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ABSTRACT 

 

Cell type-specific proteome labeling by genetic code expansion 

 

 

Eunjin Kim 

 

 

Department of Medical Science 

The Graduate School, Yonsei University  

 

 

(Directed by Professor Hosung Jung) 

 

 
 

Analyzing gene expression of specific cells in a living organism is crucial in 

understanding complex biological systems. It has not been possible, however, to 

isolate the proteome of specific cells in vertebrates. Recently, advance in genetic code 

expansion has provided a new potential direction in achieving this aim. By using the 

tool of genetic code expansion, I expanded the genetic code of mammalian cells by 

introducing the pyrrolysyl-tRNA synthetase (PylRS)/tRNA
Pyl

 system of 

Methanosarcina mazei, a methane-producing genus of archaea. Although the amber 

(UAG) codon is a stop codon to most of organisms, Methanosarcina uses it as a sense 

codon that encodes pyrrolysine (Pyl), the 22
nd

 amino acid. Unlike eukaryotes where 

the amber codon is recognized by eukaryotic release factor 1 (eRF1) which helps the 

termination of mRNA translation, Methanosarcina expresses the tRNA (tRNA
Pyl

) 

whose anticodon recognizes the amber codon. PylRS esterifies tRNA
Pyl

 and Pyl, 
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generating the Pyl-tRNA
Pyl

 that site-specifically incorporates Pyl into the growing 

polypeptides during mRNA translation. In this thesis, I expressed PylRS and tRNA
Pyl

 

in mammalian cells and showed that the M. mazei PylRS/tRNA
Pyl

 system is functional 

in mammalian cells and orthogonal to endogenous tRNAs and tRNA synthetases. I 

also showed that the anticodon of tRNA
Pyl

 can be changed to recognize other stop and 

sense codons without compromising their compatibility with PylRS and Pyl. 

Furthermore, I showed that Pyl-derivatives containing bio-orthogonal functional 

group such as alkyne can be site-specifically incorporated into the endogenous 

proteome only when the genetic code was expanded by the PylRS/tRNA
Pyl 

system. By 

using azide-alkyne cycloaddition, the de novo proteome of genetic code-expanded 

cells could be specifically visualized. The results of this thesis show a promising 

direction for a new technique to isolate the proteome of a specific cell type from a 

living animal. 

 

 

 

 

 

 

 

 

 

Key words: De novo proteome, Genetic code expansion, Pyrrolysine, Azide-alkyne 

cycloaddition. 
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Ⅰ. INTRODUCTION 

 A conventional method to study the proteome is largely based on metabolic 

labeling, which labels all proteins in all cells in the same sample (e.g. tissue or cell 

culture) using tagged amino acids (e.g. 35S-methionine) or their analogs (e.g. L-

azidohomoalanine, or AHA) that can be used for protein synthesis. For example, 

AHAs treated in the sample enter the cells and compete with methionines for the 

enzyme, methionine aminoacyl-tRNA synthetase (MetRS). MetRS then loads the 

tRNA that recognizes the AUG codon (tRNA
Met

) to methionine or AHA. AHA-

tRNA
Met

 generated in this way is then incorporated into the AUG codon of an mRNA 

during mRNA translation
1,2

. As such, this method is intrinsically not cell-selective and 

labels all proteins being synthesized (i.e. de novo proteome) in all cells in the sample
3
. 

Genetic code expansion is a growing technique mainly investigated for site-specific 

incorporation of unnatural amino acids (UAAs) into a protein. The UAG stop codon 

(also known as amber) is one of the three universal stop codons together with UGA 

(also known as opal) and UAA (also known as ochre). In eukaryotes, these stop 
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codons are not recognized by the tRNAs but by the eukaryotic release factor 1 (eRF1) 

which terminates mRNA translation (Fig. 1A). Interestingly, a genus of euryarchaeota 

archaea, Methanosarcina uses the amber codon as a sense codon to encode 

pyrrolysine (Pyl), the 22
nd

 amino acid (Fig. 1B).  

Figure 1. mRNA translation at the amber (UAG) codon in eukaryote and 

Methanosarcina. (A) Most organisms use the UAG codon as a stop codon. 

Translation is terminated at the amber, opal and ochre (UAG, UGA and UAA) codons. 

(B) Methanosarcina species use the UAG codon as a sense codon. At the UAG codon, 

the 22
nd

 amino acid, Pyl, is incorporated into the polypeptide and translation goes on. 
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M. barkeri and M. mazei can use the amber codon as a sense codon because they have 

pyrrolysyl-tRNA synthetase (PylRS) and tRNA
Pyl 

genes.
 
PylRS esterifies tRNA

Pyl
 and 

Pyl, generating Pyl-tRNA
Pyl

. The anticodon of tRNA
Pyl

 recognizes the amber codon 

and Pyl is incorporated into the polypeptides during mRNA translation. Importantly, 

PylRS and tRNA
Pyl

 can function in other hosts when ectopically expressed, and are 

orthogonal to eukaryotic tRNAs and aminoacyl-tRNA synthetases. In other words, 

they do not show cross-reactivity with bacterial or eukaryotic tRNAs, aminoacyl- 

tRNA synthetases, and amino acids. Therefore, if a eukaryotic cell is transfected with 

the PylRS/tRNA
Pyl

 pair and supplied with Pyl, the Pyl-tRNA
Pyl

 is synthesized and 

competes with eRF1, resulting in a stochastic incorporation of Pyl at the amber codon. 

By using Pyl derivatives that are structurally similar enough to Pyl to be recognized 

by the PylRS/tRNA
Pyl

 system yet at the same time bear a bio-orthogonal functional 

group, it has now become possible to incorporate such UAAs into the amber codon in 

Escherichia coli, yeast, mammalian cells, Caenorhabditis elegans and Drosophila 

melanogaster
4,5,6,7

.  

In this thesis, I applied the PylRS/tRNA
Pyl

 system into mammalian cells to 

expand the genetic code and label de novo proteome of specific cell populations (i.e. 

transfected cells). I confirmed that the PylRS/tRNA
Pyl 

pair of M. mazei suppresses the 

amber stop codon in mammalian cells by incorporating Pyl derivatives into this codon. 

To label de novo proteome in genetic code expanded cells, an alkyne-bearing Pyl 

derivative was added to cells as a Pyl analog. And by using copper-catalyzed azide-

alkyne cycloaddition (CuAAC)
8
, the Pyl derivative can be connected to fluorescent 

molecules bearing an azide group (also known as “click chemistry”) (Fig. 2). I 

successfully ‘clicked’ fluorescence molecules to the de novo proteome bearing UAAs, 

and visualized the labeling of endogenous proteome specifically in genetic code-

expanded cells.  
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Figure 2. Visualization and purification of UAA labeled proteins by CuAAC. (A) 

A chemical reaction generally used in studying organism. An alkyne reacts with an 

azide and makes a triazole in the catalysis of copper. Cycloaddition of alkyne and 

azide is one of the reactions commercially used as click chemistry. This reaction is 

simply termed as CuAAC (Copper-catalyzed azide-alkyne cycloaddition). (B) When 

alkyne in UAA meets fluorophore tagged azide, they react and create a triazole. 

