIZ-1 과 ZBTB2 이 축적을 촉진시키고, 

ZBTB5 는 억제시킨다. 따라서 치아형성과정에서 중요한 AMELX 와 

DSPP 유전자의 발현이 MIZ-1, ZBTB2 또는 ZBTB5 에 의해 조절 

되는지를 조사하였다. MIZ-1 은 AMELX, DSPP 의 발현을 증가시키고, 

반대로 ZBTB5 는 AMELX, DSPP 의 발현을 감소시킨다. ZBTB2 의 

경우는 두 유전자 발현에 큰 영향을 미치지 않는다. 

MIZ-1 과 ZBTB5 에 의한 AMELX 와 DSPP 의 유전자 발현 조절을 

연구하였다. ZBTB5 의 경우 두 가지의 프로모터 모두에서 프로모터 

활성을 억제한다. MIZ-1 는 짧은 구조 프로모터 활성을 

증가시키지만, 긴 프로모터에서의 전사는 세포의 종류(MEF, LS8 

cells)에 따라 다른 경향을 나타내지만, 짧은 프로모터 활성은 

증가시키는 것을 확인하였다.  

전사조절기전을 조사하기위해, Amelx promoter(bp, -485 에서 

+100)를 5 가지의 지역으로 나누고 oligonucleotide pull down 

실험을 했다. #1 (bp, -471 to -334 bp) 과 #4 (bp, -170 to -25 

bp) 번 지역에서 강한 결합을 확인하였고, #1 과 #4 의 시컨스 

유사성을 확인해본 결과 높은 유사성을 지닌 위치(#1; bp, -380 to 

-359, #4; bp, -70 to -49)를 찾았다. 특히 #4 번에서의 높은 

유사성을 지닌 부위 (#4; bp, -70 to -49) 에서의 MIZ-1 결합 또한 

확인하였고, MRE 라고 명명했다. 높은 유사성을 지닌 #1 번의 

유전자 변형은 Amelx 의 프로모터 활성에 영향을 미치지는 않지만, 
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MRE 의 변이에 따라 MIZ-1 에 의한 프로모터 활성이 사라지는 것을 

확인하였다. 따라서 MRE 는 MIZ-1 에 의한 Amelx 의 전사적인 발현 

활성화에 중요한 역할을 할 것으로 생각된다.  

ZBTB5 는 AMELX 와 DSPP 의 전사적인 발현을 조절하여 

치아형성과정을 억제하고, MIZ-1 은 AMELX 와 DSPP 의 전사적인 

발현을 증가하여 치아형성과정을 촉진시키는 것으로 예상된다.  

 

 

 

 

 

 

 

 

핵심되는 말: POK 계 단백질, 전사인자, 치아형성과정, AMELX, DSPP 