Triazole between alkyne and azide is interchangeable. Genetic code expanded 

polypeptides can be visualized by expressing the fluorophore of azide. (C) If azide is 

tagged with biotin, alkyne-UAA incorporated polypeptides can be purified by the 

biotin-streptavidin interaction. 

  



 

 

8 

After establishing the method to specific incorporation of the UAA at the amber 

stop codon by PylRS/tRNA
Pyl

 in mammalian cells, I changed the anticodon of 

tRNA
Pyl

 to recognize not only amber stop codon but also two other stop codons and 

four sense codons. Furthermore, I found that expressing multiple tRNA
Pyl

s with 

differently engineered-anticodons in the same cells allows more efficient proteome 

labeling. The results of this thesis would provide the basis to develop a new method to 

study the de novo proteome of specific cell population in a living organism at specific 

time.  
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Ⅱ. MATERIALS AND METHODS 

1. Materials 

Dulbecco’s low glucose modified eagle’s medium (DMEM-low glucose medium) 

and Fetal bovine serum (FBS) were purchased from Hyclone. Media contains 4.0 mM 

L-Glutamine and 110 mg/sodium pyruvate. Opti-MEM, Antimycotic antibiotic, 10 X 

hank’s balanced salt solution (HBSS), Click-iT cell reaction buffer kit (Catalog 

#C10269) and Click-iT protein reaction buffer kit (Catalog #C10276) were purchased 

from Invitrogen. Poly-L-lysine and paraformaldehyde were purchased from Sigma. 

Mammalian cells were plated in 12 well and 6 well culture plate from SPL. Reagent 

for transfection was Fugene 6 transfection reagent (Catalog #E2693) from Promega. 1 

X phosphate buffered saline (PBS) for washing buffer was from 20 X PBS of 

Biosesang. As analog of Pyrrolysine (Pyl), unnatural amino acids (UAAs) were Nε-

(tert-butyloxycarbonyl)-L-lysine from Bachem and N6-[(2-propynyloxy) carbonyl]-L- 

lysine from Sichem. Mounting solution was aqua-poly/mount purchased from 

polyscience. 

 

2. Mammalian cell culture 

Mammalian cells in this study were human embryonic kidney 293T (HEK293T) 

cell line. Cells were grown in 1 X antimycotic antibiotic, 10 % FBS in DMEM-low 

glucose. For fluorescent imaging analysis, cells were plated on coverslip. Glass 

coverslip was sterilized by 100 % EtOH and placed in 12 well culture plate. They 

coated with 0.1 % Poly-L-lysine (w/v) in H2O for 1 hour at room temperature. 

Confluency of cell was 20 % of 12 well culture plate when it was plated. Incubation 

was done for overnight in 37 ℃, 5 % CO2 incubator. An outline of the experimental 

schemes is illustrated in Figure 3 (Fig. 3). 
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12 

Figure 3. Experimental schemes for studying genetic code expansion in 

mammalian cells. (A) and (B) Summary about this study. Prior to labeling the 

proteome of mammalian cells by the PylRS/tRNA
Pyl

, operation of PylRS/tRNA
Pyl

 in 

the mammalian cells should be confirmed. If PylRS/tRNA
Pyl

 functions in the 

mammalian cells, proteome labeling of mammalian cells by the genetic code 

expansion is possible. Labeled proteins by PylRS/tRNA
Pyl

 can be visualized by click 

chemistry. To increase the efficiency of proteome labeling, I applied point mutation to 

anticodon of tRNA
Pyl 

whether it can recognize other stop codons and even the sense 

codons. Also, I applied multiple tRNA
Pyl

s with differently changed anticodons into the 

cells which means multiple genetic code expansion can happen at stop codons and 

sense codons. Because the concentration and duration of UAA treatment determine 

the efficiency of proteome labeling, I also measured the optimal condition of UAA 

treatment. (C) Cells were plated the day before transfection and plated on poly-L-

lysine coated coverslip. After checking the confluency and viability of the cell, DNAs 

that were needed to expand the genetic code were transfected into the cells. (a) To 

confirm the operation of genetic system of Methanosarcina in HEK293T cells, 

mCherry –TAG–EGFP was transfected as a reporter plasmid with PylRS/tRNA
Pyl

. (b) 

And to label the genetic code expanded proteins in HEK293T cells, mCherry was 

transfected as another reporter plasmid with PylRS/tRNA
Pyl

. Genetic code expanded 

and UAA incorporated proteins were visualized by the click chemistry. 
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3. Transient transfection of mammalian cells 

Before one-hour transfection, media was replaced with antimycotic antibiotic-

free, 10 % FBS in DMEM-low glucose to increase the efficiency of transfection. In 

transfection complex, the ratio of transfection reagent and DNA was 3:1 ratio. A 

plasmid for genetic code expansion (e.g. PylRS/tRNA
Pyl

) and a reporter plasmid (e.g. 

mCherry-TAG-EGFP for suppression assays, or mCherry for proteome labeling) were 

transfected in 4:1 ratio. The complex was incubated for 20 min at room temperature 

and added to cells in a drop-wise manner. After 6 hr of transfection, media was 

changed to the media that contained UAAs. 

 

4. Treatment of unnatural amino acids 

Nε-(tert-butyloxycarbonyl)-L-lysine (Fig. 4A) was dissolved in 0.1 M NaOH 

solution. And then to adjust the pH, 5 M HCl was added. N6-[(2-propynyloxy) 

carbonyl]-L-lysine was dissolved in water but has high pH which cells can’t live with 

in. So 1 M HCl was added to adjust the pH. 5 mM of these UAAs (Fig. 4B) was used 

to the cell culture media as working solution. Stock solution was 130 mM. Cells were 

incubated for at least 24 hr within the UAA contained media. 
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Figure 4. Pyrrolysine (Pyl) and unnatural amino acids (UAAs) used in this study. 

(A) Pyl is the 22
nd

 amino acid that archaea use in their metabolism. Two UAAs, (B) 

Nε-(tert-butyloxycarbonyl)-L-lysine and (C) N6-[(2-propynyloxy) carbonyl]-L-lysine, 

were typically used as Pyl analogs. Especially, N6-[(2-propynyloxy) carbonyl]-L-

lysine has an alkyne. In the catalysis of copper, an alkyne and an azide make a triazole 

(Fig. 2) which is basic reaction for click chemistry. 

 

  

Pyrrolysine

N6-[(2-propynyloxy)carbonyl]-L-lysine

Nε-(tert-butyloxycarbonyl)-L-lysine

C

B

A
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5. Click chemistry  

A) Quantitative fluorescence imaging 

The alkyne-containing proteome was labeled by BDP-FL-azide by click 

chemistry using Click-iT cell reaction buffer kit (Molecular probes, USA) with 

slight modifications. Specifically, Component A was replaced with 0.1 M Tris-HCl 

(pH 8.5). Component C was replaced with 5 mM ascorbic acid. Instead of Alexa 

fluor 488, BDP FL azide that is a green fluorophore (maximum excitation :503 nm, 

maximum emission :509 nm) was used as a counterpart with alkyne which can 

make copper-catalyzed triazole formation. Cells that were plated on coverslip were 

washed three times with 1 X HBSS (with calcium) and fixed for 15 min with 4 % 

paraformaldehyde (PFA) in 1 X PBS. Cells were washed three times with 1 X PBS. 

While washing the cell, click chemistry reaction cocktail was prepared. The 

important thing when preparing the cocktail is adding the reagents as the order in 

the protocol (For example, 0.1 M Tris-HCl, CuSO4, ascorbic acid and BDP FL 

azide) and the cocktail should be used within 15 min. Samples were incubated in 

the cocktail for 30 min at room temperature with an avoidance of the light. After 

that, cells were washed three times with 1 X PBS and mounted with aqua-

poly/mount. For quantitative imaging, all images were taken using a laser scanning 

confocal microscope (Zeiss LSM 700, Carl Zeiss, NY, USA) equipped with a 10 x 

(N.A. 0.3) and a 20 x (N.A. 0.8) objectives. The samples to be compared were 

prepared and imaged in identical conditions. Image acquisition settings were non-

saturating and identical. 

B) Quantitative image analysis 

To confirm the proteome labeling by genetic code expansion in mammalian 

cells, imaging was analyzed by ImageJ. For unbiased analysis, all nuclei in one 

sample were selected as regions of interest (ROIs) in thresholded Hoechst 33342 

stained image. Background-subtracted mean green (labeled proteome) and red 
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fluorescence intensities per ROI were then calculated. Genetic code-expanded cell 

nuclei were then selected by the intensity of red fluorescence protein encoded by 

co-transfected control plasmid (e.g. mCherry). Then green-to-red intensity ratios 

were calculated for all transfected cells and plotted. All cells in all samples were 

numbered based on nucleus staining by Hoechst 33342 (Molecular probes) staining. 

And then each fluorescence was calculated (Fig. 5). Red fluorescent signal was 

considered as transfection efficiency. Green fluorescent signal was considered as 

genetic code expansion efficiency.  
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Figure 5. Quantification of fluorescence in genetic code expanded cells by ImageJ. 

Cells were numbered based on Hoechst signal. To count cells automatically, black and 

white ‘binary image’ was required. 16 bit of Hoechst images were converted to 

greyscale images. After threshold the image, pixels under the threshold are changed to 

black and pixels above the threshold are changed to white. One black dot was 

considered as a cell. Transfected cells would express red fluorescent protein (RFP)s 

by the transfection of reporter plasmid. Expression of the green fluorescence means 

the expansion of the genetic code in mammalian cells. When the translation went on 

in the stop codon in the reporter (mCherry-TAG-EGFP), fluorescent fusion protein 

would be made. Also, when the stop codon of the cell was expanded by 

PylRS/tRNA
Pyl

 and UAA was incorporated into there, green fluorescence would be 

expressed because of the click reaction between alkyne in UAA and green 

fluorophore tagged azide. Efficiency of genetic code expansion and UAA 

incorporation was calculated by the intensity ratio of green–to–red fluorescence. 
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6. Statistical analysis 

Experiments were expressed as the mean ± SEM. Statistical analysis was 

performed by one-way analysis of variance (ANOVA) followed by Dunnett’s or 

Bonferroni’s post analysis. Statistical significance was defined as * p ≤ 0.05, ** p ≤ 

0.01, *** p ≤ 0.0001. 
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Ⅲ. RESULTS 

1. Pyrrolysyl-tRNA synthetase and tRNA
Pyl

 can function in mammalian cells 

 Before labeling the proteome in mammalian cells by using PylRS and tRNA
Pyl

, 

I confirmed the operation of PylRS/tRNA
Pyl

 system of Methanosarcina in mammalian 

cells. To visualize the suppression at the UAG stop codon by the PylRS/tRNA
Pyl

 pair, 

DNA plasmid in which UAG stop codon is located between red fluorescent protein 

(mCherry) and green fluorescent protein (EGFP) (mCherry-TAG-EGFP) was 

transfected into HEK293T cells. Generally, it is called as ‘reporter’ because it reports 

the genetic code expansion at the stop codon by expressing fluorescent protein. 

‘Suppressor’ plasmid DNA that encodes PylRS and tRNA
Pyl 

was also transfected with 

the reporter plasmid (Fig. 6A). After transfection, unnatural amino acids (UAAs) (Fig. 

6B) that act as Pyl analog were treated into the cells. Nε-(tert-butyloxycarbonyl)-L-

lysine, also called as Lys(Boc) is treated with 0 and 5 mM of concentration into the 

control and experimental group. By genetic code expansion, this UAA would be 

recognized at the UAG stop codon and incorporated into the polypeptides. The 

expected outcome was that only the group which had PylRS and tRNA
Pyl 

and has been 

treated with UAAs would express the EGFP signals (Fig. 6D). Because of the 

translation at the UAG stop codon, mCherry-EGFP fluorescent fusion protein would 

be made. This result identified that translating system of Pyl of Methanosarcina 

worked in mammalian cell system and expanded the genetic code of mammalian cells. 
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Figure 6. Amber suppression assay to visualize the expansion of the genetic code 

in HEK293T cells. (A) DNA plasmid constructs used for genetic code expansion in 

HEK293T cells. Amber suppressor has pyrrolysyl-tRNA (mmPyltRNACUA) and tRNA 

synthetase (mmPylRS) of M. mazei. Amber reporter has UAG stop codon (amber stop 

codon) between the genetic code of red fluorescent protein (mCherry) and green 

fluorescent protein (EGFP) (mCherry-TAG-EGFP). (B) Nε-(tert-butyloxycarbonyl)-

L-lysine, also called as Lys(Boc), was used instead of Pyl. (C) An expected process in 

HEK293T cells. If the PylRS and tRNA
Pyl

 work in the protein synthesis and suppress 

the UAG stop codon in HEK293T cells, EGFP in the amber reporter will be translated 

followed by mCherry. 
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Figure 7. UAA-dependent suppression of the amber stop codon in genetic code-

expanded HEK293T cells. (A) Images of genetic code expanded HEK293T cells and 

control group cells. Two groups were transfected with amber reporter and amber 

suppressor. After, they were treated with 0 or 5 mM Lys(Boc) which is Pyl analog. 

EGFP was significantly expressed only at genetic code expanded and UAA treated 

group. (B) Expression of fluorescent protein was showed as a graph. A single dot 

means a cell. Cells were numbered by Hoechst signal. Expression of mCherry was 

considered as efficiency of transfection. Cells that expressed red fluorescence below 

the standard were excluded in analysis. The expression value of genetic code 

expansion was measured as the value of the green fluorescence divided by the value 

of the red fluorescence in all cells in each group. UAA, unnatural amino acid. scale 

bar, 100 µm. AU, arbitrary unit. Statistical analysis was performed by one-way 

ANOVA followed by Dunnett’s post analysis. ***p < 0.001. 
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2. The anticodon of tRNA
Pyl

 can be engineered to recognize other stop codons 

Genetic codes almost frequently used in the organism consist of 64 codons. With 

some exception, three nucleotides make a codon. 61 codons specify different amino 

acids. These codons are ‘sense codons’. 3 codons are designated as ‘nonsense, 

termination or stop codons’ because they take a role in signaling of termination of 

translation. Sequence of 3 stop codons are UAG, UGA and UAA. For the 

enhancement of the efficiency of genetic code expansion, I changed the anticodon of 

tRNA
Pyl

 by the point mutation to expand the genetic code of mammalian cells not 

only at the UAG stop codon but also at the rest stop codons (Fig. 8). The anticodon of 

tRNA
Pyl

 which originally recognizes UAG codon was changed to recognize other two 

stop codons. Accordingly, the stop codons between mCherry and EGFP in the 

reporters were also changed. Each converted tRNA
Pyl

s worked by recognizing and 

expanding their cognate stop codons (Fig. 9). These results showed that mutation of 

tRNA
Pyl 

didn’t influence the operation of PylRS to esterify specific amino acid to the 

compatible tRNA
Pyl

. And they showed the possibility of genetic code expansion at the 

‘sense codon’. 
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Figure 8. Point mutation of the anticodon in tRNA
Pyl

 to recognize and suppress 

other stop codons. (A) Anticodons of tRNA
Pyl

s in opal and ochre suppressor were 

changed by the point mutation from the original anticodon of tRNA
Pyl

 in amber 

suppressor which recognizes only UAG stop codon (amber codon). (B) Mutation of 

tRNA
Pyl

s in opal and ochre suppressor enabled to recognize UGA stop codon (opal 

codon) in opal reporter and (C) UAA stop codon (ochre codon) in ochre reporter. 

 

 



 

 

27 

  



 

 

28 



 

 

29 

Figure 9. UAA-dependent suppression of the opal and ochre stop codons in 

genetic code-expanded HEK293T cells. When opal or ochre reporter and suppressor 

were transfected into the cells and UAAs were treated, genetic code expansion was 

occurred as in the amber stop codon suppression. (A) EGFP was expressed only in 

cells that have PylRS/tRNA
Pyl

 and UAAs. UGA stop codon in the opal reporter was 

expanded to incorporate UAA into the polypeptides instead of completion of protein 

synthesis. (B) Genetic code expansion in the ochre reporter. UAA stop codon in ochre 

reporter was suppressed by ochre suppressor which has PylRS and tRNA
Pyl

 to 

recognize and expand UAA stop codon. Statistical analysis was performed by one-

way ANOVA followed by Dunnett’s post analysis. UAA, unnatural amino acid. scale 

bar, 100 µm. AU, arbitrary unit. ***p < 0.001.  
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3. Anticodon-engineered tRNA
Pyl

s specifically recognize their compatible cognate 

stop codons in mammalian cells 

To confirm the specificity of PylRS/tRNA
Pyl

, three stop codons were exposed to 

three differently anticodon-engineered tRNA
Pyl

s. One of the three reporters where 

UAG, UGA or UAA stop codon is between the mCherry-EGFP fusion protein was 

transfected into HEK293T cells with three stop codon suppressors (amber, opal and 

ochre suppressor). And 5mM of UAA was treated into the cells and incubated for 24 

hr. Results of this experiment showed that PylRS and tRNA
Pyl 

were specifically 

expanded their compatible stop codons and UAA was incorporated into the 

polypeptides in HEK293T cells. For instance, UAG stop codon in amber reporter was 

expanded only by the amber suppressor which had tRNA
Pyl

 (of which anticodon was 

CUA) and PylRS (Fig. 10A and B). HEK293T cells expressed EGFP only in amber 

reporter-suppressor transfected group. Other two stop codons in opal and ochre 

reporter were also expanded only by opal and ochre suppressor which implied point 

mutation of tRNA
Pyl

 didn’t change the specificity of it (Fig. 10B).  
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Figure 10. Specificity of differently anticodon-engineered tRNA
Pyl

s in recognizing 

their cognate stop codons and site-specific UAA incorporation. (A) and (B) UAG 

stop codon in amber reporter was expanded only by the amber suppressor that had 

tRNA
Pyl

 to recognize amber codon (of which anticodon was CUA). mCherry-EGFP 

fusion protein was expressed only in amber reporter-suppressor group. (C) and (D) 

Mutation of the anticodon of tRNA
Pyl

 didn’t destroy the specificity of tRNA
Pyl

. Opal 

and Ochre suppressor expanded only their designated stop codons, UGA and UAA 

codon. UAA, unnatural amino acid. scale bar, 100 µm. AU, arbitrary unit. Statistical 

analysis was performed by one-way ANOVA followed by Dunnett’s post analysis. 

***p < 0.001.  
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4. Unnatural amino acids are site-specifically incorporated into all three stop codons 

by pyrrolysyl-tRNA synthetase and tRNA
Pyl

 

Previous results showed that PylRS and tRNA
Pyl

 of M. mazei could function in 

the mammalian cell system with orthogonality and specificity. It conferred the 

possibility that genetic code expansion could be a useful tool as labeling proteins in 

mammalian cells. In this experiment, three different suppressors (a PylRS and three 

tRNA
Pyl

s) used in previous experiments were transfected into HEK293T cells to 

expand the stop codons and label the proteins of the mammalian cells. PylRS would 

esterify the tRNA
Pyl

 and its compatible amino acid. To label the proteins, chemically 

modified UAA instead of Pyl was treated into the cells (Fig. 11A and B). This UAA, 

also called as alkyne-lysine briefly, has an alkyne which is bio-orthogonal and can 

react with an azide and make a ring formation in the catalysis of copper. Chemical 

reaction between an alkyn and an azide is called as ‘Copper-catalyzed azide-alkyne 

cycloaddition (CuAAC)’. Mechanism of the CuAAC is one of the commercially used 

reactions in the click chemistry (Fig. 11C). By this theory, I put green fluorescence 

tagged azide (BDP FL-azide) after treatment of alkyne lysine into the cells. BDP FL-

azide reacted with alkyne which was incorporated into the polypeptides and made 

triazole. Eventually, proteins in genetic code expanded cell expressed green 

fluorescence. In this experiment, all stop codons were stochastically expanded in 

HEK293T cells by the PylRS/tRNA
Pyl

 (Fig. 12). By the genetic code expansion in 

HEK293T cells, two possible theories proceed at stop codon. One is termination of 

the translation. In eukaryotes, eukaryotic translation termination factor 1 (eRF1) 

recognizes three stop codons. RF promotes the hydrolysis of the ester bond between 

the polypeptides and peptidyl site tRNA. The other is elongation of the translation. 

Because of the existence of PylRS/tRNA
Pyl

, RF competes with aminoacyl-tRNA
Pyl

. 

When the alkyne lysyl-tRNA
Pyl

 defeats RF, alkyne lysine is incorporated into the 

nascent polypeptides and translation goes on.  
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Figure 11. Visualization of the genetic code expansion at stop codons and UAA 

incorporated proteins by click chemistry and fluorescence imaging. (A) Three 

stop codon suppressors were used to expand the stop codons and label the genetic 

code expanded proteins in the HEK293T cells. Each suppressor has PylRS and 

tRNA
Pyl

 which has its designate anticodon about the stop codon. (B) N6-[(2-

propynyloxy) carbonyl]-L-lysine, chemically modified UAA that is Pyl analog used to 

expand the stop codons and label proteins. (C) Click chemistry by CuAAC visualized 

UAA labeled proteins in genetic code expanded cells.  
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Figure 12. Quantitative analysis of site-specific UAA incorporation into different 

stop codons in genetic code-expanded HEK293T cells. Suppressor plasmid was 

transfected into HEK293T cells with pCS2+GAP DsRed plasmid which was for 

identification of transfected cell and efficiency of transfection. After, 5 mM of UAA 

was treated into the cells. Only the cells that had PylRS and tRNA
Pyl 

could use UAA 

to label the nascent polypeptides. Genetic code expanded polypeptides in the cells 

were visualized by click chemistry expressing the green fluorescent signals which 

were from the BDP FL-azide. scale bar, 50 µm. UAA, unnatural amino acid. GCE, 

genetic code expansion. AU, arbitrary unit. Statistical analysis was performed by one-

way ANOVA followed by Dunnett’s post analysis. ***p < 0.001.  
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5. The anticodon of tRNA
Pyl

 can be changed to recognize sense codons 

Originally, PylRS/tRNA
Pyl

 pair of M. mazei recognizes and expands the UAG 

stop codon. But the point mutation of anticodon of tRNA
Pyl

 facilitated recognition and 

expansion of the rest two stop codons. Genetic code expansion at all three stop codons 

were more efficient than at UAG stop codon only. However, it had some 

disadvantages. First was high risk of incorrectly formed proteins. Because of the 

ongoing procedures of translation at the stop codon, eRF1 which recognizes stop 

codons and orders to releasing of the ribosomes from mRNAs can not act its role. 

Translation proceeds continuously. Incorrectly synthesized polypeptides could give 

adverse effects on the cell system. Second was the efficiency of the genetic code 

expansion at the stop codon. Stop codon exists only one per a polypeptide which 

means if genetic code expansion occurs it can be once in one polypeptide. Also, UAA 

labeled polypeptides can be degraded by proteolysis in the cell system because of its 

abnormal form. In this experiment to settle these problems, the anticodons of 

tRNA
Pyl

s were point mutated to recognize the sense codons (Figure. 12A). 4 sense 

codons were selected. AUG, UUA, UUC and UUU which are sense codons for 

Methionine (Met), Leucine (Leu) and Phenylalanine (Phe). They are well used amino 

acids in Xenopus tropicalis which will be used in vivo model in this study. I 

transfected these suppressors into HEK293T cells. 5 mM of alkyne lysine was treated 

into the cells and click chemistry was done (Figure. 12B). Among 4 sense codon 

suppressed groups, Met suppression was the highest efficient (Figure. 13). Phe 

suppression that genetic code expansion at UUC and UUU showed quite low 

efficiency of labeling. Although green fluorescent labeling in the Phe (UUU) 

suppressor group was detected in the imaging analysis compared to the control group, 

statistical analysis showed non-significant consequence.  
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Figure 13. Site-specific incorporation of UAA into the AUG sense codon in 

genetic code-expanded HEK293T cells. (A) Sense codon suppressors have tRNA
Pyl

s 

which recognize the codon of Met, Leu or Phe. When they were transfected into the 

cells, PylRS would esterify the Pyl analog to the tRNA
Pyl

 and aminoacyl-tRNA
Pyl

 

would recognize the sense codon.
 
(B) when the suppressor was transfected into the 

mammalian cells, it would expand the sense codon. Some sense codons would 

incorporate the natural amino acids but others would incorporate the UAAs into the 

polypeptides. Alkyne in UAA of polypeptides would react with fluorescence tagged 

azide (BDP FL-azide) and make triazole.  
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Figure 14. Visualization of the genetic code expansion at sense codons and UAA 

incorporated proteins by click chemistry and fluorescence imaging. Point mutated 

anticodon of tRNA
Pyl

 interacted with some sense codons, Met, Leu and Phe in 

HEK293T cells. Met suppression was the most efficient proteome labeling by genetic 

code expansion. Phe (UUU) suppression showed poor labeling efficiency. scale bar, 

50 µm. UAA, unnatural amino acid. GCE, genetic code expansion. AU, arbitrary unit. 

Statistical analysis was performed by one-way ANOVA followed by Dunnett’s post 

analysis. ***p < 0.001. 
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6. Co-expression of differently anticodon-engineered tRNA
Pyl

s allows more efficient 

incorporation of unnatural amino acids and proteome labeling 

To elevate the efficiency of genetic code expansion and incorporation of the 

UAA, the tRNA
Pyl

in the suppressor was inserted two, three or four times more than it 

originally had (Fig. 15). For example, Amber & Opal suppressor is a DNA plasmid 

that has encodes for 2 different tRNA
Pyl

s (which recognized UAG or UGA stop codon) 

and PylRS. Each tRNA
Pyl

 has different anticodons to UAG and UGA stop codon. In 

this experiment, I inserted multiple tRNA
Pyl

s which had differently engineered-

anticodons into a DNA plasmid (Suppressor). I transfected several suppressors that 

have differently engineered- tRNA
Pyl

s into HEK293T cells and compared the 

efficiency of proteome labeling by PylRS/tRNA
Pyl

. In the stop codon suppression, 3 

different suppressors were transfected into each experimental group (Fig. 16A and C). 

Suppressors had a single tRNA
Pyl

 (anticodon was CUA), two different tRNA
Pyl

s 

(anticodons were CUA and UCA) or three different tRNA
Pyl

s (anticodons were CUA, 

UCA and UUA). Statistical results showed that two or three multiple tRNA
Pyl

s 

included suppressors more efficiently expressed the green fluorescence than a single 

tRNA
Pyl

 included suppressor which implied more effective labeling of proteins was 

done in the multiple tRNA
Pyl

s-suppressors. Sense codon suppression also showed 

corresponding outcome as the results of stop codon suppression. I transfected sense 

codon suppressors that had a singe tRNA
Pyl

 (CAU), two different tRNA
Pyl

s (CAU and 

UAA) and four different tRNA
Pyl

s (CAU, UAA, GAA and AAA) into HEK293T cells 

(Fig. 15B). Images and graphs represented that multiple tRNA
Pyl

s-suppressors 

expanded the sense codons more efficiently than a single tRNA
Pyl

-suppressor (Fig. 

16B and D). These results indicated that tandem expression of tRNA
Pyl

s of the 

suppressors which had multiple tRNA
Pyl

s. And co-expression of different tRNA
Pyl

s of 

the suppressors labeled more proteins than expression of a single tRNA
Pyl

 of the 

suppressor. 
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Figure 15. Incorporation of UAA into multiple sites using co-expression of 

different tRNA
Pyl

s. (A) Amber & Opal suppressor and Amber & Opal & Ochre 

suppressor have more tRNA
Pyl

s than Amber suppressor has. Amber & Opal & Ochre 

suppressor has all tRNA
Pyl

s to all three stop codons which can hypothetically suppress 

all stop codons in the cells. (B) Met & Leu suppressor and Met & Leu & Phe (UUC 

and UUU) suppressor have more tRNA
Pyl

s than Met suppressor has. 
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Figure 16. Additive effect of parallel expression of different tRNA
Pyl

s in the 

proteome labeling in genetic code-expanded HEK293T cells. Multiple tRNA
Pyl

s in 

the suppressors more efficiently suppressed than a single tRNA
Pyl

 in the suppressor. 

Through the statistical analysis, both results in stop and sense codon suppression 

showed significant increase in multiple suppression than a single suppression. Scale 

bar, 50 µm. UAA, unnatural amino acid. GCE, genetic code expansion. AU, arbitrary 

unit. Statistical analysis was performed by one-way ANOVA followed by 

Bonferroni’s post analysis. Statistical significance was defined as ns, not significant, * 

p ≤ 0.05, *** p ≤ 0.0001. 
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7. Efficacy of proteome labeling by genetic code expansion is dependent on the 

concentration of unnatural amino acids 

When the genetic code is expanded at the stop or sense codon in the mammalian 

cells by PylRS and tRNA
Pyl

, the 22
nd

 amino acid, Pyl, can be incorporated into the 

nascent polypeptides. To label and detect the polypeptides, I added to the cells not Pyl 

but Pyl analog which cell could misunderstand it as Pyl and use it. Pyl analog I used 

in this study was chemically modified UAA tagged with an alkyne that reacts with an 

azide in the click chemistry (Fig. 2). To adjust the optimal concentration of UAA to 

the cells and confirm the lowest concentration of UAA when labeling the proteome of 

the cells by the genetic code expansion, various concentrations of UAA were tested. 

HEK293T cells were transfected with Amber & Opal & Ochre suppressor (Fig. 15). 

After transfection, 12 different concentrations of UAA were treated into each cell 

group (Fig. 17). UAAs used in this experiment were lysed in water. Concentration of 

the UAA stock solution was 130 mM. It was diluted by DMEM-low glucose media 

with 10 % FBS and 1 X antimycotic antibiotic. However, the addition of lysed UAAs 

into the culture media changed the pH higher than pH 7. To adjust the pH, 5 M HCl 

was added to the media. Duration of UAA was 10 hr and media was changed to wash 

the nonspecific UAAs in the cell which didn’t participate in proteome labeling. Cells 

were incubated in UAA-free media for 14 hr. Statistical analysis indicated that 

treatment of more than 0.75 mM of UAA into the genetic code expanded cells showed 

significant result compared to negative control (Fig. 18). Treatment of 10 mM of 

UAA into the cells expressed substantial green fluorescence, meaning high efficiency 

of proteome labeling. But the signal to ratio also increased with the green fluorescent 

signals. These results provided that significant concentration of UAA when labeling 

the proteins is above 0.75 mM of UAA. But the images of confocal microscope 

detected the signal even at 0.5 mM of UAA treated group. The optimal concentration 

of UAA was 5 mM in this study. Signal to ratio noise at this point wasn’t too high and 



 

 

52 

cell viability was normal. So I applied to treat 5 mM of UAA in rest experiments in 

this study. 

 

 

Figure 17. Experimental scheme to determine the concentration of UAA in 

genetic code expansion-based proteome labeling. After transfection of Amber & 

Opal & Ochre suppressor which has tRNA
Pyl

s about all three stop codons into the 

HEK293T cells, 0, 0.1, 0.125, 0.5, 1, 1.25, 2.5, 5, 7.5 and 10 mM of UAA were 

treated into the cells for 10 hr.  



 

 

53 



 

 

54 

Figure 18. UAA concentration dependency of proteome labeling by genetic code 

expansion. As the concentration of UAAs increased, green fluorescent intensity also 

increased. Statistical analysis showed that the signals below 0.5 mM of UAA treated 

groups were not significant as compared to 0 mM of UAA treated group. Scale bar, 

100 µm. UAA, unnatural amino acid. AU, arbitrary unit. Statistical analysis was 

performed by one-way ANOVA followed by Bonferroni’s post analysis. Statistical 

significance was defined as ns, not significant. 
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8. Efficacy of proteome labeling by genetic code expansion is dependent on the 

duration of unnatural amino acid treatment 

Not only the concentration of UAA but also the duration of them effects the 

efficiency of proteome labeling. Amber & Opal & Ochre suppressor was transfected 

into the cells as the previous experiment (Fig. 17). And 5 mM of UAA was treated 

into HEK293T cells at different times. The longest time was 32 hr and the shortest 

was 1 hr. After treatment of UAA, media in all samples were changed to UAA-free 

media and incubated for 14 hr. Statistically, green fluorescent expressions of 1 and 2 

hr duration of UAAs into the cells were not significantly different as the negative 

control which wasn’t treated with UAAs (Fig. 20). These are result from the washing 

time after the treatment. During this time, there were no UAAs in the media which 

meant no proteome labeling. So previously UAA labeled proteins had possibility to 

degraded or dispersed into another region in or outside of the cells. Considering the 

confluency of the cells as time goes by and the efficiency of proteome labeling, I 

selected the optimal time of duration of UAAs about 10 or 14 hr in the study.  
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Figure 19. Experimental scheme to determine the time course of UAA in genetic 

code expansion-based proteome labeling. After transfection of Amber & Opal & 

Ochre suppressor which has tRNA
Pyl

s about all three stop codons into HEK293T cells, 

5 mM of UAA was treated into the cells for 1, 2, 4, 8, 16 and 32 hr. 
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Figure 20. Time dependency of proteome labeling by genetic code expansion. As 

the duration time of UAA increased, green fluorescent intensity also increased. 

Statistical analysis showed that the signals below 2 hr of duration of UAA treated 

groups were not significant as compared to untreated UAA group. Scale bar, 100 µm. 

UAA, unnatural amino acid. AU, arbitrary unit. Statistical analysis was performed by 

one-way ANOVA followed by Bonferroni’s post analysis. Statistical significance was 

defined as ns, not significant. 
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Ⅳ. DISCUSSION 

 Current proteomic techniques involve labeling and detecting proteins in all cells 

in the sample, because they use amino acids as probes which can be used by all cells 

for protein synthesis 
9
. One such example is BONCAT (bio-orthogonal noncanonical 

amino acid tagging), which utilizes methionine analog such as L-azidohomoalanine 

(AHA). When cells grown in a methionine-free medium are supplied with AHA, it is 

site-specifically incorporated into the AUG codon during mRNA translation in all 

cells in the sample (Fig. 21). Another example is SILAC (stable isotope labeling by 

amino acids in cell culture) 
10

, which utilizes non-radioactive and stable isotope 

containing amino acids, such as 13C Arg or 13C Lys. Stable isotope-containing amino 

acids are then incorporated into the de novo proteome during mRNA translation. 

These two methods efficiently label newly the de novo proteome of all cells in the 

samples but cannot label the proteome of specific cells of interest because the amino 

acid-based probes can be used by all cells 
1,11

. A breakthrough in the effort of cell 

type-specific proteome labeling has come from an unusual genetic code the methane-

producing archaea Methanosarcina, which processes the PylRS/tRNA
Pyl

 system that 

is orthogonal to eukaryotic tRNAs and aminoacyl-tRNA synthetases. After the initial 

discovery, the main trend in this field of research was to improve this system to 

incorporate UAAs into a specific site of a protein which is often not possible by 

chemical synthesis. In this thesis, I applied this system for cell type-specific proteome 

labeling 
1,12

. Up to now, the highest organism used to label proteome by the genetic 

code expansion is D. melanogaster 
6
. PylRS and tRNA

Pyl
 suppressed the stop and 

sense codon in a transgenic D. melanogaster. Chemically modifiable UAAs were 

incorporated into the D. melanogaster which was induced to express PylRS only in 

germ line cells. It resulted in tissue and stage specific proteome labeling in flies.  

  



 

 

60 

In this study, I applied genetic code expansion into the mammalian cells to label 

cell type-specific proteome. The PylRS/tRNA
Pyl

 pair of Methanosarcina expanded the 

genetic code of mammalian cells and enabled site-specific incorporation of UAAs 

into the de novo proteome only in genetic code-expanded cells. It has been previously 

shown that the PylRS/tRNA
Pyl

 system can be used to incorporate the UAAs into the 

specific sites of a protein by introducing the UAG stop codon to the specific site of an 

mRNA. In this thesis, I improved this method in several ways to label the endogenous 

de novo proteome of a specific cell population. First, I engineered the anticodon of 

tRNA
Pyl

 so that it can simultaneously incorporate UAAs into different codons. I 

improved this system to incorporate UAAs into all three stop and several sense 

codons, overcoming the limitation of the current the PylRS/tRNA
Pyl

 system in 

labeling the proteins encoded by mRNAs without the amber stop codon. The codons 

that whose site-specific UAA incorporation was made possible in this thesis UAG, 

UGA, UAA, AUG, UUA, UUC and UUU. Interestingly, quantitative analysis showed 

that incorporation of UAA into the UUA sense codon (Leu) was relatively inefficient, 

suggesting that this codon is not widely used in the proteome of HEK293T cells. 

Studying codon usage of the cells of interest would be the first step in optimizing the 

proteome labeling strategy. The dose response analysis showed that UAA of 0.75 mM 

or higher concentration is needed label proteome. Developing efficient methods to 

deliver high concentrations of UAA into a living animal would be prerequisite to 

extend this study into an organismal level. The time dependency analysis showed 8 to 

16 hr treatment of UAA is required for efficient proteome labeling. It seemed that 

proteome labeling by genetic code expansion is less efficient than proteome labeling 

by AHA treatment. AHA labeling in HEK293T cells was known to be efficient with 

25-50 µM of AHA for 1-4 hr (Fig. 21). Developing a PylRS that acts faster and more 

effectively in eukaryotic cells is required to improve the efficacy of proteome labeling 

using this method.  
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Figure 21. De novo proteome labeling by L-azidohomoalanine (AHA) in 

HEK293T cells. HEK293T cells were plated on poly-L-lysine coated coverslip in 12 

well cell culture plate. After overnight incubation, culture media was changed to 

methionine-free culture media to deplete methionine in the cells. 0.05 mM of AHAs 

was treated into experimental group for 1 hr. Remained AHAs in the media were 

washed for 30 min and cells were fixed. Click chemistry reaction was done as in 
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experiment of proteome labeling by UAA. In click reaction, tetramethylrhodamine-

alkyne (TAMRA-alkyne) was counterpart of AHA which results in cycloaddition with 

Copper catalysis. 
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UAA used in this study had a terminal alkyne which reacts with an azide and 

makes a triazole. A form of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) 

is one of the reactions referred to as click chemistry (Fig. 22) 
13,14

. Click chemistry is 

bio-orthogonal in the sense that it does not react to biological materials. The first bio-

orthogonal click reaction was based on the Staudinger ligation. In Staudinger ligation, 

an azide reacts with a triarylphosphine equipped with an ester. In 2004, Bertozzi 

group applied this reaction into a living animal 
15

. They attached the azide to the cell-

surface glycans and monitored the changes in glycosylation by adding phosphine 

probe comprising flag peptide. However, this reaction showed poor kinetics that high 

concentration of phosphine was required which leads to high background signal in 

imaging analysis. With a modification of [3+2] cycloaddition between an acyclic 

alkyne and an azide developed by Huisgen, Sharpless and co-workers and Meldal and 

co-workers made CuAAC. Although click chemistry reaction by CuAAC allowed bio-

orthogonality and high sensitivity in labeling proteome in living cells, it had toxicity 

because of Cu catalysis. This drawback restricted analysis of labeled proteins only by 

lysing or fixing the cell. So the researchers developed new way to settle this challenge. 

In 2007, Bertozzi and co-workers developed copper-free click chemistry by using an 

azide and a cyclooctyne 
13

. Cyclooctyne is a small cyclo-alkyne which induces 

cycloaddition with an azide. Cyclooctyne instead of terminal alkyne didn’t need Cu 

catalysis when it reacted with azide. To elevate the rate of cycloaddition, they slightly 

modified cyclooctyne by adding two fluorine atom to the ring which is called as 

difluorinated cyclooctyne (DIFO). They added an analog of sugar that contains azide 

into the cell and fluorescent DIFO probe. Cells used the analog when they made cell 

surface glycans. Metabolic labeling and detection of glycan by the copper-free click 

reaction enabled the imaging of glycan internalization and trafficking in live cells. In 

2008, Boons and co-workers also developed another copper-free click chemistry 
16

. 

They made a reaction between a dibenzocyclooctyne (DIBO) and an azide. Like 

Bertozzi group who used azide/DIFO click chemistry, they also applied the 



 

 

64 

azide/DIBO click reaction into the study of the cell surface glycoconjugates. Both of 

two copper-free click reactions showed high sensitivity as CuAAC with high 

biocompatibility in a living organism. Some researchers exploited the reaction 

between a tetrazine and a trans-cyclooctene (TCO). Click reaction between these two 

molecules showed faster reactivity than any other copper-free click chemistry 
14,17

. 

Recent study resulted in the site-specific proteome labeling by the tetrazine/TCO click 

reaction. Fox and chin used PylRS and tRNA
Pyl

 to expand the genetic code and 

tetrazine/TCO click reaction to detect site-specifically labeled proteins 
18

. They 

demonstrated rapid proteome labeling by incorporating TCO-containing amino acids 

which acted as Pyl analogs and reacted with tetrazine fluorophores into E.coli and live 

mammalian cells. 
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Figure 22. Click reactions used in biochemical studies. Various click reactions used 

in biochemistry. Azide (1) is one of the most popularly used bio-orthogonal chemical 

group. Azide has small size and shows inert function in a living organism. Staudinger 

ligation is interaction between an azide (1) and phosphines (3). Phosphine is absent 

from living system which is suitable material of click reaction. However, this reaction 

suffers from slow kinetics. It cannot be used in studying fast biological procedure or 

detecting low abundant molecules. Click reaction between an azide and a terminal 

alkyne (4) is known as copper-catalyzed azide-alkyne cycloaddition (CuAAC). It is 

commercially known and sold widely as a kit. Although CuAAC is faster than 

Staudinger ligation, it needs catalysis of copper which is toxic to the organism. So the 

CuAAC cannot be applied to study living organism. Difluorinated cyclooctyne (DIFO, 

5) and dibenzocyclooctyne (DIBO, 6) are strains of cyclooctyne. Click reaction 

between an azide and a cyclooctyne doesn’t need catalysis. Both of reactions with 

azide not only have biocompatibility shown in the Staudinger ligation but also have 

rapid process shown in the CuAAC. Click reaction between a tetrazine (2) and a 

trans-cyclooctene (TCO, 7) shows faster kinetics than any other click reactions. 

However, photoisomerization is concerned because of TCO (alkene). 
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These results in this study showed genetic system of Methanosarcina could be 

used to expand the genetic system of mammalian cells. By inserting PylRS and 

tRNA
Pyl

 M. mazei and incorporating chemically modified UAAs into the HEK293T 

cells, de novo proteome labeling can be done with cell type-specifically. The mutation 

of anticodon of tRNA
Pyl

s to recognize other stop or even sense codons enhanced the 

efficiency of incorporation of UAAs. Co-expression of different tRNA
Pyl

s also 

extended the efficiency of proteome labeling. These results provided a promising 

direction for a new technique to isolate the proteome of a specific cell type in a living 

animal (Fig. 23). Also, the application of copper-free click chemistry will broaden the 

cell type-specific de novo proteome labeling by genetic code expansion in real time. 
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Figure 23. Future direction: cell type-specific de novo proteome by genetic code 

expansion in a living organism. De novo proteome labeling by genetic code 

expansion in the cells proposed the possibility of proteome labeling in a living 

organism, especially in vertebrates. By inducing PylRS/tRNA
Pyl

 and incorporating 

UAA into the organism, proteome of a specific cell in specific location can be labeled 

and identified. Furthermore, click chemistry reactions enabled the visualization and 

purification of specifically labeled proteome. 
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Ⅴ. CONCLUSION 

This present study shows that genetic code expansion by pyrrolysine tRNA and 

tRNA synthetase of Methanosarcina in mammalian cells. And using genetic code 

expansion, proteome in the mammalian cells can be labeled by incorporating 

unnatural amino acids. The major findings of this study are summarized as below:  

 

1. An orthogonal pyrrolysine tRNA and tRNA synthetase pair of 

Methanosarcina expands the genetic code of mammalian cells. 

2. Incorporation of unnatural amino acids labels the proteins in genetic code 

expanded mammalian cells.  

3. Genetic code expansion of mammalian cells can happen at all stop and some 

sense codons.  

4. Click chemistry allows specific visualization of the de novo proteome of 

genetic code-expanded mammalian cells. 

 

In conclusion, the de novo proteome of a specific cell population in the sample 

can be specifically labeled by genetic code expansion and incorporation of unnatural 

amino acids. 
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ABSTRACT (IN KOREAN)  

 

유전 암호 확장을 이용한 세포 특이적 단백질체 표지법 개발 

 

 

< 지도교수 정호성 > 

 

 

연세대학교 대학원 의과학과 

 

 

김 은 진 
 

 단백질의 합성은 매우 정교하게 조절되고 있으며 주위 환경에 

미세하게 반응하여 세포의 성장, 분화, 신진대사뿐만 아니라 거의 모

든 과정들을 제어한다. 이 때문에 단백질체 연구의 필요성이 커졌고, 

여러 조직 내 다양한 세포의 단백질 발현을 연구하는 것이 큰 과제

로 떠올랐다. 단백질체를 분석하기 위해서는 조직 혹은 배양된 세포

의 단백질 전체를 분리하여 질량분석기 등으로 동정하거나, 대사 표

지법을 이용하여 신생 단백질체만을 표지한 후 동정하기도 한다. 그

러나 이러한 실험 기법은 시료에 있는 모든 세포의 단백질체를 분석

하게 되므로, 배양된 세포와 같이 균일한 세포로 구성되어 있는 시

료를 분석하는 데에는 적합하지만 다양한 세포들 간의 상호작용으로 

일어나는 생명 현상을 연구하는 데에는 적합하지 않다. 우리 몸은 

여러 가지 다른 세포로 구성되어 있고 각 세포의 단백질체는 모두 

다르기 때문이다. 따라서 우리가 원하는 세포의 단백질체만을 생물

체에서 표지하고 분리하는 방법이 개발되어야 한다.  
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 이에 본 연구는 유전 암호 확장법을 적용하여 세포 특이적 단

백질체 표지법을 개발하고자 한다. 보편적으로 생물체가 사용하는 

유전 암호는 20개의 아미노산과 3개의 종결 신호를 지정한다. 유전 

암호 확장은 생물체가 유전 암호를 이용하여 단백질을 합성할 때, 

외부의 유전 암호 체계를 유입함으로써 일어난다. 특정 유전 암호에 

대해 다른 아미노산을 지정하고 있는 외부 유전 암호 체계를 이용한

다면 생물체는 자신이 암호화하고 있는 아미노산이 아닌 다른 아미

노산을 단백질 합성에 참여하도록 할 수 있다. 이처럼 유전 암호 확

장법을 이용하면 원하는 세포의 단백질을 표지 하는 것이 가능하다.  

 구체적으로 본 연구에서는 세포 혹은 생물체에 선별적으로 고

세균의 Pyrrolysine 유전 암호 체계를 유입시킨 후 이 유전 암호에 적

용 가능하고 표지 가능한 표지용 아미노산을 이용하여 세포 특이적 

단백질체 표지법을 개발하고자 한다. 
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